
Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Two-way databinding of models and
views in Dart

Diploma thesis

2014
Bc. Jakub Uhrík

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Two-way databinding of models and
views in Dart

Diploma thesis

Study programme: Computer Science
Field of Study: 9.2.1. Computer Science, Informatics
Department: FMFI.KI - Department of Computer Science
Thesis supervisor: RNDr. Tomáš Kulich, PhD.

Bratislava, 2014
Bc. Jakub Uhrík

50959289

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Jakub Uhrík
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: 9.2.1. Computer Science, Informatics
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Two-way databinding of models and views in Dart

Aim: Compare different approaches of two-way databinding between models and
views in web-pages. Choose either Angular / Model Driven Views approach,
or Facebook React approach and implement it in Dart language. Justify your
design decision and explain, why chosen approach is more suitable for Dart.

Supervisor: RNDr. Tomáš Kulich, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

doc. RNDr. Daniel Olejár, PhD.

Assigned: 28.10.2013

Approved: 29.10.2013 prof. RNDr. Branislav Rovan, PhD.
Guarantor of Study Programme

Student Supervisor

50959289

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Jakub Uhrík
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: 9.2.1. informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Obojsmerné previazanie dát s pohľadmi v jazyku Dart / Two-way databinding
of models and views in Dart

Cieľ: Porovnajte rôzne spôsoby obojsmerného previazania modelov s pohľadmi
vo webových aplikáciách. Vyberte si prístup navrhnutý Angular-om resp. Model
Driven Views, alebo prístup, ktorý používa Facebook React, implementujte
tento prístup v jazyku Dart. Zdôvodnite svoje rozhodnutie a odôvodnite, prečo
je zvolený prístup pre Dart vhodnejší.

Vedúci: RNDr. Tomáš Kulich, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: doc. RNDr. Daniel Olejár, PhD.

Dátum zadania: 28.10.2013

Dátum schválenia: 29.10.2013 prof. RNDr. Branislav Rovan, PhD.
garant študijného programu

študent vedúci práce

v

I would like to thank to my supervisor RNDr. Tomáš Kulich, PhD.for his guidance,
support and encouragement.
Special thanks belong to my family and loved ones for all their support.

Bc. Jakub Uhrík

vi

Abstract
The thesis discute the data binding of the model and the view in the user interface of
the web application. It is specialized to the Dart programming language.

The thesis explore existing solutions in this topic and compare and categorize them.

The Tiles library was created as a significat part of the work. The requirements,
design and performance aspects are discused in the chapter 4 Our solution.

The Tiles library is Component driven UI library written in dart with the API and
approach inspired by the Facebook React library written in the JavaScript.

We also described the Performance the library from the theoretic point of view and
create Benchmarks, which ilustrate the performance in the action.

Key words: Databinding, Dart, Facebook React, User Interface, Component
driven views, Template driven views, AngularJS, ...

vii

Abstrakt
Práca pojednáva otázku previazania modelu a zobrazenia v rácmi používateľského
rozhrania webovej aplikácie. Je špecializovaná na programovací jazyk Dart.

V práci sú preskúmané existujúce riešenia, ktoré sú nasledne porovnané a
kategorizované.

Významnou časťou práce je knižnica v programovacom jazyku Dart nazvaná Tiles .
Jej východiskové požiadavky, návrh architektúry a výkonnostné aspekty sú popísané v
kapitole Our solution.

Knižnica Tiles je komponentová knižnica zameraná na používateľské rozhranie s API
a princípami inšpirovanými JavaScript-ovou knižnicou React vytvorenej spoločnosťou
Facebook .

Taktiež sme popísali výkonnosť a zložitosť knižnice z teoretického hľadiska a vytvorili
"benchmark-y", ktoré ilustrujú výkon knižnice v akcii.

Kľúčové slová: Databinding, Dart, Facebook React, User Interface, Component
driven views, Template driven views, AngularJS, ...

Contents

Introduction 1

1 Motivation 2

2 Data binding 4
2.1 One way data binding . 4
2.2 Two way data binding . 5

3 Existing solutions 6
3.1 Template driven . 6
3.2 Component driven . 9

3.2.1 React . 9
3.3 Conclusion . 10

4 Our solution 12
4.1 Requirements . 13
4.2 Architecture - Tiles . 13

4.2.1 Architectural overview . 14
4.2.2 Structure . 15
4.2.3 Core . 16
4.2.4 Life-cycle . 20
4.2.5 Rendering . 26
4.2.6 Events . 29
4.2.7 Injecting . 30

4.3 API . 31
4.3.1 Component . 33
4.3.2 DOM component API . 34
4.3.3 Browser specific API . 34
4.3.4 Server specific API . 35

viii

CONTENTS ix

5 Performance 36
5.1 Initial render . 36
5.2 Update of the UI . 37
5.3 Continuous resource consumption . 38
5.4 Performance optimizations . 38

5.4.1 Batched updates . 38
5.4.2 Up-down update process . 39

6 Benchmarks 40
6.1 Benchmarking system . 40
6.2 Mass versus structure . 41
6.3 Clean versus dirty update . 42
6.4 Virtual versus real DOM . 42
6.5 Conclusion . 43

Conclusion 47

Bibliography 48

List of Figures

4.1 The Idea . 14
4.2 Virtual DOM . 15
4.3 Packages . 16
4.4 Core of the library . 17
4.5 Life cycle of a Component . 21

6.1 Render of simple structure with one custom component and mass of div
components . 42

6.2 Render of simple structure with one custom component as a root, mass
custom component as a child of the root and 1 div components under
each of them . 43

6.3 Render of the structure of custom components 44
6.4 Comparison of the render of the same number of leafs in the simple, and

complicated structure . 44
6.5 Comparison of the clean and dirty update in mass and structure 45
6.6 Comparison of the creation of the virtual DOM and rendering into the

real DOM in mass and structure . 45
6.7 Comparison of the creation of the virtual DOM and rendering into the

real DOM in the structure . 46

x

Introduction

In the November 2014 on the Devoxx conference in Belgium, Google released the Dart
language in form of Google Dart SDK 1.0. The Dart language has an intention
to replace JavaScript as the common language of web development on the open web
platform. [Hor13]

The Dart programming language has possibility of compilation into the JavaScript.
It also has own virtual machine which can be standalone or embed into the browser.
It has advantages like optional typing, well defined dependency management by pub
command which also enable git dependences and much more.

In the 29th of May 2013 Facebook developers released the React library as an
open-source. The React library offer different perspective of the UI development in
JavaScript applications. It don’t use templates, enable declarative thinking in the
programming of the UI. We will provide deeper overview of the React library in the
subsection 3.2.1 React of the chapter 3 Existing solutions.

Two independent interesting solutions with lot of advantages incurred. The natural
question is if there exist a solution which integrate the React with the Dart language
and combine their advantages. We discovered, that there existed no integration yet,
therefore we decided to create one.

The first step was to create the port of the React into the Dart language. It turned
out, that the port is slow for a great number of custom components. The reason was
the communication in the form of life cycle methods between the React implemented
in the JavaScript and the application implemented in Dart language.

That was the reason to create own Dart library with the core idea inspired by the
React library. The Dart library was designed, implemented and tested. The name is
Tiles and the source code is open-source hosted on https://github.com/cleandart/

tiles.
In the scope of this work we described the data binding theory, examined existing

solutions implementing data binding, designed and described the Tiles library and
the performance of it.

1

https://github.com/cleandart/tiles
https://github.com/cleandart/tiles

Chapter 1

Motivation

The first question, as always should be, is the motivation of this work. What is the
motivation to create another library, that will handle data binding in Dart?

The motivation to create the tiles library contains from several aspects, which are
not contain in no other Dart library 1.

Dart as a programming language
Dart language is young programming language with an active development and
progress. One of its advantages is optional typing, the build-in compilation to
the JavaScript, which enable programming a browser applications, and a Java-
like virtual machine, which runs the Dart in the most commonly used operating
systems.

It is designed for the web applications with all necessary support for them. As it
enable the compilation into the JavaScript and running directly under the OS, it
also enable to share a source code between server part of an application and its
client application running in the web browser.

Dart also guarantees browser compatibility, what is important for ease of web
application development.

Testability
Very important aspect in a building complex application is the testability of the
source code.

Because of this, it is essential to use libraries, which enables easy testing and
mocking components.

Server side rendering
Server side rendering is very important for user experience and for search engine

1We didn’t find any suitable library and didn’t hear about it

2

CHAPTER 1. MOTIVATION 3

optimization.

When we have the CPM2 which can be used as on the server, so in the clients
browser, it is natural to think about a use of the same source code to create an
in-browser application, and to render its page on the server.

No templates
This aspect is important from two point of views: the testability and the server
side rendering.

From the testability point of view, it is easier to test and mock structures created
in only one CPM. If the template is used to create a component of the UI,
it is much more difficult to test it and also think about this testing. If this
component is only one class in the CPM without dependences on another type
of the information, testing is more natural and easier to think about.

From the server side rendering point of view, if we want to work with templates,
we need to access them differently when we work in the OS and in the clients
browser. If we have the structure fully composed in one CPM, it is easier to
compose the same HTML structure on the server as in the browser, then if we
have the structure composed by the template and the CPM.

Only one language
This aspect is very related with the previous one. When the application is created
fully in one programming language, it is easier for programmers to work with it
(they don’t have to switch between different CPM).

Also it is easier to compile whole application into the JavaScript, analyze the
source code or refactor it.

Reliability
The reliability has significant importance in complex applications. This reliability
can be achieved by automatic tests, a robust design and quality development.

When we take into account these aspects, there exists no library, which fulfill all of
them.

As there is a need for this kind of a library, we decided to design and create one.

2Computer Programming Language

Chapter 2

Data binding

Data binding is the process of tying the data in one object to another object. It provides
a convenient way to pass data between the different layers of the application.[wika]
When we talk about the data binding in the UI of the web application: Data binding
is the process that establishes a connection between the application UI (User Interface)
and business logic.[Wikb] The application logic of the web application is represented
by a data model(JavaScript/Dart used on the website) and the UI by the HTML view
of the data.

The data binding is widely used in frameworks using MVC patterns. The most
common way to implement the data binding is by using a template engine. The
template engine takes the template, merge it with data and produce the view of the
UI.

The model(data) can be connected with the view in a one direction, model 7→ view,
or in both directions, model 7→ view and view 7→ model. The single way view 7→ model

is not used.

2.1 One way data binding

The one way data binding implements the model 7→ view direction.
The server side rendering is an example, where the one direction data binding is

the perfect way to map data into the view. From the server side rendering point of
view, the other direction of the data binding doesn’t event exist.

The more interesting usage of the one way binding direction is in the browser
application. The one way data binding is used to reflect the model of the application
into the UI view. This reflection is maintained continuously and keep the UI in the
sync with the model. Therefore each change of the data model is reflected into the
view.

4

CHAPTER 2. DATA BINDING 5

2.2 Two way data binding

Two way data binding extends the one way by implementing the second direction:
view 7→ model.

One direction, when the model is updated, the view is modified to reflect the data.
In the second direction, when the view is changed (e.g. value in the input field),
the model is update to represent actual view. This way, the model and the view are
continually synchronized. The model is the single-source-of-truth for the application
state[Gooa].

The most common understanding of the two way data binding is the reflection of
the change of input elements (input, select, text-area etc.) into the data model.

There are additional informations stored in the view, which can be reflected into
the model. For example the order of items in a list, a position in the DOM or any
other information stored by the structure of the view, which can be changed e.g. by
drag-and-drop actions. In the majority of two way data binding implementations, this
type of the information isn’t reflected.

As the information from input elements can be reflected to the model by event
listeners, we decided to not implement the two way data binding in the first phase of
the Tiles library. We plan to implement it later, by using the observable pattern.

Chapter 3

Existing solutions

When we think about the building of the user interfaces, we can think about the
building them from components. The component is a part of the UI, which has a
functionality, own look and maybe some interaction.

The HTML is a basic component structure. Every element is a component, all
elements are composed into tree structure. Elements have some functionality, own
look(e.g. image) and some of them have interactions(e.g. input).

So when a library want to bind the data with a view, it basically bind the data to
a component.

There are different approaches of the creating these components and the connection
between them and a data. Components can be created directly by a programming
language (Component driven), or by using a template engine, which create components
based on the template, which describe component structure, in the most cases by
HTML-like syntax(Template driven).

These two approaches do the same thing, create structure of the components,
different way.

3.1 Template driven

Template driven approach is, as the name predicts, based on the usage of a template
engine. Template engines take a template and the data and create a component
structure, which is reflected into the HTML representation of passed data in the form
of the template. They can be considered as a function t : D 7→ H, where D is a set of
all possible data and H is a context-free language of valid HTML.

An easy example of a template, for example using handlebars.js can look like this
one (from handlebars.js website):

<div class="entry">

6

CHAPTER 3. EXISTING SOLUTIONS 7

<h1>{{ title}} </h1>

<div class="body">

{{ body}}

</div>

</div>

When programmer want to use this template, he should create data object, which
minimal version in JSON format is in next example:

{

"title": "Some title",

"body": "This is the content of the page"

}

When template is filled by this data, following HTML will be produced

<div class="entry">

<h1>Some title</h1>

<div class="body">

This is the content of the page

</div>

</div>

Most of template engines also offer logic markup, which add possibility of the better
control of a composed structure. This is highly usable when programmer want to create
more complex structures based on the data. The typical example of this structure is
the list generated from the array of items to render.

This "in template" logic has on one hand some advantages, on the other hand, the
HTML syntax was not created to represent a logic, but an information. Because of
this, more complex templates witch not so trivial logic in it becomes hard to read and
understand.

Easy use of the logic in the template is shown on the next example:

<h1>Comments</h1>

<div id="comments">

{{ #each comments}}

<div class="entry">

{{ #if author}}

<h1>{{ firstName}} {{ lastName}} </h1>

{{ else}}

CHAPTER 3. EXISTING SOLUTIONS 8

<h1>Unknown Author</h1>

{{ /if}}

<div>{{ body}} </div>

</div>

{{ /each}}

</div>

The template driven view are highly used because of the syntax similarity between
the template and the resulting HTML. It is easy to convert the HTML produced by a
graphic designer to the template used in the source code. Also programmers used to
work in the HTML more easily write templates then some other representation of the
component structure.

Different libraries work with templates in a different way. Some of them really
parse the input template as a string, recognize component tree in it and work with the
template that way. Others uses in-browser HTML parser to parse the template and
then fill it with the data. This approach, because of its usage of tools accessible only
from the browser, is more difficult to render on the server.

Templates are mostly used two different ways:

Template used as View
Template is used to render HTML structure into some element. Functionality of
the HTML structure is then realized separately and attached to it. This is used
for example in the CanJS.

Template used as Component
The other (and more modern) use of template is to represent one component with
attached functionality, which can be represented later as custom HTML element
in other templates. In this template, other custom components can be created by
using their custom HTML element representation. It is not necessary to create
them separately in the code of an application.

This approach is used e.g. in Polymer project, which work with so called "shadow
DOM" which use similar concept.

Table 3.1 Comparison of template driven libraries compares some of existing
solutions which are standalone libraries or MVC frameworks. The aspects of the
comparison are a natural rendering in the browser and on the server and if the library
is a standalone UI library, or is a part of the more complex MVC framework. We don’t
compare a possibility to render the view on the server other then the natural way,
because it is always possible to render it by usage of tools like the PhantomJS.

CHAPTER 3. EXISTING SOLUTIONS 9

Solution Language Standalone In browser On server
handlebars JavaScript yes yes yes

mustache
JavaScript,
python... yes yes yes

dust JavaScript yes yes yes
AngularJS JavaScript no yes no
meteor JavaScript no yes no
EmberJS JavaScript no yes yes
Derby JavaScript no yes yes
Polymer JavaScript yes yes no
Polymer.dart Dart yes yes not now

Table 3.1: Comparison of template driven libraries

3.2 Component driven

Component driven views, in opposite to the template driven, don’t use any additional
type of data like templates. Components are created by the same programming
language as the functionality and are composed into the tree structure which is mapped
into the DOM.

When the tree of components (we will call it "Virtual DOM" later)is constructed,
it is rendered to the DOM by the depth-first search of the component tree. When
components and HTML elements are connected by stored associations, every change
in the component structure can be applied to the DOM tree.

In addition, if we have the tree of components, we can easily, by the similar depth-
first search, create the markup string representing the HTML markup of the component
tree. This enable the rendering of the whole component tree on the server without use
of browser-specific features.

An example of the component driven UI library is the JavaScript library React
created by the Facebook . React is standalone UI library which enable native rendering
of the component structure as in the browser, so on the server.

We decided to use a similar approach to React library, so we briefly describe it.

3.2.1 React

Lots of people use React as the V in MVC.[col]
React is JavaScript UI library from Facebook . Its main concept is to pack parts

of the web application into reusable components, which are represented as object in
JavaScript.

CHAPTER 3. EXISTING SOLUTIONS 10

This components can be mounted into elements in DOM, for now, we will call it
mount root. This will create virtual DOM "mounted" to mount root. This virtual DOM
is then reflexed into the real DOM under the mount root.

React uses a virtual DOM diff implementation for ultra-high performance. It can
also render on the server using Node.js — no heavy browser DOM required.[col]

Components are organized to the virtual DOM tree, where a data flows from
the root component to leaves. This data flow is implemented by the props of the
component, which are read-only. Component have also a state, which should be stored
in the state attribute and updated by methods setState and replaceState. The
state shouldn’t be updated directly to preserve the invariant, that the real DOM always
represents the actual state of the virtual one.

Component describe the structure under it by its method render, which should
return one instance of a component, which will be added as a child of this component.
The render function also add props to the child component. This realize the data flow
in "down" direction. The render also add children to the child component, which is the
way, how to create a spreading tree, not just a line. The child component have read
access to passed children and can reuse them in the render method or ignore them.

The React offer own events system with synthetic event bubbling. This enable
programmer to listen to events independently from browser. The React manage the
browser compatibility.

Components can listen to events on DOM components (internal React components,
representing DOM elements). They are attached trough props by the event listeners
syntax(onChange, onClick etc.).

State change(by mentioned methods) trigger redrawing of virtual DOM.
React implements component life-cycle methods, which notify the component about

its actual state of living (just mounted, just updated, before unmount, etc.). They are
the superset of life-cycle methods implemented in the tiles library.

For more information about React , it’s architecture and API reader can go to the
website of the React project [http://facebook.github.io/react/].

3.3 Conclusion

We decided to use Component driven views and databinding, because it is not
dependent on the template engine, whole source code can be written in the same CPL
with all advantages gained by that and naturally easier thinking about testing and
mocking.

Our solution is based on the idea of the React library.

[

CHAPTER 3. EXISTING SOLUTIONS 11

As we decided to work in the Dart language, we don’t have to implement a browser
compatibility, synthetic events, mixins, etc.

The architecture of the tiles library will be described in the chapter 4 Our solution.

Chapter 4

Our solution

The first attempt was to create a wrapper of the React library into the Dart language.
This wrapper was successfully created, tested and also used in an independent
commercial project.

The problem occurs in the performance of the wrapper, where the bottleneck of
the speed was the communication between React created in the JavaScript and the
wrapper in the Dart language. This bottleneck can be reduced by some adjustment
and some Dart hacks, but it was still a bottleneck.

That’s why we decided to build our own library called Tiles . Most of the
performance benchmarks of the Tiles library later in this work will be compared
with the React wrapper.

As we told in the previous part of the work, we decided to take inspiration from the
Facebook React library, mainly in the API of the library, which is component based,
with some differences in architecture.

We don’t have to implement some of the additional features of the React library,
because of the nature of the Dart language.

• Synthetic events (Dart unified events)

• Mixins (Dart support native mixins as a part of a language)

• Props type checking (Dart is optional-typed language)

• Get default props and initial state (Dart work with classes which have
constructors)

• Changed class name (Map in dart use string, so string "class" is no more reserved
word)

• Test utilities (Dart has own unittest library and we work with classes and with
native events, it is easily tested)

12

CHAPTER 4. OUR SOLUTION 13

In this next sections of this chapter we will introduce and deeply describe our Dart
library Tiles .

4.1 Requirements

When we designed the Tiles library, we take into account requirements derived from
the motivation of this work:

Rendering in both environments, the browser and the server
One of the main advantages of Tiles library is a possibility to render the same
content, with the same code as on the server, so in the browser. This resolved
into the package structure and several architectural decisions.

No template usage
To achieve a possibility to render content in both environments, easy testing
and mocking, we decided not to use templates.

Easy to use API
The solution can be very interesting and powerful, but if it don’t offer a reasonably
easy to use API, almost no one will use it.

React -like API
Because we use a similar concept as the JavaScript React library, which is
widely used and known, if we offer similar API, more people will quickly get
used to it.

Performance
We want to offer the useful library, and if want someone to use it, we need to
offer a good performance in the competition of Dart and JavaScript UI libraries.

How we fulfilled these requirements is in detail described in next sections of this
chapter.

4.2 Architecture - Tiles

The Tiles library implements a component driven databinding. It enable declarative
definition of the user interface by the Component class. The component define the
structure of the virtual DOM tree, which is rendered to the real DOM. Updates in
the virtual DOM are reflected into the real one with usage of the smallest difference
between old and the new structure.

CHAPTER 4. OUR SOLUTION 14

The composition of the virtual DOM is used in the Tiles to create the system
of synthetic event bubbling, which offer the programmer a simple way of listening to
events in the DOM from a component perspective.

The architecture of the Tiles library offer the possibility to think about UI as a
set of the functional components, instead of HTML elements and a Dart/JavaScript
application manipulating with them.

4.2.1 Architectural overview

Our high level idea is based on the Facebook React library attitude. We created api,
whose main class is Component, which represents construct very similar to React ’s
Component. This component is mounted to an element, where it renders itself. This
relationship is described on Figure 4.1 The Idea.

Figure 4.1: The Idea

These components are placed into tree structure, which represents Virtual DOM,
which is then translated to the real DOM of client’s browser or to the markup rendered
by server application.

There can be the event listeners attached to these components. The events 1 are
then bubbled trough a virtual DOM, instead real one. By this there can be the listener
attached to a custom component, which doesn’t have element representing it in a real
DOM.

As we work in Dart language, it is natural to try to reuse the most of code on the
both, client and server side. The next important part of architecture is server-side
rendering.

It is very important for SEO purposes and smooth user experience.
1We work at Dart, which create browser compatibility for us, so we don’t have to create synthetic

events like React .

CHAPTER 4. OUR SOLUTION 15

Figure 4.2: Virtual DOM

4.2.2 Structure

We split our library into 3 partially dependent packages.

Tiles
Tiles package creates the core component’s of library, focused to create and
maintain virtual DOM and provide API for programmer. This package should
be included by programmer in the files, where he defines custom components.
These components then can be used on both, server and browser sides.

Tiles Browser
This package is used for mounting components to the HTML elements. It
maintains relationships between elements and components, simulates events
bubbling and keeps real DOM in sync with virtual one.

Tiles Server
Tiles Server package maintains server-side rendering. It offers an API to render
component structure to string with markup based on DOM components.

Based on the mentioned packages structure, it is quiet obvious what are the
dependences between these packages. Tiles package is independent, and both
of Tiles Browser and Tiles Server are dependent on Tiles package. These
dependences are shown on Figure 4.3 Packages.

CHAPTER 4. OUR SOLUTION 16

Figure 4.3: Packages

4.2.3 Core

There are 4 main classes in the core of the library.

Component represents closed block of user interface, that should be rendered in
application.

Node is a vertex in a tree of virtual DOM. It contains an instance of [Component],
which represents the type of this Node.

ComponentDescription is self-explanatory. It is returned from the component to
describe it’s children. The principles are described later at this document.

NodeChange represents one change in a virtual DOM, which should be applied into
the real DOM. This way, we are able to achieve minimal changing of the real
DOM. Types of change are: CREATED, UPDATED, MOVED, DELETED

In contrast with Facebook React Component, our component provides only an API
to a programmer. This class is the main class for a programmer using our library. He
doesn’t need to use any other class created by our library. Just some methods.

We also have an inspiration from React with idea of virtual DOM. Vertices of
an virtual DOM are represented by the class Node instead of the class Component to
separate the functionality.

Each node contain an instance of Component. The node represents the component
in a virtual DOM.

The diagram of relationships is shown on Figure 4.4 Core of the library. In the
next chapters we describe the main classes more in details.

CHAPTER 4. OUR SOLUTION 17

Figure 4.4: Core of the library

Component

The Component is the main building brick of application(library). It offers api to the
programmer with life-cycles, props etc.

Component is a class, which represents functionality of certain part of UI2 in an
application. It is created with some props and children acting as parameters of a
function. Main purpose of the component is to create a structure below3 it, add the
event listeners and update itself based on event listener input.

The main method of the Component is List<ComponentDescription> render().
By this method component describes it’s substructure. It will return list of children of
this component, represented by instance of the class ComponentDescription. Node,
which owns this component (and called it’s render method) will manage the rest.
Basically, it will return the message like "This is how I should look like".

Second important method is void redraw(), which trigger redraw of the
component. This redraw will be executed on the next animation frame.

Redraw is powered by needUpdate stream offered by Component, which is
automatically created in default constructor of class Component, so it is very important,
to call superclass constructor in each custom component class.

ComponentDescriptionFactory registerComponent(ComponentFactory
2UI = User Interface
3From the virtual DOM tree point of view

CHAPTER 4. OUR SOLUTION 18

factory) is additional method helping programmer for easier ComponentDescription

creation. Factories are described late in section 4.3 API

DomComponent

DomComponent is a subclass of class Component. This is specialized class, which
represents HTML elements in the component structure.

It has props saved as Map, because HTML element has attributes saved in Map.
render method returns children member variable and svg and pair flags.

Specific HTML elements are created based on different ComponentFactory and
ComponentDescriptionFactory. ComponentDescriptionFactory is used to easily
create ComponentDescriptions of DomComponent in a custom component render
method.

ComponentDescription

ComponentDescription is a description of the component. It describes which type of
the component should be rendered by using which parameters.

For this purpose, it needs 4 types of information:

• Type of the component
To create instance of a component, we need to know, what type (class) of the
component it should be. This information is represented by ComponentFactory,
which is function with 2 parameters, props and children, which returns instance
of a subclass of a Component.

• Properties
Data which should be passed to the factory. This data are used as a properties
of the component.

• Children
Children of described component. This is useful mainly when programmer wants
to render more complex structure of DOMComponents.

• Key
Key is an identifier of a child. It is used to recognize reordering of children of the
component. When components render method returns list of descriptions, keys
they contain are recognized and matched with keys stored in virtual DOM.

If there is a match in key of the child in different position, child is only moved
an updated. If there is no match in key, default process follows.

CHAPTER 4. OUR SOLUTION 19

Description is once created with all the parameters and then these parameters can’t
be changed. All these parameters is set up by constructor.

ComponentDescription has one important method, which is Component

createComponent(), which creates Component instance with props and children from
the description.

Node

Node is the most important and complex class in the library. It providers following
functionality:

• creates virtual DOM tree, maintains creating and updating of the tree based on
results of component’s render method,

• listens to component’s needUpdate stream and marks self as "dirty" when it’s
component need update,

• and handles updating process that is rearranging children of the Node.

The node is also a vertex of the virtual DOM. It store children as a list of children.
To use all possible optimization, node contain a ComponentFactory of the contained
component, which is used when the virtual DOM is updated. It also contain key which
is used to recognize changed position of the same child.

Node has two important flags: isDirty and hasDirtyDescendant. These flags
represent information, whether the node, or its descendants, needs to be redrawn. If
isDirty is true, the node needs to be updated, because component of this node called
redraw method. If hasDirtyDescendant is true, there exist a descendant of this node,
which wants to be updated. When hasDirtyDescendant is true and isDirty is false,
the node doesn’t have to update itself, it is enough to call update on child nodes.

Method update(List<NodeChange> changes, boolean force: false) is
executing the update process. It take 2 named arguments:

List<NodeChange> changes is used to be filled by changes generated by the update
process,

bool force: false is a flag signalizing if to update despite that node is not dirty.

The update method is used mostly in the browser part of an library, where it offers
a possibility to get changes in the virtual DOM, which should be used to update the
real one.

A methods logic consists of several main steps.

CHAPTER 4. OUR SOLUTION 20

1. check, if update is needed by flags isDirty, hasDirtyDescendant or force, if
no, exit,

2. if component of this node needs to update (isDirty == true) or force ==

true, update this node with rearrangement of children,

3. if any changes was generated, add them into the changes list

4. set this node as not dirty and not have dirty descendant.

The algorithm of rearrangement of children by calling render method of this
component and adapting node’s children to returned descriptions is fully documented in
the source code related to this work: https://github.com/cleandart/tiles/blob/

master/lib/src/core/node_update_children.dart

NodeChange

NodeChange takes place as a record of a change in the virtual DOM. It is used to mirror
changes in the virtual DOM with the real DOM.

When some node in the virtual DOM is updated by method update, the list of
changes is is collected. This list is subsequently processed by browser part of a library,
which mirrors changes to the real DOM.

NodeChange class has no methods (except constructor) and acts as a data chunk
dedicated just for it’s purpose. It contains node, type of change, old and next
properties.

Type is stored as an instance of NodeChangeType enumerable and can be one of:
CREATED, UPDATED, MOVED and DELETED. When type is UPDATED, old props and new
props take effect.

4.2.4 Life-cycle

Every instance of Component has its own life-cycle. As every object, first it is created.
Subsequently, it is mounted and rendered into the virtual DOM, and then in to real
DOM.

When a "higher" node wants to update the node of the component, the component
will first receive props, subsequently is asked if want to update, if yes, it is asked for
actual description of its children.

Sometimes the component wants to update itself (e.g. because event occurs). It
calls redraw, then, it will be asked if really should update, and if yes, it is rendered
and updated.

https://github.com/cleandart/tiles/blob/master/lib/src/core/node_update_children.dart
https://github.com/cleandart/tiles/blob/master/lib/src/core/node_update_children.dart

CHAPTER 4. OUR SOLUTION 21

At the end of component’s life in the real DOM, component should be notified
about that.

The whole life-cycle is shown on the Figure 4.5 Life cycle of a Component.

Figure 4.5: Life cycle of a Component

Create

The create part of life-cycle is implemented by constructor of Component. It will receive
props and optionally children as arguments and it should prepare the whole state of
object to live.

An trivial example of constructor of Component is displayed below.

class MyComponent extends Component {

CHAPTER 4. OUR SOLUTION 22

MyComponent(props, [children]): super(props, children) {}

}

Constructor of an example only calls constructor of superclass Component.
Example of more complex constructor should be e.g. the Todo component

example:

class MyTodoComponent extends Component {

Todo todo;

MySearchComponent(props, [children]): super(props, children) {

if (props != null && props.todo is Todo) {

this.todo = props.todo

} else {

this.todo = new Todo();

}

}

// ...

}

Did mount

When the component is mounted to the real DOM, user of the library should be notified
about this event. It is done by triggering the Did mount life-cycle event implemented
the method didMount.

This is the place in time, were the component start to live its life with the connection
to the real DOM. This is the correct place to initialize for example the timers, stream
listeners etc.

Our MyTodoComponent example component should listen for a change of the todo
on the server, and if it was changed, we can redraw the component.

class MyTodoComponent extends Component {

Todo todo;

StreamSubscription subscription;

// ...

didMount() {

this.subscription = this.todo.changedOnServer.listen((change) {

CHAPTER 4. OUR SOLUTION 23

this.redraw();

});

}

// ...

}

Will receive props

When the component is updated by "higher" ancestor, it will receive new props. A user
of the library can need the possibility to compare these props with the old one and
perform needed changes.

This is the correct place for subsequent life-cycle event Will receive props
implemented by the method willReceiveProps.

The example of willReceiveProps in MyTodoComponent should compare the todo

of the old and the new props and if they are not equal, update change listener.

class MyTodoComponent extends Component {

Todo todo;

StreamSubscription subscription;

// ...

willReceiveProps(dynamic newProps) {

if (this.todo != newProps.todo) {

this.subscription.cancel();

this.subscription = newProps.todo.changedOnServer.listen((change) {

this.redraw();

});

}

}

// ...

}

CHAPTER 4. OUR SOLUTION 24

Should update

An optimization of the performance of an application can be done by rejecting "redraw"
of the component. To reject this "redraw", component should be asked, if the redraw
is needed.

This is implemented by the shouldUpdate method, which returns true if the
component want to be redrawn.

By default shouldUpdate returns true, what resolves to always updating of custom
component, which doesn’t implement this method.

In a basic scenario this method recognize, if the component will be rendered
differently with the new props. If not, it return false, else it return true.

Example in MyTodoComponent:

class MyTodoComponent extends Component {

Todo todo;

StreamSubscription subscription;

// ...

shouldUpdate (newProps, oldProps) {

if (newProps.todo == oldProps.todo) {

return false;

}

return true;

}

// ...

}

Render

Render is the main part of the Component.
It is implemented by the method render. It should return array of component

descriptions which should be considered as "this is how this component should look
like".

For example, in our MyTodoComponent render will return <div> which contains title
and description of todo.

CHAPTER 4. OUR SOLUTION 25

class MyTodoComponent extends Component {

Todo todo;

StreamSubscription subscription;

// ...

render () {

return div ({"class": "todo"}, [

h2 ({}, todo.title),

p ({}, todo.description)

]);

}

// ...

}

Did update

When the life-cycle method didUpdate, by which is implemented the life-cycle "Did
update" event, is triggered, the component is notified, that it is mounted and there
exist HTML elements in the DOM for each DomComponent descendant.

Will unmount

The "Will unmount" event is implemented by the method willUnmount. It is called
right before the component is removed from the virtual DOM and therefore from the
real one. This is the correct place to stop all timers and listeners.

class MyTodoComponent extends Component {

Todo todo;

StreamSubscription subscription;

// ...

willUnmount () {

subscription.cancel();

}

CHAPTER 4. OUR SOLUTION 26

// ...

}

4.2.5 Rendering

The main target of the Tiles library is the rendering of a content. By the Component

and the Node we can create the virtual DOM tree, which should be reflected into the
real one, or into the HTML markup string.

As we described earlier in the subsection 4.2.2 Structure, these rendering types are
separated to separate packages from the core package and are independent from each
other.

Server side

On the server, we don’t have DOM elements available, therefore we want to render our
virtual DOM structure into the string representing HTML markup of the virtual and
also the real DOM.

The markup string constructed on the server can be reused in the browser to smooth
user experience.

Our target, render virtual DOM into the markup string is not so complicated.
From the programmers point of the view, he will use a ComponentDescription to
describe the component to be rendered. Our server-side package of the library will get
the description and construct the node tree structure, with node containing described
component in the root. The node tree represents the created virtual DOM.

From the virtual DOM we can render corresponding markup string by the depth-
first search of it’s tree. The markup string is created recursively for every subtree

CHAPTER 4. OUR SOLUTION 27

starting from a node by this algorithm:
Data: The node in virtual DOM tree
Result: A string with the markup of the virtual DOM subtree with a root in

the node
if the component of the node is DomComponent then

if the component is not pair then
write the markup into the result with attributes from the props and a tag
name from the component;

else
write the open markup into the result with attributes from the props and
a tag name from the component;
write the markup for all children recursively into the result;
write the close markup into the result;

end
else

write the markup for all children recursively into the result;
end

Algorithm 1: Write node into the markup string.

In browser

The rendering in the browser is more difficult than the rendering into the markup
string. It is possible to use the same render to the markup string method and add
this markup to the DOM. This will create DOM structure representing the virtual
DOM, but doesn’t create connections between nodes in the virtual DOM and HTML
elements in the real one. This connections is necessary when the virtual DOM is
updated. Therefore the browser side rendering will work in a different way.

Initial mount The first thing, the user of the library need to do, is to mount
the component into the HTML element(mount root). For this purpose the
ComponentDescription describing the component is used. The mount process consist
from creation of the component from the description, placing it into the node and first
render of the virtual DOM with the root in the node.

The virtual DOM is subsequently reflected into the real DOM created under the
mount root.

Suppose that the mount root have no children (the case of the mount root with
children is described in the subsection 4.2.7 Injecting,the node mount process is
described in the algorithm 2 Initial mount:

CHAPTER 4. OUR SOLUTION 28

Data: The node in the virtual DOM and a HTML element, to mount the node
to (mountRoot)

Result: Mounted the node into the element
if the component of the node is DomComponent then

create an element representing the component;
add the created element to the mountRoot;
save relations between the created element and the node;
if the component is a pair component then

for a child in children of the node do
mount the child node into the newly created element as a mountRoot;

end
end

else
if the component is a text component then

create a HTML text node with the text from the component;
add the text node to the mountRoot;
save relations between the created text node and the node;

else
for a child in children of the node do

mount the child node into the mountRoot;
end

end
end

Algorithm 2: Mount the component into the real DOM.
The algorithm is recursive and skips custom components. It creates relationships

between created elements and nodes. These relations is used to easy reflect the change
in the virtual DOM into the real one when the virtual DOM is changed.

The DOM structure created by the algorithm 2 Initial mount reflects the virtual
DOM structure with removed nodes with the custom component.

Update As time goes, the situation, that the virtual DOM need to be updated,
occurs. The need of the update is realized by the method redraw of the component,
which cause marking the node as dirty. The framework recognize this situation and
perform update of this node and the structure under it. The update produces a list of
changes in the virtual DOM needed to be applied to the real DOM.

Updates are processed by their type. For every type the information about the
HTML element representing a node is needed. This information is stored in the
relation Node → Element, created in the mount of the node. It is stored by Map<Node,

CHAPTER 4. OUR SOLUTION 29

Element>.
What happened when we want to apply the node change into the real DOM

structure differs by the type of the change:

CREATED
A newly created node is mounted into the DOM. The adjusted algorithm 2 Initial
mount is used for this purpose.

UPDATED
If the node with a DOM component in it was updated, the element, related with
it, is updated with the props of the node. If the node with a custom component
was updated, no action is needed, because this node is not directly reflected to
the DOM.

MOVED
The DOM representation of the moved node is moved to the new position.

DELETED
The DOM representation of the removed node is removed from the real DOM.

4.2.6 Events

In the library which create own virtual DOM structure, it is natural to think about
event in this virtual DOM. As in the real one, it is natural to create event bubbling
trough virtual DOM. This synthetic event bubbling represents real event bubbling of
the event trough the real DOM elements associated with nodes in the virtual DOM.

Synthetic event bubbling is useful for the user of the library to catch events in the
DOM and react on them by update of the state and triggering of the redraw of the
component, if needed.

The Tiles library listen to DOM events on mount root of the virtual DOM. When
an event occur, the Tiles catch it on it’s bubbling route up to he body element,
recognize, which node represents the target element of the event and start synthetic
bubbling of the event from that node.

To store the relation Target Element → Node is used Map<Element, Node>.
The Tiles library listen to every type of the event only once in the mount root of

the virtual DOM for each event listened by components in it.
It is important from the performance point of view, because we can add only one

event listener for each event type in the whole virtual DOM. We will discuss this later
in chapter 5 Performance.

CHAPTER 4. OUR SOLUTION 30

Synthetic event bubbling trough the virtual DOM enable to listen to the bubbled
event even on custom component.

Synthetic bubbling

When the component is mounting, we store the relation between the HTML element,
and the node, which contains this component. Then we check a presence of the event
listeners in the descriptions of the component. We add event listener for every type of
the event present in the virtual DOM to the mount root HTML element. The event
listener in the mount root is only one for each event type in the virtual DOM.

When the event type listened bymount root occurs in the DOM subtree representing
our virtual DOM, it will bubble up to the mount root, where is caught by the event
listener created by the Tiles library. The Tiles library will recognize the target
HTML element of the caught event and simulate event bubbling from the node
representing the target element in the virtual DOM.

The synthetic bubbling process starts from the target node and check event listeners
associated with it. If a listener for a type of the current event is presented, it is called
with the event and the component as arguments.

The component is passed because the listener is not created by this component
itself, but by the component above it, which should be informed, on which component
the listener was called.

There is no official way of getting an information if the stopPropagation was called
on the event. Therefore the listener, which want to stop a propagation, should return
the false boolean. If the listener returns something else, bubbling continues with the
parent of the current node. When the root node is achieved, the bubbling stops.

4.2.7 Injecting

The Tiles library implement a built in server side rendering.
It is important as for the SEO, so for the user experience. User don’t have to wait

until the source code of the application is loaded into the browser and see the content
of the page. If our browser package replaces the structure generated on server with
a new DOM structure generated from virtual DOM, the part of the page is re-drawn
from scratch, what cause disappearance of the content for the small amount of the
time.

To prevent this behavior, we created an injecting system, which will "inject" the
existing DOM structure and rebuild it to represent the virtual DOM.

When the ComponentDescription is mounting, basic implementation can erase

CHAPTER 4. OUR SOLUTION 31

whole content of element to which is the description mounted to. Instead, we will
reuse the existing structure by iterating trough the virtual DOM and reusing every
element, which match the virtual DOM. The Tiles library iterate trough the virtual
DOM and the real DOM simultaneously and compare them.

When the iteration trough the virtual DOM process a node with a DOM component
and the HTML element, their tag names are compared. If tag names match, the HTML
element is associated with the node, element’s attributes are adapted to the props of
the node’s component and is used to mount/inject children of the node recursively.

When the tag name don’t match, a new HTML element is inserted before the
currently iterated element and paired with the node. Subsequent DOM component at
the same layer of the DOM component tree 4 can reuse this not matching element.

When injecting of children finishes for a node with a DOM component in it, not
used(injected) child HTML elements of the associated element are removed.

This implementation of injecting enable a full reuse of the DOM structure created
on the server. It also create relations important for future updates of the virtual DOM.

Moreover, if there exist a similar structure, not generated from same components
on the server, our library will reuse as much as possible of it.

4.3 API

One product of this work is an open source UI library called Tiles . To use this library,
user need to know the application programming interface(API) of it.

In the Tiles library, the user interface consist of components, represented by the
class Component. The Component class is used to create a functional logic of a part of
the UI.

To use it, mount it and add it to the other component as a child is necessary to
create a ComponentFactory and a ComponentDescriptionFactory, which creates a
ComponentDescription.

The ComponentFactory is a function with two positional optional arguments:
props and children. It return an instance of the Component. The ComponentFactory

is used as a comparable type of the component. The easiest and most common way to
create ComponentFactory is shown in next example:

class MyComponent extends Component {

MyComponent(props, [children]): super(props, children) {}
4 By the DOM component tree we mean a derived tree from the virtual DOM tree, which can

be constructed by removing nodes with a custom component and connecting nodes with DOM
components to the closest ancestor in the virtual DOM tree with a DOM component in it.

CHAPTER 4. OUR SOLUTION 32

}

ComponentFactory factory =

([dynamic props, dynamic children]) => new MyComponent(props, children);

ComponentDescription is a description of a component. It is used as argument
to mounting functions and as a result of the render method. Most of the time is used
indirectly by usage of ComponentDescriptionFactory.

ComponentDescriptionFactory is a function, which create a
ComponentDescription. It has 7 optional named arguments:

props passed to the component factory,

children also passed to the component factory,

key used to optimize reorder of children and

listeners used to attach event listeners to the component created by the description.

The ComponentDescriptionFactory can be created by programmer himself,
but the most often way is to create it by the registerComponent function,
which accept one argument of ComponentFacotry type. This method
creates ComponentDescriptionFactory, which returns a description with passed
ComponentFacotry. A usage is shown on the following example:

ComponentDescriptionFactory myComponent = registerComponent(factory);

The ComponentDescriptionFactory is used to create a component description or
directly in the mounting into HTML element:

Element mountRoot = querySelector("#container");

var props = {};

var children = [];

ComponentFacotry myComponentDescription = myComponent(props, childre);

// Or directly in mountComponent

mountComponent(myComponent(props, children), mountRoot);

CHAPTER 4. OUR SOLUTION 33

4.3.1 Component

The Component class is the main class of the API of the Tiles library. Every custom
component should extend or implement it.

The Component class contains a constructor, life-cycle methods, the render and
a redraw method, props, children and offer a needUpdate stream. The default
Component implementation is following:

class Component {

dynamic props;

List<ComponentDescription> children;

final StreamController _needUpdateController;

Stream<bool> get needUpdate => _needUpdateController.stream;

/**

* Life cycle

*/

Component(this.props, [this.children]):

this._needUpdateController = new StreamController<bool>() {}

didMount() {}

willReceiveProps(dynamic newProps) {}

shouldUpdate(dynamic newProps, dynamic oldProps) => true;

List<ComponentDescription> render() {}

didUpdate() {}

willUnmount() {}

redraw([bool now = false]) {

_needUpdateController.add(now);

}

}

The easier way to create own component is by extending the Component class:

class MyComponent extends Component {

MyComponent(props, [children]): super(props, children) {}

render() {

return div(null, [

span(null, "This is simple component")

]);

CHAPTER 4. OUR SOLUTION 34

}

}

The MyComponent only renders ComponentDescription of a div DOM component
which contain children with a span description.

4.3.2 DOM component API

The Tiles library contain prepared ComponentDescriptionFactory functions for
the each of standard HTML elements, with standard arguments. They creates new
ComponentDescription, describing DomComponent with passed props and children.

Usage of the factories are shown on the previous example.

4.3.3 Browser specific API

There are 3 main additions when the virtual DOM is rendered in the browser.

• Mounting

• References

• Event listeners

The mounting is implemented by the mountComponent method with 2 arguments,
ComponentDescription description and Element mountRoot. It will mount the
described component into the mountRoot element.

mountComponent(myComponent(props, children), mountRoot);

References are part of the props. If component have in props["ref"] instance
of an internal class _Ref, which is only a function returning void with one Component

argument, then when this component is created and mounted, this reference method
is called with it.

It is useful, when a custom component want to have a reference to the element
associated to one of it’s descendant. Example of the usage is in the following
example:

class MyComponent extends Component {

/* ... */

Element input;

render() {

CHAPTER 4. OUR SOLUTION 35

return input({"ref": (component){

this.input = getElementForComponent(component);

}});

}

}

Event listeners are represented in a form of a Map, stored at the node. They
should be instances of a EventListener class, which is a function with 2 arguments,
an event and a component, and returns boolean. The map containing event listeners
is passed to the ComponentDescriptionFactory as a named parameter listeners.

input(listeners: {"onClick": (event, component){

print("Input clicked.");

}});

4.3.4 Server specific API

There is only one thing we want to do on the server. Create markup for a
ComponentDescription. We created a method mountComponentToString, which
require one ComponentDescription argument and returns the markup string
representing the virtual DOM created from the description of a component.

String markup = mountComponentToString(

span(props: {"class": "my-span"}, "Text in the span")

);

markup == ’Text in the span’ // is true

Chapter 5

Performance

The performance is an important aspect of the UI library1. If the UI library is slow,
the user experience is unsatisfactory and application is considered as worse as it can
be.

The question about performance of the UI library can be divided into the initial
render, the update of the UI and the continuous consumption of computational
resources.

The complexity of each task of the UI can be dependent on data size and resulting
structure size. These two aspect are generally connected.

We will take into account both of them. Data are a partial input of all tasks. The
resulting structure combine the input data and the complexity of the UI. Therefore
"How long it takes to process the structure of a size N" is in some cases a good question.

The complexity of the application logic not reflected into the complexity and a size
of the UI structure is not relevant for as, because it is independent from the UI library.
Therefore we will suppose, that it is constant.

5.1 Initial render

The initial render creates the whole structure of the UI, therefor it is not possible to
perform it in less then a linear time from the size of the resulting structure. It should
be at least constructed.

The performance is also at least linear from the size of the read data(they must be
at least read).

The Tiles library constructs virtual DOM representing the UI with a tree of the
nodes. Each node contain the constant size of the information used by the Tiles

library.
1as almost everywhere

36

CHAPTER 5. PERFORMANCE 37

The creation of the virtual DOM will process each node in the virtual DOM tree
constant number of times. We assume a constant complexity of the application logic,
so every life-cycle method called by our library will take a constant time. Therefore
the creation of the virtual DOM is linear from the size of it.

The initial render will process the virtual DOM by the depth-first search and creates
the DOM structure in the process of the search without any looping and repeating. So
the projection from the virtual DOM into the real one is performed in linear time from
the size of the virtual DOM.

At the summary, the whole initial mount consist of the creation of the virtual DOM
(linear from the size of the virtual DOM), and the projection of the virtual DOM into
the real one (also linear from the size of the virtual DOM). The complexity of the
initial render is therefore linear from the size of the virtual DOM.

The last question is, what relation is between the size of the virtual and the real
DOM.

The subtree without any DOM component in it is useless from the UI point of view,
so we assume, that every leaf2 of the virtual DOM is a DOM component, which will
be linearly reflected to the HTML element.

A long line of not DOM nodes without any branching is also useless (it can be
replaced by one virtual DOM).

From these facts is obvious, that in the most cases, the ratio of DOM components
in the virtual DOM has the constant lower bound.

So the complexity of the initial render is linear from the size of the virtual DOM,
which is generally linear from the size of the resulting structure.

5.2 Update of the UI

The performance of the update process is reflected into the agility of the UI of the
application. We assume, that the library is used wisely by a user of it. We also
suppose no usage and user optimization by shouldUpdate method.

In the Tiles library, when data are changed and the redraw method was called, the
competent node is marked as dirty. The update process will redraw the whole virtual
DOM structure under the dirty node. The list of changes is produced and subsequently
applied to the real DOM.

The complexity of the update process is therefore asymptoticly equal to the size of
the subtree of the virtual DOM with the root in the dirty node. This is in the worse
case the whole virtual DOM.

2A leaf is also a subtree

CHAPTER 5. PERFORMANCE 38

This complexity can be decreased by proper usage of the shouldUpdate function.
In general scenario, parts of the UI dependent on a data change are not huge, which

decreases the time needed for the update.

5.3 Continuous resource consumption

As we perform an asynchronous updating of the virtual DOM, the only one repeated
task is to check, if there is something to be updated. This is not a performance bug,
it will be discussed in the section 5.4 Performance optimizations.

The check of the update need is performed on each mounted virtual DOM in the
constant time(root node isDirty or hasDirtyDescendant). When we have the whole
application UI represented in one virtual DOM, there is only constant time to check
the update need.

In general, the complexity of the task, which is performed periodically in the time,
is linear from the number of virtual DOMs. Virtual DOMs should not be initialized
dynamically from the size of a data, for this purpose should be used the virtual DOM
itself. Therefore we assume the constant number of virtual DOMs in the application,
so the constant complexity of the task performed in each animation frame.

5.4 Performance optimizations

The performance of the pure algorithm can be enhanced by an optimization of selected
parts. For this purpose we used batched updates, the up-down update (from the root
tree to the leafs of the virtual DOM) and many small refinements like shouldUpdate

method.

5.4.1 Batched updates

Every triggered redraw of the component will cause an event in the needUpdate stream.
The event is caught by the node containing the component, which mark itself as dirty.
The synchronized process of redraw ends here.

If more than one redraw happened, all of them are batched by marking a
components node as dirty. Mark the node as dirty cause adding the flag to the route
from the node to the root node of the virtual DOM as have dirty descendants.

On every animation frame, each root node is check for the need of the update, and
if it is dirty or has dirty descendant, the update is started. The update perform all
needed updates in the virtual DOM in one batch. The update is perform only when

CHAPTER 5. PERFORMANCE 39

the real DOM will be drawn to the user 3.

5.4.2 Up-down update process

We can perform the update process of bathed updates from the root to leafs of the
virtual DOM tree. Therefore when the node is deleted from the virtual DOM, none of
it’s descendants will be updated, even if they wanted to. The update of removed node
would be useless, because it’s change will be never reflected into the real DOM.

The up-down update also saves the performance from repeating the update of the
same node. For example, we have 4 nodes A, B, C and D, when the A is parent of the
B, the B of the C, etc. If they trigger the redraw from the bottom to the root, the
order is D, C, B and A. If we perform updates in the order in which the redraw was
triggered, we will perform following updates:

1. update D,

2. update C, and also D, as it got a new props,

3. update B, so update the C and D too and

4. update A, which cause the update of the B, the C and the D too.

When we perform update process of the batched updates from the root to leafs,
every node will be updated only once.

1. update A,

2. update B,

3. update C and

4. update D.

3The information about redrawing the UI by the browser is implemented by the animation frame
event

Chapter 6

Benchmarks

We created the Tiles library because our port of the React into the Dart language
was slow. Natural question arises. Is the Tiles library faster then the React port into
the dart?

We don’t compare the React library with the Tiles library, we compare the port
of it into the dart. The main problem in the port performance was the communication
between the JavaScript React library and the implementation created in the Dart
language.

We measured the time of several distinct scenarios:

The mass vs. the structure
We will measure the time, needed to render the mass of components in the same
level, and to render the complicated structure with lot of branching.

Creating of the virutal DOM vs. rendering into the real one
We measured the time of the construction of the virtual DOM and the render it
into the real one. The measurement is compared between the port and the Tiles

library.

Clean vs. dirty updates
The last measurement is the comparison of the duration of the updates. We
distinguish two types of updates, clean without any change in the virtual DOM
and dirty which changes the virtual DOM.

6.1 Benchmarking system

We created the benchmarking system, which compares the React port with the Tiles

library. The system contain the wrapper class, which enable implementation of a

40

CHAPTER 6. BENCHMARKS 41

common component for both solutions. We also implements the benchmark component,
used for creation of different structures by passing corresponding props.

The benchmark component get props with two important parameters:

levels is list of numbers, where each number tells, how many children will have the
component on each level,

level is the level of the current component.

The component render levels[level] children, all with the level bigger by 1. If
the component is at the last level, it renders corresponding number of divs instead of
custom components.

By the benchmark component, we are able to test different type of a structure (flat,
deep, etc.).

We implemented a runner which obtain run attributes from the hash of the currently
opened site. The runner enable to run and collect information about benchmarked tasks
by running the content_shell from a command line.

To collect all informations, we created a shell script, which runs the runner with
appropriate parameters and output benchmarked times in CSV format.

6.2 Mass versus structure

From the graph on the Figure 6.1 Render of simple structure with one custom
component and mass of div components we can see, that the React port is faster
in the rendering of the structure composed from one custom component and mass of
div components.

The graph on the Figure 6.2 Render of simple structure with one custom component
as a root, mass custom component as a child of the root and 1 div components under
each of them shows a big slowdown of the React port speed with structure of one
custom element root with mass of custom elements as children.

This difference is caused by in Dart implemented life-cycle methods which are called
by the JavaScript. Where mass of divs don’t need to call any custom life cycle methods,
the mass of custom component need them. This is also more often scenario, because
in the most common case, we want to render the list of some type of data, and for this
type of data, we want to create custom reusable component.

On the graph on the Figure 6.3 Render of the structure of custom components we
can see the difference between the time of the render of different sizes of the complete
binary tree. This graph confirm the fact, that for more complicated structures the
React port is slower than the Tiles library.

CHAPTER 6. BENCHMARKS 42

Figure 6.1: Render of simple structure with one custom component and mass of div
components

The Figure 6.4 Comparison of the render of the same number of leafs in the simple,
and complicated structure illustrate the fact, that for the flat structures, the React
is constantly faster, but for more complicated structures, the Tiles library perform
better.

6.3 Clean versus dirty update

We compared the clean versus dirty update on the "mass versus structure" results. The
performance of the libraries was expected. In bigger structures, where a bigger part
of the complete number of components was represented by custom components, the
Tiles library was recognizable faster than the React port.

6.4 Virtual versus real DOM

As the most part of the virtual DOM is constructed inside the render method of
custom components, we decided to measure the time of the virtual DOM rendering in
the React by measuring the time of the render of all created components. We made this
decision because we don’t have a direct possibility to measure the time of the render
of the virtual DOM in the React port. In the Tiles library, we can measure this time
directly, as we can build virtual DOM separately.

On the Figure 6.6 Comparison of the creation of the virtual DOM and rendering into
the real DOM in mass and structure we can see that the creation of the virtual DOM
is much more optimal in the tiles library, as the React port need to call Dart functions

Figure 6.2: Render of simple structure with one custom component as a root, mass
custom component as a child of the root and 1 div components under each of them

for all life-cycle methods of the custom component. We can also recognize that react
can render the existing virtual DOM into the real one more quickly than the Tiles

library, but the computation of the virtual DOM is significant in more complicated
structures with bigger ratio of custom components.

In the Figure 6.7 Comparison of the creation of the virtual DOM and rendering
into the real DOM in the structure is shown the comparison of the render of the virtual
DOM and the real DOM of the React port and the Tiles library in complete binary
trees. This comparison also shows that the Tiles library is more efficient than the
Dart port of the React library in thees cases.

6.5 Conclusion

Benchmarks confirms the theory, that the low performance of the React port into the
Dart language was cause also by the communication between the JavaScript React
library and life cycle methods of custom components implemented in Dart language.
We further discovered the dependence of the complexity of the virtual DOM structure
and the performance ration of the Tiles library and the React port. This dependence
was partly caused by bigger ration of custom components.

At the end of the Benchmarks chapter we want to acknowledge once more, that we
didn’t compare the React and the Tiles library, but the Dart port of the React library
with the Tiles library. The biggest problem of the Dart port of the React library was
the communication between the Dart and the JavaScript.

43

Figure 6.3: Render of the structure of custom components

Figure 6.4: Comparison of the render of the same number of leafs in the simple, and
complicated structure

44

Figure 6.5: Comparison of the clean and dirty update in mass and structure

Figure 6.6: Comparison of the creation of the virtual DOM and rendering into the real
DOM in mass and structure

45

Figure 6.7: Comparison of the creation of the virtual DOM and rendering into the real
DOM in the structure

46

Conclusion

The thesis describes the topic of the data binding used in the UI to tie the model
and the view of the user interface. The work was oriented to the Dart programming
language.

We explored existing solutions, compared and categorized them and described,
why no of them is satisfactory for our conditions. Therefore we created the new
UI library(Tiles) in the Dart programming language, which is component driven
(explained in section 3.2 Component driven), independent and fully covered by
unittests.

The tiles library was created with an inspiration from the Facebook React library
wrote in the JavaScript. It provides a tool for effective creation of the UI part of the
application. The library was created with respect to several aspects:

Pure Dart library was fulfilled by usage of no template engine or other tool
describing the UI in the different type of the information.

Testability was the major aspect of the implementation. We perform several
architectural decisions toward the testability of the code using our library like
the separation of the rendering logic from the main class Component used by
the user of the library and no template usage.

Easy to use API was reached by the separation of the Component class and by
creation of methods for frequently performed tasks.

As we wrote in the chapter 4 Our solution, the first step of the work on the thesis
was to create the port of the React library into the Dart language. This port was "slow"
in some cases, therefore we created mentioned Tiles library. The usefulness of it was
shown in the chapter 6 Benchmarks, which shows that our effort was not wasteful.

One of the most important results of the thesis is the UI Tiles library, which was
described in the text of the thesis.

47

Bibliography

[col] A Facebook & Instagram collaboration. React - A JAVASCRIPT LIBRARY
FOR BUILDING USER INTERFACES.
http://facebook.github.io/react/.

[Gooa] Google. AngularJS - HTML enhanced for web apps!
http://angularjs.org/.

[Goob] Google. Programmer’s Guide(Dart language).
https://www.dartlang.org/docs/.

[Hor13] Julian Horsey. Google dart sdk 1.0 released to replace
javascript in web development. http://www.geeky-gadgets.com/

google-dart-sdk-1-0-released-to-replace-javascript-in-web-development-14-11-2013/,
2013.

[INC] TILDE INC. ember - A framework for creating ambitious web applications.
http://emberjs.com/.

[Kea] Tyler Keating. The Run Loop.
http://blog.sproutcore.com/the-run-loop-part-1/ and http:

//blog.sproutcore.com/the-run-loop-part-2/.

[Uhr] Jakub Uhrik. The Tiles library source code on github.com.
https://github.com/cleandart/tiles.

[wika] Flex SDK wiki. Two-way Data Binding - Functional and Design Specification.
http://sourceforge.net/adobe/flexsdk/wiki/Two-way%20Data%

20Binding/.

[Wikb] Wikipedia. Data binding.
http://en.wikipedia.org/wiki/Data_binding.

48

http://facebook.github.io/react/
http://angularjs.org/
https://www.dartlang.org/docs/
http://www.geeky-gadgets.com/google-dart-sdk-1-0-released-to-replace-javascript-in-web-development-14-11-2013/
http://www.geeky-gadgets.com/google-dart-sdk-1-0-released-to-replace-javascript-in-web-development-14-11-2013/
http://emberjs.com/
http://blog.sproutcore.com/the-run-loop-part-1/
http://blog.sproutcore.com/the-run-loop-part-2/
http://blog.sproutcore.com/the-run-loop-part-2/
https://github.com/cleandart/tiles
http://sourceforge.net/adobe/flexsdk/wiki/Two-way%20Data%20Binding/
http://sourceforge.net/adobe/flexsdk/wiki/Two-way%20Data%20Binding/
http://en.wikipedia.org/wiki/Data_binding

	Introduction
	Motivation
	Data binding
	One way data binding
	Two way data binding

	Existing solutions
	Template driven
	Component driven
	React

	Conclusion

	Our solution
	Requirements
	Architecture - Tiles
	Architectural overview
	Structure
	Core
	Life-cycle
	Rendering
	Events
	Injecting

	API
	Component
	DOM component API
	Browser specific API
	Server specific API

	Performance
	Initial render
	Update of the UI
	Continuous resource consumption
	Performance optimizations
	Batched updates
	Up-down update process

	Benchmarks
	Benchmarking system
	Mass versus structure
	Clean versus dirty update
	Virtual versus real DOM
	Conclusion

	Conclusion
	Bibliography

