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Chapter �

Introduction

In this thesis� research on the balance between memory and search is presented� As
is well known� the trade�o� between knowledge and search plays a key role in many
domains� such as expert systems� theorem proving� and games� We explicitly note
that our research has a focus which di�ers from the research on the trade�o� between
knowledge and search� where dealing with knowledge and knowledge representations
in order to arrive at intelligent solutions is stressed� In our research we look at just
one characteristic of knowledge� viz� the storage of knowledge� More speci�cally� the
research presented in the thesis concentrates on memory versus search in games�
The domain used is that of two�player zero�sum games� and in particular the games
of chess and domineering�

��� Games

For as long as computers have existed� people have tried to let them play intelligent
	non�trivial
 games� The challenge of a computer playing an intelligent game is a
classic problem within the �eld of Arti�cial Intelligence 	AI
� Two pioneers seriously
considered a computer playing chess� when AI was still in its infancy� Shannon 	����

published a seminal research article in which he described mechanisms to be used
in a program playing chess� Turing 	���

 was the �rst to describe a chess�playing
program� The �rst program that could play a reasonable game in a related domain
was a checkers program 	Samuel� ����� Samuel� ����
� This program was able to
learn from its mistakes� thereby improving its performance�

Since then� much research has been conducted in the domain of games� resulting
in very strong programs for many intelligent games� Nowadays� the best checkers
program is Chinook� written by Martin Bryant� Rob Lake� Paul Lu� Jonathan
Schae�er and Norman Treloar 	Schae�er et al�� ����� Schae�er� ����
� In ���� it
played the �Man versus Machine World Checkers Championship� against Dr� Marion
Tinsley� who is considered the greatest human checkers player in the history of the
game 	after he became World Champion in ���� he lost only �ve serious games out

�
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of some thousands 	Schae�er� ����a

� It was the �rst time in history that a machine
challenged a human for an o�cial title in a non�trivial game of skill� Tinsley won
the match 	� wins� 

 draws� and � losses
� In ���� a rematch between Tinsley and
Chinook was played� Tinsley withdrew due to illness after six games 	all draws

and he passed the title to Chinook� Don La�erty� the ���� United States checkers
Champion� then challenged Chinook and they tied the match 	� win� �� draws� and
� loss
� Tinsley never recovered from his illness and died in ����� The subsequent
Man versus Machine World Championship against Don La�erty 	January ����

ended in a victory for Chinook 	� win and 
� draws
� Since then the gap between
man and machine has widened considerably� Therefore� Chinook is considered to
be the strongest checkers�player in the world�

The best chess program 	or better� chess machine or chess computer
 is Deep
Blue� created by Jerry Brody� Murray Campbell� A� Joseph Hoane Jr�� Feng�hsiung
Hsu and Chung�Jen Tan 	Hsu et al�� ����
� In February ���� it played a six�game
match under normal tournament conditions against the human chess World Cham�
pion of the PCA� Garry Kasparov� Kasparov won the match 	
 wins� � draws� and
� loss
� However� Deep Blue won the �rst game� surprising many experts 	Uiter�
wijk� ����� Newborn� ����
� In May ���� it played a second six�game match against
Kasparov� This time Deep Blue was able to win the match 	� wins� 
 draws� and �
loss
 	Schae�er and Plaat� ����� Goodman and Keene� ����� King� ����
� This was
a milestone in AI history� �nally realizing Shannon�s dream of �� years before�

One of today�s strongest Othello programs is Logistello� written by Michael
Buro 	����
� In the �� international Othello tournaments it has played so far� it
ended �rst sixteen times� and second �ve times� In August ���� it played a six�game
match against the Othello World Champion Takeshi Murakami� and won the match
with the perfect score of ���� This clearly shows that the best Othello programs
have become stronger than any human player 	Buro� ����
�

We o�er four arguments why researchers are so interested in intelligent games�

First� games provide an exact� closed domain 	the rules are well�de�ned
� in
contrast to real�world problems� which are often rather vague 	Van den Herik� ���

�
Often many pages are required to give a proper description of 	the background of

a real�world problem� Some real�world problems 	e�g�� in law and legal knowledge�
based systems
 can be interpreted di�erently by di�erent people 	Van den Herik�
����
� In contrast� games can be de�ned with su�cient precision�

Second� intelligent games are not trivial� Although it takes only an hour or so to
learn the rules of chess� so far it has been impossible� even for the best human� to
play chess perfectly� Playing intelligent games is hard and the obstacles that have to
be tackled re�ect the complexities inherent in real�world problems� Minsky 	����

stated �It is not that the games and the mathematical problems are chosen because
they are clear and simple� rather it is that they give us� for the smallest initial
structures� the greatest complexity � so that one can engage some really formidable
situations after a relatively minimal diversion into programming��

Third� the domain of games is well�suited for testing new ideas in problem solving�
Therefore� Michie 	����
 proposed computer chess as the drosophila melanogaster
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	fruit �y
 of machine intelligence� According to Fraenkel 	����
 ideas from the do�
main of games have been used in mathematics� computer science and economics� Nils�
son 	����
 mentions several applications� including operations research 	traveling�
salesman problem
 and chromosome matching�

Fourth� by creating a machine which plays an intelligent game� it may be possible
to gain more insight into the way people reason� The Dutch psychologist De Groot
	����
 has investigated the thinking process of chess�players during a game� The
American psychologists Newell and Simon 	����
 tried to build models of the human
mind� based on the results of their research on computer chess 	Newell et al�� ����
�
Recently� a follow�up to De Groot�s 	����
 book has been published 	De Groot and
Gobet� ����
 concentrating on perception and memory of chess players�

All four arguments provide a legitimate reason to perform research on games�
Developing computer programs or a new computer technique may help to model
a domain adequately or may remove an obstacle� Our research is inspired by the
arguments two and three� We have developed two new techniques 	for transposition
tables and for proof�number search
 and solved two open problems 	domineering
and the graph�history�interaction problem
�

��� Knowledge versus search

One of the best known trade�o�s in Computer Science is the trade�o� between space
and time� In the domain of AI� especially game playing� this comes down to the
trade�o� between knowledge and search 	Clarke� ����
� In theory� all problems with
a �nite state space are solvable 	Allis et al�� ����
 in two distinct ways�

�� Solve the problem by knowledge� not using any search� This is possible if
all information for the initial state and the subsequent states necessary for
solving the problem is available� Moreover� there is su�cient space to store the
information� and there is a way of discovering and representing the knowledge
necessary for solving the problem� For instance� the game of nim can be solved
by knowledge alone 	Bouton� ����
�

�� Solve the problem by search� not using any knowledge� This is possible if
there is su�cient time available to do a su�ciently large search of the state
space� For instance� the game of tic�tac�toe can be solved by brute force alone
	Berlekamp et al�� ����a
�

Most problems cannot be solved in practice by using knowledge only or search
only� If the state space is too large to be searched in a reasonable time� knowledge is
needed to guide the search and to reduce the state space� If the state space is too large
to be stored in memory� search is needed to compensate for the loss of knowledge�
Thus� for solving the majority of problems a combination of knowledge and search
is needed� Some examples of games which have been solved by a combination of
knowledge and search are qubic 	Patashnik� ����� Allis and Schoo� ����
� connect�
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four 	Allis� ����� Uiterwijk et al�� ����� Allen� ����
� go�moku 	Allis et al�� ���
�
Allis� ����� Allis et al�� ����
 and nine men�s morris 	Gasser� ����
�

When opting for search to solve a problem� we basically distinguish two search
categories�

�� Full�width search 	henceforth called brute�force search uses minimal knowledge
to guide the search� After expanding a node in the search� knowledge is used to
sort the children� The choice of the node to expand next comes from a 	small

subset of the nodes in the tree� For instance� in breadth��rst search the next
node to be expanded is one of the siblings of the last expanded node� and in
depth��rst search the next node to be expanded is one of the children of the
last expanded node�

�� Best��rst search uses more knowledge to guide the search� The knowledge is
used for the choice on which node to expand next� The node selected can be
any leaf in the tree�

Two basic types of knowledge interact with search 	Berliner� ����
�

�� Directing knowledge� In brute�force� search directing knowledge a�ects the
order in which the descendants of a node are examined� In best��rst search�
directing knowledge guides the search 	i�e�� selects which node to expand next
�

�� Terminal knowledge� Terminal knowledge is applied to the leaves of the search
tree� It produces either an exact value 	win� draw� or loss
� in case the leaf is a
terminal node� or a measure of the goodness of the position the leaf represents�
Terminal knowledge is used both in brute�force search and in best��rst search��

In brute�force search many leaves will be evaluated during a search process� Ter�
minal knowledge is applied to all leaves 	millions of times during a single search
process
� Thus� each term in the terminal�knowledge function 	the evaluation func�
tion
 contributes to the cost of an evaluation� which a�ects the speed of the search
process� and should be carefully weighed�

��� Memory versus search

The trade�o� between knowledge and search mostly deals with knowledge and knowl�
edge representations� We only look at one characteristic of knowledge� viz� the stor�
age of knowledge in memory� The purpose of storing knowledge acquired during the
search process is to re�use it at a later time� Here we introduce the trade�o� between
memory and search� by giving two points of view�

As a �rst observation we note that the size of computer memory is no longer an
obstacle� making it easier to equip a computer with more memory� Now the question
is� can we make use of the large amount of memory� by storing more knowledge into

�In best��rst search terminal knowledge is closely related to directing knowledge� and may be
identical �Berliner� �����	
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this memory� thereby decreasing the need for searching� Depth��rst search needs
little memory� Only the path from the root to the position under investigation needs
to be stored in memory� To use the remaining memory� knowledge about positions
encountered in the search process may be stored in a large table� the so�called trans�
position table� The knowledge stored in the table is used to relieve the search� Thus�
searching is reduced at the cost of using more memory�

As a second observation we mention the noteworthy increase in computer speed�
Can we make use of this increase by using speed to accelerate the search� thereby
acquiring more knowledge� decreasing the need for memory� Most best��rst search
algorithms need a large amount of memory to store the entire search tree� The quality
of a best��rst search algorithm depends on the quality of the directing knowledge�
The speed of a computer increases faster than the amount of internal memory in a
computer� Thompson 	����b
 states that from ���� to ����� the speed of a typical
high�quality workstation has increased by a factor of ��� 	from �MIP to ���MIPs
�
whereas its internal memory only has increased by a factor of �� 	from �� MB to
��� MB
� At current computer speeds� memory is quickly �lled� Therefore� ways
have to be found to use the increase in speed to acquire more knowledge per node�
improving the directing knowledge� Then� the search process will search the state
space more e�ciently� reducing the need for memory at the cost of more searching�

��� Problem statements

Three problem statements are considered� The �rst problem statement addresses
decreasing the need for search by increasing the use of memory�

Problem statement �� Which methods exist to improve the e�ciency of a transpo�
sition table�

A transposition table is normally used in combination with a depth��rst�search
algorithm� The most commonly used depth��rst algorithm for two�person games is
the �� algorithm� In the thesis we present research on improving the e�ciency of
a transposition table used in the �� algorithm� The research is performed in two
domains� chess and domineering�

The second problem statement addresses decreasing the need for memory by
increasing the use of search�

Problem statement �� Which methods exist for best��rst search to reduce the need
for memory by increasing the search� thereby gaining more knowledge per
node�

In the thesis we present research on a relatively new best��rst�search algorithm�
proof�number search 	pn search
� Like many best��rst search algorithms� pn search
stores the complete search tree in memory� An attempt is made to reduce the need
for memory for pn search� realized in a pn�search variant� called pn� search�
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Summarizing� in the �rst problem statement the need for search is reduced by
increasing the use of memory� Analogously� in the second problem statement the
need for memory is reduced by increasing the use of search� An attempt to combine
the advantages of both approaches 	reducing the need for search and reducing the
need for memory
 is the following� In a search tree� it may happen that identical
nodes are encountered at di�erent places� If these so�called transpositions are not
recognized� the search algorithm unnecessarily expands identical subtrees� Therefore�
it is pro�table to recognize transpositions and to ensure that for each set of identical
nodes� only one subtree is expanded� If a best��rst search algorithm 	which stores
the whole search tree in memory
 is used� the search tree is converted into a search
graph� by joining identical nodes into one node� This causes subtrees to be merged�
decreasing the need for memory� Since the graph contains fewer nodes than the
tree� less searching is needed as well� However� joining identical nodes into one node
introduces the so�called graph�history�interaction 	GHI
 problem� since determining
whether nodes are identical is not the same as determining whether the search states
represented by the nodes are identical�

This is laid down in the third problem statement� addressing both the decrease
in the need for memory and the decrease in the need for search�

Problem statement �� Is it possible to give a solution for the GHI problem for best�
�rst search�

��� Outline of the thesis

The contents of the thesis is as follows�

Chapter � contains an introduction� the three problem statements and an outline
of the thesis�

Chapter � tries to answer the �rst problem statement by discussing enhance�
ments to the implementation of a transposition table� First� some important notions
and concepts� used throughout the thesis� are de�ned� Thereafter� it is explained
why a transposition table is needed� Next� implementation details are given and
an experimental set�up is presented� Three series of experiments are described� 	�

when di�erent positions compete for storage in the same entry of the transposition
table� a replacement scheme has to be used for priority arguments� several replace�
ment schemes are compared� 	�
 the merits of storing di�erent characteristics of a
position are quanti�ed� 	

 the use of additional memory is discussed� and it appears
that there is still room for improvements� Finally� it is shown that a transposition
table is a useful way of reducing the search at the cost of using more memory�

Chapter 
 presents the pn�search algorithm� Experiments with pn search have
been performed to obtain more insight into the strengths and weaknesses of this
algorithm when applied to a complex game such as chess 	i�e�� to positions of which
it is possible to prove the game�theoretic value
� The algorithm will be used as a
test bed in the Chapters � and �� First� an informal description of the algorithm is



���� Outline of the thesis �

given� followed by the pseudo�code� Experiments are reported� comparing the pn�
search algorithm to the ���search algorithm� The strengths and weaknesses of the
pn�search algorithm are discussed�

Chapter � tries to answer the second problem statement and presents the pn��
search algorithm� This is a modi�cation of the pn�search algorithm when only little
memory is available� using less memory at the cost of more searching� Experiments
are given� showing that this algorithm solves more positions in the test set than the
standard pn�search algorithm� implying that pn� search is a useful algorithm when
little memory is available�

Chapter � answers the third problem statement� A review of attempted solutions
to the GHI problem is presented� Next� our practical solution for best��rst search
algorithms that keep the whole search tree in memory is presented� Thereafter�
the pseudo�code for the implementation in pn search is shown� This algorithm is
compared to the standard pn�search algorithm and its modi�cations� Experiments
are reported� showing that this graph algorithm for pn search performs well�

The evaluation of the three problem statements� �nal conclusions� and future
research are given in Chapter ��

Appendix A lists the test set used for the chess middle�game transposition�table
experiments� The test set used for the chess endgame transposition�table experiments
is presented in Appendix B� Appendix C lists the results of all experiments described
in Chapter �� The test set used for the proof�number search experiments is given
in Appendix D� Appendix E presents the results of the pn�search and ���search
experiments described in Chapter 
� The results of the pn� experiments described
in Chapter � are shown in Appendix F� Finally� Appendix G lists and compares
the results of the experiments given in Chapter � with the results of the pn tree
algorithm�
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The transposition table

This chapter is an updated and abridged version of�

�	 Breuker D	M	� Uiterwijk J	W	H	M	� and Herik H	J	 van den �����a�	 Replace�
ment Schemes for Transposition Tables	 ICCA Journal� Vol	 �
� No	 �� pp	
��������


	 Breuker D	M	 and Uiterwijk J	W	H	M	 ������	 Transposition Tables in Com�
puter Chess	 New Approaches to Board Games Research� Asian Origins and

Future Perspectives �ed	 A	J	 de Voogt�� pp	 �������	 International Institute
for Asian Studies� Leiden� The Netherlands�

�	 Breuker D	M	� Uiterwijk J	W	H	M	� and Herik H	J	 van den ������	 Replace�
ment Schemesand Two�Level Tables	 ICCA Journal� Vol	 ��� No	 �� pp	 �
������

�	 Breuker D	M	� Uiterwijk J	W	H	M	� and Herik H	J	 van den ����
b�	 Informa�
tion in Transposition Tables	 Advances in Computer Chess � �eds	 H	J	 van den
Herik and J	W	H	M	 Uiterwijk�� pp	 ����
��	 Universiteit Maastricht� Maas�
tricht� The Netherlands� and

�	 Breuker D	M	� Uiterwijk J	W	H	M	� and Herik H	J	 van den �����b�	 Solving
Domineering	 Submitted as journal publication	 Also published ������ as Tech�
nical Report CS ������ Universiteit Maastricht� Maastricht� The Netherlands	

In this chapter we try to obtain more insight into the �rst problem statement�
which methods exist to improve the e�ciency of a transposition table�

In Section ��� some important notions and concepts� used throughout the thesis�
are introduced� Section ��� explains what transpositions are and why it is important
to recognize them� The concept behind the transposition table is given in Section ��
�
Section ��� lists several data structures suitable for a transposition table� The exper�
imental set�up of our research is given in Section ���� Section ��� discusses the test
domains� Three series of experiments to improve the e�ciency of the transposition
table are presented in Section ���� Section ��� provides conclusions�

�Thanks are due to the Editors of Advances in Computer Chess � � the Editor of New Approaches

to Board Games Research� and the Editorial Board of the ICCA Journal for giving permission to
use the contents of the articles in this chapter	

�
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��� Notions and concepts

In this section we de�ne several notions and introduce various concepts which we
will use throughout the thesis� The main notions are� game tree� search tree and
search methods�

Game tree

A game tree is a representation of the state space of a game� In the case of a two�
player zero�sum game� the game tree is an oriented and�or tree� A node in the
tree represents a position in the game� an edge represents a move� A sequence of
edges forms a path if each edge shares one node in common with the preceding edge�
and the other node in common with the succeeding edge� The root of the tree is
a representation of the initial position� A terminal position is a position where the
rules of the game determine whether the result is a win� a draw� or a loss� A terminal
node represents a terminal position� A node is expanded by generating all successors
of the position represented by the node� A direct successor of a node is termed a
child of the node� Analogously� the direct predecessor of a node is termed the parent
of the node� Nodes having the same parent are termed siblings� A node with at least
one successor is termed an interior node� We note that the root is the only interior
node without a parent�

A game tree is generated by expanding all the interior nodes� This process is
repeated until all unexpanded nodes are terminal nodes� It follows that the game
tree for the initial position is an explicit representation of all possible paths of the
game 	Pearl� ����
� Zermelo 	����
 was the �rst person stating that every position
	not necessarily a terminal position
 can be theoretically characterized as a win�
a draw� or a loss in the game of chess� The game�theoretic value is the value of
the initial position� given that both players play optimally� A minimal game tree is
de�ned as a minimal part of the game tree necessary to determine the game�theoretic
value� The game�theoretic value can� in principle� be determined by examining the
complete game tree� Since for most games the game tree 	and even a minimal game
tree
 is extremely large� this is not feasible in practice� For instance� in chess the
game tree consists of roughly ���� nodes 	Shannon� ����
� Chinchalkar 	����
 gives
������� � ���� as an upper bound and� according to Bonsdor� et al� 	����
� N�
Petrovi�c assumes that the upper bound is approximately �� �����

Search tree

When the game tree is too large to be generated completely� a search tree is generated
instead� This tree is only a part of the game tree� The root represents the position
under investigation� and all other nodes of the search tree are generated during the
search process� The nodes which do not have children 	yet
 are termed leaves� Leaves
include terminal nodes and nodes which are not yet expanded�

The depth of a node in a tree is zero for the root� and one plus the depth of its
parent otherwise� A node P with a smaller depth than a node Q is an ancestor of
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node Q if node P is on the path from the root to node Q� In this case� node Q is
a descendant� of node P � A subtree of a tree is formed by a node together with all
its descendants� The depth of a tree is equal to the largest depth of all leaves� often
counted in plies� A ply can be viewed as a half move 	a move by one of the two
players
� The term ply was introduced by Samuel 	����
� A path from the root to
a leaf is called a variation� Leaves are evaluated 	given a value
 with the aid of an
evaluation function� A principal variation is a sequence of moves where both players
play optimally� according to the evaluation function used�

The order in which the nodes of the search tree are generated is de�ned by the
type of search method�

Search methods

Several search methods have been developed� They fall into three categories�� 	�

depth��rst search algorithms� 	�
 breadth��rst search algorithms� and 	

 best��rst
search algorithms�

In depth��rst search algorithms the root is expanded and one of its children
is chosen for further investigation� If the node chosen is not a terminal node� the
node is expanded and again one of its children is chosen for further investigation� If
the child chosen is a terminal node� one of the node�s siblings is chosen for further
investigation� If all children have been investigated� one of the siblings of the parent
is chosen for further investigation� and so on� This process is repeated throughout
the whole tree� In summary� the children are expanded before the sibling nodes� In
Figure ��� a search tree of depth three is depicted� For all and�or trees�graphs
in this thesis white squares represent or nodes 	positions with the �rst player to
move
� and black circles represent and nodes 	positions with the second player to
move
� As an aid to the reader we mention that or nodes can be seen as playing
positions with White to move 	wtm
� with one or two selected strategies in mind�
and nodes as playing positions with Black to move 	btm
� in which case White has
to be prepared for all countermoves� The numbers represent the order in which the
nodes are generated with depth��rst search�

An advantage of depth��rst search is that it may �nd a solution rather quickly�
However� a disadvantage is that this method often spends much time exploring
unfruitful paths� An example of a depth��rst search algorithm is �� search 	Knuth
and Moore� ����
�

In breadth��rst search algorithms� �rst the node representing the initial state is
expanded� Then one of the leaves of the next level is chosen for further investigation�
If it is not a terminal node� it is expanded� Thereafter� the next leaf on this level
is chosen for further investigation� If all the leaves on this level have been chosen�
one of the leaves of the next level is chosen for further investigation� This process
is repeated throughout the whole tree� In summary� the children are expanded after

�We note that a parent is a special case of an ancestor� and a child is a special case of a
descendant	

�Here we split the brute�force search into two categories� e�ectively creating three categories
instead of the two mentioned in Section �	
	



�� Chapter �� The transposition table

6 8

1

3 4

2

5

7

9

Figure ���� A depth��rst traversal of a search tree�

the sibling nodes� This is illustrated in Figure ���� The numbers indicate the order
in which the nodes are generated with breadth��rst search�
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Figure ���� A breadth��rst traversal of the search tree of Figure ����

An advantage of breadth��rst search is that the �rst solution found will be the
solution with the shortest path� A major disadvantage is that it requires a large
amount of memory to store all the nodes of the tree� a node is not needed 	and does
not have to be preserved in memory any more
 after its subtree is expanded� but
since breadth��rst search expands the nodes one level after another� all nodes have
to be kept in memory� Depth��rst search �rst expands all the children of a node�
and therefore a chosen node is not needed 	and does not have to be preserved in
memory any more
 as soon as one of its siblings is chosen for expansion�

Finally� best��rst search combines the advantages of both depth��rst search and
breadth��rst search� At each step of the search process� the most promising path
	according to some criterion
 is expanded� Usually what happens is that some depth�
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Figure ��
� A best��rst traversal of the search tree of Figure ����

�rst searching occurs when the most promising branch is explored� Eventually� if the
path looks less promising� one of the lower�level branches will be explored� However�
search at the old branch is only suspended� and the search can return to it whenever it
seems necessary� An example of a best��rst search algorithm is proof�number search
	Allis et al�� ����
� A best��rst traversal is depicted in Figure ��
� The numbers
indicate a possible order in which the nodes might be generated�

Plaat 	����
 states that the border between best��rst search algorithms and
depth��rst search algorithms is not as clear as shown above� Plaat et al� 	����
 give
a new formulation of the SSS� algorithm 	Stockman� ����
� based on the �� algo�
rithm� Furthermore� they present a framework� termed MTD	f
� that facilitates the
construction of several best��rst �xed�depth game�tree search algorithms� based on
the depth��rst minimal�window �� search� enhanced with storage�

��� Transpositions

When searching for a move� game programs build large search trees� Since a position
can sometimes be arrived at by several distinct move sequences� the size of the search
tree can be reduced considerably if the results of a position previously encountered
remain available� The results can be stored in a large direct�access table� called a
transposition table 	Greenblatt et al�� ����� Slate and Atkin� ����
� A closer inspec�
tion shows that the search tree then can be considered as a search graph� due to the
transpositions� As an example we provide the chess position of Figure ���� It can be
reached via the distinct move orders �� e� Nf� �� Nc�� and �� Nc� Nf� �� e��
To complicate matters� the following sequence of seven plies� �� Nf� Nf� �� Nc�
Ng� �� e� Nf� �� Ng�� also leads to the same position�

Assume that the position of Figure ��� appears somewhere in the search tree�
After examining the position� a best move is found together with its score� based on
a subtree of a certain depth� Since it is possible that this position exists elsewhere in
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rmblka�s
opopopop
�Z�Z�m�Z
Z�Z�Z�Z�
�Z�ZPZ�Z
Z�M�Z�Z�
POPO�OPO
S�AQJBMR

Figure ���� A btm position that can be reached by distinct move orders�

the tree� the relevant information of the position is saved in the transposition table�
The relevant information includes the score of the position� the best move� and the
depth to which the subtree was searched� Adhering to �� search 	Knuth and Moore�
����
� the score need not be an exact value� but may be a lower or an upper bound�

Slate and Atkin 	����
 already remarked that� for chess� �Strictly speaking� po�
sitions reached via di�erent branches are rarely truly identical� because the ���move
and three�time repetition draw rules make the identity of a position dependent on
the history of moves leading to that position� This e�ect is small� and we decided to
ignore it�� However� ignoring the history of a position can give an incorrect result�
This is known as the graph�history�interaction 	GHI
 problem� of which a solution
is presented in Chapter �� Up to Chapter � we concur in ignoring the history of a
position�

��� A transposition table

����� Hashing

In the ideal case one would preserve every position encountered in a search pro�
cess� together with its relevant information�� However� the memory required usually
exceeds the available capacity of most present�day computers� Therefore� a trans�
position table is implemented as a �nite hash table 	Knuth� ���

� A position is
converted into a su�ciently large number 	the hash value
 by using some hashing

�In chess� the side to move� castling rights and en�passant status are all part of the description
of a position	
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method� The most popular method used by game programmers is described by Zo�
brist 	����
�

Hashing in chess

In chess there are twelve di�erent pieces 	Pawn� Knight� Bishop� Rook� Queen� King
for both colours
 and �� squares� For any combination of a piece and a square a
random number is generated� In addition� four unique random numbers are generated
for castling rights� eight for en�passant rights� and one for changing the side to move�
Thus� in total ��� 	�����������
 unique numbers are available� The hash value
for a position is calculated by doing an exclusive�or 	xor
 of the numbers associated
with the piece�square combinations of that position� If applicable� the castling and
en�passant numbers are included too� This way of calculating a hash value has two
advantages�

�� The xor operation is a fast� bitwise operation�

�� The hash value can be updated incrementally� The hash value for a position
resulting from some move can simply be obtained by doing an xor between
the hash value of the old position and the two numbers associated with the
piece�fromSquare and the piece�toSquare of the move involved��

Warnock and Wendro� 	����
 implemented in their program Lachex a hashing�
algorithmmethod used less frequently� based on the theory of error�correcting codes�
Their hashing set is constructed from a Bose�Chaudhuri�Hocquenghem 	BCH
 code
	MacWilliams and Sloane� ����
� The only other program we know which uses this
method is ZugZwang 	Feldmann� ���

� The method is not widely used� for details
we refer to Warnock and Wendro� 	����
�

Hashing in domineering

	For a description of the domineering game we refer to subsection ������
 For any
occupied square on a board a unique random number is generated� 	It is irrelevant
whether a square is occupied by a vertically or horizontally placed domino�
 So for
the standard 	���
 board �� unique numbers are su�cient� No random number for
changing the side to move is needed� since it is impossible to have two equal positions
with di�erent players to move for the same starting player� The hash value of a
position is calculated by doing an xor of the numbers associated with the occupied
squares� The hash value for a position resulting from some move is obtained by doing
an xor between the hash value of the old position and the two numbers associated
with the squares of the move involved�

�One additional xor is needed for changing the side to move	 When capturing� castling or en

passant is involved� one or a few additional xors have to be applied	
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Hash value and hash key

Figure ��� illustrates how the hash value is generally used� If the transposition table
consists of �n entries� the n low�order bits of the hash value are used as a hash index�
The remaining bits 	the hash key
 are used to distinguish among di�erent positions
mapping onto the same hash index 	i�e�� the same entry in the transposition table
�
Therefore� the total number of bits should be su�ciently large 	Hyatt et al�� ����
�
For instance� the chess program Cray Blitz uses a ���bit hash value� For more
details� we refer to subsection ������

Transposition table

(2 entries)
n

Hash key
Hash index

(n bits)

Hash value

Figure ���� The hash value�

����� The traditional components

For an entry in a transposition table to be e�ective� it should at least contain the
following information 	Marsland� ����� Hyatt et al�� ����
�

key �� contains the more signi�cant bits of the hash value 	see Figure ���
� The key
is used to distinguish among di�erent positions having the same hash index�

move � contains the best move in the position obtained from a search� This is the
move which either caused a cut�o�� or obtained the highest score� The move
is used for the directing knowledge 	move ordering
�

score � contains the value of the best move in the position obtained from a search�
Since we adhere to �� search� the score can be an exact value� an upper bound
or a lower bound� The score can be used to adjust the � and � bounds of the
search�

�ag � contains information on the score� The �ag indicates whether the score is an
exact value� an upper bound� or a lower bound�

�Marsland ������ uses the term �lock�	
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depth � contains the relative depth of the subtree searched� When doing an n�ply
search from the root and a position is stored at ply m of the tree� the search
depth is n�m� The depth indicates how deep a previously encountered position
has been investigated�

We call a transposition table with these �ve information �elds a traditional table�
During the search� each position encountered is looked up in a table� If the posi�

tion is found� the information stored can be used in three distinct ways� depending
on the contents of �ag and depth�

�� The depth still to be searched is less than or equal to the depth retrieved from
the table and the retrieved value is an exact value� The position does not have
to be searched� the search value is retrieved from the table�� Usually� the best
move is also retrieved from the table� and used for determining the principal
variation�

�� The depth still to be searched is less than or equal to the depth retrieved from
the table and the retrieved value is not an exact value� The retrieved value can
be used to adjust either the � value 	if the retrieved value is a lower bound

or the � value 	if the retrieved value is an upper bound
� If this causes � to
be greater than or equal to �� then a cut�o� occurs and the position does
not have to be searched� Otherwise� the retrieved move can be used as a �rst
candidate� since it was considered best 	or at least good enough to yield a
cut�o�
 previously�


� The depth still to be searched is greater than the depth retrieved from the
table� In this case only the retrieved move is useful�� It can be investigated
�rst� since it was considered best for a shallow search� the probability being
high that it also will be best for deeper searches� Thus the move is used to
improve the directing knowledge 	move ordering
�

When using iterative deepening 	Gillogly� ����� Slate and Atkin� ����
 and
minimal�window search 	Pearl� ����� Marsland and Campbell� ����� Reinefeld�
���

� transposition tables may signi�cantly reduce the search e�ort� especially in
chess endgame positions with only a few pieces on the board� Nelson 	����
 states
that �In normal situations the move generator is called only about 
�� of the time�
the other ��� being handled by the transposition�table move�� Ebeling 	����
 con�
cludes that �not using the hash table for moves a�ects the search size by at least a
factor of two�� Hyatt et al� 	����
 show that �these rules let Cray Blitz �nd about

�� of typical middle�game positions in the transposition table� and well beyond
��� in certain endgame positions�� Berliner and Ebeling 	����
 show that the use

�If the depth still to be searched is less than the depth retrieved� the search results may di�er
from the results when searching without a transposition table	

�Many heuristics� like aspiration search �Brudno� ����� Berliner� ��
�� Gillogly� ��
��� ProbCut
�Buro� ������ and fail�high reductions �Feldmann� ���
� also use the retrieved value	 It is used for
setting the search window	



�� Chapter �� The transposition table

of transposition tables combined with good move�ordering heuristics may yield that
�on average� the program searches only about ��� times the number of nodes that
an �� search with perfect move ordering would search��

In chess� transposition tables are especially useful in positions without Pawns
or with blocked Pawns� As an example� consider problem no� �� from Fine 	����
�
shown in Figure ���� At �rst sight� this seems an easy position� However� White has
only one winning move� which is the unexpected move �� Kb��� It is possible to
�nd this move by using knowledge about distant opposition 	Fine� ����
� or by doing
a deep 	at least �� ply
 search� Without a transposition table this is not possible in
tournament time�

�Z�Z�Z�Z
j�Z�Z�Z�
�Z�o�Z�Z
o�ZPZpZ�
PZ�O�O�Z
Z�Z�Z�Z�
�Z�Z�Z�Z
J�Z�Z�Z�

Figure ���� A wtm position with blocked Pawns�

For instance� assuming that both sides have �ve moves on average at their dis�
posal for each position 	an underestimation
� the minimal game tree when searching


 ply consists of some �� ���� nodes 	� wb�d��	c�wd�d��	e� � 	Knuth and Moore�
����
� with w � �� and d � 


� However� Hyatt et al� 	����
 show that Cray Blitz
searches only about �� ��� nodes when searching this position to a depth of 

 ply
	reached in only �� seconds on a Cray X�MP
� The reduction in nodes searched by
Cray Blitz 	a factor of more than �������
 is caused by the transposition table�

Sometimes transposition tables are used to store informationabout only a speci�c
part of the position 	e�g�� the pawn structure� or king safety

� Since this only replaces
a part of the evaluation function� not reducing the number of nodes searched� it is
outside the scope of our experiments�

�Warnock and Wendro� ������ use the name search tables when talking about transposition
tables in the broadest sense	
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��� Implementing a transposition table

����� Data structures

Several data structures come to mind for implementing transposition tables 	Pronk�
����� Van Diepen and Van den Herik� ����
� Two main choices exist�

�� A table with a variable number of positions per entry 	array of linked lists
�
Two advantages of this implementation are 	�
 the available memory can be
divided �exibly among the entries� and 	�
 no memory is wasted on empty
entries� Two major disadvantages are 	�
 the pointers of the linked list 	needed
to implement the variable number
 take up much memory compared to the
size of an entry position� and 	�
 more computation is needed to check for the
existence of a position in a chain of the linked list�

�� A table with a �xed number of positions per entry 	two�dimensional array
�
The advantage of this implementation is that no memory is wasted on extra
pointers� The disadvantage is that memory will be wasted when the search is
shallow and the table is not �lled completely�

The disadvantages of a table with a variable number of positions per entry are
more serious than the disadvantage of a table with a �xed number of positions per
entry 	Van Diepen and Van den Herik� ����
� leading to the logical choice of the
latter implementation�

A position which needs to be stored in an entry where all positions are occupied
is called an over�ow� Over�ows can be stored in an over�ow area� Two choices for
the over�ow area exist�

�� The over�ow area is implemented as another table or binary tree� Two disad�
vantages of this implementation are 	�
 in the over�ow area the complete hash
value has to be stored in memory� and 	�
 many comparisons may be needed
to �nd a position in the table�

�� The over�ow area is in the same table� The over�ows are stored using dou�
ble hashing 	Knuth� ���

� An advantage of this implementation is that only
one table needs to be used� A disadvantage is that again many comparisons
may be needed to �nd a position in the table� For an extended review of this
implementation� we refer to Beal and Smith 	����
�

On the matter of implementation we distributed a questionnaire among readers
of the ICCA Journal and the newsgroup rec�games�chess�computer 	then called
rec�games�chess
� In the paragraph below we refer to their responses�

The implementation with double hashing is used by� amongst others� Hyatt
	����
� Stanback 	����
 and Weill 	����
� Since using an over�ow area may cause
more computation to check whether a position exists in the table� a table with one
position per entry� not using an over�ow area� is used most frequently 	Feldmann�
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����� Uiterwijk� ����� Wendro�� ����
� Distinguishing between two identical posi�
tions with di�erent side to move can be done in two ways� 	�
 use two di�erent
transposition tables 	one for White and one for Black
� or 	�
 use one transposi�
tion table� and use one additional random number for the player to move� which is
xored with the hash value� The latter method is used most frequently 	Feldmann�
����� Hyatt� ����� Schae�er� ����� Uiterwijk� ����� Weill� ����� Wendro�� ����
�

����� Probability of errors

Implementing a transposition table as a hash table introduces two types of error�
identi�ed as early as ���� by Zobrist� The �rst type of error 	type�� error
 is the
most important one� A type�� error only occurs when the number of available hash
values is much less than the total number of positions in a game� such as in chess�
In this case� it can happen that two di�erent positions yield the same hash value�
This is a serious error� because when a type�� error occurs� the information in this
entry will be used for the wrong position and� if so� will introduce search errors�
One way of detecting this error is to store the whole position in the transposition
table� However� in many games this takes up too much space� and is therefore not
feasible in practice� Another way of detecting this error is to test the move suggested
by that transposition�table entry for legality in the position� e�ectively lowering the
error rate� If the move is illegal� then the table entry must concern another position
than the one being investigated� Note that if the move is legal� the positions still
may di�er� The probability of the occurrence of type�� errors can be lowered by
increasing the number of bits in the hash value�

The second type of error 	type�� error� or clash
 occurs when two di�erent posi�
tions map onto the same entry in the transposition table� i�e�� the positions have equal
hash indices� but di�erent hash keys� This is known as a collision 	Knuth� ���

�
When a collision occurs� a choice has to be made which of the two positions involved
should be preserved in the transposition table� Such a choice is based on a replace�
ment scheme� Several replacement schemes are discussed in subsection ������ The
probability of the occurrence of collisions can be lowered by increasing the number
of bits in the hash index 	thus increasing the number of entries in the transposition
table
�

The probability of a type�� error and the probability of a collision are both
calculated in the same way� The only di�erence is the number of distinguishable
positions 	for a type�� error this is the number of possible hash values�� and for a
collision this is the number of possible hash indices� i�e�� table entries��
�

Let N be the number of distinguishable positions� andM be the number of di�er�
ent positions which have to be stored in the transposition table��� The probability
that all M positions will have di�erent hash values 	i�e�� the probability that no

�	 i	e	� 
k� where k is the number of bits of the hash value	
�� i	e	� 
n� where n is the number of bits of the hash index	
��This number is equal to the number of non�empty positions in the transposition table after the

search has been completed� augmented with the number of collisions during the search	
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errors occur
 is given by

P 	no errors
 � 	� �
�

N

� 	��

�

N

 � � � � � 	��

M � �

N

�

If M is small compared to N � then all cross products can be neglected and we have
the following approximation

P 	no errors
 � ��
� � � � � � ��M � �

N
� ��

M 	M � �


�N
�

For small positive x we have log	� �x
 � �x� and thus

logP 	no errors
 � �
M 	M � �


�N
�

Thus� it follows that

P 	no errors
 � e�
M�M���

�N �

If M is su�ciently large� this formula yields

P 	no errors
 � e�
M�

�N � 	���


This result equals the formula given by Gillogly 	����
���
We note that the problem of calculating the probability that at least one error

occurs 	being � � P 	no errors

� is analogous to the problem widely known as the
birthday paradox 	Feller� ����
� where the probability of at least two persons having
the same birthday in a group of M persons 	N being 
��
 has to be calculated�

The expected number of errors can be calculated as well� Feldmann 	���

 derives
the following formula for the expected number of errors 	E
�

E � M � N � 	� � 	
N � �

N

M 
�

When N is su�ciently large 	which is the case for a transposition table
� this formula
can be approximated by

E �M � N � 	�� e�
M
N 
� 	���


As an example we consider a program which searches ������� nodes per second�
If it plays a game using a total of two hours of thinking time� the number of nodes
searched is ���� ���� Assume that for about 
�� of the nodes� an attempt is made
to store them in the transposition table� In the example� this is ��� million nodes�
If the hash value consists of 
� bits� the probability of at least one type�� error is

�� e
� ������������

�����

which is very close to �� So a hash value of 
� bits clearly is too small� If we want to
reduce the probability of at least one error to less than � percent� Equation ��� says
that at least �� bits are required� When using a ���bit hash value� the probability
is reduced to about �� ����� In this case� the expected number of type�� errors for
the example above is about �����

��The article contains a typing error	 The probability given here is correct �Gillogly� �����	
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��� Experimental set�up

The transposition�table experiments are performed in the domains of chess and
domineering� The experimental set�ups for both domains are described in the next
two subsections�

����� The game of chess

For the chess experiments we have developed a test program AliBaba� being a
simple chess program� designed to be easily reproducible by other researchers�� �
This reproducibility serves to promote a uniform platform for research� The major
components of AliBaba constitute the remainder of this section� viz� the search
engine� the evaluation function� the move�ordering heuristics� and the transposition
table�

The search engine

The search engine is based on a variant of �� search� iterative�deepening� minimal�
window� principal�variation search�� 	Marsland� ����
� Furthermore� AliBaba uses
aspiration search 	Brudno� ���
� Berliner� ����� Gillogly� ����
� At the start of
each new iteration� the upper bound and lower bound of the window are set to the
value resulting from the previous iteration plus and minus the value of a Pawn�
respectively� If the search fails 	the value does not lie within the �� window
� the
window is adjusted to either 	��� value
 when failing low� or 	value� ��
 when
failing high�

Leaves in the search tree should be �relatively quiescent� when evaluated 	Shan�
non� ����
� Not all leaves are quiescent� so they should be further investigated by
a quiescence search� In this search only capturing moves and promotion moves are
considered� except if the King is in check� when all moves must be searched� We
note that in the former case a quiescence search may be terminated early� viz� as
soon as it becomes clear that all moves to be generated will be disadvantageous
	Schr ufer� ����
� No other search extensions are used in the experiments in order to
avoid possible search anomalies�

Before executing the principal�variation search at a node in the search tree� it
is checked whether the position represented by the node is a draw by stalemate� by
three�fold repetition� or by the ���move rule� or whether it is a win by checkmate�

��The full C source code is available by anonymous FTP	
The URL is ftp���ftp�cs�unimaas�nl�pub�software�breuker�alibaba�tar�Z

��We note that the version of principal�variation search as mentioned by Marsland ������ is
identical to the version of negascout as mentioned by Reinefeld ������	 We use the ���� reference
instead of ����� which was the �rst source of this algorithm� since the algorithm described in
Reinefeld ������ contains minor errors	
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The evaluation function

The evaluation function used is simple� It consists of a material part and a posi�
tional one� The material part counts the di�erence of material between sides� The
positional part is restricted to summing piece�square�table values� During a game�
for every type of piece a ���square table is maintained� Each table contains positional
values for that piece on every square on the board� Again� we tried to keep things as
simple as possible for the reproducibility� Therefore the positional values are inde�
pendent of the position at the root� The positional part of the evaluation function is
updated incrementally� whenever a move is investigated during the search process�
the positional value of the piece�fromSquare table entry is subtracted from it� and
the value of the piece�toSquare table entry is added to it� Finally� the evaluation
function also serves to detect draws by stalemate� by three�fold repetition and by
the ���move rule as well as checkmate�

The move�ordering heuristics

In any position�AliBaba generates only legal moves� excluding pseudo�legal moves�
such as placing or leaving its own King in check� Since the move ordering is im�
portant for the e�ciency of the �� algorithm the following ordering heuristics are
implemented�

Refutation tables 	Akl and Newborn� ����
� For every move in the root position� the
main variation is stored� In the next iteration� moves out of these refutation
lines are tried �rst�

History heuristic 	Schae�er� ���
� Schae�er� ����b
� A score for every legal move
encountered in the search tree is maintained� Every time a move is found to be
best in a search� its score is adjusted by an amount proportional to the depth
of the subtree investigated� When ordering moves using this heuristic� moves
with a higher score are considered before moves with a lower score�

In AliBaba� the moves are ordered in the following way� The �rst move to be
considered is the move from the refutation table 	if present
� Then� if the position
is found in the transposition table 	see page ��
� the transposition�table move is
the next move to be considered� These moves are followed by capture moves 	the
highest�valued piece to be captured �rst� if equal� then the lowest�valued capturing
piece �rst
� Thereafter follow the promotion moves 	ordered by promotion piece� the
highest�valued promotion piece �rst
� The remaining moves are ordered according to
their descending history�heuristic scores� In addition to the move�ordering heuristics
mentioned above� applied immediately after move generation� the root moves are
also ordered during the iterative�deepening search processes�
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�� search combined with a transposition table

Whenever a move is investigated in the �� search� the resulting position is looked up
in the transposition table� If the position is present� and the depth of the examined
subtree is greater than or equal to the depth still to be searched� the information in
the table is considered reliable� Therefore� if the score is an exact value� it can im�
mediately be used� otherwise� it can be used to update the window bounds 	possibly
causing a cut�o�
� The transposition�table move is always used to order moves 	see
page �

�

After a position has been investigated to a certain depth� it is stored in the
transposition table together with the best move 	i�e�� the move which caused a cut�
o�� or the move with the highest score
� its score� a �ag 	denoting whether the score
was an exact value� a lower bound� or an upper bound
� and the search depth� During
quiescence search� a position is never stored in the transposition table�

The results of a transposition�table look�up are used at all nodes in the tree� If
a leaf position is present in the table� the transposition�table score is used for the
evaluation� If the score was an exact value� this score is used as evaluation value�
Otherwise� the position is evaluated using the evaluation function� If the evaluation
value is higher than the transposition�table score and the bound is an upper bound�
the evaluation value becomes equal to the transposition�table score 	analogously for
the lower�bound score
� Since the evaluation function is also used in the quiescence
search� the transposition table is used in the quiescence search as well� Note� however�
that since positions are only retrieved and not stored during quiescence search� their
usefulness is limited during that phase�

In our experiments the transposition table is implemented as a linear array with
one or two table positions per entry� No over�ow area is used 	see also subsec�
tion �����
� Furthermore� a ���bit hash value is used��� More details of the imple�
mentation of a transposition table in plain �� search are given in Marsland 	����
�

The pseudo�code 	based on Marsland� ����
 for the implementation of a trans�
position table in plain �� search 	in a negamax framework
 is given in Figure ����
Details concerning enhancements� move�ordering techniques and quiescence search
are omitted for clarity� The parameters of the function are the current position under
investigation 	position
� the depth to be searched 	depth
� and the � and � bounds
of the search window� respectively� We note that the function Evaluate needs as
parameters the position and the transposition�table information� If a leaf position
is present in the table� the transposition�table score is used for the evaluation 	see
above
� Furthermore� the function TryToStore attempts to store the search infor�
mation in the transposition table� using a replacement scheme 	see Section �����

when encountering a collision� The function AlphaBeta returns the best value of the
position under investigation�

��In the experiments the size of the transposition table ranges from �K to 
���K entries	 For
these transposition�table sizes the hash index ranges from �� to 
� bits	



���� Experimental set�up ��

function AlphaBeta� position� depth� �� � �
old� �� �

Retrieve� position� ttMove� ttScore� ttFlag� ttDepth �
�� If the position is not found� ttDepth will be �� and ttMove � ��
if ttDepth�depth then begin

if ttFlag�ExactValue then return ttScore
elseif ttFlag�LowerBound then � �� max� �� ttScore �
elseif ttFlag�UpperBound then � �� min� �� ttScore �
if ��� then return ttScore

end
if depth�� then �� Leaf ��

return Evaluate� position� ttScore� ttFlag� ttDepth �
if ttDepth�� then begin �� Examine tt	move 
rst ��

newPos �� DoMove� ttMove� position �
bestValue �� �AlphaBeta� newPos� depth��� ��� �� �
UndoMove� ttMove� newPos �
bestMove �� ttMove
if bestValue�� then goto Done

end
else bestValue �� ��
GenerateMoves� moveList� nrMoves �
if nrMoves�� then

return Evaluate� position� ttScore� ttFlag� ttDepth �
for i��� to nrMoves do begin

if moveList� i ���ttMove then begin
� �� max� bestValue� � �
newPos �� DoMove� moveList� i �� position �
value �� �AlphaBeta� newPos� depth��� ��� �� �
UndoMove� moveList� i �� newPos �
if value�bestValue then begin

bestValue �� value
bestMove �� moveList� i �
if bestValue�� then goto Done

end
end

end
Done�

if bestValue�old� then ttFlag �� UpperBound
elseif bestValue�� then ttFlag �� LowerBound
else ttFlag �� ExactValue
TryToStore� position� bestMove� bestValue� ttFlag� depth �
return bestValue

end �� AlphaBeta ��

Figure ���� The ���search function with a transposition table�
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����� The game of domineering

Like chess� domineering is a two�player zero�sum game with perfect information�
The game is also known as crosscram� and as dominoes� It was proposed by G oran
Andersson around ���
 	Gardner� ����� Conway� ����
� In domineering the players
alternately place a domino�� 	��� tile
 on a board� i�e�� on a �nite subset of Cartesian
boards of any size or shape� The game is usually played on rectangular boards� The
two players are denoted by Vertical and Horizontal� In standard domineering the
�rst player is Vertical� who is only allowed to place its dominoes vertically on the
board� Horizontal may play only horizontally� Of course� dominoes are not allowed to
overlap� As soon as a player is unable to move the player loses� Although domineering
can be played on any board and with Vertical as well as Horizontal to move �rst�
the original game is played on a 	���
 checker�board with Vertical to start� and this
instance has generally been adopted as standard domineering� According to West
	����
 this size is su�ciently large to be beyond the range of human analysis� and
hence the size is �t for an interesting game�

For the domineering replacement�scheme experiments we have developed the
program Domi� The search engine is plain �� search� The evaluation function is a
two�valued function� only returning the values win and loss�

The move�ordering heuristics

InDomi a distinction is made between 	�
 the mobility� 	�
 the number of real moves�
and 	

 the number of safe moves� Mobility is de�ned as the number of distinct moves
that a player can make in a position� The number of real moves is de�ned as the
maximum number of moves that a player can make in a position� provided that
the opponent does not make any move� The number of safe moves is de�ned as the
maximum number of moves that a player can make from a given position in the
remaining part of the game� irrespective of the moves that the opponent will make�

The mobility� the number of real moves� and the number of safe moves are up�
dated incrementally� During the search� the decrements � of the number of real moves
and the number of safe moves are continuously updated for both players� The four
values are instrumental for a move ordering within the �� search� the heuristic be�
ing� the higher the ordering value� the better the move likely is� The formula for the
ordering value is

ordering value � �	real moves opponent
 � �	real moves player to move
 �
�	safe moves opponent
 � �	safe moves player to move
�

Forward cut�o
s

The number of real moves indicates an upper bound of the search�tree depth� and
the number of safe moves indicates a lower bound of the search�tree depth� If the
number of safe moves of the player to move is greater than or equal to the number
of real moves of the opponent after the player has made its move� the move is called

��The markings on the dominoes are irrelevant	
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a winning move� In this case� no further moves are generated and the search at this
position will be terminated� resulting in a win for the player to move� If the number
of safe moves of the opponent is greater than the number of real moves of the player
to move after the player to move has made its move� the move is called a losing move�
In this case� the move is discarded and the next sibling� if any� will be generated�

�� search combined with a transposition table

The implementation of the transposition table is similar to the implementation given
in Figure ���� with two exceptions� 	�
 ttFlag is always equal to ExactValue 	since
only the values win and loss are used and therefore no bound values are possible
�
and 	�
 only the best value and not the best move is stored in the table��� All
symmetries of the rectangular board are used in Domi� Whenever a node is inves�
tigated in the search� the resulting position is looked up in the transposition table�
If it is not present� any of the three symmetrical positions 	a horizontal� and�or a
vertical re�ection
 is looked up� In the latter case� if present� the information of the
symmetrical position is used�
�

��� The test domains

In this section we describe the test domains in which the experiments are performed�

����� Chess test sets in the literature

Several methods have been used to test the strength of a chess�playing program� In
many cases a test set is used� Previous test sets mentioned in the literature are�

� the Win�at�Chess set of 
�� tactical positions from Reinfeld 	����
� These
positions serve well to test the tactical ability of chess programs� although the
strongest programs have outgrown the test 	Anantharaman et al�� ����
�

� the Bratko�Kopec set of �� positions 	Kopec and Bratko� ����
� These po�
sitions are divided into two categories� twelve tactical and twelve positional
positions� The positional positions all have a pawn�lever move 	described by
Kmoch� ����
 as their solution� This test suite has two disadvantages� 	�
 ��
positions are too few� and 	�
 the test is highly specialized in what it tests�

� a test set consisting of �� positions� devised by Nielsen 	����
� The main
purpose of this test set is to estimate the Elo rating 	Elo� ����
 of the program�

��If a position is present in the table� its game�theoretic value �win or loss� is known and no
further search is needed at this point	

��We note that we do not make use of rotation symmetry� because that exchanges the concepts
of horizontal and vertical	
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� a large test set of ���� positions� described by Lang and Smith 	���

� It con�
sists of roughly ��
� tactical positions� ��� positional positions� ���� endgame
positions and ��� opening positions� The test set seems very good� but it will
take a long time to run a program on all the test positions� Even if the pro�
gram is allowed to analyze each position for only three minutes 	tournament
speed
� it will take more than �� days of computing time� Considering that
a programmer needs to test every modi�cation of the program� we have not
adopted this test set for our research�

Berliner et al� 	����
 give a taxonomy of chess positions and have tried to devise
a representative test set� Private communication between Lang and Berliner shows
that great di�culties were encountered in creating such a set and only some twenty
positions have been produced so far 	Lang and Smith� ���

�

Finally� it is known 	Lang and Smith� ���

 that many commercial companies�
such as Fidelity Electronics and Heuristic Software� and many professional program�
mers� have created their own test sets� but they have rarely published these positions�
Most of these tests are devised to test only one aspect of a chess program� Some
of these tests are published in computer chess magazines� such as Computerschaak �
Modul � and ComputerSchach und Spiele� With the popularity of the Internet nowa�
days� many more test sets 	including the ones mentioned above
 are available at
several FTP sites� See� for instance� URL ftp���external�nj�nec�com�pub�wds��

As already evident from above� test sets always have a disadvantage� either the
number of positions is too small to be representative of positions in high�level chess
games� or the number of positions is so large that it will take too much time to test
a program on every position� Anantharaman 	����
 mentions three other methods
to test the strength of a chess program�

�� Play a large number of tournament games� The disadvantage is the time it will
take to play a su�cient number of games to obtain a good impression of the
strength of the program�

�� Play matches between two computers� starting from a set of chosen positions�
playing both sides� This approach has been used by� amongst others� Gillogly
	����
 and Schae�er 	����
� According to Anantharaman this will take much
time too� because about ����� games are necessary to spot a rating di�erence
of ten points���


� Marsland and Rushton 	���

 have taken ��� positions from a collection of
games between human masters from several strong tournaments� They test
the program using all these positions� Conclusions on the strength of a chess
program are based on the average rank of the move the human master played�
One of the disadvantages is that there is no distinction between minor mistakes

�	This is only important if the versions tested do not di�er much in strength	 If one version is
much stronger �say about 
�� points� than the other version� it is not interesting to know whether
it is 
��� 
��� or 
�� points stronger	
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and major blunders� Another disadvantage is that the possibility that the move
played by the program is better than the humanmove is not taken into account�

Anantharaman 	����
 describes another approach to test chess programs� The
approach was designed to test search heuristics� but can equally well be applied to
test other enhancements of a chess program� The method is used in testing Deep
Thought and its successor Deep Blue� The quality of the test program is measured
using a deeper searching reference program� This reference program is about 
�� rat�
ing points stronger than the test program� Anantharaman used circa 
���� positions
to evaluate the test program� He concluded that comparing the move chosen by the
test program with the move chosen by a human expert is not a reliable method for
evaluating the test program� He showed further that comparing the move chosen by
the test program with the move chosen by the reference program is a better way
for evaluating the test program� correlating well with USCF ratings� Anantharaman
reports that with the described technique the same reliability can be reached within
only �� to ��� of the time required when using matches between computers�

����� Our chess test set

Our testing method for chess di�ers from the methods discussed above� We have
opted to use a sequence of positions derived from actual games as the test set� One
advantage is that the chosen positions will not be biased towards tactical issues�
but will automatically incorporate positional ones� Moreover� the choice also meets
the requirement that successive positions should be related� which is essential when
investigating the e�ects of clearing the transposition table between moves 	see sub�
section �����
� Finally� our goal is not to investigate the strength of the test program�
but to investigate the sizes of the search trees involved�

The chess experiments have been divided into two parts� The �rst part concerns
middle�game experiments� and the second part endgame experiments� The middle�
game experiments and the endgame experiments are separated to see whether the
results are di�erent� since it is known that the bene�ts from the use of transposition
tables are greater in endgame positions than in middle�game positions 	Slate and
Atkin� ����
�

For the middle�game experiments we have chosen positions from all six Kas�
parov games of the Euwe memorial VSB tournament ���� as our test set� Clearly�
Kasparov� being the World Champion� is a good player� so his games are of high
quality� The opening phase is omitted� We shall only consider middle�game posi�
tions� de�ned as positions from move �� onwards where both sides have at least ��
points of material��� We note that games �� �� and � terminate when they are still
in the middle game according to this de�nition� Our �nal restriction is that only
positions where Kasparov is to move are investigated��� resulting in �� positions as
a middle�game test set� The positions are given in Appendix A�

��Pawn��� Knight��	
�� Bishop��	
�� Rook��� Queen��	 Kings do not contribute	
��This could be interpreted as a bias in the test positions	
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For the endgame experiments we have chosen positions of �ve games� taken
from four instructive endgame books 	Fine� ����� Bouwmeester� ����� Leven�sh
and Smyslov� ����� Averbakh� ����
� An endgame position is de�ned as a position
where at least one side has less than �� points of material� Only the wtm positions
are considered� This results in an endgame test set� consisting of ��� positions�
The positions are listed in Appendix B� The test set includes many di�erent types
of endgame� such as pawn endgames� bishop endgames� rook endgames and queen
endgames� The number of blocked�pawn pairs ranges from zero to four�

����� The domineering test set

The domineering experiments have been divided into two parts� For the �rst series
of experiments we have taken the empty standard 	���
 board as the test position�
Next to the goal of �nding the game�theoretic value of the test position� we have set
as research goal� deciding which replacement scheme is best�

The second series of experiments concentrates on establishing the game�theoretic
value of domineering� played on non�standard boards� We have investigated rectan�
gular board sizes m�n� with m ranging from � to �� and n fromm to �� The variable
m denotes the number of rows and the variable n denotes the number of columns
of the rectangular board� Contrary to so�called impartial games� such as tic�tac�toe�
were both players always have the same options� domineering is a game in which the
options for both players are not alike� These games are called partizan� For partizan
games it can matter which player starts the game� In the case of domineering� for
square boards 	including standard domineering
 it is irrelevant whether Vertical or
Horizontal starts� but for non�square boards it does matter� We explicitly refrain
from the rule that Vertical always starts� Of course an m�n game started by Hor�
izontal is equivalent to an n�m game started by Vertical� It thus makes sense to
distinguish four possible outcomes for the various domineering games� denoted by
!��� !��� !V�� and !H�� The meanings are as follows�

�� a �rst�player win� independent of whether Vertical or Horizontal starts�

�� a second�player win� independent of whether Vertical or Horizontal starts�

V� a win for Vertical� independent of whether Vertical plays �rst or second�

H� a win for Horizontal� independent of whether Horizontal plays �rst or second�

��� Experiments and results

The literature on transposition tables is mainly tutorial in nature 	e�g�� Marsland�
����
� with only a few detailed discussions of performance 	e�g�� Ebeling� ����� Scha�
e�er� ����b
� One frequently cited performance observation is that doubling the
number of positions in the table reduces the size of the search tree� This is an ob�
vious result� since the more information in the table� the greater the probability of
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�nding a transposition� Performance analyses of other aspects of transposition ta�
bles� such as which positions to replace� have not� as far as we know� been published
in the literature� This section lists three of our experiments concerning transposition
tables� In subsection ����� experiments on using replacement schemes are described�
The results have been published before in Breuker et al� 	����a
� Breuker et al�
	����
� and Breuker et al� 	����b
� Subsection ����� quanti�es the merits of using
the move information and the score information of the transposition table� In sub�
section ����
 several ways of using the additional memory are examined� The results
of the last two sections have been published before in Breuker and Uiterwijk 	����

and Breuker et al� 	����b
�

����� Comparing replacement schemes

The most common implementation of a transposition table is a large hash table�
Even though this table is usually made as large as possible� subject to memory
constraints� and an over�ow area is used� collisions 	for which see subsection �����

are bound to occur� When a collision occurs� a choice has to be made whether to
replace or to retain the position in the table� This choice is governed by a replacement
scheme� From the literature and from discussions with computer�chess practitioners�
it appears that the most common form of collision resolution is to prefer the results
of deeper searches over shallower ones 	Greenblatt et al�� ����� Slate and Atkin�
����� Marsland� ����� Hyatt� ����� Stanback� ����
� This has an intuitive appeal�
but has not been supported empirically� This subsection compares the performance
of seven collision�resolution schemes� the impact of clearing the transposition table
between searches� and the e�ect of changing the number of positions in the table�

Replacement schemes

Whenever a collision is detected� a choice has to be made whether to replace the
existing position in the transposition table� We examine seven di�erent replacement
schemes� viz� Deep� New� Old� Big�� BigAll� TwoDeep� TwoBig�� They are
based on �ve concepts� as numbered below�

�� Concept Deep 	used in scheme Deep
�
The concept Deep is traditional� It is based on the depths of the subtrees
examined for the positions involved� In schemeDeep at a collision� the position
with the deepest subtree is preserved in the table 	Marsland� ����� Hyatt et al��
����
� The rationale behind this scheme is that a subtree searched to a greater
depth usually contains more nodes than a subtree searched to a shallower
depth� Therefore� more time was invested in searching the larger tree� Hence�
this value� if retrieved from the table� saves more work 	i�e�� eliminates a larger
tree
�

�� Concept New 	used in scheme New
�
The concept New prefers the last examined position over earlier ones� The
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replacement scheme New always replaces any position in the table when a
collision occurs� This concept is based on the observation that most transpo�
sitions occur locally� within small subtrees of the global search tree 	Ebeling�
����
�


� Concept Old 	used in scheme Old
�
The concept Old prefers the earliest examined position over later ones� The
replacement scheme Old 	the opposite of the scheme New
 never replaces an
existing position with a newer position� This scheme has only been included
for the sake of completeness�

�� Concept Big 	used in schemes Big� and BigAll
�
The concept Big is based on the number of nodes of a subtree� Sometimes a
subtree contains many forcing moves� It also may be potentially well�ordered
	in which case many cut�o�s have occurred
� In such cases� the depth of the
search tree fails to be a good indicator of the amount of search already per�
formed and therefore potentially to be saved� It then may be attractive to
select� for retention� the position with the biggest subtree rather than the one
with the deepest subtree� going by number of nodes rather than by their depths�
A drawback then is that the number of nodes must be retained as part of each
transposition�table entry� reducing the e�ective number of positions possible
for a given amount of storage�

This concept is used in two schemes� Big� and BigAll� The former counts a
table position in a transposition table as a single node� the latter as N nodes�
where N is the number of positions searched in order to obtain the information
of the table position stored�

�� Concept Two�level 	used in schemes TwoDeep and TwoBig�
�
The concept Two�level uses a two�level transposition table 	Ebeling� �����
Schae�er� ����
� Such a transposition table has two table positions per entry���
For the scheme TwoDeep the subtree of the �rst table position is larger than
the subtree of the second table position� Upon a collision�

� if the candidate position has been searched to a depth greater than or
equal to the depth of the extant �rst table position� the �rst table position
is shifted to the second table position� and the candidate position is stored
in the �rst table position�

� otherwise� the candidate position is stored in the second table position
	possibly overwriting an existing position
�

Thus� the candidate position is always stored� and the less important of the
remaining two positions 	in terms of depth of search
 is overwritten� We have
also tested the analogous combination of the schemes New and Big� 	further
denoted as TwoBig�
�

��Ebeling ������ implemented the two�level transposition table in a slightly di�erent way	
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We note that in all replacement schemes in our experiments the decision to overwrite
an entry does not depend on the type of the score 	exact value� lower bound� or upper
bound
 of the positions involved�

Time stamping

When playing a game� a choice must be made about what to do with the positions
stored in the transposition table during the search from a previous position in the
game� Successive positions in a game are related to one another� and it therefore
may seem best to retain all positions in the transposition table��� However� these
positions are subject to aging� and will be of little use after a few moves in the
game� Consequently� clearing the transposition table between searches may also seem
attractive� e�g�� when the evaluation function between searches is changed�

Instead of physically clearing positions in the transposition table� it may be
preferable to time�stamp them after the completion of each search� A time�stamped
position remains stored in the table until a collision occurs� when it is uncondition�
ally overwritten� While time�stamped but not overwritten� it will still be used for
retrieving information� A position not time�stamped holds information more recent
than any previous search�

Table sizes

Undoubtedly� many experiments have been conducted to test the e�ect of the
transposition�table size on the number of nodes investigated� In spite of this� there
are few reports in the literature� Ebeling 	����
 states� �each doubling in the hash
table size yields only a �� decrease in the search size��

Schae�er 	����
 reported a �� decrease in the number of nodes searched when
doubling the number of positions in the transposition table� It is remarkable that
both authors arrive at e�ects of the same order of magnitude in spite of employing
di�erent move�ordering techniques�

We have tested the e�ect of doubling the number of positions in the transposi�
tion tables by conducting the experiments for chess with eight di�erent table sizes�
ranging from �K to ����K positions and for domineering with four di�erent table
sizes� ranging from ���K to ����K positions� each time doubling the number of
positions���

The chess experiments

To test the ideas mentioned� the following chess experiments were conducted� The
�rst series of experiments concerned middle�game positions only� It observed the per�
formance of every combination of the seven replacement schemes 	with and without

��We note that if the evaluation function depends on the position at the root of the search
tree� search anomalies can occur if the values of positions from a previous search are retrieved
from the transposition table	 In our chess experiments we did not encounter that problem� since in
AliBaba the evaluation values are independent of the position at the root �cf	 page 
��	

��We use K as an abbreviation for ��
�	
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time stamping
 and the eight table sizes� The middle�game tests have been con�
ducted on �� middle�game positions� taken from six games between chess experts
	see Section ���
� Each position was searched for 
 to � ply� For table sizes of ��K�
��K� ���K and ����K positions ��ply searches were performed on �� middle�game
positions taken from the �rst three games given in Appendix A�

The second series of experiments concerned endgame positions only� It observed
the performance of every combination of the seven replacement schemes 	only with
time stamping
 and eight table sizes 	ranging from �K to ����K positions
� These
tests have been conducted on ��� endgame positions� taken from �ve games between
chess experts 	see Section ���
� Each position was searched to a depth of �� ply�

The domineering experiments

In the �rst series of experiments �ve replacement schemes have been compared�
From the chess experiments it will be evident 	as expected
 that the scheme Old
is not a good candidate for practical use 	cf� page 
�
� since it uses by far more
nodes than all other replacement schemes considered� Therefore� scheme Old is
not considered for the domineering experiments� Further� it will be shown that the
di�erences between schemes Big� and BigAll are marginal in chess 	cf� page 
�
�
Therefore� for the domineering experiments we decided to drop scheme BigAll�
Thus� the following �ve replacement schemes are considered� TwoBig�� TwoDeep�
Big�� Deep and New� As mentioned before� the experiments are performed with
four di�erent transposition�table sizes� ranging from ���K to ����K positions�

For the second series of experiments we have used the best replacement scheme
	TwoBig�
 found from the �rst series of experiments together with a transposition
table of ����K positions� All boards with m��n are investigated twice� 	�
 with the
�rst player moving vertically� and 	�
 with the �rst player moving horizontally�

The performance metric

As the measure for quantifying the search e�ort in the chess and domineering experi�
ments we use the number of all nodes investigated� i�e�� the sum of the interior nodes
and the leaves� The complete results of all experiments are listed in Appendix C�
A few typical results are graphically illustrated in this section� When comparing
the replacement schemes for each table size the number of positions has been kept
constant� This implies that the three Big schemes 	Big�� BigAll� TwoBig�
 use
slightly more memory than the other schemes because each table position has one
additional �eld 	to store the information about the size of the subtree searched
� It
is claimed that these minor di�erences do not a�ect the interpretation of the results�
Further� we note that the two�level schemes 	TwoBig�� TwoDeep
 have half the
number of entries compared to the other �ve schemes�
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The chess middle�game experiments without time stamping

Figure ��� shows the middle�game results for the seven replacement schemes using
��ply searches without time stamping� The graph plots the number of nodes inves�
tigated 	in millions
 as a function of transposition�table size� The number of nodes
is the sum of the nodes investigated for the �� test positions�
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Figure ���� Comparing replacement schemes in the chess middle game
	without time stamping� ��ply searches
�

The following trends seem to be evident�

� As the table size increases� the number of nodes searched tends to level out
to a constant� In other words� at some point� possibly before ����K in our
case� no signi�cant gains may be hoped for by increasing the table size� This
is caused by the larger percentage of tree nodes that can be retained in the
transposition table� the probability of harmful collisions 	i�e�� collisions that
cost many nodes
 then greatly decreases� At a certain point the transposition
table is su�ciently big to hold the entire search tree�

� As the table size increases� the spread between replacement schemes shrinks�
For table sizes from ���K upwards� the spread is only around 
�� whereas the
smallest practicable size� �K� suggests a spread of no less than ��� between
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the best 	TwoBig�
 and worst 	Old
 scheme� This is a consequence of the
argument above�

� The two�level�table schemes outperform those with one level only� For most
data points� TwoBig� is better than TwoDeep�

� The schemes Old and New are worse than the other three one�level�table
schemes� This can be explained by observing that Old and New do not take
into account the amount of work done to investigate a position�

� There is hardly any di�erence between the schemes Big� and BigAll�

� Our data for small table sizes 	�K to ��K
 con�rm Ebeling�s 	����
 statement�
based on �� positions� that TwoDeep �reduces search times by � to ��� for
middle game positions� when compared with Deep�

It is important to observe that the deeper the search performed� the larger the
transposition table should be� Beyond ���K positions for a ��ply search� perfor�
mance levels o�� there is little further to gain� However� some programs can search
considerably deeper than � ply� They may not have su�cient memory to allow a
transposition�table size large enough to reach the point where doubling the num�
ber of positions in the table has a limited bene�t� The shape of the lines in Fig�
ure ��� may provide some insight into the e�ect of transposition�table performance
for deeper searches� For example� assuming that searching one ply deeper increases
the tree size by a factor of about � 	Thompson� ����� Junghanns et al�� ����
 a
��ply search might build a �� times larger tree than a ��ply search� The ��ply results
for ���K positions can be approximated by using the ��K 	���K�� 
 data point of the
��ply results� This shows TwoBig� to be a clear winner�

If we use a �� reduction in node counts as a criterion for the usefulness of
doubling the number of positions in the transposition table� then we obtain from
Figure ��� for 
� �� �� �� and ��ply searches in the middle game the following suggested
table sizes� ��K� ��K� 
�K� 
�K� and ���K positions� respectively�

The chess middle�game experiments with time stamping

The same experiments as above were performed� the only di�erence being time
stamping� This means that each time after a search was completed� the table posi�
tions were given a time�stamp� as opposed to clearing the table positions� Thereafter�
the next position in the game was searched� Thus the results of a previous search
could still be used� Figure ��� shows the results of these experiments�

Comparing this �gure to Figure ���� the following trends seem to be evident�

� The shapes of all graphs are similar in the Figures ��� and ����

� The relative order of merit of the replacement schemes seems to be invariant
for time stamping� whether one time�stamps or clears the transposition tables
between moves� TwoBig� appears to have a persistent edge�
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Figure ���� Comparing replacement schemes in the chess middle game
	with time stamping� ��ply searches
�

Time stamping has a slight performance bene�t� The savings with time stamping
are some ��� Therefore� it can be recommended since it only requires one additional
bit per table position and requires little additional computation�

As mentioned on page 

� ��ply searches have been performed on middle�game
positions for table sizes of ��K� ��K� ���K and ����K positions� again with and
without time stamping� The results are given in Appendix C� Assuming a ratio of
four in search size between subsequent ply depths� the ��ply results for table sizes of
��K� ��K and ���K positions should be scalable to the ��ply results for table sizes of
��K� ���K and ����K positions� respectively� Inspection of the results veri�es this�
In other words� the ��ply search conclusions given above are con�rmed by the ��ply
search results� in particular the conclusion that the two�level schemes outperform
those with one level�

The bene�t of a transposition table in chess middle games

Figure ���� shows the relation between the bene�t of using a transposition table
and the search depth for all �� middle�game positions� The data are shown for a
transposition table of ����K positions and replacement scheme TwoBig�� using
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time stamping� The search size without a transposition table is ��
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Figure ����� Using a transposition table in the chess middle game
	with time stamping� scheme TwoBig�� ����K positions
�

For this example we see that� limiting ourselves to a 
�ply search in middle�game
positions� the use of a transposition table with time stamping is even counterpro�
ductive in that it prolongs the search� The probable cause is an unfavourable move
ordering� caused by a poor best�move suggestion from the transposition table� How�
ever� it is reassuring that the use of transposition tables is de�nitely advantageous
at more realistic search depths of over 
 ply�

Ebeling 	����
 concludes that �not using the hash table for moves a�ects the
search size by at least a factor of two�� The graph con�rms this factor for searches of
� ply and deeper� It is noted that transposition tables reduce the search considerably
in many other domains� such as domineering 	cf� page ��
 and also in single�agent�
search problems� such as sokoban 	Junghanns and Schae�er� ����
�

The chess endgame experiments with time stamping

Figure ���� shows the endgame results for the seven replacement schemes using ���
ply searches with time stamping� The graph plots the number of nodes investigated
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 as a function of transposition�table size� The number of nodes is the
sum of the nodes investigated for the ��� test positions�
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Figure ����� Comparing replacement schemes in the chess endgame
	with time stamping� ���ply searches
�

From this graph it follows that the conclusions given for the middle�game exper�
iment also hold for the endgame� with one exception� In middle�game positions it is
clear that the concept Big works better than the concept Deep� schemes Big� and
BigAll search fewer nodes than scheme Deep� and scheme TwoBig� fewer nodes
than scheme TwoDeep� The di�erence between the two concepts has disappeared
in the endgame� This is explained as follows� If a subtree contains many forcing
moves or is well�ordered� cut�o�s occur� Since in the middle game the mobility of
each player is higher than in the endgame� such pruning will on average cause larger
savings in middle�game positions than in endgame positions� Therefore� the size of
search trees of equal depth will vary more in middle�game positions than in endgame
positions� The concept Deep does not have a preference for any of two such sub�
trees� whereas the concept Big has a preference for the largest subtree� Thus� in the
middle game the size 	as compared to the depth
 of the search tree investigated will
be a better characteristic measuring the work performed than it is in the endgame�

If we again use a �� reduction in node counts as a criterion for the usefulness of
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doubling the number of positions in the transposition table� then we obtain for 
� ��
�� �� �� �� �� and ���ply searches in the endgame the following suggested table sizes�
��K� ��K� ��K� 
�K� ��K� ���K� �����K� and �����K positions� respectively�

Solving domineering

From preliminary experiments it was obvious that standard ��� domineering could
not be solved in a reasonable amount of time without using a transposition table
	Fotland� ����
� Using a transposition table� we solved the game� It appeared to be
a �rst�player win� Later on� we were informed that this result was independently
found by Morita 	����
�

In Figure ���� the results for the �ve replacement schemes in domineering are
given� Detailed results are listed in Appendix C� The graph plots the number of nodes
investigated 	in millions
 to solve the standard game as a function of transposition�
table size�
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Figure ����� Comparing replacement schemes in domineering�

It is noted that the conclusions from the domain of chess also hold in the do�
main of domineering and are even more pronounced� two�level replacement schemes
work much better than one�level schemes� Furthermore� the concept Big shows more
improvement over the concept Deep than in chess�
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Solving domineering for non�standard boards

Table ��� gives the results for the second series of experiments� The numbers indicate
the real number of nodes investigated� The scheme used is TwoBig� with ����K
positions� In the �rst column the board size is depicted� The second column gives
the game�theoretic value� with !��� !��� !V�� and !H� as de�ned in subsection ����
�

Size Res Nodes
��� � �
��
 � �
��� H �

��� V ��
��� � ��
��� � ��
��� H ��
��� V ���

�
 H �

�� H ��

�� H ��

�� H ��

Size Res Nodes

�� H ��

�� H ��

�� H ��
��� � ��
��� V ��
��� � ��
��
��� V �����
��� H ������
��� V ���
��
��� � ���
��� H �����
��� H �
����

Size Res Nodes
��� H 
��
��
��� H ����
��
��� � ����
�
��� V 
������
��� H 
�
����
�
��� V ����������
��� � �������
��� H ���

�����
��� H 
����������
��� � �����������
��� V ���������
����

Table ���� Game�theoretic results of domineering for various board sizes�

Our results fully agree with the results published earlier by Berlekamp and
coworkers as far as investigated by them 	see Berlekamp et al�� ����b� Berlekamp�
����� Guy� ����
� They provide complete analyses for boards with a size of ��n
	��n��
� 
�n 	
�n��
� and ���� We remark that games with a game�theoretic
value !��� !��� !H� and !V� match their characterizations of fuzzy� zero� positive and
negative games� respectively� By using a straightforward �� algorithm� returning
only whether a position is a win or a loss� we did not keep track by what di�erence
a position is won or lost� Hence� it is impossible to provide a detailed comparison
with their analyses�

Another subset of our results coincide with the results obtained previously by
Fotland 	����
� who did his investigations several years ago� Fotland also used a
straightforward �� algorithm plus a large transposition table� He did not solve the
���� and the m�� 	��m��
 boards� Our program Domi never investigated more
nodes than Fotland�s program� Domi has a more e�cient node investigation than
Fotland�s program by a ratio of up to �� for the larger boards�

In Table ��� we may discern several patterns of exponential growth with the
board size� e�g�� the n�n series� the m�n series with �xed m� etc� The results
suggest that the ratio always grows exponentially with the board size� Since the ���
board took more than ��� hours to be solved� we did not investigate the ��� board�
It is interesting to note that of all boards considered the ��� board is the only one
in which the second player wins�
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����� Quantifying the merits of move and score

Although it is evident that the use of a transposition table reduces the search e�ort�
two open questions still exist� First� how big is the overall reduction� And second�
which information has the largest impact on the reduction� This subsection consists
of two parts� The �rst part compares storing the best move with storing the value
of the best move� The second part compares storing the bound values for minimal�
window search with storing the exact values���

From the components mentioned in subsection ��
�� it follows that a transposition
table is used for two reasons� 	�
 the score is used for establishing the value of the
position� and 	�
 the retrieved move is used for move ordering� In the �rst case the
value is either an exact value� and this position does not have to be re�searched� or
a bound value� in which case either the � value or the � value might be adjusted���

We have investigated the merits of these individual components in order to obtain
more insight into the way a transposition table helps to reduce the search e�ort� This
informationmay help in devising more e�cient transposition�table schemes and may
deliver guidelines about what additional information can be useful� For investigating
the merits of move and score we have performed six experiments�

�� Search without a transposition table�

�� Search with a traditional transposition table� without score�


� Search with a traditional transposition table� without move�

�� Search with a traditional transposition table� without move� only storing and
using the score information if the score is an exact value�

�� Search with a traditional transposition table� without move� only storing and
using the score information if the score is a bound value�

�� Search with a traditional transposition table� with move and score� storing
and using the score information both if the score is an exact value or a bound
value 	i�e�� use the transposition table fully
�

The experiments � and � are performed to obtain upper and lower bounds�

Results of the merits of move and score

As the measure for quantifying the search e�ort we use the number of all nodes
investigated� i�e�� the sum of interior nodes and leaves� The test set used for the
experiments consists of �� consecutive wtm middle�game positions taken from the
game Kasparov�Short� Amsterdam ����� and �� consecutive wtm endgame positions
taken from the game Rabinovich�Romanovsky� Leningrad ��
� 	see Appendix A and

��We note that the experiments are only performed in the chess domain� since in the domineering
experiments no moves and no bound values are stored	

��Obviously� when the depth still to be searched is greater than the depth in the transposition
table� the score from the transposition table is not used	
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B
� Both games were played by human experts� The �� middle�game positions have
been searched to a depth of � ply� and the �� endgame positions to a depth of �� ply�
The replacement scheme used for all experiments is TwoBig�� the scheme which
performs best 	see subsection �����
� All experiments have been performed with a
series of transposition tables� ranging from �K positions to ���K positions� since
beyond ���K positions there is little further to gain� as is shown in subsection ������
Time stamping 	see page 


 is used� The complete results can be found in Ap�
pendix C� The number of nodes are the cumulative results of all �� and �� positions�
respectively� The merits of the best move and its score stored in a transposition�table
entry have been examined separately�

Middle�game experiments

In Figure ���
 the results of the use of a traditional transposition table for the middle�
game positions are depicted� The �gure shows the number of nodes investigated as
a function of the transposition�table size� The numbers in the legend refer to the
experiments mentioned on page ���
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Figure ���
� Comparing move and score in the chess middle game
	��ply searches
�

Figure ���
 clearly shows that the use of a transposition table 	experiment �
 is
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very pro�table in terms of number of nodes searched compared to searching with�
out a transposition table 	experiment �
� a result which was already evident from
the results of subsection ������ Further� using the �eld score of a transposition ta�
ble 	experiment 

 is more important than using the �eld move 	experiment �
���
This is caused by the minimal�window search� whenever one of the bounds of the
minimal window is updated� its lower bound will be greater than its upper bound�
thereby causing a cut�o�� Experiments show that whenever a position is found in
the transposition table� the retrieved value causes a cut�o� in about ��� of the
cases�
� However� this e�ect stems fully from bound values 	experiment �
� Exact
values 	experiment �
 hardly have any e�ect in this respect� Upon closer investiga�
tion it becomes clear that exact values are used only a few times� Typically� an exact
value is encountered tens of times in the transposition table� while a bound value is
encountered tens of thousands of times���

Endgame experiments

The results of the experiments on the endgame positions are analogous to the results
of the experiments on the middle�game positions� but they are more pronounced� as
can be seen in Figure ����� Moreover� the use of a transposition table is more prof�
itable in endgames than in middle games� We see that the largest 	���K positions

transposition table used in middle games with only the �eld move 	experiment �

results in about a 
�� node decrease� whereas in the endgame the decrease is about
���� If in addition score is used 	experiment �
� a total decrease of about ��� in
the middle game and about ��� in the endgame is obtained�

����� Using additional memory

A collision 	Knuth� ���

 occurs when two di�erent board positions map onto the
same entry in the transposition table 	i�e�� they have an equal hash index� but a
di�erent hash value
� Regardless of whether the old entry is replaced by the new
one� collisions will have a negative e�ect on the e�ciency of a transposition table�
since one of the two positions will not be present in the table� The probability of
the occurrence of collisions can be lowered by increasing 	doubling
 the number of
positions in the transposition table� However� at a certain point the doubling is not
pro�table any more 	cf� subsection �����
� This subsection looks at other ways to use
additional memory� by comparing the use of more information per entry position
with the use of more positions in the table�

��We note that the results of the experiments depend on the move�orderingmechanism used �for
which see page 
��	

��The minimal window causes the retrieved value to be either a fail low� or a fail high	
�	All nodes �except nodes on the principal variation and fail�high nodes� are searched with a

minimal window	 Therefore� no exact value is known for these nodes	
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�

Additional components

In our search for storing additional information in a transposition�table entry we
have found several suggestions� amongst others made by Schae�er 	����
� Stanback
	����
� and Thompson 	����a
� From their suggestions� we mention six additional
components�

date � contains the root�s ply number in the game at the time when the position was
stored��� Sometimes only a ��bit date �ag is used� stating whether the position
is from an !old� search or not� The date is used for time stamping� A position
will be overwritten by a position with a newer date�

depth � contains the number of ply seen from the root� A position is more important
if it is nearer to the root� since there it has a higher probability of being re�
searched� possible savings are then most likely larger than savings for positions
deeper in the tree�

��Feldmann ������ de�nes date as the number of conversion moves �irreversible moves� made in
the game	
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extension � contains a Boolean value� denoting if a search extension was done at this
position� The extension criteria of a node may vary 	e�g�� because the extension
is dependent on the �� window
� resulting in an extension one time and not
in an extension the other time� The Boolean extension helps to overcome this
problem 	which is especially important when doing a re�search
�

principal � contains a Boolean value� denoting if this position is part of the principal
variation of a child of the root��� Positions which are part of the principal
variation of a root�s child are important positions� and may not be overwritten
by other positions�

draw � contains a Boolean value� denoting if the backed�up score of this position is
a proved draw� This is useful for distinguishing between variations resulting in
positions which are real draws� and variations resulting in balanced positions
	which obtain a draw value
�

additional bound � instead of storing only a lower bound or an upper bound of the
score� both bounds can be stored in an entry� with separate search depths for
each� This is done by Truscott 	����
 in the program Duchess�

Presumably� the information contained in these six components will have an im�
pact on the number of nodes searched� However� only very few researchers have
published even provisional results about experiments on these additional compo�
nents� In subsection ����� we mentioned an experiment testing the use of a ��bit
date �ag 	time stamping
� concluding that time stamping has a slight edge� In gen�
eral it seems that adding these new components to an entry is not very pro�table
	Schae�er� ����b
�

Storing the additional information described above does not take up much mem�
ory� Most �elds need one bit of storage only� since they are Booleans� The choice
for small additional components is made on purpose� since a larger entry results
in a transposition table with fewer entries 	assuming the same amount of memory
is available
� However� once a critical transposition�table size has been reached not
much is to be gained from doubling the number of positions� Moreover� if the avail�
able memory is less than the memory needed for doubling the number of positions
in the table� it still can be used for storing more information in an entry�

The above considerations have led to the question of how to use additional �elds�
taking up more memory than only one bit� Instead of storing the best move 	which
can be seen as a ��ply principal variation
 in a transposition�table entry� it may be
interesting to investigate the e�ects of storing a deeper principal variation in an
entry 	Schae�er� ����b
� This principal variation 	PV
 can be used to guide the
search� If a position is not present in the transposition table� a good move may still
be available from the n�ply PV information of an ancestor position�

��Note that this is a way to implement the refutation table using the transposition table	
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Additional memory

Below we describe a limited set of experiments investigating the e�ects of storing an
n�ply PV in a transposition�table entry��� The PV information is used as follows� If
a position is found in the transposition table� the corresponding PV is retrieved from
the table� The �rst move in the PV is used for move ordering and the remainder of
the PV is used in further search� If a position is not found in the transposition table�
and a good move is available from the PV of an ancestor position� then this move is
used for move ordering�

The conditions for the experiments are the same as the conditions mentioned in
subsection ������ Again� the number of nodes in the Figures ���� and ���� are the
cumulative results of all �� and �� positions� respectively� We have tested the results
of storing an n�ply PV 	n � �����
 in an entry versus storing only the best move 	a
��ply PV
� The complete results of the experiments are presented in tabular form in
Appendix C�

Middle�game experiments

In Figure ���� the results of the PV experiments on middle�game positions are
depicted� The number of nodes investigated are shown as a function of the
transposition�table size�

Our �rst observation is that storing an n�ply PV seems hardly worthwhile� the
e�ects are small and severely dependent on the size of the transposition table� The
explanation for this is that for less than ���� of the nodes investigated a position
appears to be absent in the transposition table� whereas a PV from an ancestor
still is available� To give some quanti�cation� it can be seen that with the largest
transposition table 	���K positions
� storing a ��ply PV instead of a ��ply PV wins
roughly ��� outperforming the �� gain by simply doubling the number of positions
in the table to ���K 	see subsection �����
�

Endgame experiments

The results of the experiments on the endgame positions are analogous to the results
of the experiments on the middle�game positions� as can be seen in Figure ����� Here
again� for the largest transposition�table size� the ��ply PV outperforms the ��ply
PV� this time by some ����

��	 Chapter conclusions

This chapter has shown that a transposition table 	memorizing the outcome of po�
sitions previously analyzed in games� such as chess and domineering
 is a useful
technique� The technique has enabled us to solve a large number of di�erent�sized

��We note that these experiments are solely performed in the chess domain� since no moves are
stored in the domineering experiments	
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Figure ����� Storing an n�ply PV in the chess middle game
	��ply searches
�

domineering games� including the standard ��� game�Without a transposition table
this takes a much longer time and can therefore be considered practically impossible�
We have described three series of experiments on the use of a transposition table�
The goal of these experiments was to obtain more insight into the �rst problem
statement� which methods exist to improve the e�ciency of a transposition table�

First� we have tested which replacement scheme performs best� On logical
grounds� one is tempted to conclude that the number of nodes of a subtree 	used in
schemes Big� and BigAll
 is a better estimate of the work performed 	and there�
fore potentially to be saved
 than the depth of that subtree 	used in scheme Deep
�
especially in positions with a large mobility� The experiments support this logic� In
chess middle�game positions and in domineering the schemes based on the concept
Big perform better than the schemes based on the concept Deep� In chess endgame
positions this di�erence disappears� since the lower mobility then diminishes the dif�
ferences in e�ects of the two measures� Based on the ��ply and ��ply results in chess
middle games� the ���ply results in chess endgames and the domineering results� we
conclude that a two�level scheme is better than any one�level scheme� Thus it fol�
lows that the most widely used scheme� Deep� is not best� Based on the conclusions



��	� Chapter conclusions ��

35

40

45

50

55

60

65

70

75

80

8 16 32 64 128 256

N
um

be
r 

of
 n

od
es

 s
ea

rc
he

d 
(i

n 
m

ill
io

ns
)

Table size (in K positions)

1-ply PV
2-ply PV
3-ply PV
4-ply PV
5-ply PV

Figure ����� Storing an n�ply PV in the chess endgame	���ply searches
�

we recommend using the scheme TwoBig� as the best replacement scheme for a
transposition table�

Second� it is examined which information is more important to store in a
transposition�table entry� the best move in a position� or the score of that move�
It follows that storing the score of a position is more pro�table than storing the best
move� This result holds for chess middle�game positions as well as endgame posi�
tions� It was also found that for minimal�window search bound values have a much
larger e�ect than exact values� This e�ect� although nowadays expected� contrasts
with the idea for which transposition tables originally were devised� i�e�� avoiding
the re�search of positions searched before�

Third� we have tested the e�ect of storing an n�ply PV 	n � �����
 in an entry�
instead of only the best move 	a ��ply PV
� Preliminary results show that a ��ply PV
may win roughly �� for the chess middle game� and ��� for the endgame� though
more experiments are necessary to validate the conjecture that it really is pro�table
to use additional memory by storing a ��ply PV instead of increasing the number of
positions in the transposition table�

From the experiments it follows that it is important to choose a good replace�
ment scheme� Further� the available memory can be used to make the transposition
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table as large as possible� However� once a critical transposition�table size has been
reached not much is to be gained from doubling the number of positions in the table�
In that case� better ways exist for using the available memory� Instead of doubling
the number of positions in the transposition table� it is better to use the additional
memory by storing more information in an entry� thereby enlarging the entry size�
Based on the above experiments it is recommended to concentrate on storing addi�
tional information which a�ects the number of cut�o�s generated by bound values�
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The second and third problem statement deal with best��rst search� In this chap�
ter we therefore present a relatively new best��rst search algorithm� called proof�
number search 	pn search
� which will be used in the experiments addressing the
second and third problem statement�

The basic ideas behind the pn�search algorithm are presented in Section 
��� Sec�
tion 
�� lists the pseudo�code of the pn�search algorithm for trees� The experimental
set�up is given in Section 
�
� and the test set is described in Section 
��� Section 
��
provides the experiments� of which the results are discussed in Section 
��� Finally�
Section 
�� evaluates the experiments�

��� An informal description

In this section we present a short overview of pn search� based on Allis 	����
� A
detailed description of pn search can be found in Allis et al� 	����
�

Proof�number search is a best��rst and�or tree�search algorithm� and is in�
spired by the conspiracy�number algorithm 	McAllester� ����� Schae�er� ����
� Be�
fore starting the search� a search goal is de�ned 	e�g�� try to reach at least a draw
�
The evaluation of a node returns one of three values� true� false� or unknown� The
evaluation is seen from the point of view of the player to move in the root position�
The value true indicates that the player to move in the root position can achieve the

�Thanks are due to the Editors of Advances in Computer Chess � for giving permission to use
the contents of the article in this chapter	

��
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goal� while false indicates that the goal is unreachable� A node is proved if its value
has been established to be true� whereas the node is disproved if its value has been
determined to be false� A node is solved as soon as it has been proved or disproved�
A tree is solved 	proved or disproved
 if its root is solved� The goal of pn search is
to solve a tree�

Two variants of creating a search tree exist 	cf� Allis� ����
�

�� Immediate evaluation� Each node in the tree is immediately evaluated after it is
generated� The tree is built by �rst generating 	and evaluating
 the root� Then
at each step a leaf is selected� expanded and all its children are immediately
evaluated�

�� Delayed evaluation� Each node is only evaluated when it is selected� and not
immediately after it is generated� The tree is built by �rst generating the root
	without evaluation
� Then� at each step a leaf is selected and evaluated� If
the evaluation value is unknown� the node is expanded 	without evaluating its
children
�

The advantage of immediate over delayed evaluation is that in the former variant
more information is available� However� if the evaluation takes much time� it is better
to use the delayed variant� avoiding the evaluation of many nodes that will not be
used for solving the tree� Since� in the standard pn�search experiments described in
this chapter� the evaluation is fast 	only checking whether the position is a win� a
loss� or a draw
 we use the immediate variant in our further description of pn search�

Like other best��rst search algorithms� pn search repeatedly selects a leaf� ex�
pands it� evaluates all its children� and updates the tree with the information ob�
tained from the expansions and evaluations� Unlike most other best��rst search algo�
rithms� pn search does not use a heuristic evaluation function in order to determine
a most�promising node� Instead� the shape of the search tree 	the number of children
of every internal node
 and the values of the leaves determine which node to select
next�

In general� to solve a tree� a number of leaves of the current search tree needs to
be proved or disproved� A set of leaves� which� if all proved� would prove the tree�
is called a proof set� Likewise� a set of leaves� which� if all disproved� would disprove
the tree� is called a disproof set� The size of the smallest proof set of the tree is a
lower bound for the number of node expansions necessary to prove the tree� while
the size of the smallest disproof set of the tree is a lower bound for the number of
node expansions necessary to disprove the tree�

In Figure 
�� an and�or tree has been depicted� The numbers to the left of a
node denote proof numbers� while the numbers to the right of a node denote disproof
numbers� A proof number of a node represents the minimumnumber of leaves which
have to be proved in order to prove that node� Analogously� a disproof number of a
node represents the minimum number of leaves which have to be disproved in order
to disprove that node�

Proved nodes 	e�g�� node K in Figure 
��
 have proof number � and disproof
number �� This follows from the fact that no expansions are needed to prove the
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Figure 
��� An and�or tree with proof and disproof numbers�

node� since it is already proved� and that no number of expansions could ever disprove
the node� Analogously� disproved nodes 	e�g�� node O in Figure 
��
 have proof
number � and disproof number �� Unsolved leaves 	e�g�� nodes E� F � L� M � N � I�
and P 
 have a proof and disproof number of unity� as expanding the node itself may
be su�cient to solve the node�

Internal and nodes have as proof numbers the sum of the proof numbers of their
children� since to prove an and node� all children must be proved� The disproof
number of an and node equals the minimum of its childrens� disproof numbers�
since only one child needs to be disproved to disprove the and node� For instance�
the proof number of node H is equal to the sum of the proof numbers of its children
M and N 	� � ���
� The disproof number of node H is equal to the minimum
of the disproof numbers of its children 	�
� Analogously� the proof number of an
internal or node equals the minimum of the proof numbers of its children� whereas
its disproof number equals the sum of the disproof numbers of its children� For
instance� the proof number of node A is equal to the minimum of the proof numbers
of its children B� C and D 	�
� The disproof number of node A is equal to the sum
of the disproof numbers of its children 	
 � �����
�

The root 	A
 has proof number �� This means that at least one leaf 	in this case
node L
 should be proved to prove the root� The disproof number of the root is equal
to 
� This means that at least three nodes 	node E or node F � node L� and node M
or node N 
 have to be disproved to disprove the root�

The main assumption underlying pn search is that it is generally better to expand
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those nodes which are in the smallest proof and�or disproof sets� In other words�
pn search concentrates at each step on the potentially least amount of work necessary
to solve the tree�

The only remaining question is� when to select a node from the smallest proof set
of the root and when to select a node from its smallest disproof set� Surprisingly� we
can always do both at the same time� Allis et al� 	����
 prove that the intersection
of any smallest proof set and any smallest disproof set of the same node is always
non�empty� The nodes which are elements of both a smallest proof set and a smallest
disproof set of the root are called most�proving nodes� Thus� if after expansion of
a most�proving node P � it obtains the value true� the proof number of the root is
decremented by unity� while if P obtains the value false� the disproof number of
the root is decremented by unity� If the value of P remains unknown� the newly
generated children may have their impact on the proof and�or disproof numbers of
P and its ancestors� A most�proving node is determined in the tree by selecting� at
and nodes� a child with disproof number equal to its parent�s� and at or nodes a
child with proof number equal to its parent�s� By thus traversing the tree from its
root to a leaf 	e�g�� the bold path from A to L in Figure 
��
� it is shown that a
most�proving node is found 	Allis et al�� ����
�

��� The pseudo�code of the algorithm

All algorithms given in this section are based on the algorithms given by Allis 	����
�
The main proof�number search algorithm is given in Figure 
��� The only parameter
of the procedure is root� being the root of the search tree� After execution of the
procedure� the root�s value can have one of three values� true� false or unknown�
First� the root is evaluated and its proof and disproof numbers are initialized� Then�
in the main loop� repeatedly a most�proving node is selected� expanded� and all its
children are evaluated� Thereafter� traversing the tree backwards to the root� the
proof and disproof numbers are adjusted�

The function Evaluate evaluates a position� and returns one of the following three
values� true� false� or unknown� The function SetProofAndDisproofNumbers initializes
the proof and disproof numbers of a node� The algorithm is given in Figure 
�
� The
only parameter of the function is node� being the node to be initialized� Two cases are
distinguished� In the �rst case the node is an internal node 	since it is expanded
� and
the proof and disproof numbers are initialized according to the proof and disproof
numbers of its children� In the second case the node is not expanded� but it is
evaluated� since immediate evaluation is used� The proof and disproof numbers are
initialized according to the evaluation�

The function ResourcesAvailable returns a Boolean value indicating whether su��
cient resources are available to continue searching� This is usually dependent on the
available memory� but can also depend on a limited amount of time available� The
function SelectMostProvingNode �nds a most�proving node� The algorithm is given
in Figure 
��� The only parameter of the function is node� being the root of the
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procedure ProofNumberSearch� root �
Evaluate� root �
SetProofAndDisproofNumbers� root �
root
expanded �� false

while root
proof��� and root
disproof��� and
ResourcesAvailable�� do begin

mostProvingNode �� SelectMostProvingNode� root �
ExpandNode� mostProvingNode �
UpdateAncestors� mostProvingNode� root �

end

if root
proof�� then root
value �� true
elseif root
disproof�� then root
value �� false
else root
value �� unknown �� resources exhausted ��

end �� ProofNumberSearch ��

Figure 
��� The pn�search algorithm for trees�

	sub
tree where the most�proving node is located� As long as the node is expanded�
a child is chosen with proof or disproof number 	dependent on the type of node

equal to that of the parent� If a leaf is reached� the algorithm stops� and that node
is returned�

The most�proving node found is expanded� This is done by the procedure Ex	
pandNode� The only parameter of this procedure is node� being the node to be
expanded� In Figure 
�� its algorithm is depicted� First� all children are generated�
Next� every child is evaluated and its proof and disproof numbers are set according
to this evaluation�

After the expansion of the most�proving node� the new information has to be
backed up throughout the whole tree� This is done by the procedure UpdateAnces	
tors� The procedure has two parameters� The �rst parameter 	node
 is the node to
be updated� while the second parameter 	root
 is the root of the search tree� Its
algorithm is shown in Figure 
���

��� Experimental set�up

Pn search �rst examines the most forcing variations where the mobility of the op�
ponent is as small as possible� This is explained as follows� The or player chooses
a child with the lowest proof number� By de�nition� the proof number of this child
	an and node
 is equal to the sum of the proof numbers of its children� It follows
that the and child with the lowest proof number has the lowest mobility� Because
pn search �rst examines forcing variations� it is expected that it will work extremely
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procedure SetProofAndDisproofNumbers� node �
if node
expanded then �� internal node ��

if node
type�AND then begin �� AND node ��
node
proof �� �
node
disproof �� �
for i��� to node
numberOfChildren do begin

�� Add up proof numbers and minimize disproof numbers ��
node
proof �� node
proof � node
children� i �
proof
if node
children� i �
disproof�node
disproof then

node
disproof �� node
children� i �
disproof
end

end else begin �� OR node ��
node
proof �� �
node
disproof �� �
for i��� to node
numberOfChildren do begin

�� Minimize proof numbers and add up disproof numbers ��
if node
children� i �
proof�node
proof then

node
proof �� node
children� i �
proof
node
disproof �� node
disproof � node
children� i �
disproof

end
end

else �� leaf ��
case node
value of begin

false�
node
proof �� �
node
disproof �� �

true�
node
proof �� �
node
disproof �� �

unknown�
node
proof �� �
node
disproof �� �

end
end �� SetProofAndDisproofNumbers ��

Figure 
�
� The proof�and�disproof�numbers�calculation algorithm�
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function SelectMostProvingNode� node �
while node
expanded do begin

i �� �
if node
type�OR then �� OR node ��

while node
children� i �
proof��node
proof do i �� i��
else �� AND node ��

while node
children� i �
disproof��node
disproof do i �� i��
node �� node
children� i �

end

return node
end �� SelectMostProvingNode ��

Figure 
��� The most�proving�node�selection algorithm�

procedure ExpandNode� node �
GenerateAllChildren� node �
for i��� to node
numberOfChildren do begin

Evaluate� node
children� i � �
SetProofAndDisproofNumbers� node
children� i � �
node
children� i �
expanded �� false

end
node
expanded �� true

end �� ExpandNode ��

Figure 
��� The node�expansion algorithm�

well in cases where the goal can be reached by forcing variations� Therefore� we have
chosen to investigate this in the domain of �nding checkmates�

����� The search engine

The proof�number search engine is implemented according to the description in Sec�
tion 
��� The most important enhancement of the pn�search implementation� relative
to a na "ve implementation is in the initialization of proof and disproof numbers at
the leaves� In the standard algorithm� proof and disproof numbers are each initial�
ized to unity� Assume that after expansion all the n children evaluate to the value
unknown� Then the proof and disproof numbers of the most�proving node are set to
� and n for an or node� and to n and � for an and node� In our implementation� to
distinguish between leaves� before expansion� we set the proof and disproof number
of node P to � and n 	or n and �� depending on the node type
� where n is the
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procedure UpdateAncestors� node� root �
SetProofAndDisproofNumbers� node �
while node ��root do begin

node �� node
parent
SetProofAndDisproofNumbers� node �

end
end �� UpdateAncestors ��

Figure 
��� The ancestor�updating algorithm�

number of legal moves in the position represented by P � Experiments show that the
extra overhead introduced by counting the number of legal moves at each node is
more than compensated for by the value of the extra information thus revealed to
the node�selection process 	Allis� ����
�

����� The move ordering

For pn search the move ordering is of less importance than for �� search� For the
reproducibility of the experiments we have chosen to order the moves in descending
square order 	h�� g�� ���� a�� h�� ���� a�� ��� � h� ��� a�
� The moves are sorted according
to their from squares� If two moves have identical from squares they are sorted
according to their to squares� If these are also identical� then the moves must be
promotion moves� and the moves are sorted according to their promotion pieces 	in
the order Queen� Rook� Bishop� Knight
�

As an example we provide the starting position at the game of chess� The White
moves are sorted thus� h��h�� h��h�� g��g�� g��g�� f��f�� f��f�� e��e��
e��e�� d��d�� d��d�� c��c�� c��c�� b��b�� b��b�� a��a�� a��a��
Ng��h�� Ng��f�� Nb��c�� Nb��a��

��� The test set

For our experiments we used a diverse set of mating problems� They are taken
from Krabb�e�s 	����
 Chess Curiosities and Reinfeld�s 	����
 Win at Chess� The

� positions taken from Krabb�e 	����
 are mating problems in six moves or more�
They are indicated by the name kx� in which x refers to the diagram number in the
source and takes the values �� 
�� 
�� 
�� ��� ��� ��� ��� ��� ���� ���� ���� ���� ����
���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
���� 
��� 


 and 

�� The �� positions taken from Reinfeld 	����
 are problems
where we know that a forced mate is possible� They are indicated by the name rx�
x again referring to the problem number in the source� this time running over ��
�� �� �� �� ��� ��� ��� 
�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
���� ��
� ���� ���� �
�� �
�� �
�� �
�� �
�� ��
� ���� ���� ���� ���� ���� ���� ����
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���� ���� ��
� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��
� ���� ���� ���� ����
���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��
� ���� ��
� ���� ���� ���� ����
���� ��
� ���� ���� ��
� ��� and ���� This results in a test set of ��� positions 	see
Appendix D
�

��� Experiments

Pn search always aims at proving or disproving a certain goal� In our experiments
the only goal is searching for mate� In our description� we distinguish between the
attacker and the defender� The attacker is the player to move in the root position�
while the defender is the opponent� A position is proved if the attacker can mate�
while draws 	by stalemate� by repetition of positions and by the ���move rule
 and
mates by the defender are de�ned to be disproved positions for the attacker� If a
position is neither proved nor disproved� it is said not to be solved�

We have compared the the pn�search algorithm to the ���search algorithm� im�
plemented in Duck� on the test set described in Section 
��� We note that it is
possible to create a special mate searcher using �� search� which will perform better
than Duck� However� pn search does not use any chess�speci�c knowledge other
than recognizing mates� stalemates� and drawn positions� Therefore� we decided to
choose Duck as the �� searcher� The search was terminated as soon as any mate
was found� The experiments are conducted to investigate how a best��rst search
algorithm 	using much memory� since it stores the whole search tree
 compares to
the widely used depth��rst ���search algorithm 	using little memory
� Furthermore�
in the next chapters we concentrate on best��rst search� using proof�number search
as example and using the same test set�

We have performed experiments in which both programs had to solve each posi�
tion within ��������� nodes� This limit was selected for two reasons�

�� The calculation time 	up to � minutes on the hardware used
 corresponds
roughly to tournament conditions�

�� The search tree for pn search must be kept in memory during the calculations�
a tree of ��������� nodes is close to the maximum achievable on the hardware
used�

��� Results

This section contains the results of the experiments described in Section 
��� The
complete results for every test position individually are presented in Appendix E� As

�In contrast to AliBaba� of which the �� search engine was designed speci�cally for the
transposition�table experiments� Duck is a full�blown tournament program� incorporating a de�
tailed evaluation function and several �� enhancements such as extension heuristics	 For more
details� see Breuker et al� �����b�	
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the measures of performance we use the number of positions solved and the number
of nodes investigated�

From the ��� test positions� ��� positions were solved by at least one algorithm�
�
 were solved by both algorithms� 
� by pn search only and 
 by �� search only� We
have stated for each test position the algorithm by which it could be solved within
��������� nodes�

Both algorithms� k��� k��� k���� k���� k���� k���� k���� r�� r	� r�� r�� r���
r�	� r��� r��� r	�� r�
� r�	� r��� r��� r�
� r��� r�	� r��� r�	� r��� r���
r��� r�
�� r�
�� r�
	� r���� r��	� r���� r���� r�	�� r��	� r���� r����
r��
� r���� r���� r���� r���� r���� r���� r��	� r���� r���� r���� r����
r�
�� r���� r���� r���� r���� r���� r���� r�		� r�	�� r���� r���� r��
�
r���� r���� r���� r���� r���� r���� r���� r��
� r���� r����

Pn search only� k��� k��� k���� k��	� k���� k���� k���� k�
�� k�
�� k�
��
k��	� k���� k���� k���� k���� k���� k��	� r�� r��� r���� r���� r����
r���� r���� r���� r�	�� r��
� r���� r���� r����

�� search only� k�
� k��	� r�
��

Neither algorithm� k�� k	
� k		� k��� k���� k�
�� k��
� k���� k��
� r��� r�
��

In Table 
�� the results are summarized� In the �rst row of the table the total
number of nodes searched on the �
 positions solved by both algorithms is listed�
The second row contains the average number of nodes searched per position� The
third row lists the number of times the stated algorithm outperformed the other
	by the criterion of the number of nodes searched
� In the fourth and �fth row a
position is selected where the ratio of nodes visited was lowest for pn search and
�� search� respectively� The sixth row shows the average number of nodes searched
by pn search on the 
� positions not solved within a million nodes by �� search� The
last row shows the average number of nodes searched by �� search on k�
� k��	
and r�
�� the only three positions solved by �� search but not by pn search�

Comparing the performance of pn search with �� search creates a consistent
impression of a general superiority of pn search as a mate searcher�

� The total number of nodes investigated by pn search is about ��� of the
number of nodes investigated by �� search�

� Pn search outperformed �� search in some ��� of the cases�

� The ratio of nodes visited from the point of view of pn search was lowest in
the case of position r���� The number of investigated nodes by pn search is
only a fraction 	�����
 of the number investigated by �� search� From the
point of view of �� search the best position was r���� Here� the number of
nodes investigated by �� search is about �
� of the number investigated by
pn search�
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Pn search �� search
Total number of nodes searched ��
���� ���������
Average number of nodes per position �
���� ������
Best performer �� ��
Best instance 	nodes
 of pn search 	r���
 ��� 

�����
Best instance 	nodes
 of �� search 	r���
 ��
�� 
��
Pn search 	nodes
 where �� search failed �
����� ����������
�� search 	nodes
 where pn search failed ���������� �������

Table 
��� Comparing pn search and �� search�

� The average number of nodes investigated by pn search on the 
� positions
that �� search did not solve within ��������� nodes is �
������ In contrast�
the number of nodes investigated by �� search on the three positions that
pn search did not solve within ��������� nodes is much higher 	�������
�

In the next subsection the particular strengths and weaknesses of pn search are
discussed�

����� Strengths of pn search

This subsection discusses two strengths of pn search� 	�
 the algorithm does not need
speci�c chess knowledge� and 	�
 the algorithm �nds deep� forced mates�

No speci�c chess knowledge

The pn�search algorithm does not use any speci�c chess knowledge� All that is needed
is a move generator� and an evaluation function able to recognize mate� stalemate
and draws by repetition or by the ���move rule� We would like to stress that� quite
unlike �� search� move ordering has not much in�uence on the performance of
pn search� This phenomenon is explained by the way pn search builds its tree� At
each step� the child with the smallest proof or disproof number 	depending on the
node type
 is selected� Only if two children tie is the selection of a node based on
the move ordering� Experiments with changing the move ordering showed that this
ordering has little in�uence on the number of nodes grown�� Not using any chess
knowledge has the advantage that pn search can be incorporated into any chess
program� regardless of the evaluation function and of the heuristics applied�

�This is contrary to the results found for conspiracy�number search� as given by Klingbeil and
Schae�er ������	 They show that move ordering does have in�uence when searching in tactical
chess positions	
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Finding deep� forced mates

The strategy of pn search may be described as investigating �rst those variations in
which the opponent has the least mobility� Instead of examining the mobility for a
single position� pn search examines the mobility of the search tree as a whole� The
proof number of the root indicates� at any point in time during the computation� the
mobility left to the defender for escaping mate� The achievements seem to indicate
that� during a mate search� mobility is the most important factor� Clearly� chess
characteristics� such as material balance and positional advantage� lose most of their
meaning when trying to force a mate is the unique goal aimed at� Moreover� the
distance�to�mate is no longer a dominant factor in the size of the search tree grown�
As long as the mobility of the defender is restricted� pn search will continue to
explore a variation� regardless of the depth of the subtree explored� We present two
sample positions where this characteristic leads to the discovery of a deep mate�
which would not be found if the depth of the subtree explored was an important
factor 	as it is in �� search
�

�S�Z�Z�Z
Z�Z�Z�oK
�Z�Z�o�Z
Z�Z�o�Z�
�A�o�Z�m
Z�Z�Z�Z�
pZpZpo�Z
ZkZ�ZbZ�

Figure 
��� Mate in 
� 	wtm
� 	L� Ugren
�

The position in Figure 
�� is taken from Diagram ��� in Krabb�e 	����
� We
note that the square a� is the left�bottom square� so Black has � Pawns ready to
promote� For the chess�playing reader we cite the solution as stated by Krabb�e� � ��
Ba�� Ka� �� Bb�� Kb� �� Bxd�� Kc� If White could now play �� Bb��
Kb� �� Bxe�� etc�� that would shorten the procedure enormously� but of course
Black would escape� �� � � �� Kd�� This necessitates the repetition of a seven�move
operation to bring the zwickm uhle around� �� Be�� Kd� �� Rd�� Ke� ��
Bd�� Kd� 
� Bb�� Kc� �� Ba�� Kb� �� Rb�� Ka� �	� Bb�� Kb�
��� Bxe�� Kc� ��� Bf�� Kd� ��� Rd�� Ke� ��� Bd�� Kd� ��� Bb��
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Kc� ��� Ba�� Kb� �
� Rb�� Ka� ��� Bb�� Kb� ��� Bxf�� Kc� �	�
Bg�� Kd� ��� Rd�� Ke� ��� Bd�� Kd� ��� Bb��Kc� ��� Ba�� Kb�
��� Rb�� Ka� ��� Bb�� Kb� �
� Bxg
� Kc� ��� Bh�� Kd� ��� Rd��
Ke� �	� Bd�� Kd� ��� Bb�� Kc� ��� Ba�� Kb� ��� Rb�� Ka� ���
Be
� and �nally the idea is clear� f� is the only safe square to threaten mate� on
other squares the Nh� or one of the Pawns could have thwarted that mate� Pd�
and Pe� had to go to open the diagonal�Pf� to gain access to g�� andPg� to gain
access to f�� After 
��Be�� mate cannot be staved o� for more than a few moves��
The remaining moves are� ��� � � �� c��Q ��� Bf�� Qb� ��� Rxb� e��Q �
�
Rb�� Qe� ��� Bxe� mate�

Proof�number search solves this mate in ������
 nodes� whereas our implemen�
tation of �� search fails to solve it within ���������� nodes��

�Z�Z�Z�Z
ZpZ�Z�Z�
�Z�Z�Z�Z
oBO�Z�Zr
pZ�ZRZ�O
J�Z�Z�Z�
�Z�o�o�o
Z�ZkZ�Z�

Figure 
��� Mate in �� 	wtm
� 	J��L� Seret
�

The position in Figure 
�� is taken from Diagram ��� in Krabb�e 	����
� Again�
for the chess�playing reader we give the solution as stated by Krabb�e� �Here� there
are also two troublemakers and White disposes of an extended zwickm uhle like the
one in diagram ��� #our Figure 
��$ to silence them� �� Kb� would mean mate in
� if Black didn�t have �� � � �� a
�� That Pawn can be immediately removed with
�� Bxa��� but after Kc� �� Rc�� Kb� 
� Bc�� Ka�% 	Kc� �� Bf�� allows
White to enter the solution at move ��
 �� Kb
 Black has the nasty �� � � �� b� ��
cxb� Rb�� etc� Therefore� in order to remove the Pa�� White must �rst remove
the Pb�� Hence �� Be�� Ke� 	Kc� �� Rc�� Kb� 
� Bd
� Ka� �� Rc� and
�� Ra� mate
 �� Bg�� Kf� �� Bh�� Kg� �� Rg�� Kh� �� Bg�� Kg�

�This result is heavily dependent on the search extensions used	 The �� program TheTurk

solves this mate in ���
��
�� nodes when choosing the right extensions �Schae�er� �����
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�� Bxb
�� Kf� 
� Ba�� Ke� �� Re�� Kd� �� Be�� Ke� �	� Bb���
Kd� and we are back in the diagram� but without the Pb� which means the Pa�
meets its end too� ��� Bxa�� Kc� ��� Rc�� Kd� ��� Bc�� Kc�� Because
if now �
� � � �� Ka� ��� Kb
% ��� Bf�� Kd� ��� Bg�� Ke� ��� Re�� Kf�
�
� Bh�� Kg� ��� Rg�� Kh� ��� Bg�� Kg� �	� Bc��� Kf� ��� Bb��
Ke� ��� Re�� Kd� and there we are� back in the diagram� but without those
inconvenient Pawns� ��� Kb�� Rxc� ��� Ba�� Rc�� ��� Bxc� mate��

Proof�number search solves this mate in 
������ nodes� whereas our implemen�
tation of �� search fails to solve it within ���������� nodes�

In Figures 
�� and 
��� the mate found by pn search is also the intended solution
to the problem� Since the solutions contained many forcing moves 	leaving the de�
fender few moves
� pn search performed very well� �� search performed very poorly
because the solutions were very deep 	�� and �� ply� respectively
� As we will see in
subsection 
����� in some cases� the duty of playing the most�forcing moves imposed
by pn search may lead to excessive departures from the optimal solution�

����� Weaknesses of pn search

This subsection discusses three weaknesses of pn search� 	�
 the inability to �nd
good� non�forcing moves� 	�
 the inability to �nd the shortest mate� and 	

 the
inability to deal with transpositions�

Non�forcing moves

In manymating problems� the attacker delivers check on most moves� thus restricting
the options of the defender� In some cases� however� the attacker plays a non�forcing
move� after which almost any move by the defender leads to the same decisive attack�
Since the mobility of the opponent is increased by such a non�forcing move� pn search
prefers �rst to investigate those variations in which the defender is most con�ned�

Hence� if the only solution requires one or more non�forcing moves� pn search will
not perform as well as it will when a mate exists with forcing moves only� We note
here that its preference is not merely for checking moves 	which are forcing moves
in human parlance
� but it must� by its algorithm� prefer the most�forcing checks�
A similar problem is recognized by Schae�er 	����a� ����
 when using conspiracy�
number search as a tactical analyzer�

As a measure of the di�culty of a position for pn search caused by non�forcing
moves� we propose considering the number of di�erent variations within the solu�
tion� We present a sample position where pn search performed worse than �� search�
The existence of non�forcing moves proved a signi�cant factor in degrading its perfor�
mance� Problem �� of Reinfeld 	����
 	Figure 
��
 is a mate in four moves consisting
of �� variations� After �� Qxh
� Kf�� the best move is the non�forcing move ��
Bf�� threatening the unavoidable �� � � �� Qg
 mate� Proof�number search solves
this mate in 
������ nodes� whereas �� search only needs ������� nodes�

We conclude that in positions where the solution requires non�forcing moves�
pn search is at a disadvantage� The three positions not solved by pn search 	k�
�
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rZ�sbZkZ
opZqZpZp
�ZnZpZpZ
Z�apZ�Z�
�Z�Z�O�Z
OPZBORZQ
�APM�ZPO
S�Z�Z�J�

Figure 
��� Problem �� of Win at Chess 	wtm
�

k��	 and r�
�
 have solutions with non�forcing moves� It is even worse� since the
�rst moves of both solutions are non�forcing� making it impossible for pn search to
�nd the solutions within ��������� nodes�

Mate length

As stated before� pn search is indi�erent to the depth of the search� being governed
only by the defender�s number of options� As a consequence� pn search �nds mates
in over ��� moves� while optimal ones exist in fewer than ten moves� The position
shown in Figure 
��� is problem ��� of Howard 	����
� It shows an example of
pn search �nding a mate in ��� moves while an optimal mate of four moves exists�
The intended solution reads �� Ke� and now either �� � � �� fxe� �� f
 e� �� f��B
Kg� �� Nf� mate� or �� � � �� Kg� �� exf
� Kh
 �� f��N� Kg� �� f
 mate�

As a solution we suggest initializations of the proof and disproof numbers di�erent
from the ones proposed above� speci�cally with the initial values depending on the
depths in the search tree� This may solve the problems of the apparently aimless
and certainly long paths to mate�

Transpositions

A third weakness encountered when using pn search is the inability of dealing with
transpositions� Assume that an identical subvariation occurs as six separate subtrees
within one variation tree� Then� the number of variations to be solved increases by a
factor of six� The amount of search to be performed� however� increases by a factor
of far more than six� Since� by the rules of combining proof and disproof numbers in
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�Z�Z�Z�M
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Z�Z�J�ZN
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Z�Z�Z�Z�
�Z�Z�Z�Z
Z�Z�Z�Z�

Figure 
���� Problem ��� of The Enjoyment of Chess Problems 	wtm
�

and�or trees� the di�culty of each subtree is propagated upwards sixfold� pn search
may well be led to the investigation of other subtrees� If these subtrees fail to deliver
a mate pn search will� at long last� arrive at the correct branch in another subtree
leading to mate�

As an example we provide problem ��
 of Reinfeld 	����
 	Figure 
���
� The
intended solution starts with the moves �� Rxh
� Kxh
 �� Qh�� Kg� ��
Rxg
� Kxg
 �� Bh�� Kh
 �� Bg�� Kg
 �� Qh�� Kf
 
� Qf�� Kg� ��
Qg�� Kh�� reaching the position of Figure 
���� In the solution tree this position
occurs six times� depending on Black�s defence at moves �� � and �� The proof
number of this position will be high because the distance�to�mate from that position
is still considerable� Upward propagation will expand the proof number six�fold�
The resultant high proof number provides an obstacle which pn�search was unable
to overcome�

��� Chapter conclusions

In this chapter we have described experiments comparing pn search with �� search�
Pn search has been presented as a best��rst search technique easy to implement and
uniquely attuned to �nding mates in chess� Beyond recognizing mates� stalemates�
and drawn positions� no chess�speci�c knowledge is required� When a mate exists
within its horizon� this technique consistently outperforms conventional techniques
in terms of nodes visited� except when the solution relies on the presence of non�
forcing moves� transpositions� or on providing the shortest mate�
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Chapter �

The pn��search algorithm

One of the drawbacks of proof�number search 	pn search
 is that the whole search
tree has to be stored in memory� Since computers are fast� the search tree grows
quickly� causing the memory to be �lled up completely� When the memory is full�
the search process has to be terminated prematurely� Consequently� no solution will
be found� For reducing memory usage� Allis et al� 	����
 suggest two techniques
which reduce the size of a generated search tree� the DeleteSolvedSubtrees technique
and the DeleteLeastProving technique� The �rst technique removes all nodes which
are solved� The technique is not very successful in searches which fail to determine
the root value� The second technique removes parts of the tree least likely needed
in the search� In this chapter we introduce a third technique which increases the
information of the nodes in the tree in order to guide the search in a better way�
thereby �nding a solution more quickly� By this method we attempt to obtain more
insight into the second problem statement of this thesis� which methods exist for
best��rst search to reduce the need for memory by increasing the search� thereby
gaining more knowledge per node�

Section ��� introduces the pn��search algorithm� Details concerning this algo�
rithm are discussed in Section ���� Section ��
 presents the experiments� The results
of the experiments are listed in Section ���� Section ��� states the conclusions�

��� Pn search with small memory
 pn� search

Gaining more knowledge per node searched can be realized by using a better eval�
uation function at the leaves� One way of doing this is to use a search process at
the leaves to obtain a more accurate evaluation� This method is used by other re�
searchers as well� Berliner 	����
 already used this idea in the B� algorithm� in
which a shallow �� search evaluates the leaves� Pijls and De Bruin 	����
 described
the Rsearch algorithm� in which certain leaves 	the so�called pseudo�terminals
 are
evaluated by doing another Rsearch� Recently� Baum and Smith 	����
 reported
on their Bayesian model of searching game trees� a two�stage Bayesian search is

��
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performed in which an outer search is called by the inner search as its evaluation
function� For the pn��search algorithm� introduced here� we also use this idea� It is
brie�y mentioned by Allis 	����
� but so far no thorough research has been done on
pn� search�

Pn� search is a search process consisting of two levels of pn search� The �rst�level
search builds a tree in the same way as the standard pn�search algorithm for trees�
as described in Section 
��� However� the evaluation of the most�proving node is not
performed by an evaluation function� but by a second�level pn search� The most�
proving node of the �rst�level search tree acts as the root of the second�level search
tree� The leaves in the second�level search are evaluated in the standard way� i�e��
by an evaluation function returning one of the values true� false� and unknown� The
leaf values are backed�up as usual leading to an evaluation of the most�proving node
of the �rst�level pn search with more knowledge 	acquired by using the second�level
pn search
 than in the standard way� After termination of the second�level pn search�
the second�level tree is disposed of and the �rst�level search tree is updated using
the new proof and disproof numbers of the most�proving node�

For pn� search the same tree�creation variants exist as in standard pn search�
immediate evaluation and delayed evaluation 	see Section 
��
� For the �rst�level
search� the evaluation of a leaf takes much time� since it is a 	pn�
search process
itself� Therefore� it is e�cient to use the delayed�evaluation variant for the �rst�level
pn search� A limited set of experiments has shown that the delayed�evaluation variant
indeed performs better for the �rst�level pn search than the immediate�evaluation
variant� For the second�level search it is e�cient to use the immediate�evaluation
variant of the pn�search algorithm for trees� because the second�level pn search uses
a fast evaluation function�

If the evaluation by the second�level pn search yields unknown� the most�proving
node of the �rst�level search should be expanded� because delayed evaluation is used�
However� this node has just been expanded by the second�level pn search� Hence�
after completion of the second�level pn search� the children of the root of the second�
level search tree 	the most�proving node of the �rst�level search tree
 are preserved�
but the subtrees of the children are removed� In this way� whenever a most�proving
node evaluates to unknown� it has already been expanded by the second�level search�
If the evaluation by the second�level is true or false 	solving the most�proving node
of the �rst�level search
 the second�level search tree is removed completely�

The following important question arises� how many nodes should the second�level
pn search use for the evaluation of the most�proving node of the �rst�level pn search�
An attempt to answer this question is made in the next sections�

��� The size of the second�level pn search

In this section we investigate how many nodes the second�level pn search should
use for the evaluation of the most�proving node of the �rst�level search� It is not
advisable for this number to be large� when the �rst�level pn search is still small�
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because the evaluation of the most�proving nodes then proportionally consumes too
much time� Hence� the size of the second�level search tree should be in relation to
the size of the �rst�level search tree�

Allis suggested making this size equal to the size of the �rst�level search tree�
From this position he made two statements which are paraphrased below�

�� A search resulting in a �rst�level tree of size N has searched approximately �
��

N� nodes in the second�level search� This can be shown easily by investigating
successive steps in the search process� First� the root is evaluated using a
second�level search of one node� Then� the root is expanded� and the �rst new
node is evaluated using a second�level search of at least two nodes 	depending
on the number of children of the root
� etc� A �rst�level tree of size N has

therefore searched at most
PN

i�� i �
N��N
�	

� nodes in the second�level search�
which� for big N � is approximately equal to �

� � N��

�� The memory requirements during the creation of a �rst�level tree of size N
are ��N nodes� This is trivial� since the size of the second�level search is set
equal to the size of the �rst�level tree 	being N 
� Therefore� at most N � N

nodes are needed to search a �rst�level tree with N nodes�

A new idea

Allis� suggestion has the disadvantage that relatively easy problems will take much
longer to be solved than with standard pn search 	see the �rst statement above
�
Therefore� we introduce the following idea� start searching with the standard pn�
search algorithm� only when it appears that the solution will not be found� start
using a second�level search with growing size� In this case� solutions of easy problems
will still be found fast� and solutions of more di�cult problems may also be found
because of the increase in directing knowledge since the second�level search tree
grows� In conclusion� we suggest that the size of the second�level search tree is some
fraction 	between � and �
 of the size of the �rst�level search tree� This fraction
should preferably start small� and grow larger as the size of the �rst�level search tree
increases�

Let f	x
 be a function that determines the fraction� x being the size 	i�e�� the
number of nodes
 of the �rst�level search tree� A standard model for the desired type
of growth of the second�level search tree is the logistic�growth model 	Berkey� ����
�
From this model we adopt the following function

f	x
 �
�

� � e�a�x	�b
	���


with two parameters a and b� both strictly positive� The parameter a determines
the transition point of the function� as soon as the size of the �rst�level search tree
reaches a nodes� the second�level search uses half the size of the �rst�level search
tree 	the larger a� the later this occurs
� Parameter b determines the S�shape in the
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function 	the larger b� the more stretched the S�shape is
� We note that the pn��
search algorithm as suggested by Allis 	����
 is a special case of this function� the
size of the second�level search tree is equal to the size of the �rst�level search tree
when both parameter a and parameter b become small� because then the fraction
function approaches f	x
 � �� When a becomes large and b becomes small the
fraction function approaches f	x
 � �� which means that standard pn search is
used��

Preliminary experiments revealed that it is advisable to choose the value of pa�
rameter a in the order of magnitude of the maximumnumber of nodes� If parameter
a is chosen too small� the transition point moves too far to the left side of the graph
	see Figure ���
� meaning that easy problems will not be found fast any more� If
parameter a is chosen too large� the transition point moves too far to the right side
of the graph� meaning that too few nodes are used for the second�level pn search�
which does not improve the directing knowledge� In this case� the resulting pn��
search algorithm will have the same drawback as the standard pn�search algorithm�
viz� the memory will be �lled before a solution is found� Parameter b may have any
positive value�

The fraction function exempli�ed

Figure ��� presents four sample functions 	with di�erent parameters a and b
� illus�
trating the functions given by Equation ���� together with the function f	x
 � ��
The x�axis shows the number of nodes in the �rst�level search tree 	in thousands
�
The y�axis shows the corresponding values of the function f	x
� Since the pn� algo�
rithm will be used when the amount of memory available is low� we assume that no
more than 
������ 	
��K
 nodes �t in memory� Therefore� the range of the x�axis is
chosen from � to 
��K nodes�

The �gure shows that when parameter a increases 	in this case from ���K to
���K
� the transition point moves to the right 	compare #�$ and #�$
� Further� when
parameter b increases� the S�shape becomes more stretched 	compare #
$ and #�$
� If
b is relatively large� the S�shape may even disappear 	compare #�$ and #�$
�

The theoretical size of the second�level tree

The sizes of the corresponding second�level searches for the �ve functions of Fig�
ure ��� are shown in Figure ���� The x�axis again shows the number of nodes in the
�rst�level search tree 	in thousands
� The y�axis shows the size of the corresponding
second�level search tree� given by x� f	x
�

From the �gure it follows that the size of the second�level search tree grows with
increasing size of the �rst�level search tree� When parameter a increases� the growth
of the second�level search tree starts at a later point 	compare #�$ and #�$
� Further�
when parameter b increases� the growth of the second�level search tree starts at an
earlier point� but the increase becomes slower 	compare #
$� #�$ and #�$
�

�We note that in our implementation it results in the delayed�evaluation variant of standard
pn search	
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Figure ���� The fraction function f	x
�

The practical size of the second�level tree

In practice� the sizes of the second�level searches are bounded by the maximum
number of nodes that �t into memory 	in our case 
��K
� For instance� if the �rst�
level search tree contains ���K nodes and function f	x
 � � is used� then the second�
level search tree should search ���K nodes as well� However� the maximum number
of nodes that �t into memory is 
��K� Therefore� in this case the second�level search
tree has a maximum size of ��K� As soon as this size is reached� the second�level
search is terminated� the second�level tree is disposed of� and the �rst�level search
continues� When the �rst�level tree has reached a size of 
��K nodes� no memory is
left for the second�level search� In this case� the complete search is terminated and
it is indicated that no solution is found�

If these memory bounds are taken into account� the �ve functions given in Fig�
ure ��� transform into the functions illustrated in Figure ��
� The axes are equal to
the axes in Figure ���

The �gure shows that the sizes of the second�level searches are bounded by

��K�x�
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Figure ���� The theoretical size of the second�level search�

��� Experiments

In this section we describe three series of experiments� They are performed to inves�
tigate the behaviour of the pn��search algorithm using function f	x
 with di�erent
parameters a and b� In the �rst series of experiments we examine the e�ect of varying
parameter b� while keeping parameter a constant� Then� in the second series of ex�
periments we examine the e�ect of varying parameter a� while keeping parameter b
constant� Finally� in the third series of experiments we examine the e�ect of varying
the ratio b

a
� The idea of examining this ratio stems from the following observations�

If a increases� the transition point of the fraction function f	x
 shifts to the right�
This means that a large �rst�level tree in memory does not have much information
per leaf� because small second�level searches are used for the evaluations� If the �rst�
level tree contains many nodes� the problem to be solved may be a di�cult problem�
and more directing knowledge may be needed to solve the problem� Therefore� it is
then advisable to increase the directing knowledge by also increasing parameter b�
Analogously� if a decreases� the transition point of the fraction function f	x
 moves
to the left in the graph� This means that a small �rst�level tree in memory already
contains much information per node� because relatively large second�level searches
are used for the evaluations� In order to limit this overhead it can be wise to reduce
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the initial size of the second�level search tree� which is taken care of by decreasing
parameter b� In both cases the ratio roughly remains equal�

The experiments are performed with second�level searches of size x� f	x
� with
f	x
 given in Equation ���� and with the special case that the second�level search
size is x� Further� the maximum number of nodes to be held in memory is set to

��K� The value of parameter a ranges from ��K 	�� of the maximum number of
nodes
 to ���K 	��� times the maximum number of nodes
� The value of parameter
b ranges from 
���� to ���K� These values were found by trial and error�

The test set for the experiments is a large subset 	��� positions
 of the set used
in the pn�search experiments 	see Section 
��
� The positions not tested are k�� k	
�
k		� k��� k���� k�
�� k��
� k���� and k��
��

��� Results

In this section we discuss the most important results of the experiments mentioned in
the previous section� The complete results can be found in Appendix F� We mention

�These positions were not solved within ��������� nodes in the previous chapter� and we did
not expect that they could be solved within the experimental bounds of this chapter	
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that in almost all cases pn� search solves all ��� test positions� contrary to pn search
for trees 	cf� Chapter 

� Therefore� we use as a measure the total amount of nodes
searched 	i�e�� including both �rst�level and second�level searches
 over all ��� test
positions�

Results of the �rst series

Figure ��� shows the results of the �rst series of experiments 	varying parameter
b� while keeping parameter a constant
� Parameter a takes values of ��K� ���K�

��K� ���K� ���K� and ���K� and for each value of a parameter b takes values
of ��K� 
�K� ��K� ��K� ���K� ���K� ���K� ���K� and ���K� The results of the
experiments with function f	x
 � � are shown for comparison� The x�axis shows the
value of parameter b 	in thousands
� and the y�axis shows the total number of nodes
searched 	in millions
�
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f(x) = 1

Figure ���� The pn� results with �xed parameter a�

We note that in the experiments with 	a b
 equal to 	���K ��K
� 	���K 
�K
�
	���K ��K
� 	���K 
�K
� 	���K ��K
� 	���K ��K
� 	���K 
�K
� 	���K ��K
� and
	���K ��K
 not all ��� test positions are solved� Therefore� these points are not
shown in the �gure� The number of positions solved in these cases is ��� ���� ���
��� ���� ��� ��� ��� and ���� respectively� In the positions not solved� the �rst�level
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search tree contained 
��K nodes without �nding a solution� In these cases the nodes
in the �rst�level search tree do not have su�cient information to direct the search�
because the transition point lies too far to the right in the graph 	large parameter
a
�

Results of the second series

The results of the second series of experiments 	varying parameter a� while keeping
parameter b constant
 are shown in Figure ���� The x�axis shows the value of pa�
rameter a 	in thousands
� Further explanation for Figure ��� is analogous to that
for Figure ����
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b = 210,000
b = 240,000

f(x) = 1

Figure ���� The pn� results with �xed parameter b�

From these two series of experiments we provisionally conclude that a small
parameter b is to be preferred in terms of the number of nodes searched� However�
we note that there is a risk of choosing b too small� in which case pn� search will
not always �nd a solution� Also� it shows that a large parameter a is to be preferred�
Further� the proper use of fraction function f	x
 given by the logistic�growth model
is signi�cantly better than the function f	x
 � ��
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Results of the third series

In �gure ��� the results of the third series of experiments are given 	�xed ratio b
a 
�

The ratio takes the values ����� ���� ���� ���� ���� ��� and ���� Again� the results of
the experiments with function f	x
 � � are shown for comparison� We note that in
the experiments with 	a b
 equal to 	���K ����K
� 	���K 
�K
� 	���K ��K
� 	���K

���K
� and 	���K ��K
 not all test positions are solved� Therefore� these points are
not shown in the �gure� The number of positions solved in these cases is ��� ��� ����
��� and ���� respectively�
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f(x) = 1     

Figure ���� The pn� results with �xed ratio b
a �

From this graph we conclude that� with a ratio of more than ���� the results seem
to be fairly independent of the choice of the parameters�

��� Chapter conclusions

For the pn� algorithm we conclude that the use of the function f	x
 � � works
well� since it solves all test positions unlike standard pn search� However� the use of
fraction function f	x
 as given by Equation ���� gives signi�cantly better results�
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If the goal of the search is to �nd a solution as quickly as possible� it is recom�
mended to take the fraction function with large parameter a and small parameter
b� The disadvantage is that sometimes solvable positions will not be solved because
the standard pn search takes too long� �lling the memory with nodes not containing
su�cient directing knowledge�

If the goal of the search is to solve any solvable position� it is wiser to choose
parameters a and b� such that b

a
is su�ciently large� i�e�� at least more than ���� The

best performance on the test set is obtained by choosing 	a b
 equal to 	���K ��K

	cf� Appendix F
� All test positions are then solved within about 
� million nodes�

Of the ��� test positions� �� were solved by both the immediate�evaluation vari�
ant of standard pn search and the best version of pn� search 	a � ���K and b �
��K
� For these �� positions the number of nodes searched by pn� search 	������

�

is about twice the number of nodes searched by standard pn search 	���������
� In
our view this is an a�ordable price for the advantage of the larger probability of
�nding mates 	in this case amounting to an additional ��� solved positions
� Fur�
ther� for these �� positions pn� search used at maximum about ���K 	�rst�level and
second�level
 nodes in memory�

The results of the experiments in this chapter show that the pn��search algorithm
is an adequate method for reducing the need for memory in the standard pn�search
algorithm� This is accomplished by gaining more knowledge per node through in�
creasing the search� leaves are evaluated using a second�level pn search� The use of
the growth�function f	x
 proposed here gives signi�cantly better results than the
na "ve implementation of pn� search 	e�ectively using f	x
 � �
�
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Chapter �

The

graph�history�interaction

problem

This chapter is an updated and abridged version of

�	 Breuker D	M	� Herik H	J	 van den� Allis L	V	� and Uiterwijk J	W	H	M	 ����
a�	
A Solution to the GHI Problem for Best�First Search	 Proceedings of the Ninth
Dutch Conference on Arti�cial Intelligence �eds	 K	 van Marcke and W	 Daele�
mans�� pp	 ��
����	 University of Antwerp� Antwerp� Belgium� and


	 Breuker D	M	� Herik H	J	 van den� Allis L	V	� and Uiterwijk J	W	H	M	 �����a�	
A Solution to the GHI Problem for Best�First Search	 Submitted as journal
publication	 Also published ����
� as Technical Report CS �
��
� Universiteit
Maastricht� Maastricht� The Netherlands	

��� The history of a position

In a search tree� it may happen that identical nodes are encountered at di�erent
places� If these so�called transpositions are not recognized� the search algorithm un�
necessarily expands identical subtrees� Therefore� it is pro�table to recognize trans�
positions and to ensure that for each set of identical nodes� only one subtree is
expanded�

In computer�chess programs using a depth��rst search algorithm� this idea is re�
alized by storing the result of a node�s investigation in a transposition table� For
details� see Section ��
� If an identical node is encountered in the search process� the
result is retrieved from the transposition table and used without further investiga�
tion�

If a 	selective
 best��rst search algorithm 	which usually stores the whole search
tree in memory
 is used� the search tree is converted into a search graph� by joining
identical nodes into one node� thereby merging the subtrees�

��
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These common ways of dealing with transpositions contain an important �aw�
determining whether nodes are identical is not the same as determining whether
the search states represented by the nodes are identical 	cf� Section ���
� For two
reasons� the path leading to a node cannot be ignored� First� the history of a node
may partly determine the legitimacy of a move� For instance� in chess� castling rights
are not only determined by the position of the pieces on the board� but also by the
knowledge that in the position under investigation the King and Rook have not
moved previously� Second� the history of a node may play a role in determining the
value of a node� For instance� a position may be declared a draw by its three�fold
repetition or by the so�called k�move rule 	Ka&zi�c et al�� ����
�

We refer to the �rst problem as the move�generation problem� and to the second
problem as the evaluation problem� The combination of these two problems is referred
to as the graph�history�interaction 	GHI
 problem 	cf� Palay� ����� Campbell� ����
�

The GHI problem is a noteworthy problem not only in chess but in the �eld of
game playing in general� Its applicability extends though to all domains where the
history of states is important� To mention just one example� in job�shop scheduling
problems the costs of a task may be dependent on the tasks done so far� e�g�� the
cost of preparing a machine for performing some process depends on the state left
after the previous process�

A possible solution to the GHI problem is to include in all nodes the status of the
relevant properties of the history of the node� i�e�� the properties which may in�uence
either the move generation or the evaluation of the node� A disadvantage of such a
solution is that too many properties may be relevant� resulting in the need for storing
large amounts of extra information in each node� For chess� we can distinguish four
relevant properties of the history of a position 	the �rst two being relevant for the
move�generation problem� and the last two for the evaluation problem
�

�� the castling rights 	Kingside and Queenside for both players
�

�� the en�passant capturing rights�


� the number of moves played without a capture or a pawn move� and

�� the set of all positions played on the path leading to this node�

The �rst two properties can be included in each node� without much overhead� The
third property can be included in each node� but will reduce the frequency of trans�
positions drastically� The inclusion of the fourth property is necessary to determine
whether a draw by three�fold repetition has been encountered� Unfortunately� it
would require too much overhead� As a result� in most chess programs� the �rst two
properties are included in a node� while the last two are not�

Depending on which properties are included in a node� the probability of two
nodes being identical will be reduced� If not all relevant properties are included and
transpositions are used� it is possible that incorrect conclusions are drawn from the
transpositions 	cf� Section ���
� Campbell 	����
 mentioned that� contrary to best�
�rst search 	which he calls selective search
� in depth��rst search the GHI problem
occurs less frequently�
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In this chapter we deal with the third problem statement� is it possible to give a
solution for the GHI problem for best��rst search� A solution to the GHI problem for
best��rst search is presented with only a few relevant properties included in a node�
In Section ��� an example of the GHI problem is given� Previous work on the GHI
problem is discussed in Section ��
� In Section ��� the general solution to the GHI
problem for best��rst search is described� A formalized description and the pseudo�
code for the implementation in pn search is given in Section ���� Section ��� lists
experiments with the new algorithm� It is compared to three other pn�search variants�
The results are presented in Section ���� Finally� Section ��� provides conclusions�

��� An example of the GHI problem

Figure ��� shows a pawn endgame position� taken from Campbell 	����
� where the
GHI problem can occur� White 	to move
 has achieved a potentially won position�
However� we show that it is possible to evaluate this position incorrectly as a draw�
In this chapter we assume that a single repetition of positions evaluates to a draw�
in contrast with the FIDE ruling which stipulates that the same position must occur
three times�

�Z�Z�Z�Z
o�Z�Z�Z�
�Z�Z�Z�Z
Z�O�j�Z�
�J�Z�Z�Z
Z�Z�Z�Z�
�Z�Z�Z�Z
Z�Z�Z�Z�

Figure ���� A pawn endgame 	wtm
�

In Figure ��� a relevant part of the search tree is depicted� After the move se�
quence �� Kb�� Ke�� �� Ka�� Kd� �� Kb� Ke� the position after move � is
repeated 	node E
� and evaluated as a draw� Since White does not have any better
alternative on the third move� the position after �� Ka� 	node H
 is evaluated as a
draw� Backing up this draw leads to the incorrect conclusion that node A evaluates
to a draw� However� after the winning move sequence �� Ka�� Ke� �� Ka�� the
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same position 	node H
 is reached� which is now evaluated as a win after �� � � ��
Kd� �� Kb� Ke� �� Kc�� 	node G
� Backing up this win leads to the correct
conclusion that node A evaluates to a win�

A

E FD

I

B C

HG

J

draw

win

Kb5? Ka5!

Kd5! Ke6? Ke6

Kc6!
Ka6?

Ka6!

Kd5

Kb5

Ke6

Figure ���� The GHI problem in the pawn endgame�

An example of the general case is given in Figure ��
� It shows an and�or search
tree with identical positions�� The values of the leaves 	given in italics
 are seen from
the or player�s point of view� The values given next to the nodes are back�up values�
We note that the GHI problem can occur in any type of and�or tree� However� to
keep the example as clear as possible we have chosen to show the example for a
minimax game tree�

The terminal nodes E and G are a win for the or player� and the terminal nodes
C and F are evaluated as a draw because of the repetition of positions� Propagating
the evaluation values of the terminal nodes through the search tree results in a win
at the root� When making use of transpositions� every node should occur only once
in the tree� Assume that a parent generates its children and that one of its children
already exists in the tree� Then a connecting edge from the parent to the existing
node is made� This transforms the search tree into a Directed Cyclic Graph 	DCG

	Figure ���
�

In this DCG it is di�cult to determine unambiguously the value of node F due
to the GHI problem� The value of this node is dependent on the path leading to
it� Following the path A�B�C�F � child C of node F is a repetition and hence F is

�In games such as chess� a repetition of positions is impossible after only two ply �node C in
the left subtree of node B and node F in the subtree of node D�	 Our example disregards this
characteristic for simplicity�s sake	
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Figure ��
� A search tree with repetitions�

evaluated as a draw� but following the path A�B�D�F � child C is not a repetition
and is not evaluated as a draw� Thus� in the DCG� node F has two di�erent values�
Hence� in this example it is not possible to determine the value of root A� since in
the �rst mentioned case it is a draw� and in the second case it is a win� due to the
values of E and G�

��� A review of previous work

Although several authors have mentioned the GHI problem� so far no solution to
this problem has been described� Only provisional ideas have been given� Below� we
review the �ve most important ideas��

Palay 	����
 �rst identi�ed the GHI problem� He suggested two �solutions�� 	�

refrain from using graphs� and 	�
 recognize when the GHI problem occurs and
handle accordingly� The �rst �solution� 	apart from not being a real solution� it
merely ignores the problem
 had as a drawback that large portions of the graph now

�Berliner and McConnell ������ suggested the use of conditional values as an idea to solve the
GHI problem	 They promised details in a forthcoming paper	
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Figure ���� The DCG corresponding with the tree of Figure ��
�

would be duplicated every time a duplicate node occurred� wasting a large amount
of time and memory� The second solution worked as follows� When the positions
su�ering from the GHI problem were recognized� the path from the repetition node
upwards to the ancestor with multiple parents was split into separate paths� He did
not implement this strategy� since he conjectured that such positions only occurred
occasionally 	the GHI problem occurred in three out of 
�� test positions
� A disad�
vantage of this solution is that the recognition of positions su�ering from the GHI
problem is not straightforward�

Another idea for a solution originates from Thompson 	Campbell� ����
� While
building a tactical analyzer� Thompson 	����
 used a DCG representation� He saw
it su�ering from the GHI problem� He cured the problem by taking into account
the history of the node to be expanded� The value of this node was then� if neces�
sary� corrected for its history� The newly�generated children were evaluated by doing
�� searches� yet neglecting their history� As a consequence� the only history errors
could occur at the leaves� These errors were corrected as soon as such a leaf was
expanded� but it could happen that the expansion of a node was suppressed due to
the error�

Campbell 	����
 discussed the GHI problem thoroughly� applying it to depth��rst
search only� The key in avoiding most occurrences of the GHI problem appears to be
iterative deepening� Some problems 	called �draw��rst�
 can be overcome�� However�

�In the draw��rst case node F in Figure �	� is �rst reached through path A�B�C�F �and the
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other problems� which he called �draw�last� could not be solved by his approach��
Finally� he remarked that �the GHI problems occur much more frequently in selective
search programs� and require some solution in order to achieve reasonably general
performance� Both Palay�s and Thompson�s approaches seem to be acceptable�� We
conclude that Campbell gave a partial solution for depth��rst search� and no solution
for best��rst search�

Baum and Smith 	����
 stumbled on the GHI problem when implementing their
best��rst search algorithmBPIP 	Best Play for Imperfect Players
� Baum and Smith
completely store the DCG in memory and grow it by using �gulps�� In each gulp a
fraction of the most interesting leaves is expanded� For each parent�child edge e a
subset S	e
 was de�ned as the intersection of all ancestor nodes and all descendant
nodes of edge e� A DCG was claimed to be legitimate 	i�e�� no nodes have to be
split
 if and only if� for all children C with more than one parent P � S	ePC 
 is
independent of P � Their solution was as follows� Each time a new leaf was created
three possibilities were distinguished� 	�
 if the leaf was a repetition it was evaluated
as a draw� else 	�
 if a duplicate node existed in the graph� these two nodes were
merged on the condition that the resultant DCGwas legitimate� else 	

 the node was
evaluated normally� After leaf expansion it was exhaustively investigated whether
every node C with multiple parents passed the S	e
 test� If not� such a node C
was split into several nodes C�� C��� ���� with distinct subsets S	ePC 
� Then� the
subtrees of the newly�created nodes had to be rebuilt and re�evaluated� Baum and
Smith gave this idea as a solution to the GHI problem without the support of an
implementation� Moreover they remarked that �Implementation in a low storage
algorithm would probably be too costly�� We believe that the overhead introduced
by our idea� described in the next section� is much less than the overhead introduced
by the idea of Baum and Smith�

Schijf et al� 	����
 investigated the problem in the context of pn search 	Al�
lis et al�� ����
� They examined the problem in Directed Acyclic Graphs 	DAGs

and DCGs separately� They noted that� when the pn�search algorithm for trees is
used in DAGs� the proof and disproof numbers are not necessarily correctly com�
puted� and the most�proving node is not always found� Schijf 	���

 proved that
the most�proving node always exists in a DAG� Furthermore� he formulated an al�
gorithm for DAGs that correctly determines the most�proving node� However� this
algorithm is only of theoretical importance� since it has an unfavourable time�and�
memory complexity� Therefore� a practical algorithm was developed� Surprisingly�
only two minor modi�cations to the pn�search algorithm for trees are needed for
a practical algorithm for DAGs� The �rst modi�cation is that instead of updating
only one parent� all parents of a node have to be updated� The second modi�ca�
tion is that when a child is generated� it has to be checked whether this node is a

value of node F is based on child C being a repetition� and later in the search node F is reached
through path A�B�D�F and the previous value of node F is used	

�In the draw�last case node F in Figure �	� is �rst reached through path A�B�D�F �and the
value of node F is based on child C being no repetition� and later in the search node F is reached
through path A�B�C�F and the previous value of node F is used	



�� Chapter �� The graph�history�interaction problem

transposition 	i�e�� if it was generated earlier
� If this is the case� the parent has to
be connected to this node that has already been generated� Schijf et al� 	����
 note
that this algorithm contains two �aws� First� the proof and disproof numbers do not
represent the cardinality in the smallest proof and disproof set� but these numbers
are upper bounds to the real proof and disproof numbers� Second� the node selected
by the function SelectMostProvingNode is not always equal to a most�proving node�
However� it still holds that if the node chosen is proved� the proof number of the
root decreases� whereas if this node is disproved� the disproof number of the root
decreases� In either case the proof or disproof number may decrease by more than
unity� as a result of the transpositions present� This algorithm has been tested on
tic�tac�toe 	Schijf� ���

� The DAG algorithm uses considerably fewer nodes 	viz� a
factor of �ve
 to prove the game�theoretic value of tic�tac�toe� For the problem of
applying pn search to a DCG� Schijf et al� 	����
 give a time�and�memory�e�cient
algorithm� which� however� sometimes inaccurately evaluates nodes as a draw by
repetition� They remark that� as a consequence� their algorithm is sometimes unable
to �nd the goal� even though it should have found it�

��� BTA
 an enhanced DCG algorithm

In this section we describe a new algorithm 	denoted BTA� Base�Twin Algorithm

for solving the GHI problem for best��rst search� The algorithm had been developed
in a joint e�ort with Victor Allis� Its correctness has been proven experimentally�
A formal proof is beyond the scope of this research� The description given below
provides a clarity of reasoning� which in our opinion� is su�ciently convincing in its
own�

The BTA algorithm is based on the distinction of two types of nodes� termed base
nodes and twin nodes� The purpose of these types is to distinguish between identi�
cal positions with di�erent history� Although it was known in the DCG algorithm
described by Schijf et al� 	����
 that nodes sometimes may be incorrectly evaluated
as a draw� their algorithm was unable to note when this occurs� We have devised
an alternative in which a su�cient set of relevant properties for correct evaluation
is recorded� We have chosen to include in a node only a small number of relevant
properties� The reasons for not including all relevant properties are�

� some properties are only relevant for a small number of nodes�

� the more properties that are included� the lower the frequency of transposi�
tions� and

� some properties require too much overhead and�or take up too much space
when included in a node�

The move�generation problem 	cf� Section ���
 can easily be solved by including
the relevant properties 	in chess these are the castling rights and the en�passant
capturing rights
 into each node� Hence� only the evaluation problem 	cf� Section ���
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needs to be solved� We have chosen to describe the solution of repetition of positions�
since repetition of positions occurs in many search problems� and the k�move rule is
a special rule which seldomly shows up in practice� As mentioned before� we assume
that a single repetition of positions results in a draw�

Our representation of a DCG

Basically the GHI problem occurs because the search tree is transformed into a DCG
by merging nodes representing the same position� but having a di�erent history� To
avoid such an undesired coalescence� we propose an enhanced representation of a
DCG� In the graph we distinguish two types of nodes� base nodes and twin nodes�
After a node is generated� it is looked up in the graph by using a pointer�based table�
If it does not exist� it is marked as a base node� If it exists� it is marked as a twin
node� and a pointer to its base node is created� Thus� any twin node points to its
base node� but a base node does not point to any of its twin nodes� Only base nodes
can be expanded� The di�erence with the �standard implementation� of a DCG is
that if two or more nodes are represented by the same position 	ignoring history

they are not merged into one node� However� their subtree is generated only once�
In general� a twin node may have a value di�erent from its base node� although they
represent the same position�

Figure ��� exhibits our implementation of the DCG given in Figure ��� 	assuming
that the position corresponding with node F is �rst generated as child of node C and
only later as child of node D
� Nodes in upper�case are base nodes� nodes in lower�
case are twin nodes� The dashed arrows are pointers from twin nodes to base nodes�
The problem mentioned in Figure ��� can now be handled by assigning separate
values to nodes F and f � and to C and c� depending on the paths leading to the
corresponding positions�

The BTA algorithm as solution

As stated before� encountering a repetition of positions in node p does not mean
that the repetition signals a real draw 	de�ned as the inevitability of a repetition
of positions under optimal play
� To handle the distinction� we introduce the new
concept of possible�draw � Node p is marked as a possible�draw if a node is a repetition
of a node P in the search path� 	Whether a possible draw also is a real draw depends
on the history�
 Then the depth of node P in the search path 	termed the possible�
draw depth
 is stored in node p�

The BTA algorithm for best��rst search consists of three phases� Phase � deals
with the selection of a node� Phase � evaluates the selected node� Phase 
 backs
up the new information through the search path� The three phases are repeatedly
executed until the search process is terminated�
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Figure ���� Our DCG with base nodes and twin nodes corresponding with
the DCG of Figure ����

����� Phase �� select the best node

In phase � a node is selected for evaluation�� This is accomplished in a way similar
to the best��rst tree algorithm 	see Section ���
� For comparison� a short outline of
the tree algorithm is given� First� the root is selected� Next� a best child from the
selected node is selected according to the best��rst�search criteria� The last step is
repeated until 	�
 a repetition has been encountered 	evaluating to a draw
� or 	�

a leaf has been found�

The selection of a node in the BTA algorithm is as follows� First� the root is
selected 	for further selection� see below
� Then� for each selected node� two cases
exist�

�� if a child of the selected node is marked as a possible�draw � and the remaining
children are either real draws� or marked as possible�draws� then the selected
node is marked as a possible�draw and the corresponding possible�draw depth is
set to the minimum of the possible�draw depths of the children� Subsequently�
all possible�draw markings from the children are removed and the parent of
the selected node is re�selected for investigation�

�� otherwise� a best child is selected for investigation� ignoring the children which
are either real draws� or marked as a possible�draw �

�We assume that the selection of a node proceeds in a top�down fashion	



���� BTA
 an enhanced DCG algorithm ��

Assume that a node at depth d in the search path is marked as a possible�draw and
the corresponding possible�draw depth is equal to d� This implies that the possible�
draw marking of this node is based solely on repetitions of positions in the subtree
of the node and on real draws� Therefore� the node is a real draw by repetition�
independent of the history of the node� Hence� the node is evaluated accordingly�

The selection of a node is repeated until 	�
 a real draw by repetition has been
encountered� or 	�
 	a twin node of
 a base node with known game�theoretic value
has been found�� or 	

 a leaf has been found�

The selection of a node in the BTA algorithm is illustrated below� In Figure ���
part of a search graph is depicted� The selection starts at the root 	node A
� Assume
the traversal is in a left�to�right order� Then� at a certain point� node c is selected�
and marked as a possible�draw because it is a repetition of node C at depth two in
the search path� See Figure ��� 	the equal sign represents the possible�draw marking
and the subscript two represents the possible�draw depth
�
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D E

Figure ���� Encountering the �rst repetition c�

After marking node c as a possible�draw � the parent of this node 	node D
 is re�
selected and marked as a possible�draw � with the same possible�draw depth as node
c� Further� the possible�draw marking of node c is removed� After marking node D
as a possible�draw � its parent C is re�selected� The next best child 	not marked as
a possible�draw
 E is selected� Continuing this procedure� at a certain point child d
of node F is selected� The child c of twin node d is found by directing the search to

�This is possible� because a base node does not point to its twin nodes	 If the game�theoretic
value of a twin node becomes known� its corresponding base node is evaluated accordingly� but
other twin nodes remain unchanged	



�� Chapter �� The graph�history�interaction problem

the base node D of node d� Node c is 	again
 marked as a possible�draw because it
is a repetition of node C at depth two in the search path� See Figure ����
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Figure ���� Encountering the second repetition c�

After the re�marking of node c as a possible�draw � the parent of this node 	twin
node d
 is re�selected and marked as a possible�draw � with the same possible�draw
depth as node c� Thereafter� the possible�draw marking of node c is removed 	for the
second time
� After marking node d as a possible�draw � its parent F is re�selected�
The next best child 	not marked as a possible�draw
 e is selected� This node is a
repetition of node E at depth three in the search path� and is marked as a possible�
draw � See Figure ����

After marking node e as a possible�draw � the parent of this node 	node F 
 is
re�selected� All its children are marked as a possible�draw � Therefore� node F is also
marked as a possible�draw � with a possible�draw depth of two 	the minimum of the
possible�draw depths of the children
� Further� the possible�draw markings of all
children are removed� See Figure ����

After marking node F as a possible�draw � the parent of this node 	node E
 is re�
selected and marked as a possible�draw � with the same possible�draw depth as node
F � Subsequently� the possible�draw marking of node F is removed� After marking
node E as a possible�draw � its parent 	node C
 is re�selected� However� all its children
are marked as a possible�draw � Therefore� node C is also marked as a possible�draw �
with a possible�draw depth of two 	the minimum of the possible�draw depths of
the children
� Again� the possible�draw markings of all children are removed� See
Figure �����

Now the selection process �nishes� since node C at depth two in the search path



���� BTA
 an enhanced DCG algorithm �


A

C

c

=
2

=
3

=
2

F

d e

B

D E

Figure ���� Encountering the repetition e�

is marked as a possible�draw � and its corresponding possible�draw depth is equal to
the depth of the node in the search path� This means that all continuations from
C lead� in one or another way� to repetitions occurring in the subtree of node C�
Therefore� node C is evaluated as a real draw by repetition� independent of the
history of the node� but on the basis of its potential continuations�

����� Phase �� evaluate the best node

In phase � the selected node 	say node P 
 is evaluated� For comparison� again a
short outline of the tree algorithm is given� The evaluation of node P is dependent
on the condition under which phase � has terminated�

�� If node P is a repetition� it is evaluated as a draw�

�� If node P is a leaf� it is expanded� the children are evaluated and node P is
evaluated using the evaluation values of the children�

For the evaluation of node P in the BTA algorithm three cases are distinguished�

�� If node P is a real draw by repetition� it is evaluated as a draw� The corre�
sponding base node 	if existing
 is also evaluated as a draw�

�� If node P is a twin node and its corresponding base node is a terminal node�
node P becomes a terminal node as well and is evaluated as such�
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Figure ���� Marking node F as a possible�draw �
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Figure ����� Marking node C as a possible�draw �


� If node P is a leaf� it is expanded� the children are evaluated� and node P is
evaluated using the evaluation values of the children�
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����� Phase �� back up the new information

In phase 
 the value of the selected node is updated to the root� and all possible�
draw markings are removed� In contrast to the tree algorithm� in the BTA updating
process nodes marked as a possible�draw may occur� The back�up value of a node is
determined by using only the evaluation values of children not marked as a possible�
draw � Thus� the children marked as a possible�draw are ignored� because in the next
iteration the search could be mistakenly directed to one of these children� whereas
this child was a repetition in the current path� not giving any new information�After
establishing the back�up value of a node� the possible�draw markings of the children
are removed�

��� The pseudo�code of the BTA algorithm

In this section an implementation of the BTA algorithm in pn search 	see Chapter 


is given� An explanation following the three phases of Section ��� provides details on
the seven relevant pn�search procedures and functions� We will make use of several
properties of pn search� in order to simplify and accelerate the general BTA algo�
rithm� For chess� The goal of pn search is �nding a mate� A loss and a real draw are
in this respect equivalent 	i�e�� they are no win
� Hence� two types of nodes with a
known game�theoretic value exist� proved nodes 	win
 and disproved nodes 	no win
possible
� A proved or disproved node is called a solved node�

����� Phase �� select the most	proving node

Phase � of the algorithm deals with the selection of a 	best
 node for evaluation�
This node is termed the most�proving node� In Figure ���� the main BTA pn�search
algorithm is shown� The only parameter of the procedure is root� being the root of
the search tree� The BTA algorithm resembles the tree algorithm described in Sec�
tion 
��� a di�erence being that procedure UpdateAncestors is called with the parent
of the most�proving node as the parameter instead of the most�proving node itself�
since the most�proving node already has been evaluated in procedure ExpandNode�

The procedures Evaluate and SetProofAndDisproofNumbers and the function Re	
sourcesAvailable are identical to the same procedures and function in the standard
tree algorithm 	see Figure 
��
� and not detailed here� The function SelectMostProv	
ingNode �nds a most�proving node� according to certain conditions� The function is
given in Figure ����� The only parameter of the function is node� being the root of
the 	sub
tree where the most�proving node is located�

The function starts to examine whether the node under investigation 	say node
P 
 is a twin node� If so� then the investigation proceeds with the associated base
node�

�In a DCG there can exist more than one path from a node to the root	 However� only the path
along which the node was selected is taken into account	 Other paths� if any� may be updated after
other selection processes	
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procedure BTAProofNumberSearch� root �
Evaluate� root �
SetProofAndDisproofNumbers� root �
root
expanded �� false
root
depth �� �

while root
proof��� and root
disproof��� and
ResourcesAvailable�� do begin

mostProvingNode �� SelectMostProvingNode� root �
ExpandNode� mostProvingNode �
UpdateAncestors� mostProvingNode
parent� root �

end

if root
proof�� then root
value �� true
elseif root
disproof�� then root
value �� false
else root
value �� unknown �� resources exhausted ��

end �� BTAProofNumberSearch ��

Figure ����� The BTA pn�search algorithm for DCGs�

If node P has been solved 	case �
� node P is returned� because the graph has
to be backed up using this new information�

If node P has not been solved� it is examined whether node P is a repetition in the
current path 	case �
� If so� it is marked as a possible�draw � Its ancestor transposition
node in the current path is looked up� and the pdDepth 	possible�draw depth
 of the
node becomes equal to the depth in the search path of the ancestor node�� Since it
is not useful to examine a repetition node further� the selection of the most�proving
node is directed to the parent of node P �

If node P has not been solved and is not a repetition in the current path� it is
checked whether node P is a leaf 	case 

� If so� node P is the most�proving node
which has to be expanded� and node P is returned�

Otherwise 	case �
� a best child is selected by the function SelectBestChild� to be
discussed later� If no best child was found� it means that every child is either solved
	proved in case of an and node� and disproved in case of an or node
 or is marked
as a possible�draw � If any of the children is marked as a possible�draw � the node P is
marked as a possible�draw as well� The pdDepth of the node is set to the minimum
of the children�s pdDepths and the markings of all children are removed� etc� See
Section ����

In Figure ���
 the function SelectBestChild is listed� The function has three pa�
rameters� The �rst parameter 	node
 is the parent from which a best child will be

�The variable pdDepth will act as an indicator of the lowest level in the tree at which there are
nodes having repetition nodes in their subtrees	
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function SelectMostProvingNode� node �
if NodeHasBaseNode� node � then baseNode �� BaseNode� node �
else baseNode �� node
�� �� Base node has been solved ��
if baseNode
proof�� or baseNode
disproof�� then return node
elseif Repetition� node � then begin �� �� Repetition of position ��

MarkAsPossibleDraw� node �
ancestorNode �� FindEqualAncestorNode� node �
node
pdDepth �� ancestorNode
depth
return SelectMostProvingNode� node
parent �

end elseif not baseNode
expanded then �� �� Leaf ��
return node

else begin �� �� Internal node� look for child ��
bestChild �� SelectBestChild� node� baseNode� pdPresent �
if bestChild�NULL then begin

if pdPresent then begin
MarkAsPossibleDraw� node �
node
pdDepth �� �
for i��� to baseNode
numberOfChildren do begin

if PossibleDrawSet� baseNode
child� i � � then
if baseNode
child� i �
pdDepth�node
pdDepth then

node
pdDepth �� baseNode
child� i �
pdDepth
UnMarkAsPossibleDraw� baseNode
child� i � �

end
if node
depth�node
pdDepth then return node
else return SelectMostProvingNode� node
parent �

end else begin �� All children are solved� so choose any one ��
baseNode
proof �� baseNode
child� � �
proof
baseNode
disproof �� baseNode
child� � �
disproof
return node

end
end else begin

bestChild
depth �� node
depth��
return SelectMostProvingNode� bestChild �

end
end

end �� SelectMostProvingNode ��

Figure ����� The function SelectMostProvingNode�
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function SelectBestChild� node� baseNode� pdPresent �
bestChild �� NULL
bestValue �� �
pdPresent �� false
if node
type�OR then begin �� OR node ��

for i��� to baseNode
numberOfChildren do begin
if PossibleDrawSet� baseNode
child� i � � then

pdPresent �� true
elseif baseNode
child� i �
proof�bestValue then begin

bestChild �� baseNode
child� i �
bestValue �� bestChild
proof

end
end

end else begin �� AND node ��
for i��� to baseNode
numberOfChildren do begin

if PossibleDrawSet� baseNode
child� i � � then begin
pdPresent �� true
break

end
if baseNode
child� i �
disproof�bestValue then begin

bestChild �� baseNode
child� i �
bestValue �� bestChild
disproof

end
end

end

return bestChild
end �� SelectBestChild ��

Figure ���
� The function SelectBestChild�

selected� The second parameter 	baseNode
 is the base node of that parent
� Finally�
the third parameter 	pdPresent� meaning possible draw present
 indicates whether
one of the children is marked as a possible�draw � The parameter pdPresent is initial�
ized by the function SelectBestChild� If the node is an or node� a child marked as a
possible�draw will not be selected as best child� since it gains nothing and the goal
	win
 cannot be reached� A best child 	of an or node
 is a child with the lowest
proof number� If the node is an and node� a child marked as a possible�draw is a
best child� since the player to move in the and node is satis�ed with a repetition
	thereby making it impossible for the opponent to reach the goal
� Otherwise� a best
child 	of an and node
 is a child with the lowest disproof number� This best child

�We note that if the parent is a base node itself� then the base node is equal to the parent	
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is returned� If the best child is either solved or marked as a possible�draw � NULL is
returned�

����� Phase �� evaluate the most	proving node

After the most�proving node has been found� it has to be expanded and evaluated�
Phase � of the algorithm performs this task� Figure ���� provides the procedure
ExpandNode� The only parameter is node� being the node to be expanded�

procedure ExpandNode� node �
if NodeHasBaseNode� node � then baseNode �� BaseNode� node �
else baseNode �� node

if baseNode
proof�� or baseNode
disproof�� then begin
�� �� base node already solved ��
node
proof �� baseNode
proof
node
disproof �� baseNode
disproof

end elseif PossibleDrawSet� node � then begin
�� �� node has become a real draw ��
node
proof �� �
node
disproof �� �
baseNode
proof �� �
baseNode
disproof �� �

end else begin
�� �� node has to be expanded ��
GenerateAllChildren� baseNode �
for i��� to baseNode
numberOfChildren do begin

Evaluate� baseNode
child� i � �
SetProofAndDisproofNumbers� baseNode
child� i � �
if not NodeHasBaseNode� baseNode
child� i � � then

baseNode
child� i �
expanded �� false
end
SetProofAndDisproofNumbers� baseNode �
baseNode
expanded �� true
node
proof �� baseNode
proof
node
disproof �� baseNode
disproof

end
end �� ExpandNode ��

Figure ����� The procedure ExpandNode�

The procedure starts establishing the base node of the node��� If the base node

�	We note that if the node is a base node itself� then the base node is equal to the node	
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is solved 	case �
� the node is evaluated accordingly�
Otherwise� if the node is marked as a possible�draw 	case �
 	and since it was

chosen by function SelectMostProvingNode
� it is evaluated as a real draw�
In case 
 the node has to be expanded� All children are generated� and evalu�

ated� If a generated child has no corresponding base node� the attribute expanded is
initialized to false� if it has a corresponding base node� the attribute expanded has
been initialized before� Then the node itself is initialized by procedure SetProofAnd	
DisproofNumbers�

����� Phase �� back up the new information

Phase 
 of the algorithm has as task to back up the evaluation value of the most�
proving node� The procedure for updating the values of the nodes in the path is
listed in Figure ����� The procedure has two parameters� The �rst parameter 	node

is the node to be updated� while the second parameter 	root
 is the root of the search
tree� Depending on the node type� UpdateOrNode 	Figure ����
 or UpdateAndNode
	Figure ����
 is performed�

procedure UpdateAncestors� node� root �
while node ��nil do begin

if NodeHasBaseNode� node � then baseNode �� BaseNode� node �
else baseNode �� node

if node
type�OR then UpdateOrNode� node� baseNode �
else UpdateAndNode� node� baseNode �

node �� node
parent �� parent in current path ��
end
if PossibleDrawSet� root � then

UnMarkAsPossibleDraw� root �
end �� UpdateAncestors ��

Figure ����� The procedure UpdateAncestors�

The parameters of UpdateOrNode are node and baseNode� The algorithm basi�
cally is the same as the or part of the procedure SetProofAndDisproofNumbers� It
only di�ers when a child is marked as a possible�draw � In that case� the child is
discarded so its value is not used when calculating the back�up value of the node�
Then� the possible�draw marking of the child is removed� If the node appears to be
disproved 	since all children are either disproved or marked as a possible�draw
 and a
repetition child exists� the value of the node is calculated by procedure SetProofAnd	
DisproofNumbers� Otherwise� the value has been calculated correctly� If the node has
been solved� its base node is initialized accordingly�
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procedure UpdateOrNode� node� baseNode �
min �� �
sum �� �
pdPresent �� false
for i��� to baseNode
numberOfChildren do begin

if PossibleDrawSet� baseNode
child� i � � then begin
pdPresent �� true
proof �� �
disproof �� �
UnMarkAsPossibleDraw� baseNode
child� i � �

end else begin
proof �� baseNode
child� i �
proof
disproof �� baseNode
child� i �
disproof

end
if proof�min then min �� proof
sum �� sum � disproof

end

if min�� and pdPresent then
SetProofAndDisproofNumbers� node �

else begin
node
proof �� min
node
disproof �� sum

end
if node
proof�� or node
disproof�� then begin �� node solved ��

baseNode
proof �� node
proof
baseNode
disproof �� node
disproof

end
end �� UpdateOrNode ��

Figure ����� The procedure UpdateOrNode�
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The two parameters of UpdateAndNode are equal to the parameters of proce�
dure UpdateOrNode� The procedure di�ers from the and part of the procedure Set	
ProofAndDisproofNumbers when the node is solved� and hence the value of its base
node is evaluated accordingly���

procedure UpdateAndNode� node� baseNode �
min �� �
sum �� �
for i��� to baseNode
numberOfChildren do begin

proof �� baseNode
child� i �
proof
disproof �� baseNode
child� i �
disproof
sum �� sum � proof
if disproof�min then min �� disproof

end

node
proof �� min
node
disproof �� sum
if node
proof�� or node
disproof�� then begin �� node solved ��

baseNode
proof �� node
proof
baseNode
disproof �� node
disproof

end
end �� UpdateAndNode ��

Figure ����� The procedure UpdateAndNode�

��� Experimental set�up

In this section give the experimental set�up for evaluating the BTA pn�search algo�
rithm presented in Section ���� The game of chess is used as the test domain� Our
BTA algorithm� denoted by BTA� is compared with the following three pn�search
variants�

�� the standard tree algorithm 	see Section 
��
� denoted by Tree�

�� a DAG algorithm� developed by Schijf 	���

� denoted by DAG � and


� an 	incorrect
 DCG algorithm� developed by Schijf et al� 	����
� denoted by
DCG �

��We note that it is impossible for a child of an and node to be marked as a possible�draw � since
in that case the search for a most�proving node would have been terminated in an earlier phase�
and the parent already would have been marked as a possible�draw 	
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In all implementations� the move ordering is identical� The test set of ��� positions is
given in Section 
�� 	see Appendix D
� All four algorithms searched for a maximum
of ������� nodes per test position� After ������� nodes the search was terminated
and if no solution had been found the problem was marked as not solved���

��� Results

To verify our solution we have �rst tested the position given in Figure ������ Tree
�nds a solution within ����
�� nodes� DCG � ignoring the history of a position�
incorrectly states that White cannot win 	due to the GHI problem
� Our BTA does
�nd a solution within ������ nodes� This provides evidence that the occurrence of
the GHI problem has been correctly handled� BTA shows the bene�t of being a DCG
algorithm� as evidenced by the decrease in number of nodes investigated by a factor
of roughly �� as compared to Tree�

' of pos� solved Total nodes
	out of ���
 	�� positions


Tree �� ����
�
��
DAG ��� 
������
�
DCG ��
 ���������
BTA ��� ���������

Table ���� Comparing four pn�search variants�

Thereafter� we have performed the experiments as described in Section ����
The outcomes are summarized in Table ���� The complete results are listed in Ap�
pendix G� The �rst column shows the four pn�search variants� The number of posi�
tions solved by each algorithm is given in the second column� Exactly �� positions
were solved by all four algorithms� BTA solves each position which was solved by
at least one of the other three algorithms� In the third column the total number of
nodes evaluated for the �� positions are listed� The additional positions solved per
algorithm are as follows�

Tree� k�
�� k���� r����

DAG� k�
�� k���� k���� r���� r���� r����

DCG� k		� k�
� k���� k��	� r���� r���� r����

��The maximumnumber of nodes in these pn�search experiments is lower than the corresponding
number given in Chapter � due to implementation details	

��We note that for this problem the goal for White was set to promotion to Queen �without Black
being able to capture it on the next ply� instead of mate	 Further� the search was restricted to the
��� a��e� board	 This helps to �nd the solution faster� but does not in�uence the occurrence of
the GHI problem	
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BTA� k		� k�
� k�
�� k���� k���� k���� k��	� r���� r���� r���� r����

Neither algorithm� k�� k	
� k��� k���� k�
�� k��
� k��
� r��� r�
�� r�
��

Obviously� Tree investigates the largest number of nodes� The explanation is easy�
the algorithmdoes not recognize transpositions� Further�DCG examines the smallest
number of nodes� this algorithm sometimes prematurely disproves positions� hence�
on the average fewer nodes have to be examined� However� if such a prematurely
disproved position does lead to a win and the node is important to the principal
variation of the tree� the win can be missed� as happens in the positions k�
��
k���� k��� and r���� This is already remarked by Schijf et al� 	����
�

From Table ��� it further follows that BTA performs best� The four positions
which were incorrectly disproved by DCG were proved by BTA� Compared to the
tree algorithm� BTA solves eight additional positions and uses only ��� of the
number of nodes� a clear improvement� The reduction in nodes compared to DAG
is still ������ The increase in nodes searched relative to DCG 	�����
 is already
explained by the unreliability of the latter� We feel that the advantage of the larger
number of solutions found heavily outweighs the drawback of the increase in nodes
searched� We note that the selection of the most�proving node in BTA can be costly
in positions with many possible transpositions� However� in these types of positions
the reduction in the number of nodes searched is even larger than in �normal�
positions�

As a case in point we present Figure ���� corresponding with Diagram ��� in
Krabb�e 	����
� It is solved by our BTA algorithm 	in ������� nodes
 and by the
DAG algorithm 	in 
���

� nodes
 and not by the two other algorithms 	within
������� nodes
� Many transpositions 	and many repetitions of positions
 exist� since
after �� Ra�� Kb�White has a so�called zwickm�uhle and can position the Bishop
anywhere along the a��g� diagonal for free� For instance� after �� Ba
� Ka� ��
Bb�� Kb� almost the same position with the same player to move has been
reached� the Bishop has moved from d� to b�� At any time White can choose such a
manoeuvre� For the chess�playing reader� the solution is �� Ra��� Kb� �� Ba
�
Ka� �� Bc��� Kb� �� Rb�� Ka� �� Re
� Bf
 �� Ra�� Kb� 
� Ba
�
Ka� �� Bd���Kb� �� Rb��Ka� �	�Rd
�Qg� ���Ra�� Kb� ���Ba
�
Ka� ��� Bb�� Kb� ��� Bxc
 mate�

��	 Chapter conclusions

In this chapter we have given a solution to the GHI problem� resulting in an improved
DCG algorithm for pn search� called BTA 	Base�Twin Algorithm
� It is shown that
the restricted version 	a��e� board
 of a well�known position� in which the GHI
problem occurs when a na "ve DCG algorithm is used� our BTA algorithm �nds the
correct solution� The results on a test set of ��� positions do not falsify our claim�
Despite the additional overhead for recognizing positions su�ering from the GHI
problem� our BTA algorithm is hardly less e�cient than other� not entirely correct
DCG algorithms� and �nds more solutions�
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Figure ����� Mate in �� 	wtm
� 	J� Kriheli
�

Although our algorithms are con�ned to pn search� the strategy used is gener�
ally applicable to any best��rst search algorithm� The only important criterion for
application is that a DCG is being built according to the best��rst principle 	choose
some leaf node� expand that node� evaluate the children� and back up the result
�
We consider the GHI problem in best��rst search to be solved� The importance of
this statement is that with the increasing availability of computer memory a growing
tendency exists to use best��rst search algorithms and variants thereof� or best��rst
�xed�depth algorithms 	Plaat et al�� ����
� which no longer su�er from the GHI
problem�

Our solution to the GHI problem gives an a�rmative answer to the third problem
statement� is it possible to give a solution for the GHI problem for best��rst search�
By transforming the search tree into our DCG representation� less memory is needed�
since only the roots of equal subtrees are duplicated� Moreover� less search is needed�
since the DCG contains fewer nodes than the tree� One disadvantage is the cost of
�nding a most�proving node� If many transpositions exist in the tree� many possible
draws will occur� prolonging the search for a most�proving node� We are convinced
that the advantage of solving the GHI problem outweighs this disadvantage� What
remains is solving the GHI problem for depth��rst search� This will need a di�er�
ent approach� storing additional information in transposition tables rather than in
the search tree�graph in memory� However� Campbell 	����
 already noted that in
depth��rst search the frequency of GHI problems is considerably smaller than in
best��rst search� The solution of the GHI problem for depth��rst search therefore
seems to be of minor importance for practical use�
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Chapter �

Evaluations and conclusions

In this thesis we have presented research on the balance between memory and search
in two�player zero�sum games� As example domains we have used the games of chess
and domineering� The trade�o� between memory and search led to the formulation of
three problem statements� In this chapter the problem statements are re�addressed
and evaluated�

��� More memory and less search

We investigated whether we can exploit the large amount of memory currently avail�
able� The underlying idea is that storing more knowledge into memory may result in
a decreasing need for search� A depth��rst search algorithm only stores the path from
the root to the node under investigation� and hence it uses little memory� However�
many depth��rst search algorithms use the available memory for keeping a trans�
position table� The transposition table eliminates the need for search at identical
nodes� because the results of previous search processes have been saved in the table�
The �rst problem statement addresses decreasing the need for search by increasing
the use of memory�

Problem statement �� Which methods exist to improve the e�ciency of a transpo�
sition table�

In Chapter � we investigated three methods of improving the e�ciency of a
transposition table� Irrespective of the size of the transposition table� collisions 	cf�
subsection �����
 are bound to occur� When a collision occurs� a choice has to be
made which of the two positions involved should be preserved in the transposition
table� Such a choice is governed by a replacement scheme�

The �rst method to improve the e�ciency of the transposition table is to improve
the replacement scheme� Experiments have shown that a two�level scheme works
signi�cantly better than a traditional one�level scheme� Further� the concept Big

���
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	based on the number of nodes of the subtree
 works better than the most widely
used concept Deep 	based on the depth of the subtree
�

The second 	obvious
 method of improving the e�ciency of a transposition table
is to increase the number of positions in the table� In most implementations the num�
ber of positions usually is a power of two� Hence� increasing the number of positions
means doubling the number of positions� However� after a certain transposition�table
size has been reached it turns out that doubling the number of positions in the table
has a limited bene�t� Moreover� doubling the number of positions in the table can
cause the table to take up too much memory�

When doubling the number of positions has a limited bene�t the memory can be
used to store additional information in an entry � This is the third method for im�
proving the e�ciency of the transposition table� We �rst have performed experiments
to investigate which information is more important to store in a transposition�table
entry� the best move in a position� or the score of that move� Experiments show that
the score is more important than the move� Further� we have investigated the e�ect
of storing an n�ply PV 	n � ����
 in an entry� instead of only the best move 	a ��ply
PV
� Our results show that storing additional information in an entry is a pro�table
way of using the available memory� which outperforms the bene�t of doubling the
number of positions in the table� We believe that this is a fruitful domain for future
research 	cf� Section ���
�

��� Less memory and more search

We investigated whether we can exploit the increase in computer speed� The underly�
ing idea is that more speed enables more search� thereby acquiring more knowledge�
and hence decreasing the need for memory� Best��rst search needs a large amount
of memory to store the entire search tree� At present computer speeds� the memory
available is quickly �lled� Since the quality of a best��rst search algorithm depends
on the quality of the directing knowledge� ways have to be found to use the increase
in speed to acquire more knowledge per node� hence also improving the directing
knowledge� Consequently� the search process will search the state space more e��
ciently� reducing the need for memory at the cost of more search� The second problem
statement addresses decreasing the need for memory by increasing the use of search�

Problem statement �� Which methods exist for best��rst search to reduce the need
for memory by increasing the search� thereby gaining more knowledge per
node�

In Chapter � we introduced the pn��search algorithm� This is a best��rst search
algorithm 	pn search
� using a second search 	also pn search
 as evaluation of a
leaf� thereby adding more 	directing
 knowledge to every node in the search tree�
Experiments with this algorithm 	listed in section ���
 show that pn� search is a
good method of reducing the need for memory by increasing the search� The pn��
search algorithm uses roughly twice as much search time compared to the traditional
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pn�search algorithm� leading to a decrease in the need for memory� A further advan�
tage of the pn��search algorithm is that it solves test positions not solvable 	due to
memory constraints
 by a standard pn�search framework�

��� Less memory and less search

In the �rst problem statement we tried to reduce the need for search by increasing
the use of memory� Analogously� in the second problem statement we tried to reduce
the need for memory by increasing the use of search� An attempt to combine the
advantages of both approaches 	reducing the need for search and reducing the need
for memory
 is the following� In a search tree it is pro�table to recognize transposi�
tions and to ensure that for each set of identical nodes� only one subtree is expanded�
If a best��rst search algorithm 	which stores the whole search tree in memory
 is
used� the search tree is converted into a search graph� by joining identical nodes
into one node� This causes subtrees to be merged� decreasing the need for mem�
ory� Since the graph contains fewer nodes than the tree� less searching is needed as
well� However� joining identical nodes into one node introduces the so�called graph�
history�interaction 	GHI
 problem� since determining whether nodes are identical is
not the same as determining whether the search states represented by the nodes are
identical� The third problem statement addresses decreasing the need for memory
and decreasing the need for search�

Problem statement �� Is it possible to give a solution for the GHI problem for best�
�rst search�

In Chapter � we have given a solution to the GHI problem for best��rst search�
resulting in a Directed�Cyclic�Graph 	DCG
 algorithm for pn search� called the BTA
	Base�Twin Algorithm
 algorithm� This algorithm is based on the distinction of two
types of nodes� termed base nodes and twin nodes� The purpose of these types is to
distinguish between equal positions with di�erent history� By transferring the search
tree into our implementation of a search DCG� less memory is needed� since only the
roots of equal subtrees are duplicated� Furthermore� less search is needed� since the
DCG contains fewer nodes than the tree� It is shown that our algorithm is hardly
less e�cient than other� not entirely correct DCG algorithms in terms of numbers
of nodes searched� One drawback of our solution is the cost of �nding the node to
be expanded� in the case that many transpositions occur� We are convinced that the
advantage of solving the GHI problem outweighs this drawback�

��� Future research

In this section several recommendations for future research on the trade�o� between
memory and search are given�
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����� More memory and less search

This subsection provides some ideas for future research on �� search in combination
with a transposition table� The idea of using an n�ply principal variation in an
entry� instead of only the best move 	cf� subsection ����

� seems worthy of further
investigation� Based on the experiments concerning �� search with a transposition
table 	cf� Chapter �
 it is advised to concentrate on using additional information
a�ecting the number of cut�o�s generated by bound values�

A second recommendation is to store the best n moves with their respective
values 	exact values� upper bounds� or lower bounds
 in an entry� instead of only
storing the best move�

As a third recommendation it may be worthwhile investigating whether an entry
is still e�ective in the table� To this end we store in a transposition�table entry the
last time the position from this entry has been read in the search�� and we use this
stamp for the decision what to do when a collision occurs�

The transposition table can also be used to store results of partial game boards�
when using partition search 	Ginsberg� ����
� After a certain number of moves played
in the game of domineering� the board is usually divided into separate 	and smaller

regions� The search time will decrease considerably if the results of these regions can
be found in the transposition table� In this case it is not su�cient to store only the
values of win and loss in the table� since it has to be known by what margin a player
can win a region 	Conway� ����� Berlekamp� ����
�

����� Less memory and more search

This subsection lists some ideas for future research on modi�cations of the pn�
search algorithm 	or other best��rst search algorithms
� decreasing the need for
memory� The fraction function used in Section ��� works well� Still� it would be
interesting to investigate whether other fraction functions perform even better� After
every initialization of a most�proving node in the �rst�level tree� pn� search deletes
the second�level tree� If the next most�proving node is one of the children of the
previously expanded node� then the second�level tree is recreated� Therefore� it could
be advantageous to store the last N second�level trees in a cache to reduce this
overhead� a proposal already suggested by Schae�er 	mentioned by Allis� ����
�

The pn��search algorithm can be seen as a pn�search algorithm with another
pn search for evaluation� Other combinations are worthwhile to be investigated�
such as the combination of pn search and �� search� leading to two variants� 	�
 use
the pn�search algorithm with �� search for evaluation� and 	�
 use the �� algorithm
with pn search for evaluation� The �rst variant can be used e�g�� in a chess tactical
analyzer� pn search uses �� search at the leaves to get a more accurate evaluation�
The second variant can be used e�g�� in a chess program� a 	positional
 �� search
uses pn search at the leaves to check for forced mates�

�We note that this is a method di�erent from time stamping� where the last time a position has
been written into an entry is stored	
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����� Proof	number search

In this subsection we give two recommendations for improving pn search as it is used
in the game of chess�

First� pn search often �nds a longer mate than the optimal shortest one� If it
is desired to urge pn search to �nd a shorter mate than it does at present� the
following two solutions are suggested� 	�
 after a mate has been found� try searching
for a shorter mate by only examining nodes in the search tree at a lower depth than
the depth of the shortest mate found so far� or 	�
 the proof and disproof numbers
in the leaves are initialized to values over unity� say at the depth of the node in
question in the tree� this deters deep searches and hence long mates�

Second� in Chapter 
 it is shown that pn search is a good searcher for mates�
especially when the winning variation contains forcing moves� When considering
extending pn search to other tactical problems� say as a tactical analyzer for gaining
material� a di�culty arises� the condition for suspending search 	recognizing the
proved or disproved nature of a node
 is not easy to formulate� Temporary gains
should be discarded� and proved or disproved should hold only when the material
gain is permanent� Then and only then the goal is reached and the node should be
evaluated to true� as is a win in standard pn search� A possible de�nition� worthwhile
testing� is� the gain value of a node is stable if the attacker is to move and has gained
at least the material expected� Since this de�nition of a stable gain is a heuristic� it
may be incorrect� To prevent unwanted e�ects� the variation found by pn search can
be checked by an �� search� The variation can also be used to sort the moves in the
�� search� resulting in deeper searches than a standard full�width search� because
of the additional cut�o�s of pn search�
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Appendix A

The chess middle�game test

set

For the transposition�table experiments on chess middle�game positions described
in Chapter � the following test set has been used�

� The � wtm positions from move �� onwards of the following game�
Kasparov�Ivanchuk� Amsterdam �round �� ����
�� e� e� ��Nf
Nc� 
� d� exd� ��Nxd� Nf� ��Nxc� bxc� �� e� Qe� �� Qe�
Nd� �� c� Ba� �� b
 g� ��� Ba
 Qg� ��� g
 Nc
 ��� Nxc
 Bxa
 �
� Ne�
Qe� ���Nf��Kf� ���Bg�Bb�� ���Kf�Rd� ���Qb�Ba
 ���Qc
Bb�
��� Qb� Ba
 ��� Qc
 Bb� �

�
��
�

rZ�Z�j�s
o�oplpZp
bZpZ�MpZ
Z�Z�O�Z�
�ZPZ�Z�Z
aPZ�Z�O�
PZ�ZQO�O
S�Z�JBZR
Move �� �wtm�

��
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� The �� wtm positions from move �� onwards of the following game�
Kasparov�Short� Amsterdam �round �� ����
�� e� e� �� d� d� 
� Nc
 Nf� �� e� Nfd� �� f� c� �� Nf
 Nc� �� Be
 cxd� ��
Nxd�Bc� ��Qd� ��� ��� ����� a� ��� h�Nxd� ���Bxd� b� �
�Rh
 b� ���
Na� Bxd� ��� Qxd� f� ��� Qxb� fxe� ��� Qd� Qf� ��� f� Qh�� ��� Kb�
Rxf� ��� Rf
 Rxf
 ��� gxf
 Qf� ��� Bh
 Kf� �
� c� dxc� ��� Nc
 Qe� ���
Qc� Rb� ��� Ne� Nb� ��� Ng�� Kg� ��� Qe� g� ��� Qxe� Rb� 
�� Rd�
c
 
�� Bxe�� Bxe� 
�� Rxe� ���

rZbl�skZ
Z�ZnZpop
pZ�ZpZ�Z
Z�ZpO�Z�
No�a�O�O
Z�Z�Z�ZR
POPL�ZPZ
Z�JRZBZ�
Move �� �wtm�

� The �� btm positions from move �� up to and including move 
� of the fol�
lowing game�
Timman�Kasparov� Amsterdam �round �� ����
�� d� Nf� �� Nf
 g� 
� Bg� Bg� �� c
 b� �� Bxf� Bxf� �� e� Bb� �� Bd

c� �� d� e� ��Bc� ��� ��� ��� Na� ���Qd
Nc� ��� d� Ne� �
�Nbd�Bg�
��� h� a� ��� a� Qb� ��� e� f� ��� h� fxe� ��� hxg� h� ��� Rfe� Qxd� ���
Qxd� Nxd� ��� Nxe� Bxe� ��� Rxe� Rf� �
� Bd
 Raf� ��� f
 a� ��� Kf�
Kg� ���Rh�Ne� ���Kg
Nf� ���Re�Nd� ���Be�R�f� 
��Nc�Nf� 
��
Bxb� Rxg�� 
�� Kh� Rxg�� 

� Kh� d� 
�� Nxb� Rb� 
�� Rxe� Rxb�

�� Rd� Rg� 
�� Rd� d� 
�� Nc� Kh� 
�� Re� Rh�� ��� Kg� Rg�� ���

rZ�lnskZ
ZbZpZpap
po�OpZpZ
Z�o�Z�Z�
PZBZPZ�O
Z�OQZNZ�
�O�M�OPZ
S�Z�ZRJ�

Move �� �btm�



���

� The �� btm positions from move �� onwards of the following game�
Ivanchuk�Kasparov� Amsterdam �round �� ����
�� e� c� �� Nf
 d� 
� d� cxd� �� Nxd� Nf� �� Nc
 a� �� f� Qc� �� Qf
 g� ��
Be
 Bg� �� h
 e� ��� fxe� dxe� ��� Bh� Bxh� ��� Qxf� ��� �
� Nd� Qa�
��� b� Qd� ��� Ne�� Qxe� ��� Qxe� exd� ��� Bc� Nc� ��� Qc� Be
 ���
Rf� Nd� ��� Rf
 Be� ��� Rxe
 dxe
 ��� Bxe� Nxe� �
� Qxe
 a� ��� b�
Rac� ��� ����� Rc� ��� Rd� b� ��� Qg
 Rc� ��� Qd� Rfc� ��� Rd� Rb�

�� g� Nc� 
�� Qf� h� 
�� e� Re� 

� h� Kh� 
�� h� g� 
�� Rd� Re� 
��
Qd� Kg� 
�� a
 a� 
��Kb� Rbe� 
�� Rxb� ���

rmbl�skZ
ZpZ�MpZp
pZ�Z�Lpa
Z�Z�o�Z�
�O�MPZ�Z
Z�Z�Z�ZP
PZPZ�ZPZ
S�Z�JBZR

Move �� �btm�

� The �� wtm positions from move �� up to and including move �� of the
following game�
Kasparov�Timman� Amsterdam �round �� ����
�� e� e� ��Nf
Nf� 
�Nxe� d� ��Nf
Nxe� �� d� d� ��Bd
Nc� �� ���Be�
�� Re� Bg� �� c� Nf� ��� Nc
 dxc� ��� Bxc� ��� ��� d� Na� �
� Bd
 c�
��� h
 Bh� ���Re�Bg� ���Bg�Bd� ���Re� Bb� ���Bxf� gxf� ���Rc�
Rc� ���Ne� f� ���Ng
Qxd� ��� a
Bd� �
�Nxf�Rcd� ���Re�Bxe� ���
Ne�� Kg� ��� Nxd� Bxb� ��� Nf� Bxd
 ��� Nxd
 Bxc� ��� Qxc� Rxd


�� Qg�� ���

rZ�l�skZ
opZ�apop
�ZpZ�m�Z
m�ZPZ�Zb
�Z�Z�Z�Z
Z�MBZNZP
PO�Z�OPZ
S�AQS�J�
Move �� �wtm�
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� The �� btm positions from move �� onwards of the following game�
Short�Kasparov� Amsterdam �round �� ����
�� e� c� ��Nc
 e� 
�Nf
 a� �� d� cxd� �� Nxd� d� �� g� b� �� a
 h� ��Bg�
Bb� �� ��� Nd� ��� f� Rc� ��� Be
 g� ��� Qe� gxf� �
� Rxf� e� ��� Rf�
exd� ��� Bxd� Ne� ��� Nd� Bg� ��� Raf� Rh� ��� Kh� Bh� ��� c
 Ne�
��� Bxe� dxe� ��� Qf
 Nxf� ��� Qxf� Rg� �
� Nf�� Kf� ��� Nd�� Kg�
��� Nf�� Kf� �

��
�
�

�Zrlkans
ZbZnZpZ�
pZ�o�Z�o
ZpZ�ZRZ�
�Z�APZPZ
O�M�Z�Z�
�OPZQZBO
S�Z�Z�J�

Move �� �btm�
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The chess endgame test set

For the transposition�table experiments on chess endgame positions described in
Chapter � the following test set has been used�

� The �� wtm positions from move 
� onwards of the following game�
Gossip�Mason� New York �round �	� ����
�� e� e� �� d� d� 
�Nc
 Nf� �� e� Nfd� �� f� c� �� dxc� Nc� �� Nf
Bxc� ��
Ne�Qb� �� c
 Bf�� ���Kd�Qe
� ���Kc�Qe�� ���Qd
Nc� �
�Qxe�
Nxe� ���Ned�Bd� ���Nxc� bxc� ���Bd
Nc� ���Be�Nb� ���Rf�Bb�
��� Bd� c� ��� Ba� Rb� ���Rae� Nd� ��� Bd
 a� �
� Kc� a� ��� a
 Nb�
��� f� c� ��� fxe� Bxe� ��� Bc� Nc� ��� Nd� ��� ��� Nxe� fxe� 
�� Rxf��
Rxf� 
�� Be
 Nb
� 
�� Bxb
 Bxe
 

� Rxe
 cxb
 
�� Re� Rf� 
�� Kd�
Kf� 
�� Re
 Rf�� 
�� Re� Rxe�� 
�� Kxe� Kg� 
�� Ke
 Kf� ��� Kd�
h� ��� g
 g� ��� h
 h� �
� g�� Kf� ��� Kc� Kxe� ��� Kb� d� ��� Kxa� d

��� Kxb
 Ke� ��� a� Ke
 ��� a� d� ��� Kb� d�Q ��� b
 Qa� ��� c� Kd�
�
�Kb�Qc
 ���Kc�Qxb
 ��� a�Qxc�� ���Kb�Qb�� ���Ka�Kc� ���
Ka� Kc� ���

�Z�Z�skZ
Z�Z�Z�op
�a�ZpZ�Z
Z�mpO�Z�
pZpZ�Z�Z
O�O�Z�Z�
�OBA�ZPO
Z�J�S�Z�
Move �� �wtm�

���
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� The �� wtm positions from move 
� onwards of the following game�
Rabinovich�Romanovsky� Leningrad ����
�� c� Nf� �� Nc
 c� 
� d� d� �� Nf
 Ne� �� e
 e� �� Bd
 f� �� Qc� Nd� ��
b
 Bb� �� Bb� Qa� ��� Rc� ��� ��� ��� Bd� ��� Ne� Qd� �
� Ne� Qh�
��� f
 Nec� ��� g
 Qh� ��� Nf� Nxd
 ��� Nexd
 g� ��� Ng� Nf� ��� Rce�
g� ��� fxg� Nxg� ��� Ngf� Nf� ��� Re� Rf� �
� b� Ne� ��� Nc� Rb� ���
a
 b� ��� Nxe� fxe� ��� Ref� Bd� ��� c� Bxf� ��� Rxf� Rxf� 
�� Rxf� b�

�� Qf� Be� 
�� Rf� Bg� 

� Qf� Qxf� 
�� Rxf� h� 
�� h
 Kg� 
�� Bc

Bf� 
�� g� hxg� 
�� hxg� Bg� 
�� Kg� Kh� ��� Rf� Re� ��� Be� Kg� ���
Rf�Ra� �
� Kh
 a� ���Bg
Rh� ���Bh�Rf� ���Rxf�Kxf� ���Bg
 e�
���Bxe� Kf� ���Kh� Ke� ���Kg� Be� ���Kh� Bf� ���Kg�Be� �
� g�
Kf� ��� Kf� ���

�s�Z�ZkZ
o�Z�Z�Zp
�ZpZpSbZ
ZpOpZ�Z�
�O�Opl�Z
O�Z�O�O�
�A�Z�Z�O
Z�Z�Z�J�
Move �� �wtm�

� The �� wtm positions from move �� onwards of the following game�
Capablanca�Alekhine� Buenos Aires World Championship �game ��
���

�� d� d� �� c� e� 
� Nc
 Nf� �� Bg� Nbd� �� e
 c� �� a
 Be� �� Nf
 ��� ��
Bd
 dxc� ��Bxc�Nd� ���Bxe� Qxe� ���Rc� Nxc
 ���Rxc
 e� �
� dxe�
Nxe� ��� Nxe� Qxe� ��� ��� Be� ��� Bxe� Qxe� ��� Rd
 Qf� ��� Qb

Qe� ���Rfd�Rad� ��� h
 Rxd
 ���Rxd
 g� ���Qd�Qe� �
�Qd� a� ���
Rd� b� ��� Qc
 Qxc
 ��� bxc
 Rc� ��� Kf� Kg� ��� Ra� a� ��� c� Kf�

�� Ra� Ke� 
�� Ke� bxc� 
�� Rc� Kd� 

� Rxc� Ra� 
�� Rd�� Ke� 
��
Kd
 c� 
�� Rh� h� 
�� g� hxg� 
�� Rxg� Kd� 
�� Rf� f� ��� Rh� Kd� ���
Kc� Ra� ��� Kc
 �

�
��
�

�Z�Z�skZ
Z�ZRZpZp
�ZpZ�ZpZ
opZ�Z�Z�
�Z�Z�Z�Z
O�l�O�ZP
�O�Z�OPZ
Z�Z�Z�J�
Move 
� �wtm�



���

� The �� wtm positions from move 
� onwards of the following game�
Fischer�Reshevsky� New York US Championship �round �� ����
�� e� c� ��Nf
 d� 
� d� cxd� ��Nxd�Nf� ��Nc
 a� �� h
 g� �� g�Bg� �� g�
Nh� �� Be� e� ��� Nb
 Nf� ��� Nd� Nxd� ��� Qxd� Nc� �
� Bg� Bxg�
��� hxg� Qc� ��� Qd� Nd� ��� c
 Nxb
 ��� axb
 Qe� ��� Ra� f� ��� Qd�
Qxd� ��� Rxd� Kd� ��� gxf� Bxf� ��� g� Be� �
� Ke� Raf� ��� Be
 Rc�
��� b� b� ��� Rdd� Ke� ��� Ra� Rc� ��� Rh
 Bf� ��� Rh� Rc� 
�� Rh�
d� 
��Ra�Rc� 
�� exd�� Kxd� 

�Rd��Ke� 
��Rd�Kf� 
��Ra�Re�

��Rh
Bg� 
��Rxh�Bxh� 
��Rxh�Re� 
��Rf��Kg� ��� f
�Kg
 ���
Kd
 e�� ��� fxe� Rd�� �
�Bd�Kg� ���Rf�Be� ���Ke
 Bc� ���Rg��
Kh� ��� Kf
 Rd� ��� e� Rf�� ��� Ke� Rf� ��� e� Bd� ��� Bf� Bxf� ���
gxf� Rxf� �
�Ke� Rf� ��� Re� ���

�Z�Z�Z�a
Z�Z�Z�Zp
pZ�ZrZpZ
ZpZ�okO�
�O�Z�Z�Z
Z�O�A�ZR
�O�ZKO�Z
Z�Z�Z�Z�
Move �� �wtm�

� The �� wtm positions from move 
� onwards of the following game�
Lisitsin�Capablanca� Moscow �round �� ����
��Nf
 d� �� c� c� 
� e
 Nf� ��Nc
 Bg� �� cxd� Nxd� ��Be� e� �� d� Nd�
�� ��� Qc� �� Bd� Bd� ��� Ne� N�f� ��� Nxd�� Qxd� ��� Ne� Bxe� �
�
Qxe� ��� ��� Rc� Nb� ��� Nd
 Re� ��� Rfe� Nbd� ��� h
 Qd� ��� b

Qb� ��� Bc
 Nd� ��� Qd� Nxc
 ��� Qxc
 Rad� ��� a� Qb� �
� b� Nf�
��� Qc� Ne� ��� a� Qc� ��� a� Rc� ��� axb� Qxb� ��� Ra� Rc� ��� Rec�
Rb� 
�� Qc� Qc� 
�� Ra� Rb� 
�� Qa� Qb� 

� f
 Nf� 
�� Rc� Nd� 
��
Rxc� Rcxc� 
�� Rxc� Rxc� 
�� Qxc� Nxe
 
�� Nc� Nd� 
�� b� Nb� ���
Nd�Qd� ���Nxb� axb� ���Qc� h� �
�Kf� g� ���Kg�Kg� ���Kf�Qd�
���Kg�Qf� ���Qc
 Kh� ���Kf�Qf� ���Qc� Kg� ���Kf�Qg� ���Qe�
Kf� ��� Qb� Qd� �
� Ke
 e� ��� f� exf�� ��� Kxf� Ke� ��� h� f� ��� Ke

Qc� ��� g
 g� ��� hxg� fxg� ��� Qh� Qb
� ��� Ke� g� ��� Qe� Qxg
 �
�
Qc�� Ke� ��� Qc� Qf
� ��� Ke� Qf�� ��� Kd� Qd�� ���

�l�Z�ZkZ
o�Z�Zpop
�ZQZpZ�Z
Z�Z�Z�Z�
�O�O�Z�Z
Z�ZNmPZP
�Z�Z�ZPZ
Z�Z�Z�J�
Move �� �wtm�
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Appendix C

The transposition�table

results

This appendix presents the results of the three series of experiments given in Chap�
ter �� The �rst series of experiments investigates which replacement scheme performs
best� The second series of experiments examines which information is more impor�
tant to store in a transposition�table entry� the best move in a position� or the score
of that move� Finally� the third series of experiments investigates the e�ect of storing
an n�ply PV 	n � ����
 in an entry� instead of only the best move 	a ��ply PV
�

Comparing replacement schemes

The �rst series of experiments consists of three parts� First� the 
�ply to ��
ply transposition�table results for the seven replacement schemes 	TwoBig��
TwoDeep� Big�� BigAll� Deep� New and Old
 on chess middle�game positions
are listed in Tables C�� to C���� The middle�game �gures reported are number of
nodes searched in thousands� The 
�ply to ��ply results are listed with eight table
sizes 	�K� ��K� 
�K� ��K� ���K� ���K� ���K and ����K
� These results are the
cumulative results of all six games 	�� middle�game positions
 given in Appendix A�
The ��ply results are listed with four table sizes 	��K� ��K� ���K and ����K
� These
results are the cumulative results of the �rst three games 	�� middle�game positions

given in Appendix A� For every ply depth two tables are given� one without time
stamping and one with it� In the former case the transposition tables are cleared
between moves�

���
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Second� the ���ply results for the seven replacement schemes 	TwoBig��
TwoDeep� Big�� BigAll� Deep� New and Old
 on chess endgame positions are
listed in Table C��
 with eight table sizes 	�K� ��K� 
�K� ��K� ���K� ���K� ���K
and ����K
� All �gures reported are number of nodes searched in millions� These
results are the cumulative results of all �ve games 	��� endgame positions
 given in
Appendix B� For every endgame experiment time stamping was used�
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Table C��
� Replacement�scheme results for the chess endgame
	with time stamping� ���ply searches
�

Third� the results in the domain of domineering for �ve replacement schemes
	TwoBig�� TwoDeep� Big�� Deep and New
 are listed with four table sizes
	���K� ���K� ����K and ����K
 in Table C���� All �gures reported are number
of nodes searched in millions� The results are given for the empty standard 	���

board� Obviously� no time stamping was used� since the test set consists of only one
position�

Quantifying the merits of move and score

For the second series of experiments the following six experimental searches have
been performed�

�� Search without a transposition table�

�� Search with a traditional transposition table� without score�


� Search with a traditional transposition table� without move�

�� Search with a traditional transposition table� without move� only storing and
using the score information if the score is a true value�

�� Search with a traditional transposition table� without move� only storing and
using the score information if the score is a bound value�

�� Search with a traditional transposition table� with move and score� storing and
using the score information both if the score is a true value or a bound value
	i�e�� use the transposition table fully
�



���
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Table C���� Replacement�scheme results for domineering�

First� the ��ply transposition�table results for the replacement scheme TwoBig�
on �� consecutive wtmmiddle�game positions taken from the game Kasparov�Short�
Amsterdam 	round �
 ���� 	cf� Appendix A
 are listed in Table C����

Second� the ���ply results for the replacement scheme TwoBig� on �� con�
secutive wtm endgame positions taken from the game Rabinovich�Romanovsky�
Leningrad ��
� 	cf� Appendix B
 are listed in Table C���� The experiments have
been performed with six table sizes 	�K� ��K� 
�K� ��K� ���K and ���K
� For ev�
ery experiment time stamping was used� All �gures reported are number of nodes
searched in thousands�
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Table C���� Transposition�table results for the chess middle game
	with time stamping� ��ply searches
�

Using additional memory

For the third series of experiments we have tested the results of storing an n�ply PV
	n � ����
 in an entry versus storing only the best move 	a ��ply PV
�

First� the ��ply transposition�table results for the replacement scheme TwoBig�
on �� consecutive wtmmiddle�game positions taken from the game Kasparov�Short�
Amsterdam 	round �
 ���� 	cf� Appendix A
 are listed in Table C����

Second� the ���ply results for the replacement scheme TwoBig� on �� con�
secutive wtm endgame positions taken from the game Rabinovich�Romanovsky�
Leningrad ��
� 	cf� Appendix B
 are listed in Table C���� The experiments have
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True Bound Traditional
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Table C���� Transposition�table results for the chess endgame
	with time stamping� ���ply searches
�

been performed with six table sizes 	�K� ��K� 
�K� ��K� ���K and ���K
� For ev�
ery experiment time stamping was used� All �gures reported are number of nodes
searched in thousands�
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Appendix D

The pn�search and

pn��search test set

This appendix lists the test set of ��� positions used for the proof�number�search
experiments described in Chapters 
� �� and ��

The followingwtm positions from Reinfeld 	����
 and Krabb�e 	����
 have been
used�

kZ�Z�Z�Z
O�Z�Z�Z�
PZ�Z�Z�Z
O�Z�Z�Z�
PZ�Z�Z�Z
O�Z�Z�Z�
PZ�Z�Z�Z
S�Z�J�Z�

Krabb�e ���

�Z�Z�Z�Z
Z�Z�Z�Z�
�Z�Z�Z�a
Z�Z�Z�Z�
pZ�Z�Z�Z
Z�Z�ZpZ�
�O�Z�S�o
S�Z�J�Zk

Krabb�e ��


�Z�ZBZ�Z
Z�Z�m�s�
pZ�Z�Z�Z
ZpZPZks�
�Z�O�o�Z
Zba�Z�op
�Z�M�ZPZ
ZnlNJQSR

Krabb�e ���

�Z�Z�l�Z
A�Z�ZnZ�
pZPo�MpZ
Z�ZPjpZN
BZPZ�o�O
o�Z�Z�Zb
PO�Z�O�o
S�Z�JnZ�

Krabb�e ���

�Z�Z�mks
o�ZpZ�ob
pZ�MrZpZ
Z�o�ZpO�
�ZBZpO�Z
OPZ�O�Z�
�Z�Z�A�L
S�Z�J�Z�

Krabb�e ���

rZ�ZkZ�Z
Z�ZpZpZ�
�o�J�o�Z
ZpZbZPZP
�Z�o�Z�o
Z�Z�Z�Z�
�Z�Z�Z�Z
Z�L�Z�Z�

Krabb�e ���

rZ�ZkZ�s
o�ZpZ�Z�
pZpO�ZpZ
Z�Z�ZpM�
�Z�Z�o�Z
ZQZ�ZpZ�
PO�Z�ZbZ
JBZ�Z�Z�

Krabb�e ���

rZbZ�ZQZ
opZ�Z�Z�
�jnZ�Z�Z
Z�apZ�Z�
�Z�Z�L�Z
Z�Z�LKZ�
�ZqZ�O�Z
ZqZ�ZBMR

Krabb�e �
�

���
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�Z�Z�mrZ
ZBZ�Z�Z�
�o�Z�o�Z
ZpZPZKo�
�o�jNZQZ
ZPZpZPo�
�Z�O�o�Z
l�Z�Z�s�

Krabb�e ���


�S�Z�Z�Z
Z�Z�Z�oK
�Z�Z�o�Z
Z�Z�o�Z�
�A�o�Z�m
Z�Z�Z�Z�
pZpZpo�Z
ZkZ�ZbZ�

Krabb�e ����

�s�Z�snZ
o�Z�Z�ak
bZ�oPZ�o
l�ZPZpZ�
�o�ZnO�M
Z�ZQA�ZP
PO�Z�ZBZ
Z�ZNSRJ�

Krabb�e ����

�A�sbs�a
ZpZ�Z�Z�
�Z�Z�oRo
ZRZ�ZPZ�
�Z�O�Z�j
J�o�ZBZp
�Z�Z�Z�o
Z�Z�ZnZ�

Krabb�e ����

�j�ZrZrZ
opZ�Z�Z�
�Z�ZNZ�Z
O�Z�Z�Z�
�Z�Z�ZqZ
Z�Z�Z�Z�
�Z�ZQZ�Z
Z�Z�J�Z�

Krabb�e ���


�Zna�Z�Z
Z�ZnZpZ�
�Z�Z�Z�Z
Z�Zpo�Z�
�Z�okZPo
ZpZ�ZNZP
PZPAKZ�O
Z�Z�Z�Z�

Krabb�e ����

�Z�Z�Z�Z
ZpZ�Z�Z�
�Z�Z�Z�Z
oBO�Z�Zr
pZ�ZRZ�O
J�Z�Z�Z�
�Z�o�o�o
Z�ZkZ�Z�

Krabb�e ����

�Z�Z�s�Z
Z�Z�Z�Z�
�Z�Z�Z�Z
Z�Z�Z�Zn
BM�Z�Z�Z
J�ZPAPZ�
�Z�ZpZ�M
Z�Z�j�Z�

Krabb�e �
��

�Z�Z�ZRZ
j�Z�Z�Z�
PZ�Z�Z�Z
OPZ�Z�Z�
�Z�Z�Z�Z
ZKZpZ�A�
�Z�Z�ZpO
Z�Z�Z�ar

Krabb�e �
�


ns�Z�Z�Z
Z�ZRZpZr
�Z�Z�o�Z
ZpZ�ZpZ�
�Z�Z�Z�Z
Z�A�OpZp
�ZKZkO�Z
Z�ZNZbZ�

Krabb�e �
��

rZrZbmkZ
opZ�opZ�
�Zno�ZpZ
Z�ZNZ�M�
�Z�ZPZPL
lBZ�A�ZP
�aPZ�Z�Z
ZRZ�ZRJ�

Krabb�e �
��

�Z�Z�ZBZ
ZqZrZ�o�
napZ�Z�s
OPZ�o�Z�
�O�j�ZPZ
Z�M�o�OP
NZ�ZKZ�Z
A�Z�Z�Z�

Krabb�e �
��

qZ�Z�ZkZ
Z�Z�ZpZ�
�Z�Z�Z�L
s�ZbZBZ�
�Z�Z�Z�Z
Z�Z�Z�Z�
rZ�S�Z�J
Z�Z�Z�Z�

Krabb�e �
��

rZrZ�ZkZ
opZ�opZp
�Z�ZbZ�L
Z�Z�Z�Op
�Z�ZNl�Z
Z�ZBZPZ�
POPZ�Z�Z
ZKZRZ�Z�

Krabb�e �
�


�l�Z�ZkZ
Z�Z�Z�op
�Z�a�Z�Z
Z�Z�o�Z�
�oNZ�Z�Z
ZQZ�SpZ�
�Z�ZrZ�Z
Z�Z�ZKZ�

Krabb�e �
��

rs�Z�Z�Z
Z�Z�S�Z�
�Z�Z�Z�Z
Z�ZNZ�Zb
�o�Z�Z�o
OPoBZ�Z�
�mPo�o�Z
ZKZkZ�a�

Krabb�e �
��

kZ�Z�J�Z
Z�o�Z�ZR
�Z�M�Z�m
ZRZ�ZpZ�
�Z�A�Z�Z
Z�Z�Z�Z�
bZ�Z�Z�Z
Z�lrZ�Z�

Krabb�e �
��

�Z�aBZbZ
Z�Z�Z�Zn
�Z�Z�Z�Z
O�Z�ZRZ�
�jpZ�ZRZ
ZpZ�ZpO�
pO�Z�Z�J
Z�Z�Z�Z�

Krabb�e �
�


bZNZra�Z
Z�ZpZ�Z�
rZ�Z�Z�o
Z�OpZpZK
�Z�OkZ�Z
Z�ONZpZ�
�ZBZ�O�Z
Z�Z�Z�Z�

Krabb�e �
��

bZ�Z�ZNl
J�ZpZ�Z�
�O�o�Z�Z
SBjpZPZ�
�o�Z�Z�a
Z�Z�Z�Z�
nZNZ�Z�Z
Z�Zrs�Z�

Krabb�e �
��



�
�

�Z�Z�ZrZ
O�o�Z�Z�
�ZbZ�Z�A
o�Z�Z�o�
kZ�O�Z�Z
ZRZ�ZpZr
pZ�o�ZPa
J�ZBZRZ�

Krabb�e �

�

�ZrZ�Z�Z
a�Z�ZKZk
�Z�SNZ�o
Z�Z�Z�O�
�Z�Z�Z�Z
Z�Z�Z�Zr
�Z�Z�o�Z
Z�Z�A�Z�

Krabb�e �
��

qZ�Z�Z�Z
Z�m�Z�Z�
�Z�Z�Z�Z
ZpZpZQZp
RZbZ�ZpZ
a�Z�Z�Z�
poNJ�Z�Z
ZkZ�Z�Z�

Krabb�e ���


�sNZ�ZqZ
O�ZRZ�OR
BZ�Z�o�J
ApZnZPZQ
�Z�Z�Z�o
ZBZkOrZP
�OpZ�ZPZ
Z�Z�Z�Z�

Krabb�e ����

�Z�S�ZqA
Z�Z�ZPZ�
�M�Z�Z�A
ZKZ�ZPZ�
ROPZpS�Z
ZBZPm�Z�
RopjnZpZ
aQarsbsb

Krabb�e ����

�Zrs�Z�j
opZ�Zpo�
�mnlbM�o
Z�ZpM�Z�
�ZpO�Z�Z
Z�O�Z�L�
POBZ�Z�O
S�Z�ZRJ�

Reinfeld ��

rZbl�Zrj
opZ�Zpap
�ZpZpZpL
Z�Z�Z�ZP
�Z�O�Z�Z
Z�OBZNZ�
PO�Z�OPS
Z�JRZ�Z�

Reinfeld ��

�Z�Z�Z�j
o�Z�Z�Z�
�S�Z�Z�J
Z�Z�Z�s�
�Z�Z�ZpZ
Z�Z�Z�O�
�Z�Z�Z�Z
Z�Z�Z�Z�

Reinfeld ��

rZ�sbZkZ
opZqZpZp
�ZnZpZpZ
Z�apZ�Z�
�Z�Z�O�Z
OPZBORZQ
�APM�ZPO
S�Z�Z�J�

Reinfeld ���

�Z�Z�Z�j
opZ�Z�mp
�ZpZ�ZpZ
Z�ZpM�l�
�Z�O�Z�Z
L�Z�Z�Z�
�s�Z�sPO
Z�S�ZRJ�

Reinfeld �



rZ�ZrZ�j
Z�S�Z�op
po�l�o�Z
Z�Z�Z�Z�
�Z�O�Z�S
Z�Z�Z�ZP
PO�Z�OPZ
Z�ZQZ�J�

Reinfeld ���

�ZbZ�ZkZ
Z�Z�srop
pZ�o�Z�Z
Z�oPZ�SQ
�oPZPo�M
ZPZ�ZPZP
�l�Z�Z�Z
Z�Z�Z�SK

Reinfeld ���

kZ�Z�s�Z
ZRZ�Z�ob
�oQo�m�o
Z�ZPZ�Z�
�Z�Z�o�O
Z�ZPZ�O�
rZqZRZ�J
Z�Z�Z�Z�

Reinfeld ���

rZbl�s�Z
opZ�Z�j�
�Z�ZpZ�o
Z�ZpOpZQ
�Z�M�S�O
Z�OBZ�Z�
�Z�Z�ZPZ
Z�Z�Z�J�

Reinfeld ���

rZ�ZrZkZ
opZqZpo�
�Z�ZbZpZ
Z�ZpZ�A�
�Z�L�S�Z
Z�Z�Z�Z�
POPZ�ZPO
Z�Z�S�J�

Reinfeld ���

rZ�ZqZks
opo�Z�Z�
�Z�o�ZpL
Z�Z�Z�Z�
�Z�OPZbZ
Z�Z�ZRZ�
POPZ�ZPZ
Z�Z�ZRJ�

Reinfeld ��


rm�lrZkZ
ZpZ�mpZ�
�ZpZ�ZpZ
Z�Z�Z�Z�
�oPa�Z�Z
Z�Z�Z�ZQ
PA�O�OPZ
Z�JRZBZR

Reinfeld ���

�Z�lrakZ
opo�s�Zn
�Z�oPZ�o
Z�ZPZ�Z�
�ZPZ�Z�O
ZPZ�ZQZ�
PA�Z�Z�Z
S�Z�ZRZK

Reinfeld ���

�Z�Z�Z�Z
Z�Z�Z�op
�Z�l�o�Z
Z�ZnZkZ�
�O�Z�Z�Z
Z�ZNL�ZP
�Z�Z�OPZ
Z�Z�Z�J�

Reinfeld ���

rZ�l�s�j
Z�o�a�op
pZnZ�Z�Z
ZpZQZbM�
�Z�ZnZ�Z
ZBO�A�Z�
PO�Z�OPO
S�Z�ZRJ�

Reinfeld ���



�
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rZbZ�Z�j
opo�ZBa�
�Z�Z�ZPo
Z�ZpO�Z�
�lnO�o�L
Z�Z�Z�Z�
POPZ�ZPZ
ZKZRZ�ZR

Reinfeld ���

�Z�Z�ZkZ
Z�Z�ZpZ�
pZ�Z�Zno
Z�Z�A�Z�
�Z�O�Z�Z
ZPO�l�Z�
PZ�ZrZQO
Z�Z�Z�SK

Reinfeld ��


rZbl�s�j
Zpo�MpZp
pZ�o�ZpL
Z�Z�S�Z�
nZ�Z�Z�Z
Z�Z�Z�Z�
POPO�OPO
S�A�Z�J�

Reinfeld ���

�ZQZ�m�Z
Z�S�Z�Zp
�o�lpo�j
Z�Z�Z�Z�
�Z�O�Z�O
Z�ZBZ�O�
�Z�Z�OKZ
s�Z�Z�Z�

Reinfeld ���


�Z�Z�ZkZ
Z�obZrZp
�Z�o�OpL
o�mPo�Z�
�l�ZPZ�Z
Z�M�ZPZ�
PsBZ�Z�Z
Z�J�Z�SR

Reinfeld ����

bZ�Z�s�j
oqZ�spZ�
�o�apm�o
Z�ZPM�Zn
�ZPZ�O�Z
O�ZBZ�ZK
�A�ZQZ�M
Z�ZRZ�S�

Reinfeld ����

�Z�Z�Zks
ZqZ�s�o�
�o�ZNZQZ
Z�Z�ZpZ�
�O�o�Z�Z
Z�Z�Z�S�
�Z�Z�Z�O
Z�S�Z�J�

Reinfeld ����

rZbl�Z�s
opopS�o�
�Z�Z�m�j
Z�ZPZ�Z�
�Z�Z�ZpO
Z�ZQZ�Z�
PO�M�OPZ
Z�Z�ZKZR

Reinfeld ����

rmbZ�Zks
opo�Zpop
�a�Z�Z�Z
Z�ZqZ�Z�
�Z�oNZ�Z
L�Z�ZNZ�
POPZ�JPO
S�A�S�Z�

Reinfeld ����

�Z�Z�a�Z
opZ�s�ok
�Zpo�oRo
Z�Z�sPZN
�ZPZPZ�Z
ZPZ�Z�LP
PZ�ZqZPZ
Z�Z�ZRZK

Reinfeld ����

rZbZ�skZ
Z�o�Zpop
pZ�Z�Z�Z
ZpZ�Z�Z�
�Z�O�Z�l
ZBO�Z�aP
PO�Z�LPZ
SNA�S�J�

Reinfeld ����

rZbZqM�j
Zpo�Z�o�
pZ�o�Z�m
Z�Z�o�A�
�Z�Z�Z�Z
ZBO�Z�ZQ
PO�Z�JPO
Z�Z�Z�Z�

Reinfeld ����

�Z�Z�skZ
m�o�S�ap
pZ�o�Z�Z
ZqoPZQA�
�Z�Z�Z�O
Z�O�Z�O�
PO�Z�O�Z
Z�Z�Z�J�

Reinfeld ����

rZbZ�s�Z
Z�Z�ZPZp
ponZ�Zpj
Z�o�o�Mq
�aPZPL�Z
Z�ZPZ�Z�
PA�Z�ZBO
ZRZ�ZRJ�

Reinfeld ����

qm�jrZ�s
ZpSba�Z�
pO�Z�Z�o
O�ZpO�oP
�Z�M�oQZ
Z�ZBZ�Z�
�Z�A�OPZ
S�Z�Z�J�

Reinfeld ����

�Z�s�Z�j
Z�ZrZPZp
po�MnZ�Z
Z�opZ�Z�
�Z�Z�Z�L
Z�Z�Z�S�
Pl�Z�ZPO
Z�Z�ZRJ�

Reinfeld ����

�ZrZbZ�Z
Zpo�lrj�
pZnZPZpZ
Z�Z�Z�ZR
�ZBZpZ�Z
Z�Z�L�O�
PO�Z�OPZ
Z�ZRZ�J�

Reinfeld ��
�

rZbZ�skZ
oplnZpZp
�ZnZpZpZ
Z�a�Z�M�
�ZNZ�Z�Z
OPZBO�Z�
�A�Z�OPO
S�ZQJ�ZR

Reinfeld ���


�Z�Zkm�Z
s�Z�ZpZr
pZ�ZbL�Z
l�mNO�Mp
�o�Z�Z�O
Z�Z�Z�Z�
POPZ�ZPZ
Z�JRZ�ZR

Reinfeld ����

rZ�Z�ZrZ
o�l�ZpZk
�o�S�ZpA
Z�ZpO�Z�
�Z�Z�ZbL
Z�o�Z�Z�
PZPZNOPO
Z�Z�Z�J�

Reinfeld ����



�



�Z�SNakZ
opZ�ZpZ�
�Z�ZrLpo
Z�Z�Z�Z�
�lrZ�Z�Z
Z�Z�Z�ZP
PZ�Z�O�Z
Z�ZRZ�J�

Reinfeld ����

�ZrZRm�j
ZpZqZ�op
pZ�Z�Z�Z
Z�Z�ZpZ�
�Z�O�Z�Z
ZBZ�Z�O�
PZPZQO�O
Z�Z�Z�J�

Reinfeld ����

�ZbZ�s�j
Z�Z�l�Zp
�Z�o�ZpL
Z�oBo�Z�
�Z�Z�Z�Z
Z�Z�Z�O�
�OPZ�O�O
S�Z�Z�J�

Reinfeld �
��

rZ�Z�skZ
Z�Z�Zpop
pZ�ZqZnZ
Z�o�ZNL�
�Z�ZnZ�Z
O�Z�O�Z�
�A�Z�OPO
ZRZ�ZRJ�

Reinfeld �
��

rZblrj�Z
opZnZnZp
�Z�o�o�Z
O�oPZPZQ
�ZPoPZNO
Z�Z�Z�S�
�ZPA�Z�Z
Z�Z�SBJ�

Reinfeld �
��

rm�lrZ�L
obopj�o�
�o�Zpa�Z
Z�Z�M�Z�
�Z�O�Z�Z
Z�M�Z�Z�
POPZ�ZPO
S�Z�ZRJ�

Reinfeld �
�


�Z�s�ZkZ
obZqZpo�
�o�Zpa�o
Z�Z�Z�Z�
�Z�M�Z�Z
O�ZQA�Z�
�O�Z�OPO
ZBs�S�J�

Reinfeld �
��

rZ�Zka�s
Zpo�Z�o�
pZ�Zbo�o
Z�Z�ZqZ�
�Z�LNZ�Z
ZPZ�Z�Z�
PAPZ�ZPZ
Z�ZRS�J�

Reinfeld �
�


�Z�Z�ZkZ
opZ�Z�Zp
�ZpZ�ZqZ
Z�Z�Z�AP
�ZnOrZQZ
Z�Z�Z�Z�
PO�Z�S�J
Z�Z�Z�Z�

Reinfeld �
��

�ZrZrZ�j
ZqZ�Zpop
pZ�SpZ�Z
Z�o�O�Z�
�Z�Z�ZQA
o�Z�O�Z�
bO�Z�OPO
Z�ZRZ�J�

Reinfeld �




�Zrl�skZ
opZ�Zpop
�ZnZ�a�Z
Z�Z�MRZ�
�Z�O�Z�Z
OBZ�Z�ZQ
�O�Z�ZPO
Z�ZRZ�J�

Reinfeld �
��

rZ�Z�Z�s
opZ�Zpop
�Z�j�a�Z
Z�obZ�Z�
BZ�Z�OqZ
Z�O�L�Z�
PZ�Z�ZPO
ZRARZ�J�

Reinfeld �
��

�Z�Z�ZRZ
Z�Z�lpZp
porZnZpj
Z�Z�Z�Z�
�O�ZPZQO
Z�Z�Z�M�
PZ�Z�OPZ
Z�Z�Z�J�

Reinfeld �
��

�a�Z�Z�j
Z�Z�Z�ZP
pZpZ�mpZ
Z�O�ZpZ�
PO�Z�O�Z
Z�Z�SQZR
qZ�s�Z�O
Z�Z�Z�J�

Reinfeld �
��

kZ�Z�Z�Z
o�Z�ZpZ�
PZqZbZpZ
Z�ZpZ�Zp
�Z�L�Z�Z
Z�Z�Z�ZP
�Z�Z�OPZ
ZRZ�Z�J�

Reinfeld �
��

kZ�Z�ZrZ
o�Z�ZbZ�
�ZPZ�Z�Z
Z�Z�ZpZ�
�Z�O�O�Z
Z�Z�LBsq
PZ�Z�ZPZ
Z�Z�S�J�

Reinfeld �
��

�ZrZ�a�s
o�MkZ�op
�Z�o�o�Z
M�ZQm�Z�
�Z�ZPZ�Z
l�Z�Z�ZP
PZ�Z�OPZ
ZRZ�ZKZR

Reinfeld �
��

rmblrZ�j
opopZQop
�Z�Z�Z�Z
a�ZNM�Z�
�ZBZnZ�Z
Z�Z�Z�Z�
POPO�OPO
S�A�J�ZR

Reinfeld �
��

�ZrZka�s
opZ�Zpop
�ZnZbZ�Z
ZqZNZ�A�
�O�ZQZ�Z
Z�Z�Z�Z�
PZ�Z�OPO
Z�ZRJ�MR

Reinfeld �
�


rZ�lka�s
opobZ�op
�Z�o�m�Z
Z�Z�ZpM�
�ZBLPZ�Z
Z�M�Z�Z�
POPZ�OPO
S�A�J�ZR

Reinfeld �

�



�
� Appendix D� The pn�search and pn��search test set

�ZRZ�Z�Z
Z�S�Z�Zp
�Z�Z�o�j
Z�Z�Z�m�
�Z�Z�Z�Z
ZPZ�LPOq
rZ�Z�Z�Z
Z�Z�Z�J�

Reinfeld �
��

�Z�Z�ZkZ
Z�o�Z�o�
�o�o�mNZ
ZBZPZ�Z�
�Z�ZPJ�Z
Z�Z�Z�Z�
�ZrZ�ZbZ
Z�Z�Z�ZR

Reinfeld �
�


�Z�l�skZ
Z�Z�apZp
�m�ZPZ�L
Z�ZpZpZ�
�Z�Z�ZrZ
OpZ�S�ZN
�A�Z�ZPO
Z�Z�Z�ZK

Reinfeld �
��

�Zrs�Z�j
ZbZ�apoP
pZ�o�m�Z
S�Z�Z�Z�
�Z�O�Z�Z
ZqA�ZPZ�
�O�Z�ZQZ
ZKZ�Z�ZR

Reinfeld �
��

�mbl�s�j
Z�ZrapZp
pZpZpo�L
ZpZ�Z�Z�
PZpONZ�Z
Z�Z�ZNO�
�O�ZPOBO
S�Z�ZRJ�

Reinfeld �
��

�Z�ZrZ�Z
o�Z�ZrZp
RZpZ�opZ
ZpZbj�Z�
�Z�ZpMPO
Z�O�J�Z�
�ZPZ�O�Z
Z�ZRZ�Z�

Reinfeld �
��

�Z�L�Z�Z
o�Z�a�j�
�ZpZ�sPo
Z�l�Z�Z�
�Z�ZBZ�Z
O�ZPZ�Z�
�Z�Z�Z�O
Z�Z�Z�SK

Reinfeld �
��

The following btm positions from Reinfeld 	����
 and Krabb�e 	����
 have been
used�

rZbM�skZ
opopZ�op
�Z�Z�Z�Z
Z�anO�Z�
�Z�Z�Z�Z
Z�Z�Z�J�
PA�Z�ZPO
SNZQZ�ZR

Krabb�e ��

�Z�Z�Z�Z
Z�Z�Z�Z�
�Z�Z�Z�Z
Z�Z�Z�o�
�Z�Z�ZPZ
Z�Z�Z�J�
�Z�Z�Z�o
Z�Z�ZkZ�

Krabb�e �
��

�Z�Z�j�Z
Z�Z�Z�op
pZqM�Z�Z
ZpZpZ�Z�
�Z�O�Z�Z
Z�OKO�ZQ
PO�Z�s�Z
Z�ZRZ�Z�

Reinfeld ��

�Z�l�skZ
o�Z�Zpo�
�Zpa�Z�o
Z�ZpZ�Z�
�Z�Z�ZPs
ZPMQZ�Z�
PZPA�OPZ
Z�Z�SRJ�

Reinfeld ��

�Z�ZkZrZ
Z�o�Z�s�
�oRZpZ�Z
Z�ZpO�Zp
�Z�O�ZqO
O�Z�ZNZ�
�OQZ�Z�O
Z�Z�ZRZK

Reinfeld ��


rZ�Zks�Z
Zpo�Z�Zp
�o�o�Z�Z
Z�Z�Z�Zq
�Z�ZPZnZ
Z�OPZ�L�
PO�Z�ZPZ
S�ABZ�J�

Reinfeld ���

rZ�ZkZ�s
obo�Zpo�
�Z�a�m�Z
ZpZ�Z�Z�
�Z�O�Z�o
ZBZ�M�Oq
PO�OQO�O
S�A�ZRJ�

Reinfeld �
�

rZ�Z�Z�j
o�L�Z�Zp
�ZpZbZrl
Z�Z�o�Z�
BZ�ZPZ�Z
Z�Z�O�Z�
POPZ�ZPZ
Z�Z�SRJ�

Reinfeld ���



�
�

rZ�s�ZkZ
obZ�Zpop
�o�apZ�Z
Z�Z�Z�Zq
�Z�m�ZnO
OPZBZ�O�
�A�M�O�Z
SQZ�MRJ�

Reinfeld ����

�Z�ZrZkZ
Z�Z�Zbop
�ZpZ�Z�Z
Z�Zps�Z�
�Z�Z�Z�Z
ZBZ�ZpOq
PORZ�O�Z
Z�S�ZQJ�

Reinfeld ���


�Z�s�ZkZ
o�Z�Z�Zp
�ZQZ�ZpZ
Z�Z�l�Z�
�ZPZpZ�Z
O�Z�ObZ�
�O�Z�O�O
Z�J�ZBS�

Reinfeld ����

�Z�Z�Z�L
opo�ZqZ�
�Z�o�ZkZ
O�ZPorZN
�OPZ�Z�Z
Z�Z�Z�ZR
�Z�Z�sPZ
Z�Z�Z�J�

Reinfeld ���


rZ�ZkZ�s
obZqZpZ�
�Z�Z�Z�Z
Z�o�oPZ�
�Z�ZpZpZ
A�O�L�O�
PZPZ�ZKZ
S�Z�ZRZ�

Reinfeld ����

�Z�Z�s�j
o�Z�Z�op
�Z�Z�Z�Z
ZPZpl�Z�
PZpZ�mRZ
L�Z�Z�Z�
�Z�Z�APO
Z�Z�Z�J�

Reinfeld ��



rZbZ�ZrZ
Z�Z�lkZ�
�mnZpZpZ
Z�ZpOpZP
pZ�Z�O�Z
ZpZ�ZBLN
PJPANZ�Z
Z�ZRZ�ZR

Reinfeld ��



rZbZ�s�j
opZ�Z�op
�Z�o�Z�Z
Z�ZBZ�Z�
�Z�Z�Z�Z
ZQM�Z�On
PO�Z�l�O
S�Z�S�ZK

Reinfeld ��
�

�Z�Z�Z�j
ZpZ�Z�o�
�Z�Z�Z�o
Z�ZPZnZ�
�Z�ZQZ�Z
Z�O�ZPZ�
PO�Z�lRO
Z�Z�Z�ZK
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Appendix E

The pn�search versus

���search results

This appendix presents the results of the experiments with the pn�search algorithm
and the ���seach algorithm described in Chapter 
� In Table E�� all results are listed
for the test set of ��� positions� The numbers refer to the number of nodes searched�
A dash signi�es that no solution is found due to the memory constraints 	���������
nodes
� The �rst column lists the test positions� Columns two and three show the
results for pn search and �� search� respectively�
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Table E��� Comparing pn search and �� search 	continued on next page
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Appendix F

The pn��search results

This appendix lists the results of the experiments with the pn��search algorithm and
its modi�cations�

In Chapter � it is stated that when parameter a becomes large and parameter b
becomes small the fraction function approaches f	x
 � �� which means that standard
pn search is used� When both parameter a and parameter b have a small positive
value the fraction function approaches f	x
 � �� which means that the pn��search
algorithm suggested by Allis 	����
 is used� Table F�� con�rms these observations�
In the �rst column of the table the algorithm is given� The second column states the
number of positions solved� and the third column states the total number of nodes
searched� We note that the pn�search result di�ers from the result with 	a b
 equal
to 	���K �
� because the �rst result stems from the immediate�evaluation variant of
pn search� and the second from the delayed�evaluation variant of pn search�

Algorithm Solved � nodes
Pn search �� ���
�����
a����K b�� �
 ���������
a�� b�� ��� �
���	�
��
Pn� search �Allis� ��� �
���	�
��

Table F��� Two extremes of the fraction function�

Next� all results of the experiments described in Chapter � are presented in
Table F��� For these experiments� the test set consists of ��� positions� In the �rst
two columns the values of parameters a and b are given� The third column states
the number of positions solved� The sizes of the �rst�level and second�level tree are
listed in columns four and �ve� respectively� Column six shows the total number of
nodes searched over the solved positions� Finally� the maximum number of nodes in
memory for the most di�cult test position is given in column seven�

�
�
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a b � First level Second level Total Maximum
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a b � First level Second level Total Maximum
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Appendix G

The BTA results for

pn search

This appendix presents the results of the experiments with the pn�search algorithm
and its modi�cations described in Chapter �� In Table G�� the results of the ��� test
positions are listed for four pn�search variants with the same move ordering� The
numbers refer to the number of nodes searched� A dash signi�es that no solution
was found due to the memory constraints 	������� nodes
� The �rst column lists
the test positions� Columns two to �ve show the results for the tree algorithm�� the
DAG algorithm� the DCG algorithm� and the BTA algorithm� respectively�
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Table G��� The results for four pn�search variants 	continued on next page
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Tree DAG DCG BTA
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Memory versus search in games

In this thesis� research is presented on the trade�o� between memory and search� The
domain under investigation is the domain of two�player zero�sum games� in particular
the games of chess and domineering� The trade�o� between memory and search is
enhanced by the increase in availability of computer memory and the increase in
processor speed�

Currently� the prices of computer memory are decreasing� Therefore� acquiring
larger memory con�gurations is no longer an obstacle� making it easier to equip a
computer with more memory�A depth��rst search algorithm 	such as �� search
 uses
little memory� The large amount of remaining memory can be used� e�g�� to prevent
the re�search of transpositions 	identical positions in the tree
� For this purpose� a
transposition table� holding the results of previous searches� is maintained in the
remaining memory� The trade�o� transpires in more memory to be used� in favour
of less searching� This leads to the formulation of the �rst problem statement�

Problem statement �� Which methods exist to improve the e�ciency of a transpo�
sition table�

In Chapter � three methods for improving the e�ciency of a transposition ta�
ble are described� The �rst method addresses the use of an adequate replacement
scheme� When a con�ict arises� a replacement scheme decides which positions to
keep in the table� and which positions to discard� Experiments show that in this
area improvements can still be found� A new replacement scheme� called TwoBig��
based on a two�level table and the number of nodes of the subtree investigated�
outperforms all other schemes� It enabled us to solve the game of domineering for
several boards� including the standard board� The second method addresses doubling
the number of positions in the transposition table� Experiments show that doubling
the number of positions is a good method for improving the e�ciency of a trans�
position table� However� beyond a certain table size not much is to be gained from
doubling the number of positions� Therefore� the third method concentrates on using
the remaining memory not for doubling the number of positions of the table� but
for enlarging the size of an entry� by storing more information in an entry� A limited
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set of experiments show that � beyond a certain table size � this method gains more
than doubling the number of positions in the table� although more experiments are
needed to substantiate this claim�

In Chapter 
 proof�number search 	pn search
 is described� This is a best��rst
search algorithm� storing the complete search tree in memory� Experiments show
that pn search is suitable for solving mate problems in chess� However� there are two
drawbacks� 	�
 a solution cannot be found if the search tree takes up all memory� and
	�
 identical positions in the search tree 	and their subtrees
 are doubly searched�
These drawbacks are taken care of in Chapters � and ��

Every year there is a large increase in computer speed� Increasing computer
speed causes acceleration of search algorithms� A best��rst search algorithm 	such
as pn search
 stores the complete search tree in memory� After a relatively short
search time no more memory is available since the fast search has generated too
many nodes� The increase in computer speed can also be used to do more search at
nodes� thereby gaining more knowledge per node� The trade�o� transpires in more
searching� in favour of less memory to be used� This leads to the formulation of the
second problem statement�

Problem statement �� Which methods exist for best��rst search to reduce the need
for memory by increasing the search� thereby gaining more knowledge per
node�

In Chapter � the pn��search algorithm is presented� The concept behind this al�
gorithm is that the leaves are not evaluated by an evaluation function� but by a sec�
ondary pn�search process� Several experiments with di�erent sizes of the secondary
search tree show that much can be gained by choosing the right size of the secondary
search tree� The conclusion is that the pn��search algorithm is a good method to
use the increase in computer speed for additional searching� thereby gaining a better
assessment of the values of the leaves�

As mentioned above� in pn search identical positions in the search tree 	and their
subtrees
 are doubly searched� In depth��rst search algorithms the re�search of a
transposition is avoided by implementinga transposition table� A logical way to avoid
the re�search of a transposition in best��rst search is to store a transposition only
once� thereby transforming the tree into a Directed Cyclic Graph 	DCG
� However�
an important aspect of a position is the path leading to it 	the history
� Ignoring the
history of a position introduces the graph�history�interaction 	GHI
 problem� This
leads to the third problem statement�

Problem statement �� Is it possible to give a solution for the GHI problem for best�
�rst search�

In Chapter � the GHI problem is analyzed in the domain of pn search� A di�erent
implementation of a DCG is suggested� and the pn�search algorithm is modi�ed to
be able to search this DCG implementation� The new BTA 	Base�Twin Algorithm

algorithm is based on the distinction of two types of nodes� termed base nodes and
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twin nodes� The purpose of these types is to distinguish between equal positions
with di�erent history� Experiments with this pn�search algorithm for DCGs con�rm
our solution of the GHI problem� In the test positions submitted the BTA algorithm
solves them all and hence outperforms other attempts to overcome the GHI problem
as well as the standard tree algorithm�

Summarizing� the main contributions of this thesis are as follows�

�� The discovery of a new replacement scheme 	TwoBig
� based on a two�level
transposition table and number of nodes of the subtree investigated�

�� Solving the game of domineering�


� The pn��search algorithm�

�� The BTA algorithm 	implemented for pn search
� solving the GHI problem�
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Samenvatting

Geheugen versus zoeken in spelen

In dit proefschrift wordt onderzoek gepresenteerd betre�ende de uitwisseling tussen
geheugen en zoeken� Het onderzoeksdomein is het domein van de tweepersoons nul�
som spelen� in het bijzonder de spelen schaken en domineering� De uitwisseling tussen
geheugen en zoeken wint aan belangrijkheid door het beschikbaar komen van meer
computergeheugen en meer processorsnelheid�

Computergeheugen wordt steeds goedkoper� en komt daardoor in steeds grotere
mate beschikbaar� Een depth��rst zoekalgoritme 	zoals �� search
 gebruikt weinig
geheugen� Het resterende geheugen kan bijvoorbeeld gebruikt worden om het heron�
derzoeken van identieke stellingen� de zogenoemde transposities� te vermijden� Daar�
toe kan een transpositietabel� die resultaten van voorgaande zoekprocessen bewaart�
in het resterende geheugen worden opgeslagen� De uitwisseling zien we terug in het
gebruik van meer geheugen� zodat minder hoeft te worden gezocht� Dit resulteert in
de formulering van de eerste probleemstelling�

Probleemstelling �� Welke methoden bestaan er om de e�ci entie van een transposi�
tietabel te verbeteren�

In Hoofdstuk � worden drie methoden beschreven om de e�ci entie van een trans�
positietabel te verbeteren� De eerste methode betreft het gebruik van een adequaat
vervangingsschema� Deze methodiek bepaalt bij een con�ict welke stellingen wel� en
welke niet opgeslagen worden� Experimenten tonen aan dat op dit terrein nog steeds
verbeteringen gevonden kunnen worden� Een nieuw vervangingsschema� genaamd
TwoBig�� gebaseerd op een two�level tabel en het aantal knopen van de onder�
zochte subboom� presteert beter dan alle andere schema�s� Dit schema maakte het
mogelijk om het spel domineering op te lossen voor verscheidene borden� waaron�
der het standaard bord� De tweede methode betreft het verdubbelen van het aantal
stellingen in een transpositietabel� Experimenten tonen aan dat het verdubbelen van
het aantal stellingen een goede methode is om de e�ci entie van een transpositietabel
te verbeteren� Vanaf een bepaalde tabelgrootte valt echter weinig winst meer te be�
halen met het verdubbelen van het aantal stellingen� De derde methode gebruikt het
resterende geheugen daarom niet om het aantal stellingen in de tabel te verdubbe�
len� maar om het formaat van een tabelingang te vergroten� door meer informatie
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in een ingang op te slaan� Een beperkt aantal experimenten toont aan dat � vanaf
een bepaalde tabelgrootte � deze methode meer oplevert dan het verdubbelen van
het aantal stellingen in de tabel�

In Hoofdstuk 
 wordt proof�number search 	pn search
 beschreven� Dit is een best�
�rst zoekalgoritme� dat de gehele zoekboom in het geheugen opslaat� Experimenten
tonen aan dat pn search geschikt is voor het oplossen van matproblemen in schaken�
Er zijn echter twee nadelen� 	�
 er wordt geen oplossing gevonden als het geheugen
vol raakt� en 	�
 identieke stellingen in de zoekboom 	en hun subbomen
 worden
dubbel onderzocht� In Hoofdstukken � en � wordt op deze nadelen ingegaan�

De snelheid van computers wordt ieder jaar groter� Vergroting van de com�
putersnelheid betekent automatisch ook versnelling van het zoeken� Een best��rst
zoekalgoritme 	zoals pn search
 slaat de gehele zoekboom op in het geheugen� Na een
relatief korte zoektijd is geen geheugen meer beschikbaar omdat het snelle zoekproces
teveel knopen heeft gegenereerd� De vergroting van de computersnelheid kan echter
ook gebruikt worden om meer te zoeken bij de knopen� waardoor meer kennis per
knoop wordt verkregen� De uitwisseling komt terug in meer zoeken� zodat minder
geheugen gebruikt hoeft te worden� Dit resulteert in de formulering van de tweede
probleemstelling�

Probleemstelling �� Welke methoden bestaan er voor best��rst zoekalgoritmen om
de vraag naar geheugen te verminderen� door meer te zoeken en daardoor meer
kennis per knoop te verkrijgen�

In Hoofdstuk � wordt het pn��search algoritme gepresenteerd� Het concept achter
dit algoritme is dat de bladeren niet door een evaluatiefunctie worden ge evalueerd�
maar door een tweede pn search proces� Verscheidene experimenten met verschillende
grootten van de tweede zoekboom tonen aan dat veel gewonnen kan worden door
de juiste grootte van de tweede zoekboom te kiezen� De conclusie is dat pn� search
een goede methode is om de vergroting van de computersnelheid te gebruiken om
meer te zoeken� waarbij een betere schatting van de waarden van de bladeren wordt
verkregen�

Zoals hierboven is genoemd worden in pn search identieke stellingen in de zoek�
boom 	en hun subbomen
 dubbel onderzocht� In depth��rst zoekalgoritmen wordt
de heronderzoeking van een transpositie vermeden door het gebruik van een trans�
positietabel� Een logische manier om de heronderzoeking van een transpositie in
een best��rst zoekalgoritme te vermijden is om de transpositie maar �e�en keer op te
slaan� waardoor de boom wordt veranderd in een Gerichte Cyclische Graaf 	DCG
�
Een belangrijk aspect van een stelling is echter het pad dat tot deze stelling leidt
	de geschiedenis
� Het negeren van van de geschiedenis van een stelling introduceert
het graph�history�interaction 	GHI
 probleem� Dit resulteert in de derde probleem�
stelling�

Problemstelling �� Is het mogelijk om een oplossing te geven voor het GHI probleem
voor best��rst zoekalgoritmen�
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In Hoofdstuk � wordt het GHI probleem geanalyseerd in het domein van
pn search� Er wordt een andere implementatie van een DCG geopperd� en het
pn search algoritme wordt gewijzigd om het mogelijk te maken om deze DCG im�
plementatie te onderzoeken� Het nieuwe BTA 	Base�Twin Algorithm
 algoritme is
gebaseerd op het onderscheid tussen twee typen knopen� genaamd base nodes en
twin nodes� Het doel van deze typen is om een onderscheid te kunnen maken tussen
knopen met verschillende geschiedenissen� Experimenten met dit pn�search algoritme
voor DCGs bekrachtigen onze oplossing van het GHI probleem� Het BTA algoritme
lost alle teststellingen op en presteert dientengevolge beter dan zowel andere pogin�
gen om het GHI probleem te overwinnen als het standaard algoritme voor bomen�

Samenvattend kunnen de hoofdbijdragen van dit proefschrift als volgt gefor�
muleerd worden�

�� De ontdekking van een nieuw vervangingsschema 	TwoBig
� gebaseerd op een
two�level transpositietabel en het aantal knopen van de onderzochte subboom�

�� Het oplossen van het spel domineering�


� Het pn��search algoritme�

�� Het BTA algoritme 	ge "mplementeerd in pn search
� dat het GHI probleem
oplost�
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