
Chapter 3

The MT Framework

The previous chapter showed how the null-window idea is used in NegaScout. This
chapter takes the idea further. In section 3.1 we present a reformulation of SSS*
that uses null-window Alpha-Beta calls. It has the advantage of solving a number of
obstacles that have hindered SSS*’s use in game-playing programs. The reformulation
is based on the Alpha-Beta procedure. It examines the same leaf nodes in the same
order as SSS*. It is called MT-SSS* and the code is shown in figure 3.1.

In section 3.2 we will generalize the ideas behind MT-SSS* into a new framework
that elegantly ties together a number of algorithms that are perceived to be dissimilar.

Results from this chapter have been published in [111, 113].

3.1 MT-SSS*

SSS* finds the minimax value through a successive lowering of an upper bound. In
each of a number of passes it selects nodes in a best-first order. The upper bound of
each pass is defined by a max solution tree, whose minimax value is the maximum of
its leaves. The “best” node to expand next is a brother of the left-most leaf defining
this value—the critical leaf at the end of the principal variation. (See also figure 2.18.)

Here we reformulate SSS* as a sequence of upper bounds, generated by null-
window Alpha-Beta calls. The basis of our reformulation of SSS* is the realization
that a conventional version of Alpha-Beta that uses transposition tables, such as the one
in figure 2.15 or in [81, 82], can be used to traverse the principal variation. The node
that it will expand next (if called on the same max solution tree with the right search
window) is precisely the one that is “SSS*-best,” the one that SSS* would select.

Alpha-Beta’s postcondition on page 18 shows that for a fail low, a max solution tree
is constructed and an upper bound is returned. Assuming that the solution trees that
Alpha-Beta and SSS* generate are the same, then all the ingredients for a reformulation
of SSS* are available. The code in figure 3.1 implements the idea of calling Alpha-Beta
to generate a sequence of upper bounds. By using a window of 1, , where is the
previous upper bound, a return value of g 1 is a fail low where g equals the new
upper bound, and a return value of g is a fail high where g equals a lower bound.

38 The MT Framework

function MT-SSS*(n) ƒ;
g := + ;
repeat

:= g;
g := MT(n,);
/* the call g := Alpha-Beta(n, 1,); is equivalent */

until g = ;
return g;

Figure 3.1: SSS* as a Sequence of Memory-Enhanced Alpha-Beta Searches

(Since is always an upper bound, the g > part of g will never occur, assuming
there are no search inconsistencies, see section 2.2.3.). The example in appendix A.3
shows how Alpha-Beta constructs max solution trees by selecting nodes best-first. A
full formal proof of the equivalence of MT-SSS* and SSS* can be found in [106],
an extended outline in [113, 112]. An “informal proof” describing in detail the link
between the six SSS* cases and the Alpha-Beta code can be found in appendix B.

MT-SSS* only uses null-windows, so there really is no need to carry around the
two and bounds. Figure 3.2 shows a null-window-only version of Alpha-Beta,
enhanced with memory. Pearl introduced the procedure Test [96, 97], a routine that
tests whether the value of a sub tree lies above or below a certain threshold. We have
named our procedure MT, for Memory-enhanced Test. MT returns a bound, not just a
Boolean value. It is a fail-soft Test.

In accessing storage, most Alpha-Beta implementations descend to a child node,
retrieve the bounds stored previously in memory, and check whether an immediate
cutoff occurs (see for example the code in figure 2.15). In our pseudo code for MT, we
have taken a different approach. MT checks whether a child bound will cause a cutoff
before calling itself recursively. In this way we save a recursive call, and it simplifies
showing that SSS* and MT-SSS* are equivalent. In figure B.1 a version of MT is shown
where the six SSS* list operations are inserted, which is used to show the equivalence.
However, there is no conceptual difference. Other Alpha-Beta implementations expand
the same nodes, and can be used just as well, as long as values of stored nodes are
treated as in figure 2.15.

One of the problems with Stockman’s original SSS* formulation is that we found
it very hard to understand what is “really” going on. Part of the reason of the problem
is the iterative nature of the algorithm. This has been the motivation behind the
development of other algorithms, notably RecSSS* [21] and SSS-2 [102], which are
recursive formulations of SSS*. Although clarity is a subjective issue, it seems simpler
to express SSS* in terms of a well-understood algorithm (Alpha-Beta), rather than
inventing a new formulation. Comparing the figures 2.17 and 3.1 shows why we
believe to have solved this point. Furthermore, figure 3.3, which gives the code for our
reformulation of DUAL*, shows the versatility of this formulation. In section 3.2 we

3.1 MT-SSS* 39

/* MT: storage enhanced null-window Alpha-Beta(n, 1,). */
/* n is the node to be searched, 1 is and is in the call. */
/* ’Store’ saves search bound information in memory; */
/* ’Retrieve’ accesses these bounds. */
function MT(n,) g;

if n = leaf then
retrieve n. ƒ , n. ƒ+; /* non-existing bounds are */
if n. ƒ = and n. ƒ+ = + then

g := eval(n);
else if n. ƒ+ = + then g := n. ƒ ; else g := n. ƒ+;

else if n = max then
g := ;
c := firstchild(n);
/* g causes a beta cutoff (=) */
while g < and c = do

retrieve c. ƒ+;
if c. ƒ+ then

g := MT(c,);
else g := c. ƒ+;
g := max(g, g);
c := nextbrother(c);

else /* n is a min node */
g := + ;
c := firstchild(n);
/* g < causes an alpha cutoff (= 1) */
while g and c = do

retrieve c. ƒ ;
if c. ƒ < then

g := MT(c,);
else g := c. ƒ ;
g := min(g, g);
c := nextbrother(c);

/* Store one bound per node. Delete any old bound (see page 53). */
if g then n. ƒ := g; store n. ƒ ;

else n. ƒ+ := g; store n. ƒ+;
return g;

Figure 3.2: MT: Null-window Alpha-Beta With Storage for Search Results

40 The MT Framework

function MT-DUAL*(n) ƒ;
g := ;
repeat

:= g;
g := MT(n, + 1);
/* the call g := Alpha-Beta(n, , + 1); is equivalent */

until g = ;
return g;

Figure 3.3: DUAL* as a Sequence of Memory-Enhanced Alpha-Beta Searches

pursue this point further by presenting a generalization of these codes.

3.2 Memory-enhanced Test: A Framework

The relatively simple and well-known concept of null-window Alpha-Beta search is
powerful or versatile enough to create the best-first behavior of a complicated algorithm.
This section introduces a generalization of the ideas behind MT-SSS*, in the form of a
new framework for best-first minimax algorithms. To put it succinctly: this framework
uses depth-first procedures to implement best-first algorithms. Memory is used to pass
on previous search results to later passes, allowing selection of the “best” nodes based
on the available information from previous passes.

The previous section showed how null-window Alpha-Beta searches can be used as
an efficient method to compute bounds, and thus form the core of our SSS* reformu-
lation. So far, we have discussed the following two mechanisms to be used in building
efficient algorithms:

1. null-window searches cut off more nodes than wide search windows, and

2. we can use storage to glue multiple passes of null-window calls together, so that
they can be used to home in on the minimax value, without re-expanding nodes
searched in previous passes, creating a best-first expansion sequence.

A general driver routine to call MT repeatedly can be constructed. One idea, SSS*’s
idea, for such a driver is to start at an upper bound for the minimax value, ƒ+ = + .
Subsequent calls to MT can lower this bound until the minimax value is reached, as
shown in figure 3.1.

Having seen the two drivers for MT in figure 3.1 and 3.3, the ideas can be encom-
passed in a generalized driver routine. The driver provides a series of calls to MT to
refine bounds on the minimax value succesively. The driver code can be parameterized
so that one piece of code can construct a variety of algorithms. The three parameters
needed are:

3.2 Memory-enhanced Test: A Framework 41

Dual*

ƒ

ƒ

ƒ

SSS*

+

ƒ+

ƒ+

ƒ

MTD(step)

+

ƒ+

ƒ

ƒ

+

ƒ

ƒ+

ƒ

ƒ+

ƒ+

ƒ

ƒ

MTD(bi) MTD(f)

+

ƒ

ƒ+

h

ƒ

ƒ

Figure 3.4: MT-based Algorithms

function MTD(n, first, next) ƒ;
ƒ+ := + ; ƒ := ;
bound := first;
repeat

g := MT(n, bound);
if g < bound then ƒ+ := g else ƒ := g;
/* The next operation must set the variable bound */
next;

until ƒ = ƒ+;
return g;

Figure 3.5: A Framework for MT Drivers

• n
The root of the search tree.

• first
The first starting bound for MT.

• next
A search has been completed. Use its result to determine the next bound for MT.

Using these parameters, an algorithm using our MT driver, MTD, can be expressed as
MTD(n, first, next). The last parameter is not a value but a piece of code. The pseudo
code of the driver can be found in figure 3.5. A number of interesting algorithms
can be constructed using MTD, of which we present the following examples (see also
figure 3.4):

42 The MT Framework

function MTD(n, ƒ) ƒ;
g := ƒ;
ƒ+ := + ; ƒ := ;
repeat

if g = ƒ then := g + 1 else := g;
g := MT(n,);
/* g := Alpha-Beta(n, 1,) is equivalent */
if g < then ƒ+ := g else ƒ := g;

until ƒ = ƒ+;
return g;

Figure 3.6: MTD(ƒ)

• MTD(n, + bound := g)
This is just MT-SSS*. For brevity we call this driver MTD(+).

• MTD(n, bound := g + 1)
This is MT-DUAL*, which we refer to as MTD().

• MTD n, approximation, if g < bound then bound := g else bound := g + 1
Rather than arbitrarily using an extreme value as a starting point, any informa-
tion on where the value is likely to lie can be used as a better approximation.
(This assumes a relation between start value and search effort that is discussed
in section 4.3.1.) Given that iterative deepening is used in many application
domains, the obvious approximation for the minimax value is the result of the
previous iteration. This algorithm, which we call MTD(ƒ), can be viewed as
starting close to ƒ, and then doing either SSS* or DUAL*, skipping a large part
of their search path. Since the generic MTD code may be confusing at first sight,
we give MTD(ƒ)’s pseudo code (slightly reorganized to make it look better) in
figure 3.6. This figure also facilitates a direct comparison with figures 3.1 and
3.3.

• MTD n, average(+) , bound := average(ƒ+, ƒ)
Since MT can be used to search from above (SSS*) as well as from below
(DUAL*), an other try is to bisect the interval and start in the middle. Since
each pass produces an upper or lower bound, we can take some pivot value in
between as the next center for our search. This algorithm, called MTD(bi) for
short, bisects the range of interest, reducing the number of MT calls. To reduce
big swings in the pivot value, some kind of aspiration searching may be beneficial
in many application domains [128]. Looking at Alpha-Beta’s postcondition the
bisection idea comes to mind easily. It is further discussed in section 3.3.1.

• MTD n, + bound := max(ƒn + 1, g stepsize)
Instead of making tiny jumps from one bound to the next, as in MTD(+),

3.2 Memory-enhanced Test: A Framework 43

MTD() and MTD(ƒ), we could make bigger jumps. By adjusting the value of
stepsize to some suitably large value, we can reduce the number of calls to MT.
This algorithm is called MTD(step).

• MTD(best)
If we are not interested in the game value itself, but only in the best move, then a
stop criterion suggested by Hans Berliner in the B* algorithm can be used [13].
Whenever the lower bound of one move is not lower than the upper bounds of all
other moves, it is certain that this must be the best move. To prove this, we have to
do less work than when we try to determine ƒ, since no upper bound on the value
of the best move has to be computed. We can use either a disprove-rest strategy
(establish a lower bound on one move and then try to create an upper bound on
the others) or prove-best (establish an upper bound on all moves thought to be
inferior and try to find a lower bound on the remaining move). A major difference
between B* and MTD(best) is that we use fixed-depth search, and the bounds
are backed-up leaf values, instead of two separate heuristic bounds. The stop
criterion in the ninth line of figure 3.5 must be changed to ƒbestmove ƒ+

othermoves.
Note that this strategy has the potential to build search trees smaller than the
minimal search tree, because it does not prove the minimax value.

The indication which move should be regarded as best, and a suitable value for
a first guess, can be obtained from a previous iteration in an iterative deepening
scheme. This notion can change during the search, which makes for a more
complicated implementation. Section 3.3.2 contains a short analysis of the best-
move cutoff. In [108] we report on tests with this variant.

Note that while all the above algorithms use storage for bounds, not all of them need to
save both ƒ+ and ƒ values. MTD(+), MTD() and MTD(ƒ) refine a single solution
tree at a time. MTD(bi) and MTD(step) usually refine a union of two solution trees,
where nodes on the intersection (the principal variation) should store both an upper and
lower bound at the same time (see also a remark on page 53 and [104]). We refer to
section 4.1 for data indicating that these memory requirements are acceptable.

Some of the above instances are new, some are not, and some are small adaptations
of known ideas. The value of this framework does not lie so much in the newness of
some of the instances, but in the way how it enables one to formulate the behavior of a
number of algorithms. Formulating a seemingly diverse collection of algorithms into
one unifying framework allows us to focus attention on the fundamental differences in
the algorithms (see figure 3.4). For example, the framework allows the reader to see
just how similar SSS* and DUAL* really are, that these are just special cases of calling
Alpha-Beta. The drivers concisely capture the algorithm differences. MTD offers a
high-level paradigm that facilitates the reasoning about issues like algorithm efficiency
and memory usage, without the need for low-level details like search trees, solution
trees and which node to expand next.

44 The MT Framework

3.2.1 Related Work

Other Work on Null-Windows

All the MTD algorithms are based on MT. Since MT is equivalent to a null-window
Alpha-Beta call (plus storage), they search less nodes than the inferior one-pass/wide-
window Alpha-Beta(n, +) algorithm.

There have been other attempts with algorithms that solely use null-window Alpha-
Beta searches [90, 125]. Many people have noted that null-window searches have a
great potential, since tight windows usually generate more cutoffs than wider windows
[3, 33, 35, 44, 96, 125]. However, it appears that the realization that the transposition
table can be used to create algorithms that retain the efficiency of null-window searches
by gluing them together without any re-expansions—and create an SSS*-like best-
first expansion sequence—is new. This idea is supported by the fact that previous
algorithms all tried to minimize the number of small-window Alpha-Beta calls in some
way, causing those algorithms to make sub-optimal decisions (see section 3.3.2). The
notion that the value of a bound on the minimax value of the root of a tree is determined
by a solution tree was not widely known among researchers, let alone that this sub-tree
fits in memory. When seen in this light, it is not too surprising that the idea of using
depth-first null-window Alpha-Beta searches to model best-first algorithms like SSS*
is new, despite their widespread use by the game-tree search community.

Other Frameworks

The literature describes two frameworks that generalize best-first and depth-first min-
imax search—or rather, SSS* and Alpha-Beta. Ibaraki created one such framework,
called Gsearch [57]. He concentrated on the informed model where, inspired by the
ideas of B*, heuristic upper and lower bounds are available for every node. In the
uninformed version—disregarding the heuristic bounds—it is possible to instantiate
the framework to both Alpha-Beta and an SSS* variant by choosing an appropriate
function for the so-called select rule. Ibaraki has used Gsearch for analyzing domi-
nation of algorithms [58]. Pijls and De Bruin [104] show that the SSS*-like Gsearch
instance differs slightly from Stockman’s SSS*. The Gsearch instance, which they call
Maxsearch, is a bit more efficient because it stores both upper and lower bounds for
every node, wheras SSS* works with only one. This makes that SSS* misses cutoffs
in certain special cases [104]. A recursive version of Gsearch, called Rsearch, al-
lows restricted-memory versions of SSS* (or rather, Maxsearch) to be formulated [59].
Rsearch instances typically restrict the search trees to be built to a certain depth, so
that a best-first select rule can only work in a part of the tree. Pijls and De Bruin [105]
show that when the size of the resident tree is reduced to zero, the resulting Rsearch
instance selects the same nodes as Alpha-Beta. Thus, in Rsearch one can instantiate
Alpha-Beta in two ways: by using a left-first select rule, or by reducing the size of the
stored search tree.

Another framework for Alpha-Beta and SSS* is proposed by Bhattacharya and

3.2 Memory-enhanced Test: A Framework 45

Bagchi [22]. This framework is called GenGame. It is based on their work on
RecSSS* [21]. GenGame suffers from this background, in that it is a relatively complex
framework. Also, it uses an SSS*-like OPEN list. Just like the Gsearch/Rsearch duo,
instances of GenGame are created by changing certain rules, and instances vary in
the amount of memory that is needed. The authors describe how the framework can
be adapted to yield two variations (QuickGame and MGame) that both have reduced
memory requirements, at the cost of expanding more nodes than SSS*. The QuickGame
variation is not dominated by Alpha-Beta, it misses some of Alpha-Beta’s deep cutoffs,
although Bhattacharya reports that on average QuickGame tends to expand less nodes
on artificial random trees [18]. The other variation, MGame, appears to be using the
same idea as Rsearch to achieve a compromise between memory efficiency and search
efficiency. On his part, Ibaraki, the inventor of Rsearch, makes no mention of the
work on Staged SSS* by Campbell [32, 33] which also describes the idea of applying
SSS* recursively. The idea of using stages to control memory requirements of best-first
algorithms goes back to standard texts on search such as Pearl [99, p. 68] and Nilsson
[93, p. 71].

The strength of both frameworks is that they isolate the differences between best-
first and depth-first search in certain parts of the framework. Furthermore, they provide
a model that helps in reasoning about Alpha-Beta and SSS*-like algorithms. This
applies especially to Gsearch, which is a rather abstract, but clear, framework.

A drawback of Gsearch and GenGame is that they are not easily amenable to
an implementation. They are both high-level frameworks that require a non-trivial
amount of detail to be filled in to yield an efficient design that can be implemented in
an Alpha-Beta-based game-playing program.

Compared to Gsearch and GenGame, MT is a “focused” framework. It is only
concerned with the manipulation of bounds on the value of the root, and only with best-
first algorithms. The details of how to traverse a tree are performed by a transposition
table-enhanced Alpha-Beta procedure that acts as a black-box for the calculation of
bounds. This makes MT a simpler framework that nevertheless has the power to model
a complex algorithm such as SSS*. Since MT is based on Alpha-Beta, it is a very
practical framework. Combined with its simplicity, MT is well-suited for experimental
validation of ideas for new best-first algorithms. MTD(ƒ) shows that this process can
be successful (see section 4.2).

Gsearch, and especially GenGame, are designed to capture SSS*’s behavior. The
relatively complex best-first selection strategy of SSS* is their basis. Modeling the
simple left-to-right Alpha-Beta behavior is achieved by disabling some of the features
of the framework. In effect, they use advanced, complex machinery to model simple
behavior. They start at the complex side, and make modifications to end up at the
simple side. MT, on the other hand, does not attempt to model Alpha-Beta, but uses it
as a building block to model best-first algorithms. It is based on a few items of simple
machinery that are used to model complex behavior. MT starts at the simple side, adds
memory and a loop, and ends up explaining the complex side.

A disadvantage of MT is that it is less general than Gsearch or GenGame because

46 The MT Framework

it does not model the depth-first wide-window Alpha-Beta algorithm. The essence of
MT is that it performs null-window Alpha-Beta calls. Of course, it is straightforward to
extend MT to use wider windows, or even to become wide-window Alpha-Beta [106].
However, this complicates reasoning about its tree-traversing behavior.

3.3 Null-Window Alpha-Beta Search Algorithms

In this section two ideas for MT instances will be analyzed more deeply by looking at
previous work: the bisection idea and searching for the best move.

3.3.1 Bisection

In addition to the widely used Scout family, there have been experiments with other
null-window Alpha-Beta based algorithms. Coplan’s C* uses bisection to find the
minimax value with a relatively small number of re-searches [35, 146]. Although C*
was introduced in a rather specialized context, that of a hardware implementation of a
chess-endgame solver, and later for Othello endgames, C* is conceptually equivalent
to MTD(bi).

Coplan proposes a pointer based structure to store visited nodes, which incurs some
storage management overhead. It seems more attractive to use a hash table, as is
normally used for storing transpositions by many Alpha-Beta implementations [82].

Bisecting a wide interval of interest usually gives big swings in the value of
between successive Alpha-Beta calls. Section 4.3.1 will show that it is efficient to keep
the null-window as close to the minimax value as possible. The swings should therefore
be reduced as much as possible, for example by the use of an aspiration window.

In a specialized endgame search the range of values is usually much smaller than in
ordinary mid-game search, so that the number of re-searches will be small. From the
perspective of a reduction of the number of Alpha-Beta calls, C*’s bisection method
makes sense. When C* was created it was generally assumed that search trees were
too big to be stored in memory (in section 4.1 we will show that they do fit in memory).
In retrospect, the reduction of the number of Alpha-Beta calls should not have been
such a high priority and should not be done at the cost of using inefficient values for
the Alpha-Beta calls.

3.3.2 Searching for the Best Move

Berliner has suggested that the search can be stopped as soon as a lower bound on the
value of the best move is equal to an upper bound on the value of the other moves
(ƒbest ƒ+

rest) [13]. We will analyze the possible savings in the case the bounds are
non-heuristic bounds, whose value is defined by a max or min solution tree, as is the
case for MTD(best). First we will look at the best case, using the structure of the
minimal tree to see how much savings can be achieved.

3.3 Null-Window Alpha-Beta Search Algorithms 47

best

T+ T+ T+ T+ T+ T+ T+

T-

Figure 3.7: Best Move

With ƒroot = ƒ+
root as the termination condition, a max and a min solution tree have

to be constructed at the root. Figure 3.7 shows the root position and its moves. The
picture shows where the max and min solution trees at these moves are created: a max
solution tree (T+) at all of the moves, and a min solution tree (T) at the best move.

With the new termination condition ƒbest ƒ+
rest the T+

best is no longer necessary.
Thus, searching for the best move saves in the best case the construction of a max
solution tree below a single move. For all the other moves the max solution trees still
have to be constructed. We conclude that, although there are definitely some savings,
the order of the size of the search tree is unchanged, for all but the smallest branching
factors.

Next, we look at the average case. Now some effort has to be expended in order
to find the solution trees that make up the minimal tree of the best case. Although the
search effort is bigger, the reasoning that the solution trees of the rest of the moves
determine the order of the size of the search tree still holds. This analysis suggests
that searching for the best move using backed-up leaf values as bounds will lead to
small improvements. Tests with MTD(best) show improvements of a few percentage
points [108]. It performs relatively better in “quiet” test positions, where the principal
variation does not change between iterations, so MTD(best) predicts the best move
correctly, and the value does not change much between iterations.

Another algorithm implementing this idea is Alpha Bounding, introduced by
Schaeffer [125]. (Nagl has independently re-invented this algorithm three years later
[90].) Alpha Bounding tries to be as efficient as possible by using two ideas: (a) null
windows and (b) best-move searching.

The start value of the null-window searches should stay on the low side of the
minimax value as much as possible, since a lower bound on the best move has to
be created. Starting with the supposedly best move from a previous iteration, Alpha
Bounding searches all moves at the root with a value that will make a fail high likely
below the best move, so that a lower bound will be found. If this is successful, a min
solution tree is constructed below the best move.

Unlike the MT algorithms, Alpha Bounding may sometimes evaluate nodes that are

48 The MT Framework

6

6

6

3 6

8

8 5

4

4

4 2

7

7 3

Figure 3.8: Alpha Bounding Expands 7

not visited by Alpha-Beta(n, +). Figure 3.8 gives an example of this situation.
Assuming that the start value of the search is below 3, Alpha Bounding would expand
the leaf with value 7 in the first search pass (bound = 3). In general, with a low start
value, it could construct min solution trees at each move at the root. However, as we
can see in figure 3.7, to find the best move, an algorithm has to create max solution
trees below the inferior moves. All the min solution trees, except the single one below
the best move, are overhead. Thus, a start value that is too low can result in overhead.
Likewise, if the start value was chosen too high, then all moves will fail low and will
be re-searched with a lower start value. Tests showed this algorithm to perform not too
bad, although NegaScout was 18% better [125].

As was the case with C*, Alpha Bounding uses ideas that the MT framework also
has. And as with C*, a better model of the structure of search trees would probably
have resulted in an improved algorithm. One such model is the solution tree, the notion
behind MT.

Background

Wim Pijls and Arie de Bruin have been investigating SSS* for some time [101, 102, 103].
In 1989 they found that there is another view on SSS*—the max-solution-tree view.
They introduced a two-procedure algorithm embodying these ideas called SSS-2 [102].
In May 1993 I joined this research, trying to find my way in solution trees, Alpha-
Beta, and the critical tree. After some time our discussions also turned to NegaScout
and null-window search. In the spring of 1994 we found out about the link between
solution trees and null-window Alpha-Beta searches, and that there are other ways of
using sequences of null-windows searches, which showed up favorably in simulations
[28].

The elegant idea of proving the equivalence of SSS* and MT-SSS* by inserting
the list operations into the Alpha-Beta code (appendix B) was suggested by Wim Pijls,

3.3 Null-Window Alpha-Beta Search Algorithms 49

based on earlier work by him and Arie de Bruin. He created an SSS-2 like two-
procedure version and helped by discussing and pointing out errors in earlier versions
of the subsequent one-procedure MT code. The full MT-SSS*/SSS* equivalence proof
in [106] was primarily worked out by him. Work on an alternative equivalence proof,
based on static features of the search trees of SSS* and MT-SSS*, was also primarily
done by him [106].

Chapter 4

Experiments

The prevailing view in the literature is that SSS* is not practical, because it uses too
much memory, is too slow, and too complicated. With MT-SSS*, we oppose this
view on all points. There is nothing complex about implementing MT-SSS*, it is as
simple (or hard) as implementing Alpha-Beta. This enabled us to test MT-SSS* in real
game-playing programs, and see whether the other points were true. In this chapter we
report on these experiments. First we look at how much storage is needed for MT-based
algorithms in typical applications. Next we look at their performance.

Results from this chapter have been published in [111, 113].

4.1 All About Storage

The literature portrays storage as the biggest problem with SSS*. The way it was dealt
with in Stockman’s original formulation [140] gave rise to two points of criticism:

1. SSS* is slow. Some operations on the sorted OPEN list have a time complexity
that is non-polynomial in the search depth. As a results, measurements show that
the purge operation of case 1 consumes about 90% of SSS*’s runtime [85].

2. SSS* has unreasonable storage demands. Stockman states that his OPEN list
needs to store at most w d/2 entries for a game tree of uniform branching factor
w and uniform depth d, the number of leaves of a max solution tree. The example
in appendix A.2 illustrates that a single max solution tree is manipulated. (In
contrast, DUAL*, requires w d/2 entries, the number of leaves of a min solution
tree.) This is usually perceived as being unreasonably large storage requirements.

Several alternatives to the SSS* OPEN list have been proposed. One solution imple-
ments the storage as an unsorted array, alleviating the need for the costly purge operation
by overwriting old entries (RecSSS* [20, 21, 118]). By organizing this data as an im-
plicit tree, there is no need to do any explicit sorting, since the principal variation can
be traversed to find the critical leaf. Another alternative is to use a pointer-based tree,
the text-book implementation of a recursive data structure.

52 Experiments

Our solution is to extend Alpha-Beta to include transposition tables (see sec-
tion 2.2.2). As long as the transposition table is large enough to store at least the
min or max solution trees that are essential for the efficient operation of MT-SSS*
and MT-DUAL*, it provides for fast access and efficient storage. (Including the direct
children of nodes in the max solution tree. These can be skipped by optimizations in the
Alpha-Beta code, in the spirit of what Reinefeld has done for Scout [115, 116, 119].)
MT-SSS* will in principle operate when the table is too small, at the cost of extra re-
expansions. The flexibility of the transposition table allows experiments with different
memory sizes. In section 4.1.2 we will see how big the transposition table should be
for MT-SSS* to function efficiently. SSS* stores the leaf nodes of a max solution tree.
MT-SSS* stores the interior nodes too. In this way the PV can be traversed to the
critical leaf, without the need for time-consuming sorting.

A potential drawback of most transposition-table implementations is that they do
not handle hash-key collisions well. Collisions occur since the hash function maps more
than one position to one table entry (since there are many more possible positions than
entries). For the sake of speed many implementations just overwrite older entries when
a collision occurs. If such a transposition table is used, then re-searches of previously
expanded nodes are highly likely. Only in the case that no relevant information is
lost from the table does MT-SSS* search exactly the same leaf nodes as SSS*. In
section 4.1.2 we discuss why collisions are not a significant problem in practice.

The transposition table has a number of important advantages:

• It facilitates the identification of transpositions in the search space, making it
possible for tree-search algorithms to search a graph efficiently. Other SSS* data
structures do not readily support transpositions.

• It takes a small constant time to add an entry to the table, and effectively zero time
to delete an entry. There is no need for costly purges; old entries get overwritten
with new ones. While at any time entries from old (inferior) solution trees may
be resident, they will be overwritten by newer entries when their space is needed.
Since internal nodes are stored in the table, the Alpha-Beta procedure has no
problem of finding the critical leaf; it can traverse the principal variation.

• The larger the table, the more efficient the search (because more information can
be stored, the number of hask-key collisions diminishes). Unlike other storage
proposals, the transposition-table size is easily adaptable to the available memory
resources.

• There are no constraints on the branching factor or depth of the search tree.
Implementations that use an array as an implicit data structure for the OPEN list
are constrained to fixed-width, fixed-depth trees.

• Most high-performance game-playing programs already use the Alpha-Beta pro-
cedure with a transposition table. Consequently, no additional programming
effort is required to implement it.

4.1 All About Storage 53

We need to make one last remark on MT-SSS*. In this algorithm (and in all the tests
that we will discuss further on) one value was associated with each node, either an ƒ+,
an ƒ or an ƒ. MT-SSS* manipulates one solution tree at a time. The pseudo code for
MT stores only one bound per node. Other algorithms may manipulate two solution
trees at the same time (for example, MTD(bi) and MTD(step)) and may need to store
two bounds for certain nodes. In addition to this, there are some rare cases where SSS*
(and MT-SSS*) unnecessarily expand some nodes. This can be prevented by storing
the value of both an upper and a lower bound at the nodes, and using the value of
all the children to update them. This is the difference between Stockman’s SSS* and
Ibaraki’s SSS* (or Maxsearch) from section 3.2.1. The difference is further analyzed
in [101, 106, 109].

4.1.1 Experiment Design

MT-SSS* uses a standard transposition table to store previous search results. If that
table is too small, previous results will be overwritten, requiring occasional re-searches.
A small table will still provide the correct minimax value, although the number of leaf
expansions may be high. To test the behavior of our algorithm, we experimented with
different transposition-table sizes for MT-SSS* and MT-DUAL*.

The questions we want to see answered are: “Does SSS* fit in memory in practical
situations?” and “How much memory is needed to out-perform Alpha-Beta?”. We
used iterative deepening versions of MT-SSS* and Alpha-Beta, since these are used
in practical applications too. The experiments were conducted using game-playing
programs of tournament quality. Our data has been gathered from three programs:
Chinook (checkers) [131], Keyano (Othello) [25] and Phoenix (chess) [125]. With
these programs we cover the range from low to high branching factors. Using three
programs we ensure a higher degree of generality and reliability of the results. All three
programs are well known in their respective domains. The only change we made to the
programs was to disable search extensions and forward pruning, to ensure consistent
minimax values for the different algorithms. For the same reason we used the sequential
versions of the programs. For our experiments we used the original program author’s
transposition-table data structures and code, without modification. At an interior node,
the move suggested by the transposition table is always searched first (if known), and
the remaining moves are ordered before being searched. Chinook and Phoenix use
dynamic ordering based on the history heuristic, while our version of Keyano uses
static move ordering.

The Alpha-Beta code given in figure 3.2 differs from the one used in practice in that
the latter usually includes two details, both of which are common practice in game-
playing programs. The first is a search-depth parameter. This parameter is initialized
to the depth of the search tree. As Alpha-Beta descends the search tree, the depth is
decremented. Leaf nodes are at depth zero. The second is the saving of the best move
at each node. When a node is revisited, the best move from the previous search is
always considered first.

54 Experiments

1 : 1.1

1 : 1

1.1 : 1

1.2 : 1

1.3 : 1

1.4 : 1

1.5 : 1

1.6 : 1

12 14 16 18 20 22

L
ea

ve
s

R
el

at
iv

e
to

 I
D

 A
lp

ha
-B

et
a

lg of Entries in Transposition Table

Checkers - Sensitivity of ID MT-SSS* to Storage

ID Alpha-Beta
ID MT-SSS* depth 15
ID MT-SSS* depth 13
ID MT-SSS* depth 11

Figure 4.1: Memory Sensitivity ID MT-SSS* Checkers

Conventional test sets in the literature (such as [66]) proved to be inadequate to
model real-life conditions. Positions in test sets are usually selected to test a particular
characteristic or property of the game (such as tactical combinations in chess) and
are not necessarily indicative of typical game conditions. For our experiments, the
programs were tested using a set of 20 positions that mostly corresponded to move
sequences from tournament games (see appendix C). By selecting move sequences
rather than isolated positions, we are attempting to create a test set that is representative
of real game search properties (including positions with obvious moves, hard moves,
positional moves, tactical moves, different game phases, etc.). Test runs were performed
on a bigger test set and to a higher search depth to check that the 20 positions did not
cause anomalies. All three programs ran to a depth so that all searched roughly for
the same amount of time. The search depths reached by the programs vary greatly
because of the differing branching factors. In checkers, the average branching factor is
approximately 3 (there are typically 1.2 moves in a capture position while roughly 8 in
a non-capture position), in Othello 10 and in chess 36. Because of the low branching
factor Chinook was able to search to depth 15 to 17, iterating two ply at a time. Keyano
searched to 9–10 ply and Phoenix to 7–8, both one ply at a time.

4.1 All About Storage 55

1 : 1.1

1 : 1

1.1 : 1

1.2 : 1

1.3 : 1

1.4 : 1

1.5 : 1

1.6 : 1

8 10 12 14 16 18 20 22

L
ea

ve
s

R
el

at
iv

e
to

 I
D

 A
lp

ha
-B

et
a

lg of Entries in Transposition Table

Othello - Sensitivity of ID MT-SSS* to Storage

ID Alpha-Beta
ID MT-SSS* depth 9
ID MT-SSS* depth 8
ID MT-SSS* depth 7

Figure 4.2: Memory Sensitivity ID MT-SSS* Othello

1 : 1.1

1 : 1

1.1 : 1

1.2 : 1

1.3 : 1

1.4 : 1

1.5 : 1

1.6 : 1

14 16 18 20 22

L
ea

ve
s

R
el

at
iv

e
to

 I
D

 A
lp

ha
-B

et
a

lg of Entries in Transposition Table

Chess - Sensitivity of ID MT-SSS* to Storage

ID Alpha-Beta
ID MT-SSS* depth 7
ID MT-SSS* depth 6
ID MT-SSS* depth 5

Figure 4.3: Memory Sensitivity ID MT-SSS* Chess

56 Experiments

1 : 1.1

1 : 1

1.1 : 1

1.2 : 1

1.3 : 1

12 14 16 18 20 22

L
ea

ve
s

R
el

at
iv

e
to

 I
D

 A
lp

ha
-B

et
a

lg of Entries in Transposition Table

Checkers - Sensitivity of ID MT-DUAL* to Storage

ID Alpha-Beta
ID MT-DUAL* depth 15
ID MT-DUAL* depth 13
ID MT-DUAL* depth 11

Figure 4.4: Memory Sensitivity ID MT-DUAL* Checkers

1 : 1.1

1 : 1

1.1 : 1

1.2 : 1

1.3 : 1

8 10 12 14 16 18 20 22

L
ea

ve
s

R
el

at
iv

e
to

 I
D

 A
lp

ha
-B

et
a

lg of Entries in Transposition Table

Othello - Sensitivity of ID MT-DUAL* to Storage

ID Alpha-Beta
ID MT-DUAL* depth 9
ID MT-DUAL* depth 8
ID MT-DUAL* depth 7

Figure 4.5: Memory Sensitivity ID MT-DUAL* Othello

4.1 All About Storage 57

1 : 1.1

1 : 1

1.1 : 1

1.2 : 1

1.3 : 1

12 14 16 18 20 22

L
ea

ve
s

R
el

at
iv

e
to

 I
D

 A
lp

ha
-B

et
a

lg of Entries in Transposition Table

Chess - Sensitivity of ID MT-DUAL* to Storage

ID Alpha-Beta
ID MT-DUAL* depth 7
ID MT-DUAL* depth 6
ID MT-DUAL* depth 5

Figure 4.6: Memory Sensitivity ID MT-DUAL* Chess

4.1.2 Results

Figures 4.1–4.3 and 4.4–4.6 show the number of leaf nodes expanded by ID MT-SSS*
and ID MT-DUAL* relative to ID Alpha-Beta as a function of transposition-table size
(number of entries in powers of 2, lg denotes log base 2). The graphs show that for
small transposition tables, Alpha-Beta out-performs MT-SSS*, and for very small sizes
it out-performs MT-DUAL* too. However, once the storage reaches a critical level,
MT-SSS*’s performance levels off and is generally better than Alpha-Beta. The graphs
for MT-DUAL* are similar to those of MT-SSS*, except that the lines are shifted to the
left.

Simple calculations and the empirical evidence lead us to disagree with authors
stating that O(w d/2) is too much memory for practical purposes [63, 85, 88, 116,
121, 140]. For present-day search depths in applications like checkers, Othello and
chess, using present-day memory sizes, we see that MT-SSS*’s search trees fit in the
available memory. The graphs in figures 4.1–4.3 show that MT-SSS* needs about 217

table entries for the tested search depths. Assuming that each entry is 16 bytes, a
transposition table of 2 Megabyte is large enough. For deeper searches a transposition
table size of 10 Megabyte will be more than adequate for MT-SSS* under tournament
conditions.

The literature contains a number of proposals for reducing the memory requirements
of SSS*. This is done either through having Alpha-Beta search the top or bottom
part of the tree in Alpha-Beta/SSS* hybrids [78, 32, 33] or by phased or recursive

58 Experiments

versions of SSS* such as Phased SSS* [86], or Staged SSS* (or Rsearch or GenGame)
[22, 32, 33, 59, 104]. Our tests show that neither hybrids nor staged/phased versions of
SSS* are necessary in practice, especially because they achieve the memory reduction
at the cost of a lower performance, since the best-first selection mechanism is not
applied to the full tree.

There is an important difference between Alpha-Beta as found in text books and
as it is used in game-playing programs. To achieve high performance, Alpha-Beta
is enhanced with iterative deepening, transposition tables, and various move-ordering
enhancements. These enhancements enlarge the memory requirements of the basic
algorithms significantly. Here we will analyze how much memory is needed to achieve
high performance. We will do this by comparing Alpha-Beta to MT-SSS* and MT-
DUAL*.

The graphs provide a clear answer to the main question: MT-SSS* fits in memory,
for practical search depths in games with both narrow and wide branching factors. It
out-performs Alpha-Beta when given a reasonable amount of storage.

The shape of the graphs supports the idea that there is a table size where MT-SSS*
does not have to re-expand previously expanded nodes. This point lies roughly at
the size of a max solution tree, which agrees with the statement that MT-SSS* needs
memory to manipulate a single solution max solution tree. As soon as there is enough
memory to store essentially the max solution tree, MT-SSS* does not have to re-expand
nodes in each pass. The graphs also support the notion that MT-DUAL* needs less
memory since it manipulates a (smaller) min solution tree.

Alpha-Beta

The lines in the graphs show the leaf count of MT-SSS* relative to that of Alpha-Beta.
This poses the question as to what degree the shape is influenced by the sensitivity of
Alpha-Beta to the table size. If the table is too small, then collisions will occur, causing
deeper entries to be erased in favor of nodes closer to the root. Thus, the move ordering
and transposition identification close to the leaves diminishes. The denominator of the
lines in the graphs is not free from memory effects. To answer the question, we have
to look at the absolute values. These show that Alpha-Beta has in principle the same
curve as MT-SSS*, only the curve is not as steep for small table sizes. Interestingly, at
roughly the same point as MT-SSS*, does Alpha-Beta’s line stabilize, indicating that
both need roughly the same amount of memory. The numbers indicate that Alpha-Beta
needs about as much memory to achieve high performance as MT-SSS*.

To understand how much memory Alpha-Beta needs for optimal performance, we
recall from section 2.2.2 that Alpha-Beta uses the transposition table for two purposes:

1. Identification of transpositions
To store the nodes in a search to depth d, the current search tree must be stored.
For high-performance programs this is close to the minimal tree, whose size is
O w d/2 .

4.1 All About Storage 59

2. Storing best-move information
To store the best-move information in a search to depth d, for use in the next
iteration d + 1, the minimal tree minus the leaf nodes for that depth must fit in
memory, or size O w (d 1)/2 .

Of these two numbers the transposition information is the biggest, O w d/2 . To store
best-move information of the previous iteration only O w (d 2)/2 is needed. Of these
two factors, move ordering generally has the biggest impact on the search effort. We
conclude that Alpha-Beta needs between O w d/2 and O w (d 2)/2 transposition-
table entries.

MT-SSS*

From section 2.2.2 we recall that MT-SSS* benefits from the transposition table in a
third way: prevention of re-expansion of nodes searched in previous passes. The graphs
show that this last aspect has the biggest impact on MT-SSS*’s memory sensitivity.
For small table sizes collisions cause nodes near the leaves of the tree to be overwritten
constantly. We could ask ourselves whether collisions remain more of a problem for
MT-SSS* than for Alpha-Beta when more memory is available.

If the transposition table never loses any information except nodes outside the max
solution tree plus its direct descendants, then MT-SSS* builds exactly the same search
tree as SSS*. Conventional transposition tables, however, are implemented as hash
tables that resolve collisions by over-writing entries. Usually, entries further away
from the root are not allowed to overwrite entries closer to the root, since these entries
are thought to prevent the search of more nodes. In the case of MT-SSS* some of these
nodes could be useless—not belonging to the max solution tree—while some nodes
that were searched to a shallow depth could be part of the principal variation, and are
thus needed for the next pass.

When information is lost, how does this affect MT-SSS*’s performance? From
our experiments with “imperfect” transposition tables we conclude that MT-SSS*’s
performance does not appear to be negatively affected. Inspection of the MT-SSS* test
results shows that after a certain critical table size is reached, the lines stay relatively flat,
just as in figure 4.1–4.3. If collisions were having a significant impact, then we would
expect a downward slope, since in a bigger table the number of collisions would drop.
(Maybe this happens close to the point where the lines become horizontal, implying that
choosing a slightly bigger size for the table removes the need for additional collision
resolution mechanisms.) We conclude that in practice the absence of elaborate collision
resolution mechanisms in transposition tables, such as chaining or rehashing, is not an
issue where MT-SSS* is concerned.

How much memory does MT-SSS* need for the third function: prevention of re-
searches of previous passes? In section 3.1 we noted that MT-SSS* manipulates a max
solution tree. The size of this tree is O w d/2 . However, the benefit of storing leaf
nodes is small. The best-move information of their parents causes just one call to the
evaluation function, which will cause a cutoff. Most benefits from the transposition

60 Experiments

table are already achieved if it is of size O w (d 1)/2 . So, for high performance
in MT-SSS* we need O w d/2 for the transpositions, O w (d 1)/2 for the multiple
passes, and O w (d 2)/2 for the best moves of the previous iteration.

Assuming that the impact of transpositions is less than that of move ordering and
multiple-pass re-searches, it seems that MT-SSS* needs a bit more memory than Alpha-
Beta, for high performance. However, MT-SSS* uses null-window Alpha-Beta calls,
that generate more cutoffs than the standard wide-window Alpha-Beta algorithm. The
null windows cause MT-SSS* to have, in effect, a smaller w. Since both algorithms
stabilize at roughly the same table size, it appears that these effects compensate each
other.

MT-DUAL*

The preceding reasoning is supported by the graphs for MT-DUAL*. Here we see an
interesting phenomenon: compared to Alpha-Beta first the node count drops sharply,
and then increases again slightly with growing table sizes. It appears there is a point
where the best-first, “memory hungry” algorithm performs better when given less
memory. Again, the explanation is that the lines in the graph show MT-DUAL* in
relation to Alpha-Beta. Inspection of the MT-DUAL* test results reveals that the effect
is caused by the fact that the MT-DUAL* curve stabilizes earlier than the Alpha-Beta
curve (which stabilizes at roughly the same point as MT-SSS*). So, the increase at the
end of the graph is not caused by MT-DUAL*, but by Alpha-Beta.

The reason that MT-DUAL* needs less memory than MT-SSS* is that it manipulates
min solution trees, which are of size O w d/2 . For high performance MT-DUAL*
needs O w d/2 for the transpositions, O w (d 1)/2 for the multiple passes, and
O w (d 2)/2 —not smaller—for the best-moves of the previous iteration (the size of
the minimal tree is the same for MT-DUAL*). Since most of these figures are smaller
than for Alpha-Beta and MT-SSS*, this analysis provides an explanation why MT-
DUAL* could perform better with less memory. Since we are using iterative deepening
versions of the algorithms, this advantage can also shine through in even search depths,
where the floor or ceiling operators do not make a difference.

By examining the trees that are stored in the transposition table by iterative deepen-
ing versions of Alpha-Beta and MT-SSS*, and approximating the amount of memory
that is needed, we were able to find an explanation why both algorithms need roughly
the same amount of memory to achieve high performance. More research can provide
further insight in this matter. We conclude from the experiments that MT-SSS* and
MT-DUAL* are practical alternatives to Alpha-Beta, as far as the transposition-table
size is concerned.

4.1.3 MT-SSS* is a Practical Algorithm

Section 4.1 cited two storage-related drawbacks of SSS*. The first is the excessive
memory requirements. We have shown that this is solved in practice.

4.2 Performance 61

The second drawback, the inefficiencies incurred in maintaining the OPEN list,
specifically the sort and purge operations, were addressed in the RecSSS* algorithm
[21, 118]. Both MT-SSS* and RecSSS* store interior nodes and overwrite old entries
to solve this. The difference is that RecSSS* uses a restrictive data structure to hold the
OPEN list that has the disadvantage of requiring the search depth and width be known
a priori, and having no support for transpositions. Programming effort (and ingenuity)
are required to make RecSSS* usable for high-performance game-playing programs.

In contrast, since most game-playing programs already use the Alpha-Beta proce-
dure and transposition tables, the effort to implement MT-SSS* consists only of adding
a simple driver routine (figure 3.1). Implementing MT-SSS* is as simple (or hard) as
implementing Alpha-Beta. All the familiar Alpha-Beta enhancements (such as itera-
tive deepening, transpositions and dynamic move ordering) fit naturally into our new
framework with no practical restrictions (variable branching factor, search extensions
and forward pruning, for example, cause no difficulties).

In MT-SSS* and MT-DUAL*, interior nodes are accessed by fast hash-table
lookups, to eliminate the slow operations. Execution time measurements (not shown)
confirm that in general the run time of MT-SSS* and MT-DUAL* are proportional to
the leaf count, as can be seen in figure 4.1–4.3 and 4.4–4.6, indicating that they are a
few percent faster than Alpha-Beta. However, in some programs where interior node
processing is slow, the high number of tree traversal by MT-SSS* and MT-DUAL* can
have a noticeable effect. For real applications, in addition to leaf node count, the total
node count should also be checked (see section 4.2).

We conclude that SSS* and DUAL* have become practical, understandable, algo-
rithms, when expressed in the new formulation.

4.2 Performance

To assess the performance of the proposed algorithms, a series of experiments was
performed. We present data for the comparison of Alpha-Beta, NegaScout, MT-
SSS*/MTD(+), MT-DUAL*/MTD() and MTD(ƒ). Results for MTD(bi) and
MTD(step) are not shown; their results were inferior to MTD(ƒ). An in-depth treatment
of the other algorithms is deemed more interesting.

4.2.1 Experiment Design

We will assess the performance of the algorithms by counting leaf nodes and total
nodes (leaf nodes, interior nodes and nodes at which a transposition occurred). For
two algorithms we also provide data for execution time. As before, experiments were
conducted with three tournament-quality game-playing programs. All three programs
use a transposition table with a maximum of 221 entries. Tests like the ones in section 4.1
showed that the solution trees could comfortably fit in tables of this size for the
depths used in our experiments, without any risk of noise due to collisions. Since we
implemented MT using null-window alpha-beta searches, we did not have to make

62 Experiments

any changes at all to the code other than the disabling of forward pruning and search
extensions. We only had to introduce the MTD driver code.

Many papers in the literature use Alpha-Beta as the base-line for comparing the
performance of other algorithms (for example, [33, 82]). The implication is that this
is the standard data point which everyone is trying to beat. However, game-playing
programs have evolved beyond simple Alpha-Beta algorithms. Most use Alpha-Beta
enhanced with null-window search (NegaScout), iterative deepening, transposition
tables, move ordering and an initial aspiration window. Since this is the typical
search algorithm used in high-performance programs (such as Chinook, Keyano, and
Phoenix), it seems more reasonable to use the enhanced programs as our base-line
standard. The worse the base-line comparison algorithm chosen, the better other
algorithms appear to be. By choosing NegaScout enhanced with aspiration searching
(Aspiration NegaScout) as our performance metric, we are emphasizing that it is
possible to do better than the “best” methods currently practiced and that, contrary to
published simulation results, some algorithms—notably SSS*—turn out to be inferior.
To achieve high performance, the programs use the following enhancements: all three
programs use iterative deepening and a transposition table, Chinook and Phoenix use
the history heuristic and quiescence search, Chinook uses the ETC (see chapter 5), and
Phoenix and Keyano use static move ordering.

Because we implemented the MTD algorithms using MT we were able to compare
a number of algorithms that were previously seen as very different. By using MT as
a common proof-procedure, every algorithm benefited from the same enhancements
concerning iterative deepening, transposition tables and move ordering code. To our
knowledge this is the first comparison of fixed-depth depth-first and best-first minimax
search algorithms where all the algorithms are given identical resources. Through the
use of large transposition tables, our base line, Aspiration NegaScout, becomes for all
practical purposes as effective as Informed NegaScout [119].

4.2.2 Results

Figures 4.7–4.9 show the performance of Chinook, Keyano and Phoenix, respectively,
using the number of leaf evaluations as the performance metric. Figures 4.10–4.12
show the performance of the programs using the total number of nodes in the search
tree as the metric (note the different scale). The graphs show the geometric mean of the
cumulative number of nodes over all previous iterations for a certain depth normalized
to Aspiration NegaScout (which is realistic since iterative deepening is used).

The lines in the graphs are generally quite jagged. Many lines show an odd/even
oscillation depending on the search depth, although the effect is not consistent. Also it
appears that generally DUAL* builds slightly smaller trees than SSS*, although here
too there are exceptions. These effects can to some extent be explained out of the basic
asymmetry of max and min solution trees: in a uniform max-rooted minimax tree of
odd depth, a min solution tree has less leaf nodes than a max solution tree. The fact
that the lines appear to fluctuate wildly is partly due to the fine scale of the graphs and

4.2 Performance 63

1 : 1.15

1 : 1.12

1 : 1.09

1 : 1.06

1 : 1.03

1 : 1

1.03 : 1

1.06 : 1

1.09 : 1

1.12 : 1

1.15 : 1

2 4 6 8 10 12 14 16 18

L
ea

ve
s

R
el

at
iv

e
to

 A
sp

ir
at

io
n

N
eg

aS
co

ut

Depth

Checkers

AspNS
AB

MTD(f)
Dual*
SSS*

Figure 4.7: Leaf Node Count Checkers

1 : 1.15

1 : 1.12

1 : 1.09

1 : 1.06

1 : 1.03

1 : 1

1.03 : 1

1.06 : 1

1.09 : 1

1.12 : 1

1.15 : 1

2 3 4 5 6 7 8 9 10 11

L
ea

ve
s

R
el

at
iv

e
to

 A
sp

ir
at

io
n

N
eg

aS
co

ut

Depth

Othello

AspNS
AB

MTD(f)
Dual*
SSS*

Figure 4.8: Leaf Node Count Othello

64 Experiments

1 : 1.15

1 : 1.12

1 : 1.09

1 : 1.06

1 : 1.03

1 : 1

1.03 : 1

1.06 : 1

1.09 : 1

1.12 : 1

1.15 : 1

2 3 4 5 6 7 8 9

L
ea

ve
s

R
el

at
iv

e
to

 A
sp

ir
at

io
n

N
eg

aS
co

ut

Depth

Chess

AspNS
AB

MTD(f)
Dual*
SSS*

Figure 4.9: Leaf Node Count Chess

1 : 1.10

1 : 1

1.10 : 1

1.20 : 1

1.30 : 1

1.40 : 1

1.50 : 1

1.60 : 1

2 4 6 8 10 12 14 16 18

T
ot

al
 n

od
es

 R
el

at
iv

e
to

 A
sp

ir
at

io
n

N
eg

aS
co

ut

Depth

Checkers

AspNS
AB

MTD(f)
Dual*
SSS*

Figure 4.10: Total Node Count Checkers

4.2 Performance 65

1 : 1.10

1 : 1

1.10 : 1

1.20 : 1

1.30 : 1

1.40 : 1

1.50 : 1

1.60 : 1

2 3 4 5 6 7 8 9 10 11

T
ot

al
 n

od
es

 R
el

at
iv

e
to

 A
sp

ir
at

io
n

N
eg

aS
co

ut

Depth

Othello

AspNS
AB

MTD(f)
Dual*
SSS*

Figure 4.11: Total Node Count Othello

1 : 1.10

1 : 1

1.10 : 1

1.20 : 1

1.30 : 1

1.40 : 1

1.50 : 1

1.60 : 1

2 3 4 5 6 7 8 9

T
ot

al
 n

od
es

 R
el

at
iv

e
to

 A
sp

ir
at

io
n

N
eg

aS
co

ut

Depth

Chess

AspNS
AB

MTD(f)
Dual*
SSS*

Figure 4.12: Total Node Count Chess

66 Experiments

the irregularity of minimax trees that are generated in actual applications.

SSS* and DUAL*

Contrary to many simulations, our results show that the difference in the number of
leaves expanded by SSS* and Alpha-Beta is relatively small. Since game-playing
programs use many search enhancements that reduce the search effort—we used only
iterative deepening, the history heuristic, and transposition tables—the potential bene-
fits of a best-first search are greatly reduced. In practice, SSS* is a small improvement
on Alpha-Beta (depending to some extent on the branching factor). Claims that SSS*
and DUAL* evaluate significantly fewer leaf nodes than Alpha-Beta are based on sim-
plifying assumptions that have little relation with what is used in practice. In effect, the
main advantage of SSS* (point 5 in section 2.3.2 on page 33) has disappeared. Reasons
for this will be discussed further in section 4.4.

Odd/Even Effect in MT-SSS* and MT-DUAL*

Looking at the graphs for total nodes (figures 4.10–4.12), we see a clear odd/even effect
for MT-SSS* and MT-DUAL*. The reason is that the former refines a max solution
tree, whereas the latter refines a min solution tree. At even depths the parents of the
leaves are min nodes. With a wide branching factor, like in chess, there are many
leaves that will initially cause cutoffs for a high bound, causing a return at their min
parent (Alpha-Beta’s cutoff condition at min nodes g is easily satisfied when is
close to +). Especially since the move ordering near the leaves gets worse, it is likely
that MT-SSS* will quickly find a slightly better bound to end each pass, causing it to
make many traversals through the tree, perform many hash-table lookups, and make
many calls to the move generator. These traversals show up in the total node count
and interior node count (not shown separately). For MT-DUAL*, the reverse holds. At
odd depths, many leaves cause a pass to end at the max parents of the leaves when the
bound is close to . (There is room here for improvement, by remembering which
moves have already been searched. This will reduce the number of hash-table lookups,
but not the number of visits to interior and leaf nodes.)

Dominance Under Dynamic Move Reordering

We see that for certain depths the iterative deepening version of SSS* expands more
leaf nodes than iterative deepening Alpha-Beta in the case of checkers. This result
appears to run counter to Stockman’s proof that Alpha-Beta is dominated by SSS*
[140]. How can this be? No one has questioned the assumptions under which this
proof was made. In general, game-playing programs do not perform single fixed-depth
searches. Typically, they use iterative deepening and other dynamic move ordering
schemes to increase the likelihood that the best move is searched first. The SSS* proof
implicitly assumes that every time a node is visited, its successor moves will always

4.2 Performance 67

Alpha-Beta Depth 2 After Re-ordering Alpha-Beta Depth 3
8 a

3 b

d

4

e

3

c 8

f

8

g

9

8 a

8 c

f

8

g

9

b 3

e

3

d

4

3 a

2 c

9 f

h

9

i

1

2 g

j

1

k

2

b 3

3 e

l

3

m

2

d 4, cutoff

n

4

Figure 4.13: Iterative Deepening Alpha-Beta

SSS* Depth 2 After Re-ordering SSS* Depth 3
8 a

ƒ+ = 4 b

d

4

c 8

f

8

g

9

8 a

c 8

f

8

g

9

b ƒ+ = 4

d

4

3 a

2 c

9 f

h

9

i

1

2 g

j

1

k

2

b 3

5 d

n

4

o

5

e 3

l

3

m

2

Figure 4.14: Iterative Deepening SSS*

be considered in the same order (Coplan makes this assumption explicit in his proof of
C*’s dominance over Alpha-Beta [35]).

While building a tree to depth d, a node n might consider the moves in the order
1, 2, 3, …, w. Assume move 3 is best. When the tree is re-searched to depth d + 1, the
transposition table can retrieve the results of the previous search. Since move 3 was
successful at causing a cutoff previously, albeit for a shallower search depth, there is a
high probability it will also work for the current depth. Now move 3 will be considered
first and, if it fails to cause a cutoff, the remaining moves will be considered in the order
1, 2, 4, …, w (depending on any other move ordering enhancements used). The result is
that prior history is used to change the order in which moves are considered.

Any form of move ordering violates the implied preconditions of Stockman’s proof.
In expanding more nodes than SSS* in a previous iteration, Alpha-Beta stores more
information in the transposition table which may later be useful. In a subsequent
iteration, SSS* may have to consider a node for which it has no move-ordering infor-
mation whereas Alpha-Beta does. Thus, Alpha-Beta’s inefficiency in a certain iteration
can actually benefit it later in the search. With iterative deepening, it is possible for

68 Experiments

Alpha-Beta to expand fewer leaf nodes than SSS*.
When used with iterative deepening, SSS* does not dominate Alpha-Beta. Fig-

ures 4.13 and 4.14 prove this point. In the figures, the smaller depth 2 search tree causes
SSS* to miss information that would be useful for the search of the larger depth 3 tree.
It searches a differently ordered depth 3 tree and, in this case, misses the cutoff at node
o found by Alpha-Beta. If the branching factor at node d is increased, the improvement
of Alpha-Beta over SSS* can be made arbitrarily large.

That SSS*’s dominance proof does not hold for dynamically ordered trees does not
mean that Alpha-Beta is structurally better. If SSS* expands more nodes for depth d,
it will probably have more information for the next depth, and it may well out-perform
Alpha-Beta again at depth d + 1. All it means is that under dynamic reordering the
theoretical superiority of SSS* over Alpha-Beta does not apply.

The smaller the branching factor, the more likely this phenomenon is observed.
The larger the branching factor, the more opportunity there is for best-first search to
offset the benefits of increased information in the transposition table.

We conclude that an advantage of SSS*, its domination over Alpha-Beta (point 4
in section 2.3.2), is wrong in practice.

Aspiration NegaScout and MTD(ƒ)

The results show that Aspiration NegaScout is better than Alpha-Beta. This is consistent
with [128] which showed Aspiration NegaScout to be a small improvement over Alpha-
Beta when transposition tables and iterative deepening were used.

Over all three games, the best results are from MTD(ƒ). Not surprisingly, the
current algorithm of choice by the game programming community, Aspiration Nega-
Scout, performs well too. The averaged MTD(ƒ) leaf node counts are consistently
better than for Aspiration NegaScout, averaging a 5 to 10% improvement, depending
on the game. More surprising is that MTD(ƒ) out-performs Aspiration NegaScout
on the total node measure as well. This suggests that MTD(ƒ) is calling MT close
to the minimum number of times (which is 2—one for the upper bound, one for the
lower bound). Measurements confirm that for all three programs, MTD(ƒ) calls MT
about 3 to 6 times per iteration on average. In contrast, the MT-SSS* and MT-DUAL*
results are poor compared to Aspiration NegaScout when all nodes in the search tree
are considered. Each of these algorithms usually performs hundreds of MT searches.
The wider the range of leaf values, the smaller the steps with which they converge, and
the more passes they need.

4.2.3 Execution Time

The bottom line for practitioners is execution time. This metric may vary considerably
for different programs. It is nevertheless included, to give evidence of the potential of
MTD(ƒ) (figures 4.15–4.17). We only show the deeper searches, since the relatively
fast shallower searches hamper accurate timings. The runs shown are typical example
runs on a Sun SPARC. We did experience different timings when running on different

4.2 Performance 69

1 : 1.15

1 : 1.12

1 : 1.09

1 : 1.06

1 : 1.03

1 : 1

1.03 : 1

6 8 10 12 14 16

C
PU

 ti
m

e
ID

-M
T

D
(f

)
R

el
at

iv
e

to
 A

sp
N

S
(%

)

Depth

Checkers

AspNS time/leaves
MTD(f) time

MTD(f) leaves

Figure 4.15: Execution Time Checkers

1 : 1.15

1 : 1.12

1 : 1.09

1 : 1.06

1 : 1.03

1 : 1

1.03 : 1

4 5 6 7 8 9 10

C
PU

 ti
m

e
ID

-M
T

D
(f

)
R

el
at

iv
e

to
 A

sp
N

S
(%

)

Depth

Othello

AspNS time/leaves
MTD(f) time

MTD(f) leaves

Figure 4.16: Execution Time Othello

70 Experiments

1 : 1.15

1 : 1.12

1 : 1.09

1 : 1.06

1 : 1.03

1 : 1

1.03 : 1

3 4 5 6 7 8 9

C
PU

 ti
m

e
ID

-M
T

D
(f

)
R

el
at

iv
e

to
 A

sp
N

S
(%

)

Depth

Chess

AspNS time/leaves
MTD(f) time

MTD(f) leaves

Figure 4.17: Execution Time Chess

machines. It may well be that cache size plays an important role, and that tuning the
program has an impact as well.

The experiments showed that for Chinook and Keyano, MTD(ƒ) was about 5%
faster in execution time than Aspiration NegaScout; for Phoenix we found MTD(ƒ)
9 to 16% faster. (Application dependent tuning of MTD(ƒ) can improve this a few
percentage points, see section 4.3.1.) For other programs and other machines these
results will obviously differ, depending in part on the quality of ƒ and on the test
positions used. For programs of lesser quality, the performance difference will be
bigger, with MTD(ƒ) out-performing Aspiration NegaScout by a wider margin. Also,
since the tested algorithms perform quite close together, the relative differences are
quite sensitive to variations in input parameters. In generalizing these results, one
should keep this sensitivity in mind. Using these numbers as absolute predictors for
other situations would not do justice to the complexities of real-life game trees. The
experimental data is better suited to provide insight into, or guide and verify hypotheses
about these complexities, as done, for example, in chapter 5.

4.3 Null-Windows and Performance

This section looks at some relations between the value of bounds and the search effort
that must be expended to compute them with a null-window Alpha-Beta search.

4.3 Null-Windows and Performance 71

4.3.1 Start Value and Search Effort

The biggest difference in the MTD algorithms is their first approximation of the minimax
value: SSS*/MTD(+) is optimistic, DUAL*/ MTD() is pessimistic and MTD(ƒ)
is realistic. It is clear that starting close to ƒ, assuming integer-valued leaves, should
result in convergence in less steps, simply because there are fewer discrete values in
the range from the start value to ƒ. If each MT call at the root expands roughly the
same number of nodes, then doing less passes yields a better algorithm. However, this
is not the case. Generally an MT call with a loose bound, like + , is cheaper than an
MT call with a tight bound, like ƒ + 4. For a loose bound the left-first solution tree
suffices. For tighter bounds it takes more work to get a cutoff, and hence the work to
find the solution tree for the bound is greater. Also, in well-ordered seach spaces, the
construction of the first solution tree is by far the most expensive. Refining it to yield
a slightly sharper bound costs only a few node expansions. Furthermore, max solution
trees contain w d/2 leaf nodes, while min solution trees contain w d/2 leaf nodes (if
trees are of uniform width and depth).

Schaeffer has looked at the size of the search tree of an isolated null-window call,
for different values [85, 125]. The results pointed out that not all null-windows are
equal. Using Phoenix on the 24 Bratko-Kopec positions [66], a search with a null-
window on the low side of ƒ was significantly cheaper than a search on the high side,
for both odd and even search depths. At ƒ the search effort jumped to a higher level.
This sharp increase in search effort has been called the minimax wall. In a program,
such as Phoenix, that searches well-ordered trees, a fail high at the root (ƒ , T) will
occur before all children have been searched. An Alpha-Beta call resulting in a fail low
(ƒ+, T+) will have expanded all children at the root.

Thus, MT calls generally do not expand the same number of nodes. Since we could
not find an analytical solution we have conducted experiments to test the intuitively
appealing idea that starting a search close to ƒ is cheaper than starting far away.

Figures 4.18–4.20 validate the choice of a starting parameter close to the game
value. The figures show the efficiency of an iterative deepening search as a function of
the distance of the first guess from the correct minimax value for each search depth. The
data points are given as a percentage of the size of the search tree built by Aspiration
NegaScout. To the left of the graph, MTD(ƒ) is closer to DUAL*/MTD(), to the
right it is closer to SSS*/MTD(+). It is instructive to compare these figures with
figure 4.21, which is based on simulated trees—no iterative deepening or transposition
tables there. Now the curves look reassuringly smooth. The graph is taken from [28].
Each line in the graph is the average of 20 artificial trees of width 5 and depth 9. The
top line shows unordered trees, where the first move has a 1

w = 20% probability of being
best. The lower lines are progressively better ordered. The bottom line represents a
perfectly-ordered tree. Here all algorithms search the minimal tree, independent of
the start value of the search. Figure 4.21 shows that the closer a search starts to the
minimax value of a game tree, the less nodes are expanded, on average. The gain in
performance is less in ordered trees.

The graphs in figures 4.18–4.20 show that the smaller the distortion, the smaller the

72 Experiments

1 : 1.18

1 : 1.15

1 : 1.12

1 : 1.09

1 : 1.06

1 : 1.03

1 : 1

1.03 : 1

1.06 : 1

1.09 : 1

-40 -20 0 20 40

C
um

ul
at

iv
e

L
ea

ve
s

R
el

at
iv

e
to

 A
sp

N
S

Difference of first guess from f

Checkers

depth 13
depth 15

Figure 4.18: Tree Size Relative to the First Guess ƒ in Checkers

1 : 1.18

1 : 1.15

1 : 1.12

1 : 1.09

1 : 1.06

1 : 1.03

1 : 1

1.03 : 1

1.06 : 1

1.09 : 1

-30 -20 -10 0 10 20 30

C
um

ul
at

iv
e

L
ea

ve
s

R
el

at
iv

e
to

 A
sp

N
S

Difference of first guess from f

Othello

depth 8
depth 9

Figure 4.19: Tree Size Relative to the First Guess ƒ in Othello

4.3 Null-Windows and Performance 73

1 : 1.18

1 : 1.15

1 : 1.12

1 : 1.09

1 : 1.06

1 : 1.03

1 : 1

1.03 : 1

1.06 : 1

1.09 : 1

-40 -20 0 20 40

C
um

ul
at

iv
e

L
ea

ve
s

R
el

at
iv

e
to

 A
sp

N
S

Difference of first guess from f

Chess

depth 6
depth 7

Figure 4.20: Tree Size Relative to the First Guess ƒ in Chess

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

-500 -400 -300 -200 -100 0 100 200 300 400 500

N
od

e
C

ou
nt

First Guess

width=5 depth=9

unordered
30%
40%
60%
80%

perfect

Figure 4.21: Effect of First Guess in Simulated Trees

74 Experiments

10

8

large sub tree

12

2 4 10

8

12

2 4

first pass: Alpha-Beta(n, 99, 100) = 10
second pass: Alpha-Beta(n, 5, 6) = 4 second pass: Alpha-Beta(n, 9, 10) = 4

first pass: Alpha-Beta(n, 99, 100) = 10

cut off

Figure 4.22: Two Counter Intuitive Sequences of MT Calls

search tree is. Our intuition that starting close to the minimax value is a good idea is
justified by these experiments. A first guess close to ƒ makes MTD(ƒ) perform better
than the 100% Aspiration NegaScout baseline. We also see that the guess must be quite
close to ƒ for the effect to become significant. Thus, if MTD(ƒ) is to be effective, the
ƒ obtained from the previous iteration must be a good indicator of the next iteration’s
value. For programs with a pronounced odd/even oscillation in their score, results are
better if the score from two iterations ago is used. Comparing the graphs in figures 4.7–
4.9 and 4.18–4.20, we see that MTD(ƒ) is not achieving its lowest point, so there is
room for improvement. Indeed, we found that adjusting the first guess by 1 to 4 points
for each iteration can improve the results for MTD(ƒ) in terms of leaf count by two to
three percentage points. This can be regarded as a form of application-dependent fine
tuning of the MTD(ƒ) algorithm.

When a single null-window Alpha-Beta search for a bound is performed, a search
for a loose bound generally takes less effort than a search for a tight bound. The
figures 4.18–4.21, however, show the effort of a number of null-window searches, of
all the searches that are needed to prove the minimax value.

In doing these experiments, the diversity of real-life game trees became apparent. It
is not hard to construct a counter-example where a bad null-window expands less nodes
than a good first guess. For example, figure 4.22 shows that Alpha-Beta(root, 99, 100)
followed by the re-search Alpha-Beta(root, 9, 10) (in bold) skips the large sub-tree,
whereas the call Alpha-Beta(root, 99, 100) followed by Alpha-Beta(root, 5, 6) (in bold)
expands it, where the of 6 is closer to 2 ƒ 4 than the of 10. In the tests we
also encountered some positions where Aspiration NegaScout performed better than
MTD(ƒ).

4.3 Null-Windows and Performance 75

best-first not best-first
good start value MTD(ƒ) NegaScout

not good start value SSS* Alpha-Beta

Figure 4.23: Four Algorithms, Two Factors

4.3.2 Start Value and Best-First

One could ask the question how it is possible at all for a depth-first algorithm like
NegaScout to out-perform a best-first algorithm like SSS*. The answer is given by the
influence of the start value of an MT sequence. NegaScout derives its start value for
later recursive null-window calls from the tree it is searching. If that tree has become
relatively well-ordered through the use of enhancements, such as iterative deepening
and the history heuristic, then the start value will become a reasonable guess. SSS*
does not use this idea; instead it uses best-first node selection based on the information
from a previous pass. In our tests, with programs using many search enhancements, a
good start value seems to be a bit more effective. Best-first schemes tend to have an
advantage on trees with a lower quality of move ordering and a wider branching factor.
The table in figure 4.23 shows the two ideas:

1. Best-First Selection
The best-first node selection scheme that SSS* and other MT instances use, is
essentially based on a traversal of solution trees from previous search passes
to descend the principal variation to the critical leaf, and then expand an open
brother of this leaf—the best node to expand in the SSS* sense (see figure 2.18).

2. A Good Start Value
Section 4.3.1 showed that generally a start value closer to the final minimax value
yields a more efficient search for an MT sequence.

The table in figure 4.23 suggests that MTD(ƒ) combines the good parts of two existing
algorithms: best-first expansion from SSS* and a good start value from NegaScout.

NegaScout and MTD(ƒ) are the two algorithms that perform best in the experiments.
One is categorized as depth-first, the other as best-first. Otherwise, they have much in
common. By looking at their behavior in very small memory situations, we will be
able to see some similarities and differences more clearly, since the best-first behavior
of MTD(ƒ) depends on the information of previous passes to guide it through the tree.

From section 4.1.2 we recall that the many MT calls of MT-SSS* and MT-DUAL*
make those algorithms perform badly when the transposition table is too small to
contain the previously expanded solution tree. Since MTD(ƒ) performs significantly
fewer calls, re-expansions due to insufficient storage are not as big a problem.

This point is illustrated in figures 4.24–4.28. In these graphs the size of the transpo-
sition table has been reduced gradually to as low as 26 = 64 entries. The graphs show

76 Experiments

1 : 2.0

1 : 1.8

1 : 1.6

1 : 1.4

1 : 1.2

1 : 1

6 8 10 12 14 16 18 20 22

L
ea

ve
s

R
el

at
iv

e
to

 A
lp

ha
-B

et
a

lg transposition table size

Othello

Alpha-Beta
AspNS 7
AspNS 8
AspNS 9

AspNS 10

Figure 4.24: Aspiration NegaScout in Small Memory in Othello

1 : 2.0

1 : 1.8

1 : 1.6

1 : 1.4

1 : 1.2

1 : 1

6 8 10 12 14 16 18 20 22

L
ea

ve
s

R
el

at
iv

e
to

 A
lp

ha
-B

et
a

lg transposition table size

Othello

Alpha-Beta
MTD(f) 7
MTD(f) 8
MTD(f) 9

MTD(f) 10

Figure 4.25: MTD(ƒ) in Small Memory in Othello

4.3 Null-Windows and Performance 77

1 : 2.0

1 : 1.8

1 : 1.6

1 : 1.4

1 : 1.2

1 : 1

6 8 10 12 14 16 18 20 22

L
ea

ve
s

R
el

at
iv

e
to

 A
lp

ha
-B

et
a

lg transposition table size

Checkers

Alpha-Beta
AspNS 11
AspNS 13
AspNS 15

Figure 4.26: Aspiration NegaScout in Small Memory in Checkers

1 : 2.0

1 : 1.8

1 : 1.6

1 : 1.4

1 : 1.2

1 : 1

6 8 10 12 14 16 18 20 22

L
ea

ve
s

R
el

at
iv

e
to

 A
lp

ha
-B

et
a

lg transposition table size

Checkers

Alpha-Beta
MTD(f) 11
MTD(f) 13
MTD(f) 15

Figure 4.27: MTD(ƒ) in Small Memory in Checkers

78 Experiments

1 : 2.0

1 : 1

1.5 : 1

2.0 : 1

2.5 : 1

3.0 : 1

6 8 10 12 14 16 18 20 22

L
ea

ve
s

R
el

at
iv

e
to

 A
lp

ha
-B

et
a

lg transposition table size

Checkers

Alpha-Beta
MTD(f) 11
MTD(f) 13
MTD(f) 15

Figure 4.28: MTD(ƒ) in Small Memory (Chinook) II

test results (leaf count) for Othello (Keyano) and checkers (Chinook), with iterative
deepening versions of Alpha-Beta, NegaScout and MTD(ƒ). For Keyano depth 7–10
is shown, for Chinook depths 11, 13 and 15. Note for Keyano the odd/even effect: for
small memory the results for the depths are paired. For clarity, the Chinook result for
MTD(ƒ) is shown again in figure 4.28 with a different scale on the y axis. (The size of
the transposition table in Phoenix cannot be reduced easily beyond 212. In the range
from 212–221 the results resemble Keyano’s graphs.)

Aspiration NegaScout
We see that Aspiration NegaScout out-performs Alpha-Beta in small memory by a wide
margin, like the literature on NegaScout predicted [85, 99, 116]. As the transposition
table gets smaller, the margin grows wider. Apparently, the fact that the move ordering
information gradually disappears, hurts Alpha-Beta more than NegaScout. NegaScout
still benefits from the tight bounds of null-window calls, where Alpha-Beta’s search
window converges more slowly. These graphs support the reasoning in section 4.1.2
that for high performance Alpha-Beta has in fact exponential memory requirements.

MTD(ƒ)
For MTD(ƒ) the figures need more explanation. For Keyano, MTD(ƒ)’s sensitivity to
memory is comparable to that of Aspiration NegaScout. The graph for Chinook is
different. As long as the transposition table has more than 212 = 4096 entries, a smaller

4.3 Null-Windows and Performance 79

transposition table hurts Alpha-Beta more than MTD(ƒ). As the table gets extremely
small, MTD(ƒ)’s relative performance deteriorates rapidly, although it remains much
better than for MT-SSS* (figure 4.1). The different memory sensitivity of MTD(ƒ)
in Chinook and Keyano is caused by a different range of the evaluation function.
Chinook’s evaluation function range is 9000, Keyano’s range is 64. The small
range for Keyano causes the value of the previous iteration to be quite a good estimate.
MTD(ƒ) rarely calls MT more than 3 times. The wider range in Chinook causes MTD(ƒ)
to call MT more often, in some positions 2 or 3 times, in some other 12 to 20 times.
The absence of enough memory makes these MT re-searches much more expensive,
causing the number of leaf evaluations to rise to 2–2.5 times that of Alpha-Beta, for a
table with 64 entries.

This points to a difference between NegaScout and MTD(ƒ). NegaScout is fully
recursive, in contrast to MTD(ƒ), which restarts the search a few times at the root. By
starting the re-searches at the root, MTD(ƒ) takes the risk of having to re-expand bigger
trees than NegaScout, the impact of which is normally reduced by the presence of
memory to the extent that NegaScout is out-performed. As a consequence, the absence
of memory removes the best-first nature of MTD(ƒ)’s node selection scheme. With
limited memory, there is not enough information in the transposition table to guide MT
towards the best node to select next. All the previous search information has to be re-
expanded in each pass. The tests show that for depth 15 at least 212 transposition-table
entries should be present for Chinook, because of its wide evaluation-function range
(assuming 16 byte entries, this amounts to 64 kilobyte of memory). If there is almost
no memory at all, then NegaScout performs better.

It is possible to improve the low-memory behavior of MT instances by changing
the replacement strategy of the transposition table. Currently nodes close to the root
are favored. For MT a preference for the last traversed solution tree would be better.
However, the test results indicate that there still is a wide margin before tournament
game-playing programs would benefit from these changes. The problems of MTD(ƒ)
only occur with extremely small amounts of memory. Otherwise MTD(ƒ) out-performs
all tested algorithms in all three games.

Figure 4.29 shows a performance picture of algorithms as they are used in a prac-
tical setting, with a transposition table, iterative deepening, and other move ordering
enhancements, in contrast to figures 2.10, 2.14 and 2.19, that showed the un-enhanced,
standard text-book versions of the algorithms. All these enhancements reduce the
number of nodes considered before finding the cutoff to the extent that all algorithms
perform almost the same. The enhancements also determine the memory needs for high
performance. The picture shows that more memory improves the effectiveness of the
enhancements. Using the same amount of storage as Alpha-Beta and MT-SSS*, Nega-
Scout and MTD(ƒ) generally perform better than the other two. The null-windows
cause more cutoffs to occur than with Alpha-Beta(n, +). For the highest per-
formance they need O(wd/2) as well, although their performance is less sensitive to
smaller transposition tables than Alpha-Beta and MT-SSS*. Their good start value
for the null-window Alpha-Beta searches makes them perform less re-searches than

80 Experiments

y: time efficiency

x: storage efficiency
minimax tree

minimal tree

O(d)

SSS*

O(wd/2)

ID/TT

ID/TT NegaScout

ID/TT MTD(f)

ID/TT Alpha-Beta

Figure 4.29: Performance Picture of Practical Algorithms

MT-SSS*. (The two dotted lines indicate that MTD(ƒ)’s performance in low memory
situations varies. It depends on the number of re-searches, as with MT-SSS*. A nar-
row evaluation-function range causes less re-searches and a better performance, see
figures 4.25 and 4.27, and their explanation.) Again, the experiments showed that
memory requirements of O(wd/2) are perfectly reasonable.

4.4 SSS* and Simulations

The list in section 2.3.2 summarized the general view on SSS* in five points. Three
of these points were drawbacks that were declared “solved” in section 4.1.3. The
remaining two points were positive ones: SSS* provably dominates Alpha-Beta, and it
expands significantly fewer leaf nodes. With the disadvantages of the algorithm solved,
the question that remains is: what about the advantages in practice?

The first of the two advantages, theoretical domination, has disappeared. With
dynamic move reordering, Stockman’s dominance proof for SSS* does not apply.
Experiments confirm that Alpha-Beta can out-search SSS*.

The second advantage was that SSS* and DUAL* expand significantly less leaf
nodes. However, modern game-playing programs do a nearly optimal job of move
ordering, and employ other enhancements that are effective at improving the efficiency
of the search, considerably reducing the advantage of null-window-based best-first
strategies. The experiments show that SSS* offers some search tree size advantages
over Alpha-Beta for chess and Othello, but not for checkers. These small advantages
disappear when comparing to NegaScout. Both MT-SSS* and MT-DUAL* compare
unfavorably to Alpha-Beta and NegaScout when all nodes in the search tree are con-

4.4 SSS* and Simulations 81

sidered.
All algorithms, including MTD(ƒ), perform within a few percentage points of each

other’s leaf counts. Simulation results show that for fixed-depth searches, without
transposition tables and iterative deepening, SSS*, DUAL* and NegaScout are major
improvements over simple Alpha-Beta [63, 85, 88, 116]. For example, one study shows
SSS* and DUAL* building trees that are about half the size of those built by Alpha-Beta
[85]. This is in sharp contrast to the results reported here. The reason for this disparity
with previously published work is the difference between real and artificial minimax
trees.

The literature on minimax search abounds with investigations into the relative
performance of algorithms. In many publications artificially-generated game trees are
used to test these algorithms. We argue that artificial trees are too simple to form a
realistic test environment.

Over the years researchers have uncovered a number of interesting features of min-
imax trees as they are generated in actual application domains like game-playing pro-
grams. The following four features of real game trees can be exploited by application-
independent techniques to increase the performance of search algorithms.

• Variable branching factor
The number of children of a node is often not a constant. Algorithms such as
Proof Number and Conspiracy Number Search use this fact to guide the search
in a “least-work-first” manner [3, 87, 129].

• Value interdependence between parent and child nodes
A shallow search is often a good approximation of a deeper search. This notion is
used in techniques like iterative deepening, which—in conjunction with storing
previous best moves—greatly increases the quality of move ordering. Value
interdependence also facilitates forward pruning and move ordering based on
shallow searches [31].

• Value independence of moves
In many domains there exists a global partial move ordering: moves that are
good in one position tend to be good in another as well. This fact is used by the
history heuristic and the killer heuristic [128].

• Transpositions
The fact that the search space is most often a graph has lead to the use of
transposition tables. In some games, notably chess and checkers, they lead to a
substantial reduction of the search effort [107]. Of no less importance is the better
move ordering, which drastically improves the effectiveness of Alpha-Beta.

Furthermore, in many simulation experiments the nodes are counted in an inconsistent
manner—for example, re-expansions are not counted in SSS*, but in NegaScout they
are [85, 116]. The algorithms used in simulations are often significantly different from
those used in applications, making reported node counts a bad predictor of execution

82 Experiments

time in practice. The question of finding a set of representative test positions is a
problem for simulations as well. A large number of different artificial trees is not
necessarily a realistic test set.

The impact of the Alpha-Beta enhancements is significant: many state-of-the-art
game-playing programs are reported to approach their theoretical lower bound, the
minimal tree [40, 43, 107, 125]. Regrettably, this high level of performance does not
imply that we have a clear understanding of the detailed structure of real-life game
trees.

Many points influence the search space in different ways, although it is not exactly
known what the effect is. For example, transpositions, iterative deepening and the
history heuristic all cause the tree to be dynamically re-ordered based on information
that is gathered during the search. The effectiveness of iterative deepening depends
on many factors, such as on the strength of the value interdependence, on the number
of cutoffs in the previous iteration, and on the quality of the evaluation function. The
effectiveness of transposition tables depends on game-specific parameters, the size of
the transposition table, the search depth, and possibly on move ordering and the phase
of the game. The effectiveness of the history heuristic also depends on game-specific
parameters, and on the quality of the evaluation function.

The consequence is that trees that are generated in practice are highly complex
and dynamic entities, whose structure is influenced by the techniques that make use of
(some of) the four listed features. Acquiring data on these factors and the way they
relate seems a formidable task. It poses many problems for researchers attempting to
model the behavior of algorithms on realistic minimax trees reliably.

All of the simulations that we know of include at most one of the above four features
[20, 21, 33, 28, 54, 63, 85, 88, 116, 118, 140]. In the light of the highly-complex nature
of real-life game trees, simulations can only be regarded as approximations, whose
results may not be accurate for real-life applications. We feel that simulations provide
a feeble basis for conclusions on the relative merit of search algorithms as used in
practice. The gap between the trees searched in practice and in simulations is large.
Simulating search on artificial trees that have little relationship with real trees runs the
danger of producing misleading or incorrect conclusions. It would take a considerable
amount of work to build a program that can properly simulate real game trees. Since
there are already a large number of quality game-playing programs available, we feel
that the case for simulations of minimax search algorithms is weak.

An often used approach to have simulations approximate the efficiency of real
applications is to increase the quality of move ordering. In the light of what has been
said previously, just increasing the probability of first moves causing a cutoff to, say,
98%, can only be viewed as a naive solution, that is not sufficient to yield realistic
simulations. First of all, the move ordering is not uniform throughout the tree (see
figure 5.1). Second, and more important, the high level of move ordering is not a cause
but an effect. It is caused by techniques (like the history heuristic) that make use of
phenomena like a variable branching factor, value interdependence, value independence

4.4 SSS* and Simulations 83

and transpositions. These causes and effects are all interconnected, yielding a picture
of great complexity that does not look very inviting to disentangle.

As an example of what the differences between real and artificial trees can lead
to, let us look at some statements in the literature concerning SSS*. In section 2.3.2
we mentioned five points describing the general view on SSS*: it (1) is difficult
to understand, (2) has unreasonable memory requirements, (3) is slow, (4) provably
dominates Alpha-Beta in expanded leaves, and (5) expands significantly fewer leaf
nodes than Alpha-Beta. The validity of these points has been examined by numerous
researchers in the past [33, 63, 85, 88, 116, 121, 140]. All come to roughly the same
conclusion, that the answer to all five points is “true:” SSS* searches less leaves than
Alpha-Beta, but it is not a practical algorithm. However, two publications contend that
points 2 and 3 may be false, indicating that SSS* not only builds smaller trees, but that
the problem of the slow operations on the OPEN list may be solved [20, 118]. This
paints a favorable picture for SSS*, since the negative points would be solved, while the
positive ones would still stand. Probably due to the complexity of the SSS* algorithm
the authors have restricted themselves to simulations. With our reformulation we were
finally able to use real programs to answer the five questions. In practice all five points
are wrong, making it clear that, although SSS* is practical, in realistic programs it has
no substantial advantage over Alpha-Beta, and is even worse than Alpha-Beta-variants
like Aspiration NegaScout.

This example may serve to illustrate our point that it is hard to model real trees
reliably. In the past we have performed simulations too [28]. We were quite shocked
when we found out how easy it is to draw wrong conclusions based on what appeared
to be valid assumptions. We hope to have shown in this section that the temptation
of oversimplifying the structure of game trees can and should be resisted. Whether
this problem only occurs in minimax search, or also in other domains of artificial
intelligence, is a question that we leave unanswered.

Background

Seeing that the null-window Alpha-Beta ideas stood up in practice, working through
the intricacies of solution trees and transposition tables, and finding that solution trees
do fit in memory, has been joint work with Jonathan Schaeffer.

It all started on a day in early October 1994 in Edmonton, just before the first snow
would fall, when we were having a quick lunch in a Korean restaurant on campus. After
talking a bit about SSS*, solution trees, and transposition tables, we tried to estimate
how much memory a max solution tree would take up in chess. To our surprise, the
number seemed entirely reasonable. Since this contradicted all the papers that we
knew of, we did some experiments, in the hope that they would show us where our
quick calculation had gone wrong. As has been shown in section 4.1, they didn’t; the
estimates were correct. The theoretical work on SSS* from chapter 3 turned out to
have a direct relevance to practice.

Jonathan Schaeffer’s insight and experience were a big asset in designing the
experiments and explaining the results. Finding out that SSS* turned out to be easily

84 Experiments

implementable in real programs, and then finding that it did not bring significant gains
over NegaScout, caused much excitement as well as long discussions. Some of the
ideas born in those discussions bore fruit, as the next chapter will show.

