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ABSTRACT

We show how to implement the a3-enhancements like iterative deepening, transposition tables,
history tables etc. used in sequential chess programs in a distributed system such that the
distributed algorithm profits by these heuristics as well as the sequential does. Moreover the
methods we describe are suitable for very large distributed systems. We implemented these
af-enhancements in the distributed chess program ZUGZWANG. For a distributed system of
64 processors we obtain a speedup between 28 and 34 running at tournament speed. The basis
for this chess program is a distributed af-algorithm with very good load balancing properties
combined with the use of a distributed transposition table that grows with the size of the
distributed system.

1. INTRODUCTION

In this paper we describe a fully distributed chess program ZUGZWANG running on a network
of Transputers. We present experimental results that show the efficiency of our implementa-
tion. The good behavior of the sequential af-algorithm shown by [KM75] mainly poses three
difficulties to any distributed algorithm. First, the cutoffs of the sequential algorithm may be
overlooked by the distributed version resulting in search overhead. Second, the problem of load
balancing is very difficult for tree decomposition algorithms. This is caused by the unpredictable
size of subproblems as well as by the idle times resulting from iterative deepening. Third, the
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sequential af-algorithm strongly profits by several af-enhancements as iterative deepening,
transposition tables, history tables, killer lists etc.. These af-enhancements often delay the dis-
tributed algorithm. For example iterative deepening is inherent sequential and the transposition
table should be accessible to all processors in the system.

In [VM87, FMMV89, FMMV90] we present a distributed a-algorithm that achieves a speedup
of 11.5 running on a network of 16 processors. This algorithm shows a very good performance
when searching well ordered game trees. This is due to the Young Brothers Wait Concept
that helps to reduce search overhead. Furthermore the algorithm shows very good load bal-
ancing properties. However the algorithm from [VM87, FMMV89, FMMV90] does not use
af-enhancements. In this paper we present a distributed chess program using the distributed
af-algorithm from [VM87, FMMVR89, FMMV90]. The distributed version of this chess program
profits by the state-of-the-art ag-enhancements as well as the sequential one does. It uses iter-
ative deepening, a distributed transposition table, shared history tables and shared killer lists,
zero-width search and a distributed quiescence search. The transposition table for example is
implemented as a distributed transposition table. The loss of work load caused by the iterative
deepening algorithm is kept very small by the good load balancing capabilities of our distributed
algorithm.

The reduction of search overhead was one of the main topics in the field of parallel ag-algorithms.
Akl et.al. proposed the mandatory work first approach in [ABD80]. The PVS algorithm is used
in [MP85, MOS86, Sch89b, New88, HSN89]. A description of this algorithm can be found in
[MC82]. It evaluates right sons of game tree nodes with a minimal af-window in parallel and
then re-evaluates them if necessary. Processors are assigned to subtrees along the principal
variation. Alternatively game tree nodes are evaluated in parallel only if they had acquired an
af3-bound before (['K88]). Another approach applies in the distributed chess program Waycool
running on a hypercube ([OF88]): if the transposition table proposes some move for a game
position then this move is tried first. Parallel evaluation of the other moves is started only if
the evaluation of the transposition move yields no cutoff. The PVS algorithm and the approach
of Ferguson and Korf guarantee that best ordered game trees are searched without any search
overhead. This leads to very efficient implementations, if the game trees to be searched are close
to the minimal game tree as it is usually the case for sequential chess programs. However, to
keep the game trees close to the minimal game tree, the sequential chess programs use several
af-enhancements. The use of these af-enhancements in a distributed system together with
a distributed af-algorithm with very good load balancing properties is the main topic of this

paper.

In [MP85] Marsland and Popowich compared the use of local and global transposition ta-
bles. Schaeffer uses a hybrid version of these methods for his chess program Sun Phoenix
([MOS86, Sch89b]). The same program compares knowledge accumulated in the history tables
after every iteration of its iterative deepening algorithm. Newborn ([New88]) tried to overcome
the idle times caused by iterative deepening with the UIDPABS algorithm. Zero-width search
accelerates the sequential af-algorithm. Otto and Felten in [OF88] claimed that this method
does not parallelize as well as the af-algorithm without zero-width search. Therefore they par-
allelized the ag-algorithm without zero-width search. In [Sch89a] Schaeffer stated that speedups
are strongly tied to the (in)efficiency of the af-search and that the use of af-enhancememts in
a parallel implementation of the af-algorithm dramatically affects the performance of a parallel



implementation. This results in speedups of 5.93 using 16 processors in [HSN89], 5.67 using
9 processors in [MOS86, Sch89b] and 5.03 using 8 processors in [New88]. Moreover increasing
the number of processors either decreases the speedup ([HSN89]) or at least does not increase
it ([MOS86, Sch89b]). The speedup of 101 using 256 processors presented in [OF88] has been
achieved by parallelizing a suboptimal version of the sequential a3-algorithm. Another interest-
ing result is the speedup of 12 achieved by Ferguson and Korf in [FK88] for an Othello playing
program using iterative deepening.

Our distributed system achieves speedups of 15.77 running on 16 processors and 25.08 running
on 32 processors searching a 7-ply search on the positions of the Bratko-Kopec experiment
([BK82]). Very recent experiments show that 64 processors can achieve a speedup of 34 for a
7-ply search running on tournament speed. This is obtained by the use of a distributed ag-
algorithm from [VMS&7, FMMV89, FMMV90] with very good load balancing properties. The
main reason for the good behavior of our distributed chess program however is the fact that
we combined a parallelization of the ag-enhancements together with the good load balancing
properties of our distributed af-algorithm. We implemented a distributed transposition table,
iterative deepening and a distributed quiescence search. Not yet finished is the implementation
of a shared history table and shared killer lists that are updated dynamically during the tree
search in the distributed system. It turns out that our chess program is a good chess player too.
It played successfully during the 2. Computer Games Olympiad in London 1990.

A short description of some features of our sequential chess program is given in section 2. In
sections 4. and 5. we describe our distributed chess program. In section 6. we present results
gained from experiments with up to 64 processors.

2. ENHANCEMENTS OF THE SEQUENTIAL CHESS PRO-
GRAM

In this section we describe the basic features of our sequential chess program ZUGZWANG. Like
most of todays programs ZUGZWANG performs a full width search of the tree of possible moves
and countermoves. The program starts with a search depth 1 and increments the depth by one
until the allotted time has run out, or a given maximum depth is reached. This technique known
as iterative deepening has proven to be quite effective, especially in combination with several
other heuristics, that are described in the following.

During a depth d search non-quiescent nodes in level d are extended through promising moves
which include some capturings, pawn promotions, and checking moves. This quiescence search
is essential to reduce evaluation errors, which occur if positions, that are not tactically quiet are
evaluated with a static evaluation function.

The search algorithm used is based on Reinefeld’s Negascout algorithm with fail soft improve-
ment ([Rei89]). This procedure was slightly changed to incorporate aspiration windows which
are provided by the preceding search iteration. We used this kind of search algorithm despite the
fact that the zero-width searching was found to parallelize not as well as alpha-beta ([OF88]),
because it appears to be significantly better on sequential computers.



Several well known heuristic methods are used to achieve well ordered game trees :

e The principal variation and the refutation lines for the other moves at root level computed

in a d-ply search are used to guide the search during the d+1-ply search.

History and killer tables are an inexpensive but efficient tool to rearrange successors at a
non-leaf position. The basic idea behind these two techniques is, that moves found to be
best in one position are likely to be good in lots of other positions (where they are legal)
throughout the whole game tree. A history table remembers for a move m the count of
positions visited in which m was found to be the best move or to provide a cutoff. The
arrangement of moves is done due to this count. Killer tables store a fixed number of killer
moves (i.e moves that yield a cutoff) for each level of the game tree. Whenever a cutoff
occurs in level i the corresponding move is stored in that table with one bonus point, if the
move is not already included in the killer list of level i. If the move is already included, its
bonus is incremented by one. If a move has to be stored in an already full list, the move
with smallest bonus is deleted first. At non-leafs these killer moves are tried prior to other
moves, because they have a good chance to yield an immediate cutoff. Our implementation
uses two killers per level.

Transposition tables store informations about positions that have already been evaluated.
These informations may be used, if positions are visited more than once. This may occur
for two reasons : a position can be reached by several move sequences, and many positions
visited during a prior iteration are also visited in the succeeding iteration.

Stored information includes the minmax value, the best move, and the corresponding
search depth. Before a subtree is searched, a check is done whether the transposition
table can provide any useful information. This may lead to the elimination of the whole
subtree, to improved windows, or only to an improved tree ordering, if the best move stored
is considered first. Our current implementation uses a hash table with 20000 entries, in
which only non-leaves within the regular search depth are stored (i.e. during a d-ply search
only position in level less or equal d-1 are stored).

History, killer, transposition tables are rather domain independent mechanisms that gain their
power through their special kind of experience, which is accumulated during the search. These
techniques together with several additional features of minor importance lead to game trees that
are close to the size of the minimal game tree. On our hardware ZUGZWANG running on a
single processor visits about 350 nodes per second.

3.

HARDWARE USED

In this section we describe the hardware used to run our sequential and distributed algorithm.
We used the Inmos Transputer T800 as a sequential processor as well as to build up processor
networks. This processor has nice features we used: hardware supported process scheduling
and the ability to simultaneously compute and communicate. It is the basic component of our
Transputer systems produced by Parsytec/Paracom GmbH, Aachen.



A Transputer is a microprocessor with 4 communication links to connect it to other Transputers.
It runs at a speed of 10 MIPS. This results in a performance of 1.58 * 107 seconds for the 4
Byte integer operation a := b+ c.

Transputer are designed to run parallel processes on one processor very efliciently by hardware
supported time sharing. In particular it is able to communicate on all links and compute on its
own local memory in parallel. It is this feature that proved to be very helpful when implementing
shared heuristics. As long as the processors run computing processes they are not significantly
delayed by communication tasks running at the same time.

Our Transputers have a local memory of 1 MByte each and run at a clock speed of 20 MHz.

Since each Transputer has 4 links for connecting it with other Transputers, the user is allowed
to build any Transputer networks with degree less or equal 4. In such networks Transputers are
connected by point-to-point connections to their neighbors. Therefore two neighbored Trans-
puters that communicate do not disturb the work of the other Transputers in the network.
Especially communication tasks of other Transputers are not delayed by this communication as
for example in a bus oriented system. On the other hand messages from one Transputer to a
non-neighbor have to be routed along possibly several intermediate processors. However, this
intermediate Transputers are able to route the message without a significant loss of efficiency.

Our distributed algorithm works for any underlying Transputer network. For our experiments,
however, we use the DeBruijn network family DB(n), n € N, first defined in [deB46]:

DB(n) = (V,F), where V, the set of nodes is defined as
o V = {0,1}" the set of binary strings of length n and
o ' = {{z,s(2)} |z e VIU{{z,e(2)}|2zeV}
Here s : V' — V is the shuffle edge function
$(Tp_1 - T0) = Typ—g - ToTy_1, ¥; € {0,1}

and e : V — V is the shuffle exchange edge function

€($n_1 T '$0) =Xp_2 - ToTp_1, T; € {07 1}

Since the graphs of the DeBruijn network family have maximum degree 4 and logarithmic
diameter, this scheme is well suited to serve as a Transputer interconnection scheme.

Each DB(n) for n > 3 has three edges that make little sense in a Transputer application: the
self loops of node 0---0 resp. 1---1 and one of the double edges between nodes 1010 - - - and
0101 - - -. Therefore we run our algorithm on a slightly modified version:

- the self loop of node 0---0is connected to a host Transputer. This host Transputer is the
only one that has access to keyboard, screen, disks, etc. The host does not take part in
the game tree search but serves as I/O administrator.
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Figure 1: DeBruijn-like connected Transputer network of dimension three
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- one of the edges between 1010 --- and 0101 - - - is deleted.

- Transputer 0---0 is connected to 0101 --- and Transputer 1---1 to 1010---.

Figure 1 shows a DeBruijn-like connected Transputer network of dimension 3.

4. OUR DISTRIBUTED o3-ALGORITHM

In this section we recall our strategy for solving tree search problems on a distributed system.
Our strategy is fully distributed and allows the use of an arbitrary number of processors. It
has proven to behave well not only if applied to game tree search, but also to branch and
bound applications ([MV87]). A first version of a distributed afg-algorithm using this strategy
is described in [VM87]. A more detailed description of the distributed algorithm can be found
in [FMMV90].

In our strategy every processor has the same program and all processors perform similar tasks.
We do not use any kind of centralized mechanisms, because this would lead to a bottleneck if

the number of processors increases.

We talk of search problems in terms of nodes of the corresponding search tree. The root ¢ of a



game tree represents the whole search problem to compute F'(¢). For any non-leaf v the problem
to evaluate v has the subproblems to evaluate some sons v.i (1 < i < b(v)). The subsolutions
are combined (by maximization or minimization) in order to yield F(v).

The computation starts with the root node assigned to one of the processors, the other pro-
cessors are idle. A processor that works on a problem splits it into subproblems. Since only
one subproblem is attacked at a time the other subproblems are stored in the local memory.
Therefore it is possible to transfer those subproblems to other processors. If there is more than
one subproblem ready for transmission, the algorithm transmits one at highest level in the tree.

In our scheme idle processors must take care to get work for themselves (with the exception of
the initial search problem which is assigned to one of the processors). This means that an idle
processor has to ask one of the other processors for work.

A processor is responsible for a problem it got until its solution is computed. It can send
subproblems to other processors which then become its slaves. After its subproblem is finished
it has to respond the solution to the sender of the problem. The processor the root node is
assigned to, will eventually finish with the solution of the whole problem.

Figure 2 shows a few snapshots of a distributed computation. Processor P; is working on a

Figure 2: Example computation of the distributed algorithm

problem rooted at v. Currently it works on subproblems located in the labeled subtree. An idle
processor P, sends a request for work to P; and therefore P; transmits node v.2 to P, which is
already generated but not evaluated. P labels this node as transmitted and P, starts to work
on that problem.

After P, finishes work on v.2 it returns the value F(v.2) to Py.

This example does not take into account af-windows and cutoffs. Since a search window has



been assigned to each node by the af- algorithm, this window clearly has to be transmitted too,
whenever a node is sent to a requesting processor. Each processor that observes an improvement
of a search window assigned to a node v has to inform all of its slaves with subproblems rooted
below v. Three different actions may force the update of a search window:

(i) finishing the evaluation of a local subproblem
(ii) receiving the solution of a subproblem solved by a slave

(iii) receiving an UPDATE-message from the master

The three cases can be handled the same way:

Decreasing a search window for a node v forces the update of all current search windows below
v. If some subproblems rooted below v have been transmitted, these processors are informed by
a NEWBOUND-message. Note that this rule is applied recursively. Actually a search window
for a node v may not only be decreased, but can also collapse. In this case all problems located
below v are immediately finished. To reduce the number of communications we introduce a
special message CUTOFF which is sent to all processors that got a subproblem rooted below v
to prevent them from responding their results that are of no use now. A processor receiving a
CUTOFF-message finishes the problem it is working on and sends a CUTOFF-message to all
of its slaves.

Using a zero-width approach the above remains essentially true, although now in almost every
case a NEWBOUND-message leads to an immediate cutoff. Only processors working on moves
that had to be re-searched may possibly continue their work with an improved window. Since
processors are completely responsible for problems they got, a processor, that determines a fail
high or fail low has to re-search this problem with an open search window and to respond to its
master after this re-search.

In our implementation a random chosen processor is asked for work, regardless of its distance in
the processor network. This leads to a very efficient load balancing, especially if the game trees
are very irregular like those found in chess programs.

In [HSN89] Hyatt concludes that future algorithms will be more complex in order to allow for
an efficient use of a large number of processors. We believe that this very simple load balancing
scheme is the solution to the problem of unequal work assignment. Note that we make no
restriction to the size of problems that may be distributed. Every node, even nodes in the
quiescence search are distributed, although the receiving processor will often find this node to
be a leaf node. This prevents processors from performing huge quiescence searches while lots of
other processors may be idle.

Since the wide variation of tree sizes appears to be one of the main reasons for the often used
PVS approach to fall short on achieving good speedups ([New88]), several recent approaches to
distributed a3-search made the way towards a more dynamic correspondence between processors
and nodes of the game tree. Hyatt improved the PVS algorithm to EPVS ([HSN89]), Schaeffer
improved PVS to DPVS ([MOS86] and more recently to a more dynamic version of DPVS
([Sch90]). Our solution makes the consequent step to a really dynamic processor allocation.



The Young Brothers Wait Concept

Search overhead arises if the parallel algorithm visits nodes the sequential algorithm would
not visit. To prevent the algorithm from searching many superfluous nodes we have to choose
subproblems for transmission carefully. We use a concept we call Young Brothers Wait Concept
which is defined in [FMMV90]. This concept avoids any search overhead if working on best
ordered game trees and has comparable small search overhead if working on well ordered game
trees:

Assume a processor P is working on a subproblem rooted at a node v and is currently visiting a
node w = v.v1.v9. - - -.v, when a request for work arrives and it has to decide which subproblem
(if any) it is going to transmit. The set of all subproblems ready for transmission at this moment
is the set of all right brothers of nodes v.vy.---.v; (i € {1,--+,n}).

The Young Brothers Wait Concept now postulates:

The eldest son of any node must be completely evaluated before younger brothers of
that node may be transmitted.

Especially, if all subproblems ready for transmission do not yet have an evaluated left brother,
then these subproblems have to wait. They can not be transmitted unless the evaluation of the
first son has finished. Note that the node transmitted in the example computation may not be
transmitted using the Young Brothers Wait Concept.

This restriction reduces search overhead. Assume a node v.¢ without evaluated elder brother is
transmitted from a processor P; to a processor P,. The search overhead will be very large, if
the evaluation of v.1 on P; causes a cutoff. In this case all the work P, does on its subproblem
is completely superfluous. Note that the probability for a cutoff after evaluation of the first son
is very high, especially in game trees which are not far away from being best ordered. Even if
the evaluation of v.1 does not cause a cutoff, an improvement of the search window for » and
thus for v.i is very likely. In this case P has evaluated v.: with a perhaps worse search window
and therefore it may visit many nodes, it would not have visited in the presence of the improved
window.

Although the Young Brothers Wait Concept does not prevent us from doing superfluous work

in general, it leads to good behavior when searching well ordered game trees and to perfect
behavior in the case of best ordered game trees.

5. afB-ENHANCEMENTS IN THE DISTRIBUTED SYSTEM

In this section we describe how some of the most important af-enhancements as transposition
tables, killer lists and history tables can be implemented in a distributed system.

Tterative deepening is a very powerful tool to improve the performance of the sequential ag3-
algorithm. This is done by searching the game tree sequentially for depth 1,2,3..-. The depth



¢ search speeds up the depth ¢ 4+ 1 search by providing it with a principal variation for the
best depth ¢ move and refutations for the other moves. Iterative deepening in the distributed
algorithm is done the same way as in the sequential algorithm.

During the depth ¢ search of the distributed algorithm the principal variation can be computed
in the same way as in the sequential algorithm. With the exception that an update of the prin-
cipal variation of some game tree node » may be necessary, if the master for v gets a RETURN
- message from its slave that improves the minmax-value of v. Refutations are computed anal-
ogously.

At the beginning of the depth ¢ 4+ 1 search the depth ¢ principal variation is used in the same
way as in the sequential algorithm. This is possible without any change, because it is searched
sequentially using the Young Brothers Wait Concept. Refutation are sent together with the
nodes to the slaves, if necessary.

In order to run iterative deepening in our distributed algorithm we must accept a loss of work
load. However this loss of work load is not significant for larger search depths. This is due to the
excellent load balancing capabilities of our algorithm and to the fact that there are only O(d?)
short moments during the computation of iterative deepening up to depth d that all processors
but one are idle. In figure 4 we present some experiments that indicate these excellent load
balancing capabilities.

Another ag-enhancmenent that poses difficulties to the distributed algorithm is the transposition
table. Three approaches have been tried in distributed algorithms to give the transposition table
the same power as in the sequential algorithm:

- global transposition table
One special processor holds the whole hash table. Requests and stores to the transposition
table must be sent to this processor. Answers are returned.

- local transposition table
Every processor holds its own local hash table

- distributed transposition table
The hash table is distributed among all processors. Thus every processor holds a part of

the hash table

The effects of local and global transposition tables are compared by Marsland and Popowich in
[MP85]. Their experiments show that the global transposition approach suffers from an increase
in communication overhead while in the local transposition approach every processor is provided
only with a part of the accumulated knowledge. Hybrid versions of these two concepts are used
in chess programs like Sun Phoenix ([Sch89b]).

The third method to hold transposition tables is to distribute the whole table among all pro-
cessors. Every processor holds a part of the data structure. Requests and stores to as well as
answers from the transposition table must be implemented by exchanging messages between the
requesting processor and the one that holds the requested transposition entry. This approach is
used by Otto and Felten in [OF88].

The first advantage of this method is that the whole knowledge accumulated in the transposition
table is available to all processors. On the other side the communication delays that ”destroy
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the programs performance” ([MP85]) can be kept very small, because the communication bot-
tleneck of a central transposition manager is avoided. OQur experiments show that a distributed
transposition table can be implemented very efficiently on the hardware we use for our program.
The main reason for us, however, to choose the distributed transposition table approach was
that the transposition table grows with the underlying distributed system. The more processors
we use the more transposition table entries are accessible to all processors.

We implemented the distributed transposition table as described below. Each of the processors
holds an equal amount of the transposition table entries in its local memory. A hash function
h : {chesspositions} — {0,---,p -k} is used to determine the processor number h(v) mod p
and the local entry address h(v) div p. Here p is the number of processors used and k the
number of transposition entries available at a single processor. A processor that wants to access
the transposition entry for node v sends a REQUEST-message for h(v) div p to processor
h(v) mod p. A processor that gets a REQUEST-message for the local address z sends back
the transposition entry 7'(z) in an ANSWER-message. The transposition entry is checked at
the receiver of the ANSWER-message. Whenever a processor wants to store a transposition
entry for node v it sends a PUT-message for h(v) div p to processor h(v) mod p. The routing
of messages as well as the quick response to REQUEST-messages is perfectly supported by the
Transputer. The ability to run parallel processes on a single Transputer guarantees fast routing
and response without delaying the local computation significantly.

However, there is a problem one has to overcome. A processor that sends a request to another
one is idle until it receives the answer to its request. This amount of time significantly delays
the requesting processor. Again the ability of Transputers to run several processes in parallel is
used to reduce this idle time. The algorithm we implemented is the following:

Assume a processor in the distributed system starts to evaluate a node v.

1) calculate h(v);

2) PAR
send a transposition request for h(v) div p to h(v) mod p,
wait for the answer;
update the chess position v;

END PAR

Processors use the time from sending the transposition request to the receipt of an answer by
updating the chess position associated with ». This time is wasted only, if the exact value or
bounds sufficient for an immediate cutoff are stored for the position v.

A delay of only about 5 % is introduced by this method:

We computed a 5-ply full width search on position 22 of the Bratko-Kopec experiment under
different circumstances. During the first run one sequentially working processor had access to
the transposition table of a 32 processor system. The only communication that took place in
this system is that for the transposition requests, answers and stores. For the second run we
additionally simulated the communication of the system at that moments, when all processors
but one are idle. These idle processors sent request for work to randomly chosen processors in
the network but never got any work. Therefore at this moments during a computation phase the
communication was very high. For the third run the use of any transposition table is forbidden.
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Pos. 22, depth 1-5 use of transp. table | nodes/sec | delay in %
1 processor yes 318.30 0.00
1st Tun, 32 processors yes 303.00 4.81
2nd run, 32 processors yes 290.96 8.59
1 processor no 319.33 0.00
3rd run, 32 processors no 308.09 3.52

Figure 3: Delay by transposition communication

Communication on the links is simulated as for the second run. We measured the number of
nodes per second, the working processor visits during its game tree search. The results presented
in figure 3 show the effectiveness of our method.

The sequential algorithm without any transposition use is delayed by the link activities by 3.5
%. Using additionally the distributed transposition table, the sequential algorithm is delayed by
8.5 %. Thus the very low price of only a five percent delay must be paid for the advantage of a
very large transposition table. The time necessary to update a chess position v is a constant, but
the time to route the transposition messages depends at least on the diameter of the Transputer
network. However, the diameter of the network we have chosen grows only logarithmically in the
number of processors. Therefore we are sure that, when doubling the number of processors, the
effect of a doubled transposition table will compensate for the growing of the network diameter
by one.

Killer lists as well as history tables are held locally by each processor in the distributed system.
To implement history tables and killer lists similar to the distributed transposition table is not
appropriate since these tables are used to sort the moves at all interior nodes. However to include
more than local knowledge in this tables we use a strategy we call ”Shared History” resp. ”Shared
Killer”: Whenever local computation has changed the value of an entry in the history table
by a special amount, an UPDATE-HISTORY-message for this entry is sent to all neighbored
processors. This message contains a tuple (m,z) where m is a move and « the history value of
this move in the history table of the sender. The receiver of an UPDATE-HISTORY message
containing (m, z) sets its own local history value for move m to the maximum of this value and
z. An UPDATE-KILLER-message is sent to all neighbors, if local computation has changed a
move in the some killer list. This method is inspired by load balancing methods we developed
for branch & bound algorithms ([MV87]). We expect that the additional communication going
on with this strategy will be very small. This is because UPDATE-HISTORY resp. UPDATE-
KILLER messages will be much less frequent than messages necessary for the transposition
table. Remember that for any inner tree node there are three messages necessary to use the
distributed transposition table. This messages must be routed across the whole Transputer
system. For Shared History and Shared Killer strategies at most one message per node must be
sent to a constant number of neighbors. Routing is not necessary. Thus we believe that Shared
History and Shared Killer can be done without a significant drop of performance. Unfortunately
the implementation of this strategies has not yet finished. Therefore in this paper we present
experiments with local history and killer tables.
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6. EXPERIMENTAL RESULTS

In this section we describe some of our experiments. The diagrams for speedup, load and search
overhead show the average speedup, work load and search overhead we obtained searching the
24 Bratko-Kopec positions (see [BK82]) with a various number of processors and various search
depths. Note that the maximum average run time of the 64 processor system is 277 seconds.
This is roughly tournament speed.

To test our distributed algorithm we run several tests on the 24 positions from [BK82]. All these
positions were searched with a 5-ply, 6-ply and 7-ply depth. This performance is compared to
the sequential algorithm using all the a3-enhancements we described in 2..

This sequential algorithm is an efficient searcher. The figure below shows, that ZUGZWANG
searches trees with roughly the size of the minimal game tree.

5-ply ‘ 6-ply ‘ 7-ply ‘
1.002 | 1.098 | 0.994 | x the min. tree

For fixed search depth d we define the following measures for the performance of our distributed
algorithm running a d-ply search: Let B; be the ¢-th position from the Bratko-Kopec set of test
positions, Let T;(p) be the total time, I;(p) the average idle time and N;(p) the number of nodes
visited by the p processor version of our distributed algorithm for a d-ply search on B;.

SPE(p):= (E Ti(p))/(z Ti(1))
LD(p) :=100-[1 = (3_ L(p))/(Q_Ti(p))]

SO(p) =100+ [1 = (3_ Ni(p))/(3_ Ni(1))]

=1

The curves for SPFE(p), LD(p) and SO(p) are given in the three diagrams for speedup, load
and search overhead for 5-ply, 6-ply and 7-ply search and processor numbers 4,8,16,32 and 64.

Speedups grow with an increasing of search depth. This effect indeed is not new but also

described in [Sch89b].

64 processors yield a speedup of 34.77 compared to the sequential version. However, the table in
figure 5 shows that this number is influenced strongly by the speedup of 63.57 for the position 5.
The same is true for the speedups of smaller systems. For this reason we present the speedups,
loads and search overheads for a 7-ply search on the single positions in the table of figure 5. At
the end of this table we present the measurements for the 6-ply search of position 5 and give a
®’- row that results if the 7-ply search of position 5 is replaced by the 6-ply search. The speedup
decreases to 27.99.
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‘ Speedup ‘ Load
7-ply search 40.55 | 90 %
1-7-ply search | 34.77 | 83 %

Figure 4: Speedup and load for the last iteration (64 processors)

Another interesting fact is the superlinear speedup for small processor numbers and large prob-
lems. We conjecture that this superlinear speedup is due to the larger transposition table the
distributed algorithm has access to. The search overhead resulting from this experiments is
negative. An interesting feature of a distributed algorithm that influences the performance of
the distributed algorithm is its nondeterminism. This nondeterminism is due to the facts that
our algorithm runs on a completely distributed system and to that fact that our algorithm acts
nondeterministically if a processor is looking for work. For single positions running times of
the distributed algorithm can be observed that differ widely. However these differences seem to
disappear in the average data of the 24 positions.

The load we present in the load diagram is measured as the ratio of idle time and total time.
For the Transputer hardware we use one has to mention that some amount of CPU work that
is necessary to buffer messages is done in parallel with local af-search. For this reason this
amount of time is not included in the idle times and therefore not considered in the load. The
load diagram shows, that the work load is strictly decreasing for increasing processor numbers.
For the 7-ply searches however the work load in the 64 processor system is still good (83 %).
To indicate the excellent load balancing capabilities of our algorithm we calculated the load and
speedup for a 7-ply search: We subtracted the results for the 6-ply iterative deepening from
the results for the 7-ply iterative deepening of the 64 processor system. Figure 4 compares this
results with the results obtained by a 7-ply iterative deepening.

The search overhead we present in the search overhead diagram generally increases with the
number of processors, but is still moderate for the 7-ply search with 64 processors (36,6 %).
For small distributed systems and 7-ply search it is surprisingly negative in the average. This
indicates that the larger transposition table of this systems compared to the sequential version
accelerates the af-search. However this effect is not useful in practice because the average total
time of 610 seconds for a 7-ply search on 16 processors is far more than can be used in playing
tournaments.

7. CONCLUSIONS

We presented the implementation of the distributed chess program ZUGZWANG. This chess pro-
gram profits strongly by the use of a distributed transposition table and other af-enhancements
we implemented. The basis for its very good performance is a distributed ag-algorithm that
achieves an excellent load balancing. This results in an average speedup of at least 28 at tour-
nament speed using 64 processors. Qur experiments indicate that the speedup of our algorithm
will even increase again significantly if we double the number of processors to 128.
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1 processor

64 processors

No. | move N | T N | T | LD | SO || SPE
B01 | ded1! 279 1 302 1 3 8.24 1.00
B02 | ede5 960353 2794 1450340 110 75 51.02 25.40
B03 | 615! 1234177 3934 1248054 110 67 1.12 35.76
B04 | e5e6! 2694688 8341 2642330 182 77 -1.94 45.83
B05 | c3d5! 27045744 83853 23755133 | 1319 93 -12.17 63.57
B0o6 | gbg6! 135159 341 196952 35 32 45.72 9.74
B07 | h5f6! 2151962 6761 2928631 222 74 36.09 30.45
B08§ | f4f5! 40244 98 58387 18 18 45.08 5.44
B09 | dlel 4880187 15146 10613436 629 87 | 117.48 24.08
B10 | c6e5! 3145315 9514 7878164 493 86 | 150.47 19.30
B11 | f2f4! 3144883 9990 4268380 294 84 35.72 33.98
B12 | d7f5! 1174965 3832 1720659 150 70 46.44 25.55
B13 | alcl 4294276 13595 8979006 590 88 | 109.09 23.04
B14 | d1d2! 1183076 3719 1875714 154 68 58.55 24.15
B15 | gdg™! 591698 1830 1038041 83 72 75.43 22.05
B16 | d2e4! 1321136 4245 1394034 120 68 5.52 35.38
B17 | h7h5! 863240 2742 1428535 124 71 65.49 22.11
B18 | c5b3! 3518916 11209 5322578 346 87 51.26 32.40
B19 | e8e4! 1999356 6233 3113029 216 78 55.70 28.86
B20 | elgl 2897562 9594 5668009 387 87 95.61 24.79
B21 | {5h6! 4676965 14724 5393288 344 89 15.32 42.80
B22 | bT7e4! 1580285 4925 4420070 306 84 | 179.70 16.09
B23 | ¢85 2234088 7336 3600473 267 82 61.16 27.48
B24 | ed4f5 2119696 6344 1905989 147 72 -10.08 43.16
> 18 73888253 | 231112 100899579 | 6647

[ 3078677 9629 4204149 277 83 36.56 34.77
BO5 | azadl | 1807502 5715 1842254 | 138 | 75 1.92 || 41.41
' 2027083 6373 3291111 227 81 62.36 27.99

Figure 5: Performance of the 64 processor system searching 7 ply
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