
Chapter 1

Introduction

1.1 Games

Game playing is one of the classic problems of artificial intelligence. The idea of
creating a machine that can beat humans at chess has a continued fascination for many
people. Ever since computers were built, people have tried to create game-playing
programs.

Over the years researchers have put much effort into improving the quality of play.
They have been quite successful. Already, non-trivial games like nine-men’s-morris,
connect-four and qubic are solved; they have been searched to the end and their game-
theoretic value has been determined [2, 50]. In backgammon the BKG program received
some fame in 1979 for defeating the World Champion in a short match [14, 15]. Today,
computer programs are among the strongest backgammon players [142]. In Othello
computer programs are widely considered to be superior to the strongest human players
[77], the best program of the moment being Logistello [30]. In checkers the current
World Champion is the program Chinook [131, 132]. In chess, computer programs play
better than all but the strongest human players and have occasionally beaten players
such as the World Champion in isolated games [48, 49, 144]. Indeed, many believe
that it is only a matter of time until a computer defeats the human world champion in a
match [53, 56, 144].

For other games, such as bridge, go, shogi, and chinese chess, humans outplay
existing computer programs by a wide margin. Current research has not been able to
show that the successes can be repeated for these games. An overview of some of this
research can be found in a study by Allis [2].

Computer game playing has a natural appeal to both amateurs and professionals,
both of an intellectual and a competitive nature. Seen from a scientific perspective,
games provide a conveniently closed domain, that reflects many real-world properties,
making it well-suited for experiments with new ideas in problem solving. According
to Fraenkel [46], applications of the study of two-player games include areas within
mathematics, computer science and economics such as game theory, combinatorial
games, complexity theory, combinatorial optimization, logic programming, theorem

2 Introduction

proving, constraint satisfaction, parsing, pattern recognition, connectionist networks
and parallel computing. See for example the bibliographies by Stewart, Liaw and
White [138], by Fraenkel [46] and Levy’s computer chess compendium [79]. With this
long list of applications one would expect results in game playing to have a profound
influence on artificial intelligence and operations research. For a number of reasons,
not all scientific, this is not the case [39]. Ideas generated in game playing find their
way into main stream research at a slow pace.

1.2 Minimax Search

Of central importance in most game-playing programs is the search algorithm. In
trying to find the move to make, a human player would typically try to look ahead a few
moves, predicting the replies of the opponent to each move (and the responses to these
replies, and so on) and select the move that looks most promising. In other words, the
space of possible moves is searched trying to find the best line of play. Game-playing
programs mimic this behavior. They search each line of play to a certain depth and
evaluate the position. Assuming that both players choose the move with the highest
probability of winning for them, in each position the value of the best move is returned
to the parent position. Player A tries to maximize the chance of winning the game;
player B tries to maximize B’s chance, which is equivalent to minimizing A’s chances.
Therefore, the process of backing up the value of the best move for alternating sides is
called minimaxing; two-player search algorithms are said to perform a minimax search.

Searching deeper generally improves the quality of the decision [54, 133, 143].
Quite a number of researchers have studied minimax search algorithms to improve
their efficiency, effectively allowing them to search more deeply within a given real-
time constraint. In game playing a move typically has to be made every few minutes.
For many games this constraint is too tight to allow optimizing strategies—a look-ahead
search to the end of the game is infeasible. Minimax search is a typical example of
satisficing, heuristic search. Game-playing programs are real-time systems where the
utility of actions is strongly time-dependent. The recent interest in anytime algorithms
acknowledges the practical importance of this class of decision making agents [37, 148].

Real-time search is central to many areas of computer science, so it is fortunate that
a number of the ideas created in minimax search have proved useful in other search
domains. For example, iterative deepening (IDA*) [67], transposition tables [62, 117],
pattern databases [36], real time search (RTA*) [68] and bi-directional search (BIDA*)
[76, 80] have been applied in both two-agent and single-agent search. These are all
examples of a successful technology transfer from game playing to other domains,
supporting the view of games as a fertile environment for new ideas. However, the
length of Fraenkel’s [46] list of applications of game playing suggests that there ought
to be more examples.

1.2 Minimax Search 3

1.2.1 A Tale of Two Questions

The main theme of the research behind this thesis has been to find ways to improve the
performance of algorithms that search for the minimax value of a (depth-limited) tree
in real time, through a better understanding of the search trees that these algorithms
generate. This goal is pursued along two lines: by looking into the best-first/depth-first
issue, and by examining the concept of the minimal tree.

Best-First and Depth-First

Most successful game-playing programs are based on the Alpha-Beta algorithm, a
simple recursive depth-first minimax procedure invented in the late 1950’s. In its
basic form a depth-first algorithm traverses nodes using a rigid left-to-right expansion
sequence [99]. There is an exponential gap in the size of trees built by best-case and
worst-case Alpha-Beta. This led to numerous enhancements to the basic algorithm,
including iterative deepening, transposition tables, the history heuristic, and narrow
search windows (see for example [128] for an assessment). These enhancements have
improved the performance of depth-first minimax search considerably.

An alternative to depth-first search is best-first search. This expansion strategy
makes use of extra heuristic information, which is used to select nodes that appear
more promising first, increasing the likelihood of reaching the goal sooner. Although
best-first approaches have been successful in other search domains, minimax search
in practice has been almost exclusively based on depth-first strategies. (One could
argue that the enhancements to Alpha-Beta have transformed it into best-first search.
However, the designation “best-first” is normally reserved for algorithms that deviate
from Alpha-Beta’s left-to-right strategy.)

In 1979 SSS* was introduced, a best-first algorithm for searching AND/OR trees
[140]. For minimax trees, SSS* was proved never to build larger trees than Alpha-
Beta, and simulations showed that it had the potential to build significantly smaller
trees. Since its introduction, many researchers have analyzed SSS*. Understanding
this complicated algorithm turned out to be challenging. The premier artificial intel-
ligence journal, Artificial Intelligence, has published six articles in which SSS* plays
a major role [33, 57, 72, 85, 118, 121], in addition to Stockman’s original publication
[140], and our own forthcoming paper [113]. Most authors conclude that SSS* does
indeed evaluate less nodes, but that its complex formulation and exponential memory
requirements are serious problems for practical use. Despite the potential, the algo-
rithm remains largely ignored in practice. However, the fact that it searches smaller
trees casts doubts on the effectiveness of Alpha-Beta-based approaches, stimulating the
search for alternatives.

This brings us to the first theme of our research: the relation between SSS* and
Alpha-Beta, between best-first and depth-first. Simply put, in this work we try to find
out which is best.

4 Introduction

The Minimal Tree

The second issue concerns the notion of the minimal tree. In a seminal paper in 1975
Knuth and Moore proved that to find the minimax value, any algorithm has to search at
least the minimal tree [65]. The concept of the minimal tree has had a profound impact
on our understanding of minimax algorithms and the structure of their search trees.

The minimal tree can be used as a standard for algorithm performance. Since any
algorithm has to expand at least the minimal tree, it is a limit on the performance of
all minimax algorithms. Many authors of game-playing programs use it as a standard
benchmark for the quality of their algorithms. The size of the minimal tree is defined
for uniform trees. For use with real minimax trees, with irregular branching factor
and depth, the minimal tree is usually defined as Alpha-Beta’s best case. However,
this is not necessarily the smallest possible tree that defines the minimax value. Due
to transpositions and the irregularity of the branching factor it might be significantly
smaller.

The second theme of this research is to find out by how much. A minimal tree
that is significantly smaller would have two consequences. First, it would mean that
the relative performance of game-playing programs has dropped. Second, and more
important, it would show where possible improvements of minimax algorithms could
be found.

1.3 Contributions

1.3.1 Best-First and Depth-First

The first main result of our research is that SSS* can be reformulated as a special case
of Alpha-Beta. Given that best-first SSS* is normally portrayed as an entirely differ-
ent approach to minimax search than depth-first Alpha-Beta, this is a surprising result.
SSS* is now easily implemented in existing Alpha-Beta-based game-playing programs.
The reformulation solves all of the perceived drawbacks of the SSS* algorithm. Exper-
iments conducted with three tournament-quality game-playing programs show that in
practice SSS* requires as much memory as Alpha-Beta. When given identical mem-
ory resources, SSS* does not evaluate significantly less nodes than Alpha-Beta. It is
typically out-performed by NegaScout [44, 99, 119], the current depth-first Alpha-Beta
variant of choice. In effect, the reasons for ignoring SSS* have been eliminated, but
the reasons for using it are gone too.

The ideas at the basis of the SSS* reformulation are generalized to create a frame-
work for best-first fixed-depth minimax search that is based on depth-first null-window
Alpha-Beta calls. The framework is called MT, for Memory-enhanced Test (see
page 38). A number of existing algorithms, including SSS*, DUAL* [73, 85, 116]
and C* [35], are special cases of this framework. In addition to reformulations, we
introduce new instances of this framework. One of the instances, called MTD(ƒ), out-
performs all other minimax search algorithms that we tested, both on tree size and on
execution time.

1.3 Contributions 5

In the new formulation, SSS* is equivalent to a special case of Alpha-Beta; tests
show that it is out-performed by other Alpha-Beta variants. In light of this, we believe
that SSS* should from now on be regarded as a footnote in the history of game-tree
search.

The results contradict the prevailing view in the literature on Alpha-Beta and SSS*.
How can it be that the conclusions in the literature are so different from what we
see in practice? Probably due to the complex original formulation of SSS*, previous
work mainly used theoretical analyses and simulations to predict the performance of
SSS*. However, there are many differences between simulated algorithms and trees,
and those found in practice. Algorithmic enhancements have improved performance
considerably. Artificial trees lack essential properties of trees as they are searched by
actual game-playing programs. Given the fact that there are numerous high-quality
game-playing programs available, there is no valid reason to use simulations for perfor-
mance assessments of minimax algorithms. Their unreliability can lead to conclusions
that are the opposite of what is seen in practice.

1.3.2 The Minimal Tree

Concerning the second issue, we have found that in practice the minimal tree can indeed
be improved upon. The irregular branching factor and transpositions mean that the real
minimal tree (which should really be called minimal graph) is significantly smaller.
Our approximations show the difference to be at least a factor of 1.25 for chess to 2 for
checkers. This means that there is more room for improvement of minimax algorithms
than is generally assumed [40, 41, 125].

We present one such improvement, called Enhanced Transposition Cutoff (ETC), a
simple way to make better use of transpositions that are found during a search.

1.3.3 List of Contributions

The contributions of this research can be summarized as follows:

• SSS* = - + transposition tables
The obstacles to efficient SSS* implementations have been solved, making the
algorithm a practical Alpha-Beta variant. By reformulating the algorithm, SSS*
can be expressed simply and intuitively as a series of null-window calls to Alpha-
Beta with a transposition table (TT), yielding a new formulation called MT-SSS*.
MT-SSS* does not need an expensive OPEN list; a familiar transposition table
performs as well. In effect: SSS* = - + TT.

• A framework for best-first minimax search based on depth-first search
Inspired by the MT-SSS* reformulation, a new framework for minimax search
is introduced. It is based on the procedure MT, which is a memory-enhanced
version of Pearl’s Test procedure [99], also known as null-window Alpha-Beta
search. We present a simple framework of MT drivers (MTD) that make repeated

6 Introduction

calls to MT to home in on the minimax value. Search results from previous passes
are stored in memory and re-used. MTD can be used to construct a variety of best-
first search algorithms using depth-first search. Since MT can be implemented
using Alpha-Beta with transposition tables, the instances of this framework are
readily incorporated into existing game-playing programs.

• Depth-first search can out-perform best-first
Using our new framework, we were able to compare the performance of a
number of best-first algorithms to some well-known depth-first algorithms. Three
high performance game-playing programs were used to ensure the generality
and reliability of the outcome. The results of these experiments were quite
surprising, since they contradict the large body of published results based on
simulations. Best-first searches and depth-first searches are roughly comparable
in performance, with NegaScout, a depth-first algorithm, out-performing SSS*,
a best-first algorithm.

In previously published experimental results, depth-first and best-first minimax
search algorithms were allowed different memory requirements. To our knowl-
edge, we present the first experiments that compare them using identical storage
requirements.

• Real versus artificial trees
In analyzing why our results differ from simulations, we identify a number of
differences between real and artificially-generated game trees. Two important
factors are transpositions and value interdependence between parent and child
nodes. In game-playing programs these factors are commonly exploited by
transposition tables and iterative deepening to yield large performance gains—
making it possible that depth-first algorithms out-perform best-first. Given that
most simulations neglect to include important properties of trees built in practice,
of what value are the previously published simulation results?

• Memory size
In the MT framework the essential part of the search tree is formed by a max and/or
a min solution tree of size O(wd/2) for trees with branching factor w and depth
d. Our experiments show that for game-playing programs under tournament
conditions, these trees fit in memory without problems. The reason that the
exponential space complexity is not a problem under tournament conditions is
that the time complexity of a search is at least O(wd/2); time runs out before the
memory is exhausted.

• Domination and dynamic move re-ordering
With dynamic move reordering schemes like iterative deepening, SSS* and its
dual DUAL* [72, 116] are no longer guaranteed to expand fewer leaf nodes than
Alpha-Beta. The conditions for Stockman’s proof [140] are not met in practice.

• MTD(ƒ)
We formulate a new algorithm, MTD(ƒ). It out-performs our best Alpha-Beta

1.4 Overview 7

variant, NegaScout, on leaf nodes, total nodes, and execution time for our test-
programs. The improvement was bigger than the improvement of NegaScout
over Alpha-Beta. Since MTD(ƒ) is an instance of the MT framework, it is easily
implemented in existing programs: just add one loop to an Alpha-Beta-based
program.

• The real minimal graph
The minimal tree is a limit on the performance of minimax algorithms. For search
spaces with transpositions and irregular w and d, most researchers redefine the
minimal “tree” as the minimal graph searched by Alpha-Beta. However, this is
not the smallest graph that proves the minimax value. Because of transpositions
and variances in w and d, cutoffs may exist that are cheaper to compute. The size
of the real minimal graph is shown to be significantly smaller. This implies that
algorithms are not as close to the optimum, leaving more room for improvement
than is generally assumed.

• ETC
We introduce a technique to take better advantage of available transpositions.
The technique is called Enhanced Transposition Cutoff (ETC). It reduces the
search tree size for checkers and chess between 20%–30%, while incuring only
a small computational overhead.

• Solution trees
Theoretical abstractions of actual search trees have been useful in building models
to reason about the behavior of various minimax algorithms, explaining experi-
mental evidence and facilitating the construction of a new framework. The key
abstractions have been the dual notions of the max and min solution tree, defining
an upper and a lower bound on the minimax value of a tree.

One of the most striking results, besides the simulation versus practice issue, is perhaps
that best-first algorithms can be expressed in a depth-first framework. (In contrast to
the IDA*/A* case [67], the algorithms in this work are reformulations of the best-first
originals. They evaluate exactly the same nodes and the space complexity does not
change.) Furthermore, it is surprising that despite the exponential storage requirements
of best-first algorithms their memory consumption does not render them impractical.

1.4 Overview

This section gives a short overview of the rest of the thesis. Chapter 2 provides some
background on minimax algorithms. Alpha-Beta and SSS* are discussed. The chapter
includes an explanation of bounds, solution trees, the minimal tree, and narrow-window
calls, notions that form the basis of the next chapters.

Chapter 3 introduces MT, a framework for best-first full-width minimax search,
based on null-window Alpha-Beta search enhanced with memory. The main benefit

8 Introduction

of the framework is its simplicity, which makes it possible to use a number of real
applications to test the instances.

Chapter 4 reports on results of tests with Alpha-Beta, NegaScout, and MT in-
stances. We have tested both performance and storage requirements of the algorithms,
using three tournament game-playing programs. As stated, the test results paint an
entirely different picture of Alpha-Beta, NegaScout, and SSS* than the literature does.
Section 4.4 discusses the reason: differences between real and artificial search trees.

Chapter 5 discusses the minimal tree in the light of the test results. This chapter
discusses how the size of a more realistic minimal tree can be computed.

Chapter 6 presents the conclusions of this work.
In appendix A we give examples of how Alpha-Beta, SSS*, and MT-SSS* traverse

a tree.
Appendix B is concerned with the equivalence of SSS* and MT-SSS*. It contains

a detailed technical treatment indicating why our reformulation is equivalent to the
original.

Appendix C lists test positions that were used for the experiments as well as some
numerical results of these tests.

The ideas of chapter 3 and 4 have appeared in [111, 113], and also in [108, 109,
110, 112, 134]. The ideas on solution trees in chapter 2 have appeared in [28, 29].
The work on the real minimal graph in chapter 5 has appeared in [114], and also in
[107, 134].

Chapter 2

Background—Minimax Search

2.1 Minimax Trees and Alpha-Beta

This chapter provides some background on minimax algorithms. We briefly introduce
the minimax function, and the concept of a cutoff. To find the value of the minimax
function, one does not have to search the entire problem space. Some parts can be
pruned; they are said to be cut off. The basic algorithm of minimax search, Alpha-
Beta, is discussed. Next we discuss common enhancements to Alpha-Beta, as well as
alternatives, notably SSS*.

Other general introductions into this matter can be found in, for example, [47, 93,
99].

2.1.1 Minimax Games

This research is concerned with (satisficing) search algorithms for minimax games. In
a zero-sum game the loss of one player is the gain of the other. Seen from the viewpoint
of a single player, one player tries to make moves that maximize the likelihood of an
outcome that is positive for this person, while the other tries to minimize this likelihood.
The pattern of alternating turns by the maximizer and minimizer has caused these
games to be called minimax games. Likewise, the function describing the outcome of
a minimax game is called the minimax function, denoted by ƒ.

As an example, let us look at tic-tac-toe. Figure 2.1 gives the possible moves from a
certain position. A graph representation is shown in figure 2.2. This graph is called the
minimax tree. For reasons that will become clear soon, player X is called “Max” and
player O is called “Min.” Board positions are represented by square or circle nodes.
Nodes where the Max player moves are shown as squares, nodes where the Min player
moves are shown as circles. The possible moves from a position are represented by
unlabeled links in the graph. The node at the top represents the actual start position.
In the start position, Max has three possible moves, leading to nodes b, c and g. By
considering the options of Min in each of these nodes, and the responses by Max, the
tree in figure 2.2 is constructed.

10 Background—Minimax Search

X O X

O

X

O

X

X X

X

X

OO

O

O

XX

X X

X

O

O

OO

MAX

MIN

MAX

win win

O

O

O

XX

X X

O

X

X X

XO

O OO

O

O O

OXX

X X

X

O

X

X

XO

O

X

X X

XO

O OO

X

X

XO

O O

X X

XX

X

O

O

O

lossloss

win

win

lossloss

win

win

Figure 2.1: Possible Lines of Play for Tic-tac-toe Position

a

b c

d e

f

g

h i

j

+1 +1

-1-1

+1

+1

-1 -1

+1

+1

Figure 2.2: Minimax Tree of the Possible Lines of Play

2.1 Minimax Trees and Alpha-Beta 11

function minimax(n) ƒ;
if n = leaf then return eval(n);
else if n = max then

g := ;
c := firstchild(n);
while c = do

g := max g, minimax(c) ;
c := nextbrother(c);

else /* n is a min node */
g := + ;
c := firstchild(n);
while c = do

g := min g, minimax(c) ;
c := nextbrother(c);

return g;

Figure 2.3: The Minimax Function

The start position (node a) is called the root of the tree. The other nodes represent
the possible lines of play. Nodes a, c, e, g and i are called interior nodes. Nodes b, d, ƒ, h
and j are the leaf nodes of this tree. Considering the possible lines of play to find the
best one is usually referred to as searching the tree. A move by one player is often
called a half-move or a ply.

At the leaf nodes in the tree the game ends, and the value of the minimax function
ƒ can be determined. A win for max is denoted by +1, a 1 denotes a loss. The value
0 would represent a draw. The root of the tree is at level 0. At even levels player
Max will make a move to maximize the outcome ƒ, while at odd levels player Min will
move to minimize ƒ. Therefore, at even levels ƒ equals the maximum of the value of its
children and at odd levels ƒ equals the minimum. In this way ƒ is recursively defined
for all positions. In the example position its value is +1, Max wins.

Figure 2.3 gives the recursive minimax function in a Pascal-like pseudo code. The
code takes a node n as input parameter and returns ƒn, the minimax value for node n.
The code contains a number of abstractions. First, every node is either a leaf, a min, or
a max node. Second, an evaluation function, eval, exists that returns the minimax value
(win, loss, or draw) for each board position at a leaf node. Third, functions firstchild
and nextbrother exist, returning the child node and brothers. (They return the value
if no child or brother exist.) Note that the given minimax function traverses the tree
in a depth-first order. The min and max operations implement the backing-up of the
scores of nodes from a deeper level. The value of g represents an intermediate value of
a node. When all children have been searched g becomes ƒ, the final minimax value.

Strictly speaking, a game-playing program does not need to know the minimax
value of the root. All it needs is the best move. By searching for the minimax value,

12 Background—Minimax Search

the best move is found too. Later on (in section 3.2) we will discuss algorithms that
stop searching as soon as the best move is known, giving a more efficient search.

In tic-tac-toe, the tree is small enough to traverse all possible paths to the end of
the game within a reasonable amount of time. The evaluation function is simple, all
it has to do is determine whether an end position is a win, loss, or draw. In many
games it is not feasible to search all paths to the end of the game, because the complete
minimax tree would be too big. For these games (such as chess, checkers and Othello)
a different approach is taken. The evaluation function is changed to return a heuristic
assessment. Now it can be called on any position, not just where the game has ended.
To facilitate a better discrimination between moves, the range of return values is usually
substantially wider than just win, loss, or draw. From the perspective of the search
algorithm, the change is minor. The minimax function does not change at all, only the
evaluation function is changed (and the definition of a leaf node). In its simplest form,
the search of the minimax tree is stopped at a fixed depth from the root and the position
is evaluated.

Evaluation functions are necessarily application dependent. In chess they typi-
cally include features such as material, mobility, center control, king safety and pawn
structure. In Othello the predominant feature is mobility. Positional features are often
assessed using patterns. A heuristic evaluation function has to collapse a part of the
look-ahead search into a single numeric value—a task that is much harder to do well
than recognizing a win, loss, or draw at the end of the game (see section 2.3.3 for a
discussion of alternatives to the single numeric back-up value). The reason that the
scheme works so well in practice, is that the value of the evaluation of a child node is
usually related to that of its parent. If no strong correlation between parent and child
values exists, searching deeper using the minimax back-up rule does not work very
well. More on this phenomenon, called pathology, can be found in [91, 98].

2.1.2 The Minimal Tree

This section discusses bounds, solution trees and the minimal tree, to show why algo-
rithms like Alpha-Beta can cut off certain parts of the minimax tree.

In increasing the search depth of a minimax tree, the number of nodes grows
exponentially. For a minimax tree of uniform search depth d and uniform branching
factor w (the number of children of each interior node), the number of leaf nodes is
wd. The exponential rate of growth would limit the search depths in game-playing
programs to small numbers. For chess, given a rate of a million positional evaluations
per second (which is relatively fast by today’s standards), a branching factor of about
35, no transpositions (see chapter 5), and the requirement to compute 40 moves in two
hours (the standard tournament rate), it would mean that under tournament conditions
the search would be limited to depths of 5 or 6. (Such a machine could evaluate on
average 180 million positions for each of the 40 moves, which lies between 355 53
million and 356 1838 million.) The search depth would have been limited to 3 or at
most 4 in the 1960’s and 1970’s. A number of studies have shown a strong positive

2.1 Minimax Trees and Alpha-Beta 13

a

b

c

e

ƒ
41

g

5

q

r

12 90

d

h

i

101

j

80 20 30

k

l

m

o

10 80

n

p

36 35 50 36 25 3

Figure 2.4: Example Tree for Bounds

correlation between deeper search and better play [54, 133, 143]. The studies show
that a program that is to play chess at grand-master level has to look significantly
further ahead than 5 ply. If it were not for the early introduction of a powerful pruning
technique that made this possible, game-playing programs would not have been so
successful.

The minimax back-up rule alternates taking the maximum and the minimum of a set
of numbers. Suppose we are at the root of the tree in figure 2.1. The first child returns
+1. The root is a max node, so its ƒ can only increase by further expanding nodes,
ƒroot +1. We know that the range of possible values for ƒroot is limited to 1, 0, +1 .
Thus +1 is an upper bound on ƒroot. Now we have ƒroot +1 and ƒroot +1, or ƒroot = +1.
The interpretation is that further search can never change the minimax value of the root.
The first win returned is as good as any other win. In figure 2.1 only one child of the
root has to be expanded to determine the minimax value. The rest can be eliminated,
or carrying the tree analogy further, pruned.

In the more common situation where the range of values for ƒ is much wider, say
[1000, +1000], the probability of one of the moves returning exactly a win of +1000 is
small. However, the fact that the output value of the maximum function never decreases
can still be exploited. In the pseudo code of the minimax function in figure 2.3, the
variable g is equal to the value of the highest child seen so far (for a max node). As
return values of child nodes come in, g is never decreased. At any point in time g
represents a lower bound on the return value of the max node, ƒmax gmax. If no child
has yet returned, it is , a trivial lower bound. Likewise, at min nodes g is an upper
bound, ƒmin gmin.

Up to now we have looked at single nodes. Things get more interesting if we try
to extend the concept of bounds to the rest of the minimax tree. For this we will use a
bigger example tree, as shown in figure 2.4. To show a sufficiently interesting depth,
the branching factor (or width) of the nodes has been restricted to 2. (The tree is based
on one in [99]. It is also used in the Alpha-Beta and SSS* examples in the appendices.

14 Background—Minimax Search

g = 5 a

b

c

e

ƒ

41

g

5

d

h

i

101

j

80

Figure 2.5: A Tree for a Lower Bound, a Min Solution Tree

To illustrate the concept of a deep cutoff in Alpha-Beta, the value of node o has been
changed to 10.)

As we saw in the tic-tac-toe case, the search of a node n can be stopped as soon
as an upper and lower bound of equal value for n exist (where node n is any node in
a minimax tree, not just the one with the same name in figure 2.4). Therefore we will
examine what part of the minimax tree has to be searched by the minimax function
to find such bounds. Suppose we wish to find a better lower bound (other than)
for the root, node a. This amounts to finding non-trivial lower bounds (ƒ g >)
for all nodes in a sub-tree below a. At node a, a max node, all we need is to have
one child return a lower bound > , to have the variable ga change its value to
> . Subsequent children cannot decrease the value of g, so we will then have that
ƒa ga > . We turn to finding a lower bound > for this first child of node a.
Node b is a min node. We are not sure that gb is a lower bound unless all children have
been expanded. So, the values of the children c and d have to be determined. These are
max nodes, and one child suffices to have their return value conform to ƒ g > .
Thus, the value of nodes e and h has to be determined. These are min nodes, so the
value of all children ƒ, g and i, j is needed. These are leaf nodes, for which the relation
ƒ g > always holds. We have come to the end of our recursive search for a lower
bound. The sub-tree that we had to expand below node a is shown in figure 2.5.

If we apply the minimax back-up rule to figure 2.5, we find the value of the lower
bound: 5. This is the lowest of the leaves of this sub tree. The tree has the special
property that only one child of each max node is part of it, which renders the max-part
of the minimax rule redundant. For this reason these trees are called min solution trees,
denoted by T , their minimax value, denotred by ƒ , is the minimum of their leaves.
(Min solution trees originated from the study of AND/OR trees, where they were called
simply solution trees. The term solution refers to the fact that they represent the solution
to a problem [72, 93, 100, 140].)

An intuitive interpretation of min solution trees in the area of game playing is that

2.1 Minimax Trees and Alpha-Beta 15

g = 41 a

b

c

e

ƒ

41

q

r

12

k

l

m

o

10

n

p

36

Figure 2.6: A Tree for an Upper Bound, a Max Solution Tree

of a strategy. A min solution tree represents all responses from the Min player to one
of the moves by the Max player. It is like reasoning: “If I do this move, then Min
has all those options, to which my response will be …” A confusing artefact of this
terminology is that a min solution tree is a strategy for the Max player.

A min solution tree at node n determines the value of a lower bound on ƒn. The
sub-tree that determines an upper bound (ƒ+) is called, not surprisingly, a max solution
tree (T+). It consists of all children at max nodes, and one at min nodes. An example
is shown in figure 2.6. Its value is the highest of the leaves of the max solution tree:
41. The interpretation of a max solution tree is that of a strategy for the Min player.

Now we have the tools to construct upper and lower bounds at the root, and thus to
find (prove) the minimax value. This can be done cheaper than by traversing the entire
minimax tree, since solution trees are much smaller. In a solution tree, at half of the
nodes only one child is traversed. Therefore, the exponent determining the number of
leaf nodes is halved. To find an upper bound we have to examine only w d/2 leaf nodes.
Since the root is a max node, for odd search depths lower bounds are even cheaper,
requiring w d/2 leaves to be searched. With this, we can determine the best case of
any algorithm that wants to prove the minimax value, for minimax trees of uniform w
and uniform d. If the minimax tree is ordered so that the first child of a max node is
its highest and the first child of a min node is its lowest, then the first max solution tree
and the first min solution tree that are traversed prove the minimax value of the root.
We note that these two solution trees overlap in one leaf, leaf ƒ in figure 2.5 and 2.6
(in the figures the upper bound is not equal to the lower bound, so although these are
the left-most solution trees, they do not prove the minimax value). Thus, the number
of leaves of the minimal tree that proves the value of ƒ is w d/2 + w d/2 1. This is a
big improvement over the number of leaves of the minimax tree wd. It means that with
pruning, programs can search up to twice the search depth of full minimax.

The tree that is actually traversed by an algorithm is called the search tree. With
pruning, the search tree has become a sub-set of the minimax tree.

16 Background—Minimax Search

This concept of a minimal tree (or critical tree, or proof tree) was introduced by
Knuth and Moore [65]. They introduced it as the best case of the Alpha-Beta algorithm,
using a categorization of three different types of nodes, not in terms of solution trees
(see figure 2.12 for a minimal tree with node types). The treatment of the minimal tree
in terms of bounds and solution trees, is based on [28, 29, 106], analogous to the use
of strategies by Pearl [99, p. 222–226] and by Nilsson [93, p. 110]. (Regrettably, they
use T+ to denote a max strategy, which we refer to as a min solution tree, denoted by
T .) Other works on solution trees are [57, 73, 100, 102, 116, 140].

2.1.3 Alpha-Beta

Pruning can yield sizable improvements, potentially reducing the complexity of finding
the minimax value to the square root. The Alpha-Beta algorithm enhances the minimax
function with pruning. Alpha-Beta has been in use by the computer-game-playing com-
munity since the end of the 1950’s. It seems to have been conceived of independently
by several people. The first publication describing a form of pruning is by Newell,
Shaw and Simon [92]. John McCarthy is said to have had the original idea, and also to
have coined the term Alpha-Beta [65]. However, according to Knuth and Moore [65],
Samuel has stated that the idea was already present in his checker-playing programs of
the late 1950’s [123], but he did not mention this because he considered other aspects of
his program to be more significant. The first accounts of the full algorithm in Western
literature appear at the end of the 1960’s, by Slagle and Dixon [136], and by Samuel
[124]. However, Brudno already described an algorithm identical to Alpha-Beta in
Russian in 1963 [27]. A comprehensive analysis of the algorithm, introducing the
concept of the minimal tree, has been published by Knuth and Moore in 1975 [65].
This classical work also contains a brief historic account, which has been summarized
here. Other works analyzing Alpha-Beta are [8, 29, 97, 105, 106]. In the following we
pursue a description in intuitive terms.

Figure 2.7 gives the pseudo code for Alpha-Beta. It consists of the minimax
function, plus two extra input parameters and cutoff tests. The and parameters
together are called the search window. At max nodes, g is a lower bound on the return
value. This lower bound is passed to children as the parameter. Whenever any of
these children finds it can no longer return a value above that lower bound, further
searching is useless and is stopped. This can happen in children of type min, since
there g is an upper bound on the return value. Therefore, figure 2.7 contains for min
nodes the line “while g > .” At min nodes g is an upper bound. Parameter passes
the bound on so that any max children with a lower bound can stop searching when
necessary. Together, and form a search window which can be regarded as a task for
a node to return a value that lies inside the window. If a node finds that its return value
is proven to lie not within the search window, the search is stopped. This is illustrated
in figure 2.8. Assume that Alpha-Beta is called with an initial window of + .
Node e is searched with a window of 12, + . After node ƒ returns, the return value
of node e is 10, which lies outside the search window, so the search is stopped before

2.1 Minimax Trees and Alpha-Beta 17

function alphabeta(n, ,) g;
if n = leaf then return eval(n);
else if n = max then

g := ;
c := firstchild(n);
while g < and c = do

g := max g, alphabeta(c, ,) ;
:= max(, g);

c := nextbrother(c);
else /* n is a min node */

g := + ;
c := firstchild(n);
while g > and c = do

g := min g, alphabeta(c, ,) ;
:= min(, g);

c := nextbrother(c);
return g;

Figure 2.7: The Alpha-Beta Function

12 a

b 12

c

41

d

12

=+
=12 e 10

ƒ

10

g

Figure 2.8: Node g is Cut Off

18 Background—Minimax Search

node g is traversed.
As children of a node are expanded, the g-value in that node is a bound. The

bound is established because Alpha-Beta has traversed a solution tree that defines
its value. As more nodes are expanded, the bounds become tighter, until finally a
min and a max solution tree of equal value prove the minimax value of the root. In
the following postcondition of Alpha-Beta these solution trees are explicitly present,
following [29, 106]. The precondition of a call Alpha-Beta(n, ,) is < . As
before, g denotes the return value of the call, ƒn denotes the minimax value of node n,
ƒ+

n denotes the minimax value of a max solution tree T+
n , which is an upper bound on ƒn,

and ƒn denotes the minimax value of a min solution tree Tn , which is a lower bound
on ƒn. The postcondition has three cases [29, 65, 106]:

1. < gn < (success). gn is equal to ƒn. Alpha-Beta has traversed at least a T+
n

and a Tn with ƒ(T+
n) = ƒ(Tn) = ƒn.

2. gn (failing low). gn is an upper bound ƒ+
n , or ƒn gn. Alpha-Beta has

traversed at least a T+
n with ƒ(T+

n) = ƒ+
n .

3. g (failing high). gn is a lower bound ƒn , or ƒn gn. Alpha-Beta has traversed
at least a Tn with ƒ(Tn) = ƒn .

If the return value of a node lies in the search window, then its minimax value has been
found. Otherwise the return value represents a bound on it. From these cases we can
infer that in order to be sure to find the game value Alpha-Beta must be called as Alpha-
Beta(n, +). (Older versions of Alpha-Beta returned or at a fail low or fail
high. The version returning a bound is called fail-soft Alpha-Beta in some publications
[33, 45, 116], because a fail high or fail low still returns useful information. We use
the term Alpha-Beta to denote the fail-soft version. Furthermore, implementations of
Alpha-Beta generally use the negamax formulation since it is more compact [65]. For
reasons of clarity, we use the minimax view.)

Appendix A.1 contains a detailed example of how a tree is searched by Alpha-Beta.

2.1.4 Plotting Algorithm Performance

The purpose of this thesis is to find better minimax search algorithms. In comparing
algorithms, we will use a grid that shows two key performance parameters, allowing us
to position an algorithm at a glance.

For game-playing programs the quality of an algorithm is determined (a) by the
speed with which it finds the best move for a given position and (b) by the amount of
storage it needs in doing that. The speed is largely influenced by how many cutoffs
it finds. Often there is a trade-off between speed and storage: more memory gives a
faster search. In performance comparisons this trade-off introduces the danger of unfair
biases. Luckily, for the algorithms that are studied in this work, this relation stabilizes
at some point to the extent that adding more memory does not improve performance

2.1 Minimax Trees and Alpha-Beta 19

x: storage efficiency

y: time efficiency

Figure 2.9: Two Performance Dimensions

measurably. To avoid this bias, all algorithms were tested with the same amount of
storage, which was known to be large enough for all to achieve stability.

Execution time is generally considered to be a difficult performance metric, since it
can vary widely for different programs and hardware. Instead, the size of the tree that
is searched by an algorithm is often used in comparisons. Though better than execution
time, this metric is still not without problems, since a program usually spends a different
amount of time in processing leaf nodes and interior nodes. Many publications only
report the number of leaf nodes searched by an algorithm. This introduces a bias towards
algorithms that revisit interior nodes frequently. In many programs leaf evaluations
are slowest, followed by making and generating moves, which occur at interior nodes.
However, in some programs the reverse holds. Compared to the time spent on these
actions, transposition nodes are fast (see section 2.2.2).

The algorithms in this thesis are judged on their performance. In the experiments
we have counted leaf nodes, interior nodes, and transpositions. The most important
parameter is the size of the search tree generated by the algorithm. This parameter
will be used as an indicator of time efficiency. By finding more cutoffs, an algorithm
performs better on this parameter. A second parameter is the amount of memory
an algorithm needs. Though not a limiting factor in their practical applicability, this
remains a factor of importance. Thus we have two parameters to judge algorithms on:

1. Cutoffs
The degree to which an algorithm finds useful cutoffs to reduce its node count is
influenced by the quality of move ordering. A higher quality of move ordering
causes more cutoffs and thus a smaller search tree.

2. Storage efficiency
The amount of storage an algorithm needs to achieve high performance.

Figure 2.9 shows a grid of these two dimensions. It will be used to summarize the
behavior of conventional implementations of a number of algorithms (and not more
than that; the graphs do not explain behavior, they only picture it). Algorithms should

20 Background—Minimax Search

y: time efficiency

x: storage efficiency
minimax tree

minimal tree

O(wd/2) O(d)

Alpha-Beta

Figure 2.10: Alpha-Beta’s Performance Picture

go as far as possible on the x and y axis, to achieve high performance; slow algorithms
that use a lot of memory are close to the origin.

2.2 Alpha-Beta Enhancements

The example in appendix A.1 illustrates that Alpha-Beta can miss some cutoffs. Fig-
ure 2.10 illustrates that Alpha-Beta’s performance picture lies between that of minimax
and the minimal tree. Its storage needs are excellent, only O(d), the recursion depth.
(The y axis is not drawn to scale.)

The performance of Alpha-Beta depends on the ordering of child nodes in the
tree. This brings us to the question of whether there are ways to enhance Alpha-
Beta’s performance to bring it closer to the theoretical best case, or whether there are
alternative ways to implement pruning. The remainder of this section discusses the
former, Alpha-Beta enhancements. Section 2.3 will discuss the latter, alternatives to
Alpha-Beta pruning.

2.2.1 Smaller Search Windows

Alpha-Beta cuts off a sub-tree when the value of a node falls outside the search window.
One idea to increase tree pruning is to search with a smaller search window. Assuming
c a and b d, a search with (wider) window c, d will visit at least every single node
that the search with (smaller) window a, b will visit (if both search the same minimax
tree). Normally the wider search will visit extra nodes [33, 99]. However, Alpha-Beta
already uses all return values of the depth-first search to reduce the window as much as
possible. Additional search window reductions run the risk that Alpha-Beta may not be
able to find the minimax value. According to the postcondition in section 2.1.3, one can
only be sure that the minimax value is found if < g < . If the return value lies outside
the window, then all we are told is that a bound on the minimax value is found. To

2.2 Alpha-Beta Enhancements 21

function aspwin(n, estimate, delta) ƒ;
:= estimate delta;
:= estimate + delta;

g := alphabeta(n, ,);
if g then

g := alphabeta(n, g);
else if g then

g := alphabeta(n, g, +);
return g;

Figure 2.11: Aspiration Window Searching

find the true minimax value in that case, a re-search with the right window is necessary.
In practice the savings of the tighter window out-weigh the overhead of additional
re-searches, as has been reported in many studies (see for example [33, 99, 116]). In
addition, the use of storage can reduce the re-search overhead (see section 2.2.2 and
chapter 3).

Here we will describe two widely used techniques to benefit from the extra cutoffs
that artificially-narrowed search windows yield.

Aspiration Window

In many games the values of parent and child nodes are correlated. Therefore we
can obtain cheap estimates of the result that a search to a certain depth will return.
(We can do a relatively cheap search to a shallow depth to obtain this estimate.) This
estimate can be used to create a small search window, in chess typically the value of
a pawn. This window is known as an aspiration window, since we aspire that the result
will be within the bounds of the window. With this window an Alpha-Beta search is
performed. If it “succeeds” (case 1 of the postcondition on page 18), then we have
found the minimax value cheaply. If it “fails,” then a re-search must be performed.
Since the failed search has returned a bound, this re-search can also benefit from a
window smaller than + .

Aspiration window searching is commonly used at the root of the tree. Figure 2.11
gives the pseudo code for this standard technique. One option for the estimate is to
evaluate the current position. Assuming that a pawn is given the value of 100, the
call “aspwin(n, eval(n), 100)” would find us the minimax value and usually do so more
efficiently than the call “Alpha-Beta(n, +).” Some references to this technique
are [8, 33, 47].

Null-Window Search and Scout

Pushing the idea of a small-search-window-plus-re-search to the limit is the use of a
null-window. The values for and are now chosen so that Alpha-Beta will always

22 Background—Minimax Search

1

1

1

1

1

35

2

36

2

3

10

2

3

2

36

2

50

2

3

2

3

12

2

3

5

Figure 2.12: Minimal Tree (with node types)

return a bound. Case 1 of the postcondition in section 2.1.3 can be eliminated by
choosing = 1, assuming integer-valued leaves, or = in general, where

is a number less than the smallest difference between any two leaf values. (The
precondition of Alpha-Beta demands < , so = won’t work.)

An Alpha-Beta search window of = 1 ensures the highest number of cutoffs.
On the downside, it also guarantees that a re-search is necessary to find the minimax
value. Since we usually want a minimax value at the root, it makes more sense to use
a wider aspiration window there, with a low probability of the need for a re-search.
However, if we look at the structure of the minimal tree, we see that for most interior
nodes a bound is all that is needed. Figure 2.12 shows an ordered version of the minimal
tree of the Alpha-Beta example, with the nodes labeled with the three node types as
defined by Knuth and Moore in [65]. Nodes that have only one child in the minimal
tree are type 2, nodes with all children included are type 3, and nodes that are part of
both the max and the min solution tree are type 1. The type 1 nodes form the path from
the root to the best leaf. This intersection of the two solution trees is also known as
the critical path or the principal variation (PV). Its interpretation is that of the line of
play that the search predicts. For the type 1 nodes the minimax value is computed. In
a depth d tree, there are only d + 1 type 1 nodes. The only task of the type 2 and type 3
nodes is to prove that it does not make sense to search them any further, because they
are worse than their type 1 relative.

For the nodes off the PV it makes sense to use a null-window search, because a
bound is all that is needed. In real trees that are not perfectly ordered, the PV node
is not known a priori so there is a danger of having to re-search. Once again, in
practice the small-window savings out-weigh the re-search overhead (see section 4.3.2
and [33, 82, 99]).

Thus we come to an algorithm that uses a wide search window for the first child,
hoping it will turn out to be part of the PV, and a null-window for the other children.
At a max node the first node should be the highest. If one of the null-window searches

2.2 Alpha-Beta Enhancements 23

function NegaScout(n, ,) g;
if n = leaf then return eval(n);
c := firstchild(n);
g := NegaScout(c, ,);
c := nextbrother(c);
if n = max then

b := max(g,);
while g < and c = do

t := NegaScout(c, b, b + 1);
/* the last two ply of the tree return an accurate value */
if c = leaf or firstchild(c) = leaf then g := t;
if t > max(g,) and t < then t := NegaScout(c, t,);
g := max(g, t); c := nextbrother(c); b := max(b, t);

else /* n is a min node */
b := min(g,);
while g > and c = do

t := NegaScout(c, b 1, b);
if c = leaf or firstchild(c) = leaf then g := t;
if t < min(g,) and t > then t := NegaScout(c, , t);
g := min(g, t); c := nextbrother(c); b := min(b, t);

return g;

Figure 2.13: NegaScout

returns a bound that is higher, then this child becomes the new PV candidate and should
be re-searched with a wide window to determine its value. For a min node the first
node should remain the lowest. If the null-window searches show one of the brothers
to be lower, then that one replaces the PV candidate.

Early algorithms that use the idea of null-windows are P-alphabeta [33, 45], Scout
[96, 99] and PVS [33, 85, 84]. Reinefeld has studied these algorithms as well as a
number of other improvements [85, 116, 119]. This has resulted in NegaScout, the
algorithm that is used by most high-performance game-playing programs. Figure 2.13
shows a minimax version of NegaScout. The choice of the name NegaScout is a bit
unfortunate, since it suggests that this is just a negamax formulation of the Scout algo-
rithm, instead of a new, cleaner, and more efficient algorithm. An extra enhancement in
NegaScout is that it is observed that a fail-soft search of the last two ply of a tree always
returns an exact value, even in cases 2 and 3 of the postcondition of section 2.1.3, so
no re-search is necessary (figure 2.13 assumes a fixed-depth tree).

Empirical evidence has shown that, even without the use of extra memory, null-
window algorithm NegaScout finds more cutoffs than wide-window algorithm Alpha-
Beta(n, +). Figure 2.14 illustrates this point. (The y axis is not drawn to scale.)

Most successful game-playing programs use a combination of NegaScout with
aspiration window searching at the root. We will call this combination Aspiration

24 Background—Minimax Search

Alpha-Beta

y: time efficiency

x: storage efficiency
minimax tree

minimal tree

O(wd/2) O(d)

NegaScout

Figure 2.14: NegaScout’s Performance Picture

NegaScout.
Another idea is to do away with wide-windowed re-searches altogether, and use

null-windows only. This idea is further analyzed in chapter 3.

2.2.2 Move Ordering

A different way to improve the effectiveness of Alpha-Beta pruning is to improve
the order in which child positions are examined. On a perfectly ordered uniform
tree Alpha-Beta will cut off the maximum number of nodes. A first approach is to
use application-dependent knowledge to order the moves. For example, in chess it
is often wise to try moves that will capture an opponent’s piece first, and in Othello
certain moves near the corners are often better. However, there exist also a number of
techniques that work independently of the application at hand.

The History Heuristic

We start with a technique that is in spirit still close to the use of application-dependent
knowledge. In most games there are moves that are good in many positions, for
example, the two types of moves just mentioned for chess and Othello. Schaeffer
introduced the history heuristic, a technique to identify moves that were repeatedly
good automatically [125, 128]. It maintains a table in which for each move a score is
increased whenever that move turns out to be the best move or to cause a cutoff. At a
node, moves are searched in order of history heuristic scores. In this way the program
learns which moves are good in a certain position in a certain game and which are
not, in an application-independent fashion. There exist a number of older techniques,
such as killer moves and refutation tables, which the history heuristic generalizes and
improves upon. Schaeffer has published an extensive study on the relative performance
of these search enhancements [128].

2.2 Alpha-Beta Enhancements 25

Transposition Tables and Iterative Deepening

In many application domains of minimax search algorithms, the search space is a graph,
whereas minimax-based algorithms are suited for tree search. Transposition tables
(TT) are used to enhance the efficiency of tree-search algorithms by preventing the re-
expansion of children with multiple parents (transpositions) [82, 128]. A transposition
table is usually implemented as a hash table in which searched nodes are stored (barring
collisions, the search tree). The tree-search algorithm is modified to look in this table
before it searches a node and, if it finds the node, uses the value instead of searching.
In application domains where there are many paths leading to a node, this scheme
leads to a substantial reduction of the search space. (Although technically incorrect,
we will stick to the usual terminology and keep using terms like minimax tree search.)
Transposition tables are becoming a popular way to enhance the performance of single
agent search programs as well [67, 117].

Most game-playing programs use iterative deepening [82, 128, 137]. It is based
on the assumption that a shallow search is a good approximation of a deeper search.
It starts off by doing a depth one search, which terminates almost immediately. It
then increases the search depth step by step, each time restarting the search over and
over again. Due to the exponential growth of the tree the former iterations usually
take a negligible amount of time compared to the last iteration. Among the benefits of
iterative deepening (ID) in game-playing programs are better move ordering (if used
with transposition tables), and advantages for tournament time control information. (In
the area of one-player games it is used as a way of reducing the space complexity of
best-first searches [67].)

Transposition tables are often used in conjunction with iterative deepening to
achieve a partial move ordering. The search value and the branch leading to the highest
score (the best move) are saved for each node. When iterative deepening searches one
level deeper and revisits nodes, this information is used to search the previously best
move first. Since we assumed that a shallow search is a good approximation of a deeper
search, this best move for depth d will often turn out to be the best move for depth d + 1
too.

Thus, transposition tables in conjunction with ID are typically used to enhance the
performance of algorithms in two ways:

1. improve the quality of the move ordering, and

2. detect when different paths through the search space transpose into the same
state, to prevent the re-expansion of that node.

In the case of an algorithm in which each ID iteration may perform re-searches, like
NegaScout and aspiration window searching, there is an additional use for the TT:

3. prevent the re-search of a node that has been searched in a previous pass, in the
current ID iteration.

26 Background—Minimax Search

function alphabeta(n, ,) g;
if retrieve(n) = ok then

if n. ƒ then return n. ƒ ;
if n. ƒ+ then return n. ƒ+;

:= max(, n. ƒ);
:= min(, n. ƒ+);

if n = leaf then g := eval(n);
else if n = max then

g := ; a := ;
c := firstchild(n);
while g < and c = do

g := max g, alphabeta(c, a ,) ;
a := max(a , g);
c := nextbrother(c);

else /* n is a min node */
g := + ; b := ;
c := firstchild(n);
while g > and c = do

g := min g, alphabeta(c, , b) ;
b := min(b , g);
c := nextbrother(c);

if g < then n. ƒ+ := g;
if g > then n. ƒ := g;
store n. ƒ , n. ƒ+;
return g;

Figure 2.15: The Alpha-Beta Function for Use with Transposition Tables

In game-playing programs NegaScout is almost always used in combination with
a transposition table. Figure 2.15 shows a version of Alpha-Beta for use with transpo-
sition tables [81, 82, 125]. Not shown is the code for retrieving and storing the best
move, nor the fact that in most implementations usually one bound is stored, instead of
both n. ƒ+ and n. ƒ (see also the remark on page 53).

Figure 2.16 shows that a better move ordering enables an algorithm to find more
cutoffs. Usually a better move ordering comes at the cost of storing some part of
the search tree, which is shown in the picture. Chapter 4 determines the storage
needs of algorithms in game-playing programs that typically use quite a number of
enhancements.

Originally transposition tables were introduced to prevent the search of transpo-
sitions in the search space—hence their name. However, as algorithms grew more
sophisticated, the role of the transposition table evolved to that of storing the search
tree. It has become a cache of nodes that may or may not be of use in future iterations or
re-searches. Calling it a transposition table does not do justice to the central role that it

2.2 Alpha-Beta Enhancements 27

Alpha-Beta
NegaScout

y: time efficiency

x: storage efficiency
minimax tree

minimal tree

O(wd/2) O(d)

Ordered NegaScout

Figure 2.16: Performance Picture with Better Ordering

plays in a modern algorithm like ID Aspiration NegaScout—NegaScout enhanced with
an initial aspiration window, and called in an iterative deepening framework. However,
to prevent confusion we will keep using the term “transposition table.”

Noting that current game-playing programs store (part of) the search tree in memory
is a point that has to be taken into account when reasoning about the behavior of
search algorithms. Many analyses and performance simulations of Alpha-Beta and
its variants do not use a transposition table (for example, [8, 33, 63, 85, 99, 119]).
Since a transposition table makes the overhead of doing re-searches negligible, this is a
serious omission. The consequences of this point will be discussed in a broader scope
in section 4.4. The fact that the search tree is effectively stored in memory also means
that many theoretical schemes in which an explicit search tree plays a central role are
closer to practice than one would generally assume [57, 96, 102, 104].

Of central importance for the validity of the TT = Search Tree assumption is the
question of how big the search tree is that is generated by an algorithm, whether it fits
in the available memory. This question is answered in section 4.1.

2.2.3 Selective Search

Up to now we have been dealing exclusively with fixed-depth, full-width algorithms.
The pruning method used is sometimes called backward pruning, since the backed-up
return values of Alpha-Beta are used for the cutoff decisions. Studying this class of
algorithms has the advantage that performance improvements are easily measurable;
one has only to look at the size of the tree. Although our research is concerned
with fixed-depth full-width search, a short overview of selective search is useful to put
things in perspective. (In practice a fixed-depth search may not always search all moves
equally deep, for example by finding that a move leads to an early end of the game.)

In this section we will discuss algorithms that do not necessarily search full-width.
It has long been known that a flaw of the Alpha-Beta algorithm is that it searches all

28 Background—Minimax Search

nodes to the same depth. No matter how bad a move is, it gets searched as deep as the
most promising move [135]. Of course, backward pruning will probably make sure
that most of the nodes in the subtree of the bad move get pruned, but a more selective
search strategy could perhaps make sure that really bad moves are not considered at all.
These strategies are said to use selective searching (in contrast to full-width), variable
depth (in contrast to fixed-depth), or forward pruning (in contrast to backward pruning).
An algorithm that uses selective deepening can search a line of play more deeply in
one iteration than in another. Forward pruning is a bit more aggressive. An algorithm
that uses forward pruning will not select a pruned node again in later iterations, unless
the score drops drastically. The problem with these ideas is to find a method to decide
reliably which move is bad. Some moves may look bad at first sight, but turn out to be
a winning move after a deeper search.

Comparing the quality of selective deepening and forward pruning enhancements
is hard. Tree size is no longer the only parameter. With these schemes the quality of
the decision becomes important as well, since one could say that search extensions try
to mend deficiencies in the evaluation function by searching deeper. Selective deepen-
ing adds a second dimension to performance comparisons. In fixed-depth searching,
improvements mean more cutoffs in the search; algorithm performance measurements
are only a matter of counting nodes.

One way to compare selective deepening algorithms is by having different versions
of the program play matches. A problem with this approach is that deficiencies in both
versions can distort the outcome. Another problem is that these matches take up a
large amount of time, especially if they are to be played with regular tournament time
controls.

Alpha-Beta Search Extensions

Most game-playing programs are still based on the Alpha-Beta algorithm. In this setting
search extensions are often introduced to make up for features that a static evaluation
cannot uncover. A well-known problem of fixed-depth searching is the horizon effect
[12]. Certain positions are more dynamic than others, which makes them hard to assess
correctly by a static evaluation. For example, in chess re-captures and check evasions
can change the static assessment of a board position drastically. The inability of an
evaluation function to assess tactical features in a position is called the horizon effect.
To reduce it, most programs use quiescence search [10, 47]. A quiescence search
extends the search at a leaf position until a quiet position is reached. In chess “quiet”
is usually defined as no captures present and not in check.

Going a step further are techniques such as singular extensions and null-moves.
Singular extensions try to find, through shallow searches, a single move in a position
that is more promising than all others. This node is then searched more deeply (details
can be found in [5, 6]). A null-move is a move in which the side to play passes (the
other side gets two moves in a row). In most positions passing is worse than any other
move. The idea behind null-moves is to get a lower bound on a position in a cheap
way, because all other moves are presumably better. (This is not true for all games. For

2.2 Alpha-Beta Enhancements 29

example, in checkers and Othello null-moves do not work. Also, when in zugzwang
in chess (a series of positions with no good move), passing can be beneficial.) If this
lower bound causes a cutoff, then it has been found in a cheap way. If it does not,
then little effort is wasted. Many people have experimented with different uses of the
null-move. More can be found in [1, 10, 11, 51, 95, 126].

Another source of information on which nodes to prune is the result of the shallow
search itself. A successful example of this idea is the ProbCut algorithm, formulated by
Buro [31]. ProbCut performs a shallow null-window Alpha-Beta search to find nodes
whose value will fall with a certain probability outside the search window. These nodes
can be left out of the full-depth search. Although many researchers have used similar
ideas—sometimes for move ordering, sometimes for selective search, sometimes for
forward pruning—Buro was the first to use statistical analysis to determine the most
effective values for the search windows.

An open problem in the use of selective search methods and transposition tables are
search inconsistencies, mentioned by Schaeffer [130]. Searching a position to different
depths can yield different values. Transpositions can cause nodes to return results for
a deeper search. This can cause cutoff and score problems. Other than not using the
deeper search result (which is wasteful) we do not know of a method to solve this
problem.

A related problem of selective deepening is that one can use too much of it [130].
Selectively extending certain lines causes the search to become uneven. As an algorithm
is made more selective, comparing scores for different depths gives more and more
inconsistencies. Furthermore, moves that look less promising at first sight are not given
enough resources, causing the program to miss good moves that a full-width search
(or at least less selectivity) with the same resources would have found. Thus, selective
search should be used with care.

There has been some debate over the pros and cons of selective searching, ever
since Shannon’s original article [135]. An interesting historical account is given by
Beal [11], which we summarize in the following. In the early days of computer chess
the lack of power of computers almost forced researchers to use forward pruning to
achieve reasonable results. For example, Bernstein’s program of around 1957 [17]
looked at the “best 7” moves at every node. Ten years later Greenblatt’s program
[52], using carefully chosen quiescence rules, became the best of its time. By 1973
computers had grown powerful enough to make fixed-depth full-width searching the
winning technique in the program Chess 4.0 [137], although a quiescent search at the
leaves of the fixed-depth tree remained an important component.

The 1970’s and 1980’s showed interesting research into selective search algorithms
[1, 13, 87, 95], as well as the drive towards using more powerful computers, such as
parallel computers and special hardware [34, 40, 55, 83, 127]. The strongest programs
emphasized full-width searching based on powerful hardware. These two trends have
continued into the 1990’s. Programs running on massively parallel computers, such
as Deep Thought [54], *Socrates [60, 75], Zugzwang [41, 42] and Frenchess [147]
compete against commercially available programs running on personal computers,

30 Background—Minimax Search

such as Fritz, Chess Genius, and WChess. These programs use highly tuned aggressive
selective deepening and forward pruning techniques, often based on null-moves and
shallow searches, combined with lightweight evaluation functions. After the successes
of full-width search in the 1970’s and 1980’s, the fact that personal computer programs
are not crushed by the parallel power is an indication of the viability of selective search
techniques, although we should not forget that personal computers have become quite
fast as well, over the years. Also, there is some evidence that the utility of searching
an extra ply deeper is less for deeper searches. For deep searches this increases the
relative importance of a good, highly tuned, evaluation function [133].

2.3 Alternative Algorithms

The Alpha-Beta tree-searching algorithm has been in use since the end of the 1950’s.
No other minimax search algorithm has achieved the wide-spread use in practical ap-
plications that Alpha-Beta has. Thirty years of research has found ways of improving
the algorithm’s efficiency, and variants such as NegaScout and PVS are quite popu-
lar. Interesting alternatives to depth-first searching, such as breadth-first and best-first
strategies, have been largely ignored.

In this section we will look at these alternative algorithms.

2.3.1 Best-First Fixed-Depth: SSS*

In 1979 Stockman introduced SSS*, a fixed-depth full-width algorithm which looked
like a radically different approach from Alpha-Beta for searching minimax trees [140].
It builds a tree in a best-first fashion by visiting the most promising nodes first. Alpha-
Beta, in contrast, uses a depth-first, left-to-right traversal of the tree. Intuitively, it
would seem that a best-first strategy should prevail over a rigidly ordered depth-first one.
Stockman proved this intuition true: SSS* dominates Alpha-Beta; it never evaluates
more leaf nodes than Alpha-Beta. Consequently, SSS* has drawn considerable attention
in the literature (for example, [21, 32, 33, 72, 73, 74, 78, 82, 85, 101, 102, 116,
118, 121]). On average SSS* evaluates considerably fewer leaf nodes. This has
been repeatedly demonstrated in the literature by numerous simulations (for example,
[63, 85, 88, 116, 118, 121]).

The code of SSS* is shown in figure 2.17 (taken from [32, 99, 140]). SSS* works
by manipulating a list of nodes, the OPEN list, using six ingeniously inter-locking
cases of the so-called operator. The nodes have a status associated with them, either
live or solved, and a merit, denoted ĥ. The OPEN list is sorted in descending order,
so that the entry with highest merit (the “best” node) is at the front, to be selected for
expansion. SSS* is a variation of AO*, an algorithm for searching AND/OR graphs, or
problem-reduction-spaces. The more widely known A* algorithm searches plain OR
graphs, or state-spaces [93, 94, 99].

At first sight the code in figure 2.17 may look overwhelmingly complex. However,
once we see through the veil of the code, we find that SSS*’s idea of best-first node

2.3 Alternative Algorithms 31

Stockman’s SSS* (including Campbell’s correction [32])
(1) Place the start state n = root, s = LIVE, ĥ = + on a list called OPEN.
(2) Remove from OPEN state p = n, s, ĥ with largest merit ĥ. OPEN is a

list kept in non-decreasing order of merit, so p will be the first in the
list.

(3) If n = root and s = SOLVED then p is the goal state so terminate with
ĥ = ƒ(root) as the minimax evaluation of the game tree.
Otherwise continue.

(4) Expand state p by applying state space operator and queuing all
output states (p) on the list OPEN in merit order. Purge redundant
states from OPEN if possible. The specific actions of are given in
the table below.

(5) Go to (2)

State space operations on state n, s, ĥ (just removed from top of OPEN)

Conditions satisfied Actions of in creating
by input state n, s, ĥ new output states

s = SOLVED Final state reached, exit algorithm
n = ROOT with g(n) = ĥ.

1 s = SOLVED Stack m = parent(n), s, ĥ on OPEN list.
n = ROOT Then purge OPEN of all states (k, s, ĥ)
type(n) = MIN where m is an ancestor of k in the game tree.

2 s = SOLVED Stack next(n), LIVE, ĥ
n = ROOT on OPEN list
type(n) = MAX
next(n) = NIL

3 s = SOLVED Stack parent(n), s, ĥ
n = ROOT on OPEN list
type(n) = MAX
next(n) = NIL

4 s = LIVE Place n, SOLVED, min(ĥ, ƒ(n)) on
first(n) = NIL OPEN list (interior) in front of all states of

lesser merit. Ties are resolved left-first.
5 s = LIVE Stack first(n), s, ĥ

first(n) = NIL on (top of) OPEN list.
type(first(n)) = MAX

6 s = LIVE Reset n to first(n).
first(n) = NIL While n = NIL do
type(first(n)) = MIN queue n, s, ĥ on top of OPEN list

reset n to next(n)

Figure 2.17: Stockman’s SSS* [99, 140]

32 Background—Minimax Search

a

b

d

5 x

c

e

9 y

Figure 2.18: Which is “Best:” x or y?

selection is quite straightforward. SSS* finds the minimax value through a successive
lowering of an upper bound on it. As the example of appendix A.2 illustrates, a number
of passes can be distinguished in this process. In each pass the value of a new (better)
upper bound is computed. What makes SSS* such an interesting algorithm, is that in
each of these passes it selects nodes in a best-first order.

“Best” in the SSS* sense is defined in a simple manner. The upper bound of each
pass is defined by a max solution tree (possibly under construction), whose minimax
value is the maximum of its leaves. The leaf (or leaves) defining this value is the critical
leaf at the end of the principal variation. See figure 2.18 for an example. In the figure
the PV consists of nodes a, c, e. The value at the root is an upper bound of 9. Expanding
node x will not change the minimax value of the tree. Only expanding the brother of
the critical leaf e might give a better (sharper) upper bound, if its value happens to be
less than 9. Thus, the SSS*-best node to expand in figure 2.18 is node y. (If there is
more than one critical leaf, SSS* selects the left-most.)

The “best” node in SSS* terms is the left-most and deepest node whose expansion
can possibly lower the upper bound. Intuitively, the fact that SSS* dominates Alpha-
Beta is based on the property of the best node that it cannot be cut off by some others:
node x can possibly be cut off by node y (for example, if y would get value 8) however,
node y cannot be cut off by expansion of node x. Any node that Alpha-Beta could
cutoff is not “best” in the SSS* sense.

Appendix A.2 contains a detailed example of how SSS* finds the minimax value
of a tree in a best-first manner.

2.3.2 The Conventional View on SSS*

The literature lists a number of problems with SSS*. First, it takes considerable effort
to understand how the algorithm works from a minimax point of view and still more
to see its relation to Alpha-Beta, as a glance at figure 2.17 and the examples may have
suggested. Although it is possible to follow the individual steps in the example, one of
the problems with Stockman’s formulation is that it is hard to see what is “really” going
on. The high level explanation provided with figure 2.18 is not obtained easily. An
understanding at a higher level of abstraction is essential for those who wish to work
with this algorithm. For example, parallelizing the original Stockman formulation is

2.3 Alternative Algorithms 33

hard, and getting good results is even harder, as is shown by a number of (simulation)
attempts [4, 19, 38, 71, 73, 145].

Another problem caused by the complexity of the algorithm is that to our knowledge
nobody has reported measurements on how good SSS* performs in actual high perfor-
mance game-playing programs; all published performance assessments are based on
simulations. (One could argue that work published in 1987 by Vornberger and Monien
is an exception [145], since chess positions were used in these measurements. However,
one of the authors of the chess program reports that the work was performed with a
less-than-state-of-the-art chess program, without any enhancements such as minimal
windows, transposition tables, the history heuristic, or iterative deepening [89]. As
can be expected, the results showed that SSS* searched substantially less leaf nodes
than Alpha-Beta, in line with the simulation literature. Since 1987 the quality of their
program has increased considerably [41]. Regrettably, they have not reported tests with
SSS* since then.)

Second, a drawback of SSS* is its memory usage. SSS* maintains an OPEN list,
similar to that found in single-agent best-first search algorithms like A* [99]. The size
of this list grows exponentially with the depth of the search tree. This has led many
authors to conclude that SSS* is effectively disqualified from being useful for real
applications like game-playing programs [63, 88, 121, 140].

The OPEN list must be kept in sorted order. Insert and (in particular) delete/purge
operations on the OPEN list are slow. They can dominate the execution time of any
program using SSS*. Despite the promise of expanding fewer nodes, the disadvantages
of SSS* have proven a significant deterrent in practice. The general view of SSS* then
is that:

1. it is a complex algorithm that is difficult to understand,

2. it has large memory requirements that make the algorithm impractical for real
applications,

3. it is “slow” because of the overhead of maintaining the sorted OPEN list,

4. it has been proven to dominate Alpha-Beta in terms of the number of leaf nodes
evaluated, and

5. it evaluates significantly fewer leaf nodes than Alpha-Beta in simulations.

Figure 2.19 illustrates the point that at the cost of storing a solution tree of size O(wd/2)
in memory, the number of cutoffs can be improved through a best-first expansion
sequence. This picture shows the conventional view in the literature of SSS*, where
it is compared against un-enhanced algorithms (note that here we call NegaScout an
un-enhanced algorithm, while elsewhere we consider it to be an Alpha-Beta variant
enhanced with null-windows). In chapter 4 an enhanced version of SSS* will be
compared against enhanced versions of Alpha-Beta and NegaScout.

In the next chapter we present results of our attempts to understand how and why
SSS* works and see whether its drawbacks can be solved.

34 Background—Minimax Search

Alpha-Beta
NegaScout

y: time efficiency

x: storage efficiency
minimax tree

minimal tree

O(wd/2) O(d)

SSS*

Figure 2.19: Performance Picture of Best-First Search Without Enhancements

Not everybody agrees with our describing SSS* as difficult to understand. Stock-
man’s original application had little to do with minimax search or game-playing. His
application was an analyzer for medical data related to EKG’s (electrocardiograms).
SSS* was used in parsing syntactic descriptions (AND/OR graphs) of waveforms to
recognize certain types of waves [139]. Commenting on our (game-tree) view on
SSS*, Stockman remarks: “So, you have yet another way and think that my reasoning
was opaque—it just seemed to lay out that way naturally! Actually, I was competing
multiple parse trees against each other in a waveform parsing application. I wanted an
algorithm where the currently best parse tree was the one extended and this got me into
SSS*. […] The version of SSS* that I actually implemented in the thesis could develop
trees bottom-up or even middle out and not just top-down as game-tree searches do.”
[141].

Stockman views SSS* as a problem-reduction search method such as AO*, in which
one searches for the best solution tree. This view is in line with Nilsson’s explanation of
“an ordered search algorithm for AND/OR trees” which was later called AO* [93, 94].
Nilsson stresses the difference between the state-space and problem-reduction-space
approach as follows: “The appropriate ordering technique involves asking ‘Which is
the most promising potential solution tree to extend?’ rather than asking ‘Which is the
most promising node to expand next?’ ” [93, p. 129]. In chapter 3 we will go against
this advice and look at SSS* asking which node to expand next. Applying a state-space
view leads in this case to a reformulation that is much clearer.

2.3.3 Variable Depth

Sections 2.3.1 and 2.3.2 presented an alternative to Alpha-Beta in the form of the best-
first fixed-depth full-width SSS* algorithm. Variable search depth algorithms provide
another alternative to Alpha-Beta. It has always been felt that one of the biggest
drawbacks of Alpha-Beta is its rigid search depth. Section 2.2.3 discussed Alpha-Beta

2.3 Alternative Algorithms 35

search extensions—enhancements to reduce this drawback while staying within the
Alpha-Beta framework. In this section we briefly review algorithms that do away with
Alpha-Beta completely.

The frustration with Alpha-Beta has been well described in an article by Hans
Berliner [13]. He proposes a more human-like search method, B*, which manipulates
two heuristic bounds, an optimistic bound and a pessimistic bound. Lines of play that
are easily refuted are not searched deeply, whereas more promising lines are searched
more deeply. Furthermore, B* stops searching as soon as the backed-up value of the
pessimistic bound of the best move is greater or equal to the backed-up value of the
optimistic bound. By stopping the search before the minimax value is known, less
nodes have to be expanded. A problem with B* is to find reliable heuristic bounds.
This has turned out to be an obstacle.

A second problem of the Alpha-Beta framework is that the evaluation function
returns a single value, without an assessment of the quality of the evaluation. In certain
types of positions the evaluation function may be quite good at assessing the merit,
whereas in other positions the return value is less trustworthy. B*’s optimistic and
pessimistic bounds are better, in the sense that a narrow gap between the bounds can be
interpreted as a high confidence, and a wide gap signals a low confidence. The work on
B* was extended by Palay to include probability distributions, leading to an algorithm
called PB* [95]. In a recent paper, Berliner and McConnell showed the performance
of a new version of B* to approach that of a high-quality Alpha-Beta-based program
[16]. They argue that there is still room for improvement, although it is also clear that
the current implementation of the B* idea has become quite complex, when compared
to the original idea in [13].

A potential disadvantage of more elaborate back-up schemes is that the extra in-
formation gained by having a backed-up probability distribution can be offset by the
longer time it takes to compute it. However, the idea of backing up more information
than just a single value is quite appealing, and this is an area of active research. See for
example the work of Russell and Wefald [122], Ballard [7], Rivest [120], and Baum
[9]. Junghanns describes related experiments using fuzzy numbers [61]. Some results
show an algorithm beating unenhanced text-book versions of Alpha-Beta, for example
[9, 122] (and even [140]). However, despite all efforts, we do not know of a result that
proves the superiority of backing up probability distributions over programs based on
Alpha-Beta. Beating Alpha-Beta is not an easy task, because the yardstick that has
to be beaten has been considerably enhanced, amongst others by selective deepening
techniques (section 2.2.3).

Another idea for variable depth search is Conspiracy Numbers [87, 129], and its
Boolean variant, Proof Numbers [3]. These algorithms can be seen as a “least-work-
first” approach. For every possible outcome of a node n these algorithms compute how
many nodes in n’s sub-tree must change their value to have n take on that value. In
Proof Number search the value is either a 1 or a 0. These ideas have proven to be
useful for certain problems. For minimax trees that are highly irregular—such as chess
mating problems, the game of Awari, and for solving certain games—Proof Numbers

36 Background—Minimax Search

can build smaller trees than Alpha-Beta [2]. If there is no clear solution to be found,
then Proof Numbers does not perform well. In [29] a relation between proof trees and
solution trees is discussed.

Recently another algorithm for performing variable depth minimax search has been
proposed by Korf and Chickering [69, 70]. This algorithm, called Best-First Minimax
Search (BFMMS), starts by expanding the root position and evaluating the children.
Then it selects the best child and expands it, after which it evaluates its children, and
so on and so forth. Although both BFMMS and SSS* are “best-first” algorithms,
they traverse the search space in quite different ways. SSS* is in principal a fixed-
depth algorithm, BFMMS is inherently variable-depth. SSS* expands the brother
of the critical leaf (figure 2.18), BFMMS expands its children. BFMMS appplies a
single-agent, A*-like, expansion strategy to the domain of two-agent search.

Korf and Chickering report first results with this algorithm that show it to perform
well on moderate depth simulated Othello-like trees. For deeper searches the trees
become too unbalanced. Here a hybrid algorithm with Alpha-Beta, using BFMMS as
a kind of Alpha-Beta search extension, seems more effective.

2.4 Summary

Despite the considerable interest in new algorithms for minimax search, most successful
game-playing programs are still based on the Alpha-Beta algorithm with enhancements
like iterative deepening, transposition tables, narrow windows, the history heuristic,
and search extensions. Many other algorithms seemed or seem promising. One of
them is SSS*. It is a relatively conservative algorithm in that it does not rely on
selective search, just like the original Alpha-Beta algorithm. This makes performance
comparisons between Alpha-Beta and SSS* relatively easy, since one can compare tree
sizes. Furthermore, there exist theoretical models—notably solution trees—to guide
one’s thoughts in trying to understand their search trees.

