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We now begin the study of noncooperative game theory, the analysis of interdependent
decision-making. Before we can analyze any situation, we need to describe it formally. That
is, we must have the specification of the model that describes the situation, or game, that we
are interested in. There are two important ways in which to do that, the extensive form and
the strategic form, sometimes also called the normal form. Of these, the extensive form is
richer and the strategic form is usually conceptualized as being derived from an extensive
form. However, the strategic form is simpler and usually more convenient for analysis.

In this lecture, we shall learn how to describe all kinds of situations that we might be in-
terested in analyzing. We shall learn to distinguish between different classes of information,
when information becomes available, and how. The goal is to get a solid grasp on model
description before proceeding to the study of model solutions.

1 The Building Blocks

Any situation that we wish to represent formally would have some basic elements that will
be part of its description. Most often, we begin with a verbal description (that may be quite
vague at times), and then distill each element from it. Let’s start with a simple card game
borrowed from Roger Myerson.

Example 1. (Myerson’s Card Game.) There are two players, labeled “player 1” and “player
2.”1 At the beginning of this game, each player puts a dollar in a pot. Next, player 1 draws a
card from a shuffled deck of cards in which half the cards are red and half are black. Player
1 looks at his card privately and decides whether to raise or fold. If player 1 folds, then he
shows his card to player 2 and the game ends; player 1 takes the money in the pot if the
card is red, but player 2 takes the money if the card is black. If player 1 raises, then he adds
another dollar to the pot and player 2 must decide whether meet or pass. If she passes, the
game ends and player 1 takes all the money in the pot. If she meets, she puts another dollar
in the pot, and then player 1 shows his card to player 2 and the game ends; if the card is red,
player 1 takes all the money in the pot, but if it is black, player 2 takes all the money.

The essential elements of a game are:

1. players: The individuals who make decisions.

2. rules of the game: Who moves when? What can they do?

3. outcomes: What do the various combinations of actions produce?

4. payoffs: What are the players’ preferences over the outcomes?

5. information: What do players know when they make decisions?

6. chance: Probability distribution over chance events, if any.

A player is a decision-maker who is participant in the game and whose goal is to choose
the actions that produce his most preferred outcomes or lotteries over outcomes. We assume
that players are rational: their preference orderings are complete and transitive. We model
uncertainty over outcomes with lotteries, like we’ve done before. This means that preferences

1We establish the following convention: odd-numbered players are male, and even-numbered players are
female. For a generic player, we shall always use the generic male pronoun.
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can be described with utility functions and rational players choose actions that maximize
their expected utilities (that’s why we need the vNM theorem).

Let I = {1,2, . . .} denote the set of players indexed by i. That is, i ∈ I is a generic member
of this set. In our example, I = {1,2}, the two players labeled “player 1” and “player 2.”

We represent chance events by a random move of nature. Nature, denoted by N, is a
pseudo-player whose actions are purely mechanical and probabilistic; that is, they determine
the probability distribution over the chance events. In our example, Nature “chooses” the
color of the card that player 1 randomly draws from deck. Because the number of red cards
equals the number of black cards and the deck is shuffled, the probability of the randomly
chosen card being red is 0.5. Fig. 1 (p. 3) shows how the random draw by player 1 can be
represented as a move by Nature.
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Figure 1: Move by Nature Determines Card Color.

Nature “moves” first, and so the initial node (or the “root node”) of the game, denoted with
an empty circle, is the place where the chance event occurs. The two possible “actions” by
Nature are red and black, which we represent with one branch each.

Each branch then leads to a decision node (denoted with a filled circle), where player 1
gets to make its choice between raising and folding. When player 1 gets to move, he knows
the color of the card he has drawn. In our example, player 1 chooses whether to raise or fold
under two distinct circumstances, depending on the color of the card. That is, he has one
decision to make conditional on the card being black, and another conditional on the card
being red. In both cases, the choices are between raising and folding.

We need a way to represent the fact that when player 1 gets to move, he knows the color
of the card he is holding. An information set for some player i summarizes what the player
knows when get gets to move. Player 1 has two information sets, labeled “b” and “c”. At
information set “b”, player 1 knows that the card is black, and at information set “c”, he
knows that the card is red. Each of these information sets contains exactly one decision
node.
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Figure 2: Move by Nature Followed by Choice by Player 1.

For each of his information sets, a player must choose what to do. An action (or move)
for player i is a choice, denoted by ai that player i can make at that information set. Let
Ai = {ai} denote the set of choices at an information set. That is, this is the set of actions
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from which the player must choose. The set of actions may be different depending on the
information set. Let h denote an arbitrary information set (we shall shortly see why this letter
is appropriate). Then Ai(h) is the set of actions available to player i at information set h. If
the player does not get to move at information set h, then Ai(h) = ∅.

In our example, player 1 always has the same two actions regardless of the color of the
card: He can either raise, denoted by R, or fold, denoted by F . Thus, A1(b) = A1(c) = {F,R}.
We represent the actions available at a decision node with branches emanating from that
node, as shown in Fig. 2 (p. 3).

Information sets that contain only one decision node are called singletons. Here, both
information sets for player 1 are singletons. Note that we have labeled the two information
sets by player 1 with “1.b” and “1.c” respectively. This is intended to convey both that player
1 gets to move and that he knows different things at the different information sets.

A history of the game is a sequence of actions taken by the various players at their infor-
mation sets. The initial history (before the game begins) is denoted by h0 = ∅. One history
of the game is (black), that is, nature having chosen black. Another history is (black, F), that
is, nature having chosen black, and player 1 having folded.

More generally, we can think of the game as a sequence of stages, where all players simul-
taneously choose actions from their choice sets Ai(h) (remember that these choices may be
“do nothing” if the player’s action set is empty at h). An action profile is the set of actions
taken by the players at that stage. For example, h0 is the “history” at the beginning of the
game, and a0 = (a0

1, . . . , a
0
I ) is the action profile following h0. Then h1 is the history identi-

fied with a0, and Ai(h1) is the set of actions available to player i there. Continuing iteratively
in this manner, we define the history at the end stage k to be the sequence of actions in the
previous stages:

hk+1 = (a0, a1, . . . , ak).

We shall let K+1 denote the total number of stages in the game, noting that for some games,
we may have K = +∞. In these cases, the “outcome” of the game is the infinite history h∞.
Let H = {hk} denote the set of all possible histories. Since each hK+1 by definition describes
an entire sequence of actions from the beginning of the game to its end, we shall call it a
terminal history. The set Z = {hK+1} ⊂ H of all terminal histories is the same as the set of
outcomes when the game is played.

Returning to our example, the history (red, F) is terminal because the game ends if player
1 folds. Conversely, the histories (red) and (red, R) are not terminal because the game con-
tinues. Note that information sets are generalizations of the idea of histories because they
summarize not only past play, but also what players know about it.

For each player i, we specify a payoff function, ui : Z → R. That is, a function that maps the
set of terminal histories (or outcomes), to real numbers. In other words, we assign numeric
payoffs to the outcomes. Of course, this function must represent the preference ordering
of the player over the outcomes. Since h1 = (black, F) and h2 = (red, F) are both terminal
histories, the player’s (Bernoulli) payoff functions must assign numbers to these outcomes.
Let’s assume that utilities are linear in the amount of money received, or u(x) = x. Then:

u1(h1) = u2(h2) = −1

u1(h2) = u2(h1) = 1.

We list these payoffs below the terminal node associated with them. By convention, the order
is determined by the order in which players appear in the game tree, top to bottom and left
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to right. In our example in Fig. 2 (p. 3), the first number is player 1’s payoff and the second
number is player 2’s payoff.

If player 1 raises, player 2 gets to make a move. Thus, the R branches representing raising
by player 1 lead to decision nodes for player 2. She can either meet, m, or pass, p, and so
each decision node will have two branches, labeled m and p respectively, as shown in Fig. 3
(p. 5). The payoffs from the resulting terminal histories are specified in the same manner as
before.
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Figure 3: Myerson’s Card Game in Extensive Form.

The crucial difference between the information available to player 1 and the information
available to player 2 is that player 2, unlike player 1, does not know the color of player 1’s
card although it does observe his action (raising). In other words, when player 2 gets to move,
she does not know whether player 1’s card is red or black. The information set, denoted by
“0” for player 2 thus includes both histories h3 = (black, R) and h4 = (red, R). Because each
of this histories leads to a different decision node for player 2, we enclose them in a box (or
connect them in some other way) to demonstrate that they belong to the same information
set. We say that both h3 and h4 are consistent with the information set “0”.

Player 2’s information set is not a singleton because it contains two of her decision-nodes.
Let h(x) denote the fact that the information set h contains node x. The information set
captures the idea that the player who is choosing an action at x is uncertain whether he is at
x or at some other x′ ∈ h(x). We require that if x′ ∈ h(x), then the same player moves at x
and x′. Otherwise, players may disagree who was supposed to move.

Information sets partition the decision-nodes such that each node belongs to exactly one
information set and no more. It is in this way that information sets are generalizations of
histories. As you can see in the example, it is perfectly fine to have information sets with
more then one decision node. However, it is impossible for the same decision node to appear
in more than one information set.

Recall that the action sets are defined in terms of information sets. That is, Ai(h) is the set
of actions from which player i may choose at information set h. It is essential to realize that
this implies that for all nodes in this information set, the actions available at each are the
same. That is, if x′ ∈ h(x), then Ai(x′) = Ai(x). Thus, we can let Ai(h) denote the action
set at information set h.

To see why this must be the case, suppose that player 2 had another option, say “punt”,
at the node reached by the history h3 = (black, R) that was not available after history h4 =
(red, R). This means that she could punt if and only if player 1 had a black card. But how
would player 2 exercise this option if she does not know the color of the card? To represent
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this situation, we would have to give player 2 an action called “try to punt” and add it to both
nodes in her information set. Then, if she chooses this option, she would succeed when the
card is black but fail when it is red.

Note, on the other hand, the we could easily give player 1 different actions (or numbers of
actions) at each of his nodes 1.b and 1.c because they belong to different information sets.
To emphasize this, I have labeled the actions differently in Fig. 3 (p. 5), with lowercase and
uppercase letters, depending on the color.

The point is that if a player has two nodes with different sets of actions, then these nodes
cannot belong to the same information set. However, one can easily have different nodes
with the same sets of actions even though the nodes are not in the same information set.

This completes the extensive form representation of the card game. Note that we have
specified the players, the rules of the game (who moves when and what options they have),
the outcomes in terms of terminal histories, the payoffs associated with these outcomes, the
information available to the players when they move, and the probability distribution of the
chance events.

2 Formal Definition of the Extensive Form

In most applications, the game trees would rarely be drawn, and so one must make do with
the mathematical description of the extensive form. It is necessary to go through this exercise
to understand the methodology of this fundamental class of games. We shall rarely, if ever,
need to resort to the finer detail, but the mathematical description allows us to define two
important categories of games (perfect and imperfect recall), of which we shall only study
one. The following definition follows Fudenberg & Tirole (1991).

Definition 1. The extensive form of a game, Γ = {I, (X,�), ι(·),A(·),H,u}, contains the
following elements:

1. A set of players denoted by i ∈ I , with I = {N,1,2, . . .}, withN representing the pseudo-
player Nature;

2. A tree, (X,�), which is a finite collection of nodes x ∈ X endowed with the precedence
relation �, where x � x′ means “x is before x′.” This relation is transitive and asym-
metric, and thus constitutes a partial order.2 This rules out cycles where the game may
go from node x to a node x′, from x′ to node x′′, and from x′′ back to x.3 In addition,
we require that each node x has exactly one immediate predecessor, that is, one node
x′ � x such that x′′ � x and x′′ ≠ x′ implies x′′ � x′. Thus, if x′ and x′′ are both
predecessors of x, then either x′ is before x′′ or x′′ is before x′.

3. A set of terminal nodes, denoted by z ∈ Z consisting of all nodes that are not pre-
decessors of any other node. Because each z determines the path through the tree,
it represents an outcome of the game. The payoffs for outcomes are assigned by the
Bernoulli payoff functions ui : Z → R, and u = (u1(·), . . . , uI(·)) is the collection of
these functions, one for each player.

2It is not a complete order because two nodes may not be comparable. For example, consider player 2’s
information set in Fig. 3 (p. 5): Neither of the nodes precedes the other.

3To see this, suppose we constructed a game such that x � x′ � x′′ � x. By transitivity, x′′ � x′, but since
we already have x′ � x′′, this violates asymmetry.
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4. A map ι : X → I , with the interpretation that player ι(x) moves at node x. A function
A(x) that denotes the set of feasible actions at x.

5. Information sets h ∈ H that partition the nodes of the tree such that every node is
exactly in one set. The interpretation of h(x) is that information set h contains the
node x. We require that if x′ ∈ h(x), then A(x′) = A(x), and so we can let A(h)
denote the set of feasible actions at information set h.

6. A probability distribution over the set of alternatives for all chance nodes.

This definition now allows us to make several ideas very precise.

2.1 Perfect Recall

We shall require that players have perfect recall. That is, a player never forgets information he
once knew, and each player knows the actions he has chosen previously. This is accomplished
by requiring that (a) if two decision nodes are in the same information set, then neither is a
predecessor of the other; and (b) if two nodes x′ and x′′ are in the same information set and
one of them has a predecessor x, then the other one has a predecessor x̂ (possibly x itself)
in the same information set as x and the action taken at x that leads to x′ is the same as the
action taken from x̂ that leads to the x′′. The games in Fig. 4 (p. 7) illustrate some cases of
imperfect recall that this requirement eliminates.
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Figure 4: Games of Imperfect Recall.

The literature on games with imperfect recall is very small, although there are some very
interesting papers that might be worth looking at (e.g. the famous game where a drunk driver
forgets whether he’s been past an exit on the freeway). These games are still quite exotic and
their application has been of limited usefulness.

One interesting area of research is machine game models of repeated situations: these
machines have limited memory and since information is costly to acquire, a player may “for-
get” some of his past actions. This course will only deal with games of perfect recall. This
approach has been extensively used in low-rationality models of learning (evolutionary game
theory, for example), where players look at a most recent past when forming expectations
about future behavior.
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2.2 Finite and Infinite Games

There are three different conceptions of finiteness buried in the definition of extensive form
games. The mathematical description can be easily extended to cover these as well.

Definition 2. A finite game has (i) a finite number of players, (ii) a finite number of actions,
and (iii) finite length histories. Otherwise, the game is infinite.

Note that relaxing any of the three requirements results in an infinite number of nodes.
Thus, game is finite if it has a finite number of nodes. Some examples of useful infinite games
that we shall encounter include games where players choose actions from some interval that
is a subset of the real line; games which can be repeated indefinitely; or games involving
an infinite number of players (we shall see how these games are a way to model incomplete
information).

2.3 Informational Categories

We now make very precise several different informational categories. Make sure you under-
stand the terms because we shall use them quite a bit.

Definition 3. We distinguish the following informational categories:

• A game is one of perfect information if each information set is a singleton; otherwise
it is a game of imperfect information.

• A game is one of certainty if it has no moves by Nature; otherwise it is a game of
uncertainty.

• A game is one of complete information if all payoff functions are common knowledge;
otherwise it is a game of incomplete information.

• A game is one of symmetric information if no player has information that is different
from other players when he moves or at the terminal nodes; otherwise it is a game of
asymmetric information.

Myerson’s Card Game shown in Fig. 3 (p. 5) is a game of complete but imperfect (and
therefore asymmetric) information that is also one of uncertainty. Games of imperfect recall
are always games of imperfect information.

2.4 Examples of Games in Extensive Form

Let’s now describe the extensive forms for several examples.

Example 2. (Matching Pennies.) There are two players who must each put a penny down.
If the pennies match (either both heads or both tails), then player 1 pays one dollar to player
2. If they don’t match, then player 2 pays one dollar to player 1.

This is a game of complete information, but as it stands, this example omits a crucial
piece of information: What do players know when they get to move? After a bit of thought,
it should be obvious that there are five possible ways that players can move: (i) player 1
moves first and player 2 observes his action before acting herself; (ii) player 2 moves first
and player 1 observes her action before moving himself; (iii) player 1 moves first but player 2
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does not observe his action before acting herself; (iv) player 2 movies first but player 1 does
not observe her action before moving himself; and (v) the players move simultaneously.

Because in (i) and (ii) each player knows what the other has done in the past when it is
time to move, they are games of perfect information. However, in the other three cases,
neither player knows what the other has done, and so they are games of imperfect infor-
mation. With more thought, it should be clear that the last three situations are equivalent
from the perspective of each decision-maker: neither player 1 nor player 2 knows the other’s
action when they make their respective choices. It does not matter when players move if
one cannot observe their actions. For example, from player 1’s standpoint it does not matter
whether player 2 has already made the choice which he cannot see, or is making the choice
simultaneously with him, or will make the choice in the future without seeing his action.

And so, we have three different representations of the situation, depending on how we
wish to specify it. Fig. 5 (p. 9) shows how the extensive form can be represented with a
game-tree diagram. Note that the two variants of the imperfect information specification are
equivalent.
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Figure 5: The Three Possible Sequences of the Matching Pennies Game.

We have assumed that players know each other’s payoff functions, and so Matching Pennies
is a game of complete information. However, (a) and (b) cases in Fig. 5 (p. 9) represent games
of perfect information, while (c) and (d) represent the case of imperfect information. To see
that (c) and (d) are equivalent representations (as claimed), just examine the information sets
of the players (what they know when they get to move).

We shall see games of incomplete (asymmetric) information later in the course. We shall
also see how they can be modeled (and solved) as games of imperfect information. It is worth
noting that although many games of incomplete information are also games of asymmetric
information, the two concepts are not equivalent. For example, the famous principal-agent
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problem has complete but asymmetric information: both players know all payoff functions
but the worker’s effort is unobserved, even after the end of the game.

It is also possible to have games of incomplete but symmetric information. For example, a
Prisoners’ Dilemma where Nature moves first and randomly assigns different payoffs to the
outcomes, unknown to either player.

Example 3. (Two-Way Division.) Two people use the following procedure to share two
desirable identical nondivisible objects. One of them proposes an allocation, which the other
one either accepts of rejects. In the even of rejection, neither person receives either of the
objects. Each person cares only about the number of objects it receives. This is shown in
Fig. 6 (p. 10).

�												















1

(2,0) (1,1) (0,2)

�

�
�

�

�
�

�

2
y n

�

2,0
�

0,0

�

�
�

�

�
�

�

2
y n

�

1,1
�

0,0

�

�
�

�

�
�

�

2
y n

�

0,2
�

0,0

Figure 6: The Two-Way Division Game, Perfect Information.

Example 4. Suppose we wanted to model a situation, in which player 2 had to accept or
reject the proposal without knowing what this proposal is. In effect, this transforms the
game into one of imperfect information, as shown in Fig. 7 (p. 10).
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Figure 7: The Two-Way Division Game, Imperfect Information, I.

The game tree in Fig. 8 (p. 11) is equivalent to the tree in Fig. 7 (p. 10) (the payoffs still
specify player 1’s payoff first and then player 2’s payoff). This is important: a strategic
situation can have more than one extensive form representation.

To get some practice with modeling information sets, let’s do several variants of the Match-
ing Pennies game. We first set up a basic example of perfect information, and then vary the
different “imperfections” in the information available to the players throughout the game.

Example 5. (Matching Pennies Variant A.) Suppose that before playing Matching Pennies,
players roll a die to determine who will go first: If the number is less than 3, then player 1
goes first (they play Fig. 5 (p. 9), a), otherwise player 2 goes first (the play Fig. 5 (p. 9), b). This
is shown in Fig. 9 (p. 11).
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Figure 8: The Two-Way Division Game, Imperfect Information, II.
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Figure 9: A Game of Uncertainty, Variant A (Perfect Information).

Example 6. (Matching Pennies, Variant B1) Suppose now that before playing Matching
Pennies, players roll the die to determine whether player 1 will pay 1 or 2 dollars if the
pennies match. If the die shows a number less than 3, he pays 2 dollars, otherwise, he pays
1 dollar. In this variant, suppose that player 1 observes the outcome of the roll but player 2
does not, and players move simultaneously.
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Figure 10: A Game of Uncertainty, Variant B1 (Imperfect Information).

Example 7. (Matching Pennies, Variant B2) In this variant, suppose that player 2 ob-
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serves the outcome of the roll but player 1 does not, and players move simultaneously.
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Figure 11: A Game of Uncertainty, Variant B2 (Imperfect Information).

Example 8. (Matching Pennies, Variant B3) In this variant, suppose that neither player
observes the outcome of the roll, and players move simultaneously.
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Figure 12: A Game of Uncertainty, Variant B3 (Imperfect Information).

3 Pure Strategies

Player i’s strategy, si, is a complete rule of action that tells him which action ai ∈ Ai to
choose at each of his information sets. That is, a strategy specifies what the player is going
to do every time it is his turn to move given what he knows. A player’s strategy space
(sometimes also called a strategy set), Si = {si}, is the set of all possible strategies.

A strategy is a complete contingent plan of action. That is, a strategy in an extensive form
game is a plan that specifies the action chosen by the player for every history after which
it is his turn to move, that is, at each of his information sets. This is a bit counter-intuitive
because it means that the strategy must specify moves at information sets that might never
be reached because of actions specified by the player’s strategy at earlier information sets.

Definition 4. Let Γ be a game in extensive form. A pure strategy for player i ∈ I is a
function si : H →A such that si(h) ∈ Ai(h) for all h ∈H .
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Let’s list the strategies for the two players in Myerson’s Card Game in Fig. 3 (p. 5). Player
1 has two information sets, labeled “b” and “c”, with A1(b) = {R, F} and A1(c) = {r , f},
so his strategy must specify two actions, ab ∈ A1(b) and ac ∈ A1(c). We shall write his
strategy as an ordered set: s1 = (ab,ac), with the first element denoting the action to take at
information set “c” and the second denoting the action to take at information set “c”. This
gives four pure strategies for player 1:

S1 = {(R, r), (R, f ), (F, r), (F, f )}.

For example, (R, f ) is the strategy “raise if the card is black, and fold if the card is red.”
Player 2 knows that she won’t see the color and will only get to choose if player 1 raises, in

which case she will either have to meet or pass. There is only one information set for player
2, so her pure strategy must simply specify the action, a0 ∈ A2(0) = {m,p}, she is to take at
this information set. Thus,

S2 = {m,p}.
The strategy m is then “meet if player 1 raises.”

Let’s do several other examples. Consider the game in Fig. 6 (p. 10). Player 1 takes action
only after the initial history ∅, and so his strategy consists of only three possible actions:
S1 = {(2,0), (1,1), (0,2)}. Player 2, on the other hand, gets to move after three different
histories, and so her strategy must specify what to do after each of these histories. That
is, a strategy for player 2 must be a triple where each member specifies what to do after a
particular history. We can use the triple (abc) to represent player 2’s strategy, with a being
the action to take after history (2,0), b being the action to take after history (1,1), and c
being the action to take after history (0,2). For example, (yyn) is a strategy that specifies
acceptance of the offers (2,0) and (1,1), and rejection of (0,2). We interpret the strategy as
a contingent plan of action: if player 1 chooses (2,0), then player 2 will choose a; if player 1
chooses (1,1), then player 2 will choose b, and if player 1 chooses (0,2), then player 2 will
choose c.

Thus, player 2 has 8 available strategies (2 actions to be taken at 3 possible contingencies,
or 23 = 8 total strategies):

S2 =
{
(yyy), (yyn), (ynn), (yny), (nyy), (nyn), (nny), (nnn)

}
.

Remember that a strategy is a contingent plan of action. For example, the strategy (nny)
reads “reject if player 1 offers (2,0), reject if player 1 offers (1,1), accept if player 1 offers
(0,2).” Also, remember that it is a complete plan of action, and so player 2’s strategy must
tell her what to do for each and every possible move by player 1.

Here’s an example of a simple game where player 1 gets to move both before and after
player 2 has moved. Note that you can draw game trees in just about any direction you want.
Usually, left-to-right and up-to-down are the preferred directions (at least for us as people
whose languages are written in these directions).

Let’s examine Fig. 13 (p. 14) a little more closely. It has two players, i ∈ {1,2}. The
game also has seven histories: H = {(∅), (A), (B), (B, c), (B,d), (B,d, E), (B,d, F)}. Recall
that Hi denotes the set of information sets for player i, and Ai(h) denotes the set of
available actions at information set h for all h ∈ Hi. At the information set ∅, player
1 has two actions available: A1(∅) = {A,B}. At the information set (B,d), he has two
actions available A1(B,d) = {F, E}. Player 2 only gets to move at the information set B,
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Figure 13: Extensive Form Game with 4 Outcomes.

and has two actions available there: A2(B) = {c,d}. There are four terminal histories:
Z = {A, (B, c), (B,d, E), (B,d, F)}.

Now, since a strategy is a complete contingent plan of action, it must specify the actions
to be taken at every information set. Player 1 has two information sets in the game, and
therefore his strategy will have 2 components: an action to take at the first information set,
and an action to take at the second information set. Since in both cases he has two actions
available, he has a total of four different strategies:

S1 = {(AE), (AF), (BE), (BF)} .
Player 2 has only one information set, with two actions there, and so she has only two possi-
ble strategies:

S2 = {c,d} .
This game illustrates a point that is worth emphasizing. It is extremely important to remem-
ber that a strategy specifies the action chosen by a player for every information set at which
it is his turn to move, even for information sets that are never reached if the strategy is
followed. That is, in the game in Fig. 13 (p. 14), the first two strategies, (AE) and (AF) specify
actions after the history (B,d) even though they specify action A at the initial node (which
means that when the strategy is followed, history (B,d) will never be realized, and the sec-
ond information set will never be reached). In this sense, a strategy differs from what we
naturally consider a plan of action.4

Let’s specify the strategies for the game in Fig. 14 (p. 15). There are three players. Player
1 has one information set following the history ∅ and has two choices available to him
there: A1(∅) = {U,D}. Player 2 has two information sets, one following the history U and
another following the history D. She has two actions available at each information set, with
A2(U) = {A,B} and A2(D) = {C,E}. Player 3 also has two information sets: one following
the history (U,A), and another following the histories (U, B) and D,C . He also has two
actions at each information set with A3(U,A) = {R,T} and A3(U, B) = A3(D,C) = {P,Q}.
The strategies then are as follows:

S1 = {U,D}
S2 = {AC,AE, BC, BE}
S3 = {RP,RQ,TP, TQ}

Note again that player 3’s actions at both decision nodes in his second information set must
be the same because the player does not know at which decision node he really is.

4It will soon become clear why we must specify strategies in this seemingly redundant way. The intuition
is that what the other player chooses to do depends on what player 1 might do after his action, which in turn
determines what player 1 might do initially. Thus, a strategy must specify actions at both information sets if
we are to analyze the interactive component of decision-making in the game.
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Figure 14: An Extensive Form Game with Three Players.

Consider the game in Fig. 15 (p. 15). In this game, player 1 has two information sets, one
following the history ∅, and another following the history A. At the first information set,
player 1 has three actions, and so A1(∅) = {A,B,C}. At the second information set, player 1
has two actions, and so A1(A) = {W,Z}.
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Figure 15: An Extensive Form Game with Two Players and Imperfect Information.

Player 2, on the other hand, has only one information set, following either the history B or
the history C . She has two actions available at this information set, and so A2(B) = A2(C) =
{X,Y}. The strategies then are as follows:

S1 = {AW,AZ,BW,BZ,CW,CZ}
S2 = {X,Y}

Again, remember that a strategy specifies a complete plan of action for every information set,
even ones that are not reached if the strategy itself is followed. Hence, the pairs of strategies
for player 1 with either B or C as the action at the initial information set.

More generally, we can determine the number of pure strategies each player has by multi-
plying the number of actions at each of his information sets. LettingHi denote the collection
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of information sets for player i, the number of pure strategies he has is

#Si =
∏
h∈Hi

# (Ai(h))

In the example in Fig. 15 (p. 15), this calculation is #S1 = #(A1(∅)) × #(A1(A)) = 3 × 2 = 6,
while for the game in Fig. 6 (p. 10), the calculation is #S2 = #(A2(2,0)) × #(A2(1,1)) ×
#(A2(0,2)) = 2× 2× 2 = 8, just as we saw.

A strategy profile, s = (s1, s2, . . . , sn), is an ordered set of strategies consisting of one
strategy for each of the n players in the game. One extraordinarily useful piece of notation
can let us focus on player i’s strategy si in the profile s. We can partition the strategy profile
s as:

(si, s−i) ≡ s,
where si is player i’s strategy, and s−i is the set of strategies for all other players. For
example, if s = (s1, s2, s3, s4, s5), and we specify (si, s−i) for player i = 3, then si = s3, and
s−i = (s1, s2, s4, s5). Let S = S1 × S2 × . . .× Sn denote the set of strategy profiles.

Because a strategy profile specifies what each player is going to do at every point in the
game where it is his turn to move, it in effect describes how the game will be played and what
its outcome will be if the players follow the strategies in the profile. In other words, each
strategy profile is an outcome of the game.

Some people define players’ preference orderings over strategy profiles, but I find this
confusing. We shall define them over outcomes. A player’s payoff, ui(s), is the expected
utility that player i receives from the outcome produced by the strategy profile s ∈ S. Thus,
each player i’s goal in a game is to choose si ∈ Si that maximizes ui(si, s−i).

4 The Strategic (Normal) Form

Every strategy profile s induces an outcome of the game: a sequence of moves actually taken
as specified by the strategies and a probability distribution over the terminal nodes of the
game. If the game is one of certainty (no moves by Nature), then s specifies one outcome with
certainty. Otherwise, more than one outcome may occur with positive probability. The point
is that we can calculate the expected payoffs of all players. Sometimes, it is useful to analyze
the game in its strategic form, which includes only the players, their actions, and the payoffs
in its description.

Putting things a little more formally, let n be the number of players. For each player i,
denote the strategy space by Si. (We shall sometimes write sj ∈ Si to reflect that strategy sj
is a member of the set of strategies Si.) Let (s1, s2, . . . , sn) denote a strategy profile, where s1
is the action of player 1, s2 is the action of player 2, and so on. Let S = S1 × S2 × . . . × Sn
denote the set of strategy profiles.

For each player i, define the vNM expected utility function Ui : S → R so that for each s ∈ S
that player choose, Ui(s) is player i’s expected payoff from outcome s.

Definition 5. For a game with I = {1, . . . , n} players, the strategic (normal) form repre-
sentation G = {I, S,U} specifies for each player i a set of strategies Si and a payoff function
Ui : S → R, where S = ×Si, and U = (U1, . . . , Un).

When we analyze these games, we often assume that players choose their strategies si-
multaneously, and hence we call them simultaneous-move games. However, this does not
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require that players strictly act at the same time. All that is necessary is that each player
acts without knowledge of what others have done. That is, players cannot condition their
strategies on observable actions of the other players.

Of course, this ignores the information about timing of moves explicitly specified by the
extensive form. The question boils down to whether we think such questions are essential
to the situation we are trying to analyze. If they are not, then it should not matter greatly if
we simplify our description to exclude such information. In an important sense, the strategic
form is a static model because it dispenses with the dynamics of timing of moves completely.

This may not be as controversial (or useless) as it sounds. First, as we shall see, there
are great many situations that we might profitably analyze without reference to the timing of
moves. Second, the simplified representation is actually considerably easier to analyze, so we
can benefit from dispensing with information that is not essential. We shall, of course, also
see that there are many, many situations where ignoring timing has crucial consequences and
our solutions based on the normal form will be quite suspicious precisely because they will
discard such information. The question (again) will boil down to the choice of representation,
which a researcher has to make based on her skill and experience.

von Neumann and Morgenstern suggested a procedure for simplifying games in extensive
form by constructing the strategic form G of any Γ . This is done in an algorithmic way. First,
we find all pure strategies for the players. Next, we construct the expected outcomes for
all strategy profiles. Finally, we redefine the utility functions on the outcomes to be utility
functions on the profiles with expected outcomes.

Consider the following scenario. The two players are going to play Myerson’s Card Game in
Fig. 3 (p. 5) tomorrow and today they have to plan their moves in advance. Player 1 does not
know the color that he will draw but he can condition his strategy on the card color because
he knows that he will see it before choosing whether to raise or fold. As we have seen, he has
four pure strategies, S1 = {Rr,Rf , Fr , Ff}. Player 2, on the other hand, will only ever get to
move if player 1 raises, so her pure strategies are S2 = {m,p}. The strategy profiles are:

S = S1 × S2 =
{
(Rr ,m) ,

(
Rr,p

)
, (Rf ,m) ,

(
Rf ,p

)
, (Fr ,m) ,

(
Fr ,p

)
, (Ff ,m) ,

(
Ff ,p

)}
.

We now have to define the expected utility functions for the player. Recall that originally,
we defined the utility functions directly in terms of the outcome. However, even if we knew
here which strategy profile will be realized (that is, what strategy each player has chosen),
we cannot predict the actual outcome of the game because it will depend on the color of the
card, which is a chance move. For example, suppose player 1 has chosen the strategy Fr and
player 2 has chosen m, and so the strategy profile is (Fr ,m). The outcome will be folding
by player 1 if the card is black, and raising by player 1 and meeting by player 2 if the card is
red. Player 1’s payoff will be −1 if the card is black, and 2 if the card is red. So what is payoff
should player 1 expect from the profile (Fr ,m)?

Its expected payoff, of course. Choosing the strategy Fr given that player 2 will be choosing
m is equivalent to choosing a lottery, in which player 1 would get −1 with probability 0.5,
and 2 with probability 0.5. We know how to compute the expected utility in this case:

U1(Fr ,m) = 1
2
×u1(black, F)+ 1

2
×u1(red, r ,m) = 1

2
× (−1)+ 1

2
× (2) = 0.5.

In analogous manner, we would compute player 2’s expected payoff:

U2(Fr ,m) = 1
2
×u2(black, F)+ 1

2
×u2(red, r ,m) = 1

2
× (1)+ 1

2
× (−2) = −0.5.
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Continuing in this way, we define the expected utility functions for the two players on all
strategy profiles, and arrive the the normal form representation of this game of uncertainty
shown in Fig. 16 (p. 18).

Player 1

Player 2
m p

Rr 0,0 1,−1
Rf −0.5,0.5 1,−1
Fr 0.5,−0.5 0,0
Ff 0,0 0,0

Figure 16: The Strategic Form of the Game from Fig. 3 (p. 5).

The strategic game in Fig. 16 (p. 18) describes how the utilities of the players depend on
the strategies they choose at the beginning of the game. We know from our expected utility
theorem that a player would choose the strategy that yields the highest expected payoff
because this would be consistent with his preferences. In other words, players will make
choices that maximize their expected payoff.

In general, given any extensive form game Γ , its normal form representation G can be
constructed as follows. The set of players remains the same. For any player i ∈ I , let the set
of strategies Si in the normal form game be the same as the set of strategies in the extensive
form. For any strategy profile s ∈ S and any node x in the tree of Γ , define P(x|s) to be the
probability that the path of play will go through node x, when the path of play starts at the
initial node, and at any decision node in the path, the next node is determined by the relevant
player’s strategy in s, and, at any node where nature moves, the next node is determined by
the probability distribution given in Γ . At any terminal node x ∈ Z, let ui(x) be player i’s
payoff from outcome x. Then, for any strategy profile s ∈ S and any i ∈ I , let Ui(s) be:

Ui(s) =
∑
x∈Z

P(x|s)ui(x).

That is, Ui(s) is player i’s expected utility if all players implement the strategies according to
s. If G is derived from Γ in this way, it is called the strategic (normal) form representation
of Γ .

To make things more concrete, let’s construct the strategic form of the two extensive-form
games from Fig. 17 (p. 18).
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Figure 17: Two Simple Games.

In the imperfect information variant (b), player 1 and player 2 have two strategies each:
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S1 = {L,R}, and S2 = {U,D}. There are four outcomes,

S = S1 × S2 =
{
(L,U) , (L,D) , (R,U) , (R,D)

}
.

Without chance moves, there is no need to transform the utility functions. The strategic form
is in Fig. 18 (p. 19).

Player 1

Player 2
U D

L 2,2 4,0
R 1,0 3,1

Figure 18: The Strategic Form of the Game from Fig. 17 (p. 18) (b).

The situation in Fig. 17 (p. 18) (a) is very different. Although player 1 still has two pure
strategies, S1 = {L,R}, player 2 can condition her choice on player 1’s. She has two informa-
tion sets, and her strategy must specify two actions: aL ∈ A2(L) = {U,D} is the choice after
player 1 chooses L, and aR ∈ A2(R) = {u,d} is the choice after player 1 chooses R. We shall
write player 2’s strategy as the ordered pair (aL,aR). Hence, the strategy set for player 2
consists of four pure strategies; S2 = {(U,u), (U,d), (D,u), (D,d)}. The game now has eight
strategy profiles:

S = S1 × S2 =
{
(L, (U,u)) , (L, (U,d)) , (L, (D,u)) , (L, (D,d)) ,

(R, (U,u)) , (R, (U,d)) , (R, (D,u)) , (R, (D,d))
}
.

Because there are no moves by chance, there is no need to transform the utility functions, so
the strategic form is given in Fig. 19 (p. 19).

Player 1

Player 2
(U,u) (U,d) (D,u) (D,d)

L 2,2 2,2 4,0 4,0
R 1,0 3,1 1,0 3,1

Figure 19: The Strategic Form of the Game from Fig. 17 (p. 18) (a).

A seemingly innocuous change in the information structure of the extensive form led to
two distinct normal form representations.

4.1 Examples of Converting Extensive to Strategic Form

Going back to the extensive form game in Fig. 6 (p. 10), we can convert the game to its normal
form equivalent by specifying the players’ pure strategies and the payoffs. We already know
the strategies:

S1 = {(2,0), (1,1), (0,2)},
and

S2 = {(yyy), (yyn), (ynn), (yny), (nyy), (nyn), (nny), (nnn)},
which give 3 × 8 = 24 strategy profiles. Because there are no moves by chance, we do not
have to redefine the utility functions, and so we get the strategic form in Fig. 20 (p. 20).
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Player 1

Player 2
yyy yyn ynn yny nyy nyn nny nnn

(2,0) 2,0 2,0 2,0 2,0 0,0 0,0 0,0 0,0
(1,1) 1,1 1,1 0,0 0,0 1,1 1,1 0,0 0,0
(0,2) 0,2 0,0 0,0 0,2 0,2 0,0 0,2 0,0

Figure 20: The Strategic Form of the Game from Fig. 6 (p. 10).

Although there is only one way of converting an extensive form game to a strategic form
game, this does not mean that we would get different strategic games from different extensive
forms. Recall that Fig. 7 (p. 10) and Fig. 8 (p. 11) described the same strategic situation using
different trees. Both of these have the same strategic form representation shown in Fig. 21
(p. 20).

Player 1

Player 2
y n

(2,0) 2,0 0,0
(1,1) 1,1 0,0
(0,2) 0,2 0,0

Figure 21: The Strategic Form of the Games from Figures 7 and 8.

Note how the game in Fig. 20 (p. 20) differs from the game in Fig. 21 (p. 20). This is
because the two describe two radically different extensive form games. In particular in the
first case player 2 has three information sets, while in the second case he only has 1 (with
three decision nodes in it). Intuitively, however, it does make sense that the two extensive-
form games from Fig. 7 (p. 10) and Fig. 8 (p. 11) should have the same strategic form because
they do describe equivalent strategic situations.

4.1.1 Several Chance Moves

Let’s now do an example with a more than one chance move, as in Fig. 22 (p. 20).
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Figure 22: A Card Game in Extensive Form With Two Chance Moves.

The first step is to calculate the probability distribution over the terminal nodes. There are
actually two ways one could do that: either calculate the probability distributions induced
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by each strategy profile, or calculate the probability distribution over the terminal nodes di-
rectly. In the first method, we would take each strategy profile and calculate the probabilities
with which it produces various outcomes. In the other method, we would take one outcome
and calculate the probabilities with which it can be reached by various paths. These are
equivalent. We’ll do the first method because it is more difficult to miss profiles.

Outcome Probability, P(x|s)
Profile (R,m) (R,p) F/3 2F/3 (r ,m) (r ,p) 3f/4 f/4 U1(s) U2(s)
(Rr ,m) 1/2 0 0 0 1/2 0 0 0 0 0
(Rr ,p) 0 1/2 0 0 0 1/2 0 0 1 −1
(Rf ,m) 1/2 0 0 0 0 0 3/8 1/8 5/8 −5/8
(Rf ,p) 0 1/2 0 0 0 0 3/8 1/8 1/8 −1/8
(Fr ,m) 0 0 1/6 2/6 1/2 0 0 0 −5/6 5/6
(Fr ,p) 0 0 1/6 2/6 0 1/2 0 0 2/3 −2/3
(Ff ,m) 0 0 1/6 2/6 0 0 3/8 1/8 −5/24 5/24
(Ff ,p) 0 0 1/6 2/6 0 0 3/8 1/8 −5/24 5/24

Table 1: Probability Distributions Over Outcomes.

Clearly, the sum of all columns for each row should equal 1 (that is, each profile will
produce some outcome with certainty). The expected utilities for each profile are calculated
in the usual manner. Using Tab. 1 (p. 21), we can construct the strategic form representation
of the game in Fig. 22 (p. 20), as shown in Fig. 23 (p. 21).

Player 1

Player 2
m p

Rr 0,0 1,−1
Rf 5/8,−5/8 1/8,−1/8
Fr −5/6,5/6 2/3,−2/3
Ff −5/24,5/24 −5/24,5/24

Figure 23: The Strategic Form of the Game from Fig. 22 (p. 20).

4.1.2 Three Players

Consider the strategic form of the game in Fig. 24 (p. 22). We have not seen games with three
players in strategic form, but the principles are the same. Player 1 has one information set
with two actions, so he has two pure strategies, S1 = {U,D}. Player 2 has two information
sets with two actions at each, hence four pure strategies, S2 = {(A,C), (A, E), (B, C), (B, E)}.
Player 3 has two information sets with two actions at each, or four pure strategies, S3 =
{(R, P), (R,Q), (T , P), (T ,Q)}. This gives us 2 × 4 × 4 = 32 strategy profiles. Fortunately,
there are no chance moves here, so we won’t have to redefine the utility functions.

There are two ways to write the strategic form with three players. One is to write out as
many separate games between players 1 and 2 as there are pure strategies for player 3. In
each of these 2-player games, player 3 is choosing a particular pure strategy. In our example,
this would give us 4 2-player matrices with 2× 4 = 8 cells each. Of course, the total number
of cells will still be 32.
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Figure 24: An Extensive Form Game with Three Players.

The other way is to write out one big payoff matrix, as we now do here. Player 3’s strate-
gies form the rows, while player 1 and player 2’s strategies jointly determine the columns.
This payoff matrix has 4 rows and 8 columns. The payoffs are listed as ordered triples,
(u1, u2, u3), where ui is player i’s payoff from the relevant outcome. The strategic form is
in Tab. 2 (p. 22).

Player 1
U D

Player 2 Player 2
(A,C) (A, E) (B,C) (B, E) (A,C) (A, E) (B,C) (B, E)

Player 3

(R, P) (0,1,2) (0,1,2) (1,0,0) (1,0,0) (2,2,1) (3,0,1) (2,2,1) (3,0,1)
(R,Q) (0,1,2) (0,1,2) (0,2,1) (0,2,1) (0,0,0) (3,0,1) (0,0,0) (3,0,1)
(T , P) (1,2,0) (1,2,0) (1,0,0) (1,0,0) (2,2,1) (3,0,1) (2,2,1) (3,0,1)
(T ,Q) (1,2,0) (1,2,0) (0,2,1) (0,2,1) (0,0,0) (3,0,1) (0,0,0) (3,0,1)

Table 2: The Strategic Form with Three Players.

Often we would not even have to specify the extensive form before going to the strategic
form. Let’s see several canonical examples of games in normal form.

4.2 Examples in Strategic Form

Let’s model a situation where two players, i ∈ {1,2}, want to decide between two types of
entertainment to which they want to go together but the decision must be made without
knowledge of what the other will do (say they are in their offices and the phones are down
so they cannot communicate beforehand). The two available pieces of entertainment for the
night are a boxing match (fight) and a ballet. For each player then, the set of actions consists
of (1) go to the fight, or (2) go to the ballet. Note that the actions are exhaustive and mutually
exclusive. The set of these action is also called the strategy space for the player.
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Continuing with the example, the strategy profile then consists of one strategy for each of
the two players. This gives us four different strategy profiles: (1) player 1 goes to the fight,
player 2 goes to the fight; (2) player 1 goes to the fight, player 2 goes to the ballet; (3) player
1 goes to the ballet, player 2 goes to the fight; and (4) player 1 goes to the ballet, player 2
goes to the ballet. We shall specify an outcome (strategy profile) by listing first the strategy
for player 1 and then the action for player 2. Thus, the four outcomes above can be written
as (1) (Fight, Fight); (2) (Fight, Ballet); (3) (Ballet, Fight); and (4) (Ballet,Ballet).

Since each strategy profile produces a different outcome in this game, the game has 4
possible outcomes, in 2 of which the players go together to the same place, and 2 in which
they fail to coordinate. Each player has (ordinal) preferences over these four outcomes. In
other words, each player ranks these outcomes according to their desirability using some
criterion. Each outcome then consists of two elements which specify the payoff for each
player for this outcome. This is often called the payoff vector.

Let’s say that player 1 is a man, who prefers going to the fight to seeing Swan Lake. And
let’s say that player 2 is a woman who prefers the culture of ballet to the stupid bashing of
heads. However, both prefer to go together regardless of the type of entertainment. Their
worst outcome is when they end up alone at any of the places. Thus, the man’s ordering is

(F, F) � (B, B) � (F, B) ∼ (B, F)
and the woman’s ordering is

(B, B) � (F, F) � (F, B) ∼ (B, F)
Now that we have specified the ordinal rankings, we need to choose a payoff function to
represent the orderings. Denote the man’s utility function by u1, and the woman’s utility
function by u2. We need two functions such that:

u1(F, F) > u1(B, B) > u1(F, B) = u1(B, F)
u2(B, B) > u2(F, F) > u2(F, B) = u2(B, F).

One possible and simple specification is

u1(F, F) = u2(B, B) = 2

u1(B, B) = u2(F, F) = 1

u1(F, B) = u1(B, F) = u2(F, B) = u2(B, F) = 0.

A convenient way of describing the (finite) strategy spaces of the players and their payoff
functions for two-player games is to use a bi-matrix,5 as illustrated in Fig. 25 (p. 23).

Player 1

Player 2
F B

F 2,1 0,0
B 0,0 1,2

Figure 25: Battle of the Sexes.

In this figure the two rows represent the two possible actions for player 1 (the man), and
the columns represent the two possible actions for player 2 (the woman). Each box represents

5This is just like a regular matrix except each entry consists of two numbers instead of one.
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a possible outcome from these action, and the numbers in each box are the players’ payoffs
to the action profile to which the box corresponds. The first number is player 1’s payoff, and
the second number is player 2’s payoff.

Note: the Battle of the Sexes game represents a situation where players must coordinate
their actions but where they have opposed preferences over the coordinated outcomes. We
shall see two other types of coordination games: pure coordination (where players only care
about coordinating) and Pareto coordination (where both strictly prefer one of the coordi-
nated outcomes to the other).6

Recall that although we call this a simultaneous-moves game, it is not necessary for players
to actually act at the same time. All that is required is that each player acts with no knowledge
about how the other player acts. In our BoS game, this can be achieved by requiring the
players to make their choices without having access to a communication device.

Perhaps the most celebrated example of a cooperative strategic situation is the Prisoners’
Dilemma. Two suspects are arrested and charged for a crime. The authorities lack enough
evidence to convict them unless at least one confesses. The police put the suspects in sep-
arate cells and the DA comes to talk to them separately. The DA gives the same spiel to
both: If neither suspect confesses, then both will be convicted of a minor offense and will
spend 1 month in jail. If both confess, they will be sentenced to jail for 6 months. Finally,
if one confesses and the other does not, the one who confesses is granted immunity and is
released immediately, while the other will get a year (the 6 months for the crime and 6 more
for obstructing justice). We can represent this game using the payoff matrix in Fig. 26 (p. 24).

Prisoner 1

Prisoner 2
C D

C 2,2 0,3
D 3,0 1,1

Figure 26: Prisoner’s Dilemma, I.

The best outcome for a prisoner is to defect (D) and fink on the other while the other
cooperates with him (C) and says nothing. In this case he gets off and his payoff is 3. The
next-best outcome is when neither defects (finks) and so they are both convicted for the
minor offense, in which case the payoff is 2. The next outcome is when both defect, in which
case they are convicted only for the offense and they payoff is 1. Finally, the worst outcome
is to cooperate while the other defects, in which case the player gets the full sentence plus
the punishment for obstructing justice, with a payoff of 0.

It is worth repeating that the payoffs are only meant to represent the ordinal rankings of
the outcomes. For example, using the length of sentence as payoff we can construct a game
that is strategically equivalent:

The situation is absolutely the same because the ordinal ranking of the payoffs is the same
as in Fig. 26 (p. 24).

In fact, the PD has been extensively studied in many different settings. Two of the most
celebrated applications are to the arms race between the US and USSR and the “tragedy of

6There is now a more politically-correct version of the BoS game, called Bach or Stravinsky, which involves
two sexless players deciding between concerts of music by the two composers. Because it seems to lose some
of the punch, I prefer the original formulation. If this bothers you, you can assume the woman likes boxing
and the man likes ballet instead.
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Prisoner 1

Prisoner 2
C D

C -1,-1 -12, 0
D 0,-12 -6,-6

Figure 27: Prisoner’s Dilemma, II.

the commons” where a common resources is overconsumed.
Another common game is the Stag Hunt suggested by Jean-Jacques Rousseau. It is very

similar to PD except each players prefers the outcome in which both cooperate to the one in
which one defects. The original story is as follows.

There are two hunters and each has two options. He can catch a hare for sure or participate
in the hunt for a stag. If both pursue the stag, they are sure to catch it and then share equally.
This share is bigger than the hare. If either one goes for the hare while the other is pursuing
the stag, the catcher of the hare gets to take it home while the other goes empty-handed.

The arms race situation is perhaps better modeled as a Stag Hunt instead of a Prisoners’
Dilemma because acquiring arms is expensive and useless if the other one has disarmed.
Fig. 28 (p. 25) shows the Stag Hunt strategic situation applied to the security dilemma.

US

USSR
Arm Don’t Arm

Arm 1,1 2,0
Don’t Arm 0,2 3,3

Figure 28: Stag Hunt modeling the Security Dilemma.

In this situation, arming is costly, so both countries most prefer the outcome where neither
one arms. The next-best outcome is unilateral armament because it provides security (and
perhaps can be used to extract concessions). The third-best outcome is for both to arm.
Although this does not change the military balance, it is expensive, so both suffer the costs
of doing so. The worst outcome is to fail to arm while the other arms unilaterally. In this
case, the other side can extract huge concessions.

The point of these examples is to convey the idea that games really describe strategic
settings which may be the same across various actual applications. The abstract model can
thus capture the underlying incentives in these settings. The idea here is to understand that
we don’t care much about labels (we can have players, hunters, countries, prisoners). We also
don’t really care about the verbal description of a particular situation. What we are interested
in is the strategic environment: available actions and payoffs.

4.3 Reduced Strategic Form

Consider the game in Fig. 13 (p. 14). Player 1 has four pure strategies and player 2 has only
two, resulting in a 4 × 2 payoff matrix. The strategic representation of this game is given in
Fig. 29 (p. 26), and shows an important aspect of the definition of pure strategies: The pure
strategy space may be unnecessarily large in the sense that it may contain pure strategies that
are “equivalent” because they have the same consequences regardless of what the opponent
does. In this example, the strategies AE and AF for player 1 are equivalent.
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Player 1

Player 2
c d

AE 1,1 1,1
AF 1,1 1,1
BE -1,1 3,2
BF -1,1 4,0

Figure 29: The Normal Form of the Game from Fig. 13 (p. 14).

Two pure strategies are equivalent if they induce the same probability distribution over
the outcomes for all pure strategies for the opponents. Or, putting it a bit more formally:

Definition 6. Given any strategic form game G = {I, S,U}, for any player i and any two
strategies s1, s2 ∈ Si, the strategies s1 and s2 are payoff-equivalent if and only if

Uj(s1, s−i) = Uj(s2, s−i), ∀s−i ∈ S−i, ∀j ∈ I.
In our example from Fig. 29 (p. 26), the two pure strategies AE and AF always lead to

the same outcome because the game ends when the first action is taken and so the second
information set is never reached. This happens regardless of what player 2 does at her
information set. We can simplify the normal form representation by removing all but one
strategies from every class of equivalent strategies.

Definition 7. The purely reduced normal form of an extensive form game is obtained by
eliminating all but one member of each equivalence class of pure strategies.

Therefore, we can remove either AE or AF (but not both) to obtain the reduced normal
form shown in Fig. 30 (p. 26). The “new” strategy for player 1 is called A.

Player 1

Player 2
c d

A 1,1 1,1
BE -1,1 3,2
BF -1,1 4,0

Figure 30: The Reduced Normal Form of the Game from Fig. 7 (p. 10).

For practice, let’s find the reduced normal form of the extensive-form game in Fig. 31
(p. 27). Player 1 has two information sets, with A1(∅) = {a,b} and A1(b) = {c,d, e}. He has
six pure strategies:

S1 =
{
(a, c), (a,d), (a, e), (b, c), (b,d), (b, e)

}
.

Player 2 has only one information set, and therefore just two pure strategies:

S2 = {x,y}.
There are 12 pure-strategy profiles. Of these, exactly two involve chance moves: ((b, e), x)
and

(
(b, e),y

)
. We have to calculate the expected utilities for these:

U1((b, e), x) = (0.5)(0)+ (0.5)(6) = 3

U1((b, e),y) = (0.5)(8)+ (0.5)(6) = 7.
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Figure 31: Another Game from Myerson (p. 55).

Analogously, for player 2:

U2((b, e), x) = (0.5)(8)+ (0.5)(0) = 4

U2((b, e),y) = (0.5)(0)+ (0.5)(0) = 0.

We are now ready to construct the strategic form representation of this extensive form game.
The result is in Fig. 32 (p. 27).

Player 1

Player 2
x y

(a, c) 6,0 6,0
(a,d) 6,0 6,0
(a, e) 6,0 6,0
(b, c) 8,0 0,8
(b,d) 0,8 8,0
(b, e) 3,4 7,0

Figure 32: The Strategic Form of the Game from Fig. 31 (p. 27).

It is fairly obvious that the strategies (a, c), (a,d), and (a, e) are payoff equivalent to one
another because regardless of what player 2 does, the outcome from all three is the same.
In other words, player 1 does not care what player 2 does if he chooses any of these three
strategies. We can therefore merge these three strategies into a new one, called A, with the
resulting payoff matrix in Fig. 33 (p. 28).

We can reduce this game further, but to do this, we need to introduce the concept of mixed
strategies.
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Player 1

Player 2
x y

A 6,0 6,0
(b, c) 8,0 0,8
(b,d) 0,8 8,0
(b, e) 3,4 7,0

Figure 33: The Purely Reduced Strategic Form of the Game from Fig. 31 (p. 27).

5 Mixed Strategies in Strategic Form Games

So far, we have considered only strategies that involve playing a selected action with prob-
ability 1. We called these pure strategies to emphasize this. We now consider randomized
choices.

Definition 8. A mixed strategy for player i, denoted by σi, is a probability distribution
over i’s set of pure strategies Si. Denote the mixed strategy space for player i by Σi, where
σi(si) is the probability that σi assigns to the pure strategy si ∈ Si. The space of mixed
strategy profiles is denoted by Σ = �Σi.

Thus, if player i has K pure strategies: Si = {si1, si2, . . . , siK}, then a mixed strategy for
player i is a probability distribution σi = {σi(si1), σi(si2), . . . , σi(siK)}, where σi(sik) is the
probability that player i will choose strategy sik for k = 1,2, . . . , K. Since σi is a probability
distribution, we require that σi(sik) ∈ [0,1] for all k = 1,2, . . . , K and

∑K
k=1σi(sik) = 1. That

is, the probabilities must be non-negative and not larger than 1, and should sum up to 1.
Each player’s randomization is statistically independent of those of his opponents,7 and

the payoffs to the mixed strategy profile are the expected values of the corresponding pure
strategy payoffs.8 You should now see why we needed Expected Utility Theory. Player i’s
payoff from a mixed strategy profile σ ∈ Σ in an n-player game is

Ui(σ) =
∑
s∈S

⎛
⎝ n∏
j=1

σj(sj)

⎞
⎠ui(s)

Let’s parse this expression. The mixed strategy profile σ is a list of mixed strategies, one
for each player: σ = {σ1, σ2, . . . , σn}. Each of these mixed strategies, e.g. σi, is a list of
probabilities associated with player i’s set of pure strategies. To find the probability of an
outcome, we need to calculate the probability that all players choose the pure strategies that
produce this outcome. Thus, if the pure strategy profile s ∈ S produces the outcome we are
interested in, the probability of this outcome is the product of probabilities that each player
chooses the pure strategy in this profile (because of independence).

For example, consider the mixed strategy profile σ = ((1
3H,

2
3T), (

1
2H,

1
2T)) in Matching

Pennies. In this profile, player 1’s mixed strategy specifies playing H with probability 1
3 and

T with probability 2
3 , and player 2’s mixed strategy strategy puts equal probability on H ant

T . There are four pure strategy profiles: S = {(H,H), (H, T), (T ,H), (T , T)} that produce the

7That is, the joint probability equals the product of individual probabilities.
8In all cases where we shall calculate mixed strategies, the space of pure strategies will be finite so we do

not run into measure-theoretic problems.
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four outcomes of the game. The probability of each outcome is the product of the proba-
bilities that each player chooses the relevant strategy. For example, the probability of the
pure strategy profile (H,H) being played is

(
1
3

)(
1
2

)
= 1

6 . Analogously, the probabilities of

the other pure strategy profiles being played are Pr(H, T) = 1
6 , Pr(T ,H) = Pr(T , T) = 2

6 .
(You should verify that these sum to 1, which they must because they are probabilities of
exhaustive and mutually exclusive events.)

Player 1’s payoffs from these outcomes are u1(H,H) = u1(T , T) = 1 and u1(H, T) =
u1(T ,H) = −1. Multiplying the payoffs by the probability of obtaining them and summing
over (the expected utility calculation we have done before) yields an expected payoff of 1

6(1)+
2
6(1)+ 1

6(−1)+ 2
6(−1) = 0. Thus, player 1’s expected payoff from the mixed strategy profile σ

as specified above is 0. Note how we first did the multiplication term and then summed over
all available pure strategy profiles, while multiplying by the utility of each. This is exactly
what the expression above is!

The support of a mixed strategy σi is the set of strategies to which σi assigns positive
probability. Note that there is no requirement that a mixed strategy assign positive proba-
bility to all pure strategies. In particular, a pure strategy si is a degenerate mixed strategy
that assigns probability 1 to si and 0 to all remaining pure strategies (i.e. the support of a
degenerate mixed strategy consists of a single pure strategy). A completely mixed strategy
assigns positive probability to every strategy in Si.

As mentioned in the previous section, we can further reduce some strategic form games.
Consider the game in Fig. 33 (p. 28). Although no other pure strategies are payoff-equivalent,
the strategy (b, e) is redundant in an important sense. Suppose player 1 were to choose
between the strategy A and (b,d) with a flip of a fair coin. The resulting randomized strategy
can be denoted with σ = 0.5[A]+ 0.5[b,d], and would give the expected payoffs:

U(σ,x) = (0.5)(6,0)+ (0.5)(0,8) = (3,4)
U(σ,y) = (0.5)(6,0)+ (0.5)(8,0) = (7,0).

In other words, we could get the payoffs from (b, e) from randomizing between the strategies
A and (b,d). We formalize this notion as follows:

Definition 9. A strategy ŝi ∈ Si is randomly redundant if and only if there exists a mixed
strategy σi ∈ Σi such that σi(ŝi) = 0 and

Uj(ŝi, s−i) =
∑
si∈Si

σi(si)uj(si, s−i) ∀s−i ∈ S−i, ∀j ∈ I.

That is each player’s payoffs from the profiles involving ŝi can be expressed as expected
payoff from a mixed strategy for player i that does not have ŝi in its support. In other words,
ŝi is randomly redundant if there is some way for player i to mix his other pure strategies
such that no matter what combination of strategies the other players choose, every player
would get the same expected payoff when i uses ŝi as when he mixes in this way.

Definition 10. The fully reduced normal form of an extensive form game Γ is obtained
from the purely reduced representation of Γ by eliminating all randomly redundant strate-
gies.

The fully reduced normal form representation of the extensive form game from Fig. 31
(p. 27) (whose purely reduced normal form is in Fig. 33 (p. 28)) is given in Fig. 34 (p. 30).
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Player 1

Player 2
x y

A 6,0 6,0
(b, c) 8,0 0,8
(b,d) 0,8 8,0

Figure 34: The Fully Reduced Strategic Form of the Game from Fig. 31 (p. 27).

It is sometimes quite tricky to identify randomly redundant strategies. It may be worth
your while to try anyway because by reducing the number of strategies to consider for the
analysis, you will greatly simplify your task (you will see what I mean when we begin solving
the games next time). Unless we explicitly state otherwise, we shall take the reduced normal
form representation to mean the fully reduced form.

6 Mixed and Behavior Strategies in Extensive Form Games

Unlike strategic form games, extensive form games admit two distinct types of randomiza-
tion: a player can either randomize over his pure strategies or he can randomize over the
actions at each of his information sets.

As in the normal form game, a mixed strategy for player i is a probability distribution
over i’s set of pure strategies.9 That is, a mixed strategy specifies the probabilities with
which pure strategies are played but each pure strategy specifies a definite action at each
information set.

The other type of randomizing strategy is the behavior strategy, which specifies a proba-
bility distribution over actions at each information set. These distributions are independent.
That is, a behavior strategy specifies the probabilities with which actions are chosen at ev-
ery information set. Thus, a pure strategy is a special kind of behavior strategy where the
distribution at each information set is degenerate.

To help illustrate the difference between the two types of randomization, Luce and Raiffa
(1957) offer the following analogy: A pure strategy is a book of instructions, where each page
tells how to play at a particular information set. The space of pure strategies is a library of
these books. A mixed strategy is a probability distribution over this library (i.e. it specifies
the probability with which books are chosen). A behavior strategy is a single book where each
page prescribes a random action. Thus, a player may randomly select a pure strategy or he
might plan a set of randomizations, one for every point at which he has to take action.

An example may be helpful. Consider the game in Fig. 13 (p. 14) and recall that player
1 has four pure strategies: (AE), (AF), (BE), and (BF). A mixed strategy is a probability
distribution over these four strategies. For example, a mixed strategy σ =

(
1
4 ,

1
4 ,

1
4 ,

1
4

)
spec-

ifies that player 1 will play each of his pure strategies with equal probability of 1
4 . Another

mixed strategy might be σ =
(

1
3 ,0,

1
6 ,

1
2

)
, which specifies that player 1 should play AE with

probability 1
3 , AF with probability 0, BE with probability 1

6 , and BF with probability 1
2 . You

can see the close correspondence with mixed strategies in normal form games.
On the other hand, a behavior strategy for player 1 would specify probabilities for actions

at all information sets. Because player 1 has two information sets, the strategy must specify

9In extensive form games of perfect information little is added by considering mixed strategies. We will not
see them until later, when we learn about games of incomplete information.
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two probability distributions, one for each information set. For example, β =
(

1
4 ,

1
4

)
means

that player 1 will choose A at his first information set with probability 1
4 (and choose B

with complementary probability 3
4 ), and he will choose E with probability 1

4 at the second

information set. Another behavior strategy might be β =
(
0, 1

2

)
, which specifies that player

1 should choose B with probability 1 at the first information set and play E and F with equal
probability at the second information set. As we noted, a pure strategy is a behavior strategy
with degenerate distributions at each information set. So, for example, the pure strategy BE
is the behavior strategy β = (0,1).

As you probably already suspect, the two types of randomizing strategies are closely re-
lated. We shall call two strategies equivalent if they induce the same distributions over
outcomes for all strategies of the opponents.10 Intuitively, two strategies are equivalent if
they have the same consequences regardless of what the other players do.

(Easy.) Let’s see how we can generate a mixed strategy that is equivalent to some arbitrary
behavior strategy βi for player i. Let βi(hi)(ai) denote the probability with which action
ai ∈ Ai(hi) is taken (that is the probability with which an action is chosen from the set of
actions available after history hi). Let si(hi) denote the action specified by the pure strategy
si at the information set hi (and so si specifies one action for all information sets where
player i gets to move). Define the mixed strategy σi to assign the following probability to
each pure strategy si:

σi(si) =
∏
hi∈H

βi(hi) (si(hi)) . (1)

That is, the probability with which the pure strategy is chosen is simply the product of prob-
abilities assigned by the behavior strategy to the action the pure strategy prescribes at each
information set. Note that we made use of the assumption that the behavior randomizations
are independent across information sets.11

To check equivalence, we first need to specify the distribution over outcomes. For example,
the game in Fig. 13 (p. 14) has four outcomes. Let the probability distribution (o1, o2, o3, o4)
denote the associated probabilities for the outcomes (1,1), (−1,1), (3,2), and (4,0). Finally,
let p denote the probability with which player 2 chooses c and 1 − p denote the probability
with which she chooses d.

The behavior strategy β =
(

1
4 ,

1
4

)
, where player 1 chooses A and E with probability 1

4 ,

induces the probability distribution over outcomes given by
(

1
4 ,

3
4p,

3
16(1− p), 9

16(1− p)
)
.

(We obtained the probabilities for o3 and o4 by multiplying the the probability of each action
specified by the behavior strategy by the probability that the initial action is B. You should
verify that the distribution over outcomes is valid: i.e. all probabilities sum to 1.) Now, using
our Equation 1, we can define the mixed strategy σ as follows:

σ(AE) = β(∅)(A)× β(Bd)(E) = 1
4
× 1

4
= 1

16

σ(AF) = β(∅)(A)× β(Bd)(F) = 1
4
× 3

4
= 3

16

σ(BE) = β(∅)(B)× β(Bd)(E) = 3
4
× 1

4
= 3

16
10This is the same concept of equivalence we used when we discussed the reduced normal form representa-

tion of extensive games in the previous section.
11This holds for all games of perfect recall. In games of imperfect recall, it is possible to have behavior

strategies that cannot be duplicated by any mixed strategy.
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σ(BF) = β(∅)(B)× β(Bd)(F) = 3
4
× 3

4
= 9

16

(We again verify that this is a valid probability distribution by noting that the probabilities all
sum to 1.) Is this mixed strategy equivalent to the original behavior strategy? That is, does
it induce the same probability over outcomes regardless of what the other player does? The
probability of outcome o1 equals the probability that player 1 chooses A, which he does in
two of his strategies, and so it is σ(AE)+σ(AF) = 1

4 . The probability of o2 is the probability

that player 1 will choose B, which is σ(BE) + σ(BF) = 3
4 , multiplied by the probability that

player 2 chooses c. This yields 3
4p. The probability of o3 is the probability that player 1

chooses both B and E multiplied by the probability that player 2 chooses d, which yields
σ(BE)(1 − p) = 3

16(1 − p). Finally, the probability of o4 is the probability that player 1
chooses both B and F , σ(BF), multiplied by the probability that player 2 chooses d, which
yields 9

16(1 − p). To summarize, the probability distribution over outcomes induced by the

mixed strategy σ as defined above is
(

1
4 ,

3
4p,

3
16(1− p), 9

16(1− p)
)
, which is the same as

the probability distribution induced by the behavior strategy β. We have now seen how to
generate an equivalent mixed strategy from an arbitrary behavior strategy. But there is more
to equivalence than this!

(Not so easy.) An important result is that in a game of perfect recall, mixed and behavior
strategies are equivalent.

Theorem 1 (Kuhn 1953). In a game of perfect recall,

• every behavior strategy is equivalent to every mixed strategy that generates it;

• every mixed strategy is equivalent to the unique behavior strategy it generates.

Two different mixed strategies can generate the same behavior strategy (we shall see an
example below). The first part of the claim is that this behavior strategy is going to be
equivalent to each of the two different mixed strategies that generate it. The two mixed
strategies are behaviorally equivalent.

Further, every mixed strategy has at least one behavioral representation, and it may have
many. It may have many if there are information sets that the mixed strategy does not reach
with positive probability: In this case it does not matter what probability distribution the
behavior strategy specifies for that information set. If, however, the mixed strategy reaches
all information sets with positive probability, then it will generate a unique behavior strategy.
The second part of the claim states the these will be equivalent.

Finally, note that we can generate a mixed strategy σi from a behavior strategy βi as shown
above in (1). In this case, σi is the mixed representation of βi, and they are equivalent.
Further, it is not hard to show that if σi is the mixed representation of βi, then βi is the
behavioral representation of σi.

To see how the theorem works, let σi be a mixed strategy for player i. For any history hi,
let Ri(hi) denote the set of player i’s pure strategies that are consistent with hi. That is, for
all si ∈ Ri(hi), there is a profile s−i for the other players that reaches hi. We shall call the
strategies in Ri(hi) consistent with the history hi. Now let πi(hi) be the sum of probabilities
according to σi of all the pure strategies that are consistent with hi:

πi(hi) =
∑

si∈Ri(hi)
σi(si).
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Note now that π(hi, ai) is the sum of probabilities according to σi of all pure strategies that
are consistent with hi followed by action ai ∈ Ai(hi). So we have

πi(hi, ai) =
∑

si∈Ri(hi)∧si(hi)=ai
σi(si).

If σi assigns positive probability to some si ∈ Ri(hi), define the probability that the behav-
ior strategy βi assigns to ai ∈ Ai(hi) as the probability of taking action ai conditional on
reaching the information set hi:

βi(hi)(ai) = πi(hi, ai)πi(hi)
.

How we define βi(hi)(ai) if πi(hi) = 0 is immaterial.12 One possible specification is to assign
the probabilities given by the mixed strategy: βi(hi)(ai) =

∑
si(hi)=ai σi(si), but anything will

do. In either case, the βi(·)(·) are nonnegative, and
∑

ai∈Ai(hi)
βi(hi)(ai) = 1,

because each si specifies an action for player i at the information set hi. In other words, βi
specifies a valid distribution for each information set hi. If πi(hi) > 0 for all histories, then
the mixed strategy will generate a unique behavior strategy.

Let’s look at an example. Consider the game in Fig. 35 (p. 33). We want to find the behavior
strategy for player 1 that is equivalent to his mixed strategy in which he plays (B,R) with
probability .4, (B, L) with probability .1, and (A, L) with probability .5.
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Figure 35: A Game for Kuhn’s Theorem, I.

We have σ1(B,R) = .4, σ1(B, L) = .1, σ1(A, L) = .5, and (since the mixed strategy is a
probability distribution), σ1(A,R) = 0. Player 1 has two information sets: one after the ∅
history, and another after the histories (A,M) and (A,D). The behavior strategy will thus
specify two probability distributions, one for each information set.

12Since hi cannot be reached under σi, the behavior strategies at hi are arbitrary in the same sense that
Bayes’ Rule does not determine posterior probabilities after 0-probability events.
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Since h1 = ∅ is the initial history, all pure strategies are consistent with it. (This is trivially
true: there is no pure strategy for player i such that this history cannot be reached.) Thus,
R1(h1) = {(A, L), (A,R), (B, L), (B,R)}, which also means π1(h1) = 1. Since there are two
possible actions player 1 can take at h1, we must calculate π1(h1, A) and π1(h1, B). There
are two pure strategies s1 such that s1 ∈ R1(h1) ∧ s1(h1) = A, and these are (A, L) and
(A,R). Therefore, π1(h1, A) = σ1(A, L) + σ1(A,R) = .5. Also, there are two pure strategies
such that s1 ∈ R1(h1) ∧ s1(h1) = B, and these are (B, L) and (B, L). This means π1(h1, B) =
σ1(B, L) + σ1(B,R) = .5. We now have β1(h1)(A) = π1(h1, A)/π1(h1) = .5/1 = .5 and also
β1(h1)(B) = π1(h1, B)/π1(h1) = .5.13 So, β1(h1)(A) = β1(h1)(B) = .5.

Now consider h2 = {(A,M), (A,D)}. The only pure strategies for player 1 that are con-
sistent with this history are the ones that specify A for the move at the first information
set. (That is, there exists no strategy for player 2 such that h2 is reached if player 1
chooses B at the first information set.) Therefore, R1(h2) = {(A, L), (A,R)}, which means
that π1(h2) = σ1(A, L) + σ1(A,R) = .5. Since player 1 has two possible actions at h2,
we must also calculate π1(h2, L) and π1(h2, R). There is only one pure strategy such that
s1 ∈ R1(h2) ∧ s1(h2) = L, and it is (A, L). Therefore, π1(h2, L) = σ1(A, L) = .5. Also, there
is only one pure strategy such that s1 ∈ R1(h2) ∧ s1(h2) = R, and it is (A,R), which means
π1(h2, R) = σ1(A,R) = 0. We now have β1(h2)(L) = π1(h2, L)/pi1(h2) = .5/.5 = 1, and we
also have β1(h2)(R) = π1(h2, R)/pi1(h2) = 0/.5 = 0.14

We conclude that the mixed strategy σ1 has an equivalent behavior strategy β1, which is as
follows:

β1(h1)(A) = .5
β1(h1)(B) = .5
β1(h2)(L) = 1

β1(h2)(R) = 0

Let’s check the equivalence claim. Let (p, q,1− p − q) denote a mixed strategy for player 2.
Using the mixed strategy σ1, the probabilities of reaching the outcomes are as follows:

o1 : [σ1(A, L)+ σ1(A,R)]p = .5p
o2 : σ1(A, L)q = .5q
o3 : σ1(A,R)q = 0

o4 : σ1(A, L)(1− p − q) = .5(1− p − q)
o5 : σ1(A,R)(1− p − q) = 0

o6 : σ1(B, L)+ σ1(B,R) = .5
The distribution over outcomes using σ1 is then

(
.5p, .5q,0, .5(1− p − q),0, .5).

Using the behavior strategy β1, the probabilities of reaching the outcomes are as follows.

o1 : β1(h1)(A)p = .5p
o2 : β1(h1)(A)qβ1(h2)(L) = (.5)q(1) = .5q
o3 : β1(h1)(A)qβ1(h2)(R) = (.5)q(0) = 0

o4 : β1(h1)(A)(1− p − q)β1(h2)(L) = (.5)(1− p − q)(1) = .5(1− p − q)
13We verify that β1(h1)(A) = 1− β(h1)(B), which is indeed the case.
14We again verify that the distribution is valid, which it is because β1(h2)(L)+ β1(h2)(R) = 1.
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o5 : β1(h1)(A)(1− p − q)β1(h2)(R) = (.5)(1− p − q)(0) = 0

o6 : β1(h1)(B) = .5

This yields the distribution over outcomes
(
.5p, .5q,0, .5(1− p − q),0, .5) that is the same as

the one given by the mixed strategy. Therefore, we have shown that σ1 and β1 are equivalent.
Now let’s illustrate the claim that a mixed strategy may generate more than one behavior

strategy. Consider the same game and suppose σ1(A, L) = σ1(A,R) = 0, σ1(B, L) = 0.4, and
σ1(B,R) = 0.5. As before, we have R1(h1) = {(A, L), (A,R), (B, L), (B,R)}, and π1(h1) = 1.
Further, we have π1(h1, A) = 0 (because the mixed strategy assigns probability zero to all
pure strategies with s1(h1) = A), and π1(h1, B) = 1. Thus, we get β1(h1)(A) = 0 and
β1(h1)(B) = 1.

We now have to specify the probability distribution for the information set following h2 =
{(A,M), (A,D)}. Note that R1(h2) = {(A, L), (A,R)} and π1(h2) = 0. Further, π1(h2, L) =
σ1(A, L) = 0 and π1(h2, R) = σ1(A,R) = 0. Hence, we cannot use the conditional formula to
define β1(h2)(L). As noted before, in this case we could use any probability distribution, so
let’s say β1(h2)(L) = x and β1(h2)(R) = 1 − x, with x ∈ [0,1]. Clearly, there is an infinite
number of possible specifications here.

Let’s check equivalence. Under the mixed strategy, the probability distribution over out-
comes is:

o1 : [σ1(A, L)+ σ1(A,R)]p = 0

o2 : σ1(A, L)q = 0

o3 : σ1(A,R)q = 0

o4 : σ1(A, L)(1− p − q) = 0

o5 : σ1(A,R)(1− p − q) = 0

o6 : σ1(B, L)+ σ1(B,R) = 1.

Under the behavior strategy, the probability distribution is:

o1 : β1(h1)(A)p = 0

o2 : β1(h1)(A)qβ1(h2)(L) = (0)qx = 0

o3 : β1(h1)(A)qβ1(h2)(R) = (0)q(1− x) = 0

o4 : β1(h1)(A)(1− p − q)β1(h2)(L) = (0)(1− p − q)x = 0

o5 : β1(h1)(A)(1− p − q)β1(h2)(R) = (0)(1− p − q)(1− x) = 0

o6 : β1(h1)(B) = 1.

That is, the two distributions are the same. Note that this holds for any value of x we might
have chosen. Thus, one mixed strategy can generate more than one behavior strategy. It
should be obvious, however, that if the mixed strategy reaches all information sets with
positive probability, then it must necessarily generate a unique behavior strategy. Hence,
a mixed strategy either generates a unique behavior strategy or else generates an infinite
number of behavior strategies.

Now let’s illustrate the claim that different mixed strategies can generate the same behav-
ioral strategy. Consider the game in Fig. 36 (p. 36). Let h1 denote the history following action
U by player 1, let h2 denote the history following D. Since there are two information sets,
with two actions at each, player 2 has four pure strategies: (A,C), (A,D), (B,C), and (B,D).

35



�

�
�

�
��

�
�

�
��

1

U D

�

�
�

�

�
�

�

2
A B

�

o1

�

o2

�

�
�

�

�
�

�

2
C D

�

o3

�

o4

Figure 36: A Game for Kuhn’s Theorem, II.

Now consider two mixed strategies σ2 =
(

1
4 ,

1
4 ,

1
4 ,

1
4

)
and σ̂2 =

(
1
2 ,0,0,

1
2

)
. Both of these

generate the behavior strategy β2, where β2(h1)(A) = β2(h1)(B) = 1
2 and β2(h2)(C) =

β2(h2)(D) = 1
2 .15 To see that σ2, σ̂2, and β2 are equivalent, note that they all yield the

same distribution over the terminal nodes for any arbitrary mixed strategy for player 1.
For example, the probability of reaching o1 equals σ1(U)/2 regardless of whether we calcu-
late it under σ2, where it equals σ1(U)[σ2(A,C) + σ2(A,D)], or under σ̂2, where it equals
σ1(U)[σ̂2(A,C)+ σ̂2(A,D)], or under β2, where it equals σ1(U)β2(h1)(A).

Although it is important to distinguish between the two types of probabilistic strategies, in
reality we shall be considering behavior strategies throughout the rest of this class. Because
it is cumbersome to refer to them as such all the time, whenever we refer to a mixed strategy
of an extensive form game, we shall always mean a behavior strategy (unless explicitly noted
otherwise). To this end, we shall also retain our σ -notation for mixed strategies: Let σi(ai|hi)
denote the probability with which player i chooses action ai at the information set hi.

15You should verify this. In our notation, R2(h1) = R2(h2) = {AC,AD,BC, BD}. That is, all strategies for
player 2 are consistent with these histories. This is trivially true because she has no move to determine which of
these histories is reached. We then calculate the probability associated with each history, which, given that all
strategies are consistent with it, is simply π2(h1) =

∑
s2∈R2(h1) σ2(s2) = 1. Next, we calculate the probability of

taking action A after h1: π(h1, A) =
∑
s2∈R2(h1)∧s2(h1)=A σ2(s2) = σ2(AC)+ σ2(AD) = 0.5. Finally, we calculate

the behavior strategy β2(h1)(A) = π2(h1, A)/π2(h1) = (0.5)/(1) = 0.5. We can generate the other strategy in
a similar way.
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