
Game Tree Search

on

Massively Parallel Systems

Submitted in partial ful�llment

of the requirements for the degree of

Doctor rer� nat� in the Department of Mathematics and Computer Science�

University of Paderborn

by

Rainer Feldmann

Department of mathematics and computer science

University of Paderborn

Paderborn� Germany

Thesis committee�
Dr� Alth�ofer� Prof� Dr� B� Monien� Prof� Dr� F� Rammig

August� ����

�

Preface to the English Version

This book is a translation of my Phd thesis titled �Spielbaumsuche auf massiv parallelen Syste�
men�� It is the result of the research I did during the years ���� to ���� in the Department of
Mathematics and Computer Science of the University of Paderborn� Germany�
Several people read the translation of my thesis and helped 	nding mistakes� Especially I would
like to thank Lisa Jauss for correcting my translation and Prof� T� A� Marsland for his careful
reading and his very helpful comments�

Paderborn� October ���� Rainer Feldmann

Contents

� Introduction �

��� Computer Chess and Arti�cial Intelligence �
��� History of Computer Chess �
��� Results �
��� Overview �
��� Basic De�nitions �	

� The Sequential Game Tree Search Algorithm ��

��� The Scout
Algorithm ��
��� ��
Enhancements ��

����� Transposition Table ��
����� Iterative Deepening ��
����� Aspiration Search ��
����� Killer Heuristic ��
����� Principal Variation and Refutation Heuristic ��
����� History Heuristic ��
����� Move Ordering ��

��� Implementation Details ��
��� Hardware for the Sequential Algorithm ��
��� Performance of the Sequential Algorithm ��

����� Description of the Set of Test Positions ��
����� Data for Di
erent Search Depths ��
����� Scout vs� �� ��
����� Distance from the Minimal Game Tree ��
����� The E
ects of the Transposition Table ��

� The Parallel Game Tree Search Algorithm ��

��� Hardware for the Parallel Algorithm ��
����� Comparing DeBruijn Network� Torus and Grid ��

��� Related Work ��
����� Parallel Static Evaluation�Move Generation ��
����� Parallel Window Search ��
����� Game Tree Decomposition ��

��� Dynamic Game Tree Decomposition ��
��� Basic Version of Our Parallel Scout
Algorithm ��

����� Start of a Master
Slave Relationship ��
����� End of a Master
Slave Relationship ��
����� Improvements of Search Windows ��
����� The Distributed Algorithm ��
����� Thoughts on the Distribution of Work Load ��

��� Local Killer and History Heuristics ��
��� The Distributed Transposition Table ��

����� Local� Global or Distributed Hash Tables ��

�

� CONTENTS

����� Implementation of a Distributed Transposition Table � � � � � � � � � � � � � � � � � ��
��� The Young Brothers Wait Concept ��

����� The YBWC for Type
� and Type
� Nodes ��
����� The Extended YBWC for Type
� Nodes ��
����� Combining the YBWC
�
� and the YBWC� ��

��� Load Distribution Strategies ��
����� Necessity of a Global Search for Work ��
����� Local Search for Work ��
����� Global Search for Work With Returns ��
����� Combining Local and Global Search for Work ��

� Performance on up to ��� Processors ��

��� Measures ��
��� Measuring of the Nondeterministic Behaviour ��
��� Behaviour of the Best Distributed Version ��

����� Speedups for Several Search Depths ��
����� Reasons for the Speedups Measured ��
����� �Superlinear� Speedup in the Quiescence Search ��
����� Measuring the Performance ��
����� Speedups Under Tournament Conditions �		
����� E�ciency �	�
����� �
ply Search with the DB���� Single Positions �	�

��� Measuring of the Performance Loss �	�
��� Costs and Gains of a Distributed Transposition Table �	�

����� Gains of a Distributed Transposition Table ��	
����� Costs of the Distributed Transposition Table ���
����� Conclusion ���

��� Decrease of the Search Overhead by the YBWC ���
��� Use of the Load Distribution Strategies ��	
��� Experiments with Varying Topologies ���
��� In�uence of the Dynamic Load Distribution ��	

� Behaviour on More Than ��� Processors ���

��� Changes of the Experiments ���
��� The Standard Version ���
��� Scout vs ��� Zero Window Search ���
��� Reduced Transposition Table Accesses ���
��� DB��� vs� GC������� under tournament conditions ���

� Conclusions and Open Problems ���

A A BCH Hash Function ���

B The Bratko Kopec Positions ���

References ���

Index ���

List of Figures ���

List of Tables ���

Chapter �

Introduction

��� Computer Chess and Arti�cial Intelligence

Tree search algorithms play an important role in many applications in the 	eld of arti	cial intel�
ligence� For instance� theorem provers� expert systems� robot control systems and game playing
programs contain tree searching algorithms as their basic part� Tree searching is used whenever
decisions must be made that are based on complex knowledge� that cannot be implemented
directly on a machine�

Game playing programs provide an excellent test bed for search algorithms for several reasons�
Games like chess� checkers� go� nine�men�morris and many others de	ne simple �worlds� in
a very exact manner� The games are de	ned by some very simple rules which are easy to
implement on a machine� However� these games are of high complexity� For example for many
centuries the game of chess has been viewed as a test bed for humans� strategic and tactical
abilities� Famous chess players are considered as intelligent as scientists� politicians or managers
of successful companies� In addition� games themselves are often a mirror image of a small
part of the society� that invented the games� For example� von Neumann and Morgenstern
���
describe the similarities of game theory and economic behaviour�

The game of chess is one of the most famous games in the world� During the last centuries
humans have developed much of expert knowledge� which� saved in books and nowadays in
databases� successively improves the quality of human play� The ELO rating was de	ned
����
which allows an assessment of the playing strength of human or machine chess players and�
therefore� allows a comparison of the playing strength of two players� For these reasons computer
chess is viewed today as a measurement of the success of research in the whole 	eld of arti	cial
intelligence�

��� History of Computer Chess

The history of machines playing chess started in the early
�th century� Torres y Quevedo built a
machine that was able to win with rook and king against a king� Zuse described a formalization
of the game of chess in his work �Der Plankalk�ul�
��� in ����� First detailed descriptions that
allow programming a machine to play chess are due to Shannon
��� and Turing
���� The 	rst
running chess programs were implemented during the late ����s� Their playing strength was

�

� CHAPTER �� INTRODUCTION

very poor� The 	rst program that achieved an ELO rating was the chess program MACHACK
by Greenblatt et al� in ����
�
�� During a tournament in Massachusetts the program achieved
a rating of ���� �USCF�� In ���� the 	rst computer chess world championships took place in
Stockholm� Sweden� The title was won by the Russian program KAISSA� Faster and faster
hardware and improved software allowed a signi	cant increase in playing strength� Levy and
Newborn
��� p� �� describe this increase of playing strength from a rating of ���� ELO in
���� to more than
��� ELO points today� At the time of writing only very few programs exist
that are able to play at a level of
���� the playing strength of an international master� For
now� only DEEP THOUGHT has the playing strength of a grandmaster or slightly less� For a
detailed description of the history of computer chess the reader is referred to the book by Levy
and Newborn
����

The history of computer chess makes clear the enormous improvement of the playing strengths
of chess programs during the last decades� The following paragraph brie�y describes the de�
velopment of hardware and software for chess playing machines that made this improvement
possible�

Software and Hardware Development

The game of chess� perhaps� is the most prominent example of a two person � zero sum � game
with complete information and alternating right to move� Two players play against each other�
At every moment the complete status of the game is known to both players� The players have
contrary goals� i�e� a situation that is evaluated �good� for one of the players is evaluated
�bad� for the opponent and vice versa� Zermelo
��� formalized the notion of a position which
is a theoretical win� draw or loss in this kind of game� From this formalization the following
algorithm� the so called minmax algorithm� can easily be derived� For a two person � zero sum �
game with complete information let MAX be the player whose turn it is in the starting position�
and let MIN be the opponent of MAX� Every terminal position v is assigned a value F�v� by
the following rule�

F�v� ��
���
��

�� if v is a win for MAX
�� if v is a draw

��� if v is a win for MIN

For an arbitrary nonterminal position s� with legal moves of the player to move leading to
successor positions s�� � � �sb� a value

F�s� ��
�
maxfF�s��� � � � �F�sb�g� if MAX is to move
minfF�s��� � � � �F�sb�g� if MIN is to move

can be computed recursively�

If in	nite sequences of moves are not allowed in the game� then by the above formula a value
F�s� can be computed for every position s in 	nitely many steps� F�s� � �� if MAX can force
a win from position s� it is �� if neither MAX nor MIN can force a win and it is ��� if MIN is
able to force a win�

The minmax algorithm obtained by recursively computing the value F�s� generates a tree� the
so called game tree with root s � The nodes of the tree are the positions of the game� the edges of
the tree correspond to the moves of the players MAX and MIN� The root of the tree corresponds
to s� the successors of s in the game tree are the positions reachable from s by one ply� The
leaves of the game tree correspond to the terminal positions of the game reachable from s�

���� HISTORY OF COMPUTER CHESS �

Software

The minmax algorithm generates every node of the game tree with root s� and therefore� in
a uniform game tree of width b and depth d� it generates bd leaves� The following argument
shows� that this� in general� is not optimal� Suppose the value F�s� of a position s with MAX
to move should be computed� Then� any algorithm may halt when it 	nds a successor sj of s
with F�sj� � �� because no other successor of s can give MAX a better result� An analogous
case arises if for a successor of a node with MIN to move the value � is computed� Cancelling a
computation at a node s after having computed the value of a successor of s is called a cuto��
Cuto�s were invented by Newell� Shaw and Simon
���� In addition to the direct cuto�s described
above deep cuto�s were introduced by Samuel
�
� as well as Slagle and Dixon
���� This results
in an algorithm for game tree search that is called ���algorithm� Knuth and Moore
��� present
an analysis of the ���algorithm� In the best possible case the ���algorithm visits

bdd��e� bbd��c� �

leaves of any b�d�uniform game tree� in the worst case it visits� like the minmax algorithm� bd

leaves� The best behaviour is achieved if the 	rst successor of every nonterminal node in the
game tree is the best successor� i�e� it has the maximum F �value of all the successors if MAX is
to play and it has the minimum F �value of all successors if MIN is to play� Knuth and Moore
show that every algorithm that determines the F �value of the root of a b�d�uniform game tree
must visit at least the number of leaves the ���algorithm visits in the best possible case� From
then on� the software development concentrated on improving the sorting of the successors of
inner game tree nodes� Methods to sort the legal moves in a position were developed�

Greenblatt et al�
�
� introduced the transposition table for their program MACHACK VI� The
transposition table is a hash table for positions� in which results already computed for a position
are stored� If the same position arises again during the search� e�g� by transposition of moves�
the result stored in the transposition table may save searching identical subtrees of the whole
game tree�

The method of window search and the killer heuristic were 	rst used in the Russian program
KAISSA� the killer heuristic was called �best move service�� The killer heuristic saves a few
moves for every level of the game tree� which proved to be good in that level in other subtrees of
the game tree� These moves� if legal� are then sorted to the beginning of the move list of inner
game tree nodes� The killer heuristic is best described by Akl and Newborn
���

The method of window search uses the fact� that in many cases the value of the root of the
game tree can be estimated roughly� so that an interval
�� �� ��
����� can be given� which
contains the value of the root with high probability� In these cases� one 	rst tries to prove that
the value of the root is in the interval
�� ��� by doing a window search� If the result x of the
window search is not properly included in the interval
�� ��� the root value has to be determined
precisely by researching the game tree with the search window
��� x� or
x��� respectively�
Slate and Atkin
��� describe the method of iterative deepening� During the 	rst iteration only
the direct successors of the root node are generated� i�e� the game tree is searched to a depth
of �� Afterwards the game tree is searched to depths
� �� etc� up to a 	nal search depth d�
The results computed during the iterations with smaller search depths are used to improve
the sorting of the successors of inner game tree nodes during the extensive searches to larger
search depths� Therefore the most extensive searches are speeded up by the fast searches to
smaller search depths� Especially when combined with the use of a transposition table a large

� CHAPTER �� INTRODUCTION

improvement of the sorting of successors in the game tree is achieved�

Schae�er
��� describes the History Heuristic showing that with the help of this heuristic the
sorting of successors of game tree nodes can be improved signi	cantly�

Hardware

Parallel to the development of the above described software tools� the game tree search was
speeded up by the use of faster and faster hardware� Condon and Thomson
��� describe the
hardware of the chess machine BELLE� With the help of special hardware BELLE won the ����
world computer chess championships in Linz� Austria� One of the worlds� best chess programs�
HITECH� described by Berliner
���� uses special hardware to speed up the game tree search�
The best chess machine at the time of writing� DEEP THOUGHT� gets most of its playing
strength from the special hardware used to search the game tree at an amazing speed� The
hardware of DEEP THOUGHT is described by Hsu
����

The world champion program of ���� and ����� CRAY BLITZ� uses a Cray X�MP ���� at 	rst
as a sequential program� Hyatt et al�
��� describe their program CRAY BLITZ and a simple
use of a two processor Cray X�MP during the world championships of ����� Other programs
began to use parallel machines to speed up the game tree search� e�g� SUN PHOENIX� Schae�er

��� describes a parallel algorithm for the chess program SUN PHOENIX� running on a network
of workstations� The parallel algorithm used in the less known chess program� WAYCOOL�
implemented on an Intel Hypercube machine� is given by Otto and Felten
���� Most recently a
chess program has been developed for the CM�
���� Most of the parallel algorithms implemented
behave quite well for small numbers of processors� however� are rather ine�cient when running
on a medium number of processors� Section ��
 gives an overview over the parallel game tree
search algorithms published up to now�

��� Results

In this thesis we present a parallel game tree search algorithm� which runs e�ciently even
on massively parallel systems� This game tree search algorithm is used in our chess program
ZUGZWANG� vice world champion at the computer chess championships ���
 in Madrid� Spain�
During this tournament ZUGZWANG ran on a ��
� processor system� Thus� the algorithm
presented in this work is the 	rst parallel game tree search algorithm that is used in a successfully
playing chess program running on massively parallel hardware�

Furthermore� the algorithm presented here runs e�ciently on a loosely coupled system of pro�
cessors� With this it is well�suited to be used on parallel architectures realizable today�

With the help of experiments we will present reasons for the e�cient behaviour of our algorithm
and will investigate our implementation of a distributed transposition table� For this we simulate
a global hash table in a distributed system by accessing the hash table with the help of messages�
The main advantage in our approach is that the transposition table grows with the processor
system� and this improves the search of the parallel algorithm� On the other side CPU time
must be spent to route the messages necessary to access the hash table� Through experiments
we will show that the use of the distributed transposition table compensates for the costs that
have to be paid for routing the messages for table accesses�

���� OVERVIEW �

To avoid super�uous work in a parallel environment we developed the Young Brothers Wait
Concept �YBWC�� The YBWC allows parallel evaluation of successors of inner game tree nodes�
only if the 	rst successor of the inner node is evaluated completely� In the sequential algorithm
many subtrees are cut o�� because they are known not to have any in�uence on the root value�
The YBWC is a simple method� which allows the parallel algorithm to cut o� many subtrees
similar to the sequential one� In this thesis we will study the e�ects of the YBWC� as well as
the e�ects of two variations of that method�

By the YBWC� parallel evaluation of some subtrees is delayed� This results in idle times for
processors� In order to keep these idle times as small as possible� we developed special load
distribution strategies� The e�ects of these strategies will be studied in this book� Our load
distribution is based upon a combination of local and global searches for subproblems� Global
search for work is used only if it is quite likely that the search for work will be successful� In
this thesis we will show that the load distribution strategies chosen not only guarantee a good
average processor work load� but also improve the search behaviour of our distributed algorithm�

��� Overview

First� we describe the sequential method� that will be the basis of our distributed algorithm�
as well as the hardware used to implement this algorithm� Next� we analyze� with the help of
some experiments� the performance of the sequential algorithm� We will especially show that
the basis of our distributed algorithm is a very e�cient search program using state�of�the�art
heuristics to speed up the sequential search� In order to show this� we introduce the notion of
the distance of a game tree from the minimal game tree� In addition we will investigate the load
of the sequential program�s transposition table�

Chapter � contains the description of our distributed Scout�algorithm� It opens with the def�
initions of the processor topologies used and a short overview about related work in the 	eld
of parallel or distributed game tree search� Here� we make clear the di�erences between our
approach and the algorithms published so far� This introductory part is followed by a descrip�
tion of the basic version of our distributed Scout�algorithm as well as a parallelization of the
most important heuristics� We describe the Young Brothers Wait Concept� two variations of the
basic YBWC� and the load distribution strategies used� and we outline possibilities to reduce
the communication overhead by the use of local methods for load distribution�

Chapter � contains the results obtained with our distributed algorithm using less or equal to

�� T��� processors� We 	rst de	ne the measures necessary to describe the performance of our
distributed algorithm� Then we examine the results of experiments measuring the degree of the
nondeterministic behaviour� Afterwards� we present the results of the experiments done with the
version of our distributed algorithm described in Chapter �� Here� some interesting conclusions
concerning the behaviour of the sequential Scout�algorithm in non uniform game trees and the
behaviour of the distributed algorithm on faster processors are made�

The rest of Chapter � contains a description of the e�ects caused by some features of the program�
We investigate the loss of performance which� in our program� is caused by routing messages�
discuss the costs and gains of the distributed transposition table and describe the e�ects of the
variations of the Young Brothers Wait Concept� Here� we discuss an experiment which makes
clear the di�erences between our distributed algorithm and the basic PV�Split algorithm� Next�
the e�ects of the local load distribution methods are studied� An interesting conclusion drawn

�� CHAPTER �� INTRODUCTION

from these experiments� is the fact that a combination of local and global strategies not only
reduces the communication overhead but also improves the search of the distributed algorithm�
Then� we compare the behaviour of our distributed Scout�algorithm on a grid and a torus of
processors to the behaviour on a DeBruijn topology� The experiments show that the processor
topology is� for the hardware used in our experiments� of great importance to the e�ciency of
our distributed algorithm� In order to compare our dynamic load distribution with a static one
we then describe the performance of a version of our distributed algorithm with a more static
game tree decomposition�

Chapter � contains the results of our distributed algorithm using up to ��
� T��� processors�
It opens with a description of the performance of the version analyzed in Section ��� on a larger
machine without any changes in the program� Then� we introduce two minor changes to the
algorithm and describe the improvement of the e�ciency caused by these changes�

��� Basic De�nitions

Here� we de	ne the most important notions used in this book� By NI �NI �� we denote the set of
the natural numbers �including ��� by ZZ we denote the set of integers�

De�nition ��� �Graph�

A directed graph G � �V�E� is a tuple consisting of a set of nodes V and a set of edges E � V �V�
If E � P��V �� then G is called an undirected graph�

For a directed graph G � �V�E� the indegree �outdegree� of a node v � V is de	ned as

degi�v� �� jfv� � V j �v�� v� � Egj �dego�v� �� jfv� � V j �v� v�� � Egj��

For an undirected graph G � �V�E�� deg�v� �� jfv� � V j fv� v�g � Egj for any v � V is called
the degree of v�

De�nition ��� �Path�

Let G � �V�E� be an �un�directed graph� A sequence W � �v�� � � �vn� of nodes is called a path
in G� if �vi� vi��� � E �fvi� vi��g � E� for all i � f�� � � � � n� �g�

W � �v�� � � �vn� is called simple� if vi �� vj for all i� j � f�� � � � � ng� i �� j� W is called a cycle�
if v� � vn� The length of W is n � �� For all v� v� � V the distance �G�v� v

�� of v and v� in G
is de	ned as the length of the shortest path from v to v� in G� The diameter of G is de	ned as
��G� ��maxf�G�v� v

�� j v� v� � V g�

De�nition ��� �Average distance�

Let G � �V�E� be a graph� The average distance of G is de�ned as

���G� ��
�

jV j� �
X

v�v��V

�G�v� v
��

���� BASIC DEFINITIONS ��

De�nition ��� �Tree�

A directed graph G � �V�E� is called a tree� if

�� G does not contain a cycle and

�� Exactly one node of G has indegree �� all other nodes have indegree ��

If G � �V�E� is a tree� then the node having indegree � is called the root of G� A node having
outdegree � is called a leaf of G� nodes with outdegree � � are called inner nodes� If v � V is a
node of G not equal to the root of G� then the �uniquely determined� node v� with �v�� v� � E
is called the father of v� If v � V is not a leaf� then the nodes v� � V with �v� v�� � E are called
successors or sons of v� Any two successors of a node are called brothers� For every node v � V
the depth of v is the distance from the root of the tree to v� All nodes having the same depth
d in G form a level in G� A tree G � �V�E� is called b	d�uniform� if all inner nodes of G have
outdegree b and all the leaves of G are at depth d�

De�nition ��� �Subtree�

Let G � �V�E� be a tree with root vr� let v � V be a node of G�
G�v� �� �V �v�� E�v�� with

V �v� �� fv� � V j the shortest path from vr to v
� contains vg

E�v� �� f�v�� v��� � E j v�� v�� � V �v�g

is called subtree of G with root v�

The following notation of the nodes of a tree is helpful in many situations�

De�nition ��� �Dewey decimal system�

Let G � �V�E� be a tree�

�� The root of G is called ��

�� The successors of a node v � V with dego�v� � b � NI � are named v��� � � � � v�b�

With the help of the Dewey decimal notations of the nodes we are able to distinguish the
successors of an inner node of G in the following way�

De�nition ��� �left�right successor�s��

Let G � �V�E� be a tree� let v � V be an inner node of G�

�� The node v�� is called the left successor of v�

�� All other successors of v are called right successors�

By using the above notations and de	nitions we are able to de	ne a game tree�

�
 CHAPTER �� INTRODUCTION

De�nition ��	 �Game tree�

A game tree G � �V�E� f� is a
�tuple satisfying

�� G � �V�E� is a tree and V �� ��
�� f � V � ZZ 	 f
�g�

The nodes of a game tree will correspond to the positions of the game� the edges will correspond
to the moves from one position to a successor position� The function f is called the �static�
evaluation function for G� It maps the leaves of G into the ordered set ZZ 	 f
�g� Nodes of
even depth in G are called MAX�nodes� nodes of odd depth in G are called MIN�nodes�

De�nition ��
 �Minmax value�

Let G � �V�E� f� be a game tree� Then the minmax value F �v� of a node v � V is de�ned as

F �v� ��

���
��

f�v� if v is a leaf of G�
maxfF �v�� j �v� v�� � Eg if v is an inner MAX�node of G�
minfF �v�� j �v� v�� � Eg if v is an inner MIN�node of G�

By the use of the notion of the minmax value� the game tree search problem can be formalized
as follows�

De�nition ���� �Game tree search problem�

The following problem is de�ned to be the game tree search problem�

Given� A game tree G � �V�E� f� with root ��

Compute� F ����

Every algorithm computing F ��� is called game tree search algorithm� For any inner node of a
game tree we de	ne the notion of the best successor as follows�

De�nition ���� �best successor�

Let G � �V�E� f� be a game tree� let v � V be an inner node of G� Then a successor v�j is called
best successor of v� if

� F �v�j� � F �v�i�� � � i � j and F �v�j�
 F �v�i�� i
 j� if v is a MAX�node�

� F �v�j� � F �v�i�� � � i � j and F �v�j� � F �v�i�� i
 j� if v is a MIN�node�

With this we are able to de	ne a unique principal variation for every game tree�

De�nition ���� �Principal variation�

Let G � �V�E� f� be a game tree with root �� Then the principal variation �v�� � � � � vt� of G is
de�ned by�

� v� �� ��

� vi�� is the best successor of vi� � � i � t�

� vt is a leaf of G�

Chapter �

The Sequential Game Tree Search

Algorithm

��� The Scout�Algorithm

The ���algorithm is the basis of all successful game tree search algorithms� Figure
�� shows
the basic form of the ���algorithm�

function alphabeta�v � node� �� � � integer�� integer�
var i� b � integer�
begin

generate all successors v��� � � � � v�b of v�
if b � � then return�f�v��� �� static evaluation of a leaf ��
for i �� � to b do
begin

if v is MAX�node then
begin

� �� max��� alphabeta�v�i� �� ����
if �
 � then return���� �� cuto� ��
if i � b then return���� �� all successors evaluated ��

end else �� v is MIN�node ��
begin

� �� min��� alphabeta�v�i� �� ����
if �
 � then return���� �� cuto� ��
if i � b then return���� �� all successors evaluated ��

end

end
end�

Figure
��� Basic form of the ���algorithm

Knuth and Moore
��� show that the following inequalities hold for all nodes v of any game tree�

��

�� CHAPTER �� THE SEQUENTIAL GAME TREE SEARCH ALGORITHM

Let x �� alphabeta�v� �� ��� Then

x � � if F �v� � �
x � F �v� if � � F �v� � �

x
 � if F �v�
 �

Therefore� the function call �x �� alphabeta��������� returns F ����
Reinefeld
��� presents many variations of the ���algorithm� In our program we use the Scout�
algorithm with fail soft improvement as the basic sequential algorithm� This algorithm is
presented in Figure
�
 in a pseudo code� A similar description together with a more detailed
analysis can be found in Reinefeld�s book
��� p� ������� Pearl
��� shows that the run time of
the Scout�algorithm is asymptotically optimal�

For the Scout�algorithm with fail soft improvement from Figure
�
 the following inequalities
hold for every node of any game tree�

Let x �� scout�v� �� ��� Then

F �v� � x � � if F �v� � �

F �v� � x if � � F �v� � �
F �v�
 x
 � if F �v�
 �

The function call

x �� scout���������

therefore again returns F ����

At the beginning of a computation at a node v� all successors of v are generated by the Scout�
algorithm� If there are no successors of v �b � ��� then v is a leaf of the game tree and the value
of the static evaluation function for v� f�v�� is returned� If v is not a leaf� then all successors of v
are searched subsequently� The 	rst successor v�� of v is searched by a call of the function scout
with bounds � and �� all right successors are searched with the zero width window
u� u� ��� If
v is a MAX�node� then a research has to be done for a successor v�i� if the following conditions
hold�

�� �x � u� � The bound x returned for v�i is an improvement of the best bound found so far
for v�

� �x � �� � The bound returned for v�i is not su�cient to produce a cuto� at v� If the bound
returned for v�i cuts o� the other successors of v� no research is necessary�

�� �i � �� � Only right successors of v were searched with a zero width window� Therefore a
research is necessary for right sons only�

�� If all successors of v�i are leaves in the game tree then� despite the fact that these leaves
may have been searched with zero width window� the exact values of these leaves were
returned and combined to the value of v�i� All these exact values were larger than u� since
otherwise the value of v�i would not have been larger than u �Note that v�i is a MIN�
node�� Therefore� at node v�i no cuto� could have occurred� i�e all successors of v�i were

���� THE SCOUT�ALGORITHM ��

function scout�v � node� �� � � integer�� integer�
var i� b� x� low� val� high � integer�
begin

generate all successors v��� � � � � v�b of v�
if b � � then return�f�v��� �� static evaluation ��
low �� �� high �� ��
if v is MAX�node then val �� �� else val �� ��
for i �� � to b do
begin

x �� scout�v�i� low� high�� �� zero window search ��
if v is MAX�node then
begin

if �x � low� and �x � �� and �i � �� and
at least one successor of v�i is not a leaf then
x �� scout�v�i� low� ��� �� research ��

low �� max�low� x��
val �� max�val� x��
if val
 � then return�val�� �� cuto� ��
high �� low � ��

end

else �� v is MIN�node ��
begin

if �x � high� and �x � �� and �i � �� and
at least one successor of v�i is not a leaf then
x �� scout�v�i� �� x�� �� research ��

high �� min�high� x��
val �� min�val� x��
if val � � then return�val�� �� cuto� ��
low �� high� ��

end
end�
return�val��

end�

Figure
�
� The Scout�algorithm

�� CHAPTER �� THE SEQUENTIAL GAME TREE SEARCH ALGORITHM

evaluated� Thus the bound for the node v�i was computed on the basis of all exact values
necessary to compute the exact value of node v�i� Therefore� the value computed for v�i
was the minmax value of v�i� A research of v�i would return the same value and therefore
is super�uous� This was 	rst noted by Reinefeld
����

Since v is a MAX�node� the lower bound for v may be improved by searching some successor of
v� If a cuto� is achieved by such a search �m
 ��� then the function scout returns the cuto�
value� Otherwise the zero width window is recomputed for the searches of the next successor of
node v� The algorithm behaves analogously at MIN�nodes�

Figures
�� and
�� contain an equivalent version of the Scout�algorithm� The procedures �down�
wards� and �upwards� called in the procedure �iterate� are described in Figure
��� This it�
erative version of the Scout�algorithm will be the basis of our distributed game tree search
algorithm� The static evaluation function f�v� of our algorithm will be described in more detail
by Mysliwietz
����

With the help of this version some usefuls notations can be de	ned� For the following de	nitions
let � be a point of time during the computation in which the iterative Scout�algorithm is not
working in the procedures �upwards� or �downwards��

De�nition ��� �Actual variation�

Let G � �V�E� f� be a game tree� let � be the root of G� Let a processor P be searching G after
the call of the procedure �iterative scout
� Let t be the depth variable of the procedure �iterative
scout
� which is changed only by a call of one of the procedures �upwards
 or �downwards
� We
call the sequence �v� � �� v�� � � � � vt� of the contents of the variables vi� � � i � t the actual
variation of P at time �� The nodes v�� � � � � vt are called actual nodes�

The actual variation changes with every call of one of the procedures �upwards� or �downwards�
during the search in a game tree� Some nodes of the game tree may never become actual�
However� through researches� nodes may become actual several times� Of importance is the
content of the variables � and � at a time a node becomes actual�

De�nition ��� �Search window�

Let G � �V�E� f� be a game tree� let v � V be a node of G of depth i� which becomes actual at
time �� Let � and � be the contents of the variables �i and �i at time �� Then
�� �� is called
the search window of node v�

De�nition ��� �Subproblem�

Let G � �V�E� f� be a game tree� let v � V� let �� � � ZZ 	 f
�g� A subproblem with root v
and search window
�� �� is the following problem�

Given� The subtree G�v� � �V �v�� E�v�� f� with root v of G� �� � � ZZ 	 f
�g�
Compute� A value x with

F �v� � x � �� if F �v� � �
F �v� � x� if � � F �v� � �

F �v�
 x
 �� if F �v�
 �

���� THE SCOUT�ALGORITHM ��

procedure iterate�var cuto�� improvement� boolean��
�� Let �vr� � � � � vt� be the actual variation�
let
�i� �i�� r � i � t be the search windows at level i�
let vali� lowi and highi� r � i � t be the bound variables for level i� ��

begin
cuto��� false� improvement�� false�
if the successors of vt are not yet generated then
begin

generate all successors vt��� � � � � vt�bt of vt�
if bt � � then begin valt �� f�vt�� upwards�t�� end

else downwards�t� vt���
�t� �t���
end else
begin �� Going upwards from a successor vt�i of vt ��

if vt is MAX�node then
begin

if �valt�� � lowt� and �valt�� � �t� and �i � �� and
at least one successor of vt�i is not a leaf then
downwards�t� v�i�
lowt� �t�� �� Research ��

else
begin

if �valt�� � lowt� then improvement�� true�
if �valt��
 �t� then cuto��� true�
lowt �� max�lowt� valt���� valt �� max�valt� valt���� hight �� lowt � ��

end

end else �� vt is MIN�node ��
begin

if �valt�� � hight� and �valt�� � �t� and �i � �� and
at least one successor of vt�i is not a leaf then
downwards�t� v�i�
�� lowt�� �� Research ��

else
begin

if �valt�� � hight� then improvement�� true�
if �valt�� � �t� then cuto��� true�
hight �� min�hight� valt���� valt �� min�valt� valt���� lowt �� hight � ��

end

end�
if cuto� or all successors of vt searched then upwards�t�
else downwards�t� vi���
lowt� hight���

end
end�

Figure
��� Iteration for the iterative Scout�algorithm

�� CHAPTER �� THE SEQUENTIAL GAME TREE SEARCH ALGORITHM

procedure upwards�var t� level��
�� Shortens the actual variation from �vr� � � � � vt� to �vr� � � � � vt��� ��
begin

t �� t� ��
end�

procedure downwards�var t� depth� v� node�
�� ��� search window��
�� Lengthens the actual variation from �vr� � � � � vt� to �vr� � � � � vt� v� ��
begin

t �� t� ��
vt �� v�
�t �� �� �t �� ��
lowt �� �� hight �� ��
if vt is MAX�node then valt �� ��

else valt �� ��
end�

function iterative scout�v �node�
�� �� � search window�� integer�
�� Iterative Scout�algorithm�
The variables �cuto�� and �improvement� are necessary for the use
in the distributed algorithm ��

var t � depth�
� � �

begin
�� Initialize the actual variation with the root only ��
�� �� �� �� �� ��
low� �� �� val� �� ��� high� �� ��
v� �� root � of the game tree�
�� Perform �iterate� until the root node is solved ��
repeat

iterate�cuto�� improvement��
until all successors of v� are evaluated�
iterative scout�� val��

end�

Figure
��� Iterative Scout�algorithm

���� THE SCOUT�ALGORITHM ��

A subproblem may e�g� be solved by calling x �� scout�v� �� ��� The depth of a subproblem is
the depth of the root of the subproblem in G�

De�nition ��� �Cuto�	fail node�

Let G � �V�E� f� be a game tree� let v � V be a node of G� which becomes actual at time �� let

�� �� be the search window of v at time ��

v is called cuto� node� if
F �v�
 � if v is a MAX�node
F �v� � � if v is a MIN�node

v is called fail node� if
F �v� � � if v is a MAX�node
F �v�
 � if v is a MIN�node

We denote the work done by the Scout�algorithm in a subtree of a fail node v by fail search� If
v is a cuto� node and the cuto� is caused by the evaluation of a successor v�j of v� then the
cuto� is called a direct cuto�� if there exists a brother u to the left of v with F �u�
 F �v�j�� if
v is a MIN�node and F �u� � F �v�j�� if v is a MAX�node� The cuto� at v is caused by the value
of its brother u� Cuto�s that are not direct cuto�s are called deep Cuto�s�

The following example shows how the Scout�algorithm works compared to the pure ���algo�
rithm�

Figure
�� at the top shows a game tree and the evaluations of some of the leaves� The evaluations
of the other leaves are arbitrary� In the second tree� all nodes of the game tree are marked black
that are visited by the Scout�algorithm before the exact value of the rightmost son of the root
is determined by a research�

The algorithm recursively descends from the root v of the game tree to the node v��������� It
evaluates this node with the help of the static evaluation function yielding a value of �� Then
the node v�������
 is evaluated to �� which results in a value of � for the node v������� The
algorithm proceeds searching node v�����
 with search window
�� ��� in order to test� whether
F �v�����
� � �� After evaluation of the sons of v�����
� this node is assigned a bound of
 �
because of the fail soft improvement� Thus a research seems to be necessary� However� this
research can be saved� since both sons of v�����
 are leaves and the value returned for the sons
was their exact value� Therefore� we have F �v�����
� � �� Next the node v������ is searched
with a search window
�� ��� After evaluating v�������� with F �v��������� � f�v��������� � � it is
obvious that F �v������� � �� Thus the evaluation of v���� may be stopped� resulting in an exact
value of F �v����� � �� without searching the node v�������
� �direct cuo� at node v�������� The
algorithm starts evaluating the node v���
 with a search window
�� ��� in order to test� whether
F �v���
� � �� After the evaluation of the leaves v���
���� and v���
���
 we have F �v���
��� � �
and therefore it is obvious that F �v���
�
 �� Thus an evaluation of the nodes v���
�
 and v���
��
is saved� We now have F �v��� � ��

The evaluation of the node v�
 is begun with a search window
�� �� to test whether F �v�
� �
�� The algorithm evaluates the leaves v�
������ and v�
�����
 each with a value of �� yielding
F �v�
����� � �� Therefore� F �v�
���
 �� Since the search window at node v�
�� is
�� �� and
since v�
�� is a MAX�node� a cuto� is obtained at v�
��� The right brothers of v�
�� will not
be evaluated� The algorithm proceeds searching node v�
�
� After the evaluation of the leaves
v�
�
����� v�
�
�
�� and v�
�
���� with values �� � and �� it is obvious that F �v�
�
� � �� Therefore�

� CHAPTER �� THE SEQUENTIAL GAME TREE SEARCH ALGORITHM

8 8 9 99

8

9

9

3 5 6 7 5 9 9 8 9

63

6

6

8

3 5 6 7 5 9 9 8 8 9 99

3 5 6 7 5 9 9 8 8 9 99

63

6

6

8

9

9

9

6 657788

6 658

6 657788

9

>=9

8

8

>=8

<=5 <=5 <=6<=6

<=6

9 9

9 9

<=6

>=8

9

>=9

>=8

>=8

<=8 9

9 9

9

9

>=9

99

<=5 9

>=9

<=7 <=78

8

<=5 <=6<=6

<=6

<=6

<=8 9 9

>=9

Figure
��� Searching a game tree with the Scout�and the ���algorithm

���� ���ENHANCEMENTS
�

we have F �v�
� � �� knowing that the node v�
 is a less favourable alternative to the node v��
for the MAX�player�

The algorithm starts searching node v�� with search window
�� ��� After the evaluation of the
leaves v�������� and v�������
 it computes F �v������� � �� Therefore� a cuto� is obtained at node
v���� since the search window is
�� ��� The algorithm continues the search at node v���
� After
the evaluation of v���
���� and v���
���
 each with a value of � F �v���
�
 � may be concluded�
And so F �v���
 �� It follows that the node v�� is a better alternative compared to the best
alternative v�� found so far for the player MAX at the root� If only the best move at the root
of the game tree is to be computed � then the search may be stopped at this point� The move
from v to node v�� guarantees the MAX�player a value of at least � thus being better than any
alternative� However� we are looking at the problem to determine the value F �v� of the root�
which at this stage of the computation is known only to be greater than or equal to ��

The exact value of the node v�� must therefore be computed by a research The algorithm starts
searching at node v�� with search window
����� The nodes visited during this research are
marked black in the third game tree of Figure
��� Then F �v��� � � is computed yielding
F �v� � ��

In order to compute F �v� � �� the algorithm must evaluate a total of �� di�erent leaves� however
the leaves v�������� and v���
����� as well as v���
���� and v���
���
� were evaluated twice� This
results in a total of
� static evaluations to compute F �v�� The game tree at the bottom of Figure

�� shows the nodes which are visited by the ���algorithm� In this example the ���algorithm
needs a total of
� static evaluations of some leaves in order to compute F �v� � �� Note that
the ���algorithm must evaluate the nodes v�
���
�� and v�
������� which were not visited by the
Scout�algorithm�

In practical tests the Scout�algorithm proves to be superior compared to the ���algorithm�
Reinefeld
��� p� ����� describes experiments with synthetical generated� practically oriented
game trees in which the Scout�algorithm saves roughly
� of the leaf evaluations of the ���
algorithm� Observation
�� on page �� shows that in the sequential version of our chess program�
which serves as an application here� the Scout�algorithm proves to be superior compared to the
���algorithm as well�

��� ���Enhancements

In the previous sections we described the basic version of the sequential Scout�algorithm� The
e�ciency of this algorithm depends heavily on the ordering of the successors of inner game
tree nodes� Therefore� in today�s state�of�the�art game playing programs� easily computable
heuristics are used to sort moves� Furthermore� in real applications� often acyclic graphs instead
of trees are to be searched� This is due to the fact that in many games the position which
results in updating three plies a� b and c from a given position v� is the same as the position
after updating the plies c� b and a� Thus� in the graph to be searched� two directed paths may
lead from some node v to some other node w� Of course� one would like to avoid searching the
subtree with the root w twice� Therefore� a transposition table is used� Despite this we will
refer to searching trees� instead of searching acyclic graphs�

The implementation of the transposition table� as well as the other heuristics used to sort moves�
are described in the next sections� The heuristics used are iterative deepening� aspiration search�
the killer heuristic� principal variation and refutation heuristic� and history heuristic� After

 CHAPTER �� THE SEQUENTIAL GAME TREE SEARCH ALGORITHM

explaining each heuristic we will describe the overall move ordering of our algorithm�

����� Transposition Table

The transposition table is a hash table for nodes and for the results already computed for these
nodes� An entry of the transposition table is a ��tuple

�s� x� k� z� t� c��

Here the meanings of the components are

s � Key� �� bits� which serve as an �identi	cation� key for the position stored in the entry�

x � Value� The value computed for the position stored�

k � Flag� Indicates � whether �value� is an exact value� an upper bound or a lower bound�

z � Move� The best move found for the position stored�

t � Depth� Search depth to which the �value� was computed�

c � Time stamp� This component is not used when computing test positions as described in
this work� When playing a whole game the time stamp helps to overwrite old entries in
the hash table by actual ones�

The transposition table consists of ������ entries� Two operations� namely �Store� and �Read��
are de	ned for the transposition table� Before we start to describe these operations� we will
present the hash function used�

The BCH hash function

In order to use the transposition table e�ciently� our game tree searching algorithm uses a BCH
hash function� These kinds of hash functions are built from the BCH codes� which are well
known in the 	eld of algebraic coding theory� First� we want to discuss why the use of these
hash functions makes sense� We are looking for a hash function

h � fv j v is a chess positiong � f�� � � � � max� �g �

where max is the number of entries of the hash table� A nice property of the hash function
would be if it maps the set of chess positions into the set f�� � � � � max��g with as few as possible
collisions� i�e� situations� in which h�u� � h�v� but u �� v� Since the number of hash table entries
is expected to be very small as compared to the number of chess positions� this constraint is not
really helpful for practical purposes� However� the constraint to keep the number of collisions
small may be reformulated� We are looking for a hash function so that for every chess position
v the depth of the game tree with root v� which is mapped without any collisions into the hash
table is as large as possible�

With this we get a hash function� which produces collisions only when mapping two game tree
nodes into the hash table� that have large distance in the game tree� A hash function that
provides collision security for all nodes in a game tree of depth
� is preferable to a hash function
that guarantees this security only for trees of depth ��

���� ���ENHANCEMENTS
�

Looking at the problem in this way leads to a similar problem in the 	eld of coding theory�
Given a word w � f�� �gm consisting of m bits� which are to be transmitted via a noisy channel�
Then� transmitting the word may change a few bits� Therefore� one is looking for a function

A � f�� �gm � f�� �gk�

such that the transmission of n � m � k bits �m information bits and k code bits� allows the
detection rather the correction� of as many as possible faulty bits� Here k should be as small
as possible� E�cient codes in this sense are BCH codes� The theory of BCH codes will not be
evaluated in this book� because some results from the theory of 	nite 	elds are necessary in order
to understand BCH codes� BCH codes are described e�g� in Berlekamp�s book
��� Warnock
and Wendro�
��� were the 	rst to use BCH codes as a hash function in a chess program�

Representation of a chess position

A chess position is represented by a sequence of bits �b�� � � � � bm��� in the following manner�
In the game of chess each player has � di�erent pieces� so together we have �
 di�erent pieces
on the board� which we enumerate as f�� � � � � ��g� These pieces may be placed on �� squares�
enumerated as f�� � � � � ��g� Now we de	ne

b���i�j � �� A piece of type i is placed on square j�

With this we have a representation of a chess position consisting of �� � �
� �� �
 � ��� bits�
because there are �� squares on the board which may not contain white nor black pawns� The
rights to castle are coded into four additional bits� Eight bits are used to code en passent
squares� In endgame positions the player to move may be coded into another bit� Thus� we have
a unique representation consisting of ��� or ��� bits�

This kind of representation has the advantage that the bit sequences corresponding to a chess
position and a successor of this position� which is reached by a normal move� di�er only in two
bits� i�e� the representations of positions lying on a variation of l normal plies� di�er in at most

 � l bits� in many cases� however� in fewer bits� Here normal moves are non�capturing moves
that do not change the rights to castle and do not change the possibilities to capture en passent�
Suppose� we had a coding function A with k code bits� which allows the detection of every
 � l
bit errors in a sequence of m bits� Then A�b� �� A�c�� if the sequences of bits b and c di�er in at
most
 � l bits� Such a function is then a useful hash function for hash tables of size
k� A BCH
hash function is constructed explicitly in Appendix A�

Advantages of a BCH hash function

Warnock and Wendro�
��� present a table� which compares the number of protected bits to the
number of bits necessary to guarantee this protection� This information is provided in Table
���
Here the underlying code for l protected bits is a combination of a BCH code for the protection
of l� � bits and a parity check�
It follows that a hash table of size ������ �
���� protects two bits� Hash functions with
this property may easily be constructed without knowledge from the 	eld of coding theory�
However� there is another advantage of the BCH hash functions� In Section ��� we will present
our implementation of a distributed hash table� which� using p processors� allows the access of

� CHAPTER �� THE SEQUENTIAL GAME TREE SEARCH ALGORITHM

Protected
 � � � �� �
 ��

Code bits ��
� �� �� �� �� ��

Table
��� Number of bits protected by a BCH code

a hash table of size p � ������� That is� in a system with
�� � ������ �
�	�� entries � bits
are protected� In this case� all positions in any game tree of depth � containing only normal
moves have di�erent hash values� BCH codes� therefore� support scalability by providing higher
security and thus guaranteeing less collisions in larger parallel systems� which search larger game
trees�

The use of BCH hash functions becomes more important the larger the hash table is� However�
much more important than the theoretical bounds from Table
��� is the good behaviour of BCH
hash functions in practice�

It is not necessary to store the representation of a chess position explicitly in the program� The
hash value of a successor v�j of a node v can e�ciently be computed from the hash value of the
node v and the move from v to v�j by some few XOR�operations�

Generating a BCH�key

There is another advantage of BCH codes� In order to identify the position associated with an
entry of the hash table after reading the entry� in usual hashing methods every entry contains a
unique key for the position� which is stored in the entry� Above we described the construction of
a unique key consisting of ��� bits� However� comparing ��� bits when an entry is read from the
hash table slows down the access to the hash table unnecessarily� Suppose with
�� processors
a search tree of depth � is to be searched� In this game tree the hash table will be accessed only
for nodes in level � to �� i�e� every position the hash table is accessed for can be reached from
the root of the game tree by playing at most � plies� Suppose� hypothetically� that the game
tree contains only normal moves� Then the representations of all the positions the hash table is
accessed for di�er by� at most�
� bits� In order to guarantee that these positions are mapped
without any collision� a BCH code with ��� code bits would be necessary� In a hash table with

�	 entries� only
�����	 �
��� bits for the key are necessary to identify any position the hash
table is accessed for� These bits are stored as the key in the hash table entry� For our chess
program we reduced these ��� bits to �� bits� because the program ran for about one year using
a �� bit key� when a �� bit key would have been enough to avoid any faulty identi	cations�

With the help of a BCH hash function the hash table is accessed for storing and reading during a
search in a game tree of depth d for all nodes in depths � d� The following two sections describe
the accesses of storing and reading�

Storing an Entry

After the Scout�algorithm from Figure
�
� respectively Figures
�� and
��� has computed a
value x and a best move z for a node v with a search depth t
 � below v� the algorithm tries

���� ���ENHANCEMENTS
�

to store the results� With the help of a BCH hash function

h � fv j v is a chess positiong � f�� � � � � max� �g � f�� �g��
v � �index� key�

a hashing index as well as an identi	cation key is computed�

The procedure �store TR�entry� in Figure
�� describes� how results of the search in subtrees
are stored into the transposition table�

If the corresponding entry is empty� then the result �x� z� t� for the position having key s is
stored in the entry together with an appropriate �ag

k � fexact value� upper bound� lower boundg

and a time stamp c� If the entry is not empty� then the new result overwrites the old result� if
the search depth t of the new result is larger than the search depth of the old result� If this is
not the case� then the new result overwrites the old one� when the time stamp of the new result
is larger than the time stamp of the old one� During the computation of a single test position
only one time stamp is used� We would like to conclude that our transposition table is organized
in a depth�oriented manner without collision resolution�

The identi	cation key of an entry does not provide a unique key for a node v� because there are
much more than
�� legal chess positions� However� it is su�cient� to reduce the probability of
a collision to a very small number� The probability of a collision is furthermore reduced by the
use of a BCH hash function� since the BCH hash function guarantees small subtrees to be free
of collisions�

The procedure �TR�put� from Figure
�� composes a transposition table entry from the search
window and the value computed for a node vt� To include storing of transposition table entries
into the search algorithm every call of the procedure �upwards� in procedure �iterate� of Figure

�� is replaced by the third algorithm of Figure
���

Reading an Entry

Before the search below an inner node vt is started� the search algorithm accesses the transpo�
sition table to con	rm� whether it contains results computed earlier for the node vt or not�

Procedure �TR�get� in Figure
�� describes how a result obtained from the transposition table
is used to speed up the search� After computing the index ixt and the key st of vt a call of the
procedure �read TR�entry� returns a transposition table entry �s� x� k� z� t� c� � Tixt� This entry
is interpreted to contain an entry for vt� if s � st�

How to use a transposition table entry

If a node vt is to be searched with a search depth of t
� � t� then the 	rst successor generated is

the one� which is reached via the move z� if z is not a fail move� z is called fail move� if vt is a
MAX�node and x is an upper bound or vt is a MIN�node and x is a lower bound� The search
below vt continues� Through this� the transposition table� together with the iterative deepening
heuristic which will be described later� provides the most important method for the sorting of
moves�

� CHAPTER �� THE SEQUENTIAL GAME TREE SEARCH ALGORITHM

procedure store TR�entry�ix � index� �s� x� k� z� t� c� � entry��
�� Let T be the transposition table� let Ti be the ith entry of T ��
begin

if Tix is empty then Tix �� �s� x� k� z� t� c�
else if t � Tix�t then Tix �� �s� x� k� z� t� c�

else if c � Tix�c then Tix �� �s� x� k� z� t� c��
end�

procedure TR�put�ix � index� s � key��
�� Let �vr� � � � � vt� be the actual variation�
let
�i� �i�� r � i � t be the search windows at depth i�
let vali� lowi and highi� r � i � t be the bound variables for depth i�
let z be the move from vt to the �best� successor�
let c be the actual time stamp�
let bfd be the search depth� to which the game tree has to be searched�
Let h�vt� � �ix� s� be already computed �in �downwards� to vt�� ��

var k � �ag�
begin

if t � bfd then
begin

if valt � �t then k �� upper bound�
else if valt
 �t then k �� lower bound�

else k �� exact value�
store TR�entry�ix� �s� valt� k� z� bfd� t� c���

end

end�

���� In �iterate�� ����
�� Let �vr� � � � � vt� be the actual variation� let h�vt� � �ixt� st�� ��
if cuto� or all successors of vt are evaluated then
begin

TR�put�ixt� st�� upwards�t��
end�

Figure
��� Storing entries of the transposition table

���� ���ENHANCEMENTS
�

procedure read TR�entry�ix � index� var �s� x� k� z� t� c� � entry��
�� Let T be the transposition table� let Ti� � � i � max be the ith entry of T ��
begin �s� x� k� z� t� c� �� �Tix�s� Tix�x� Tix�k� Tix�z� Tix�t� Tix�c�� end�

procedure TR�get�t � depth��
�� Let �vr� � � � � vt� be the actual variation�
let
�i� �i�� r � i � t be the search window at depth i�
let vali� lowi and highi� r � i � t be the bound variables in depth i�
let bfd be the search depth� to which the game tree is to be searched�
Let T be the transposition table� let Ti� � � i � max be the ith entry of T ��

var �s� x� k� z� t� c� � entry�
begin

if bfd� t � � then
begin
�ixt� st� �� h�vt�� read TR�entry�ixt� �s� x� k� z� t� c���
if s � st then �� Entry found for vt ��
begin �� Let vt�j be the successor of vt� which is reached from vt by playing z ��

if �bfd� t �� t� and z is not a fail move then �� resort successors ��
�vt��� � � � � vt�bt� �� �vt�j� vt��� vt�
� � � � � vt�j � �� vt�j � �� � � � � vt�bt��

if bfd� t � t then

begin
if k � exact value then �� stop searching below vt ��
begin valt �� x� upwards�t�� end else
begin

if k � upper bound then �� update window ��
begin �t �� min��t� x�� hight �� min�hight� x�� end�

if k � lower bound then �� update window ��
begin �t �� max��t� x�� lowt �� max�lowt� x�� end�

if z is not a fail move then �� resort successors ��
�vt��� � � � � vt�bt� �� �vt�j� vt��� vt�
� � � � � vt�j � �� vt�j � �� � � � � vt�bt��

end�
if �lowt
 �t� or �hight � �t� then upwards�t�� �� cuto� ��

end

end
end

end�

���� In �iterate�� ����
�� Let �vr� � � � � vt��� be the actual variation� ��
if bt � � then begin ��� end else begin downwards������ TR�get�t�� end�

Figure
��� Reading entries from the transposition table

� CHAPTER �� THE SEQUENTIAL GAME TREE SEARCH ALGORITHM

If the search depth t� � t� then the search of the subtree with root vt can be saved� if x is an
exact value� If x is an upper bound� then the ��bound of the search window of vt is changed to
� �� min��� x�� if x is a lower bound� then � is changed to � �� max��� x�� The 	rst successor
generated is the one which is reached from v via the move z� if z is not a fail move� The smaller
search windows speed up the search in the subtree below vt� Choosing the 	rst successor often
guarantees a good ordering of the successors�

If t� � t� then there is already a result with larger search depth than necessary available for the
node vt� During a game� this result will be used as described in the case t

� � t with pleasure�
because the larger search depth makes it even more valuable for the search than the result
the algorithm is going to compute� During a game this case happens quite often� because the
transposition table is not cleared between two moves played� During the evaluation of a test
position� however� this case happens rather rarely� Furthermore� the result of a parallel search
may depend on whether a transposition table entry is already available or not� which may change
with the numbers of processors used�

Therefore� using the transposition table entries with larger search depth than required� makes
it impossible to control the correctness of the parallel program by looking at the results of
the searches and comparing them to the results produced by the sequential version� Thereby�
whenever the program is searching test positions� entries with t� � t are used just like entries
with t� � t� This holds for all experiments referred to in this work�

Mysliwietz
��� shows that the number of nodes searched when evaluating our set of test positions
remains almost unchanged by this restriction� For special end game positions� however� he shows
that by using the entries with larger search depth the e�ciency as well as the playing strength
may be improved signi	cantly�

If every call of the procedure �downwards� in procedure �iterate� of Figure
�� is replaced by
the algorithm at the bottom of Figure
��� then the transposition table is accessed for every
node vt above the leaves before the search of the subtree with root vt is started�

����� Iterative Deepening

Instead of directly searching to a large search depth d� it often helps to search iteratively to a
search depth of ��
� �� � � � � The following are some good reasons to do so�

�� The results computed during the searches to a small search depth are used to improve
the move ordering for the searches to larger search depths� In order to do so the trans�
position table is of great importance� Positions corresponding to inner game tree nodes
during the searches to large depths often have been evaluated to smaller depths before�
The best moves computed with smaller search depths often remain the best during the
deeper searches� Thus� the method of iterative deepening� together with the use of the
transposition table� improves the move ordering by� in many cases� sorting the best move
to the top of the move list� Therefore� during the deeper searches� the game trees that
have to be searched are very close to the minimal game tree� and thus are searched very
quickly�

� In a match under tournament conditions the method of iterative deepening simpli	es the
time control� Since the game trees to be searched are very well ordered� the time spent
during the 	rst iterations of the iterative deepening often provides a good approximation

���� ���ENHANCEMENTS
�

of the time necessary to search one ply deeper� On the basis of this approximation it is
much easier to make a decision whether or not to search the next iteration�

�� Even if in some cases the above mentioned approximation is wrong and the iteration can
not be 	nished in time� the program is able to play the best move computed in the previous
iteration after cancelling the search�

Since the size of the game trees that have to be searched grows exponentially in the search depth�
the method of iterative deepening can be used without introducing large overhead� Without the
move ordering information computed in previous iterations� however� the move ordering is much
worse� Therefore the method of iterative deepening is of high importance for the e�ciency of
the sequential search�

����� Aspiration Search

In many cases� especially when using the method of iterative deepening� the value of the root of
the game tree can be estimated quite exactly before the search starts� If the value of the root is
approximated to be x� then an initial search window
x� �u� x� �o� is used for the root of the
game tree� The procedure scout is then called for the root of the game tree by

y �� scout��� x� �u� x� �o��

If x� �u � y � x� �o then y has been computed exactly� If y � x� �u or y
 x� �o resp�� then
the whole game tree has to be researched with the initial search window
��� y� resp�
y��� to
compute the real minmax value of the root�

In our chess program the values of the root have often been observed to vary depending on
whether the search depth is odd or even� Therefore� the initial search window for the jth
iteration is chosen as follows�

Let Fj�� be the value of the root of the game tree computed in a j � � ply search� The search
window for the jth iteration is

Fj�� � ���� Fj�� � ��
�� if j is odd

Fj�� � ��
�� Fj�� � ���� if j is even

Here ��� is one tenth of the material value of a pawn� ��
� is a quarter of a pawn� One reason
for the variation observed in the values of the root is� that the player making the last ply on
the principal variation often is able to improve its position slightly by making the ply� while the
opponent is not allowed to counter this improvement by simply making another ply�

����� Killer Heuristic

The killer heuristic is based on the observation� that in the same level of the game tree the best
move at di�erent nodes often is the same� To recognize these moves and to put them at the top
of the move list� two so called killer moves are stored in a killer list for every level of the game
tree� In our program killer lists must not contain capturing moves� because these are sorted to
the top of the move lists anyway�

For every killer move a bonus is stored� This bonus is used to keep the killer lists sorted as
suggested by Slate and Atkin
���� The algorithm �update killer� is shown in Figure
���

�� CHAPTER �� THE SEQUENTIAL GAME TREE SEARCH ALGORITHM

procedure update killer move�t � level� z � move��
�� Let Kt be the killer list of level t�
let Kt� and Kt� be the two elements of Kt ��

begin
if �cuto� in level t� and �z is not a capturing move� then
begin

if Kt��move � z then Kt��bonus �� Kt��bonus� � else
if Kt��move � z then
begin

Kt��bonus �� Kt��bonus� ��
if Kt��bonus � Kt��bonus then exchange Kt� with Kt��

end else
begin

Kt��move �� z� Kt��bonus �� ��
end

end

end�

���� In �iterate� ����
�� Let �vr� � � � � vt� be the actual variation�
let z be the move from vt to the best successor of vt� ��

begin
update killer move�t� z�� upwards������

end�

Figure
��� Update of the killer lists

If a cuto� has been computed at some node vt in level t by the search of a subtree rooted at some
successor vt�j of vt and if vt�j is reached from vt by a noncapturing move z� then the following
algorithm updates the killer list of level t� Check� whether z is already contained in the killer
list� If so� then increment the bonus of z by one� If z has been at position two in the killer list�
then resort the killer list if necessary� If z is not contained in the killer list� then insert z at
position two with a bonus of one�

Thus� the algorithm 	rst has the possibility to store a move at position one of the killer list�
which produced a cuto� in very many cases� Storing this move makes sense� because it will
probably produce further cuto�s in the unsearched part of the game tree� Second� the algorithm
is able to store a killer move at position two of the killer list� that cuts o� some subtrees only in
a small part of the whole game tree� Such a move may be replaced quite soon by another killer
move after leaving the special part of the game tree�

���� ���ENHANCEMENTS ��

����� Principal Variation and Refutation Heuristic

By the method of iterative deepening at the beginning of a d ply search� d � �� the principal
variation of length d�� is known from the previous iteration� This principal variation is searched
as the leftmost variation during the d ply search� Furthermore� during the d � � ply search a
variation has been computed for every successor of the root not on the principal variation� which
refutes this successor compared to the successor of the root on the principal variation� The 	rst
k plies of these variations� the so called refutation variations� are used to refute the successors of
the root during the d ply search as soon as possible by making them the leftmost variations of
the corresponding subtrees of the root� This is done in the hope that the moves of the refutation
variations will su�ce to refute the successors of the root even during the d ply search� In our
program k � ��

The principal variation heuristic as well as the refutation heuristic in some positions propose a
move that should be placed at the top of the move list� because during the search to a smaller
depth it lead to the best successor� Together with the use of a large transposition table the e�ect
of these heuristics is very small� Moves proposed by the refutation heuristic for a successor of
the root are almost certainly contained in the transposition table� because collision resolving is
done in a depth oriented manner using a BCH hash function� The second ply of a refutation
variation in most cases consists of a fail move� i�e� it is not even guaranteed to be the best move
at the corresponding position at level two during the d� � ply search�

����� History Heuristic

The transposition table� the killer heuristic and the refutation heuristic propose moves� which
appeared to be good moves in some position or some level of the game tree resp�� to be sorted
to the top of the move list� In general� however� only very few moves are captured by these
heuristics� All the other moves are then sorted with the help of the history heuristic� For the
history heuristic it is assumed that a move is speci	ed uniquely by the from�square a and the
to�square b� A history table� H� then is a ��� �� matrix� in which bonuses are stored for moves
from a to b� Initially� every entry of H is set to �� If a move z from a to b causes a cuto� at
some node of the game tree� the entry �a� b� of H is incremented by one� Similarly� �a� b� is
incremented by one� if z is found to be the best move at some node v� as long as for this node
an exact value is computed�

Figure
�� contains a procedure �update history� for updating the history table� as well as the
call of this procedure in �iterate��

����� Move Ordering

With the help of the above mentioned heuristics the successors of a node v are now ordered in
the following manner�

�� If a principal variation or refutation variation is available for v� then the 	rst successor to
be searched is the successor proposed by the principal variation or refutation variation�

� If in the transposition table an entry �s� x� k� z� t� c� is found for v� then the successor of v�
which is reached via move z� is searched 	rst if z is not a fail move� i�e� v is a MAX�node

�
 CHAPTER �� THE SEQUENTIAL GAME TREE SEARCH ALGORITHM

procedure update history�z � move��
�� Let �vr� � � � � vt� be the actual variation�
let
�i� �i�� r � i � t be the search windows at level i�
let vali� lowi and highi� r � i � t be the bound variables of level i�
Let H be the history table�
let Hi�j � � � i� j � �� be the elements of H ��

var fail search� boolean�
begin

if vt is MAX�node then fail search�� valt � �

else fail search�� valt
 ��
if not fail search then
�� Let a be the from�square of z and b be the to�square of z ��
Ha�b �� Ha�b � ��

end�

���� In �iterate� ����
�� Let �vr� � � � � vt� be the actual variation�
let z be the move from vt to the best successor of vt� ��

begin
update history�z�� upwards������

end�

Figure
��� Update of the history table

and k � �upper bound� or v is a MIN�node and k � �lower bound�� In these cases the
entry for v results from a fail search� such that the best successor of v was not determined
during this search� Using the move z will often result in searching a bad successor 	rst�
In some experiments it turned out that the sequential algorithm visits a few more nodes�
if these fail moves are searched 	rst�

�� After the successor proposed by the transposition table all successors are searched� which
are reached via a positive capture move� A move is called a positive capture move� if it is a
capture move and a major piece is captured or an undefended piece is captured or a piece�
that is not defended enough� is captured� For example� a move �Knight takes Bishop� is
a positive capture� These moves are sorted in a decreasing manner according to the value
of the captured pieces� Di�erent moves capturing pieces of the same value are sorted such
that moves with minor capturing pieces are searched 	rst�

The positive capture moves seem to o�er at least material balance� Of course� this material
balance is not guaranteed� because notations like �not defended enough� can only be
approximated� The resulting move ordering of the capturing moves is usual in state of the
art chess programs� It has the advantage that the moves can be generated in the described
order� which saves sorting the moves�

�� After the successors reached via positive captures� those reached via killer moves are
investigated� as long as the killer moves are legal in position v� Here the 	rst killer move

���� IMPLEMENTATION DETAILS ��

is investigated before the second one�

�� After the killer moves� all successors reached via nonpositive capture moves are searched�
Here the move �Bishop takes Knight�� for instance� is a nonpositive capture move� because
in our program the bishops value is slightly higher than the knight�s one� The nonpositive
captures are generated in the same order as the positive captures�

�� After all the above mentioned successors have been searched� the remaining legal moves
are sorted in an increasing manner according to their history values� The corresponding
successors are searched in the resulting order�

��� Implementation Details

Many details of the implementation of the sequential search algorithm are omitted in the de�
scriptions above� Most of these details are unimportant for the structure of the game tree to be
searched� Some of them� however� like search extensions or search depth reductions as used in
many of the state of the art game playing programs� largely in�uence the structure of the game
tree to be searched� and therefore will be mentioned here� A more detailed description of the
conditions for search extensions or search depth reductions used in our program is presented by
Mysliwietz
����

Search Extensions

In many chess positions it makes sense to evaluate the subtree below this position deeper than
indicated by the remaining search depth for the position� Especially� if the player to move is in
a dangerous situation and the outcome of this situation can not be approximated statically� An
extreme example of such a situation is a leaf of the game tree� in which the player to move has
material advantage but is in check� Evaluated statically� the leaf may receive a high value for
the player to move� which� however� may be completely unrealistic� because the side to move
is mated It is possible to evaluate a mate statically� however� for this example� a mate shall be
detected by being checked without having any legal move� Of course it makes sense to search a
node like this deeper� instead of evaluating its value statically� Search extensions are introduced
into the program in order to give the computer the possibility to evaluate the outcome of the
dangerous situation better than possible by the static evaluation function� The search depth at
a leaf like the above described one is increased by one�

Search extensions are not only useful at leaves of the game tree� Even at inner nodes� in which
the side to move is in a dangerous situation� it may be helpful to evaluate the corresponding
subtree one ply deeper� in order to approximate the outcome of the dangerous situation better�
The search depth for these nodes is increased by one� as well�

Search extensions in our current chess program are domain dependent and therefore independent
of the number of processors� the information contained in the heuristics and the search windows
used�

�� CHAPTER �� THE SEQUENTIAL GAME TREE SEARCH ALGORITHM

BF− tree

tactically selective search

quiescence search

Figure
���� Search phases

Search Depth Reductions

Just as it may make sense to extend the search at a node� it may make sense to reduce the search
depth for positions� which are reached via some �obviously bad� move� These search depth
reductions help to avoid searching too many nodes in subtrees� which� with high probability�
are irrelevant for the value of the root� As an example of an obviously bad move we consider a
noncapturing� nonchecking move� which puts a major piece to a square� where it is not defended
but attacked by some opponents piece� However� if the search to a reduced search depth returns
a value� which is included in the search window� the corresponding subtree has to be researched
with the full search depth� Thus� the results of subproblems depend on the search windows
available for the actual nodes and� therefore� depend on how far parallelism is used to evaluate
this node� Checking the correctness of a parallel program� however� requires� that the sequential
and the parallel algorithm return the same result� i�e� the same minmax value of the root�
independently of the number of processors�

Therefore� for the experiments in this work search depth reductions are not used�

Brute Force Search
 Selective Search
 Quiescence Search

In chess programs today� it is usual to search only a few successors of the inner nodes at a
larger level of the game tree� even if no cuto� is computed at that node� In the upper part
of the tree� the so called brute force tree� all successors of inner nodes are searched� The part
below the brute force tree is denoted by selective search tree� In this part� only those moves are
searched which look interesting �at a 	rst glance�� In a third phase� called quiescence search�
only the moves leading to more quiet positions� i�e� the moves resolving tactical di�culties� are
investigated� Capturing moves� especially� are searched during the quiescence search� Some of
the moves creating very heavy threads� may be considered also�

During the selective search phase and the quiescence search� important moves may be overlooked
by the static procedure while deciding which move to search and which not� This leads to an
erroneous evaluation of a position� an e�ect widely known as the horizon e�ect� Even commercial
top machines su�er heavily from horizon e�ects� The mistakes made are the worse� the higher
they happen in the game tree� since the opponent has the best chance to recognize them at this
point�

���� HARDWARE FOR THE SEQUENTIAL ALGORITHM ��

In our chess program we use selective search very rarely� Instead of doing a pure quiescence
search at the leaves of the brute force tree� we extend the quiescence search by including some
tactical threads like knights or pawns forks� moves of free pawns to the �th or �th rank� etc� at
the leaves of the brute force tree as well as during the next three plies of the quiescence search�
Moves� which might be important for the positional value of the positions were� at the time of
writing� not included in the quiescence search� such that for the program version presented in
this work� one should talk about a tactically selective search or an extended quiescence search
respectively� Therefore� in the following all the nodes of the selective search tree and of the
quiescence search tree are denoted quiescence search nodes� Figure
��� shows the di�erent
search phases�

Characteristics of the Quiescence Search

The searches at the inner nodes of the brute force tree di�er from the searches at the leaves of
the brute force tree and the quiescence search nodes in another important point� At the leaves
of the brute force tree and at the quiescence search nodes a cuto� may be computed without
searching any successor� Before the 	rst successor is generated� the static evaluation of such a
node is computed� This value is used as if it were the exact value of a successor� By this we
obtain a dramatic reduction of the size of the quiescence search trees�

This method� however� has the disadvantage that the static evaluation function may return an
erroneous value� as described above� Therefore� the use of the static evaluation function to
produce additional cuto�s is not allowed� if the player to move has to face a serious threat� By
this� not all� but many of the erroneous evaluations are avoided� In most of the quiescence search
nodes and brute force leaves the use of the static evaluation is allowed� We note the following

Observation ��� Subtrees of the quiescence search trees di�er in the following two points from
subtrees of the brute force tree�

�� They are more narrow and more irregular in depth�

�� Cuto�s may be obtained without searching any successor by simply computing the static
evaluation function of a node�

��� Hardware for the Sequential Algorithm

For most of our experiments we use the T��� Transputer of Inmos� The T��� is a Risc processor
with four bidirectional links� which may be connected to other Transputers� The transmission
rate is
� Mbit�second simultaneously in both directions�

Figure
��� shows the T��� Transputer� Each processor has � MByte main memory� The clock
rate is
� MHz� According to information from the manufacturers from ����� the T��� is able to
run at a speed of �
�� MIPS and ��� MFLOPS� It should be noted here� that our chess program
ZUGZWANG does not use any �oating point operations�

The Transputer supports the scheduling of quasi�parallel processes by a hardware scheduler�
With the help of this hardware scheduler the CPU is able to e�ciently run quasi�parallel pro�
cesses and to communicate via all four links in both directions in parallel�

�� CHAPTER �� THE SEQUENTIAL GAME TREE SEARCH ALGORITHM

L i n k 2

L i n k 0

L

n
k
1

i
L

n
k

i

3

CPU

FPU

4 MByte
Main Memory

Figure
���� Schematic description of a Transputer

In Chapter � of this work we will present experiments which are based on the T��� Transputer�
The T��� di�ers from the T��� by the increased clock rate of �� MHz� and thus runs at a speed
which is exactly �

	 times the speed of the T����

Both Transputers support the use of the programming language Occam� which is used for the
implementation of ZUGZWANG� A description of Occam can be found in the book of Burns
����
For the description of parts of the program in this work� however� the use of Occam constructs
was avoided�

��� Performance of the Sequential Algorithm

In this section we will show� by using various statistics� that the sequential version of our chess
program� ZUGZWANG� with the help of the heuristics described in Section
�
� searches game
trees very e�ciently� Furthermore� we will describe data from experiments� which will be the
basis for speedup measurements in Chapter ��

����� Description of the Set of Test Positions

In all experiments presented in this work we will use the
� positions B��� � � � � B
� of the
Bratko Kopec test
��� as test input for our algorithm� Originally these positions were used to
check the playing strength of chess programs� Included are a mating problem� B��� positions

���� PERFORMANCE OF THE SEQUENTIAL ALGORITHM ��

from the opening phase� e�g� B��� from the middle game� e�g� B��� and from the endgame� e�g�
B��� In Section B of the Appendix the
� positions of the Bratko Kopec test are shown�

The best move computed by our program in an ��ply search di�ers in � positions �B��� B���
B��� B�� and B
�� from the best move found during a ��ply search� This corresponds to a
rate of
��� � In ten subsequent games against other computers� ZUGZWANG changed the
best move during the last iteration in ���� of the moves� In ten subsequent games against
humans rated around
��� ELO it changed the best move in the last iteration in
��� � Thus�
the positions of the Bratko Kopec test set can be regarded to be representative with respect to
the ordering of the successors of the root�

In Chapter � we will discuss the results of our algorithm obtained from the �� to �� and ���ply
searches� Here� searching to a search depth of �� means searching the positions B��� B��� B���
B�� and B�� with a search depth of � and all the other positions with a search depth of �� B���
B��� B�� and B�� will have the longest running times of an ��ply search with
�� processors�
a ��ply search of position B�� could not be 	nished without an over�ow of some statistics� such
that no statistical data is available for a sequential ��ply search of B���

����� Data for Di	erent Search Depths

Most of the experiments presented in this work were done for ��ply searches on the Bratko Kopec
positions� Table
�
 contains the results of the sequential Scout�algorithm for ��ply searches on
the
� positions B�� to B
��

The lower part of Table
�
 contains� the results for the search depths �� �� � and ��� summed
up for all the
� positions� The second column of Table
�
 contains the move computed for
the corresponding position� It is marked with a �!�� if it is a solution of the position� The third
column contains the minmax value of the root� Here ���� points is the material value of a pawn�
The fourth column shows� whether this move was already the best move of the ��ply search �Y��
In these positions� the 	rst successor of the root is the best successor of the ��ply search� The
	fth column gives the depth of the deepest nodes visited� The sixth column contains the number
of nodes visited in the brute force tree including the leaves� The seventh column contains the
number of nodes visited below the leaves of the brute force tree� The eighth column gives the
time needed for the ��ply search in seconds�

Observation ��� During an ��ply search the sequential Scout�algorithm visits roughly �
� per
second on the average�

����� Scout vs� ��

The data contained in Table
�� results from �� to ��ply searches of the sequential ���algorithm
instead of the Scout�algorithm� We note�

Observation ��� The ���algorithm visits between ��� to ��� more nodes and needs between
��� and ��� more time than the Scout�algorithm�

One reason for the decreasing advantage for deeper searches of the Scout�algorithm compared
to the ���algorithm may be given by Observation
�� on page �
�

�� CHAPTER �� THE SEQUENTIAL GAME TREE SEARCH ALGORITHM

Dpth ��� Move Value First Maxdpth "BFT�nodes "QS�nodes time

B�� d��d�! ����� Y ��
�� ���

B�
 e��e� ��� Y
� ������� ������� ���

B�� f��f�! �� Y
� �

����
������ ��
��
B�� e��e�!
�� N �� ������� ��
����� �
����
B�� c��d�! ���� Y
� �
�
����
�
����� �����
B�� g��g�! ��� Y �� ������ ����� ���
B�� h��f�! ��� Y �� ������� �������

���
B�� f��f�! ��� Y

 ������ ����� ��

B�� f��d�

�� N
� �
����� ���
���� �����
B�� c��e�! ���� Y
� �
�
��� �
�����
�
��
B�� f
�f�! �
� Y �� ������� ������� �����
B�
 d��f�!
�� Y
�
�
��
� ���
��� ��
�

B�� a��c�
�� N
� ����
��
������ �����
B�� d��d
! ���� Y �� �������
��
���� �
�
�
B�� g��g�! ��� Y
� �������

������ �����
B�� d
�e�! ��� Y
� ������� ����

� �����
B�� h��h� ���� N
� �
�����
������ �����
B�� f��f�
�� Y �� ���
��� �����

� ����

B�� e��e�! �
� Y
�
�
����
������ ����
B
� c��b� ��� Y
� �������
������ ��
��
B
� f��h�! ���� Y �� ������� ��
�
�
� �����
B

 b��e�! �
� Y
� ������� �������
��
�
B
� c��f� �� Y �� ������� �
���
�
��
�
B
� f
�f�! ��� N
� ������� �

����� ����

�� ��� � �� �����
���
���
���� ���

�

� ��� ������
 ������ ����
� ��� �

��� �
���
� �����
� ���
���
���
������� ������
� ���� ��
������ ���������
�
�
��

Table
�
� Sequential search with the Scout�algorithm

"BFT�nodes "QS�nodes time

� ��� ����
�� ������
 �
��
� ��� �
����� ������� �����
� ���
����
�� �������� ������
� ��� ���������
��
�
��� ������

Table
��� Sequential search with the ���algorithm

���� PERFORMANCE OF THE SEQUENTIAL ALGORITHM ��

1

2

3

4

5

6

1 4 8 12 16 20 24
Positions

DISTANCE FROM THE MINIMAL GAME TREE

BF
QS

Figure
��
� Distance from the minimal game tree� Scout� ��ply search

����� Distance from the Minimal Game Tree

One measure for the e�ciency of a sequential game tree search algorithm� is the size of the game
tree visited compared to the size of the minimal game tree� In order to measure the size of the
minimal game tree we use the de	nition of the type of a node for the nodes of the minimal game
tree from Knuth and Moore
����

De�nition ��� �Type of nodes�

Let G � �V�E� f� be a game tree with root �� Then the partial mapping

type � V � f��
� �g
is de�ned by

type��� �� �
type�v�j� �� � if type�v� � � and j � �
type�v�j� ��
 if type�v� � � and j � �
type�v�j� �� � if type�v� �
 and j � �
type�v�j� ��
 if type�v� � �

Otherwise type is unde�ned�

�� CHAPTER �� THE SEQUENTIAL GAME TREE SEARCH ALGORITHM

Through the mapping type exactly the nodes of the minimal game tree of G get associated a
type�

De�nition ��� �minimal game tree�

The minimal game tree M � �VM � EM � f� of a game tree G � �V�E� f� is de�ned to be

VM �� fv � V j type�v� is de�nedg and
EM �� f�u� v� � E j u� v � VMg

Slagle and Dixon
��� were the 	rst to show that the minimal game tree of a b�d � uniform game
tree has exactly bdd��e� bbd��c� � leaves� Knuth and Moore
��� showed that the minimal game
tree can be identi	ed by using de	nition
��� We will use this de	nition to count the nodes of
the minimal game tree visited during the search of the game tree�

De�nition ��� �Distance from the minimal game tree�

Let G � �V�E� f� be the game tree visited by the sequential game tree search algorithm and let
M be its minimal game tree according to de�nition ���� Let m be the number of nodes of the
minimal game tree visited and let n be the total number of nodes visited� Here nodes visited more
than once due to researches are counted every time they are visited� Then we de�ne

�min ��
n

m

to be the distance from the minimal game tree�

In the case of a research at a node v the minimal subtree of the subtree rooted at v in part may
be visited twice and will then be counted twice for the computation of �min� It always holds
�min
 ��
Figure
��
 shows the distance from the minimal game tree for an ��ply search of the Bratko
Kopec positions using the Scout�algorithm� separated in the brute force parts and the quiescence
search parts of the game trees searched� It becomes clear� that the distance from the minimal
game tree� with the exception of B��� is smaller in the brute force tree than in the quiescence
search� The reason for this is the use of the transposition table� which allows very good move
ordering in the brute force part of the tree� However� it is not used in the quiescence search�
The move ordering of the brute force tree of B�� is very poor� because the best move changes
several times from depth to depth� The average distance from the minimal game tree is ��
� in
the brute force tree and ���� in the quiescence search� We note�

Observation ��� The average distances from the minimal game tree of ��
� and ���� resp�
show� that the sequential algorithm generates very well ordered search trees� The only signi�cant
exception in the Bratko Kopec set of positions is position B�� having distances of ���� and

���resp�

The di�erence in the ordering of the successors of nodes in the brute force search and the
quiescence search is expressed also in the statistics about cuto�s in Table
��� The 	rst two lines
show� that ����� of all the cuto�s are caused by the 	rst successor of a node� if this successor is
an inner node or a leaf of the brute force tree� In the quiescence search tree ����� of the cuto�s

���� PERFORMANCE OF THE SEQUENTIAL ALGORITHM ��

Cuto�s by any successor
 �� Pos Kil Neg Norm

BFT ����� ���� ��
� ���� ����
QST �����
��� ���� ���� ���

Cuto�s by right successors
 Pos Kil Neg Norm

BFT ����� �����
��
�
���

QST �
��� ���
�
���� �����

Table
��� Cuto�s in the BFT and QST

are caused by the 	rst successor� Here the 	rst move may have been an arbitrary move� e�g�
from the transposition table� from the killer lists� etc� In the ordering of the moves presented on
page ��� the 	rst move is usually followed by the positive captures� which in the brute force tree
cause a percentage of ���� of all the cuto�s� and in the quiescence search even a percentage
of
��� � The positive captures are followed by the killer moves� and the nonpositive captures�
All the other nodes are summed up in the column �Norm�� In the third and the fourth lines
the percentages of cuto�s caused by the di�erent sets of moves but not by the 	rst successor are
shown� It becomes clear� that in the brute force tree the moves delivered by the killer heuristic
do well� The killer moves produce ����� of all the cuto�s caused by right successors� which is
more than caused by any other class of moves� In the quiescence search tree this fraction must
obviously be reduced� since in this part of the tree at almost all inner nodes only capturing
moves are generated�

Observation ��� During the brute force search almost �� of all the cuto�s are caused by left
successors� During the quiescence search this fraction reduces insigni�cantly to �� �

Observation ��� During the brute force search almost �� � during the quiescence search more
than �� of all cuto�s caused by right successors are caused by positive capture or killer moves�

����� The E	ects of the Transposition Table

Observation
�� states� that most of the cuto�s are achieved by evaluating only the 	rst successor�
The 	rst successor is often reached via a move from the transposition table�

Table
�� contains statistics for the transposition table� It contains the percentage of successful
accesses of the read� and the store�operations for the ��ply to ��ply searches� The columns
�value�� �bound� and �move� show the percentage of how often the exact value� the bound or
only the move delivered from a read�operation could be used� with respect to the total number
of read�accesses� The column �collisions� presents the percentage of collisions with respect to
the total number of store�operations� In the case of a collision one of the old or new entry is
deleted� The column �Xcoll� contains the percentage of collisions� which were to be expected� if
all entries were stored independently and identically distributed in the transposition table� This
expected number of collisions is de	ned as

�
 CHAPTER �� THE SEQUENTIAL GAME TREE SEARCH ALGORITHM

read � � store � �
search depth value bound move collisions Xcoll

� ������ ����� �����
��� ����
� ������
���� ���� ����� �����
� ������

�
� ����� ����� �����
� ������ ����� ��
� ����� �����

Table
��� Accesses to the transposition table

De�nition ��	 �expected number of collisions�

Let m be the number of transposition table entries� let i�� � � � � is � f�� � � � � m� �g be the indices
of a sequence of s store�operations for s pairwise di�erent positions� Then the expected number
of collisions e is de�ned by

e � s�m � ��� �m� �
m

�s��

e is the number of collisions� which one would expect for a hash function mapping all the positions
independently and identically distributed into the hash table�

Here �m��
m �s is the probability� that an entry of the table is still empty after s store�operations

for s pairwise di�erent positions� if the hash function maps the positions identically distributed
and independently into the set of indices� Then m � �� � �m��

m �s� is the expected number of
nonempty entries after s store�operations� and therefore e is the expected number of collisions
after s store�operations�

The expected number of collisions was computed for every game tree� which was searched for the
above described experiment� The sum of these numbers gives the expected number of collisions
for the whole experiment�

We note the following observations�

Observation ��� The BCH hash function shows a good behaviour even for a small table size of
������ entries� The expected number of collisions is only insigni�cantly smaller than the number
of collisions measured�

Observation ��	 The transposition table is overloaded during an ��ply search� Nearly �� of
the store�operations cause a collision and therefore the loss of one entry� Even during a ��ply
search nearly �� collisions indicate a slight overload�

The last observation may give a reason for the decrease of the advantage of the Scout�algorithm
compared to the ���algorithm with larger search depths� Researches occurring in the Scout�
algorithm may become ine�cient with larger search depths� since the transposition table is
overloaded then� The advantage of the Scout�algorithm nearly disappears�

We would like to conclude� that the sequential algorithm is a very e�cient game tree searching
procedure� even if the transposition table is heavily overloaded for the deeper searches� The
Scout�algorithm is slightly superior to the pure ���algorithm�

Chapter �

The Parallel Game Tree Search

Algorithm

��� Hardware for the Parallel Algorithm

The parallel computer used for our experiments is based on the T��� resp� T��� processor
already described in Section
��� Both processors have four links� which enable the processors to
communicate with other processors� Therefore processor topologies of degree four are preferred�

With the exception of the experiments of Chapter � all data described in this book are measured
on a Parsytec SC �
� machine� The basic part of this parallel computer is the T��� Transputer�
The links of the T��� processors are connected to switches in such a way� that every commu�
nication network of degree four can be realized� A detailed description of the communication
hardware can be found in the paper by Funke et al�
����

Using this machine we are in the position to use the DeBruijn network as de	ned below�

The DeBruijn network was 	rst described by DeBruijn
���� It is easily de	ned with the help of
the following permutations�

For all n � NI and all v � vn � � � v� � f�� �gn we de	ne
s � f�� �gn � f�� �gn

vn � � � v� � vn�� � � � v�vn

to be the shu�e function and

e � f�� �gn � f�� �gn
vn � � � v� � vn�� � � � v�$vn

to be the exchange function� Here $vn denotes the complement of vn�

De�nition ��� �DeBruin network�

The DeBruijn network of dimension n� DB�n� � �Vn� En�� is de�ned as�

Vn � f�� �gn
En � ffv� s�v�g� fv� e�v�g j v � Vng

��

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

0000

Host

00011000

0100 0010

1001

1100 1010 0101 0011

0110

1101 1011

1110 0111

1111

Network master

Figure ���� Debruijn network of dimension four� DB���

The DeBruijn network has two nodes of degree two� �n� and �n� A host processor is connected
to �n� which is responsible only for the input and the output� �n becomes the network master�
A DeBruijn network of dimension four is presented in Figure ���

Moreover� the DeBruijn network has two nodes� ���� � � � and ���� � � � � which are connected by
two edges �In Figure ��� only one edge is included�� One of these edges may be deleted� Instead
of this edge we insert two new edges from ���� � � � to �n and from ���� � � � to �n into the network�
We get a communication structure� in which one processor� �n� is connected with three other
processors� All the other processors have four neighbors�

The modi	cations described above do not in�uence the performance of our distributed algorithm�
Therefore� we will simply use the notion �DeBruijn network� for the modi	ed DeBruijn network�

The possibility to set up arbitrary topologies in the Parsytec SC �
� allows us to build other
networks besides the DeBruijn network� such that a comparison of di�erent communication
networks is possible with the same machine�

Other than the DeBruijn topology� we also use the following topologies�

���� HARDWARE FOR THE PARALLEL ALGORITHM ��

Host

 0,0 0,1 0,2 0,3

 1,0 1,1 1,2

 2,0 2,1 2,2

 3,0 3,1 3,2 3,3

 2,4

 1,3

Network master

Figure ��
� A �� � � torus

De�nition ��� �Grid� Torus�

The n�m � grid G�n�m� � �VG� EG� is de�ned as follows�

VG � f�i� j� j � � i � n� � � j � mg
EG � ff�i� j�� �i�� j��g j ji� i�j� jj � j�j � �g

The n�m � torus T �n�m� � �VT � ET� is de�ned as�

VT � VG
ET � EG 	 ff��� j�� �n� �� j�g� f�i� ��� �i� n� ��g j � � i � n� � � j � mg

To connect the host processor to the torus� the edge between the processors ��� �� and ��� �� is
deleted� The corresponding links are connected to the host processor� Using the grid topology�
the host processor is connected to the processor ��� ��� A � � � � torus is shown in Figure ��
�
a �� � � grid is shown in Figure ���� Both networks are modi	ed in order to connect the host
processor�

����� Comparing DeBruijn Network
 Torus and Grid

In the DeBruijn network the diameter � grows logarithmically in the number of processors of
the network� Thus� the average distance �� between two processors grows logarithmically as
well�

The communication networks used in modern parallel computers are often grids or toruses�
In these networks the diameter� as well as the average distance between two processors� is of
order

p
N� where N is the number of processors used� Thus� the DeBruijn network is superior

in terms of the diameter and the average distance� however� grids and toruses are used� since
they have a clear structure and are easily scalable�

Table ��� shows the diameters and the average distances �� resp� ��� of our slightly modi	ed
DeBruijn network �upper part�� torus �medium part� and grid �lower part��

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

Host

 0,0 0,1 0,2 0,3

 1,0 1,1 1,2 1.3

 2,0 2,1 2,2

 3,0 3,1 3,2 3,3

 2,4

Network master

Figure ���� A �� � � grid

��� Related Work

In this section� we will present a short overview of other publications regarding parallel game
tree search� A list of the most important results is presented in Table ��� on page ���

����� Parallel Static Evaluation�Move Generation

The static evaluation function� as well as the move generation� allow parallelization� For example�
all features of the static evaluation of a position may be computed in parallel� and then be
combined to the 	nal value� or all legal moves of a position may be generated in parallel� Chess
machines like BELLE or DEEP THOUGHT use these possibilities with special hardware� Even
a chess program like CRAY BLITZ implicitly uses parallel static evaluation and move generation
by running the program on vector processors� A description of these machines can be found
in
����
��� and
���� Such a parallelization leads to a 	ne grain parallelization� which is most
useful when special hardware is used�

����� Parallel Window Search

Baudet
�� describes a parallel window search� for which the processors are searching the game
tree with disjoint search windows� He notices a maximum speedup between � and � independent
of the number of processors searching random trees� Observation
�� on page �� shows� that
by using the state�of�the�art heuristics to sort moves� the game trees searched are only slightly
larger than the minimal game tree on the average� i�e� the sequential algorithm searching a b�d
� uniform game tree visits

c � �bdd��e� bbd��c � � �

leaves of the game tree for some small constant c� In our algorithm� c �
��
� for almost all
game trees that are searched� A parallel window search� using n processors and disjoint search

���� RELATED WORK ��

DeBruijn � � � � � � ��
N �� �
 �� �
�
�� ��
 ��
�

� � � � � � � ��
��
��
�� ��� ��
 ��� ��� ���

Torus �x� �x� �x� �x�� ��x�� ��x�
 �
x�

N �� �
 �� �
�
�� ��
 ��
�

� � � � �
 ��
� �

��
 � � � � �
 ��

Grid �x� �x� �x� �x�� ��x�� ��x�
 �
x�

N �� �
 �� �
�
�� ��
 ��
�

� � �� ��

 �� �� �

��
�� ��� ��� ��� ���� ����
���

Table ���� Distances in some DeBruijn� torus and grid networks

windows� visits at least

�n� �� � bb d� c� �z �
n�� Failsearches

� bdd��e� bbd��c� �� �z �
minimalgametree

leaves of the game tree� It follows immediately� that the parallel window search is not suited for
well ordered game trees�

����� Game Tree Decomposition

The Algorithm of Finkel and Fishburn

The 	rst algorithm to search game trees by decomposing the tree into disjoint parts and searching
these parts in parallel� is due to Finkel and Fishburn

�� ���� Their concept is based upon a
game tree decomposition and a static distribution of the processors by mapping a processor
tree onto the upper part of the game tree� The root of the game tree is assigned to the root
of the processor tree� Every inner processor of the processor tree generates the successors of
the position that is assigned to it� and keeps them in a queue to assign them successively to its
successors in the processor tree� The leaf processors search the subproblems assigned to them
using the sequential ���algorithm� They then return the values they have determined to their
fathers in the processor tree� A new subproblem� rooted at a brother of the root of the former
subproblem� then� is assigned to them� if such a subproblem exists� If only the minimal tree of
a b�d � uniform game tree has to be searched� then this algorithm achieves a speedup of O�

p
n�

using n processors� In simulations� a speedup of ���� was achieved using
� processors arranged
in a processor tree of depth � and width ��

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

Mandatory Work First

Akl� Barnard and Doran
�� describe the �Mandatory Work First��algorithm� In a 	rst phase
this algorithm searches only nodes� which have to be searched by a sequential search algorithm�
which uses only direct cuto�s� Afterwards� those subproblems are searched that are not yet cut
o�� This succession is guaranteed by using a priority queue for processes� Akl et al� conjecture
that the speedup achievable by this algorithm is� at most� � independent of the number of
processors�

The PV�Split�Algorithm

Marsland and Campbell
��� ��� describe the PV�Split�algorithm� The algorithm makes use
of the fact� that game playing programs using state�of�the�art heuristics for move ordering� in
general� search very well�ordered game trees� Therefore� along the leftmost variation of the game
tree� all processor are 	rst used to search the left subtree in parallel and then to search all the
right subtrees in parallel� The subproblems itself are then searched as proposed by Finkel and
Fishburn
���� Experiments by Marsland and Campbell
��� show� that the PV�Split�algorithm
is up to �� faster than the algorithm of Finkel and Fishburn
���� Speedup measurements of
Marsland and Popowich
��� resulted in a speedup of ��
 with � processors using the PV�Split�
algorithm�

The methods described so far are mainly of theoretical interest� They are lacking dynamic
load balancing possibilities� which allow a decomposition of the game tree in accordance to its
unregular structure� The PV�Split�algorithm still uses the fact that the game trees occurring
in practice are very close to the minimal game tree� However� this fact is used only along the
leftmost variation of the game tree� The algorithm does not make use of the fact that the right
subtrees are very well�ordered� also� The PV�Split�algorithm� however� is the basis for most of
the implemented parallel game tree search algorithms�

Applications of the PV�Split�Algorithm

The PV�Split�algorithm has been implemented in several game playing programs� Newborn
���
achieved a speedup of ���� with � processors� He used a uniform distribution of the successors
of a type�� node onto the processors� This distribution is corrected if a processor becomes idle�
by redistributing the moves not yet searched onto the processors uniformly again� Marsland�
Olafsson and Schae�er
��� describe an implementation in the chess program SUNPHOENIX�
which achieves a speedup of ���� with � processors� For their implementation� the authors
expected a speedup of� at most� ���� independent of the number of processors� mainly because
the load distribution is poor�

Schae�er
��� describes the Dynamic PV�Split�algorithm� In this algorithm a control processor
is allowed to dynamically change the processor tree� The processors start working according to
the PV�Split�algorithm� which allows the use of parallelism along the leftmost variation of the
game tree� A processor� which is assigned a subproblem with a root v� now starts the PV�Split�
algorithm� Thus� parallelism can be used to evaluate the subtrees along the leftmost variation
of the subtree with root v� No other parallel evaluation of subtrees is allowed� Therefore the
Dynamic PV�Split�algorithm includes dynamic load distribution� however� this load distribution
remains incomplete and is organized by one central processor� which is a bottle neck�

���� RELATED WORK ��

Hyatt
��� and Hyatt� Suter and Nelson
��� resp�� describe a parallel algorithm based on the PV�
Split�algorithm� which is called EPV�Split�algorithm� It uses the following strategy to shorten
the idle times caused by processors waiting for some results of their brothers in the processor
tree� If a processor becomes idle at a time� at which his father is not able to send it another
subproblem� then it stops the searches of all its active brothers� All the processors are restarted
in one of the active subtrees two levels deeper in the tree� This rigorous load distribution technic
results in an improvement of the speedup from ���� to ���� using �� processors� as compared to
the basic PV�Split�algorithm�

Dynamic PV�Split�Algorithms

Ferguson and Korf

�� describe a parallel game tree search algorithm� which is called �Bound
and Branch Algorithm�� It enables dynamic load distribution by allowing the use of parallelism
at a node only after a bound is computed for it� This algorithm was implemented in a checkers
program� At the same time we developed the �Young Brothers Wait Concept� and used it in a
chess program of minor playing strength� The results are described in the literature

��

�
���
In both programs important heuristics for move ordering were not implemented� Otto and
Felten
��� implemented a dynamic parallel game tree search algorithm in their chess program
WAYCOOL� which allows parallelism at a node of the game tree only if a transposition table
entry was found for that node� If in the transposition table a move is found for some node� then
the corresponding successor is searched 	rst� Parallel evaluation of successors of this node is
allowed only after the search of the 	rst successor is 	nished� If there is no transposition table
entry available for some node� then all the successors of this node may be evaluated in parallel�
Otto and Felten achieved a speedup of ��� with
�� processors� as compared to the suboptimal
sequential ���algorithm� The results of this work are improvements of the parallel game tree
search algorithm described earlier

��
���

Parallel SSS�

The SSS��algorithm is a Branch % Bound algorithm for game tree search� It was developed
by Stockman
���� The SSS��algorithm does not generate any node of the game tree� that is
not generated by the ���algorithm� however� just as all Branch % Bound algorithms� the space
requirement of this algorithm is enormous� Roizen and Pearl
��� show� that the SSS��algorithm
asymptotically has the same time complexity as the ���algorithm� Vornberger and Monien
���
describe problems arising in an implementation of a distributed SSS��algorithm� Kraas shows by
simulations
���� that the SSS��algorithm parallelizes well� if the list of living subproblems used
in this algorithm is kept on a single processor� These simulations showed a speedup of roughly
�� with �� processors� For massive parallel systems� however� the single processor organizing
the list of living subproblems is a bottle neck�

The Algorithm of Hsu

Another approach using a distinguished processor was proposed by Hsu
���� A special processor
searches the game tree to a depth d� All nodes of level d are queued in two di�erent FIFO�queues�
which are realized by a bus system� The 	rst queue only contains the nodes of the minimal game
tree� the second queue only contains the nodes� which are not in the minimal game tree� The
nodes in these queues are searched by slave processors to a depth of d� with the sequential

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

algorithm� Subproblems from the 	rst queue are searched 	rst� The slave processors return the
results of their searches to the distinguished processor searching the upper part of the game tree�

The search of the game tree to depth d uses the �Delayed Branching Scheduling Strategy�� which
guarantees that the parallel version will 	nd any direct cuto�� In this algorithm there are two
bottlenecks� First the distinguished processor� which has to search the upper part of the game
tree such fast� that all slave processors are kept busy� Second the bus system� which realizes
the queues for subproblems� Hsu
��� shows� that a fast chess machine like DEEP THOUGHT
is able to search the upper part of the game tree fast enough� Simulations showed a speedup
of roughly ��� with ���� processors� The average processor work load was �� � At the time of
writing the machine had not yet been realized�

Theoretical Results

Independent of each other� three papers concerning a theoretical analysis of parallel game tree
search algorithms were published within the last few years� Alth�ofer
�� presents a game tree
search algorithm and shows that it achieves average speedup linear in the number N of proces�
sors� if the depths of the game trees to be searched are at least &�N � log N�� Karp and Zhang

��� show for their algorithm a worst case speedup linear in the number N of processors� if the
depths of the game trees to be searched are at least &�N�� Harting
��� improves the result of
Karp and Zhang for binary bivalued game trees by presenting an algorithm� which achieves a
speedup of � ����

k �Nk with Nk processors in game trees of depth N for all k � NI �

Concluding�

Table ��� contains a summary of the speedups achieved in some of the above mentioned im�
plementations in the lines marked with �SPE�� Speedups� which were measured by simulations
are marked �� The lines marked �N�� contain the numbers of processors used to achieve the
speedups� The lower lines show the resulting e�ciencies�

Lit�

�
���
���
���
���
���
���

Random Checkers chess chess chess chess chess
SPE �� ����� ��
 ���� ���� ���� ����
N ��
� � � � � ��
EFF ���� ���� ��� ���� ���� ���� ����

Lit�

��

�
���
���
���

�� hier

Dame chess chess chess�Random chess chess chess
SPE �
 ���� ��� ��� ���� �
��� ������
N �
 ��
�� �� ����
�� ��
�
EFF ����� ���
 ���� ���� ���� ���� ����

Figure ���� Results of parallel game tree search algorithms

The results of this work di�er in� at most� one of the following aspects from all the other
publications mentioned above�

���� DYNAMIC GAME TREE DECOMPOSITION ��

�� The results in this work are not achieved by simulation� but by the use of real parallelism�

� The algorithm parallelized is the Scout�algorithm� which is superior to the pure ���
algorithm�

�� The sequential algorithm uses all state�of�the�art heuristics and� therefore� searches game
trees very e�ciently�

�� The parallel algorithm runs e�ciently� even on massive parallel systems�

�� The parallel algorithm is implemented in a chess program� which has been shown to be
good� The version presented in this work successfully played several tournaments� A
successive version 	nished second at the World Computer Chess Championships in ���
�

�� The results of our algorithm were achieved on a loosely coupled system� which is a parallel
architecture realizable nowadays�

��� Dynamic Game Tree Decomposition

Our parallelization of the Scout� or the ���algorithm respectively is based on a decomposition
of the game tree to be searched� and on a parallel evaluation of the resulting subproblems� The
sequential Scout�algorithm is a depth 	rst search algorithm� It visits the nodes of the tree to
be searched from left to right� To do so� an actual variation is stored in memory� All the nodes
to the left of this variation have been visited� or� visiting these nodes has been shown to be
super�uous� The nodes to the right of this variation have not yet been visited� The idea of the
parallelization of such a tree search is now to make available as much of the right brothers of
the nodes on the actual variation for parallel evaluation as possible� By this� several processors
may start a tree search on a subtree of the whole game tree� These processors build up actual
variations for themselves� and thus make available the right brothers of the nodes on their actual
variations for parallel evaluation�

With this we get a concept for a parallel algorithm� The e�ciency of such an algorithm depends
heavily on e�cient solutions for the following problems�

�� Establishing a master�slave relationship�
Every processor searching a subproblem generates subproblems for itself� which may be
searched in parallel by other processors� Thus� it is a potential master� An idle processor
is a potential slave� In order to make an idle processor busy it has to receive a subproblem
from one of the working processors for parallel evaluation� A master�slave relationship has
to be established� The e�ciency� which is achieved for the subalgorithm of establishing
a master�slave relationship will determine the processor work load in massively parallel
systems�

� Distribution of information in the distributed algorithm�
The sequential ���algorithm allows many cuto�s in the game trees� that occur in practical
applications like a chess program� The number of cuto�s� and thus the e�ciency of the
sequential search� is heavily in�uenced by the quality of the 	rst successors of the inner
game tree nodes� The sequential search algorithm uses the information computed during
the search of the left parts of the tree to improve the ordering of successors of inner game
tree nodes� as well as to tighten the bounds which allow the cuto�s� In our concept for

�
 CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

a parallel game tree search this successive improvement of the information available for
move ordering and the tight ���bounds can be realized by communication between the
processors�

If this communication does not su�ce to supply the processors with information similar
to the information available to the sequential algorithm� then the parallel algorithm may
loose a lot of cuto�s which would have been computed by the sequential one� The parallel
algorithm visits more nodes than the sequential one� Search overhead arises�

If the communication for the distribution of information increases too much� then the
processor work load will decrease� A possible small improvement of the search e�ciency
by the distribution of information can not compensate for a very poor processor work load�
There is a tradeo� between processor work load and search overhead�

�� Restricting the use of parallelism to avoid search overhead�
Game trees occurring in practice are very similar to the minimal game tree� i�e� many
cuto�s occurring in the minimal game tree will also occur in the game tree that has to
be searched� Even if the available information about cuto� bounds etc� is distributed
optimally� in some situations it may not make any sense to use parallelism� The parallel
algorithm may visit only nodes� which the sequential one would not search� In situations
like this� one would prefer an idle processor to remain idle for a short time and then to
begin working on a subproblem which is useful to evaluate� rather than to begin working
on a subproblem immediately� which is irrelevant with high probability� Here the tradeo�
between processor work load and search overhead can be observed once again� If parallelism
is used too carefully� the processor work load and the search overhead may both decrease�
If parallelism is used too rashly� the processor work load may increase� but so does the
search overhead�

For establishing the master�slave relationships we were able to use results we received in other
tree searching algorithms

�� ���� In this work we will present methods for an e�cient sharing
of information in a distributed system� Furthermore� we will investigate some methods� which
reduce the search overhead but decrease the processor work load� and methods� which increase
the processor work load but increase the search overhead too�

��� Basic Version of Our Parallel Scout�Algorithm

����� Start of a Master�Slave Relationship

In the initial status of the algorithm all processors are idle� The host processor reads the root
position and sends it to a processor called network master� In the following� this processor
behaves just like any other processor in the network�

A processor� which receives a subproblem� is alone responsible for the correct evaluation of this
subproblem� It starts the search of this subproblem as in the sequential algorithm� i�e� it does
a depth 	rst search in the corresponding subtree� By this� an actual variation of subproblems
is built and other subproblems are generated� which are stored for later evaluation according
to the method of depth 	rst search� These subproblems may be sent to other processors for
parallel evaluation�

���� BASIC VERSION OF OUR PARALLEL SCOUT�ALGORITHM ��

An idle processor starts its search for work by randomly choosing an arbitrary processor in the
network� It then sends a

REQUEST � �s� e�

to it� Here s and e are the processor numbers of the sender and the receiver of the message�
The search for work is described in Figure ����

procedure start search for work���
�� Let "proc be the number of processors in the network�
let p be the own processor number ��

begin

e�� random���"proc� ���
send a request �p� e� to processor e�

end�

Figure ���� Starting a search for work

A processor� which receives a request� searches along its actual variation for free subproblems�
which are not yet under consideration� In order to do so it runs the algorithm described in
Figure ���� For the moment� we de	ne �free� as follows�

De�nition ��� �Free node�

A successor v�j of a node v of the actual variation is called free� if the following conditions are
satis�ed�

�� v�j is not yet searched by any processor

�� v�j is not completely evaluated

� j � ��

A change in this de	nition will be made in Section ���� We will� at that point� de	ne a node
to be free only if it is free according to the de	nition above and the node v�� is completely
evaluated� This will lead to an implementation of the Young Brothers Wait Concept�

If an idle processor has sent a request� then it waits until it gets a

SUBPROBLEM � �s� e� v� �� �� u� o� r� c�

to evaluate or a
CANCELLATION� �s� e� n��

If it gets a subproblem �s� e� v� �� �� u� o� r� c�� then it runs the initialization described in Figure
��� and starts the search in level r� A master�slave relationship has been established� Here s is
the sender of the subproblem� and e the receiver� The node v is the root of the subproblem in the
game tree to be searched�
�� �� is the search window of the father of v� u� and o are the bound
variables of the father of v� r contains the depth of the node v� and c contains the hash value
of the father of v� With the help of the search window and the bound variables� the receiver of

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

procedure react upon a request�s� processor��
var i� integer�

found� boolean�
begin

found�� false�
if not idle then
�� Let �vr� � � � � vt� be the actual variation ��
begin

i �� r�
while �i � t� and not found do

if � a free successor of vi then found�� true
else i�� i���

end�
if found then
�� Let
�i� �i�� r � i � t be the search windows in level i�
let vali� lowi and highi� r � i � t be the bounds for level i�
let vi�j be the leftmost free successor of vi�
let h be the hash function for the transposition table�
let p be the own processor number ��

begin
send a subproblem �p� s� vi�j� �i� �i� lowi� highi� i� �� h�vi�� to processor s�
slave�i��� slave�i� 	 fsg�
code�s��� h�vi��

end

else
�� Let n be the number of messages received after the last iteration ��
begin

send a cancellation �s� e� n� to processor s�
end

end�

Figure ���� Algorithm reacting upon a request

���� BASIC VERSION OF OUR PARALLEL SCOUT�ALGORITHM ��

procedure initialize subproblem��s� e� v� �� �� u� o� r� c�� subproblem��
begin

master�� s�
code�� c�
�r�� �� �� �r�� �� �� lowr�� �� u� highr�� �� o�
t �� r � ��
downwards�t� v�
lowr��� highr�����

end�

Figure ���� Initializing a subproblem

procedure react upon a cancellation��s� e� n�� cancellation��
begin

delay�n��
start search for work�

end�

Figure ���� Algorithm reacting upon a cancellation

a subproblem is able to start a research at node v by itself� The variable c is used as a code of
the subproblem with root v� The receiver of the subproblem returns this code together with the
result to the sender of the subproblem after it has 	nished the evaluation of the subproblem�
If the processor gets a cancellation �s� e� n�� it again chooses a processor randomly and starts
searching for work by sending a request again� as described in Figure ���� The variable n of the
cancellation contains heuristic information about the amount of communication which occurred
at the sender of the cancellation in the moment of sending it� If information n indicates that
the communication at the sender of the cancellation was too large� the process of searching
work is delayed for a short time� The amount of communication occurring at the sender of the
cancellation is interpreted as an approximation of the amount of communication occurring in
the whole network� If the sender of a cancellation is overloaded� the receiver believes that a large
amount of communication is necessary all over the network� It reduces its own communication
by delaying its search for work for a short time�

����� End of a Master�Slave Relationship

A processor p� which solved a subproblem with a root in level r� � by itself or with the help of
other processors� sends a

RETURN � �p� e� x� r� pv� c��

to its master e� This return message contains the value or the bound x computed for the root
of its subproblem as well as the principal variation computed for the corresponding subtree� To
avoid that the receiver of a return message reacts upon a return for a subproblem which is no
longer active� the slave sends as a part of the return message the code c to its master which

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

procedure react upon a return��s� e� x� k� pv� c�� return��
�� Let �vr� � � � � vt� be the actual variation�
let
�i� �i�� r � i � t be the search windows in levels i�
let vali� lowi and highi� r � i � t be the bound variables for the levels i�
Then we have t
 k� ��

var cuto�� improvement� boolean�
begin

if �s � slaves�k�� and �c � code�s�� then begin �� slave is valid ��
cuto��� false� improvement�� false�
if vk is a MAX�node then begin

if x
 � then cuto��� true�
if �x � lowk� then improvement�� true�
valk �� max�valk� x�� lowk �� max�lowk� x�� highk �� lowk � ��

end

else begin �� vk is a MIN�node ��
if x � � then cuto��� true�
if �x � highk� then improvement�� true�
valk �� min�valk� x�� highk �� min�highk� x�� lowk �� highk � ��

end�
if cuto� then begin �� stop searching below vk ��
send cuto��k��
principal variation below vk �� pv�
t �� k � ��

end
else

if improvement then begin �� narrow windows ��
principal variation below vk �� pv�
send window�k��
update windows�k � ��
lowk� highk��� �� see Figure ���� ��
if cuto� occurred in update windows then
�� let the cuto� be in level i� r � i � t ��
if zero window search at node vi then �� initialize research at vi ��
�� downwards as described in Figure
�� on page �� ��
if vi�� is a MAX�node then downwards�t� vi�
max�ui��� �i���� �i����

else downwards�t� vi�
�i��� min�oi��� �i������
end�
slaves�r� �� slaves�r� n fsg� �� delete slave s ��

end

end�

Figure ���� Reacting upon a return

���� BASIC VERSION OF OUR PARALLEL SCOUT�ALGORITHM ��

procedure send cuto��k� level��
�� Let �vr� � � � � vt� be the actual variation�
let p be the own processor number ��

var i� j� integer�
begin

for i �� k to t do
begin

for all s � slaves�i� do
send the cuto� message �p� s� code�s�� to processor s�

slaves�i� �� ��
end

end�

procedure send window�i� level��
�� Let p be the own processor number ��
begin

for all s � slaves�i� do
send the window message �p� s�
�i� �i��
lowi� highi�� code�s�� to processor s�

end�

Figure ����� Sending of cuto�s and window messages

it received together with the subproblem� Afterwards the master�slave relationship is resolved�
The slave is again idle� The receiver of a return message runs the algorithm described in Figure
����

First� the receiver of a return �s� e� x� k� pv� c� checks if processor s is a slave in level k� and
whether the code c received equals the code of s or not� If this is not the case� then the return
is considered to be too old and is rejected� The receiver then checks if the value x computed by
s allows narrowing the search window at the node vk and updates the bound variables of level
k�

����� Improvements of Search Windows

If x causes a cuto� at the node vk � then all the slaves in levels k� � � � � t are informed by a cuto�
message

CUTOFF � �s� e� c�

that they may stop working on their subproblems� Here s is the sender of the cuto�� e is the
receiver� and c � code�e� is the code of the slave e at the master s� The variation pv sent by s
in the return message is saved as the principal variation at vk� and the search is continued at
vk��� The procedure �send cuto�� is described in Figure �����

If x does not cause a cuto�� but causes an improvement of the minmax value valk of level k� then
pv is saved as the principal variation below vk� Each slave in level k is informed by a window

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

procedure update windows�k� level�
�� ��� search window��
�� Let �vr� � � � � vt� be the actual variation�
let
�i� �i�� r � i � t be the search windows of levels i�
let vali� lowi and highi� r � i � t the bound variables of the levels i� ��

var i � integer�
cuto�� improvement� boolean�

begin
cuto��� false�
i�� k�
repeat

improvement�� ��i � �� or ��i � ��� �� check new window ��
�i �� max��i� ��� �� update new window ��
�i �� min��i� ���
if vi is a MAX�node then
begin

if lowi
 � then cuto��� true�
lowi �� max�lowi� ���
if vi�� is completely evaluated then highi �� lowi � ��

end

else �� vi is a MIN�node ��
begin

if highi � � then cuto��� true�
highi �� min�highi� ���
if vi�� is completely evaluated then lowi �� highi � ��

end�
if improvement and not cuto� then send window�i��
if not cuto� then i �� i� ��

until �i � t� or cuto� or not improvement�
if cuto� then �� stop searching below vi ��
begin

send cuto��i��
t �� i� �

end
end�

Figure ����� Update of the search windows

���� BASIC VERSION OF OUR PARALLEL SCOUT�ALGORITHM ��

message
WINDOW � �s� e�
�� ���
u� o�� c�

about the narrowing of the search window� With these messages the new contents of the search
window variables � and � as well as the contents of the bound variables u and o of level k are
transmitted to the slaves in level k� The algorithm of the procedure �send window� is described
in Figure �����

By the narrowing of the search window of vk a narrowing of the search windows of the nodes
vk��� � � � � vt of the actual variation below vk may be possible� The procedure �update windows�
realizes this narrowing of the search windows� This is described in Figure �����

The procedure �update windows� runs along the actual variation and checks if the new window

�� �� is an improvement of the actual upper or lower bound� If so� the lower bound at a MAX�
node is increased and the upper bound at a MIN�node is decreased� and thus the search window
is narrowed� In the case of a narrowing of the search window in level i� all slaves in level i
are informed by a call of the procedure �send window�� These slaves then run the algorithm
described in Figure ���
�

An improvement of the search window of a node v� which is searched by a zero window search�
causes a cuto� at v� In this case a research is initialized for v� as if the new bound would have
been computed by the zero window search itself� Thus the new window stops the search of the
subtree with root v� the receiver of the window message or the return message resp� starts the
research by itself� if necessary�

If a processor receives a cuto� message� then it immediately stops the computations running at
its slaves� The processor becomes idle� This algorithm is described in Figure ���
�

����� The Distributed Algorithm

Figure ���� shows the simpli	ed process structure for our distributed Scout�Algorithm� This
process structure already allows to access the distributed transposition table� which will be de�
scribed more detailed in Section ���� Besides the processes for demultiplexing� routing� bu�ering
and multiplexing� which are combined to a single routing process� every processor runs a working
process� This tree searching process calls three sequential processes in a loop� The tasks of these
processes can be described as follows�

Iteration�

� Generation of a node or
� Static evaluation of a leaf node or
� Evaluation of a subsearch

The process �Iteration� results from a change of the recursive sequential algorithm from Figure

�
� into the iterative one� which is described in Figures
�� and
��� In the parallel algorithm an
iteration may be done only if the next iteration is not going to perform an �upwards� over a level�
in which still some slaves are active� In Figure ���� this is expressed in procedure �Iteration�
by the condition �iteration allowed��

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

procedure react upon a window message��s� e�
�� ���
u� o�� c�� window��
�� Let �vr� � � � � vt� be the actual variation�
let
�i� �i�� r � i � t be the search windows of the levels i�
let vali� lowi and highi� r � i � t be the bound variables of the levels i� ��

begin
if �master � s� and �code � c� then �� valid message ��
begin

�r�� �� �� �r�� �� �� �� initialize window of the father ��
lowr�� �� u� highr�� �� o�
if vr is a MAX�node then �� update new search window ��
update windows�r�
�� highr�����

else
update windows�r�
lowr��� ����

if cuto� then
�� Let the cuto� be in level i� r � i � t ��
if zero window search at node vi then �� research ��
downwards�t� vi�
�i��� �i����� �� see Figure
�� on page �� ��

end
end

end�

procedure react upon a cuto���s� e� c�� cuto���
�� Let �vr� � � � � vt� be the actual variation ��
begin

if �master � s� and �code � c� then �� valid message ��
begin

send cuto��r��
idle�� true� �� stop searching the subproblem ��

end
end�

Figure ���
� Reacting upon a window resp� cuto� message

���� BASIC VERSION OF OUR PARALLEL SCOUT�ALGORITHM ��

Dmpx, Routing,

Iteration

Mpx

begin

end;

PROCESSOR

While not terminated

Statistics

Communication

Buffer,

Transposition table

Search:

Figure ����� Structure of the processes running on a processor

Statistics�

� Several tasks for computing the statistics

Communication�

� If the subsequent iteration makes the sending of a message necessary� then send this
message�

� While there are still some messages in the bu�er� react upon the next message�

The process �Communication� is described more detailed in Figure �����

Through this process structure� it becomes apparent that incoming messages are reacted upon
only between two iterations of the game tree search� i�e� a processor reacts upon a message only
if the last iteration has been 	nished� Thus� the actual variation of the receiver of a message is
de	ned uniquely� whenever a message is read�

Delay by Communication

Furthermore� the description of the process �Communication� shows that incoming messages are
read until the bu�er for incoming messages is empty� This guarantees that incoming messages are

�
 CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

procedure Iteration�
begin

if iteration allowed then iterate�
end�

procedure Communication�
�� Let p be the own processor number� ��
begin

�� Send the messages� which were caused by the subsequent iteration ��
if idle then
begin

if not request sent then
start search for work�

if subproblem 	nished then
send return �p�master�valr� r� pvr�code� to the master�

if subproblem �s� e� v� �� �� r� c� nfs� received then
initialize subproblem�s� e� v� �� �� r� c� nfs��

end

else
begin

�� Let vali� lowi and highi� r � i � t be the bound variables for the levels i�
a cuto� or an improvement may have occurred in level k ��
if cuto� then send cuto��k� else
if improvement then send window�k��

end�
�� Receive messages ��
while message received do
begin

if request �s� e� received then
react upon a request�s��

if return �s� e� x� k� pv� c� received then
react upon a return��s� e� x� k� pv� c���

if window �s� e�
�� ���
u� o�� c� received then
react upon a window��s� e�
�� ���
u� o�� c���

if cuto� �s� e� c� received then
react upon a cuto���s� e� c���

if cancellation �s� e� n� received then
react upon a cancellation��s� e� n���

end
end�

Figure ����� Communication process of the parallel Scout�algorithm

���� BASIC VERSION OF OUR PARALLEL SCOUT�ALGORITHM ��

read as fast as possible� However� without any restriction regulating the number of messages to
be read in situations of communication overload� in the worst case this algorithm runs an endless
loop� But even if this loop terminates at some time� a large amount of communication may cause
the process �Communication� to run for a very long time� During this time� the processor is
not able to continue its tree search� A large amount of communication comes up if the processor
work load is bad� since many messages for the searches for work of all the idle processors then
have to be communicated� In such phases it may happen that the very few processors working
on subproblems are not able to split the subproblems into smaller subproblems fast enough�
since they are not able to perform enough iterations� As a consequence the processor work
load remains poor and the number of messages remains large� It would help if processors could
delay their searches for work in phases� when the amount of communication in the network is
high� However� it seems to be senseless to compute the global amount of communication in the
network� whenever a processor is going to start a search for work� Therefore� a processor reacting
upon a request for work by sending a cancellation � informs the receiver of the cancellation about
the amount of communication in its communication process at the time of reading the request�
The receiver of a cancellation views the communication load at the sender of the cancellation as
an approximation for the global communication load� If the communication load at the sender
of the cancellation was large� then it delays its search for work for a short time� thus reducing
the global communication load� This results in a dynamic� self�regulating system� The larger
the communication load� the more processors delay their searches for work for a short time� thus
reducing the communication load� If the communication load is small� then the search for work
is continued immediately and the communication load is increased�

Delay by Routing

Routing processes� �de�multiplexer� and the transposition table process run in time�sharing to
the game tree searching process �Iteration� on a single processor� In order to guarantee a fast
routing of messages� these processes have high priority compared to the tree searching process�
This means� that the game tree searching process is stopped by the scheduler� whenever one of
the communication processes is able to run� and is restarted only if these processes come to some
send or receive constructs� which are not executable at the moment� With this we immediately
get the

Observation ��� �CPU�delay�

A large amount of messages� which have to be routed� or messages for the transposition table
will delay the execution of the game tree searching process�

Three examples

Figure ���� shows the parallel evaluation of the two nodes v�
 and v�� by two processors P�
and P�� After the evaluation of the subtree rooted at v��� P� receives a request for work from
P�� At this time� let v be the only node of the actual variation of P�� Let
�� �� �
�� �� be
the search window and let
u�m� o� �
�� �� �� be the bound variables of the node v� The node
v�
 is free� because it is not searched by any processor� Since v is the only node of the actual
variation� P� chooses v�
 as a free successor of v for transmission� P� sends the subproblem
�P�� P�� v�
� �� �� �� �� Tiefe�v�
�� h�v�� to P�� Then� P� initializes the subproblem v�
 as well as

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

P1 P2

P2 P1

P1

v

v.1 v.3v.2 v.2

v.1 v.2 v.3

v

v

v.1 v.2 v.3

update

P2
, P1)

[...,...,...]

[...,...,...]

v.2

[1,9]

5

[5,5,6]

[1,9]
[5,5,6]

[1,9]
[5,5,6]

5

5

[5,6]

[5,6]

[1,9]
[5,−,6]

[5,6]

[1,9]
[5,−,6]

x

[5,

[...,...]
[...,x,...]

x ≥ 6 ⇒

∞ ,6]

REQUEST = (

SUBPROBLEM p = (...,v.2,...,[5,6],...)

RETURN (...,x,...)

time

active

solved

solved

solved active

solved

active

solved

Window−

at v

P1

P1

Figure ����� Parallel search of a game tree without any new windows

���� BASIC VERSION OF OUR PARALLEL SCOUT�ALGORITHM ��

P2 P1

v

v.1 v.3v.2 v.2

v

v.1 v.2 v.3

[...,...,...]

P2

[1,9]

5

5

[5,5,6]

[5,6]

[1,9]

[1,9]
[5,−,6]

[5,9]
[6,7,7]

7

[7,7,8]

v.2

[1,9]

v.2

[1,9]
[7,−,8]

[5,6]

[7,−,8]

[7,6]
[7,...,6]

STOP!

[7,9]

∞[5, ,6]

∞[7, ,9]

SUBPROBLEM (...,v.2,...,[5,6],...)

solved active

active

WINDOW (...,[1,9],[7,8]...)

active

time

solved solved
after research

value = 7

P1

P1

P1

Figure ����� Window message for a zero window search

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

P2 P1

v

v.1 v.3v.2 v.2

v

v.1 v.2 v.3

[...,...,...]

P2

[1,9]

5

5

[5,5,6]

[5,6]

[1,9]

[1,9]
[5,−,6]

[1,9]

[5,9]
[6,7,7]

7

[7,7,8]

v.2

[1,9]

v.2

[1,9]
[7,−,8]

[5,−,6]

[6,9]

[7,9]

∞ ,6][5,

∞ ,9][6,

∞ ,9][7,

SUBPROBLEM (...,v.2,...,[5,6],...)

solved active active

solved
after research

value = 7

WINDOW (...,[7,9],...)

Windowupdate

time

solved

active

active

P1

P1

P1

Figure ����� Window message for a research

���� BASIC VERSION OF OUR PARALLEL SCOUT�ALGORITHM ��

the search window and the bounds of the father of v�
� With the help of these variables� P� is
able to start a research at v�
 on its own� if necessary� P� now searches the subtree rooted at
v�
� P� searches the subproblem rooted at v��� After v�
 is completely evaluated resulting in a
value x� P� returns x to P�� The value x may in�uence the minmax value of the MAX�node v
only if x
 �� In this case P� calls �update windows� for the nodes of its actual variation� as
described in Figure �����

Figure ���� shows a situation in which the processor P� 	nishes the evaluation of the node v��
earlier than P� its search below v�
� The value of the node v�� improves the minmax bound m
of the node v from � to �� such that a window message is sent to P�� The node v�
 actually is
searched by P� with a zero window search and a search window of
�� ��� The window message
received indicates� that the value of v�
 may in�uence the value of v only if it is greater than or
equal to �� The node v�
 now is searched by P� with the search window
�� ��� as if the search
were started without zero window search after the computation of F �v��� � ��

Figure ���� shows a similar situation� Here P� receives the window message containing the new
bound � at a time� when it already is researching the subtree rooted below v�
 by itself with a
search window of
�� ��� The new bound of � now is used to narrow the search window to
�� ���
Then the search windows of the actual variation below v�
 are narrowed� until for the 	rst time
a cuto� occurred or a search window is not improved by the new bounds�

����� Thoughts on the Distribution of Work Load

The algorithm described above implicitly contains a good load distribution algorithm� Idle
processors try to get subproblems by communicating very much� With this� the time necessary
to get a new subproblem is kept short� Every processor� which gets a subproblem and then
starts evaluating it� automatically becomes a potential master for other idle processors� Every
processor may be master or slave of any other processor� The only exception from this rule is
the network master� which keeps the root of the whole game tree� and thus cannot become idle
before the whole game tree search is 	nished�

By the random choice of a possible master� of course� it is not guaranteed that the processors
are distributed uniformly over the game tree according to the size of the subproblems� On the
other hand� the size of a subproblem is not predictable at the beginning of its evaluation� The
size of a subproblem rooted at v with a search window
�� �� at v is determined by

�� the size of the search window
�� ���

� the depth r of v in the game tree�

�� the move ordering in the subtree rooted at v�

�� the location of the value F �v� with respect to the bounds � and �� and

�� the number of the search extensions in the subtree below v�

Reliable information for the last three items is not available before a subproblem �G�v��
�����
is solved� Therefore� even a more�or�less centralized distribution of the processors over the
subproblems would have to rely on some guesses about the size of the subproblems� By their
arbitrary searches for work and by the random choice of a potential master� processors� which
get only small subproblems� more often ask other processors for work than processors� which get

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

a large subproblem for evaluation� By this� after a while a distribution of the processors over the
subproblems is achieved as one would like to have� as long as large subproblems are available
for parallel evaluation� more and more processors get such a subproblem� and thus work in the
large subtrees of the game tree� Of course� no one guarantees that the processors are evaluating
relevant subtrees�

In many cases� it makes sense to delay the use of parallelism� In order to do so� it may help to
keep some subproblems in the queues� instead of sending them away for parallel evaluation� until
the probability is high enough that the subproblems are relevant for the minmax value of the
root of the game tree� Since a processor should be able to evaluate a subproblem without getting
any commands where to search or where to use parallel evaluation� etc�� such a decision to delay
the use of parallelism should be possible on the basis of local heuristics and local information
alone� We will see later that local heuristics are su�cient to achieve such an e�ect�

In this section we discussed the basic version of our distributed search algorithm� In the next
sections we will describe how the heuristics necessary for a good move ordering and the detection
of transpositions are implemented in our distributed algorithm�

��� Local Killer and History Heuristics

Every processor keeps its own local killer lists� Information from these killer lists is not exchanged
between the processors�

Therefore� the contents of a killer list depends upon the subproblems� which the processor
searched before� Killer lists are an important heuristic used for the move ordering� They are
useful because their contents� the killer moves� may change when the search process travels
through the game tree from left to right� However� these changes occur only rarely� Thus� one
can expect� that good killer moves for subtrees not far from each other will only rarely di�er�
Good killer moves for subtrees far from each other� however� may often be distinct� In the
sequential algorithm this fact is considered in the algorithm to update the killer lists in Figure

�� on page ��� An idle processor in our distributed algorithm� however� not necessarily gets a
subproblem close to its former subproblem� By the random choice of a potential master the new
subproblem may be very far from the former subproblem� and� therefore� may require completely
di�erent killer moves� These new killer moves now have to be found again by searching a part
of the new subproblem and by updating the killer list� in order to make the killer heuristic work
as well as in the sequential case�

Occasional exchanges of information between the killer lists of neighbored processors or ex�
changes of information between two processors establishing a master�slave relationship do not
improve the behaviour of our distributed game tree search algorithm�

On the other hand the data of Table ��
 shows� that the local killer lists may be used successfully�
The data was computed during an � ply search on the
� positions of the Bratko Kopec set using

�� processors�

In the sequential algorithm� the nodes of the brute force tree� which are reached via killer
moves� nearly cause �
 of all the cuto�s achieved by the search of the right successors� In
the quiescence search this percentage clearly is smaller ��� �� since the killer moves usually
are not searched� The parallel algorithm using
�� processors computes a percentage of ��
of all the cuto�s� which are not caused by the 	rst successor� by searching a killer move ���

���� THE DISTRIBUTED TRANSPOSITION TABLE ��

� processor
�� processors
BF QS BF QS

����� ���
� �� ��

Table ��
� Cuto�s by killer moves in of the number of cuto�s by right sons

in the quiescence search�� The above described data� however� is somewhat misleading to the
disadvantage of the parallel algorithm� If two right successors of a node will cause a cuto�� one
of which is a successor reached via a killer move� then in the parallel algorithm it may happen�
that the value of the successor� which is not reached via a killer move� is computed faster than
the value of the killer� In this case the cuto� is not counted as a cuto� by a killer� although the
killer move may be ordered to the left of the non killer move�

Observation ��� �Local Killer Lists�

�� cuto�s achieved by killer moves indicate� that in the local killer lists enough useful infor�
mation is contained�

Another method� which collects information about the pro	tability of moves is the history
heuristic� Information contained in the history tables change similar to the information of the
killer lists� Therefore� for the history heuristic an exchange of information was omitted� also�
every processor keeps its own local history table�

��� The Distributed Transposition Table

����� Local
 Global or Distributed Hash Tables

The sequential algorithm uses a transposition table to save the results already computed for
some nodes of the game tree� These results may then be requested from the table instead of
computing them again by large searches� Usually the transposition table is realized as a hash
table for positions� In many cases� by the use of the transposition table� it may be avoided that
equal positions which by some transposition of moves may be reached twice in the game tree�
are evaluated twice� On the other hand� the transposition table combined with the method of
iterative deepening is of decisive importance for a good move ordering and thus for the e�ciency
of the search�

Marsland and Popowich
��� show� that the use of local transposition tables result in an increase
of the search overhead� This increase of the search overhead is caused by the fact� that the
processors have access only to the information in the transposition table collected by themselves�
In Table ��� these results are contained� Marsland and Popowich investigated 	ve versions of a
� processor program�

�� TR�� No access to any transposition table�

� GTR� Access to a global transposition table of ���
 entries for every node of the game
tree� The global transposition table is kept on one processor�

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

time leaves Spe SO � � CO � �

� Proc �
�� �
��� ��� ��� ���

TR� ��
 �����
��

��
���
GTR ��
 ��
�
 ��� ��� ����

� Proc GTRP �
� ����� ��� ���
���
LTR ��� �����
�� ���
���
LTRP ��
 ��

� ��
 ���
���

Table ���� Results for local and global transposition tables

�� GTRP� As GTR� however� access to the table is allowed only for the nodes of the game
tree� which have to be searched to a depth �
�

�� LTR� Access to a local transposition table of ���� entries each�

�� LTRP� As LTR� however� access to the local tables is allowed only for the nodes of the
game tree� which have to be searched to a depth �
�

The percentage of the nodes searched more by the � processor version than by the sequential
version increases� if only local transposition tables are used� from ��� to ��� � if every node is
accessed and from ��� to ��� if only partial access is allowed� This loss of information results
in worse move ordering and minor detection of transpositions� The e�ect of this loss already
becomes apparent if only � processors are used� For large numbers of processors� the information
contained in a local table of a single processor is much smaller than in the � processor version�
Thus� local transposition tables are of no use for massive parallel systems�

Additionally� the data of Table ��� makes clear� that a global transposition table kept on one
processor produces a bottleneck� which decreases the e�ciency of the whole system� Thus� the
sum of the idle times and the communication delays �column �KO�� increases from
��� of the
whole running time to ���� for the versions LTR and GTR� Allowing only partial access this
di�erence decreases� The distinguished processor keeping the transposition table is overloaded
such heavily by communication tasks even in a system with a small number of processors� that
the time necessary for serving accesses to the global table becomes very long� By this� however�
all processors accessing the global table are delayed� For large numbers of processors� this delay
would be fatal� Thus� a global transposition table is of no use for massive parallel systems too�

Hybrid versions of the above described methods were implemented in the chess program SUN
PHOENIX of Schae�er
���� Positions which are located in the upper part of the game tree are
stored in a global table� positions of the lower part of the game tree are kept in local tables� The
average speedup of a � processor version is increased from ���� to ���� compared to the version
with local tables only�

In order to get the advantages of the global table and to communicate without any bottleneck the
implementation of a distributed transposition table seems useful� A distributed transposition
table was described by� Otto and Felten
���� It was implemented in the distributed chess
program WAYCOOL� In this approach every processor keeps a part of the transposition table�
Any accesses as well as new information to be stored into the table now have to be routed to the
processor� which keeps the corresponding entry� Answers to transposition table accesses have to
be routed back to the requesting processor�

���� THE DISTRIBUTED TRANSPOSITION TABLE ��

����� Implementation of a Distributed Transposition Table

Every processor in a distributed system consisting of n processors keeps a transposition table of
the same size max as in the sequential algorithm� Logically� these subtables were viewed as one
large table of size max � n� The hash function now returns an index from f�� � � � � n �max � �g�
If a position v of the game tree has a hash value

h�v� � �ix�v�� s�v��� f�� � � � � n �max� �g � f�� �g���
then we split ix�v� into a processor number

p�v� �� ix�v� mod n

and an index into the subtable of p�v�

i�v� �� b ix�v�
n

c�

With this we are able to increase the transposition table size with the size of the parallel system�
The more processors are used for the game tree search� the larger game trees we hope to be
able to search� The search of large game trees� however� makes desirable a large transposition
table� since otherwise too many information may be lost by collisions� Thus� one may expect a
transposition table� which grows with the size of the parallel system� to be helpful for the game
tree search�

Store and Read

Two operations have to be implemented for the distributed transposition table� Store and read�
If a processor P evaluates a subproblem rooted at a node v� and the solution shall be stored into
the entry ix�v� of the transposition table� then P does the following� it computes the processor
number p�v� and the index into the subtable of p�v�� i�v�� and sends a message

NEWENTRY � �p�� p�� i� s� x� k� z� t� c�

to processor p�v�� Here p� is the own processor number and p� � p�v� is the processor number
of the receiver� x� k� z� and t are the results computed for v� c is the actual time stamp and
i � i�v� the index of the entry at the processor p�v�� When a processor gets such a new entry�
it decides just as in the sequential algorithm� whether the contents of the received messages are
to be stored in the entry with index i�v��

If a processor P starts the evaluation of a node v� and wishes to read information possibly
contained in the transposition table for v� then it computes p�v� and i�v� and then sends a
TR�request

TR�REQUEST � �p�� p�� i�

with p� � p�v� and i � i�v� to p�v�� p� is the own processor number� If a processor receives a
TR�request �q�� q�� i�� then it sends the contents of the entry i of its subtable with an

ANSWER � �p�� p�� s� x� k� z� t� c��

Here p� is the own processor number� p� � q� and �s� x� k� z� t� c� � Ti is the content of the entry
i of its subtable� The receiver of an answer message decides just as in the sequential algorithm�
whether the information received can be used and how it can be used�

The procedures� which describe the communication necessary to implement the distributed hash
table� are contained in Figure �����

�
 CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

procedure store DTR�entry�ix � index� �s� x� k� z� t� c� � entry��
�� Let n be the number of processors�
let p be the own processor number ��

var q � processor� i � index�
begin

q �� ix mod n� i �� ix div n�
send a new entry �p� q� s� x� k� z� t� c� to processor q�

end�

procedure read DTR�entry�ix � index� var �s�� x�� k�� z�� t�� c�� � entry��
�� Let n be the number of processors�
let p be the own processor number ��

var q � processor� i � index�
begin

q �� ix mod n� i �� ix div n�
send a TR�request �p� q� i� to processor q�
�� If p � q� then this is a cheap local operation ��
wait for an answer �q� p� s� x� k� z� t� c� of q�
�s�� x�� k�� z�� t�� c�� �� �s� x� k� z� t� c��

end�

procedure react upon new entry�ix � index� �s� x� k� z� t� c� � entry��
begin

store TR�entry�ix� �s� x� k� z� t� c��� �� see 	g�
�� ��
end�

procedure react upon TR�request��p�� p�� i� � TR�request��
�� Let p be the own processor number ��
var �s� x� k� z� t� c� � entry�
begin

read TR�entry�i� �s� x� k� z� t� c��� �� see 	g�
�� ��
send an answer �p� p�� s� x� k� z� t� c� to processor p��

end�

Figure ����� Accesses to the distributed transposition table

���� THE DISTRIBUTED TRANSPOSITION TABLE ��

procedure update and get�v � node��
var �s� x� k� z� t� c� � entry�
begin

Compute h�v� � �ix�v�� s�v�� from h�father�v�� and the move �father�v�� v��
parbegin

read DTR�entry�ix�v�� �s� x� k� z� t� c���
generate the position v�

parend
end�

Figure ����� Using the waiting time

Use of waiting times

In the above described protocols� the operation of storing new information is not critical� The
information to be stored is available to all the processors as soon as the receiver of a new entry
reacted upon it� In comparison to the sequential algorithm� this operation may be slightly
delayed by the time necessary to route the message from the sender to the receiver� However�
this delay is negligible�

Much more critical is reading the distributed transposition table� If� for position v� an entry
is available in the transposition table� then this entry determines� which successors of v have
to be searched� and if some� which successor has to be searched 	rst� Thus� a processor which
wants to read an entry of the transposition table� may continue its search only after it got the
information of this entry� The waiting times caused by the routing of the messages will delay
the work of the requesting processors signi	cantly� Thereby� the requesting processor should
be allowed to do some useful work while waiting for the answer message� Here the helpful
observation is� that the information of a transposition table entry only rarely allows stopping
the search of a node� In most of the cases the information from the transposition table for a
node v are su�cient only to narrow the search window or to determine the 	rst successor of v�
Then the search has to be continued at some successor of v� In order to use the waiting times
sensibly� processors 	rst compute h�v� without having generated v before� Two processes are
then invoked on this processor� The 	rst process sends a TR�request and waits for an answer�
the second process generates the position v by initializing the corresponding data structures�
These data structures include a representation of the board� some lists of pieces� for every square
of the board a list of attacking pieces� etc� and have a size of roughly �kByte� The contents
of these data structures are not recomputed as a whole but can e�ciently be updated from the
data structures of the father of v� The request to the distributed transposition table for a node
v and the generation of the position v are done in parallel� The idea to access the transposition
table while the search proceeds has already been suggested by Marsland and Campbell
��� in
���
� Figure ���� contains the algorithm�

The costs and gains of a distributed transposition table are investigated in Section ����

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

��	 The Young Brothers Wait Concept

The game trees occurring in practice are very similar to the minimal game trees� because of
the successful use of the move ordering heuristics� Observation
�� on page �� shows that the
game trees searched on the average are a factor of ��
� times the minimal game tree� The
parallelization of the game tree search should consider this special structure of the game trees to
be searched� Thus� it seems to make sense to develop a parallelization� which produces no search
overhead at least in a minimal game tree� In those parts of the tree� which exactly correspond
to a minimal game tree� search overhead will be avoided too�

In some earlier papers

��

�
��
��
��
��� we proposed a method to reduce the use of
parallelism� which allows to search a minimal game tree without any search overhead� An
additional advantage of our method is that the reduction of the use of parallelism can be done
by using only information locally available� The method to reduce the use of parallelism is called
Young Brothers Wait Concept� �YBWC� It may be stated as follows�

YBWC�

The search of a successor v�j of a node v in the game tree must not be started� before
the leftmost brother v�� of v�j is completely evaluated�

To implement the YBWC we de	ne a node to be YBWC�free using the De	nition ��� on page
�� as follows�

De�nition ��� �YBWC�free�

A successor v�j of a node v of an actual variation is called YBWC�free� if the following conditions
are satis�ed�

�� v�j is free and

�� v�� is completely evaluated�

The YBWC is easily implemented by replacing the word �free� in Figure ��� on page �� by
�YBWC�free��

The algorithm using the YBWC has some advantages�

�� It is easy to show that any minimal game tree can be searched in parallel without search
overhead� Proof for this is given in

��� It is based on the observation that in a minimal
game tree all the cuto�s� which are computed in the subtrees below the right sons of
the root of the game tree� are caused by the value of the leftmost successor of the root�
Using the YBWC this value is known at the time when the use of parallelism is allowed
to evaluate the successors of the root�

� Even in non minimal game trees the use of the YBWCmay avoid search overhead� The left
son v�� of a node v� which is searched with a search window
�� �� sometimes may improve
the bound for the right sons of v� This is the case� if � � F �v��� � �� The search window
for the right sons of v may then be narrowed to
�� F �v���� or
F �v���� �� respectively�

���� THE YOUNG BROTHERS WAIT CONCEPT ��

P2 ...P3 Pb1 2 3 b

...2.1 3.1 b.11.1

P1

.
.
.

.
.
.

.
.
.

.
.
.

...

Synchronization nodes of the YBWC

Figure ��
�� Synchronization nodes caused by the YBWC

�� The decision� whether or not the successors of a node v should be evaluated in parallel can
be made on the basis of information available at the node v� The processor responsible for
the evaluation of v thus is able to decide� whether to allow the use of parallelism� without
communicating with other processors�

However� there is a severe disadvantage of the use of the YBWC�

Synchronization nodes

This disadvantage can be made clear with the help of Figure ��
�� At the beginning of the
evaluation of a game tree only a single node� the root of the game tree� is alive� The network
master starts the search by generating the leftmost successor of the root� Now two nodes are
alive� however� the use of parallelism is not allowed at both� Thus� the network master generates
left successors until it reaches a leaf node� After the static evaluation of the leaf� the network
master moves upward in the game tree reaching the father of the leftmost leaf� Now� for the 	rst
time� it is allowed to use parallelism� The only subproblems� which may be distributed over the
processors� are the brothers of the leftmost leaf� However� these subproblems usually are very
small and are few compared to the number of processors used� The situation becomes better
and better the closer the network master gets to the root of the game tree� The subproblems
transmitted become larger� and are itself branched into smaller subproblems� which enables the
use of more and more processors� The YBWC� thus� not only caused a sequential moving down
the tree from the root to the leftmost leaf� but� for every inner node of the leftmost variation�
causes a point of time� at which all but one processor must be idle� We will call these nodes
synchronization nodes� The number of these synchronization nodes is increased by the use of
the iterative deepening method� It grows quadratically in the search depth� The same e�ect as
described for the synchronization nodes happens in a weakened manner at the leftmost variations
of all the subtrees below the type�� nodes�

These synchronization nodes require the possibility to quickly redistribute work from one pro�
cessor to all the other processors� Therefore� the use of the YBWC is possible only if a fast load
balancing or a fast load distribution is guaranteed between the processors� In our algorithm this
is achieved by the method to search for work� which is described in Section ����

In the literature� for every parallel game tree search algorithm of practical relevance� di�erent

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

methods for delaying the use of parallelism are proposed
��� ��� ��� ��� ���� These methods
vary from reducing the parallelism only at the leftmost variation as in the PV�Split�algorithm

��� ���� to a reduction of parallelism depending on the results obtained for a node from the
transposition table
���� or even to an administration of a global list of living subproblems on a
distinguished processor
���� or to an administration and sequential evaluation of the upper part
of the game tree on a single processor
���� The YBWC is a method which allows a decision
based upon whether to use parallelism based on locally available information only�

In the following we will describe two modi	cations of the YBWC� the 	rst modi	cation at some
nodes of the game tree allows a more extensive use of parallelism taking the risk of additional
search overhead� The second modi	cation at some nodes of the game tree reduces the use of
parallelism more strictly than the pure YBWC� with the aim to reduce the search overhead�
Both modi	cations make some assumptions about the structure of the game tree to be searched�
and thus come to di�erent decisions about the use of parallelism�

����� The YBWC for Type�� and Type�� Nodes

The mapping type from De	nition
�� on page �� identi	es the nodes of the minimal game tree�
Hsu
��� implicitly extended the above mentioned mapping to the nodes� which are not in the
minimal game tree� The extension can be de	ned as follows�

De�nition ��� �Expected type of nodes�

type�v�j� ��
 if type�v� �
 and j � �

We call the type of a node v de�ned with the help of the above extension the expected type of v�

With this extension the mapping type is de	ned for every node of any game tree� The extension
may be viewed as follows� If the left son of a type�
 node v fails to produce a cuto� at v� then
a cuto� at v is no more likely� We expect a cuto� to occur at the right sons of v�

We now have two disjoint classes of type�� nodes�

�� Type�� nodes� which are part of the minimal game tree�
All successors of these type�� nodes are lying in the minimal game tree� i�e� these successors
have to be searched anyway�

� Type�� nodes� which are not part of the minimal game tree�
At these nodes we do not expect a cuto��

At the type�� nodes� at which no cuto� occurs� the only use of the YBWC is that before
parallelism is invoked the result of the 	rst successor is computed� which may provide a better
bound for the evaluation of the right successors�

YBWC�����

Thus� we get the 	rst modi	cation of the YBWC� the YBWC for type�� and type�

nodes �YBWC���
� by ignoring the rule for the YBWC at type�� nodes�

���� THE YOUNG BROTHERS WAIT CONCEPT ��

P2

P1

...P3 Pb1 2 3 b

...2.1 3.1 b.1solved type−3 nodes

Use of Parallelism possible by the YBWC−1−2

Figure ��
�� Using parallelism more rashly with the YBWC���

The YBWC���
 is easily implemented by replacing the word �free� in Figure ��� on page �� by
the notion �YBWC���
�free� de	ned below�

De�nition ��� �YBWC�����free�

A successor v�j of a node v of the actual variation is called YBWC�����free� if the following
conditions hold�

�� v�j is YBWC�free or

�� type�v� � � and v�j is free� where type�v� is the expected type of v�

The YBWC���
 allows a more extensive use of parallelism � For example� in the situation de�
scribed in Figure ��
� parallelism may be used directly� The left son of the root� �� is completely
evaluated� The right successors
� � � � � b of the root are distributed over some processors by
the network master� These nodes are type�
 nodes� since we expect the left son of the root to
become the best successor of the root� and therefore a cuto� to occur at the right sons� The
processors� which search the nodes
� � � � � b� generate the left successors
��� � � � � b�� von
� � � � � b�
These are the 	rst successors of type�
 nodes and therefore are type�� nodes� The pure YBWC
at this moment would not allow to evaluate the successors of
��� � � � � b�� in parallel� since the
	rst successor is not yet evaluated� In the less restrictive version of the YBWC���
 all successors
of the nodes
��� � � � � b�� may be searched in parallel�

It is clear� that using the YBWC���
 we take the risk of increased search overhead to improve
the work load of the processors�

����� The Extended YBWC for Type�� Nodes

In the above section� we discovered a class of nodes� at which the immediate use of parallelism
may be superior to the delay caused by the YBWC� In this section we will have a look at a class
of nodes� at which the use of parallelism possibly should be delayed further� even if no cuto�
occurred after the evaluation of the left successor� By the de	nition of type from the previous
section we expect a cuto� at all the type�
 nodes� However� it is not clear whether a cuto� will
ever occur at such a node� If the evaluation of the 	rst successor does not cause a cuto�� then

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

the YBWC allows a parallel evaluation of all the right successors� This may result in search
overhead� if one or more of the right successors cause a cuto� or at least an improvement of
the bounds� Because of good move ordering� however� the probability is high� that such an
improvement of the bounds or a cuto� resp� will happen after the evaluation of one of the 	rst
of the right successors�

Thus� we will de	ne promising successors in the following way�

De�nition ��� �Promising successors�

�� The �rst successor is promising�

�� Every successor� which is reached via a positive capture move� is called promising� Here a
�positive capture
 is de�ned as on page
��

� Every successor� which is reached via a killer move� is called promising�

�� All the other successors are not promising�

With the help of the promising successors we will now de	ne the notion of YBWC��free� which
leads to an extension of the YBWC�

De�nition ��	 �YBWC��free�

A successor v�j of a node v of the actual variation is called YBWC��free�� if the following
conditions hold�

�� v�j is YBWC�free and

�� If type�v� �
� then all the promising successors of v are completely evaluated� Here
type�v� is the expected type of v�

The YBWC� is easily implemented by replacing the word �free� in Figure ��� on page �� by
�YBWC��free��

YBWC��

The YBWC may be extended to the YBWC� by allowing the use of parallelism at
type�
 nodes only if all the promising successors are completely evaluated�

It is clear� that this more careful use of parallelism will decrease the processor work load� It
should� however� decrease the search overhead� as well�

����� Combining the YBWC���� and the YBWC�

The changes of the YBWC� which are necessary to de	ne the YBWC���
� rely only on the
type�� nodes� the changes necessary for the YBWC� rely only on the type�
 nodes� Thus�
combining both modi	cations to the YBWC���
� is possible� A de	nition of YBWC������free
is straightforward�

��	� LOAD DISTRIBUTION STRATEGIES ��

S

S

S

S

S

S

T: M

1

2

3

4

5

2c

3c

4c

5c

c

[d/c] [d/c]c

...

Figure ��

� Layers for local search for work

��
 Load Distribution Strategies

In Section ���� we described our method of how idle processors try to establish a master�slave
relationship� One part of the method is the random choice of a potential master� to which a
request for work is then sent� Any processor may be chosen as a potential master� In the next
section we will discuss� why such a global load distribution is necessary� if processors at any time
are allowed to keep only one subproblem�

����� Necessity of a Global Search for Work

Let G � �V�E� be a processor network� let M be the network master of G� Let us assume� that
the request of an idle processor v can reach only processors having a distance of � c from v

for some c �� maxf�G�M�u� j u � V g �� d� Then let T be the breadth 	rst search tree of
G with root M� as described in Figure ��

� If all processors of levels �k � �� � c � �� � � � � k � c�
k � f�� � � � � ddceg� in T are combined to a layer Sk� then the root of any subproblem� which
is received by a processor of layer Si� has depth at least i in the game tree to be searched�
This is easily seen by recognizing� that any processor� which received a subproblem rooted at
w� generates subproblems for transmission only in the levels below w� because the subproblem
rooted at w is the only subproblem the processor is working on� The above statement� then�
easily follows from the fact� that a request for work of a processor in layer Si is not able to

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

Host

1

0

4

1

2

2

2

2

3

3 3

3

3 3

4 4

Network master

Figure ��
�� Local load distribution with c � � in the DB���

reach any processor of the layers Sj � j � i� �� Thus� processors� which are located in the deep
layers of T� only get very small subproblems� They are idle more often than processors in the
higher layers� A uniform load distribution is hardly realizable� Figure ��
� shows the situation
described for c � � in the unmodi	ed DB���� Six processors will receive subproblems of depths

 � only� three processors subproblems of depths
 � in the game tree� We get the following�

Corollary ��� �Local load distribution�

Under the assumption� that any processor at any time may only work on one subproblem� a load
distribution� which is restricted to the close surroundings of the processors� causes a nonuniform
and therefore a bad processor work load�

With this it is clear� that a good processor work load will not be achievable by a local search
for work only� In the following section we present a method for load distribution� which in
situations of good processor work load very often is successful using a local search for work� but�
if necessary� switches to a global search for work automatically�

��	� LOAD DISTRIBUTION STRATEGIES ��

����� Local Search for Work

For our algorithm� we do not like the idea of allowing processors to work on several subproblems
at a time� e�g� in time sharing� In this case masters may become idle� because they have to wait
for a return of a slave� which searches the critical subproblem slowly� in time sharing with other
subproblems� Thus� an idle processor is not able to speed up its search for work by sending
several requests for work at the same time� Such a parallel search for work would cause the
processors to get more than one subproblem�

Therefore� every processor may send a second request only if it received a cancellation for the
former request� Any request as well as any cancellation on the average have to be routed over the
average distance between two processors in the processor network� because a potential master
is chosen randomly� The CPU�time for the routing may be saved� if processors no more choose
a processor randomly from the whole network but randomly choose one of its neighbors in the
processor network� However� restricting all the searches for work in this way results in a bad
processor work load as stated in Corollary ����

This bad processor work load can be avoided by supporting the above described local load
distribution strategy by a global load distribution strategy� The destination processor of a
request passes the request on to one of its neighbors �randomly chosen� instead of sending a
cancellation�

With this all� the cancellations would be super�uous� A request would be passed on� until
it eventually comes to a processor� which is able to send a subproblem to the initiator of the
request� The cancellation messages� however� additionally are used to control the communication
load in the parallel system� With a cancellation� the receiver gets some information about
the communication load at the sender of the cancellation� This local communication load is
interpreted as an approximation for the global communication load in the system� With the
help of this information the receiver of a cancellation computes the length of a delay� after
which it is allowed to start another search for work� The use of this method was established in
Section ������ In a version where processors do not send cancellation messages� idle processors
are lacking information about the communication load in the network�

For this reason� we allow passing on a request only for c times� for some constant c� If a processor
gets a request for work� which has been passed on less than c times� then it passes the request
on to a randomly chosen neighbor of itself � When it gets a request� which has been passed on
c times� then it sends a cancellation message to the initiator of the request� This cancellation
then contains information about the communication load at the sender� Since a request for work
is passed on only to direct neighbors� processors will not be overloaded by additional routing
tasks�

The above two proposals to speed up the establishment of a master�slave relationship can be
implemented as follows�

N��

Processors send their requests to a randomly chosen neighbor instead to a processor
somewhere in the network�

N��

If a processor P�� which is not allowed to submit any subproblem� gets a request
initiated by a processor P�� which is passed on less than c times� then it passes this

�
 CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

P1 P2 P3 P4

P1 P2

P3

P4

with N1,N2 and N3

Network

Network

Ret/Req

Ret/Req

Ret/Req

Ret

Ret

Req Req

with N1 but without N2 and N3

Figure ��
�� Local and global search for work

request on to a randomly chosen neighbor of itself� If it gets a request� which has
been passed on c times� then it sends a cancellation message to the initiator of the
request�

We call c the radius constant for N
� In our program c � �� N� restricts the search for work to
the direct neighbors of the processors� N
 allows a search for work in a surrounding of radius
c�� � �� If c is small compared to the maximal distance of a processor from the network master�
then we have to deal with the consequences of a local load distribution as described in Corollary
����

In the next section� we will introduce a method which� in conjunction with N� and N
� allows
a global search for work� without causing additional communication overhead�

����� Global Search for Work With Returns

The searches for work may be speeded up� if a request for work is sent to a processor� which
is allowed to transmit a subproblem� Unfortunately� the information� whether a processor is
allowed to transmit a subproblem or not� is not available to any other processor in the network�
However� in many cases an idle processor is able to send its request to a processor� which at least
is known not to be idle� After a processor 	nished working on a subproblem� it sends a return
to its master� Afterwards it is idle and starts searching for work� The only processor� which at
the moment of sending the return is known not to be idle� is its master� Thus� sending a request
may be saved� if a master interprets a return message as a request for work additionally� With
this� the search for work is started by sending a return message� We get the method

N��

A return message additionally is interpreted by the receiver as a request for work�

��	� LOAD DISTRIBUTION STRATEGIES ��

A processor� which has 	nished the evaluation of a subproblem� begins its search for
work with the return� Processors which lie between the sender and the destination
of the return� route the message to its destination without reacting upon the request
for work contained implicitly�

This method saves a request for work� since the return has to be sent anyway� Additionally�
the method N� combined with the method N
 guarantees a global load distribution� even if
the maximal distance of a processor from the network master is large compared to the radius
constant c � �� This is made clear in Figure ��
�� In a version with N� but without N
 and N��
requests and returns of a processor P� are not able to leave the direct neighbors in a version with
N� and N
 but without N� they will not leave a surrounding of P�� which is speci	ed by the
radius constant c of N
� In a version with N�� N
 and N�� however� a former master P� of P�
may� after getting a return form P�� pass a request on to a processor P� outside the surrounding
of P�� P� will become master of P� and after getting a return from P� it may pass on a request
to P�� etc� We get the following

Corollary ��� �Use of N��

A global load distribution may be realized even if N� is used by using N� and N
 or N� with the
radius constant c large enough respectively� Using N� without both N� and N
 or without N�
with a radius constant large enough will result in local load distribution�

There is another reason� why the use of N� makes sense� A processor will get its subproblems
from the same master as long as its master has some subproblems to transmit� when it receives
a return� If its master is not allowed to transmit any subproblem� then� in most cases� the eval�
uation of the masters subproblem is already 	nished or will be 	nished soon� Thus� processors
searching for work according to the method N� often stay in the same subtree of the whole game
tree� until this subtree is completely evaluated� This has some positive in�uences on the killer
lists and the history tables used to obatin a good move ordering� The probability to 	nd a good
killer move in the killer list is higher� if the former subproblem of the processor lies close to the
current subproblem in the game tree� This improvement of the move ordering causes a decrease
of the search overhead�

����� Combining Local and Global Search for Work

Since the methods N� and N� contradict each other� we will use the following precedence�

�� If a processor did not work on a subproblem before or did not need to send a return for
the last subproblem or got a cancellation� then it starts its search for work according to
rule N��

� If a processor just 	nished working on its subproblem� then it starts its search for work
according to N��

�� N
 is used in any case�

The e�ect of the use of the methods N�� N
 and N� in a
�� processor DeBruijn network are
described in Section ���� The e�ects of N� in a ��
� processor grid are described in Chapter �
on page ����

�� CHAPTER �� THE PARALLEL GAME TREE SEARCH ALGORITHM

Chapter �

Performance on up to ���

Processors

This chapter is divided into three parts� In Section ��� we de	ne the main measures necessary
to illustrate the e�ciency of our distributed algorithm� In Sections ��
 and ��� we describe the
performance of the best version on up to
�� processors� The last part of this chapter contains the
descriptions of experiments we made to investigate how some parts of the distributed program
contribute to the overall e�ciency of the program�

��� Measures

In order to describe the e�ciency of a parallel algorithm one usually looks at the speedup�
which the parallel algorithm achieves compared to the best sequential one� Unfortunately� for
the game tree search problem� the best sequential algorithm is not known� The Observations

�� and
�� show that our sequential algorithm traverses the game trees to be searched in a very
e�cient manner� All the domain dependent parts of the program are used by the sequential
algorithm in exactly the same way as by the parallel algorithm� The parallel version di�ers from
the sequential one only by the con	guration description� Therefore� we use the single processor
version of our algorithm as a basis for the speedup obtained by the use of parallelism�

Thus� the speedup of a parallel evaluation of a problem P is the quotient of the time needed by
the sequential algorithm for P� t��P �� and the time needed by the parallel algorithm using n
processors for P� tn�P ��

For the following de	nitions� let P be a set of positions� A parallel version� a search depth and
a parallel evaluation of the positions in P should be 	xed�

De�nition ��� �Speedup� E�ciency�

The speedup of a parallel evaluation with n processors on a set P of positions is de�ned to be

SPE�n� �

P
P�P t��P �P
P�P tn�P �

�

With this notion the e�ciency is de�ned to be

EFF �n� ��
SPE�n�

n
�

��

�� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

The speedup of a parallel version is in�uenced by several factors� One of these is the processor
work load�

De�nition ��� �Processor work load�

For a problem P� let wn�P � be the time spent by n processors to execute their processes �iteration

during the evaluation of P� Then the average �processor� work load is de�ned to be

LOAD�n� � ��� �
�
n �
P

P�P wn�P �P
P�P tn�P �

�

The average work load describes the percentage of the time necessary to execute the tree search�
ing process with respect to the total evaluation time� However� in addition� wn�P � contains the
time� which is used during the parallel tree search for routing messages� This was explained in
more detail on page ��� A good average work load only guarantees� that the processors were
not idle for long periods of time�

A second factor in�uencing the speedup� is the number of game tree nodes� which are generated
by the sequential and by the parallel algorithm�

De�nition ��� �Search overhead�

For a problem P� let k��P � be the number of nodes� generated by the sequential algorithm and
let kn�P � be the number of nodes generated by n processors evaluating P� Then we de�ne the
average search overhead to be

SOVD�n� � ��� � �
P

P�P kn�P �P
P�P k��P �

� ���

The search overhead is negative� if the parallel algorithm generates fewer nodes than the se�
quential one� It represents the percentage of nodes� which the parallel algorithm generates more
�less� than the sequential one� The nodes� which are visited several times� e�g� for a research�
are counted when they are visited for k��P �� as well as for kn�P ��

The sequential and the parallel algorithm do not generate the nodes of a game tree with the same
speed� With the help of the following de	nition we want to quantify the loss of performance
described in Observation ��� on page ���

De�nition ��� �Performance�

The average performance is de�ned to be

PERF �n� � ��� �

P
P�P

kn
P �P
P�P

wn
P �P
P�P

k�
P �P
P�P

t�
P �

�

Here

P
P�P

kn
P �P
P�P

wn
P �
is the number of nodes generated by a processor in the n processor system

on the average per second of pure working time�

P
P�P

k�
P �P
P�P

t�
P �
is the number of nodes� which are

���� MEASURING OF THE NONDETERMINISTIC BEHAVIOUR ��

0

50

100

150

200

250

300

350

1 4 8 12 16 20 24
Positions

DEVIATIONS OF THE SPEEDUP

-30
-20
-10

%

Figure ���� Deviation of the speedup

generated by the sequential algorithm per second� In the sequential case t��P � � w��P �� The
average performance thus contains the percentage of the number of nodes searched per second in
the parallel version with respect to the number of nodes generated per second in the sequential
version�

If the average work load� the search overhead� and the performance are the only factors in�u�
encing the speedup� then the calculated speedup

SPE� � n��z�
Proc�

� PERF

���� �z �
performance

� LOAD
���� �z �

workload

� ���

��� � SOVD� �z �
work��

� n � PERF � LOAD
��� � ���� � SOVD�

of a parallel execution with n processors should equal the measured speedup� For all the ex�
periments considered in this work� SPE� indeed is an excellent approximation of the measured
speedup� Thus� we believe that no other factors have any in�uence on the speedup�

��� Measuring of the Nondeterministic Behaviour

The distributed algorithm presented in this work is highly nondeterministic� if more than one

�� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

0

20

40

60

80

100

1 4 8 12 16 20 24
Positions

DEVIATIONS OF THE WORK LOAD%

- 5

-10

%

Figure ��
� Deviation of the work load

processor is used� By this nondeterminism a di�erent behaviour may occur in di�erent evalu�
ations of the same game tree� Of course� the result computed� the minmax value of the root
of the game tree is always the same� but the subtrees searched to get this result may di�er�
Di�erent best moves may be computed� also� for the root� if two or more successors of the root
have the same minmax value� and this value is greater than or equal to all the other minmax
values of its brothers� The last case� however� has not been observed in any of the experiments
evaluating the positions of the Bratko Kopec test�

The following characteristics of our program cause nondeterministic behaviour�

�� The computer architecture�
If two messages arrive at a processor at the same time via two di�erent channels� then the
processor by speci	cation decides nondeterministically� which message is accepted 	rst�

� The random choice of the master�
Here nondeterminism was introduced� because in earlier experiments

�� the load distri�
bution obtained by a random choice of a master was better than the load distribution
obtained by deterministic algorithm�

���� MEASURING OF THE NONDETERMINISTIC BEHAVIOUR ��

-100

-50

0

50

100

150

200

1 4 8 12 16 20 24
Positions

DEVIATIONS OF THE SEARCH OVERHEAD%

-10

-30

-50

%

Figure ���� Deviation of the search overhead

The nondeterminism introduced by the architecture used� and the random choice of a master�
causes two characteristics of the program�

�� The distributed transposition table�
During their search� all processors have access to the distributed transposition table� Here�
the search behaviour may di�er from test to test� if in some test a result can be used from
the transposition table� which was stored before the TR�request was served� and in another
test the TR�request reaches the processor earlier than the message� which stores the entry
required�

� Di�erent results from the move ordering mechanisms�
Besides the transposition table� the killer and the history heuristic are important heuristics
for the move ordering� Killer lists as well as history tables are kept local on every proces�
sor� Therefore� their contents depend upon the subproblem solved by the corresponding
processors so far� By the randomized choice of potential masters� it is determined non�
deterministically� which parts of the game tree a processor has to search� Therefore� the
contents of the heuristics is determined nondeterministically� also� As a result� the move
ordering is nondeterministical� which may have positive as well as negative consequences

�� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

for the complexity of the search�

In order to investigate the deviation of the parallel running times� six ��ply searches have been
performed by the
�� processor version on the
� positions of the Bratko Kopec test set� Figure
��� shows the running times of the
�� processor version for these six runs� presented as the
speedup compared to the sequential version �diamonds�� Some positions show varying results�
The greatest deviations can be seen for the position B
� � the minimal speedup is ������ the
maximal speedup is ������� The mean value of the speedups for position B
� is

������� ������� ����� � ������� �
���� � ������

�
� �������

and the maximal deviation from this mean value in percent compared to the mean value is

������� �����
������

� ��� �
���� �

A maximal deviation of more than �� can be observed for the positions B��� B��� B��� B�
�
B�� and B
�� as well� Other positions� such as B��� B��� and B
�� show a uniform behaviour
having maximal deviations of less than
 � The maximal deviations from the mean value of the
speedups in percent compared to the average speedup can be found in Figure ��� by looking at
the small vertical lines on the x�axis� The superlinear speedup for position B�� is not caused
by one hyperfast run� The six values measured for the speedup vary between
����� and
�����
with a mean value of
������ This corresponds to a maximal deviation from the mean value of
���� only�

The variation of the speedup as an average over the whole test set is described by the six
horizontal lines lying close together� The average speedup varies between ������ and �����
�
The mean value of these average speedups is

�����
 � ������ � �����
� ������� ��
��
� �����

�
� ��
��
�

Thus� the maximal deviation of this average speedup from the mean value is ��
 � The tests
resulting in a speedup of �����
 and �����
 �respectively� seem to have a small probability to
occur� All the other values are very close to the mean value�

In Figures ��
 and ��� the deviations of the work load and the search overhead respectively
measured in the above described tests are shown� Only very small deviations can be observed
for the processor work load even for single positions� These result in a small deviation of the
average work load� The mean value of the six average work load measured is

����
 � ����� � ����� � ����� � ����� � �����

�
 � ����� �

The maximal deviation from the mean value is very small� ��� � Similarly� the average perfor�
mance is nearly a constant� The mean value is

����� � ����� � ����� � ����� � ����� � �����

�
 � ����� �

the maximal deviation is ���� � For the search overhead� however� the correlation with the par�
allel running times measured is obvious� positions showing varying running times have varying
search overhead too� The inverse is also true� if the positions B�� and B�� having parallel

���� MEASURING OF THE NONDETERMINISTIC BEHAVIOUR ��

running times of � and
� seconds respectively are ignored� Thus� even for the average search
overhead of the six tests greater deviations have been measured�

����� � ����� �
���� � ����� � ����� � �����

�
 � ����
 �

The maximal deviation from the mean value is
��� � This number� however� describes the
deviation of the search overhead� The maximal deviation of the sizes of the game trees searched
by the parallel algorithm can be calculated as

�
��� �
����

��� � ����

� �� � ��� � ���� �

Thus we established the following�

Corollary ��� The deviations of the parallel running times are mainly caused by the deviations
of the search overhead�

The nondeterminism in the program causes the transposition table�� the killer lists and the
history heuristic to have di�erent contents during di�erent runs on the same problem� These
heuristics heavily in�uence the move ordering� which itself has large in�uence on the search
overhead� Thus� the above corollary is not astonishing�

The above presented data� however� shows a feature of the parallel algorithm� which decreases
the deviations of the running times� If the search overhead increases� then the work load increases
too� Thus� for example� for the 	rst run the average search overhead is ����� and the average
work load is ����
 � for the third run� the average search overhead of
���� causes the average
work load to increase to ����� � This results in a smaller deviation of

������� �����

��
��

� ��� � ���

for the running times than one would have expected from the deviation of the sizes of the game
trees searched�

�
����� ������
�����

� ��� � ���� �

The increase of the average processor work load can not compensate for the increase of the
search overhead� However� it decreases the e�ects of the deviations of the search overhead� As
a concluding observation we have�

Observation ��� Measuring the deviations shows� that the Bratko Kopec set of test positions
contains enough positions� so the deviations of the parallel running times only have minor in�
�uence on the average speedup of the whole test set�

But the measurements show� that two di�erent versions of the program may not be assessed by
a few results� obtained by solving single positions� if these results di�er only in a few percent of
the e�ciency� In many cases� this makes it di�cult to assess success or failure of a modi	cation
of the distributed algorithm� The assessment of every modi	cation by measuring the deviations
as above would be too complex� Thus� in this book� measuring of the deviation of two di�erent
versions of the program was used only� if the two versions could not be compared by a single run�
because of the above described deviations� Since the deviation of the average speedup is quite
small� most of the comparisons in this work could be made by running each of the positions of
the Bratko Kopec set once�

�
 CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

0

50

100

150

200

250

48 16 32 64 128 256
Processors

SPEEDUP

dpth 8
dpth 7
dpth 6
dpth 5
dpth 4

Figure ���� Speedups for several search depths

��� Behaviour of the Best Distributed Version

����� Speedups for Several Search Depths

DeBruijn Networks with � � ��� Processors

In this section� the behaviour of our distributed algorithm running with � to
�� processors
will be investigated� All the results are obtained from searches of the
� positions of the Bratko
Kopec set of test positions to varying search depths� The processor network used for all processor
numbers considered is the corresponding DeBruijn network� The program uses the YBWC���
�
and the combination of N�� N
 and N� described in Section ��� on page ��� This version will be
denoted as standard version� For the
�� processor version we discuss the data resulting from
the run� which comes closest to the mean values calculated in Section ��
� This is the 	fth run in
Section ��
 with SPE � ��
��
� LOAD � ����� � SOV D � ����� � and PERF � ����� �

We will analyze the speedup measured by considering the average work load� search overhead�
and performance of the program and presenting reasons for these data� The equality of the
calculated speedup SPE� and the measured speedup shows� that only these three factor in�uence

���� BEHAVIOUR OF THE BEST DISTRIBUTED VERSION ��

0

20

40

60

80

100

48 16 32 64 128 256
Processors

PROCESSOR WORK LOAD%

dpth 8
dpth 7
dpth 6
dpth 5
dpth 4

Figure ���� Processor work load for several search depths

the speedup�

Figure ��� shows the measured speedup for processor numbers from � to
�� and search depths
from � to �� As expected the speedup increases with increasing search depths� i�e� with increasing
running times� for every processor number considered� The reason becomes apparent with
Figures ��� and ���� With increasing search depth� the average work load increases and the
average search overhead decreases�

����� Reasons for the Speedups Measured

The results for the speedup presented above are due to an increase in the average work load and
a decrease in the average search overhead with increasing search depths� Searching larger game
trees makes the load distribution easier� such that the increase in the average work load is as
expected� The decrease in the search overhead in large game trees� however� is not such obvious
at once� We will try to explain this behaviour in the following�

�� Overload of the transposition table of the sequential version�
The transposition table used by the sequential version has ������ entries� It is overloaded

�� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

-20

0

20

40

60

80

100

120

140

48 16 32 64 128 256
Processors

SEARCH OVERHEAD
%

dpth 8
dpth 7
dpth 6
dpth 5
dpth 4

Figure ���� Search overhead for several search depths

when searching to search depths of � or � as stated in Observation
�� on page �
� Here�
the parallel algorithm bene	ts from a larger and therefore not overloaded transposition
table� In Section ���� we will investigate� how much the parallel algorithm bene	ts from
the large transposition table during a search to a search depth of �� We expect� that a
parallel search to a search depth of � bene	ts from the large transposition table too� but
the overall e�ect should be much smaller in this case�

� Rash use of parallelism because of the bad work load in small game trees�
In small game trees the processor work load is poor� Some processors may remain idle
during the whole computation� Therefore� the type�� nodes do not su�ce to keep all the
processors busy� Parallel evaluation is used more often to search the successors of type�

nodes� If one of these successors causes a cuto�� the evaluation of all the right brothers is
super�uous� This happens more often during the search of small game trees than during
the search of large game trees� because the average work load is poor�

�� Rash use of parallelism because of a bad approximation of the real type of nodes in small
game trees�
During the evaluation of the small search depths� results are stored into the transposition
table� as well as the killer lists and the history tables� which have been computed without

���� BEHAVIOUR OF THE BEST DISTRIBUTED VERSION ��

0

50

100

150

200

4816 32 64 128 256
Processors

SERACH OVERHEAD
%

BF 8
QS 8
BF 7
QS 7
BF 6
QS 6
BF 5
QS 5
BF 4
QS 4

Figure ���� Search overhead in the BFS and QS for several search depths

quickly� These results allow a better move ordering during the searches to larger search
depths and thus speed up these searches� Better move ordering can be expressed by a
more exact approximation of the real types of nodes by the expected types of nodes�

Table ��� shows the percentage of the nodes� for which the expected type di�ers from
the real type� in the brute force tree of the game tree �BF� and in the quiescence search
�QS� for a run with
�� processors� The expected type of nodes gets better and better
with increasing search depths� Thus� the probability to use parallelism in a sensible way
increases with the search depth�

Corollary ��� The average search overhead decreases with increasing search depth� since the
transposition table of the sequential version is overloaded and because parallelism is used more
rashly in small game trees�

Figure ��� shows the values measured for the average search overhead for the �� to ��ply searches
with up to
�� processors� The search overhead for every search depth is separated into the
search overhead in the brute force tree �BF� and the search overhead of the quiescence search
�RS�� It turns out� that the search overhead of the quiescence search is larger than the search

�� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

BF QS
Tf type
 type � type
 type �

� ���� ����
��� ����
� ���� ����
���
���
� ���� ���� ����
�
�
� ���� ���� ���
 ����
� ���� ���� ���� ����

Table ���� Percentage of nodes having the wrong expected type

overhead in the upper part of the game tree if the search depth is odd� and smaller� if the search
depth is even� The reason for this e�ect is a di�erent ratio of the inner type�
 nodes to the
type�
 leaves� During a search to a search depth of d� a parallel evaluation of the successors
of a node in level
 d may cause search overhead only in the quiescence search� since all the
successors of this node are quiescence nodes� A parallel evaluation of the successors of nodes in
the levels � d� however� may cause search overhead in the upper part of the game tree as well
as in the quiescence search� Here� the search overhead of the quiescence search mainly is caused
by the fact� that for the nodes� the parallel algorithm visits more in the upper part a quiescence
search has to be done too� Thus� the search overhead of the quiescence search nodes caused by
this e�ect is proportional to the search overhead in brute force search�

In practice the game trees to be searched are very similar to the minimal game tree� The minimal

game tree of a b�d � uniform game tree contains bd
d
�
e�� type�
 nodes in level d� If one now looks

at the ratio of the number of type�
 leaves to the number of inner type�
 nodes of the minimal
tree of a b�d � uniform game tree� then one gets

b
d��
� � �

 �P d��
�

i�� �b
i � ��

� b

� if d is odd and

b
d
� � �

�b
d
� � �� �
 �P d��

�
i�� �b

i � ��
� �� if d is even�

In the minimal game tree of a b�d � uniform game tree of odd depth d the fraction of the type�

 nodes of level d is larger than if d is even� One can expect this to be similar in game trees
searched in practice� Therefore� the search overhead measured for the quiescence search is larger
than the search overhead in the brute force tree� if the search depth is odd� We get the following

Corollary ��� The fact that the search overhead of the quiescence search is greater compared
to the search overhead of the brute force tree� if the search depth is odd� is simply caused by the
the location of the type�� nodes and the method to measure the search overhead�

The above considerations� however� do not give any reasons for the fact� that the search overhead
of the quiescence search is smaller than the quiescence search in the brute force tree� if the search
depth is even� A reason for this e�ect will be presented in the next section�

���� BEHAVIOUR OF THE BEST DISTRIBUTED VERSION ��

v

 1000 100
 10

 1

v.1 v.2 v.3 v.4 v.5

 f(v) < β α,β

 F(v.i) < β

[]

 ≥ 2 ≥ F(v.i) β, i

Figure ���� Negative search overhead in the quiescence search

����� �Superlinear� Speedup in the Quiescence Search

The quiescence search starts below the leaves of the brute force tree� In Observation
�� on
page �� we described the di�erences between the inner nodes of the brute force tree and the
nodes of the quiescence search� At a quiescence node immediately after the computation of the
static evaluation� or perhaps the attempt to generate quiescence moves� it is decided� whether
this quiescence node becomes a leaf or not� In contrary� a node of the brute force tree of depth
d is a leaf� if it is lying in level d of the tree� Even more than for subtrees of the brute force
tree� approximations about the complexity of a quiescence search tree are very uncertain�

Therefore� situations as described in Figure ��� may surface in the quiescence search� The
quiescence search node v is searched with the search window
�� �� The player to move is not in
a dangerous situation� thus the value of the static evaluation f�v� � � is computed for v� which�
unfortunately� does not su�ce to produce a cuto�� Let us assume� that the left successor of v
does not cause a cuto� at v� The other successors v�
� � � �v��� are generated� Now� v�� leads to a
quiet position immediately� such that v�� becomes a leaf of the quiescence search� On the other
hand� v�� and v�� do not lead to a quiet position� However� they do not create new threads�
such that the quiescence search terminates after generating ��� or �� further quiescence nodes
respectively� The move from v to v�
� though� creates new threads� such that the quiescence
search below v�
 has to generate ���� quiescence search nodes� Let all the successors v�i� i

 of
v have minmax values F �v�i�� which allow a cuto� at v� Then the complexity of the search of the
sequential algorithm in this situation heavily depends on the ordering� in which the successors
v�
� � � � � v�� of v are generated� If v�
 is generated as the second successor� then the sequential
algorithm has to generate ���� further nodes to get the cuto� at v� It is of value to note that
any parallel evaluation of the successors v�
� � � � � v�� of v will stop after one round �generation
of four nodes�� because it then has computed the cuto� at v� Thus we derive the following

Observation ��� Parallel evaluation of the nodes of the quiescence search is superior to the
sequential quiescence search� if cuto�s can be computed in quite small� right subtrees and the
subtrees to the left of this subtree are quite large�

Even if during a parallel evaluation of a node in the brute force tree a similar e�ect may arise�
situations similar to the one described above are much more likely in the quiescence search�

�� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

because of the characteristics of the evaluation of the quiescence search nodes� This e�ect
decreases the search overhead in the quiescence search� if the search depth is even� Together
with the use of the large transposition table during an ��ply search the search overhead of the
quiescence search is negative with up to �� processors� it is ��
� with �
� processors and ����
only with
�� processors� although the search overhead of ����� in the brute force tree causes
the generation of ����� more leaves of the brute force tree� at which a quiescence search has
to be performed�

The advantage of a parallel search of the successors of a quiescence search node suggest a di�erent
sequential evaluation of a quiescence search node�

Corollary ��� Observation ��� suggests� that at the nodes of the quiescence search a sequential
breadth �rst search is superior to the usual depth �rst search�

The directional depth 	rst search� obviously� is not optimal for the quiescence search� The
nonoptimality of directional searches was proven analytically for a special class of OR�trees by
Alth�ofer
��� For AND�OR�trees or game trees we are not aware of any similar analytical results�

An implementation of the breadth 	rst search suggested above would have required a completely
di�erent memory organization� Thus� for this thesis� no attempts were made to use breadth 	rst
search in the quiescence search� Presently� we do not know of a chess program using a breadth
	rst search in the quiescence search�

����� Measuring the Performance

Figure ��� shows the loss of the performance measured for several processor numbers and sev�
eral search depths as a function of the average distance of the processors in the corresponding
network�

Search depth
� � � �

TR�Msg�nodes ��
� ��
� ���� ��
�
QS�BF ���� ���� ���� ����

Table ��
� Number of transposition table messages

The performance loss for the ��ply search is larger than for the other search depths� The reason
for this becomes clear� is one compares the number of transposition table messages during a
��ply search with the number of messages necessary during the other searches� Table ��
 in the
	rst line shows the number of transposition table messages� which have to be send per game
tree node� for the searches to search depths �� � � � � �� This number is smaller for the searches to
the odd search depths� and greater for the even search depths� The reason for this� again� is the
di�erent structure of game trees of odd and even depth�

Let us� idealized� assume that a b�d � uniform game tree has to be searched� The minimal tree
of a b�d � uniform game tree of depth d contains

d��X
i��

�bd
i
� e � bb

i
� c � �� � O�bd

d��
� e�

���� BEHAVIOUR OF THE BEST DISTRIBUTED VERSION ��

0

5

10

15

20

25

30

0 DB(2) DB(4) DB(6) DB(8) 6 7 T(16,16) 9 G(16,16) 12 13
Average distance

PERFORMANCE LOSS%

*

*
3x-3.45
dpth 8
dpth 7
dpth 6
dpth 5

Figure ���� Loss of performance for several search depths

inner nodes and

bd
d
� e � bb

d
� c � � � O�bd

d
� e�

leaves� Since the game trees to be searched are very similar to the minimal tree� even in practice
at a search to an odd search depth the ratio between nodes� which require a transposition table
access �inner nodes�� to nodes� which do not require such an access �leaves�� This results in a
smaller communication load during a search to an odd search depth�

The second line of Table ��
 shows the ratio of quiescence search nodes to nodes of the brute
force tree for a parallel search with
�� processors� This immediately makes clear� that the
number of transposition table messages per node of the game tree searched is smaller� and thus
the loss of performance is smaller during an ��ply search compared to the ��ply search� During
the ��ply search the quiescence search has roughly ���� times the size of the brute force search�
during the ��ply search this factor grows to ����� Since the nodes of the quiescence search do not
require a transposition table access� the communication load is smaller during an ��ply search�

��� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

Linear Approximation of the Performance Loss

The performance losses during the searches to the search depths of �� � and � are almost equal�
The measurements are presented in Figure ��� as a function of the average distance of the
processors in the network used� The straight line

f�x� � ���� � x� ����

put into the diagram� is the solution of a linear approximation of the measures obtained from
��ply searches using the DeBruijn networks with �� to
�� processors as well as the performance
losses measured for the ��� �� � Torus and the ��� �� � Grid� The latter are marked by a star�
and are used to get a measurement for networks having a relatively high average distance� The
behaviour of our program using the grid and the torus networks is discussed in more detail in
Section ���� The residuum

r � ������
������ �z �
DB
��

� ������ ������� �z �
DB
	�

� ������ ������� �z �
DB
��

� ������ ������� �z �
DB
��

� ��
���� �������� �z �
DB

�

� �
�����
������� �z �
T
������

� �
�����
������� �z �
G
������

� ����

of this linear approximation shows that the data measured correlates with the linear approxima�
tion very well� A linear approximation for the data of the ��ply searches results in the function
f�x� � ���� � x� �����

Corollary ��� The very well correlated approximation of the measurements for the �� and the
��ply searches by the functions

f�x� �� ���� � x� ���� or f�x� �� ���� � x� �����

respectively� indicates that the loss of performance in a wide range linearly depends on the average
distance x of the processor network used�

Corollary ��� holds� at least� if the search depth is large enough to guarantee a su�cient processor
work load and the average distance of the processor network used is not too large� Here� a large
advantage of the DeBruijn topology compared to the grid topology becomes apparant� the loss
of performance in a ��� �� � grid is
���� for an average distance of ����� If the performance
loss depends solely on the average distance of the prcessors � then� with the same performance
loss as for the ��� �� � grid� one could run a DeBruijn network having
�� � ����� processors�
since the average distance between two processors in the DB���� is just ������

The reasons for performance loss are investigated in Section ����

����� Speedups Under Tournament Conditions

The speedups of the ��ply searches are precisely listed in Figure ���� However� not all of these
speedups are relevant for practical use�

���� BEHAVIOUR OF THE BEST DISTRIBUTED VERSION ���

processors

� � � �� �
 �� �
�
��

SPE �Dpt �� ���� ���� ���
 �����
���� ����� ����� ��
��

SPE� ���� ���� ���� �
���
���� ����� ����� ��
��

�Dpt�time� ������� ���

�� �����
� �����
� ������� ������� ����
�� �������

SPE� ���� ���
 ���� �����
���� ����� ����
 ��
��

�Dpt�time� ������� ������ ����
�� ������ ������� ������� ����
� �������

Table ���� Speedups under tournament conditions

If our algorithm is used in practice� then we have to ful	ll the timing constraint� which is usual
for chess games as well as for computer chess games� In a tournament game� these timing
constraints usually allow an average of � min� � ��� sec� per move� By the use of opening
book and endgame databases� as well as the use of the opponents time� the time� which may be
used by the computer per move on the average� varies between ��� and ��� seconds depending
mostly on the opponent� The use of the opening book and the endgame databases allow the
computer to play a move directly �� second�� The opponents time is used in the following way� If
a computer has computed a move� then it starts another computation� the so called Permanent
Brain� during the time the opponent is thinking about his move� This is done by expecting the
best opponents move� which it has computed before together with its last move� as an answer to
its own move� It then starts a game tree search on the position resulting after an update of the
expected answer� For example� if the principal variation of the d�ply search is �v�� v�� � � � � vd��
then the computer delivers the move from v� to v� as its best move� expects the opponent to
play the move from v� to v�� and then starts a game tree search on the game tree rooted at v��
If the opponent actually plays the move to v�� then the opponents thinking time was used for
relevant work� If the opponent plays to a position v�� �� v�� then the computer rejects the results
computed in the permanent brain and starts a search at position v��� Experience shows� that
when playing against medium and good human opponents� on the average roughly �� of the
opponents moves were predicted correctly� in a game against another computer slightly more
than half of the moves ��� � �� �� Thus� we may argue that roughly half of the opponents
time can be used for relevant computations�

If we allow an average time of ��� seconds for every position� then we have a more severe
timing constraint than used in tournament games� The second line of Table ��� contains the
speedups and the corresponding search depths and average computation times which are closest
from above to the limit of ��� second� The third line contains the speedups of those search
depths� which are closest to ��� seconds from below� The
�� processor version computes the
��ply searches with an average computation time of ��� seconds per position� such that for this
processor number an ��ply search comes closest to the conditions during a tournament game�
The other results indicate that even the �
� processor version is able to perform an ��ply search
under tournament conditions in most of the positions� Networks with �� to �� processors�
however� allow only ��ply searches� networks with � or � processors resp�� are able to perform
��ply searches and the sequential algorithm is not even able to search deeper than � plies�

��
 CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

z1

z ’2z2

≥ f

value fdepth t

depth t−2
value f

depth t−2 bound s

Figure ����� Saving the smaller search depths

Saving the Smaller Search Depths

The above described results were obtained by computing every single test position using the
method of iterative deepening to the search depth required� Thereby� for every single position
during an ��ply search� all the game trees with search depths � to � were evaluated one after
the other� Figure ��� on page �
 shows that the evaluations of these small game trees are done
very ine�ciently� at least if a large number of processors is used�

The following consideration shows that during a game the smaller search depths can be saved�
The situations described below are elucidated in Figure ���� �

Let the computer have played a move z�� which was computed to be the best move of a d�ply
search� Afterwards� the computer started its computation in the permanent brain expecting its
opponent to play a move z�� Then the current root position has been searched �at least� to a
search depth of d�
� Since the current root position has been on the principal variation of the
previous d�ply search� the best move as well as its minmax value of a d�
�ply search is known�
The computer may start its computation with a d� ��ply search� If the opponent plays z�� then
the searches to the small search depths �� � � � � d�
 were saved�
If the opponent does not play z� but instead plays z�� �� z�� then the computer has to restart its
search on a position after the moves z� and z

�
�� This position has been searched with a search

depth of d�
 as well� however� in general only a bound instead of the minmax value has been
computed during this search� Therefore� the best move in this position� in general� has not yet
been computed� Yet this move has been su�cient to refute the move z�� compared to the move
z�� In this case� the computer accepts the results of the d �
�ply search� as if they were the
exact minmax value and the best move for the search depths �� � � � � d�
� and again starts its
search with a search depth of d��� In phases of the game when the computer is in time trouble�
the last case is somewhat critical� because the computer may not be able to 	nish the d� ��ply
search started immediately in time� In this case� the only move the computer is able to play
may be the cuto� move from the previous d�
�ply search� However� this move has refuted the
opponents move z��� and thus� in the worst case� is something like a �lost chance�� If one wants
to be somewhat more careful� then the last case may be handled is a way that the search at the

���� BEHAVIOUR OF THE BEST DISTRIBUTED VERSION ���

position after the moves z� and z
�
� is started with a search depth of d�
�

In both cases the transposition table� as well as the killer and the history heuristic� all contain
the information of the search depths � to d�
 or similar ones� such that an iterative deepening
started with a search depth of � would not make sense� The computer starts with a d � ��ply
search� We obtain the following

Corollary ��� If our game tree search algorithm is used during a game� in which a move has
been computed for a position v with a search depth of d� then the iterative deepening process for
the next position to be searched may be started with a search depth ofd� ��

Under the assumption that all moves played by the computer have been the result of searches al
to the same search depth d� then we may conclude that only for the 	rst position to be searched
in a game the iterative deepening process has to be started with a search depth of �� all the
other positions may be searched starting with a search depth of d� ��
Corollary ��� has some consequences for the speedups described above� For instance� the
��
processor version may save the searches to depths � � � for every position� If we subtract the
running times for the searches to depths � � � of the sequential as well as the
�� processor
version� then this results in a total time of �

� seconds for the
�� processors and a total time
of ����
� seconds for the sequential version running the �� and the ��ply searches for the
�
positions of the Bratko Kopec set� This corresponds to an average running time of �� seconds
per problem for the
�� processors� which is below the time allowed in a tournament game� The
speedup increases to ������� This calculation shows that the speedup during a game seems to
be larger than the speedup measured for the evaluation of single positions�

����� E�ciency

Figure ���� shows the e�ciencies� which result from the speedups presented in Figure ����
� for
various processor numbers� The e�ciency is shown as a function of the average running time
per problem of the test set� We investigate the search depths from � to �� for the
�� processor
version additionally ���ply search� as described in Section
����� With this we get some data for
the
�� processor version lying above the interval from ��� to ��� seconds� which we marked by
the vertical lines� We note the following

Observation ��� The e�ciency is strictly increasing even for running times larger than the
time allowed in a tournament�

Therefore� especially for the networks with a large number of processors� a much better e�ciency
could be expected� if e�g� the threefold running times were allowed� On the other side the same
increase of the e�ciency can be expected� if the speed of the processors is increased by a factor
of three� If this increase of the processing power is the same for the computing power and the
communication power� then the expected e�ciency of the new processors can be calculated by
shifting the vertical lines� indicating the tournament speed� to the right� since the new processors
evaluate a position in e�g�
�� seconds� for which the old processors need ��� seconds�

From Observation ��� we obtain the interesting

��� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

0

0.2

0.4

0.6

0.8

1

1 10 100 180 300 1000 7000
average running time (sec.)

EFFICIENCY

dpth 9*

dpth 3
dpth 5

dpth 7

dpth 3

dpth 5

dpth 7

*

*

256P
128P
64P
32P
16P
8P
4P

Figure ����� E�ciency as a function of the running time

Corollary ��� A system of
�� processor� each three times as fast as the T��� processor is�
if an average running time of
�� seconds is allowed per position� more than three times faster
than a system consisting of
�� T��� processors�

The reason for this increase of the e�ciency is the better work load� the new system would
be able to achieve in the same average running times� This increase of the work load is not
compensated by a larger search overhead or a larger performance loss�

Example

Corollary ��� enables the forecast of an implementation of our chess program on the successor
of the T��� processor� the T���� processor� We may assume a three times greater computation
� and communication power for the T��� compared to the T���� ZUGZWANG������ thus�
would be able to do a ���ply search� which is done by the actual implementation in an average
of �
� seconds� in tournament speed� The ���ply search is done by the actual implementation
with an e�ciency of ����� which results in a speedup of ������� This speedup is the result of an
average work load of ����� � an average search overhead of ���
 and a performance of ����� �
The search overhead is smaller than for the ��ply search� because during the ���ply search the

���� BEHAVIOUR OF THE BEST DISTRIBUTED VERSION ���

processors
� � �� �
 �� �
�
��

EFF� �
�� sec�� ���� ���� ���� ���� ���� ���� ����

Table ���� E�ciency under tournament conditions

transposition table of the multiprocessor system is even more superior to the transposition table
of the sequential version� The odd search depth of � for �� of the
� positions causes a small
increase of the performance� The calculated speedup is

SPE� �
�� � ����� � �����
��� � �����
 � �������

Since we assumed that the T��� is three times as fast as the T���� we get a �speedup� of

� � ������ � �
����

compared to a single T��� processor� Thus� under tournament speed� the
�� T���� processors
would be ����mal faster than the
�� processor system consisting of T��� processors� although
every T���� processor was assumed to be three times as fast as the T����

If we now assume� that the system of T���� processors would be connected via routing hardware�
then we may assume a performance of ��� and get a speedup of

SPE� �
�� � ��� � �����
��� � �����
 � �����

compared to a sequential T���� processor� So� a system of
�� T���� Transputers with routing
hardware would be

� � �����
 � ������
times faster than a single T��� Transputer� The T���� system under tournament conditions�
would thus be ���� times faster than the T��� system�

Scalability

By the data of Figure ���� the scalability of our distributed algorithm becomes apparent� If we
approximate the e�ciency between the points measured by a line� then we get approximations
of the e�ciency at the average running time of
�� seconds� which are presented in Table ����

The e�ciency decreases when increasing the number of processor from � to � by ����� Doubling
the number of processors from � to ��� �� to �
 and �
 to �� causes the e�ciency to decrease
by ���� only� Increasing the number of processors from �� to �
� and �
� to
�� resp� causes
the e�ciency to decrease only by ����� This shows that our algorithm is able to e�ciently use
massively parallel systems even under the timing constraints usual in practice�

Corollary ��	 The distributed game tree search algorithm proposed is well scalable�

��� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

No k� t� k�	� t�	� LOAD SOVD SPE

B�� ���
 ��� � ���� ����

���
B�
 ������� ���
 ������� �� ���
�
���� ��
���
B�� ���

�� ��
�� ������� �� �����
���� ����
�
B�� �������� �
���� �������� �
� ����� ������
�����
B�� �
������ ����� �������� ��� ����� ����� �
����
B�� ������ ��� �������
� ����� �
���� �����
B�� ��������

��� ��������
�� ����� ����� �����

B��
���
� ��
 ������ �� ����� �
���

���
B��
������� ����� �������� ��� ����� ����� �����
B�� �
���
��
�
�� �����
��
�� ����� ����� ������
B�� ���
��
 ����� ���
��
� ��
 ����� �����
 �����
B�
 ������� ��
�
 ������� ��
 ����� ����� �����

B�� ������� ����� ����

��
�� ����� ����� �����
B�� ����
��� �
�
�
������� ��� ����� �
����

����
B��
����
�� �����
������� ��� ���
� ������

����
B�� ������� ����� ������� ��� ����� ����� ������
B�� ������� �����
�����
�
�� ����� ������ �����
B��
�����

 ����

��
����
�� ����� ����� ������
B�� ������� ���� ���
��� ��� �
��� ����� �
���
B
� ������
 ��
�� �������� ��� ����� ����� �����
B
�
�����
� �����
�������

 ����� ���� ������
B

 �

�����
��
� �
������ ��� �
��� ���
 ������
B
� �
��
���
��
� �������
 ��� �����
���� �
����
B
� �������� ����
 ��������
�� ����� ����� ������

��������� ���

� �������
� ����
' ��������
���� �����
�� ��� ����� ����� ��
��

Table ���� ��ply search with
�� processors

����� ��ply Search with the DB���� Single Positions

Table ��� shows the data measures during an ��ply search of the standard single processor
version� as well as with
�� processors� The data for the
�� processor version stems from that
run of Section ��
� which was closest to the average speedup calculated in Section ��
�

Of special interwest are the 	ve positions B��� B��� B��� B�� and B
� having negative search
overhead� The largest part of the negative search overhead in the brute force tree can be
explained by the overloading of the transposition table of the sequential algorithm� The exper�
iments described in Section ��� make clear the behaviour of our algorithm without this e�ect�
The reason for negative search overhead in the quiescence search was presented in Section ������

Furthermore� we note that not only the average running time of ��� seconds but also the
maximal running time of ��� seconds �position B��� is not unusual to occur in a tournament
game� During a game sometimes even longer computation times are used for a single move� The
overall behaviour of the parallel algorithm is much more �uniform� than that the sequential one�
If we delete the mating problem B�� as well as the endgame positions B�� and B��� which in a
tournament game would have been searched to a larger search depth� then the maximal running

���� MEASURING OF THE PERFORMANCE LOSS ���

time of the sequential algorithm is �
���� seconds and the minimal one is ���
 seconds� This
corresponds to a ratio of

�
����

���

�
����

in contrary to a ratio of
���

��
� ����

for the parallel algorithm� In other words� the parallel algorithm much more than the sequential
one is able to search the positions arising in a game to some uniform search depth� even if some
of the positions are very complex� One reason for this behaviour is that the work load becomes
better for longer running times� and thus large trees are searched more e�ciently than smaller
ones�

Corollary ��
 If the search depth is �xed� then the parallel algorithm decreases the di�erence
between the running times of the more complex and the less complex positions by evaluating the
former ones more e�ciently and the latter ones less e�ciently�

The most negative example of this test set is position B�� having a bad speedup of ������
although the work load is ����� � The reason for this is the enormous search overhead of
������ �This search overhead is caused by a very unfortunate ��ply search� the best move of the
��ply search is improved by three other moves during the ��ply search� Since these improvements
are computed in parallel� all the sons of the root are evaluated with bad search windows� One
after the other the improvements are noti	ed to the network master� which transmits the new
bounds to the slaves in level one� Since all the successors of the root are evaluated with a zero
window search� the 	rst window messages causes researches with bad bounds� However� the
game tree of position B�� is ordered very poorly not only in the upper level� Observation
�� on
page �� shows that position B��� when evaluated by the sequential algorithm� has the largest
distance from the minimal game tree� Therefore� the game tree to be searched is sorted very
badly� Consequently� the search overhead of ������ is large�

��� Measuring of the Performance Loss

In Observation ���� we noted that routing messages will cause performance loss� In this section
we will study this performance loss more extensively�

We want to answer the question� which kind of messages causes which fraction of the performance
loss� In order to do so we distinguish between three kinds of messages�

�� Messages� which are necessary for the implementation of the distributed transposition
table�

� Subproblems� which are sent for establishing a master�slave relationship�

�� All the other messages� This includes messages� which are used to implement the dis�
tributed game tree search algorithm� as requests for work� returns� window� and cuto�
messages� etc�

��� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

Version Sequential Standard TMD SPD

PERF � � ������ ���

 �
��� �����

Version Standard TMD SPD Rest

PERF loss � � ���� ��
� ���� ����

Table ���� Performance after doubling messages

In order to study the e�ects of the single classes of messages on the performance loss we subse�
quently doubled the messages of one kind� i�e� a subproblem is sent twice instead of once to the
same processor� which then receives the same subproblem twice� One of these copies is deleted
at once� For these tests we used the �
� processor network DB���� The results were obtained
from an ��ply search on the
� positions of the Bratko Kopec set of test positions� Besides the
doubling of messages� the standard version described in Section ��� was used�

Table ��� �upper table� shows the average performance of a processor measured for several
version of the�
� processor algorithm� In the column �Sequential� the performance of the single
processor version is given� Column �Standard� contains the percentage for the standard version
of the �
� processor system� in which no messages are doubled� We observe a performance loss of
���� compared to the single processor version� By doubling the transposition table messages
the average performance of the processors drops to �
��� �column �DTM��� Doubling the
subproblems� however� results in a much better performance of ����� �column �DPM���

Table ��� �lower table� shows the performance loss compared to the �
� processor standard
version� which results from doubling some messages� Doubling the transposition table messages
results in a performance loss of ��
� � doubling the subproblems results in the much smaller
performance loss of only ���� � The performance loss of all the other messages is calculated
from the performance loss of the standard version with respect to the sequential version and the
above two numbers�

Corollary ���� The transposition table messages in the DB��� are responsible for � �
� of the

performance loss� Roughly �
� of the remaining performance loss is caused by sending subproblems�

The above numbers are astonishing at a 	rst glance� Transposition table messages as well as
messages for the control of the distributed game tree search have a size of
� Byte roughly and
thus are quite small compared to the subproblems� which have a size of � ���� Byte� However�
during the evaluation of the
� positions the standard version sent ��� million subproblems only�
compared to ��� transposition table messages� Table ��� show the number of di�erent messages
as well as the number of MByte to transmit� The messages for the control of the game tree
search are divided into requests� cancellations� window messages� cuto� messages and returns�
The remaining performance loss of ���� mainly is caused by requests� cancellations and returns�
because window� and cuto� messages are only a small fraction of these kind of messages�

Although sending all the subproblems requires the transmission of ��
� MByte and the real�
ization of the distributed transposition table requires the transmission

�� MByte only� the
transposition table messages contribute much more to the performance loss than the set of

���� COSTS AND GAINS OF A DISTRIBUTED TRANSPOSITION TABLE ���

Subproblems Transposition Tree search control
B A F C R

Number ���� ��� ����� ���� ��� ���� ��� ���
MByte �roughly� ��
�

���� ��
�� ���� ��
� ����
����

Table ���� Amount of communication

subproblems sent� There are two reasons for this�

�� The transposition table messages are sent most frequently in those phases of the compu�
tation� in which the processor work load is very good� because only processors working on
a subproblem access the distributed transposition table� During these phases� however�
the probability that a processor� which has to route a message� must interrupt its tree
searching process to route the message� is very high� The CPU�time� necessary to route
the messages can not be used by the tree searching process� The performance loss is large�

Subproblems most frequently are sent� when the processor work load is bad� Processors�
which have to route a subproblem are idle by themselves with high probability� Routing
a subproblem over an idle processor� however� does not cause a loss of performance�

� The second reason comes from the hardware and the system software of the Transputer�
The transmission of large packages is much cheaper per Byte sent than the transmission
of small packages� Therefore� the time necessary for a Transputer to sent a special amount
of data is in�uenced by the number of packages as well as by the size of the data�

��� Costs and Gains of a Distributed Transposition Table

In Section ��� we described our implementation of our distributed transposition table� This
implementation allows the use of a transposition table� which grows with the number of proces�
sors� Collisions in this hash table become less and less probable� the large the table is� Thus�
we obtain the following advantages�

�� Better detection of transpositions�

� Better move ordering�

In Section ������ we will investigate which e�ects are caused by a decrease of the size of the
transposition table for the speedup�

The distributed hash table� however� can not be used for nothing� Accesses to the hash table as
well as answers from the hash table modules have to be routed along possibly long paths in the
processor network� This delays the accesses and causes the following disadvantages�

�� CPU�time is used for routing messages�

� The generation of the game tree nodes is delayed� because processors have to wait for
answers from the transposition table�

��� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

The work done by the processors for routing messages as well as the waiting times can be
measured as performance loss of the distributed system� These losses of performance will be
quanti	ed in Section ����
�

����� Gains of a Distributed Transposition Table

In order to investigate� how the multiprocessor system bene	ts from the use of a large transpo�
sition table� we looked at the behaviour of our distributed algorithm using a smaller table with
the same number of processors� We compare several versions of the
�� processor version� which
di�er by the size of the transposition table located at each processor� Using local transposition
table modules with �
�� �
��� � � ������� and ������ entries per processor� we get
�� processor
versions having access to a total of �

�	� � � � � �
�
� � and

�
� of the maximal transposition table size�

The basis of all the data presented in this section are ��ply searches of the
� Bratko Kopec
positions� The average running time of
�� seconds � �

�	�� to ��� seconds �
�
�� are lying in the

range of what we call tournament speed� All the data presented in this section has been mea�
sured separately� Thus� the measurements for the version of maximal transposition table size
di�ers slightly from the data presented in the Sections ��
 and ���� Tables ��� and ���� as well
as Figures ���
 and ����� show the data obtained for the
�� processor version having access to
a transposition table of �� �

�
� �

�

 �

�
�� �

�
�� �

�
�� �

�
��
 and

�
�	� of the size of the standard version table�

Since the data for �
� and

�
� are almost equal� we omitted a test with

�
� �

Table ��� contains for growing table sizes the percentage of successful requests to the transposi�
tion table compared the the number of all transposition table requests� Three kinds of successful
accesses have been distinguished�

�� Value� The answer contains an exact value computed with a su�ciently large search depth�

� Bound� The answer contains a bound computed with a su�ciently large search depth�

�� Move� Only the move from the transposition table could be used�

The fourth line contains the sums of the columns� i�e� the percentage of all in some way successful
requests� The fraction of the successful requests� from which an exact value could be obtained�
remains constant even for a table size of �

��
 and more� The fractions of the other two kinds of
a successful request� however� are increasing monotonically� These last two kinds of successful
requests are mainly important for a good move ordering but are not of such an importance for
avoiding the search of subtrees already searched� If one looks at the total of all the successful
requests� then this percentage grows from ����� for the version with �

�	� of the size of the
standard table size to more than �� when using the full transposition table� i�e� it increases
by more than a factor of two�

In Table ��� we list the di�erent transposition table sizes� as well as the data measured for the
speedup� the search overhead� the work load� and the performance�

The performance and the processor work load remain unchanged as expected� The small decrease
of the work load from ����
 � �

�	�� to ����� �
�
�� may be caused by the decrease of the total

average running time from
�� seconds to ��� seconds� Table ���� shows the improvements of
the speedups of the di�erent versions with respect to the weakest version ������� � ��� �� The
speedup improves by a large amount by doubling the size of the transposition table in the range
from �

�	� to
�
�� in a
�� processor system� Then the improvement becomes smaller and smaller�

Further doubling of the transposition table size only causes very small speedup improvements�

���� COSTS AND GAINS OF A DISTRIBUTED TRANSPOSITION TABLE ���

100

105

110

115

120

125

130

135

140

145

150

1/256 1/8 1/4 1/1
Transposition table size

SPEEDUP

Figure ���
� Speedups for varying sizes of the transposition table

Observation ��� The versions with a table of size of �
� or �

� resp� of the maximal transposi�
tion table size are �
� faster than the version with access to a table of size �

�	� � A speedup
improvement of �� roughly is even caused by a transposition table of size �

�� �

Similarly� the curves for the search overhead can be interpreted� The search overhead is greatly
reduced by doubling the transposition table size in the range from �

�	� to
�
�� � By doubling the

size further only a small decrease of the search overhead is obtained� The reduction of the search
overhead mainly is caused by a better move ordering� due to the larger transposition table� but
not by a better detection of transpositions� The fraction of the positions� for which an exact
value is found in the transposition table� does not increase signi	cantly beyond a transposition
table size of �

��
 � The fact that the version with
�
� of the full transposition table has a bit more

search overhead than the version with �
� of the full table� is due to the deviations observed in

Section ��
�

��
 CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

0

10

20

30

40

50

60

70

1/256 1/8 1/4 1/1
Transposition table size

SEARCH OVERHEAD
%

Total
BF
QS

Figure ����� Search overheads for varying sizes of the transposition table

Selecting a Transposition Table Size

Observation ��� leads to the question of how large a transposition table should be chosen� to be
of reasonable use compared to its costs �� size�� This question will be answered by presenting
the numbers of collisions� which occurred in the transposition table during the above described
experiments�

In Table ���� the numbers of collisions are listed as a percentage compared to the number of all
store operations for varying transposition table sizes�

From Observation ��� we get the following�

Corollary ���� The version of our algorithm searching the game trees with an average percent�
age of collisions of
� shows nearly the same behaviour as the version� which runs with the
full transposition table achieving a percentage of collisions of
 only�

With this� the distributed transposition table of our
�� processor system seems to be oversized�
In practice� that is during a whole game under tournament conditions� the large transposition
table has some advantages� The table is not initialized between the computation of two successive

���� COSTS AND GAINS OF A DISTRIBUTED TRANSPOSITION TABLE ���

�
�	�

�
��

�
��

�
��

�
��

�

�
�

�
�

Value � � ������ ������ �����
 ������ �����
 �����
 ������ �����

Bound � � ����� ����� ����� �����
���

����

���

��

Move � � ��
� ���� ���� ���� ���� ���� ��
� ����

Total � � �����
���

���

����
���� ����� ����
 �����

Table ���� Successful accesses for varying transposition table sizes

Elements SPE SOVHD LOAD PERF
�
� �������� ��
�
� ����� ����� �����
�
� ��
����� ��
��� ����� ����� �����
�

 ��
���� ������ ����� ����� �����
�
��
������ ������
���� ����� �����
�
�� �
����� ����
�
���� ����� �����
�
�� ������ ��
���
���� ����� �����
�
��
 �
���� �
���� ����� ����� �����
�
�	� ������ ������ ����� ����
 �����

Table ���� Search behaviour for varying transposition table sizes

moves� The entries are marked with a time stamp� such that old entries may be detected and
overwritten by newer ones� even if this new entries have been computed with smaller search
depths� The larger the transposition table the more rarely the time stamp has to be changed�
such that results computed earlier may overcome the computation of several moves in the hash
table� This is very helpful� especially when searching game trees� in which many positions occur
again� which have already been computed during earlier searches� e�g� in the endgame�

����� Costs of the Distributed Transposition Table

In this section we will investigate the costs of the distributed transposition table� which are
caused by the waiting times for transposition table messages and the delay by routing these
messages�

Waiting Times for Transposition Table Messages

In Section ��� we described� how the processors may use the time necessary to route the trans�
position table requests and the answers� During the time the messages are routed� the waiting

�
�	�

�
��

�
��

�
��

�
��

�

�
�

�
�

Speedup win � � ���� ���� �
��� ����� ����� �����
����
����

Table ����� Improvements of the speedup for varying transposition table sizes

��� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

�
�	�

�
��

�
��

�
��

�
��

�

�
�

�
�

Collisions � � �
��
 ����� ����� ���

��� �
��� ���� ���

Table ����� Percentage of the number of collisions

Requests Value Bound Move

��� �����

��
 ����

Table ���
� Successful transposition table accesses

processor generates the position� for which it sent a TR�request� i�e� it updates the correspond�
ing data structures� Generating the position makes sense when the result obtained from the
transposition table does not su�ce to stop the search below this position immediately�

Table ���
 contains the percentage of the di�erent kinds of successful requests to the transposi�
tion table for an ��ply search of the Bratko Kopec positions with respect to the total number of
requests� For this experiment we used
�� processors with the maximal transposition table size�
The data shows� that only very rarely an exact value is delivered to some TR�request ������
 ��
In this case the search below the node requested is super�uous� In most of the successful cases
a bound is delivered for the position requested� This bound may or may nor make necessary a
search below the node requested� In general� however� the search must be continued� The search
has to be continued anyway� if only the move of the transposition table entry can be used� Thus�
generating the position requested is necessary for at least

��� � �����
 �

��
 � �����

of the requests� Statistical data for the number bounds causing a cuto� has not been measured�

The question is now� whether the time necessary to generate the position is long enough to
completely cover the waiting time for the answer� One can expect the time necessary for the
routing of messages to grow at least logarithmically in the number of processors� Therefore� the
waiting time in large processor networks must be larger than the time to generate a position�
which is a constant� independent of the number of processors� Table ����� however� shows� that
the sum of all the waiting times not covered by the time to generate the positions during an
��ply search of the Bratko Kopec positions with
�� processors is ���� seconds compared to the
total time of ���� seconds� and thus is negligibly small�

Observation ��� Waiting times for transposition table messages in the DB��� are negligibly
small�

Wait Total

DB��� �Sec� ���� ����

Table ����� Sum of the waiting times for TR�requests

���� COSTS AND GAINS OF A DISTRIBUTED TRANSPOSITION TABLE ���

0

20

40

60

80

100

148 16 32 64 128 256
Processors

PERFORMANCE%

Figure ����� Performance loss as a function of the numbr of processors

Performance Loss by Routing tasks

Unfortunately� there is another reason which causes a loss of performance� Processors� which
ly on the routing path from the origin of a messages to its destination are interrupted� because
they have to route the message forward� The loss of performance caused by this e�ect is quite
large�

Figure ���� and Table ���� show the performance losses� which are caused by routing all messages
in processor networks of � to
�� processors� The basis of this data is an ��ply search of the
�
Bratko Kopec positions � The topology used is the DeBruijn network�

The upper curve shows the performance obtained with the corresponding number of processors�
the lower curve shows the performance loss compared to the sequential version� The performance
losses for large systems is obvious� The
�� processor version� for example� spends roughly one
eighth of the CPU power to route messages�

Figure ���� and Table ���� show the performance loss� which occurred by routing messages� In
this context� however� we are interested in the performance loss caused by the transposition
table messages only� Corollary ���� on page ��� states� that in the DB��� roughly �

� of the total
performance loss is caused by the transposition table messages� This fraction can be expected

��� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

Processors
� � � �� �
 �� �
�
��

PERF � � ������ ������ ������ ����
 ����� ����� ����� �����
Loss � � ���� ���� ���� ���� ���� ���� ���� �
�
�

�
� Loss � � ���� ���� ���� ����
��� ���� ��
� ��
�

Table ����� Performance loss by routing tasks

to remain unchanged for the other DeBruijn networks� since waiting times are of no in�uence
for the performance loss� Thus� we obtain the performance loss as presented in the third line of
Table ���� as the performance loss� which is caused by the transposition table messages only�

����� Conclusion

Our implementation of a distributed transposition table allows the multiprocessor system to
access a data structure� which grows with the number of processors used� The analysis of costs
and gains of this data structure leads to the following

Corollary ���� The use of the distributed transposition table improves the speed of the
��
processor version by
� approximately� In contrary to this the performance of the processors
is decreased by ��
 by the routing of the transposition table messages�

The whole performance loss can be avoided� if for the routing of messages a special routing
hardware can be used� as common in the modern parallel computers of today� With this hardware
the little costs� which have to be paid for the use of the distributed transposition table� could
be avoided�

The experiments� however� indicate that enlarging the transposition table will not have any
in�uence on the behaviour of the distributed algorithm� A transposition table of the size as
available in a
�� processor system� is su�cient to guarantee a good move ordering� and thus
an e�cient search� even if much more or much faster processors would have been used�

As a consequence of this the transposition table of a later version of ZUGZWANG than the one
described in this work has been separated� the larger part of the table is used as a transposition
table� the smaller one is used as a hash table for endgame databases� With this� access to
endgame databases can be achieved during the game tree search without delay of the search in
phases of the game� in which the entries of the endgame database are not yet relevant�

��� Decrease of the Search Overhead by the YBWC

In Section ��� we presented the YBWC as well as two modi	cations of the basic YBWC� We
obtained the following versions�

YBWC The evaluation of a successor v�j of a node v of the game tree may be started only if
the leftmost successor v�� of v�j is completely evaluated�

���� DECREASE OF THE SEARCH OVERHEAD BY THE YBWC ���

YBWC���� The YBWC is used only for type�� � and type�
 nodes�

YBWC� Parallelism at a type�
 node may be used only� if every promising successor of this
node is completely evaluated�

YBWC����� The straightforward combination of the YBWC���
 and the YBWC��

The Expected Types of Nodes Are Reasonable

The modi	cations of the YBWC are based on the idea� to guess with the help of the expected
types of nodes for a game tree node� whether a cuto� will occur at this node� Thus� the success
of both modi	cations depends besides others on how reasonable the expected type of a node is�

BF QS
Type
 Type � Type
 Type �

DB����YBWC���
� ���� ���� ���� ����

Table ����� Percentage of the nodes with a wrong expected type

Table ���� shows� that during an ��ply search with
�� processors a cuto� does not occur only
at a small percentage of the nodes having expected type
� Similarly the fraction of type�� nodes�
for which a cuto� is computed� is very small� Thus� an important condition for the use of the
modi	ed versions is ful	lled�

In this section� we will compare the versions YBWC���
�� YBWC���
 and YBWC with each
other to investigate� how the 	rst modi	cation �� version� and the second modi	cation ����

 version� of the YBWC behave� Here the YBWC���
� version is just the standard version
discussed in Section ���� It will turn out� that the e�ects of the modi	cations are very small�
At the end of this section� however� we will present a version� which we call YBWC��� It
corresponds to the PV�Split�Algorithm presented by Marsland and Campbell
��� with a dynamic
load distribution� which is the basis for many game playing programs using parallel hardware�

YBWC����� vs� YBWC����

The comparison of the standard version �YBWC���
�� with the YBWC���
 version does not show
large di�erences between the two versions� The e�ects of using the YBWC���
 version instead
of the YBWC���
� version are so small that in order to compare both versions a measurement
of the deviations must have been used�

In Table ���� we present the results measured in 	ve tests for the YBWC���
 version� compared
to the average results of the standard version calculated in Section ��
� The 	ve tests show
speedups between ��
�� and ������� the standard version achieved speedups between �����

and �����
� such that a comparison on the basis of a single test is impossible� A comparison
of the average results of the YBWC���
 version and the standard version uncovers only minor
di�erences� which are caused by a somewhat ����� � smaller search overhead� The reduction of
the search overhead is almost compensated by a decrease of the average processor work load by
� roughly� In total a small advantage remains for the standard version� The di�erences are
easily explained� the YBWC���
 version at type�
 nodes may use parallelism earlier than the

��� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

Version SPE LOAD SOVHD PERF

YBWC���
� V� ������ �����
���� �����
YBWC���
� V
 ������ �����
���� �����
YBWC���
� V� ������ �����

��� �����
YBWC���
� V� ��
��� �����
���� �����
YBWC���
� V� ������ ����

���� �����

YBWC���
� ' ������ �����
���� ����

Standard ��
��
 ����� ����
 �����

Di�erence
��� �
��� ����� ����

Table ����� Results of the YBWC���
 version

Version SPE LOAD SOVHD PERF

YBWC� V� ������ �����
���� �����
YBWC� V
 ������ �����
���� �����
YBWC� V� �����
 �����
���� ���

YBWC� V� ������ ����

���� �����
YBWC� V� ������ �����
���� �����

YBWC� ' ������ �����
���� �����
YBWC���
� ' ������ �����
���� ����

Di�erence
�
� ���� ����� ��
�

Standard ��
��
 ����� ����
 �����

Di�erence ���� �
��� ����� ����

Table ����� Results of the YBWC version

YBWC���
� version� Thus� a better work load is achieved� On the other side a larger search
overhead is caused by the rash use of parallelism�

Observation ��� The YBWC����� version is only slightly superior to the YBWC���� version�

YBWC���� vs� YBWC

Table ���� contains the data measured for the YBWC version in 	ve runs� compared to the
results of the YBWC���
 version and the standard version�

By the comparison of the YBWC version and the YBWC���
 version it becomes apparent that
using parallelism more rashly at type�� nodes as in the YBWC���
 has only a small e�ect on
the e�ciency of the program� The YBWC���
 was developed to obtain a better processor work
load even for a minor increase of the search overhead� A small improvement of the work load by
���� can be detected� One reason for the minor decrease of the search overhead might be that
in the YBWC���
 version parallelism may be used more rashly at the type�� nodes� such that
it is used more rarely to evaluate type�
 nodes� where the 	rst successor failed to cut o� the
search� However� since the e�ect is so small� we are not able to present measurements indicating
this conjecture�

���� DECREASE OF THE SEARCH OVERHEAD BY THE YBWC ���

Version SPE LOAD SOVHD PERF

YBWC�� ���

 ����� ������ �����
Standard ��
��
 ����� ����
 �����

Table ����� Results of the YBWC�� version

Observation ��� The YBWC���� version is only slightly superior to the YBWC version�

Only minor e�ects can be observed also from the comparison of the YBWC version and the
standard version� Here the search overhead is reduced by ����� � in the standard version�
however this positive e�ect is almost compensated by the better work load �
��� � of the
YBWC version� These results correspond to what we expected� the YBWC���
� version� which
uses parallelism more carefully at type�
 nodes� evaluates the game trees with smaller search
overhead� because the change from the YBWC to the YBWC���
 does not have any in�uence
on the search overhead� However� by the more careful use of the parallelism the work load is
somewhat decreased�

As a conclusion we may write�

Corollary ���� The careful modi�cations of the YBWC resulting in the presented variations
only have minor in�uences on the e�ciency of the distributed algorithm�

The short example of the next section� however� shows that minor changes to the YBWC may
destroy the e�ciency of the distributed algorithm�

YBWC����� vs YBWC��

If we change the YBWC���
 allowing direct use of parallelism even at the type�
 nodes� then
we get an implementation of the PV�Split�algorithm� which was 	rst presented by Marsland
and Campbell
���� using a dynamic processor tree of depth � �� We call this modi	cation the
YBWC�� version� Because of the rash use of parallelism at the type�
 nodes� this algorithm
will not search a best ordered game tree without search overhead� In practical applications we
therefore expect that the search overhead of this version is larger than the search overhead of
the YBWC���
 version� On the other hand� the load distribution is very easy� although by the
iterative deepening process during a d�ply search O�d�� synchronization nodes will occur�

Table ���� shows the results obtained from an ��ply search compared to the standard version�

The results show the advantages of the YBWC���
� compared to the YBWC�� impressingly�
The average running time per problem increases from ��� seconds to ��� seconds by more than
a factor of ���� The search overhead increases by ��� � because in all right subtrees parallelism
is used without care� For instance� it is used even for the evaluation of the right successors of a
type�� node� although a cuto� is expected to occur at these nodes and� in fact� happens at most
of them� For this reason� even Marsland and Campbell
��� suggested not to use any parallelism
at type�
 nodes� With this� however� the load distribution will become di�cult� since� if a cuto�
does not occur� then all of the successors of such a node must be evaluated one after the other�

�
� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

Corollary ���� The YBWC as used in our distributed algorithm� is a major improvement of
the concept used to avoid search overhead in the basic PV�Split�algorithm�

��	 Use of the Load Distribution Strategies

In this section we will investigate� how the methods for load distribution described in Section ���
work� which take care of the structure of the underlying processor network during the game tree
search� All results presented in this section are obtained from ��ply searches of the
� Bratko
Kopec positions using
�� processors� For the comparison with the standard version we will use
the average speedup� work load� search overhead and performance from Section ��
� as long as
the whole set of positions is considered� Results for single positions were obtained from the run
wit speedup ��
��
 in Section ��
� which was closest to the average speedup of ��
��
�

In Section ��� we described the following methods�

N�� Processors send their requests for work to a randomly chosen neighbor�

N
� If a processor P�� which is not able to transmit a subproblem� gets a request from some
processor P�� which has been transmitted less than c times� then it transmits this request
to a processor chosen randomly from the set of its � � remaining neighbors� If it gets a
request� which has been transmitted c times� then it sends a cancellation message to the
origin of the request�

N�� A return is interpreted as a request for work by the receiver of the return� A processor�
which 	nishes the evaluation of its subproblem� starts its search for work with the return
message already� Processors� which are lying between the origin and the destination of the
return message� route the message to its destination without reacting upon the request
contained implicitly�

The standard version discussed in Section ��� uses N�� N
 and N�� as described in Section �����
on page ���

Corollary ��
 states� that the use of N� without the use of N
 and N� or N
 with a large radius
constant c does not make any sense� We will see through results presented in this section that
for the same reason even the use of N� and N
 with a large radius constant c but without the use
of N� will cause a bad behaviour� This will become clear by some a comparison of the standard
version with the version without N��

In order to separate the e�ects caused by the use N�� N
 and N� we will compare the following
versions� the standard version� the version without N�� the version without N� and N
 and the
version without N� and N���

Standard vs� Standard without N�

In the version with N� and N
 but without N� a return messages is not interpreted as a request
for work� A processor is able to ask only those processors for work� which lie in its surrounding
de	ned by the radius constant von of N
� This radius constant c � � is large enough to enable
any processor of the DB��� to ask any other processor for work�

���� USE OF THE LOAD DISTRIBUTION STRATEGIES �
�

Version SPE LOAD SOVHD PERF

Std n N� ������ �����
���
 �����
Std ��
��
 ����� ����
 �����

Table ����� Results of the version with N� but without N�

Independently from the radius constant the following e�ect occurs� If a processor starts its
search for work at a time� at which the overall processor work load is bad� then the request for
work is transmitted several times� i�e� possibly processors are asked for work� which have a large
distance to the origin of the request in the network� In this case� however� the probability is high
that a search for work is not successful and thus is stopped by a cancellation� If a processor starts
its search for work at a time� at which the processor work load is good� then the probability is
high� that its request is transmitted to some few processors only� until it eventually is answered
by sending a subproblem� i�e� an idle processor with high probability gets its new subproblem
from a processor� which is not too far away� A global load distribution is done very rarely�

Table ���� shows the average results of the standard version obtained in Section ��
 compared
to the results of the version without N�� The most obvious e�ect is the decrease of the average
processor work load by
� nearly� The small increase of the search overhead lies within the
possible deviations observed for the standard version in Section ��
� A small increase� however�
may result from the di�erent way to evaluate the game trees in parallel� During the evaluation of
the game trees the standard version transmits ���� million subproblems with an average depth
of ����� The version without N� transmits nearly ���� million subproblems with an average
depth of ����� Obviously� in the latter version there are a lot of processors� which only get deep
�and thus small� subproblems� therefore have to search for work very frequently� and thus get
very many subproblems� However� this large number of small subproblems does not su�ce� to
guarantee a good processor work load� This smaller work load of the version without N� is a
reason for the increase of the performance by ���
 � Processors are idle for a longer time and
thus are not disturbed by the necessary routing tasks� We state�

Observation ��	 In the comparison of the standard version and the version without N
 the
version without N
 shows a
� worse processor work load�

Standard vs� Standard without N�

In this section� we will compare the standard version and the version without N�� Since the
di�erences will turn out to be very small� we measured the deviations of the version without
N�� In Table ��
� we present the results of this version compared to the average results of the
standard version�

The results are as expected� They show that in conjunction with the use of N
 and N� the
use of N� does not have any negative in�uences on the e�ciency of the parallel algorithm� In
contrast� although the average processor work load of the standard version is ���� smaller� the
average speedup increases by ����� This increase of the speedup is the result of a small increase
of the performance by ���
 and a small decrease of the search overhead by ���� � On the other
side� the minimal increase of the work load of the version without N� may be due to the small
increase of the search overhead� and thus of the work done� The increase of the search overhead

�

 CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

0

50

100

150

200

250

300

350

1 4 8 12 16 20 24
Positions

SPEEDUPS OF THE VERSION WITHOUT N1

Figure ����� Results of the version without N�

of the version without N� is very di�cult to explain� First� the di�erence of the search overheads
is very small� Second� if one compares the 	ve tests of the version without N� with the data
obtained from the 	fth run of the standard version of Section ��
� then almost all problems are
sometimes evaluated faster and sometimes evaluated slower than by the standard version�

Figure ���� shows the speedups measured for the single problems of the Bratko Kopec test
�diamonds� compared to the 	fth run of the standard version �polygon�� It turns out that there
are very few problems� which are always evaluated faster �����
�

� or are always evaluated
slower ���
��
�� by the version without N�� For instance� an e�ect which reduces the search
overhead� as far as there is such an e�ect� can not be observed by a comparison of the average
results for the
� processors� The evaluations of single positions� however� are not well suited
to 	nd reasons for such an e�ect causing such small di�erences� because of the large deviations
observed for the evaluation of single positions� Even the data measured for the number of
messages transmitted does not give any hint for a completely di�erent behaviour of the version
without N�� Table ��
� shows the number of di�erent messages transmitted by the
�� processors
during the ��ply searches of the
� test positions�

All together we are able to state the following�

���� USE OF THE LOAD DISTRIBUTION STRATEGIES �
�

Version SPE LOAD SOVHD PERF

Std n N�� V� ������ �����
���� �����
Std n N�� V
 ������ ����� ����� �����
Std n N�� V� ������ ���
�

��� �����
Std n N�� V� ������ ����� ����� ����� %
Std n N�� V� ������ ����� ����� �����

Std n N�� ' ������ �����
���� �����
Std ��
��
 ����� ����
 �����

Di�erence ���� ����� ����� ���

Table ��
�� Results of the version without N�

Subproblems Transposition Search control
Req Can Win Cut Ret

Std ���� ���� ����� ���� ��� ���� ��� ���
Std n N� ���� ��� ����� ���� ��� ���� ��� ��

Table ��
�� Communication of the version with and without N�

Observation ��
 The use of N� in conjunction with N� and N
 only has minor in�uence on
the behaviour of our distributed game tree search algorithm running on a
�� processor DeBruijn
network�

In Chapter �� we will observe that the use of N� makes sense� if processor networks with a large
average distance between the processors are used�

Somewhat more signi	cant e�ects can be seen� if one looks at the results of the version without
N� and N
 or the version without N� and N� respectively� The di�erences of the behaviour of
these versions will be described in the next sections�

Standard Without N� vs� Standard Without N� and N�

In this section we will use the average results for the speedup� the work load� the search overhead
and the performance of the previous section to compare the version without N� with the version
without N� and N
�

Table ��

 contains the average results of the version without N� and the results obtained from
one run of the version without N� and N
�

These results show that the behaviour becomes a little bit worse by switching o� the use of N
�
The most obvious e�ect is the decrease of the average processor work load from ����� without
N� to �
��� without N� and N
�

This shows that the use of N
 enables the processors to faster establish a master�slave relation�
ship� This is clearly to be expected� since a request for work is answered by a cancellation� only
if c� � � � processors were not able to send a subproblem�

The number of requests and cancellations increases by switching o� N
 by more than a factor

�
� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

Version SPE LOAD SOVHD PERF

Std n N� and N
 ������ �
���
���
 �����
Std n N�� ' ������ �����
���� �����

Di�erence ����
��� �
��
 ����

Table ��

� Results of the version with and without N

Subproblems Transposition Search control
Req Can Win Cut Ret

Std n N� ���� ��� ����� ���� ��� ���� ��� ��

Std n N�� N
 ���� ��� �

�� ���� ���� ���� ��� ���

Table ��
�� Communication of the versions with and without N

of eight� Here one has to note that the requests are counted only at their origins but not at the
intermediate processors� which transmit the request according to N
� In the version with N
 and
a radius constant of c � � a request may travel over a maximum of c�� � � processors� The data
of Table ��
� indicates that most of the requests indeed travel via eight or nine processors� The
reason for this is that almost all searches for work are done in those phases of the computation�
in which the work load everywhere in the network is bad� In these phases it is unlikely that a
request comes to a processor� which is able to transmit a subproblem� In the version without N�
and N
 a processor has to send � requests� which then must be routed via the average processor
distance of ���� in the DB���� while in the version with N
 only one request has to be routed via
���� processors on the average and then is transmitted to � other processors without routing�
Furthermore� in the version without N� and N
 in the worst case � cancellations must be sent
for the � requests� while in the version with N
 only a single cancellation is necessary� The
only small increase of the performance of the version with N
 indicates� that this reduction of
the communication is achieved mainly in phases of the computation� in which the performance
is not in�uenced very much by the communication� That is� in phases in which the processor
work load is bad� because in large part of the processor network no subproblems are available
for transmission�

The results for the version without N� and N
 are from a single run� Measurings of deviations
have not been made here� but in a second run the same e�ects could be observed besides the
fact� that in the second run the average search overhead of
���� was slightly better than in
the 	rst run� Thus� the small increase of the search overhead may be caused by deviations�

Corollary ���� The use of N� speeds up the searches for work and reduces the routing neces�
sary�

This guarantees a smaller communication load even in those phases of the computation� in which
the communication load is at its maximum� If one compares the version without N� and N

with the standard version� then we get

���� USE OF THE LOAD DISTRIBUTION STRATEGIES �
�

Version SPE LOAD SOVHD PERF

Std n N� and N� ����
� ����� ����� �����
Std n N�� ' ������ �����
���� �����

Di�erence ��
� ����� ����
� ���

Table ��
�� Results of the version without N� and N�

Observation ���� The speedup of the standard version of ��
��
 is better than the speedup of
������ achieved by the version without N� and N�� This corresponds to a speedup of

��
��
� ������
������

� ��� � ��� �

Standard Without N� vs� Standard Without N� and N�

This section describes a comparison of the version without N� and the version without N� and
N�� It turns out that switching o� N� decreases the speedup by roughly the same amount as
switching o� N
� The reasons� however� are completely di�erent�

Table ��
� shows the results measured for the version without N� and N� compared to the
version without N�� The speedup decreases by switching o� N� from ������ to ����
� and even
the performance decreases by ���
 � Quite astonishing� however� is

Observation ���� Without N
 the average search overhead increases from
���� to ������
i�e� by more than a half�

The di�erence is much larger than the deviations observed for the search overhead of the version
without N�� In the following sections we will present some reasons for this behaviour�

Better Use of the Killer Lists by N��

The worse search overhead of the version without N� and N� has a simple reason� The local killer
lists and history tables used to improve the move ordering in the game tree work more e�ectively
in the version with N�� After a master�slave relationship has been ended� the receiver of the
corresponding return message is interpreted as a request for work� If the former master has not
yet 	nished the evaluation of its subproblem� then it is very likely� that it has another subproblem
available for transmission� In this case it sends another subproblem to its former slave� This
slave now evaluates a subproblem� which has in common with its former subproblem� that it is
rooted in the same subtree as the subproblem the processor evaluated before� If the return is
not interpreted as a request� then the former slave chooses a potential master randomly� The
subproblem� which is sent to it then may be rooted in any part of the game tree actually under
consideration� If a request is interpreted as a request� then it is likely� that two subproblems
evaluated by a processor subsequently are very close to each other in the game tree�

Corollary ���� The use of N
 increases the probability that the contents of the killer lists and
the history table better �t for the subproblems evaluated�

�
� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

Version Px K� K
 Nx Rest

Std n N� and N� ����� ����
���
 ����� ����

Std n N� ����� ����
���� ����� �����

Di�erence ���� ���� ��
� ���� �
���

Table ��
�� Cuto�s caused by right successors

Version K� K
 Delete

Std n N� and N� ����� ����� ����

Std n N� ����� ����� �
��

Table ��
�� Killer updates

Corollary ���� is indicated by the data of Table ��
�� It shows that the killer moves more
frequently produce a cuto� in the version with N� than in the version without N�� Table ��
�
contains the percentage of the cuto�s� which are caused by right successors for several classes of
right successors� The percentages are calculated with respect to the number of all the cuto�s by
right successors� Column �Px� contains the percentage for positive captures� the columns �K��
and �K
� the percentage for the 	rst and the second killer move respectively� �Nx� represents
negative captures� column �Rest� contains the percentage for all the other moves� It turns out
that the killer heuristic works more e�ective in the version with N�� showing a rate of success of

���� �
���� � �����

compared to the version without N� ������ ��

The numbers of Table ��
� also indicate an improvement of the use of the killer heuristic� In the
version with N� in ����� of the killer updates the bonus of the 	rst killer move is increased�
in ����� of the killer updates the bonus of the second killer move is increased or the second
killer move is overwritten by a new one ��
��
 �� In the version without N� in ����� of the
killer updates the move to be updated is nt found at the 	rst position of the killer list� the
second killer move is overwritten in ����
 of the killer updates�� These numbers also indicate
that in the version with N� the killer moves have to be changed less frequently� because often
subsequent subproblems to be evaluated by a processor require the same killer moves�

Better Move Ordering by N��

Since the history heuristic and the killer heuristic are based on similar assumptions� we believe
that the history heuristic too works more e�ective in the version with N�� The better killer
moves and the better information from the history heuristic cause the search tree to be better
ordered�

Table ��
� shows the percentage of the nodes� for which the expected type turned out to be
wrong during the game tree search� Looking at these results we 	nd that in the version without
N� and N� at ���� of all the type�
 nodes in the brute force tree �BF� no cuto� occurs and
at ���� of all the type�� nodes of the brute force tree a cuto� was computed� The results
for the version with N� are better� The percentages of ���� of the type�
 nodes� at which no
cuto� occurred� as well as of ���� of the type�� nodes� at which a cuto� is computed are both

��	� EXPERIMENTS WITH VARYING TOPOLOGIES �
�

BF QS
Version Typ
 Typ � Typ
 Typ �

Std n N� and N� ���� ���� ��
� ��
�
Std n N� ���� ���� ���� ����
Std ���� ���� ���� ����

Table ��
�� Percentage of the nodes with a wrong expected type

smaller than for the version without N�� Similar results have been obtained for the quiescence
search �QS�� Furthermore� Table ��
� shows that switching o� N� does not have any in�uence on
the fraction of the nodes having a wrong expected type� The results obtained for the standard
version are almost equal to the results of the version without N��

Better Use of Parallelism by N��

The improvement of the killer moves by the use of N� has an additional advantage� The ��
modi	cation of the YBWC described in Section ��� � which is used throughout this section as
the YBWC���
�� uses parallelism depending on the expected type of the nodes� Thus� at a
type�
 node a parallel evaluation of its successors is allowed� only if all the promising successors
of this node have been completely evaluated� A part of the set of promising successors� however�
are the successors reached via the killer moves� The improvement of the quality of the killer
moves by the use of N� increases the probability that a killer move produces a cuto� at a type�

node� which otherwise would have been computed by evaluating a nonpromising move� In these
situations by delaying the use of parallelism additional search overhead is avoided� A version
with worse killer moves� thus� uses parallelism more often at nodes� at which a cuto� will be
computed� The search overhead of such a version will be larger�

As a conclusion we may state�

Corollary ���� The use of N
 improves the quality of the move ordering by improving the
e�ects of the history heuristic and the killer heuristic� In addition� by the improved quality of
the killer moves a better use of parallelism is possible� The improvement of the move ordering
together with the better use of parallelism causes an overall better e�ciency of the version with
N
�

Observation ���� The speedup of the standard version of ��
��
 is

��
��
� ����
�
����
�

� ��� � ���

better than the speedup of the version without N� and N
 of ����
��

��
 Experiments with Varying Topologies

In this section we will investigate� which e�ects the processor network used has for the e�ciency
of our distributed ���algorithm� In order to do this we present results� which are obtained from
tests with the three topologies DeBruijn Network� torus and grid� each with
�� processors�

�
� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

Figure ���� shows the speedups achieved with the three networks for the
� positions of the
Bratko Kopec set� All the results are measured during an ��ply search� the results of the
DeBruijn network DB��� are the results obtained from the 	fth run to measure the deviations
�see Section ��
��

The DeBruijn network shows a better behaviour than the torus or the grid on every single
position� Only for position B�� the torus achieved the same e�ciency as the DeBruijn network�
The processor work load in Figure ���� looks similar� The DeBruijn network is for almost all
test positions at least as good as the torus or the grid networks� The only exception here is
the second position� The search overhead in Figure ����� however� looks somewhat nonuniform�
which may be caused by the deviations observed especially for the search overhead�

Table ��
� shows the results obtained on the average for the
� positions evaluated using the
above mentioned networks� From these results� it can be seen what can be expected from the
results of the single positions presented in the Figures ����� ���� and ����� The DeBruijn network
achieves a speedup of ��
��
� which is much better than the speedup of the torus ��
����� and
the speedup of the grid ��������� The average work load in the DeBruijn network is slightly
better than in the grid and the torus� the search overheads of the grid and the torus are slightly
worse than the search overhead of the DeBruijn network and thus are in the interval of likely
results observed in Section ��
�

Table ��
�� however� shows the main reason for the bad e�ciency of the torus and the grid
networks� the average performance of of torus is ����� only� and the average performance of
the grid of �
��� is even less� In comparison to these the performance of the DeBruijn network
is ����� � Table ��
� shows that waiting times for transposition table messages are irrelevant
compared to the total running times for each of the networks used� Thus� we obtain

Corollary ���	 The throughput of any of the three networks is su�cient�

An insu�cient throughput would have caused larger waiting times�

With this it is clear that even in the torus and the grid network the routing of messages is the
only reason for the large performance losses� Corollary ��� stated that � ��� � ���� is a very
good approximation of the performance loss for all of the three networks�

Thus� we may state�

Observation ���� The choice of the communication network heavily in�uences the e�ciency
of our distributed game tree search algorithm� The use of the DeBruijn network results in an
increase of the speedup by

��
��
� ������
������

� ����

compared to the grid and by
��
��
� �
����

�
����
� ���� �

compared to the torus�

The in�uence of the communication network� e�g� is much larger than the e�ect of multiplying
the size of the transposition table of the sequential algorithm in the distributed system� On the
other hand� we state that the throughput of the torus as well as of the grid are su�cient to

��	� EXPERIMENTS WITH VARYING TOPOLOGIES �
�

0

50

100

150

200

250

300

350

1 4 8 12 16 20 24
Positions

SPEEDUPS

DB
Torus
Grid

Figure ����� Speedups of the DB���� T ���� ���� and the G���� ���

Network SPE LOAD SOVHD PERF PERF loss

DeBruijn ��
��
 ����� ����� ����� �
���
Torus �
���� �
��� ����� �����
����
Grid ������ �����
���� �
���
����

Table ��
�� Average results of the DeBruijn� torus and grid

Network DB��� T ���� ��� G���� ���

Total time �sec� ���� ��
� ����
Waiting time �sec� ����
��� �����

Table ��
�� Sum of the waiting times for transposition table messages

��� CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

0

20

40

60

80

100

1 4 8 12 16 20 24
Positions

PROCESSOR WORK LOAD%

DB
Torus
Grid

Figure ����� Work load of the DB���� T ���� ���� and G���� ���

guarantee an e�cient implementation of the distributed transposition table� The only serious
disadvantage of the torus and the grid compared to the DeBruijn network is the larger amount
CPU power� which has to be used for routing messages and thus is lost for the search process�
In modern parallel computers more and more special routing hardware is used� which routes
messages without the CPU� In parallel computers� which make use of these kind of hardware�
networks like the torus or the grid were almost as useful for our purposes as the DeBruijn
network is�

��� In�uence of the Dynamic Load Distribution

The mechanisms to choose a potential master allow an establishment of a master�slave rela�
tionship between any two processors� This freedom result in a very good load distribution�
Large waiting times for messages� which could be hidden by a time shared evaluation of several
subproblems on a single processor� do not occur in our algorithm� Therefore� we omitted the im�
plementation of methods to introduce a load balancing in the sense� that processors are allowed
to get several subproblems in order not to become idle� Although such load balancing strategies

��
� INFLUENCE OF THE DYNAMIC LOAD DISTRIBUTION ���

-100

-50

0

50

100

150

200

1 4 8 12 16 20 24
Positions

SEARCH OVERHEAD%

DB
Torus
Grid

Figure ����� Search overhead of the DB���� T ���� ���� and G���� ���

have been used successfully in other parallel tree searching algorithms like� for instance� parallel
Branch % Bound� their use for a parallel game tree search seems questionable� because in gen�
eral the evaluation of a node v may be 	nished only after all successors of v were completely
evaluated� Subproblems� which are stored in queues for later evaluation may very easily delay
the evaluation of other subproblems�

We now must ask� how static method for the load distribution will in�uence the e�ciency of our
distributed algorithm� Statical methods� in this context� are methods� in which processors no
longer are allowed to choose arbitrary other processors as a potential master� but the choice is
reduced to some few processors� Unfortunately� a good static load distribution strategy for the
parallel game tree search is not obvious� Since the structure of the subtrees of the game tree to
be searched becomes apparent only when the subtrees are searched� it is uncertain� whether a
good load distribution strategy exists for every game tree�

Tree structured processor networks are taken into consideration� whenever trees of any kind
must be searched in parallel� The root of the processor tree branches the root of the tree to be
searched� the other processors get subproblems� which they for themselves branch into smaller
subproblems� only from their father in the processor tree� etc� In order to show� how important
a dynamic load distribution is in our parallel algorithm� we use the idea of the processor tree

��
 CHAPTER �� PERFORMANCE ON UP TO ��� PROCESSORS

SPE LOAD SOVHD PERF PERF loss

TREE ����� ���� ���� ����� ����
Std ��
��
 ����� ����
 ����� �
�
�

Table ����� Static and dynamic load distribution

again� Since we only want to use the tree structure of the processor network� to analyze the
in�uence of the dynamic load distribution� it is not necessary to 	nd an optimal processor tree
for
�� processors� Thus� processor trees may be chosen more intelligently than in the following
way� The network master is the root of the processor tree� �� processor are connected to the
network master as its successors� Each of these has �� successors� The algorithm now is changed�
such that a processor may ask for work only its father in the processor tree�

TREE�

We reduce the freedom of the processors searching for work by simulating the load
distribution in a processor tree with
�� processors on the DeBruijn network DB���
with
�� processors�

Processors are not allowed to transmit requests to other processors� if they are not able to send
a subproblem� Of course� the TREE�version uses the YBWC���
��

The results of such a version are as bad as expected� E�g� all the right subtrees of the root of
the game tree are searched with �� processors� independently of their sizes�

Table ���� shows the results obtained for the static version �TREE� compared to the average
results obtained for the standard version in Section ��
� As expected� the work load of the static
version is miserable�

Observation ���� The dynamic load distribution is a very important presumption for the high
e�ciency of our distributed game tree search algorithm�

Chapter �

Behaviour on More Than ���

Processors

In this section we will describe the behaviour of our algorithm using more than
�� processors�
For this we will use a machine di�erent from the Parsytec SC �
� described in Section ��� and
we will have to do some changes in the experiments� in order to get data of practical importance�

��� Changes of the Experiments

The experiments of the proceeding part of this book were done on a Parsytec SC �
� machine
with �
� T��� processors� The experiments of this section� using ��
 and ��
� processors are
done on a Parsytec GCel with ��
� T��� processors� The following section describes the main
di�erences between these two machines�

The GCel with ���� Processors

The basis of the GCel is the T��� Transputer� which di�ers from the T��� by an increase of the
clock rate from
� MHz to �� MHz� Tests with the sequential version of our program show that
the running time of the T��� is exactly 	

� of the running time of the T����

The above mentioned advantage� however� is more than compensated for by the fact� that a
choice of the processor topology is not possible� The processors of the GCel are connected as
a grid� Since the processors are connected directly� i�e� without routing hardware between
them� for this machine the disadvantages of the grid topology observed in Section ��� occur�
The transmission rate of the links is
� Mbit�second just as for the T��� Transputer of the SC�
However� the 	xed interconnection network of the GCel has the advantage� that the messages no
longer have to be routed via switches� Thus� a slightly larger communication speed is achieved
between two neighbored processors of the GCel� The GCel may be partitioned into smaller
subgrids�

The host processor of a GCel partition is part of the grid� such that e�g� a
 �
 � grid has
three working processors and one host processor� which does not participate in the game tree
search� In this part of the work we will especially investigate the behaviour of our algorithm on
a �
� �� � grid with ��
 processors as well as on a �
� �
 � grid with ��
� processors� Using

���

��� CHAPTER �� BEHAVIOUR ON MORE THAN ��� PROCESSORS

nodes time nodes�sec

SC� T��� dpth � ��������� ���

� �
����
GCel� T��� dpth � ��������� ������ �
����

SC� T��� dpth �� �������
�

�
�
�� ������
GCel� T��� dpth �� �������
�

�����
 ������

Table ���� Sequential Version running on the SC and the GCel �computed�

such numbers of processor in practice it nearly makes no di�erence� whether one processor is
used for input�output only� or not�

Because of these changes in the hardware� we changed our software in the following ways�

Implementation Details of the GCel Version

Using the GCel the host processor is part of the grid� In our case the host processor in any grid
has the coordinates ��� ��� In order to keep the maximum distance of the processors from the
network master as small as possible� this was placed onto the central processor �bn�c� bm� c� of
the n �m � grid� This results in a smaller maximal distance of the processors to the network
master�

The e�ects of the following further changes will be investigated in this section�

�� Change from the Scout�algorithm to the ���algorithm in the parallel case�

� Reduction of the number of transposition table accesses�

Experiments

In the following� we will study the e�ects of the last two changes described above� For this�
we 	rst will look at the behaviour of the standard version running on the grids G��
� ��� and
G��
� �
� evaluating to search depths of � and ��� Then� we will compare the standard version
with the ���algorithm� Afterwards� we will describe a reduction of the use of the distributed
transposition table� which signi	cantly increases the e�ciency of the parallel algorithm� To get
speedup measurements we will multiply the running times of the sequential algorithm on the
SC by the factor 	

� � which results in the sequential running times on the GCel� In Table ��� the
number of nodes visited� the sum of the running times for the
� positions of the Bratko Kopec
set and the number of nodes per second are summarized for the sequential version running on
the SC and the GCel�

��� The Standard Version

Table ��
 shows the results obtained for the standard version running on ��
 and ��
� processors�
The data was measured during an ��ply search and ���ply search respectively of the
� Bratko
Kopec positions� The results of the DB��� are calculated with respect to the sequential version

���� THE STANDARD VERSION ���

SPE LOAD SOVHD PERF t�
��ply search

SC�DB��� ��
��
 ����� ����
 ����� ���
GC�G��
� ��� ������ �����
���� ����� ���
GC�G��
� �
�
����� ����� �
��� ����� ���

���ply search

SC�DB��� ������ ����� ���
 ����� �
�
GC�G��
� ���
����� ����� ����� ����
 ���
GC�G��
� �
� ������ ����

���� �����
��

Table ��
� Standard version running on ��
 and ��
� processors

running on the SC� the results of the GCel versions are calculated with respect to the one running
on the GCel�

During the ��ply searches the search overhead of ����
 for the DB��� increases to
���� for
the G��
� ��� and �
��� for the G��
� �
�� Thus� the work done increases from �����
 for
the DB��� by ������������� � �� � ��� �

��� only� although the number of processors has been
increased by a factor of four� The processor work load� however� signi	cantly decreases during
the ��ply searches from ����� in the DB��� to ����� only for the G��
� �
�� i�e� by ����� �
This is what must be expected� because the average running time of ��� seconds is very small�
Even more important is the performance loss of ����
 for the GC��
� �
��Waiting times for
transposition table messages are negligible even in the ��
� processor system� the sum of all
waiting times for transposition table messages is
��� seconds with a total running time of
���
seconds� Therefore� the waiting times are no reason for the performance loss� i�e� in the ��
�
processor system more than one third of the CPU time is used for routing messages�

The same e�ects can be observed for the ���ply searches� However� the average work load of
����
 is signi	cantly better than for the ��ply searches� The average running time of
��
seconds per problem of the ��
� processor version is within tournament speed� ��
� processors
achieve a speedup of ������ compared to a sequential GC�processor� An interesting e�ect is that
the search overhead of the ��
� processor version decreases by ���� compared to the search
overhead of the ��
 processor version� There are three reasons for this�

�� Deviations of the search overhead�

� The transposition table of the ��
� processor system� which is twice as large as the one of
the ��
 processor system�

�� The smaller processor work load of the ��
� processor system of ����
 � which is signif�
icantly less than the ����� of the ��
 processor system� For instance� although there
are twice as many processors in the ��
� processor system� not twice as many processors
participate in the game tree search on the average�

As a concluding observation we may state�

��� CHAPTER �� BEHAVIOUR ON MORE THAN ��� PROCESSORS

SPE LOAD SOVHD PERF t�
��ply search

GC�G��
� ��� ������ ����� ����� ����� ���
GC�G��
� �
� ������ ����� ����
 �
��� ���

���ply search

GC�G��
� ��� ������ �����

��� ����� ��

GC�G��
� �
�
����
 ����� ����� ����� ���

Table ���� Standard version without N� running on ��
 and ��
� processors

Observation ��� �Standard version running on the G��
� ��� and the G��
� �
��

�� The search overhead is reduced by the YBWC����� in such a manner that even doubling
of the number of processors from ��
 to ��
� does not cause signi�cant additional search
overhead�

�� The average work load decreases greatly with an increase of the number of processors�

� The average performance is only two thirds of the performance of the sequential version�

Standard vs� Standard without N�

Observation ��� states that the use of the method N� in the standard version running on the
DB��� has no in�uence on the overall e�ciency of the program� In the large grids G��
� ��� and
G��
� �
� the use of N� in�uences the e�ciency more signi	cantly� Table ��� contains the results
obtained for the version without N�� If one� for example� looks at the ���ply searches with the
G��
� �
�� then by the use of N� the performance is increased by ����� �On the other hand� the
average processor work load decreases by ���� � The version without N�� as already observed
in Section ���� produces a somewhat larger search overhead� As a total� the e�ciency is much
better using N�� The same e�ects� although slightly weaker� can be observed for the G��
� ����
The fact that the search overhead of the version with ��
 processors using N� is slightly smaller
than the search overhead of the standard version indicates� that the ����� search overhead of
the standard version is increased by deviations�

Observation ��� The standard version achieves an improvement of the speedup of from ������
to
����� �
����
 to ������� compared to the version without N� using ��
� processors during
an �� ����� ply search� This corresponds to an increase of the speed of

������ ������
������

� ��� � ���� or
�������
����

����

� ��� � �
�
� resp�

In the next two sections we will describe two modi	cations to the algorithm� which will improve
the e�ciency drastically�

���� SCOUT VS ��� ZERO WINDOW SEARCH � ���

SPE LOAD SOVHD PERF t�
��ply search

GC�G��
� ��� ����
� ����� �
�
� ����
 ���
GC�G��
� �
�
����� ����� ����
 ����� ���

���ply search

GC�G��
� ���
����� �����
���
 ���
� ���
GC�G��
� �
� �

��� �
���
���
 �����
�

Table ���� Standard version without zero window search using ��
 and ��
� processors

��� Scout vs ��
 Zero Window Search �

Observation ��� states� that for the standard version the average work load heavily decreases
when doubling the processors from ��
 tp ��
��

Zero Window Search �

The synchronization nodes� which result from the use of the YBWC���
� and the iterative
deepening� require a complete redistribution of the work load� which last longer the larger the
processor network is� On the other hand� by iterative deepening the algorithm accumulates the
information necessary to obtain a good move ordering during the search of the deeper game
trees� such that the algorithm has to use both methods� The number of synchronization nodes
as well as the number of moments� in which only very few nodes are alive� may be decreased� if
the pure ���algorithm is used for the massively parallel versions instead of the Scout�algorithm�
The Scout�algorithm has to research e�g� a successors of the root after a fail high search of this
node� In many cases we observed that these researches are begun at a time� at which only very
few subproblems are alive� Thus� we get additional moments� at which no load distribution is
possible� because the number of processors is much larger than the number of living subproblems�
If one does not use the zero window search� then there are no researches� By doing so� however�
one gets a search algorithm� which even in the sequential version is slightly worse than the Scout�
algorithm� In addition� the parallel algorithm may use the tight bounds of the Scout�algorithm
to avoid search overhead� By not using the zero window search the arti	cial tight bounds may be
replaced by possibly untight ones� Thus� when switching to the pure ���algorithm� the search
overhead should increase�

Results Without Zero Window Search

Table ��� shows the results obtained for the version without zero window search running on ��

and ��
� processor� The processor work load of the pure ���algorithm is better than the one of
the Scout�algorithm� For example� the average work load for a ���ply search with ��
� processors
increases from ����
 to �
��� � The average search overhead� however� only increases from

���� to
���
 � which may even be caused by deviations� The somewhat better performance
of the Scout version may be due to the fact that the evaluation of the game tree nodes need not
to be equally fast� The nodes� which are generated within a research can be generated very fast�
because important information may be found in the transposition table� Thus the performance
of the pure ���algorithm is slightly smaller� Summing up we may state�

��� CHAPTER �� BEHAVIOUR ON MORE THAN ��� PROCESSORS

SPE LOAD SOVHD PERF t�
��ply search

GC�G��
� ��� ������ ����� ����
 ����
 ���
GC�G��
� �
�
����� ����
 ����� ����� ��

���ply search

GC�G��
� ���
����� ����� ����
 ����� ���
GC�G��
� �
� ������ �
��� ����� �����
��

Table ���� Reduced TR�Accesses with ��
 and ��
� processors

Observation ��� The improvements of the speedup caused by switching from the Scout�algo�
rithm to the ���algorithm are between
�� for an ��ply search with the G��
� ��� and ��
 for
a ���ply search with the G��
� ����

Therefore the reduction of the number of transposition table accesses described in the next
section will be done in the ���version instead of the Scout version�

��� Reduced Transposition Table Accesses

In addition to the poor average work load of the standard version in large grids� the e�ciency
is in�uenced by the large performance loss� Corollary ���� states that the performance loss
is caused mainly by the transposition table messages� Therefore� we reduce the number of
accesses to the transposition table to get a better performance� Any reduction of the use of the
transposition table� however� must cause additional search overhead�

The deepest nodes of the game tree� for which a transposition table access is done in the standard
version� are the fathers of leaves of the brute force search tree� For these nodes a transposition
table access is less important� because the subtrees below them are very small� In addition� most
of the nodes� for which the transposition table is accessed lie in the level of the fathers of the
leaves� the communication necessary for the transposition table can be reduced greatly by simply
not allowing transposition table accesses for the fathers of the leaves any more� This� however�
does no make sense as long as� correspond to the iterative deepening method� only small search
trees are evaluated� Table ��
 shows that the standar version is able to run an ��ply search faster
than tournament speed on the average� such that during a game under tournament conditions
almost every move is evaluated at least to a search depth of �� Thus� we decided to reduce the
transposition table accesses in such a way� that for search depths
 � the transposition table is
no more accessed for the fathers of the leaves of the brute force tree�

Table ��� shows the results obtained for the ���version with reduced transposition table accesses�
Compared to the standard version without zero window search the speedup is improved from
�

��� to ������ with ��
� processors doing a ���ply search� This improvement mainly is due
to an increase of the performance by ����� � ����� � ����� � i�e� more than half of the
performance loss of the original version are avoided� On the other hand� the search overhead
worsens� it increases from
���
 to ����� � The average processor work load remains constant�

For the increase of the search overhead there are mainly two reasons�

���� DB
	� VS� GC
������ UNDER TOURNAMENT CONDITIONS ���

BF QS
depth type
 type � type
 type �

���TR� ���� ���� ��
� ����
���TR(���� ���� ���� ���

Table ���� Percentage of the nodes having a wrong expected type

�� In the case of transpositions to the same position at the level of the fathers of the leaves
equal subtrees are searched twice now�

� The reduced transposition table accesses results in a worse move ordering in the deeper
part of the brute force search tree� which has negative in�uences on the search of the
parallel algorithm too�

The second e�ect can be observed from the data of Table ���� By the reduction of the transpo�
sition table accesses the quality of the expected type of nodes function gets worse for the nodes
of the brute force tree� it remains unchanged for the nodes of the quiescence search�

The increase of the performance is caused by the largely reduced number of transposition ta�
ble messages� For instance� in the standard ���version roughly ����� million TR�requests are
sent during a ���ply search� in the version with the reduced accesses ���� million only� This
corresponds to a reduction by �
 �

The average processor work load is not changed by the reduction of the transposition table
accesses� although the average running time per problem is slightly smaller� The better perfor�
mance allows a faster decomposition of the game trees into subtrees resulting in a better load
distribution�

Observation ��� The version with the reduced transposition table accesses shows improved
speedups compared to the standard version� The largest improvement is by ���� for an ��
ply search with ��
� processors� The smallest improvement observed is by ��� for a ���ply
search with ��
� processors�

��� DB�
� vs� GC������� under tournament conditions

The parallelization presented in this work is used in the distributed chess program ZUGZWANG�
The successor version ZZ ���
x of the version ZZ ���
x discussed in this work� which� other than
a few minor details� uses the parallelization described above became Vice World Champion at
the Computer Chess World Championships in Madrid� Spain� in November ���
� It ran on a
G��
� �
� and 	nished the tournament with three wins and two draws� i�e� without a loss� The
standard version for the DeBruijn network became chess champion of the city of Paderborn�
Germany� in December ����� running on a DB���� Almost the same program became second
best computer at the �th AEGON Man vs� Machine Tournament in The Hague� Netherlands� in
May ���
� During the latter two tournaments� ZUGZWANG played at a rating of approximately

��� ELO points �German ELO rating�� This corresponds to an ELO rating of approximately

��� �USCF�� Therefore� it may be of interest to compare the version described last for the
�
� �
 � grid and the standard version running on the DB���� This comparison is done below�

��� CHAPTER �� BEHAVIOUR ON MORE THAN ��� PROCESSORS

SPE LOAD SOVHD PERF t�
Speedup

SC�DB��� wrt T��� ������ ����� ���
 ����� �
�
GC�G��
� �
� wrt T��� ������ �
��� ����� �����
��

GC�G��
� �
� wrt T��� ������ �
��� ����� ����

��

Table ���� Standard version on the DB��� vs� ��on the G��
� �
�

We will compare the absolute speed of the G��
� �
� and the DB��� to get an approxima�
tion for the playing strength of ZUGZWANG running on the G��
� �
��We may presume that
ZUGZWANG running on the DB��� has a playing strength of
��� ELO approximately�

There are several di�erent conjectures for the question� how playing strength and computing
power are related� Nau
��� analyzes game trees� in which the deeper searches return worse
values than the shallow ones� Schr�ufer
��� analyzed the s�tree model and showed for these
class of game trees that the results of deeper searches are worse than the results of shallower
ones� if the probability of an erroneous static evaluation of the leaves becomes too large� In
practice� i�e� in game playing programs� this so called pathology has never been observed� New�
born
�
� conjectured an increase of the playing strength by more than ��� ELO points for
each doubling of the computational power� Levy and Newborn
��� analyzed the increase of the
playing strength as a function of the search depth� which are reached by the programs under
tournament conditions� They come to the conclusion that in the aera from ���
 to ���� each
additional ply� which corresponds to the 	ve� to sixfold speed of the computation� corresponded
to an increase of the playing strength of
�� ELO points� The last approximation� however� does
not consider all the development of the software during this time� such that one may conjecture
that an increase of the computational power does not necessarily correspond to an increase of
the playing strength of
�� ELO points� Szabo and Szabo
��� extend the experiments of Condon
and Thompson
��� �
� and come to the result that the playing strength grows as

R�P � �
�

������� � e
�����	��P�	����
����

Here P is the playing strength scaled logarithmically in the computational power� i�e� doubling
the speed increases P by one� R�P � is the ELO number reached� This function grows slower
the larger the playing strength is� The fact remains that the faster computer is the better one�

Table ��� shows the data measured during a ���ply search for the DB��� on the SC� as well as
for the G��
� �
� on the GCel� The 	rst line contains the results of the DB��� with respect to a
sequential SC�processor� the second line the results of the G��
� �
� measured with respect to a
sequential GCel�processor� The lowest line of the table shows the results for the G��
� �
� with
respect to the sequential SC�processor version� With this the speedup of the G��
� �
� on the
GCel compared to the DB��� on the SC can be shown�

Observation ��� The G��
� �
� achieves a speedup of ������ compared to th e sequential SC�
processor and thus� consisting of the fourfold number of processors� is

������

������
�
���

times as fast as the DB��� on the SC�

���� DB
	� VS� GC
������ UNDER TOURNAMENT CONDITIONS ���

This speedup mainly is due to the larger average performance� which is achieved by the reduction
of the use of the transposition table as well as by the higher clock rate� One has to pay for the
reduction of the use of the transposition table by a signi	cant increase of the average search
overhead� The processor work load is much worse in the G��
� �
� caused by the two dimensional
grid structure of the network and the smaller average running times�

ZUGZWANG on the DB���� having
��� ELO points� has a playing strength according to
Szabo and Szabo
��� of P���� � ������ therefore the playing strength of the GC��
� �
� is
������ log�
��� � ������With this we get the following conjectures about the paying strength
of ZUGZWANG on the GC��
� �
� �

Corollary ��� ZUGZWANG on the GC��
� �
� has an approximated ELO number of

� ���� following Newborn ����

� �
�� following Levy and Newborn ����

� �
�� according to the Szabo curve ����

With this� ZUGZWANG is amongst to the strongest chess programs in the world�

��
 CHAPTER �� BEHAVIOUR ON MORE THAN ��� PROCESSORS

Chapter �

Conclusions and Open Problems

In this thesis� we described a parallelization of the game tree search� which enables us to use
massively parallel systems e�ciently� In addition� with the parallelization presented� the use of
all state of the art techniques for speeding up the sequential search is possible� The parallelization
presented here is more e�cient than any other parallel game tree search algorithm known before�

We showed that the success of the parallelization is due to the following features�

�� Dynamic load distribution in all parts of the game tree to be searched�

� Local criteria� whether or not to use parallelism�

�� The choice of a suitable processor network�

�� E�cient implementation of a distributed hash table�

�� Development of a local and global load distribution strategy� which does not have the
disadvantages of a purely local or purely global load distribution� but instead improves
the move ordering of the game trees to be searched�

The parallelization is of practical importance� since it is successfully used in the chess program
ZUGZWANG�

Some problems� however� remain open�

Figure ��
� in Section ��� describes� how synchronization nodes occur during the parallel search�

Open problem � �Iterative deepening�

By the iterative deepening in a game tree of depth d O�d�� synchronization nodes are generated�
which decrease the processor work load� Is it possible to decrease the number of synchronization
nodes without increasing the search overhead of the game tree search �

Open problem � �Tradeo� SOVD�LSTG�

In massively parallel systems without routing hardware the use of a distributed transposition table
causes a large loss of the performance� reducing the number of accesses to the table� however�
results in a large search overhead� Is there a combination of

���

��� CHAPTER �� CONCLUSIONS AND OPEN PROBLEMS

Hash function � Parallelization strategy � Processor topology�

which makes the accesses to a large transposition table cheaper without increasing the search
overhead or decreasing the work load �

There are some theorems claiming a linear speedup of some parallel game tree search algorithms

�� ��� ���� These theorems� however� are of no practical importance� because

�� the theoretical models of the game trees investigated are far from the game trees occurring
in practical applications�

� the game trees to be searched have to be unrealistically large to achieve a linear speedup
and

�� the constants of the linear function describing the speedup are very small�

In practice several di�culties arise� which result in a speedup clearly smaller than the number of
processors� In the past several alternatives to the brute force search with the help of the ��� or
Scout�algorithm respectively were developed� e�g� the B��algorithm presented by Berliner
����
which becomes more and more important very recently by the successful use in the chess program
B��HITECH or the Conspiracy Number Search algorithm of McAllester
���� The game trees
searched by these algorithms in general are of a much more nonuniform structure than the game
trees searched by a brute force search� The question of how well these algorithms parallelize is
still an open one�

Open problem � ����alternatives�

Is there a better parallelization for the B��algorithm or the Conspiracy Number Search algorithm
than for the ���algorithm �

Human chess players seem to search a game tree extremely selectively� The best human players
are still superior to the best machines� which imposes the question� if the computation of a
move based on the brute force search with the help of the ��� or Scout�algorithm will lead to
a machine playing complex game like chess stronger than the best humans in the near future�
Therefore alternatives to the brute force search should be studied carefully�

Acknowledgement

I would like to thank my supervisor Prof� Dr� Burkhard Monien� who gave me the opportunity to
do this research� Additionally he supported the development of the chess program ZUGZWANG�
as an application for the parallelization described in this book� and with many discussions and
many hints he contributed to its success� With many helpful comments he positively in�uenced
the 	nal form of this book�

In the same way I would like to thank my colleague Peter Mysliwietz� the second �father� of
ZUGZWANG� for the good cooperation over many years�

Furthermore� I would like to thank Dr� Ingo Alth�ofer and Dr� Walter Unger for carefully reading
the German version of this work and for their helpful comments�

Appendix A

A BCH Hash Function

In order to generate a BCH Code� we will proceed as described by Berlekamp
��� We compute
the cyclotomic polynomial

Q
������x� ��
Y
�

�x� ���

where � becomes any element from the set of the primitive ��
�rd roots of unity� This polynomial
can be determined without explicitly knowing all the roots of unity� It is described in a short
notation below�

Q
������x� � � ���������� ���������� ���������� ���������� ����������
���������� ���������� ���������� ���������� ����������
���������� ���������� ���������� ���������� ����������
���������� ���������� ���������� ���������� ����������
���������� ���������� ���������� ���������� ����������
���������� ���������� ���������� ���������� ����������
���������� ���������� ���������� ���������� ����������
���������� ���������� ���������� ���������� ����������
���������� ���������� ���������� ���������� ����������
���������� ���������� ���������� ���������� ����������
���������� ���������� ���������� ���������� ����������
���������� ���������� ���������� ���������� ����������

Here only the coe�cients of Q
������x� are given� the polynomial itself therefore is

Q
������x� � x��� � x	�� � x	�
 � x	
� � � � �� x� � x� ��

The last numbers are the coe�cients of the small powers of x�

A factor of Q
������ which is irreducible over GF �
� is

m
���x� � x�� � x� � �

or

m
���x� � � ����� �����

���

��� APPENDIX A� A BCH HASH FUNCTION

for short�

We represent each element of the 	nite 	eld GF �
��� as a residue class modulo m
���x�� which
enables us to add� substract� multiply and divide the elements of GF �
���� Each residue class
is represented by the uniquely determined polynomial of degree � �� of the class� Then in our
short notation

� �
x�m��� �
���m���

is a root of m
���x�� and thus m
���x� is the minimal polynomial of �� Table A�� contains the
powers ��� � � � � ��� of � and the corresponding minimal polynomials m
i��x� of �i�

i �i m
i��x�

� �� � ����� �����

 ��� � ����� �����
� ���� � ����� �����
� ����� � ����� �����
� � ����� � ����� �����
� �� ����� � ����� �����
� ��� ����� � ����� �����
� ���� ����� � ����� �����
� ����� ����� � ����� �����
�� ���� � ����� �����
�� ����� � ����� �����
�
 � ����� � ����� �����
�� �� ����� � ����� �����
�� ��� ����� � ����� �����
�� ���� ����� � ����� �����
�� ����� ����� � ����� �����
�� ��� ����� � ����� �����
�� ���� ����� � ����� �����
�� ����� ����� � ����� �����

Table A��� Powers of � and the corresponding minimal polynomials

Note that �i and ��i are binary conjugates and thus have the same minimal polynomial�

A BCH�code with a Hamming distance of
 � t� �� t
 �� is now obtained by using the product
of the distinct minimal polynomials m
���x�� � � � � m
��t����x� as a generator polynomial g�x�� i�e�

g�x� �� lcmfm
���x�� m
���x�� � � � � m
��t����x�g�

Especially for our chess program� let s � f�� �g��� be the representation of a position� For t �
�
the BCH�code with a Hamming distance of
 � t � � has a parity check matrix

H ��

�
BBBB	
� �� �� �� � � � ���
����t

� �� �� �� � � � �
��
����t��

���
���

���
���
���

� ��t�� ��
�t��� ��
�t��� � � � �
��
����t�
�t���

CCCCA �

���

Here the �i are the powers of the primitive ��
�rd root of unity �� written as polynomials of de�
gree � �� in the short notation including the leading zeroes� e�g� �� �
���m��� � ������ ������T �
�� �
����m��� � ������ ������T � etc�

By adding a parity check line to the parity check matrix we another parity check matrix

)H ��

�
BBBBBB	

� �� �� �� � � � ���
����t

� �� �� �� � � � �
��
����t��

���
���

���
���

���
���

� ��t�� ��
�t��� ��
�t��� � � � �
��
����t�
�t���

� � � � � � � �

CCCCCCA �

Each codeword x � f�� �g�������t�� now satis	es
)H � x � ��

By diagonalization we obatin a new parity check matrix

H � �
I jA�

with
H � � x � ��)H � x � ��

Here I is the ��� � t� ��� ��� � t� �� unit matrix� Now a codeword x � f�� �g�������t�� is of the
form

x � x� � � �xk� �z �
Checkbits

xk�� � � �xn� �z �
Positionbits

�

with k � �� � t� � and n � ��� � �� � t� ��
Then we have

x� � �A��� � s � A��� � s� x� � A��� � s� � � �

We get a BCH hash function
h � f�� �g��� � f�� �g���t��

by simply de	ning
h�s� �� A � s�

The representation of a chess position is used only implicitly� If e�g� v is a position having a
representation s and a hash value h�s� and v� is a successor of v in the search tree� then the
representations of v and v� only di�er in a few �very often only two� bits� The indices� at which
the representations di�er� are determined uniquely by the move from v to v�� If i�� � � � ik are the
indices of the bits� at which the representations of v and V � di�er� then the hash value h�s�� of
v� is obtained by computing

h�s�� �� h�s�
kM

j��

A��ij �

i�e� by some few XOR�operations�

��� APPENDIX A� A BCH HASH FUNCTION

Appendix B

The Bratko Kopec Positions

�j�s�Z�Z
opZbZRZ�
�Z�l�Zpo
Z�Z�o�Z�
�ZBZ�Z�Z
Z�Z�L�Z�
POPZ�A�Z
Z�J�Z�Z�

B��
�Black to move�

�Z�s�j�Z
Z�Z�mpo�
�ops�Z�o
o�Z�Z�ZP
PZ�OPOPZ
ZNS�Z�Z�
�Z�Z�J�Z
Z�S�Z�Z�

B�

�White to move�

�ZqZrs�j
Z�Zbanmp
pZ�o�opZ
Z�oPo�Z�
PoPZPZPZ
ZPZ�ANMP
�ZBL�ORJ
Z�Z�Z�ZR

B��
�Black to move�

rmblka�s
o�Z�opop
�o�Z�Z�Z
Z�opO�Z�
�Z�M�Z�Z
Z�O�Z�Z�
POPZQOPO
S�A�JBZR

B��
�White to move�

rZbZ�skZ
Z�l�a�op
pZ�opm�Z
ZpZ�Z�Z�
�Z�LPZ�Z
ZBM�A�Z�
POPZ�ZPO
S�Z�ZRJ�

B��
�White to move�

�ZrZ�ZkZ
opoRZpo�
�Z�ZpZ�Z
Z�Z�O�O�
�Z�Z�O�Z
ZPZ�Z�J�
PZPZ�Z�Z
Z�Z�Z�Z�

B��
�White to move�

�mkZrZrZ
opZ�m�op
�Z�ZpZ�Z
l�ZpOpZN
bZpO�O�Z
A�O�ZRZ�
�ZPZBZPO
S�ZQZ�J�

B��
�White to move�

�Z�ZbZ�Z
o�Z�jpZ�
�Z�Z�ZpZ
Z�ZpO�Zp
�ZpO�O�Z
Z�Z�J�O�
PZ�ZNZ�O
Z�Z�Z�Z�

B��
�White to move�

�Zks�ans
oboqZ�Z�
�ZnZpo�Z
Z�ZpZ�Zp
�Z�O�O�A
Z�M�ZNZQ
POPZ�ZPO
Z�JRZBZR

B��
�White to move�

�Z�srZkZ
opZ�Zpo�
�lnZ�mpZ
Z�Z�Z�Z�
�Z�o�Z�Z
OPZRZPZ�
�ZPZNLPO
S�A�Z�J�

B��
�Black to move�

�ZrZnskZ
o�ZqZpop
bo�o�Z�Z
m�oPo�Z�
PZPZPZ�Z
Z�OBA�M�
�Z�ZQOPO
S�Z�ZRJ�

B��
�White to move�

rZ�ZrZkZ
oplbZpop
�Z�Z�Z�Z
Z�Z�o�MQ
�Z�Z�Z�Z
Z�O�Z�Z�
PO�Z�OPO
S�Z�S�J�

B�

�Black to move�

���

��� APPENDIX B� THE BRATKO KOPEC POSITIONS

rZ�l�skZ
Z�Z�apop
pZ�o�Z�Z
Z�oPZ�Z�
�Z�oPZ�Z
Z�ZQZ�Z�
PO�A�OPO
S�Z�S�J�

B��
�White to move�

rmbZ�s�j
opZ�o�Zp
�Zpo�ZpZ
l�ZPZpZ�
�Z�Z�Z�Z
ZPa�ZNO�
PA�ZPOBO
S�ZQZRJ�

B��
�White to move�

�ZrZ�ZkZ
ZpZ�l�op
�ZbZps�Z
o�opZ�Z�
�Z�Z�ZQZ
ZPZPO�S�
PZPM�ZPO
Z�Z�ZRJ�

B��
�White to move�

rZblka�s
Z�Z�mpo�
pZpZ�Z�o
ZpZpO�A�
�Z�Z�Z�Z
ZBZ�Z�Z�
POPM�OPO
S�ZQZRJ�

B��
�White to move�

rZ�l�skZ
Zponapop
pZ�o�mbZ
Z�ZPo�Z�
�ZPZPZPZ
Z�M�ZNZP
POBZQO�Z
S�A�ZRJ�

B��
�Black to move�

rZbl�skZ
opZ�opap
�Zno�ZpZ
Z�m�Z�Z�
PZ�ZPO�Z
M�O�ZNZ�
�OBZ�ZPO
S�A�LRJ�

B��
�Black to move�

�Z�srZ�Z
Z�oqZ�ok
pZ�o�ono
Z�Z�Z�Z�
�ZQAPO�Z
ZPZ�Z�Z�
PZ�Z�ZPO
Z�Z�SRJ�

B��
�Black to move�

rZ�Z�j�Z
obZ�apZr
�o�lpZ�o
Z�ZpMpZ�
�Z�O�O�Z
Z�M�Z�O�
POPZQZ�O
Z�JRS�Z�

B
�
�White to move�

�Z�snZ�j
opa�Zrop
�Zpoqo�Z
Z�Z�ZNZ�
�ZPZPZ�Z
ZPZ�Z�ZQ
PA�Z�OPO
Z�ZRS�J�

B
�
�White to move�

�ZrZ�skZ
Zblnapo�
�o�opm�o
oPZ�Z�Z�
NZPZPZ�Z
O�ZBZNZP
�A�ZQOPZ
S�ZRZ�J�

B

�Black to move�

rZblkZ�s
opZ�apop
�ZpZ�Z�Z
Z�ZpO�Z�
PZ�L�O�Z
Z�M�A�Z�
�OPZ�ZPO
S�Z�ZRJ�

B
�
�Black to move�

rZ�lnsnj
o�ZbZ�a�
�o�o�Zpo
Z�oPopZ�
�OPZPZ�Z
ORMBA�Z�
�Z�LNOPO
Z�Z�ZRJ�

B
�
�White to move�

Bibliography

�� S�G� Akl� M� Newborn The priciple continuation and the killer heuristic ACM Annual
Conference� pp �������� ������

� S�G� Akl� D�T� Barnard� R�J� Doran Simulation and Analysis in Deriving Time and

Storage Requirements for a Parallel Alpha�Beta Pruning Algorithm IEEE Inter�
national Conference on Parallel Processing� pp
���
��� ������

�� S�G� Akl� D�T� Barnard� R�J Doran Design
 Analysis and Implementation of a Par�

allel Tree Search Algorithm IEEE Transactions on Pattern Analysis and Machine Intel�
ligence� Vol� � No�
� pp ��
�
��� ����
�

�� K� Almquist� N� McKenzie� K� SloanAn Inquiry into Parallel Algorithms for Search�

ing Game Trees Technical Report� University of Washington� Seattle� USA� ������

�� I� Alth�ofer The Complexity of a Simple Stochastic OR�Tree Model in Which �Di�
rectional Search� Is Bad Journal of Algorithms� Vol �� pp
���
��� ������

�� I� Alth�oferA Parallel Game Tree Search Algorithm with a Linear Speedup erscheint
in Journal of Algorithms� ������

�� G�M� Baudet On the Branching Factor of the Alpha�Beta Pruning Algorithm Ar�
ti	cial Intelligence� Vol� ��� pp �������� ������

�� G� Baudet The Design and Analysis of Algorithms for Asynchronous Multipro�
cessors Doktorarbeit� Carnegie�Mellon University� Pittsburgh� USA� ������

�� E�R� Berlekamp Algebraic Coding Theory Revised Edition� Aegean Park Press� ������

��� H�J� Berliner The B� Tree Search Algorithm� A Best�First Proof Procedure
Arti	cial Intelligence� Vol� �
 pp
����� ������

��� H�J� BerlinerComputer Chess at Carnegie�Mellon UniversityAdvances in Computer
Chess IV� D�F� Beal �Editor�� Pergamon Press� pp �������� ������

�
� M� B�ohm� E� Speckenmeyer A Dynamic Processor Tree for Solving Game Trees in

Parallel Technical Report� University of Dortmund� Germany� ������

��� I� Bratko� D� KopecA Test for Comparison of Human and Computer Performance
in Chess Advances in Computer Chess III� M�R�B� Clarke �Editor�� Pergamon Press� pp
������ ����
�

��� A� Burns Programming in Occam � Addison�Wesley Publishing Company� ������

���

��
 BIBLIOGRAPHY

��� M�S� Campbell� T�A� Marsland A Comparison of Minmax Tree Search Algorithms
Arti	cial Intelligence� Vol�
�� pp �������� ������

��� J�H� Condon� K� Thompson Belle Chess Hardware Advances in Computer Chess III�
M�R�B� Clarke �Editor�� Pergamon Press� pp ����������
�

��� J�H� Condon� K� Thompson Belle Chess Skill in Man and Machine� P�W� Frey �Editor��
Springer Verlag� pp
���
���������

��� N�G� DeBruijn A Combinatorial Problem Indagationes Math�� Vol� �� pp ��������
������

��� A�E� Elo The Rating of Chessplayers
 Past and Present Arco Publishing� New York�
����

�� R� Feldmann� P� Mysliwietz� O� VornbergerA Local Area Network Used as a Parallel
Architecture Technical Report� University of Paderborn� West Germany� ������

�� R� Feldmann� P� Mysliwietz Parallele Spielbaumsuche Diplomarbeit� University of
Paderborn� Germany� ������

� R� Feldmann� B� Monien� P� Mysliwietz� O� VornbergerDistributed Game�Tree Search
ICCA Journal� Vol� �
 No�
� pp ������ ������

�� R� Feldmann� B� Monien� P� Mysliwietz� O� Vornberger Distributed Game Tree Seach
Parallel Algorithms for Machine Intelligence and Vision� V� Kumar� L�N� Kanal� P�S�
Gopalakrishnan �Editors�� Springer Verlag� pp ������� ������

�� R� Feldmann� B� Monien� P� MysliwietzA Fully Distributed Chess Program Advances
in Computer Chess VI� D�F� Beal �Editor�� pp ��
�� ������

�� R� Feldmann� P� Mysliwietz� B� Monien Spielbaumsuche auf einem Transputernet�
zwerk Parallel � Algorithmen und �Rechnerstrukturen �PARS�� Workshop Sprachen und
Systeme zur Parallelverarbeitung� Gesellschaft f�ur Informatik e�V� ������

�� R� Feldmann� P� Mysliwietz� B� Monien Experiments with a Fully Distributed Chess
Program Heuristic Programming in Arti	cial Intelligence �� J� van den Herik� V� Allis
�Editors�� pp �
���� ����
�

�� R� Feldmann� P� Mysliwietz� B� Monien Distributed Game Tree Search on a Mas�
sively Parallel System in� Data structures and e�cient algorithms� Final report on the
DFG special joint initiative� Springer� Lecture Notes on Computer Science ���� B� Monien�
T� Ottmann �Editors�� pp
���
��� ������

�� Ch� Ferguson� R�E� Korf Distributed Tree Search and its Application to Alpha�
Beta Pruning Proceedings AAAI���� Seventh National Conference on Arti	cial Intelli�
gence� Vol�
� pp �
����
� ������

�� R�A� Finkel� J�P� Fishburn Parallel Alpha�Beta Search on Arachne IEEE Interna�
tional Conference on Parallel Processing� pp
���
��� ������

��� R�A� Finkel� J�P� Fishburn Parallelism in Alpha�Beta Search Arti	cial Intelligence
Vol� ��� pp ������� ����
�

BIBLIOGRAPHY ���

��� R� Funke� R� L�uling� B� Monien� F� L�ucking� H� Blanke�Bohne An Optimized Recon�
�gurable Architecture for Transputers Proceedings of the
�th Hawaii Int� Conference
on System Sciences �HICSS�� Vol� �� pp
���
��� ����
�

�
� R�D� Greenblatt� D�E� Eastlake III� S�D� Crocker The Greenblatt Chess Program Pro�
ceeding of the Fall Joint Computing Conference� San Francisco� pp �������� ������

��� J� Harting Analyse eines parallelen Spielbaumsuchverfahrens mit linearem

Speedup Diplomarbeit� Universit�at Bielefeld� Fakut�at f�ur Mathematik� Bielefeld� Deutsch�
land� ������

��� F�H� Hsu Large Scale Parallelization of Alpha�Beta Search� An Algorithmic Ar�

chitectural Study with Computer Chess Phd� thesis� Carnegie Mellon University� Pitts�
burgh� USA� ������

��� M� M� Huntbach� F� W� Burton Alpha � Beta Search on Virtual Tree Machines

Information Sciences� Vol� ��� pp ����� ������

��� R�M� Hyatt Parallel Chess on the Cray X�MP��	 ICCA Journal� Vol� � No�
� pp
������ ������

��� R�M� Hyatt� B�E� Gower� H�L� Nelson CRAY BLITZ Advances in Computer Chess IV�
D�F� Beal �Editor�� Pergamon Press� pp ����� ������

��� R�M� Hyatt� B�W� Suter� H�L� NelsonA parallel alpha�beta tree searching algorithm
Parallel Computing� No� ��� pp
������� ������

��� R� M� Karp� Y� ZhangOn Parallel Evaluation of Game Trees Proceedings of SPAA����
pp �����
�� ������

��� D�E� Knuth� R�W� Moore An Analysis of Alpha � Beta Pruning Arti	cial Intelligence�
Vol� �� pp
����
�� ������

��� H��J� Kraas Zur Parallelisierung des SSS��Algorithmus Doktorarbeit� Universit�at
Braunschweig� Deutschland� ������

�
� T� Leighton� B� Maggs� S� Rao Universal Packet Routing Algorithms IEEE FOCS�
pp
���
��� ������

��� C� Leiserson Pers�onliches Gespr�ach ����
�

��� D� Levy� M� Newborn How Computers Play Chess Computer Science Press� ������

��� T�A� Marsland� M�S� Campbell Parallel Search of Strongly Ordered Game Trees
Computing Surveys� Vol� �� No� �� pp �������� ����
�

��� T�A� Marsland� F� Popowich Parallel Game Tree Search IEEE Transactions on Pattern
Analysis and Machine Intelligence� Vol� � No� �� pp ��
���
� ������

��� T�A� Marsland� M� Olafsson� J� Schae�er Multiprocessor Tree�Search Experiments
Advances in Computer Chess IV� D�F� Beal �Editor�� Pergamon Press� pp ������ ������

��� D�A� McAllester A New Procedure for Growing Min�Max Trees Arti	cial Intelli�
gence� Vol� ��� No� �� pp
������� ������

��� BIBLIOGRAPHY

��� B� Monien� O� Vornberger Parallel Processing of Combinatorial Search Trees Pro�
ceedings International Workshop on Parallel Algorithms and Architectures� Math� Research
Nr� ��� Akademie � Verlag Berlin� pp ������ ������

��� P� Mysliwietz Konstruktion und Optimierung von Bewertungsfunktionen beim
Schach �vorl�au�ger Titel� Doktorarbeit� Universit�at GH Paderborn� Deutschland� ������

��� D�S� Nau Pathology on Game Trees Revisited and an Alternative to Minimaxing

Arti	cial Intelligence� Vol�
�� pp

��
��� ������

�
� M� Newborn Computer Chess� Recent Progress and Future Expectations Infor�
mation Technology� J� Moneta �Editor�� pp ������
� ������

��� M� Newborn A Parallel Search Chess Program ACM Annual Conference ����� pp

�
�
��� ������

��� M� Newborn Unsynchronized Iterative Deepening Parallel Alpha�Beta Search
IEEE Transactions on Pattern Analysis and Machine Intelligence� Vol� �� No� �� pp ����
���� ������

��� A� Newell� J�C� Shaw� H�A� Simon Chess�Playing Programs and the Problem of
Complexity IBM�Journal of Research and Developement�
� pp �
������ ������ Reprint in�
Computers and Thought� E�A� Feigenbaum� J� Feldman �Editors�� McGraw�Hill� pp ������
������

��� S�W� Otto� E�W� Felten Chess on a Hypercube The Third Conference on Hypercube
Concurrent Computers and Applications� Vol�
� pp ��
������� ������

��� J� Pearl Asymptotic Properties of Minmax Trees and Game Searching Proce�
dures Arti	cial Intelligence� Vol� ��� pp �������� ������

��� J� Pearl Heuristics� Intelligent Search Strategies for Computer Problem Solving

Addison�Wesley Publishing Company� ������

��� A� Reinefeld Spielbaum�Suchverfahren Springer�Verlag� Informatik�Fachberichte� Band

��� ������

��� J� Rezaie� R� FinkelA Comparison of some Parallel Game�Tree Search Algorithms
Technical Report� University of Kentucky� Lexington� USA� ����
�

��� I� Roizen� J� Pearl A Minmax Algorithm Better than Alpha�Beta � Yes and No
Arti	cial Intelligence� Vol�
�� pp ����
��� ������

�
� A�L� Samuel Some Studies in Machine Learning Using the game of Checkers� II
� Recent Progress IBM�Journal of Research and Developement� ��� pp ������� ������

��� J� Schae�er The History Heuristic and Alpha�Beta Search Enhancements in

Practice IEEE Transactions on Pattern Analysis and Machine Intelligence� Vol� �� No�
��� pp �
����
�
� ������

��� J� Schae�er Distributed Game�Tree Searching Journal of Parallel and Distributed
Computing� Vol� � No�
� pp ������� ������

BIBLIOGRAPHY ���

��� J� Schae�er Comment on �Distributed Game Tree Search� ICCA Journal� Vol� �

No� �� pp
���
��� ������

��� C�E� Shannon Programming a Computer for Playing Chess Philosophical Magazine
��� pp
���
��� ������

��� G� Schr�uferMinimax�Suchen Kosten
 Qualit�at und Algorithmen Doktorarbeit� Uni�
versit�at Braunschweig� Deutschland� ������

��� J�R� Slagle� J�K� Dixon Experiments with some Programs that Search Game Trees
Journal of the ACM� ��� pp ����
��� ������

��� D�J� Slate� L�R� Atkin CHESS ��� � The Northwestern University Chess Program

in Chess Skill in Man and Machine� P�W� Frey �Editor�� Springer Verlag� pp �
����� ������

��� G�C� Stockman A Minmax Algorithm Better than Alpha�Beta � Arti	cial Intelli�
gence� Vol� �
� pp �������� ������

��� A� Szabo� B� Szabo The Technology Curve Revisited ICCA Journal� Vol� �� No� �� pp
���
�� ������

�
� K� Thompson Computer Chess Strength Advances in Computer Chess III� M�R�B�
Clarke �Editor� Pergamon Press� pp ������ ����
�

��� A�M� Turing Digital Computers Applied to Games in B�V� Bowden� Faster than
Thought� A Symposium on Digital Computing Machines� Pitman� pp
������ ������

��� J� v� Neumann� O� Morgenstern Theory of Games and Economic Behavior Princeton
University Press� Princeton� USA� ������

��� O� Vornberger� B� MonienParallel Alpha�Beta versus Parallel SSS� Proceedings IFIP
Conference on Distributed Processing� North Holland� pp �����
�� ������

��� T� Warnock� B� Wendro� Search Tables in Computer Chess ICCA Journal� Vol� ��
No� �� pp ������ ������

��� E� Zermelo �Uber eine Anwendung der Mengenlehre auf die Theorie des

Schachspiels �� Internationaler Mathematikerkongre*� Cambridge� Band
� pp ��������
����
�

��� K� Zuse Der Computer � Mein Lebenswerk Springer Verlag� ������

Index

���algorithm� �� ���
��
�� ��� ��� �
� ����
���� ���

���ply search� ��� ���� ���� ���

actual variation� ��� ��(��� ��� ��� ��� ��
answer� ��� ��� ���� ���
Arti	cial Intelligence� �
aspiration search� ��
��
�� ��

B��algorithm� ���
b�d�uniform� �� ��� ��� ��� ��
BCH�

(
�� ��� �
� ���
bound

lower�

�
�
upper�

�
�

Bound and Branch algorithm� ��
bound variable� ��� ��
Bratko Kopec test� ��� ��� ��� ���� ���
breadth 	rst search� ��
brother� ��
brute force search� ��� ��� ��� ���
brute force tree� ��� ��� ��� ��� ��� ��� ���

��� ���� ���
bu�er� ��� ��

cancellation� ��� ��� ��� �
�� �
�
channel� ��
chess position�
�
clock rate� ��� ��
collision�

�
��
�� ��� ��� �
� ��� ��

expected� �

communication� ���� �
�
communication load� ��� ��� ��
communication process� �

Conspiracy number search� ���
cuto�� �� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� �
� ��� ��� ��� ��� ��� ��� �
�
deep� �� ��
direct� �� ��� ��

cuto� message� ��� ��� ��� ���
cuto� node� ��

cycle� ��
cyclotomic polynomial� ���

DeBruijn network� ��(��� ��� �
� ���� �
�(
�
�

degree� ��� ��
demultiplexing� ��� ��
depth� ��� ��� ��� ��
depth 	rst search� ��
deviation� ��(��� ���
Dewey decimal system� ��
diameter� ��� ��
distance� ��

average� ��� ��� ��� ���� �
�

e�ciency� ��� ���� ���
ELO� �� �� ���(���
exact value�
�
exchange function� ��

fail node� ��� �

fail search� ��
fail soft� ��� ��
father� ��� ��

	nite 	eld� ���
�ag�

free� ��� ��� ��� ��

game tree� �� �

game tree decomposition� ��
game tree search� �
� ��
game tree search problem� �

generator polynomial� ���
graph� ��
grid� ��(��� ���� �
�(�
�� ���

Hamming distance� ���
hardware scheduler� ��
hash function�

�
��
�� ��� �
� ��� ���
heuristics�
�
history

heuristic� ��
�� ��� ��� ��� ���� �
�

���

INDEX ���

table� ��(��� ��� ��� ��� ��� �
�
horizon e�ect� ��
host processor� ��� ��� �
� ���� ���

indegree� ��
iteration�
�
iterative deepening� ��
��
��
��
�� ��� ���

��
� ���� ���� ���

key�

�
�
killer

bonus�
�
heuristic� ��
��
�� ��� ��� ���� �
�
list� ��� ��� ��� ��� ��� �
�� �
�
move�
�� ��� �
� ��� ��� ��� �
�
update� ��� �
�

leaf� ��� ��� ��� ��� ��� ��� ��� ��
length� ��
level� ��
link� ��� ��� ���
load balancing� ��� ���
load distribution� ��� ��� ��� ��� ��� �
�� �
��

���(��
� ���� ���
global� ��� ��
local� ��� ��

main memory� ��
master� ��� ��� ��� ��� �
� ��� ��
master�slave relationship� ��(��� ��� ��� ���

�
�� �
�� ���
MAX�node� �
� ��
MIN�node� �
� ��
minimal polynomial� ���
minmax

algorithm� �� �
value� �
� ��� ��� ��� ��� ��� ��� ��

move
best�
��
��
�� ��� ��� ��� ���
fail�
��
�� ��� �

noncapturing� ��
positive capturing� �
� ��� ��� ��

move ordering� ��
��
��
��
�� ��� �
� ���
��� ��� ��� ��� ��� ���� ���� �
�� �
��
���� ���

multiplexing� ��� ��

neighbor� ��� �
�
network� ��

master� ��
network master� ��� �
� ��� ��� ��� ��
� ���
newentry� ��
node

actual� ��� ��
free� ��� ��
inner� ��� ��� ��

nondeterminism� ��� ��� ��

Occam� ��
outdegree� ��

parallelism� ��� ��� ��� �
� ��� ��(��� ��� ���
��� ���(���� �
�� ���

parity check� ���� ���
path� ��
performance� ��� ��� ���� ���

loss� ��� ��(���� ���� ���� ���� ���� �
��
���� ���� ���

permanent brain� ���� ��

playing strength�
�� ��� ���
principal variation� �
� ��� ��� ��

heuristic�
�
processor� ��

tree� ���� ��

PV�Split�algorithm� ��� ��� ���� �
�

dynamic� ��
E�� ��

quiescence search� ��� ��� ��� ��� ��(��� ����
���

node� ��

radius constant� �
� ��� �
�� �
�
refutation variation�
�� ��
representation�
��
�� ���� ���
request for work� ��� ��� ��� ��� ��(��� ����

�
�� �
�� �
�� ��

research� ��� ���
�� ��� �
� ��� ��� ��� ���

���� ���
return� ��� ��� ��� �
� ��� ���� �
�� �
�
root� ���
�� ��� ��� ��� ��
root of unity� ���
routing� ��� ��� ��� ��� ��� ���� ���� ����

���� ���� �
�� �
�� ���
routing hardware� ���� ���� ���� ���

scalability� ���
Scout�algorithm� ��� ��� ��(
�� ��� ��� �
�

���� ���� ���

��� INDEX

iterative� ��
search

selective� ��� ��
search depth� ��

�
��
��
�� ��� ��� ���

��� ��� ��� ��� ��� ���(���� ���� ����
���

search depth reduction� ��
search extension� ��� ��
search for work� ��� ��� ��� ��� ��(��� �
��

�
�
global� �

local� ��� ��
with N�� ��� �
�(�
�� �
�� �
�� ���
with N
� ��� �
�� �
�(�
�
with N�� �
� �
�� �
�� �
�� �
�

search overhead� �
� ��� ��(��� ��� ��� ���
��(��� ��� ��
� ���� ���

negative� ��� ��� ��� ���
search phase� ��
search window� ��� ���
��
�� ��� ��� ��� ���

��� ��� ��
shu+e function� ��
slave� ��� ��� ��� ��� ��
son� ��
speedup� ��� ��� ��(��� ���� ���� ���� ����

�
�
calculated� ��� �
� ���
superlinear� ��

SSS��algorithm� ��
standard version� �
� ���� ���� �
�(�

� �
��

�
�� ���(���
static evaluation function� �
� ��� ��� ��� ���

��� ��
subproblem� ��� �
� ��� ��� ��� ��� ��� ���

��� ��� ���� ���� �
�� ���
subtree� ��� ��� ��� ��� ��� ��
successor� �� ��� ��

best� �� �
�
�� ��
left� ��� ��� ��� ��
promising� ��� �
�
right� ��� ��� ��� �
�

synchronization node� ��� ���� ���� ���

T���� ��� ��� ���� ���
T���� ��� ��� ���
T����� ���� ���
test position�
�
throughput� �
�

time control�
�
time stamp�

�
�
torus� ��� ��� ���� �
�(�
�
tournament

condition� ���� ���� ���� ��
� ���
conditions� ���
game�
�� ���� ���
speed� ���� ���

tournament speed� ���� ���
TR�request� ��� ��� ���
transposition� ��� ���� ���
transposition table� ��
��

�
�(
�� ��� ���

�
� ��� ��� ��� ��� ��� ���� ���(����
���� ���� ���� ���� ���� ���

distributed� ��� �
� ��
global� ��� ��
local� ��
size of the� ���(���� ���

Transputer� ��� ��� ��� ���� ���
TREE� ��

tree� ��

minimal�
�� ��� ��� ��� ��� ��� ��� ���
���

uniform� ��
two person zero sum game� �
type of nodes� ��� ��� ���

expected� ��� ��� ��� ���� �
�� �
�� ���

waiting time� ��� ���� ���� ���� �
�� �
�� ���
window message� ��� ��� ��� ��� ��� ���
work load� ��� �
� ��� ��� ��� ��� ��� ��� ���

��� ��� ���� ���� ���

YBWC�� ��(��� ��� ���� ���� ���� �
�
YBWC��� ���
YBWC���
�� ��(��� ���(���� ���� ���
Young Brothers Wait Concept� ��

zero window search� ��� ��� ��� ��� ���� ���

List of Figures

�� Basic form of the ���algorithm ��

�
 The Scout�algorithm ��

�� Iteration for the iterative Scout�algorithm ��

�� Iterative Scout�algorithm ��

�� Searching a game tree with the Scout�and the ���algorithm � � � � � � � � � � � �
�

�� Storing entries of the transposition table �
�

�� Reading entries from the transposition table �
�

�� Update of the killer lists ��

�� Update of the history table �

��� Search phases ��

��� Schematic description of a Transputer ��

��
 Distance from the minimal game tree� Scout� ��ply search � � � � � � � � � � � � � ��

��� Debruijn network of dimension four� DB��� ��
��
 A �� � � torus ��
��� A �� � � grid ��
��� Results of parallel game tree search algorithms ��
��� Starting a search for work ��
��� Algorithm reacting upon a request ��
��� Initializing a subproblem ��
��� Algorithm reacting upon a cancellation ��
��� Reacting upon a return ��
���� Sending of cuto�s and window messages ��
���� Update of the search windows ��
���
 Reacting upon a window resp� cuto� message ��
���� Structure of the processes running on a processor � � � � � � � � � � � � � � � � � � ��
���� Communication process of the parallel Scout�algorithm � � � � � � � � � � � � � � � �

���� Parallel search of a game tree without any new windows � � � � � � � � � � � � � � ��
���� Window message for a zero window search ��
���� Window message for a research ��
���� Accesses to the distributed transposition table �

���� Using the waiting time ��
��
� Synchronization nodes caused by the YBWC ��
��
� Using parallelism more rashly with the YBWC���
 � � � � � � � � � � � � � � � � � ��
��

 Layers for local search for work ��
��
� Local load distribution with c � � in the DB��� ��
��
� Local and global search for work �

��� Deviation of the speedup ��

���

��� LIST OF FIGURES

��
 Deviation of the work load ��
��� Deviation of the search overhead ��
��� Speedups for several search depths �

��� Processor work load for several search depths ��
��� Search overhead for several search depths ��
��� Search overhead in the BFS and QS for several search depths � � � � � � � � � � � ��
��� Negative search overhead in the quiescence search � � � � � � � � � � � � � � � � � � ��
��� Loss of performance for several search depths ��
���� Saving the smaller search depths ��

���� E�ciency as a function of the running time ���
���
 Speedups for varying sizes of the transposition table � � � � � � � � � � � � � � � � ���
���� Search overheads for varying sizes of the transposition table � � � � � � � � � � � � ��

���� Performance loss as a function of the numbr of processors � � � � � � � � � � � � � ���
���� Results of the version without N� �

���� Speedups of the DB���� T ���� ���� and the G���� ��� � � � � � � � � � � � � � � � � �
�
���� Work load of the DB���� T ���� ���� and G���� ��� � � � � � � � � � � � � � � � � � � ���
���� Search overhead of the DB���� T ���� ���� and G���� ��� � � � � � � � � � � � � � � ���

List of Tables

�� Number of bits protected by a BCH code �
�

�
 Sequential search with the Scout�algorithm ��

�� Sequential search with the ���algorithm ��

�� Cuto�s in the BFT and QST ��

�� Accesses to the transposition table �

��� Distances in some DeBruijn� torus and grid networks � � � � � � � � � � � � � � � � ��
��
 Cuto�s by killer moves in of the number of cuto�s by right sons � � � � � � � � ��
��� Results for local and global transposition tables ��

��� Percentage of nodes having the wrong expected type � � � � � � � � � � � � � � � � ��
��
 Number of transposition table messages ��
��� Speedups under tournament conditions ���
��� E�ciency under tournament conditions ���
��� ��ply search with
�� processors ���
��� Performance after doubling messages ���
��� Amount of communication ���
��� Successful accesses for varying transposition table sizes � � � � � � � � � � � � � � � ���
��� Search behaviour for varying transposition table sizes � � � � � � � � � � � � � � � ���
���� Improvements of the speedup for varying transposition table sizes � � � � � � � � � ���
���� Percentage of the number of collisions ���
���
 Successful transposition table accesses ���
���� Sum of the waiting times for TR�requests ���
���� Performance loss by routing tasks ���
���� Percentage of the nodes with a wrong expected type � � � � � � � � � � � � � � � � ���
���� Results of the YBWC���
 version ���
���� Results of the YBWC version ���
���� Results of the YBWC�� version ���
���� Results of the version with N� but without N� �
�
��
� Results of the version without N� �
�
��
� Communication of the version with and without N� � � � � � � � � � � � � � � � � �
�
��

 Results of the version with and without N
 �
�
��
� Communication of the versions with and without N
 � � � � � � � � � � � � � � � � �
�
��
� Results of the version without N� and N� �
�
��
� Cuto�s caused by right successors �
�
��
� Killer updates �
�
��
� Percentage of the nodes with a wrong expected type � � � � � � � � � � � � � � � � �
�
��
� Average results of the DeBruijn� torus and grid �
�
��
� Sum of the waiting times for transposition table messages � � � � � � � � � � � � � �
�

���

��
 LIST OF TABLES

���� Static and dynamic load distribution ��

��� Sequential Version running on the SC and the GCel �computed� � � � � � � � � � ���
��
 Standard version running on ��
 and ��
� processors � � � � � � � � � � � � � � � � ���
��� Standard version without N� running on ��
 and ��
� processors � � � � � � � � � ���
��� Standard version without zero window search using ��
 and ��
� processors � � � ���
��� Reduced TR�Accesses with ��
 and ��
� processors � � � � � � � � � � � � � � � � ���
��� Percentage of the nodes having a wrong expected type � � � � � � � � � � � � � � � ���
��� Standard version on the DB��� vs� ��on the G��
� �
� � � � � � � � � � � � � � � � ���

A�� Powers of � and the corresponding minimal polynomials � � � � � � � � � � � � � � ���

