
Artificial Intelligence Spring 2005

Professor Greenwald Lecture #5

Adversarial Search1

This lecture is concerned with search spaces that model parlor games such as
go, chess, checkers, othello, and backgammon. At an abstract level, we are
concerned with two-player, zero-sum games of perfect information in which the
players’ moves are sequential. Adversarial search algorithms are designed to
return optimal paths, or winning strategies, through game trees, assuming the
players are adversaries—rational and self-interested: i.e., they play to win.

1 Definition and Example

A game tree is a 7-tuple Γ = 〈P, X, S, T, δ, l, v〉, where

• P is a set of n players

• X is a finite set of states

• S ⊆ X is a nonempty set of start states

• T ⊆ X is a nonempty set of terminal states

• δ : X → 2X is a state transition function
δ(x) is the set of successor states of x

• l : X → P labels state x with the player who moves at x

• v : T → [−1, 1]n maps terminal states into real-valued vectors
vi(x) ∈ [−1, 1] is the payoff to player i at state x

Zero-sum games require that
∑n

i=1
vi(x) = 0, for all x ∈ T . In two-player, zero-

sum games the two players are viewed as adversaries; one player is the maximizer
(Max); the other is the minimizer (Min). By definition, vMAX(x) = −vMIN(x).
Thus, it suffices to use one value to represent the value of a state: if v(x) > 0
(v(x) < 0), then Max (Min) is the winner; if v(x) = 0, then the game is a draw.

As an example, consider the zero-sum game of perfect information, m, p-NIM.
Initially, there are p piles of m matches. To move, a player removes any number
of matches from exactly one pile. The losing (or winning) player is s/he who
removes the final match. The game tree representation of 2,2-NIM (for two
players) is depicted in Figure 1, where it is modeled as follows:

1Copyright c© Amy Greenwald, 2001–05

1



1,0

0,0

+1

L

O

0,00,0

2,0 1,1 1,0

2,0

0,0

2,2

2,1

1,0

−1

+1

−1

B

D E F G H

K M

A

C

1,0 0,0

0,0

+1

−1

I J

N

Figure 1: Game tree for 2,2-Nim. Max nodes are squares; Min nodes are circles.
The minimax value of this game is −1: there is a winning strategy for Min.

• P = {Max,Min}

• X = Y × P : e.g., ((1, 1),Max) ∈ X
Y = {(2, 2), (2, 1), (2, 0), (1, 1), (1, 0), (0, 0)}
canonical representation where a ≥ b for all pairs (a, b)

• S = {((2, 2),Max), ((2, 2),Min)}

• T = {((0, 0),Max), ((0, 0),Min)}

• δ((2, 2),Max) = {((2, 1),Min), ((2, 0),Min)},
δ((2, 1),Min) = {((1, 1),Max), ((1, 0),Max), ((2, 0),Max)}, . . .

• l((2, 2),Max) = Max,
l((2, 1),Min) = Min,
l((2, 0),Min) = Min, . . .

• v((0, 0),Max) = (+1,−1),
v((0, 0),Min) = (−1, +1)

2



2 Minimax Search

The minimax value of a game tree is the value of the root node x, whenever Min

moves first, computed as the minimum value of x’s successors, which are in turn
computed as the maximum value of x’s successors’ successors, and so on.2 If
the minimax value of a game tree is +1, then there exists a winning strategy for
max; if the minimax value is −1, then there exists a winning strategy for Min;
if the value of the root node is 0, then neither player has a winning strategy.
The definition of the minimax value of a game tree suggests a breadth-first-
search style computation. In practice, the minimax algorithm traverses nodes
in depth-first-search (DFS) order to ensure that space is managed efficiently.

MiniMax-DFS(Γ, x)
Inputs game tree Γ, root node x
Output minimax value of game tree
Initialize O = {x}, v(n) = ⊥ for n 6∈ T

while (O is not empty) do

1. choose first node n ∈ O

2. if n ∈ T

(a) if l(n) = Min, let v(n) = vMIN(n)

(b) if l(n) = Max, let v(n) = vMAX(n)

3. if v(n) 6= ⊥

(a) if n 6= x

i. let m = δ−1(n)

ii. BackUp1(Γ, n, m)

(b) delete n from O

4. else if v(n) = ⊥

(a) if l(n) = Min, v(n) = +∞
if l(n) = Max, v(n) = −∞

(b) prepend δ(n) to front of O

return v(x)

Table 1: MiniMax Depth-First Search.

2The definition of the maximin value of a game is analogous to that of minimax, whenever
the root node is labeled Max.

3



BackUp1(Γ, n, m)
Inputs game tree Γ, node n, parent m
Output updated game tree values

1. if l(m) = Min, v(m) = min{v(m), v(n)}
if l(m) = Max, v(m) = max{v(m), v(n)}

Table 2: BackUp1 Subroutine: “backs up” values 1-level—from child to parent.

MiniMax-DFS maintains the following stack during its execution on the 2,2-
NIM game tree in Figure 1. Nodes are subscripted with their values.

A
B C A−∞

D E F B+∞ C A−∞

I J D−∞ E F B+∞ C A−∞

N I+∞ J D−∞ E F B+∞ C A−∞

N+1 I+∞ J D−∞ E F B+∞ C A−∞

I+1 J D−∞ E F B+∞ C A−∞

J D+1 E F B+∞ C A−∞

J−1 D+1 E F B+∞ C A−∞

D+1 E F B+∞ C A−∞

E F B+1 C A−∞

K E−∞ F B+1 C A−∞

K−1 E−∞ F B+1 C A−∞

E−1 F B+1 C A−∞

F B−1 C A−∞

L F−∞ B−1 C A−∞

O L+∞ F−∞ B−1 C A−∞

O+1 L+∞ F−∞ B−1 C A−∞

L+1 F−∞ B−1 C A−∞

F+1 B−1 C A−∞

B−1 C A−∞

C A−1

G H C+∞ A−1

M G−∞ H C+∞ A−1

M−1 G−∞ H C+∞ A−1

G−1 H C+∞ A−1

H C−1 A−1

H+1 C−1 A−1

C−1 A−1

A−1

Table 3: MiniMax-DFS on 2,2-NIM.

4



MiniMax-DFS (see Table 1) traverses the game tree in depth-first fashion,
visiting all nonterminal nodes twice. The first time it visits a nonterminal node,
its value is unknown; to evaluate the node, its children are pushed onto the
stack. The second time it visits a nonterminal node, its value is known; thus,
it is popped off the stack, and its value is backed up to its parent (See Table 2)
(unless it is the root node). When MiniMax-DFS visits the root node for the
second time, it terminates. At this point, the value of the root node is the
minimax value of the game, since all of its children’s values have been backed
up, all of its children’s children’s values have also been backed up, and so on.
Otherwise, all of its children would not have been popped off the stack, and it
could not have been visited for the second time; similarly, all of its children’s
children would not have been popped off the stack, and its children could not
have been visited for the second time, and so on.

3 αβPruning

Although the minimax solution always exists (Zermelo, 1912), it is intractable to
compute the minimax solution in most interesting game trees. (On the contrary,
in game trees like tic-tac-toe for which computing the minimax solution is
tractable could be said to be uninteresting for precisely that reason!)

Sophisticated game-playing programs prune the search space. The αβPruning

algorithm improves upon MiniMax: it is a technique that provably computes
the MiniMax value of the game, but tends to visit only a fraction of the nodes
of the MiniMax procedure because it prunes redundant subtrees.

A variation is a complete path, from root node to leaf node, through the game
tree. The principal variation is the path through the game tree along which the
minimax value is discovered. In particular, the value of the leaf node on the
principal variation is the minimax value of the game.

At most, adversarial search algorithms need only consider those nodes that are
candidates for the principal variation. The key idea underlying αβPruning is
the following: any subgame tree whose root node is provably not on the principal

variation can be pruned.

Example 1 Consider the chess game tree depicted in Figure 2. Once node B
is determined to lead to checkmate for Max, there is no need to evaluate any of
node A’s other children, since node B—a win for Max—is at least as preferable
to Max as node C. Therefore, node C can be pruned.

Technically, v(A) = max{v(B), v(C)} ≥ v(B) = +1 and v(A) ≤ +1;
it follows that v(A) = +1, regardless of the value of C.

5



C

A

B

Checkmate: +1

Figure 2: An example of αβPruning. Node C is not on the principal variation,
since B is an optimal alternative for Max, so it can be pruned.

This example captures the following intuition: a node’s value (e.g., C) cannot

impact the minimax value of its parent (e.g., A) if its parent’s minimax value
is known. The subtrees of a node whose value is already known can be pruned,
since these subtrees are not on the principal variation.

C

D E

A

B

1/4

1/2

Figure 3: Another example of αβPruning. Node C is not on the principal
variation, since B is a preferable alternative for Max, so node E can be pruned.

Example 2 Consider the game tree depicted in Figure 3. Once node D is
determined to yield value 1/4, there is no further need to evaluate any of node
C’s children, since node B, with value 1/2, is at least as preferable to Max as
node C. Therefore, node E can be pruned.

Technically, since v(C) = min{v(D), v(E)} ≤ v(D) and v(D) ≤ v(B),
it follows that v(C) ≤ v(B). Therefore, v(A) = max{v(B), v(C)} =
v(B), regardless of the value of E.

This example captures the following intuition: a node (e.g., C) is guaranteed not

to be on the principal variation if any of the node’s ancestors (e.g., A) presents
a better alternative (e.g., B) for either player. The subtrees of such nodes can
be pruned, since these subtrees are not on the principal variation.

6



3.1 αβPruning: High-Level

αβPruning associates an α-value and a β-value with every game. An α-value
is a lower bound on the minimax value of the game: Max can guarantee that
he wins at least this value. A β-value is an upper bound on the minimax value
of the game: Min can guarantee that he loses no more than this value. At
Max nodes, α-values are update; at Min nodes, β-values are updated. It is an
invariant of αβPruning that α < β. If after updating at a Max node x, α
strictly exceeds β, then all subtrees rooted at x can be pruned, since there exists
a preferable alternative for Min elsewhere in the game. If after updating at a
Min node y, β falls strictly below α, then the subtree rooted at y can be pruned,
since there exists a preferable alternative for Max elsewhere in the game. If α
equals β at some node z, then the minimax value of the subtree rooted at z is
determined, and all subtrees rooted at the children of z can be pruned.

3.2 αβPruning-DFS

Pseudocode that implements αβPruning via depth-first search is shown in
Table 4. The depth-first search algorithm maintains both α- and β-values at
all nodes. When a node is popped off the stack, a pruning test is immediately
performed. (This test is described in the following paragraph.) If the node
cannot be pruned, then the algorithm proceeds as in MiniMax-DFS. If it is a
terminal node, it is evaluated, and its value is stored at the corresponding α-
and β-values. Otherwise, a test is performed to determine whether the node’s
α- and β-values are initialized. If so, this visit is the second; all of its children’s
values have been backed up, so its value is now backed up, and it is deleted from
the stack. If the node is not yet initialized, its values are initialized to those of
its parents, and its children are prepended to the stack.

The pruning test is performed at all nodes other than the root node. The test
simply asks whether a node’s α-value is greater than or equal to its β-value, in
which case the node can be pruned. As in the pseudocode, let n denote the node
in question and m its parent node. Before any of m’s children are evaluated,
α(m) < β(m); otherwise the subtree rooted at m would have been pruned
already. If m is labeled Min, then as m’s children are evaluated, the value of β
potentially decreases. If ever β(m) < α(m), then there exists an alternative for
max at least as profitable; or, if β(m) = α(m), then the minimax value of m is
known. If m is labeled Max, then as m’s children are evaluated, the value of α
potentially increases. If ever α(m) > β(m), then there exists an alternative for
Min at least as desirable; or, if α(m) = β(m), then the minimax value of m is
known. In all of these cases, the subtree rooted at m can be pruned.

Exercise Which subtrees are pruned by αβPruning in the game of 2,2-NIM?

7



αβPruning-DFS(Γ, x)
Inputs game tree Γ, root node x
Output minimax value of game tree
Initialize O = {x}, α(n) = β(n) = ⊥ for n 6∈ T

while (O is not empty) do

1. choose first node n ∈ O

2. if n 6= x

(a) let m = δ−1(n)

(b) if α(m) ≥ β(m), delete n from O, continue

3. if n ∈ T

(a) if l(n) = Min, let β(n) = α(n) = vMIN(n)

(b) if l(n) = Max, let α(n) = β(n) = vMAX(n)

4. if α(n) 6= ⊥ and β(n) 6= ⊥

(a) if n 6= x

i. let m = δ−1(n)

ii. αβBackUp1(Γ, n, m)

(b) delete n from O

5. else if α(n) = β(n) = ⊥

(a) α(n) = −1 and β(n) = +1

(b) if n 6= x

i. let m = δ−1(n)

ii. α(n) = max{α(n), α(m)}
β(n) = min{β(n), β(m)}

(c) prepend δ(n) to front of O

if l(x) = Min, return β(x)
if l(x) = Max, return α(x)

αβBackUp1(Γ, n, m)
Inputs game tree Γ, node n, parent m
Output updated α and β values

1. if l(m) = Min, β(m) = min{β(m), α(n)}
if l(m) = Max, α(m) = max{α(m), β(n)}

Table 4: αβPruning Depth-First Search.

8



3.3 Complexity

In the best case, αβpruning discovers the principal variation on its first traversal
of the tree, and its effective branching factor3 is

√
b. In this case, its complexity

is only O(bd/2)—substantial savings over the minimax algorithm, which visits
O(bd) nodes. In the worst-case, however, αβpruning prunes no nodes at all.

The order in which nodes are explored greatly impacts the savings that can be
achieved via αβpruning. One reasonable ordering heuristic is to first perform
iterative deepening search, and then to order successor nodes according to the
backed-up values returned by the search at the previous depth.

4 Evaluation Functions

In spite of its effectiveness, αβpruning does not provide sufficient pruning to
compute the minimax solution in chess, for example. In general, in large game
trees, search proceeds to some limited depth or for some limited time, at which
point expansion of the search tree is truncated, and heuristic estimates of the
minimax value are computed via an evaluation function and backed up the tree.

Most evaluation functions for the game of chess take into account material
values: e(pawn) = 1, e(bishop) = e(knight) = 3, e(rook) = 5, and e(queen) = 9.
Let W be the set of white’s pieces; let B be the set of black’s pieces. Now
w(n) =

∑
p∈W e(p) and b(n) =

∑
p∈B e(p). One simple heuristic is to evaluate

nodes as follows, assuming Max is white:

e(n) =
w(n) − b(n)

w(n) + b(n)

The value e(n) = 1 predicts a sure win for white; the value e(n) = −1 predicts
a sure win for black; the value e(n) = 0 predicts a draw.

But evaluation functions return heuristic estimates, which are not perfect. Thus,
determining the depth or time at which to truncate search in game trees is a
delicate matter. If e(n) is changing rapidly, then single moves dramatically affect
the (apparent) value of n. One popular heuristic is to allow search to proceed
until quiescence. Another difficulty is that search algorithms cannot recognize
drastic changes in the values of nodes if delay tactics push drastic moves beyond
the horizon; this is called the horizon effect. One proposed solution to this
problem is to engage in a secondary search beyond the seemingly best node
(this technique is called singular extension.) If it is determined that this path
degrades, then secondary search is performed on the second-best node; but it is
impractical to conduct secondary search on all nodes.

3An effective branching factor b∗ is that of a uniform tree of depth d if it were to contain
N nodes. In other words, given that an algorithm expands N nodes, assuming depth d, b∗ is
the solution to the following equation: N = 1 + b∗ + . . . + (b∗)d.

9



A Recursive Adversarial Search

In this appendix, we present recursive versions of the MiniMax and αβ-Pruning

adversarial search algorithms. These algorithms search smaller and smaller
game trees. Hence, we introduce the following notation: given (game) tree Γ,
we let Γz denote the sub(game) tree of Γ rooted at node z.

A.1 Recursive MiniMax

This recursive minimax algorithm traverses nodes in depth-first-search order,
by virtue of the fact that the algorithm is recursive. The initial call initializes
α = −1 (lower bound) and β = +1 (upper bound). The algorithm updates α
values at Max nodes and β values at Min nodes. In the base case, the terminal
nodes’ values are returned. In the inductive step, two cases arise. If the root
node x is a Min (Max) node, then as its successor’s are evaluated, their values
are “backed up”—“minned” (“maxed”) with the value of x—until x’s value is
computed, at which point this updated value, β (α), is returned.

MiniMax(Γx, α, β)
Inputs game tree Γx rooted at x

lower bound α
upper bound β

Output minimax value

1. if x ∈ T

(a) if l(x) = Min, return vMIN(x)

(b) if l(x) = Max, return vMAX(x)

2. if l(x) = Min

(a) for all y ∈ δ(x)

i. β = min{β,MiniMax(Γy, α, β)}
(b) return β

3. if l(x) = Max

(a) for all y ∈ δ(x)

i. α = max{α,MiniMax(Γy, α, β)}
(b) return α

Table 5: Recursive MiniMax.

MiniMax updates α- and β-values as follows during execution on 2,2-NIM.

10



1. A : α = max{−1, MiniMax(2,2-Nim
B

,−1, +1)}

(a) B : β = min{+1, MiniMax(2,2-Nim
D

,−1, +1)}

i. D : α = max{−1, MiniMax(2,2-NimI ,−1, +1)}

A. I : β = min{+1, MiniMax(2,2-NimN ,−1, +1)}
I. N : return v = +1

B. I : β = min{+1, +1} = +1
C. I : return β = +1

ii. D : α = max{−1, +1} = +1
iii. D : α = max{+1, MiniMax(2,2-Nim

J
, +1, +1)}

A. J : return v = −1

iv. D : α = max{+1,−1} = +1
v. D : return α = +1

(b) B : β = min{+1, +1} = +1

(c) B : β = min{+1, MiniMax(2,2-NimE ,−1, +1)}

i. E : α = max{−1,MiniMax(2,2-Nim
K

,−1, +1)}

A. K : return v = −1

ii. E : α = max{−1,−1} = −1

iii. E : return α = −1

(d) B : β = min{+1,−1} = −1

(e) B : β = min{−1, MiniMax(2,2-Nim
F

,−1,−1)}

i. F : α = max{−1, MiniMax(2,2-Nim
L
,−1,−1)}

A. L : β = min{+1, MiniMax(2,2-NimO,−1,−1)}
I. O : return v = +1

B. L : β = min{+1, +1} = +1
C. L : return β = +1

ii. F : α = max{−1, +1} = +1

iii. F : return α = +1

(f) B : β = min{−1, +1} = −1

(g) B : return β = −1

2. A : α = max{−1,−1} = −1

3. A : α = max{−1, MiniMax(2,2-Nim
C

,−1, +1)}

(a) C : β = min{+1,MiniMax(2,2-Nim
G

,−1, +1)}

i. G : α = max{−1, MiniMax(2,2-NimM ,−1, +1)}

A. M : return v = −1

ii. G : α = max{−1,−1} = −1
iii. G : return α = −1

(b) C : β = min{+1,−1} = −1

(c) C : β = min{−1,MiniMax(2,2-Nim
H

,−1,−1)}

i. H : return v = +1

(d) C : β = min{−1, +1} = −1

(e) C : return β = −1

4. A : α = max{−1,−1} = −1

5. A : return α = −1

Table 6: MiniMax on 2,2-NIM.

11



B Recursive αβPruning

The recursive version of αβPruning appears in Table 7. The initial call to this
algorithm initializes α = −1 (lower bound) and β = +1 (upper bound). Let
x denote the root node of the game tree. If x is a terminal node, the value of
x is returned. Otherwise, if x is nonterminal, then αβMiniMax proceeds to
recursively call itself on each of x’s children in turn, updating the value of α or
β depending on whether x is labeled Max or Min. With each recursive call, α
is initialized as the maximum value that can be achieved at any of Max’s choice
points along the path to x, and β is initialized as the minimum value that can
be achieved at any of Min’s choice points along the path to x. These values
are updated as variations rooted at x are completed. If after updating at a
Max node, the value of α exceeds the value of β, then min can achieve β rather
than α along an alternative path. No further variations in this subtree need be
completed, so the algorithm breaks out of the loop and returns β. (Ordinarily,
an updated value of α is returned at Max nodes.) The algorithm operates
symmetrically on Min nodes.

αβPruning(Γx, α, β)
Inputs game tree Γx rooted at x

lower bound α
upper bound β

Output value in [α, β]

1. if x ∈ T

(a) if l(x) = Min, return vMIN(x)

(b) if l(x) = Max, return vMAX(x)

2. else if l(x) = Min

(a) for all y ∈ δ(x)

i. let β = min{β, αβpruning(Γy , α, β)}
ii. if β ≤ α, return α

(b) return β

3. else if l(x) = Max

(a) for all y ∈ δ(x)

i. let α = max{α, αβpruning(Γy, α, β)}
ii. if α ≥ β, return β

(b) return α

Table 7: Recursive αβPruning.

12



αβPruning updates α- and β-values as follows during its execution on the
2,2-NIM game tree in Figure 1. This trace differs from the MiniMax trace in
Table 6 in that five nodes are pruned. Pruning is evidenced by a Max (Min)
node returning a β (α) value rather than an α (β) value.

1. A : α = max{−1, αβPruning(2,2-NimB,−1, +1)}

(a) B : β = min{+1, αβPruning(2,2-NimD,−1, +1)}
i. D : α = max{−1, αβPruning(2,2-NimI ,−1, +1)}

A. I : β = min{+1, αβPruning(2,2-NimN ,−1, +1)}
I. N : return v = +1

B. I : β = min{+1, +1} = +1

C. I : return β = +1

ii. D : α = max{−1, +1} = +1

iii. D : return β = +1

(b) B : β = min{+1, +1} = +1

(c) B : β = min{+1, αβPruning(2,2-NimE ,−1, +1)}
i. E : α = max{−1, αβPruning(2,2-NimK ,−1, +1)}

A. K : return v = −1

ii. E : α = max{−1,−1} = −1

iii. E : return α = −1

(d) B : β = min{+1,−1} = −1

(e) B : return α = −1

2. A : α = max{−1,−1} = −1

3. A : α = max{−1, αβPruning(2,2-NimC ,−1, +1)}

(a) C : β = min{+1, αβPruning(2,2-NimG,−1, +1)}
i. G : α = max{−1, αβPruning(2,2-NimM ,−1, +1)}

A. M : return v = −1

ii. G : α = max{−1,−1} = −1

iii. G : return α = −1

(b) C : β = min{+1,−1} = −1

(c) C : return α = −1

4. A : α = max{−1,−1} = −1

5. A : return α = −1

Table 8: αβPruning on 2,2-NIM. In step 1(a)iii, node J is pruned; in step 1e,
nodes F, L, and O are pruned; and in Step 3c, node H is pruned.

13



Problems

#1 Consider the following two-player, alternating move, zero-sum game. The
game begins with one pile of seven coins. At each player’s turn, s/he picks one
pile of coins and divides it into two piles such that the number of coins in the
first pile is a multiple of the number of coins in the second. For example, a pile
of four coins may be divided into piles of one and three coins, or two piles of
two coins. The game is over when the largest pile contains only two coins. The
losing player is s/he that makes the last move.

Draw the game tree for this game. Compute the minimax value of the game.
Indicate which nodes in your game tree (if any) can be pruned via αβpruning.

#2 Consider the labeling of 2 player game trees not with a single value, but
with a pair of values: e.g., (x,−x). The first (second) value denotes the payoffs

to player 1 (2). Extend this labeling and the MiniMax algorithm to handle N
player games.

#3 Trace αβPruning on the abbreviated game depicted in Figure 3.

#4 Checkers is a 2 player board game where the objective is to capture all of
one’s opponents pieces. There are two types of pieces, checkers, which can move
only in the forward direction, and kings, which can move both forwards and
backwards. Give a (sensible) heuristic evaluation function e for the game of
checkers in terms of the number of checkers c and the number of kings k on the
board for each of red and black.

14


