
5 Time Control

The difference between a tree search procedure and a game-playing algorithm

is an important and underestimated one. The latter will include a tree search

procedure, but something more is required — it must also have a method

for terminating searches at some point. Basically, a tree search procedure

looks upon a single move as the whole problem, whilst a game-playing algo-

rithm looks upon the problem as that of managing a series of moves, with

concomitant searches, and makes rational decisions about how to share any

transferable resources (i.e. time18) between them. The role of time control

may therefore be summarised below:

Game Playing = Time Control + Tree Search

While tree search algorithms have been the subject of much research,

very little has been published in the artificial intelligence literature on time

control. This paucity of literature demands an explanation, particularly when

one considers how poorly the standard ‘flat rate’ approach models that of

human experts. The method of controlling time which still provides the basis

for many otherwise refined game-playing programs is to apportion the search

time between the moves on a simple pro-rata basis, so that the same amount

of search is spent on every move. This is a very crude method of resource

allocation, most obviously in cases where the player has only one legal move

18Also information, but analysis of this issue is beyond the scope of this text.

149

at his disposal19. Any human gameplayer will confirm that some moves are

more important than others, in the sense that a player with a fixed time limit

for the whole game will naturally wish to consider for longer before making

them.

It is almost tautological to state that a player spends the longest on the

positions he finds the most difficult, which are the ones in which it is hardest

for him to determine which move it is best for him to play. Nevertheless,

this statement contains the key to the issue of time control, and provides at

least a partial explanation as to why so little work has been done on formal

methods of time control:- to be able to apportion time in an efficient fashion,

an ‘understanding’ of the consequences is essential.

By their very nature, brute force methods — which were until very re-

cently ubiquitous amongst the top game-playing programs — do not have

any such understanding. Subsection 1.1.4 introduced the method of singu-

larity extensions as a refinement to alpha-beta search. It is also possible to

view it as a time control algorithm, since it increases the amount of time

spent searching variations which involve singular moves. This hints at an-

other important observation about game-playing algorithms:- the distinction

between a search algorithm and a time control algorithm is to some extent an

artificial one. Any human game player knows this, since no one first decides

in advance of thinking about a move how much time to spend doing so. If the

19Of course, in practice programs have an if statement to detect for this, but the very

existence of such a special case illustrates the ad hoc nature of this approach.

150

human thinking process is to be mimicked, then the time allocation process

must be responsive to the findings of the search algorithm, as depicted below.

Figure 30: The Relationship between Time Control and Search Control

The reason why most examples in the literature simply have a fixed bud-

get or some other very simple policy is that the ‘brute force’ nature of their

alpha-beta-based search algorithms offers so little understanding of the po-

sition. It is worth formalising the justification for this time control policy;

uniform time control assumes that the utility to be gained from searching is

the same for every move throughout a game. The quality of this approxima-

tion depends largely upon the game.

151

5.1 Previous Methods

To pursue a ‘flat rate’ time allocation policy is to ignore the information

about the tree that is gathered by the searching process. Information of

this kind is readily available to a selective search since it is required by the

selective nature of the algorithm. This suggests the general form of time

control appropriate to selective search. Since the selectivity of the search

algorithm depends upon some information being accrued about the tree as

search progresses, search can be terminated as soon as the information built

up meets some criterion. The nature of this criterion depends of course upon

the time allowance, the game being played and the specifics of the selective

search algorithm. Flaws in the conception of a search algorithm will lead to

corresponding failures of the time control algorithm, since the time control

algorithm can only access information gathered by the search algorithm.

For example, consider the paradigm behind the B* family of search algo-

rithms described in Subsections 1.2.3–1.2.5. Originally, B* search was sug-

gested as a method of searching adversary trees which had accurate bounds

on their scores. Accordingly, no time control was required; the algorithm

terminated as soon as it had found the answer. As part of a game-playing

algorithm, problems arise with the initially appealing goal of finding the best

move. In a real game, some moves are more important than others, a fact

which is not recognised by B* or any of its probabilistic variants. Indeed,

the notion of a unique ‘best’ move may be flawed. It is a frequent occurrence

in the game of Go, for example, that a pair of moves have exactly the same

152

game theoretic value. The general problem with use of B* in a game-playing

problem is illustrated overleaf in Figure 31, which shows four types of uncer-

tainty about the best available move, of which the top left is the most worthy

of further search. Since the B* paradigm only looks at the probability that

one move dominates the others, and ignores the amount, it does not take

into account the variance of the move estimates. Since it therefore fails to

recognise that the left hand cases are better candidates for further search, it

will not be a good basis for a time allocation policy.

Figure 31: The Problem with the B* Paradigm

We now examine the range of approaches to time control applied to the

more important selective search algorithms, in reverse order of sophistication.

153

5.1.1 Best First Minimax

In the theoretical description of the best first minimax algorithm, Korf and

Chickering [47] make the bald statement that

“While in principle we could make a move at any time, we chose to

make a move when the length of the principal variation exceeds

a given bound. This ensures that the chosen move has been

explored to some depth.”

Since this is the sum total of their remarks on time control in their substantial

paper, one is forced to assume that they have paid little attention to this

topic. One possible explanation for this is to be found in their conclusions, in

which they state that “in practice, memory is not a problem because in a two-

player game, a move must be made every few minutes”. The indication here

is that practical rather than theoretical considerations may have determined

the nature of the time control policy; as well as being in keeping with the

spirit of the best first minimax algorithm — neat and simple — the setting

of such a depth threshold is expedient in that it avoids practical problems

caused by the space required to store the tree in memory. Where such a

compromise is being made to expediency it should be admitted, and the

time control policy does not seem to have any theoretical justification.

154

5.1.2 Conspiracy Numbers

In his original paper on the subject, McAllester [50] describes the method

of conspiracy numbers not as a game-playing algorithm, but as a ‘procedure

. . . for growing min-max game trees’ and so does not address time control.

The results he obtained were achieved by terminating the search after a fixed

number of nodes.

Schaeffer [73] is credited with adding the notion of iterative deepening

to conspiracy number search. The usage of the term in this context is an

analogy with its use in the context of alpha-beta search; instead of increasing

the fixed depth of the alpha-beta search by one each time, the size of the

conspiracies searched for is increased by one. The most promising results

of his paper concern tactical Chess problems of the ‘Black to play and win’

type. These however are single searches and so do not require any means of

time allocation. Schaeffer acknowledges that time control remains a difficult

issue.

A natural, if rather straightforward, approach to time control would be

to impose a ceiling on the maximum conspiracy size that is searched for.

This would have the desired effect of spending less time on positions where

the best move was relatively clear and more where it was unclear. This

is, however, not merely game specific, but also implementation specific; the

‘granularity’20 of the evaluation function is very important in determining

20the precision with which positions are evaluated

155

the conspiracy thresholds reached by the search algorithm.

The extent of this problem is revealed by the application of Schaeffer’s

conspiracy numbers algorithm to a set of Chess positions. The granularity

of the position evaluation function was 1
10

of a pawn. For some positions, the

algorithm was still hunting for conspiracies of size 2 after an hour of C.P.U.

time! Naive use of the conspiracy threshold is therefore not an appropriate

method of time control. A ‘flat rate’ time allocation policy is particularly

wasteful for a selective search algorithm, and so the current lack of any

feasible alternative must represent a serious drawback of conspiracy number

search.

5.1.3 PSVB*

The original paper on the B* search algorithm, like that on conspiracy num-

ber search, did not contain any discussion of time control. For his PSVB*

search, Palay [62] was therefore forced to deduce an appropriate time control

mechanism from first principles. He drew his inspiration for the task from a

major strength of B*, namely, the ability to terminate search once it becomes

clear that one move is ‘better’ than the others, even if the score of that move

is not certain.

The ‘better than’ criterion of B* is replaced in PSVB* by a rather dubious21

21Baum and Smith[6] highlight a weakness of this criterion by giving an example of

distributions A, B and C, such that A dominates B,B dominates C,and C dominates A,

all with probability > .5.

156

‘dominates with probability p’ criterion. Another failing is that Palay’s

method owes too much to the standard ‘flat rate’ approach to time con-

trol, since he assumes that each move is allocated (presumably uniformly) a

‘time limit’. His basic philosophy is summarised below:

“While there is plenty of time remaining, the search should be

continued, unless it is certain that one move is better than the

remaining moves. As the amount of time used by the search

increases the levels of domination used should start to decrease.

At first the decrease should be gradual; however, as the amount of

time used by the search approaches the amount of time allocated

to the search, the levels of dominance should decrease rapidly.”

He also recognised that the need for further search is influenced by the

relative winning chances of the two players. Again, whilst the idea is not

without merit, the choice of implementation is tailored specifically for the

game of Chess.

“The choice of the actual function was somewhat arbitrary. The

guiding principle in selecting this function was that as the achieved

value of a move increases, the level of domination needed for ter-

mination decreases.”

Palay’s approach to time control was very innovative at the time at which

the work was carried out, and he was one of the first authors to pay specific

157

attention to this topic. However, the fact that he never worked out how

to play from a position in which one was almost hopelessly behind merely

underlines the piecemeal nature of the approach he took to the issue of time

control.

5.1.4 MGSS*

The time control algorithm of MGSS* is based on the following algorithm

proposed in 1968 by Good [30]:

1. If no leaves have positive U(), stop and make the move which

appears best on the basis of the current search tree, otherwise

proceed to step 2.

2. Search the leaf with the greatest U(), recalculate the U() val-

ues as required, and go to step 1.

The rationale for such a schema is clear, since if the meta-calculation

costs are ignored and given a suitable definition of U(), this time control

algorithm is indeed optimal. However, as we have seen, neither of these is

possible, and so this point is of theoretical rather than practical interest.

Indeed, the problem of determining a tractable approximation of U() proved

such a difficult one that this method was all but ignored by the mainstream

of artificial intelligence research for around twenty years. The efficacy of such

a policy hinges upon the utility function, a topic which we shall address in

158

Section 6.5. The MGSS* algorithm uses U(S) = E[V (S)] − TC(S), where

V (S), the value of search, is defined in Subsection 1.2.6.

Russell and Wefald [72] are uncharacteristically vague about the choice

of TC() used to implement MGSS*. The simplest choice would be to use

a constant function. For games in which different numbers of moves are

available from different positions, a more accurate TC() would — since the

units of computation are the expansion of a single node — be proportional

to the number of children of that node.

5.1.5 BP

The time control policy of the BP algorithm is analogous to that of MGSS*.

Since BP expands leaves one gulp at a time rather than one leaf at a time,

their expression for the net utility of further search is as follows:

Ugulp

tgulp
− TC(t, m)

In this expression, tgulp is the amount of time needed to carry out the

next gulp of search, while Ugulp is the expected increase in utility from doing

so, as explained in Subsection 1.2.7. The chief advance over the time control

of MGSS* is the use of a more advanced expression for the cost of time,

TC(). This takes parameters t, the amount of time left, and m, the number

of moves until the next time control. This makes the assumption that the

number of moves until the next time control is known, which is not valid if

there is an overall limit for the game unless the game is a fixed number of

159

moves. The following two expressions are suggested for TC():

TC() = c6
m

t
U
(
logB

[
t

m

])
=




c3
m/t

logB(t/m)2
(Levy)

c4

(
m
t

)1
+ c5 (Szabo)

The B in the Levy formula is the expected branching factor of the search.

The two formulae are derived from suggested expressions for the value of time

by Levy and by Szabo [84]. Baum and Smith [6] explain their efforts to fit

these two formulae — by judicious choice of c. The data from which they

derive their observed utility function, U(), is a table of Newborn’s [58] of

how likely a Chess program is to change its opinion of the best move if deeper

search is carried out.

5.2 Marginal Value of Information

The appeal to some kind of ‘law of diminishing returns’ on time spent search-

ing is a very convincing one, following almost as a corollary of the exponential

explosion of nodes in the game tree. The exact nature of this principle re-

mains obstinately difficult to codify in general terms.

The ‘boxes’ problem of Section 3.1 is one in which the principle can be seen

to yield the optimal policy in a very straightforward way. Box i has reward

rate Øi = pi/ti, so the probability of finding an object is Øiti, yielding an

expected probability of termination proportional to Øi for every time unit

spent searching a box of type i. The optimal policy of searching boxes in

160

decreasing order of type Øi equates to a law of diminishing returns over each

single box searched.

The addition of linear precedence constraints brings a further level of

complication. The Øi of searches by the optimal policy are no longer mono-

tonically decreasing, since searches are made not solely for their probability

of discovering an object, but also to reveal other nodes for search. If we

consider the units of the search to be maximal indivisible blocks rather than

individual nodes, the law of diminishing returns still applies.

The stochastic OR-tree model of Section 3.2 is similar in principle. The

chunking process, however, is affected by the random nature of the model.

A law of diminishing expected returns applies, where the unit of search is

a single exhaustive search. The corrected reward rates, Ø∗
i , take account of

this.

Unfortunately, the AND-OR model that is the subject of Chapter 4 is

harder to model in this fashion, due to the way the ‘∩’ branches affect the

return from searching. An expression such as ‘A ∩ B’ presents a problem

since the return from searching ‘A’ depends upon the results of searching ‘B’

and vice versa. As explained in Section 4.4, considering the composite term

‘A∩B’ as a single unit of search presents problems, not least because search

may expand ‘A’ and ‘B’ into compound terms.

161

5.3 Marginal Value of Search

We now revise the two models presented in Chapter 2, so as to give the player

a choice as to how much time he uses to search. Instead of having a fixed time

limit, an unlimited supply of time units are available to the player, at a cost

of λ > 0 each. This formulation has a natural interpretation in a practical

context, and is mathematically easy since the time spent so far is a sunk

cost, that is, one which does not affect future play. Accordingly, only very

minor adaptations are necessary to the mechanics of the two models. The

only extra notational device which we shall use in this section is the symbol

Λ(τ), to stand for the marginal value of time, that is, the cost of time at

which, if the player must purchase all the time units before the game22, he is

indifferent about purchase of a further unit of time once τ units have already

been bought.

In the one-player tree search game of Section 2.2, Lemma 2.4 implies that

for λ ≥ κ, it is optimal not to buy any time, and for λ = κ, it is optimal

to buy up to H time units. For λ ≤ κ, it may be optimal to buy more,

though this depends upon the values of Y observed in relation to the specific

distribution of Y . If λ = κ the only circumstances in which it is optimal to

buy more search is if the last two Y values observed were both equal to 0,

in which case it is optimal to ‘backtrack’ up the searched tree, as illustrated

22This restriction is introduced as a slight simplification of the presentation that follows,

which is nevertheless sufficient to illustrate the principles involved. Without it, Λ(τ) is a

random variable, since it depends upon the findings of earlier search.

162

on page 51 in Figure 8.

One extreme occurs if Y is distributed as follows:

Y ∼

 −κ κ

1
2

1
2




In this case, only h searches are ever required to find the optimal path

down the game tree, so Λ(τ) = 0 for τ > h. At the other extreme, if Y has

support along the whole real line, Λ(τ) decreases in τ , only reaching 0 for

τ = 2h − 1, at which point the tree is completely searched.

It is understood, although not formally proved, that Λ(τ) is a decreasing

function in τ for this game. This seems clear from the way in which search

time is exchanged for information. As the time already spent increases,

the most profitable search opportunities have already been exhausted, so

resulting in some ‘duplication of effort’. If the variance of |Y | is low, M(τ)

decreases quickly from an initially high value, since the searches yield a lot of

information. By contrast, if the variance of |Y | is high, then M(τ) decreases

more slowly because of the greater chance of revising previous decisions about

which move was best from a particular node.

In Section 2.3, we saw how to calculate Vn(), the payoff of the fuel con-

trol problem with n units of fuel available. We can therefore calculate the

marginal value of fuel exactly since Λτ() = Vτ+1() − Vτ (). In contrast to the

one-player tree search model, Λτ () need not be monotonic, a consequence of

its more general structure. Consider the construction shown in Figure 32.

163

Figure 32: Construction to Show the Generality of Λτ (A)

By choosing ε > 0 to be small, and K to be sufficiently large, this shows that

Λτ (A) can be any non-negative sequence, Y1, Y2, Y3 . . . YN .

5.4 A Two-Player Search Game

We consider the following two-player zero-sum game, similar to the one de-

fined in Section 2.2. The game tree is an infinite binary tree. Players make

alternate moves. Each move is associated with score, Y , an independent

random variable of known distribution. The player whose move it is has the

option of carrying out one or more search actions before moving. Each search

makes known to that player the values of the two moves possible from the

node searched. The set of nodes searched must at all times form a tree. This

is almost the infinite height case of the familiar search structure from Chap-

ter 2. This model differs from the model described in Section 2.2, since the Y

values of sisters are independent of each other, rather than being constrained

so that Yi1 + Yi2 = 0.

The running reward, Rτ , paid from player 2 to player 1 in time unit τ is

164

given below:

Rτ =




−λ | Player 1 carries out a search.

λ | Player 2 carries out a search.

y | Player 1 makes a move with value y.

−y | Player 2 makes a move with value y.

It is useful to discount the running rewards by αN , where N is the number

of moves made so far and α ∈ (0, 1]. As in Section 2.2 we specify that

E[Y] = 0 and E[|Y |] = κ.

We now consider how to capture the value of search already carried out.

If the moves in the search information which leads down to leaf, L, have

scores y1, y2 . . . yhi
, then the net value of leaf L is defined as follows:

nv(L) =
hi∑

i=1

(−α)i−1yi

This is the net value to player 1 from playing the game until leaf Li is

reached.

165

We now define the net values of internal nodes of the search information

as follows:

Figure 33: Calculation of Net Value of Internal Nodes

This defines nv() as the superharmonic majorant corresponding to our

opponent making random choices while we select the move which leads to

the node with the greatest net value. Where L refers to a tree, we shall

abbreviate nv(root(L)) as nv(L).

We suppose the left and right subtrees of L to be LL and LR, and the left

and right moves from root to have scores YL and YR, as illustrated overleaf

in Figure 34.

Theorem 5.1 For λ ≥ κ, the value of the game is 0, and Policy π∗, de-

scribed below, is the optimal policy for both players.

Policy π∗ moves to the daughter of root with the higher net
value, and moves at random if there is no more search information.

166

Figure 34: Information Notation

Proof: We denote by VLeft π() the payoff from moving left and then following

policy π and VRight π() the payoff from moving right and then following policy

π. We consider the optimality equation for player 1, assuming his opponent

pursues a policy of moving at random:

V (L) = max
{
E[VLeft(L)], E[VRight(L)], E

[
max

i
{V (L + i)}

]}

Substituting in policy π∗:

Vπ∗(L) = max
{
E[VLeft π∗(L)], E[VRight π∗(L)], E

[
max

i
{Vπ∗(L + i)}

]}

= max
{
E[YL + αnv(LL)], E[YR + αnv(LR)], E

[
max

i
{nv(L + i)}

]
− λ

}

= max
{
nv(L), E

[
max

i
{nv(L + i)}

]
− λ

}
(15)

167

If there is no search information, YL and YR are unknown, and LL =

LR = φ. Hence:

nv(LL) = nv(LR) = E[YL] = E[YR] = 0

E[YL + αnv(LL)] = E[YR + αnv(LR)] = nv(L)

Equation (15) therefore follows. If there is information, it follows directly

from the definition of net value.

Now, let us consider how the expansion of a leaf i of L affects nv(L). First,

we note that if the opponent is to play from i then there is no expected change

to nv(L) caused by expanding it. If the searcher can play then expansion of

i increases the net value of that leaf by αhiE[max{Yi1, Yi2}], where hi is the

depth of leaf i.

From the definition of net value, the net value of a the root of a tree

cannot change by more than the change to one of its leaves. Hence, for any

i:

nv(L + i) − λ ≤ nv(L) + E[max{Yi1, Yi2}] − λ

≤ nv(L) for λ ≥ κ

Substitution of this in (15) shows us that Vπ∗(L) = nv(L) satisfies the

optimality equation, so π∗ is the optimal policy.

We have shown that if player 2 pursues a policy of always playing ran-

domly, then player 1 can do no better than pursue an identical policy. This is

a Nash equilibrium, and so both players must therefore be playing optimally,

since the game is zero-sum.

168

Corollary 5.2 For λ = κ, the value of the game is 0. Policy π1∗, described

below, is optimal, as well as policy π∗.

Policy π1∗ moves to the daughter of root with the highest
net value, if search information is available. If no search

information is available, it expands root.

Proof: Theorem 5.1 establishes the optimality of policy π∗ for λ = κ, and

so we evaluate the payoff from playing policy π1∗ against policy π∗. Policy

π∗ has been proved optimal above. The only case in which policy π1∗ differs

from policy π∗ is if there is no search information. In this case, observe from

the definition of net value that any action is optimal:

nv(L + Root) − λ = nv(L) + E[max{YL, YR}] − λ = nv(L) = 0

= E[VLeft π1∗(L)] = E[VRight π1∗(L)]

5.5 Summary

We have extended the models of Chapter 2 to allow the player to choose

how much time to spend. The modifications made were minor, but rela-

tively powerful, since they allow several of these simple games to be grouped

together as part of a common problem, with the overall reward of a linear

combination of the payoffs of each individual problem.

The result proved about the two-player search game presented in Sec-

tion 5.4 is perhaps a somewhat unsurprising but nevertheless significant one.

169

It may be the first time that an optimal policy has been proved for a two-

player game with such a realistic search structure, and it demonstrates that

dynamic stochastic control can be used for this purpose.

The gap between the theoretical results proved in this chapter and the

practical methods of time control described in Section 5.1 is large indeed. Of

the time control policies described, those of the MGSS* and BP algorithms

are the most theoretically interesting. As one-step lookahead policies, they

both make the tacit assumption of decreasing marginal value of search: that

if the cost of the next step exceeds the expected utility of the information, the

cost of the next two steps will exceed the expected utility of the information

they yield. As explained, this seems a fairly reasonable approximation for

most games23.

We have seen how the issue of time control is related to search control, and

that for either to be satisfactory, a theoretically sound approximation must

be found to the notion of ‘utility’. The considerable problems surrounding

this concept will be discussed in Section 6.5.

23Doubtless, pathological games could be deduced to show the inefficiency of this, just as

Nau [55, 54, 56, 57] deduced pathological games to do the same for the minimax backing-up

principle.

170

	Dynamic Stochastic Control - A New Approach to Game Tree Searching, by
	Robin Upton
	5 Time Control
	5.1 Previous Methods
	5.1.1 Best First Minimax
	5.1.2 Conspiracy Numbers
	5.1.3 PSVB*
	5.1.4 MGSS*
	5.1.5 BP

	5.2 Marginal Value of Information
	5.3 Marginal Value of Search
	5.4 A Two-Player Search Game
	5.5 Summary

