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Abstrakt

Ako súvisí zložitosť riešenia človekom a výpočtová zložitosť? V tejto práci sa za-

oberáme dvoma hrami Gulička a Sokoban. Z výpočtového hľadiska patrí Gulička medzi

problémy v triede P a Sokoban do triedy PSPACE-úplnych problémov. Pre každú hru

navrhneme niekoľko rôznych syntaktických atribútov a budeme zisťovať, ktoré sú zod-

povedné za obtiažnosť levelu pre ľudského hráča. Na konci práce rozoberáme ako tieto

rôzne aspekty obtiažnosti navzájom súvisia, s ohľadom na špecifické atribúty nájdené

počas analýzy riešenia problému človekom.

Kľúčové slová: puzzle, hra, riešenie človekom, výpočtová zložitosť
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Abstract

How is the complexity of solving puzzles by a human connected to computational

complexity? In this thesis we study two games Tilt maze and Sokoban. From a com-

putational point of view Tilt maze belongs to P and Sokoban belongs to PSPACE-

complete problems. We design different syntactic attributes of these puzzles and rec-

ognize those influencing difficulty in human problem solving. We conclude this thesis

by discussing how are these different aspects of problem complexity related, regarding

specific attributes identified during human problem solving analysis.

Keywords: puzzle, human problem solving, computational complexity
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Introduction

Human problem solving has been studied for a long time. One of the first seminal

works is written by Simon and Newell [29]. Relevant to this work are also Water

jug puzzle [11], Tower of Hanoi puzzle [22], river crossing problems [17], Chinese ring

puzzle [23], and Fifteen puzzle [32], all of these can be represented as state space

traversal problems.

In our analysis we focus on the issue of puzzle difficulty, considering human problem

solving but also computational complexity. First, we introduce a formalization of a

puzzle, which is used to define games Tilt maze and Sokoban as decision problems.

Computational complexity, for both of these problems, was already analyzed [12, 36].

But what makes a problem difficult for humans? We try to answer this question for

these puzzles.

There are, of course, several factors that influence problem difficulty – context of

problem solving, difficulty of individual steps in the solution, the overall structure of

the problem state space. We focus mainly on the last one.

The goal of our thesis is to design different syntactic attributes of level instances and

identify those responsible for the problem difficulty. For evaluation we use real data

from two different websites, both collecting solution time for logged users. We extract

attributes and train difficulty function on user data using machine learning models. We

predict the average logarithm of solution time and inspect feature coefficients of trained

models. These coefficients corresponds to the impact they have on these models.

At the end of the thesis we compare different attributes responsible for the com-

plexity of solving puzzles for humans versus computers.

1



Chapter 1

Background

In the first part of this chapter we try to answer the question What is a puzzle?.

Subsequently, we discuss problem difficulty, involving an introduction to the computa-

tional complexity. The last part includes information about our data sources.

1.1 Motivation

If a game is in P, it becomes no fun once you learn "the trick" to perfect

play, but hardness results imply that there is no such trick to learn: the

game is inexhaustible.

David Eppstein

Puzzles, although hard, are popular amongst people. Even though large part of

possible instances would be unsolvable by human in reasonable time, instances can be

chosen, so that humans are able to solve them. Moreover, people produce consistent

results, corresponding to ones skill in the game – various people may perform very

differently in solving the problems of this type.

In reality, there is a lot of bias hidden in many aspects, from players to the instances.

For example, instances of the game Nonograms – only instances which result to pictures

are chosen. Furthermore, the final drawing has objects, that are nicely structured and

consist of large filled areas. Since this game is NP-complete, SAT can be reduced to

it. This reduction yields images, which are clearly different from the images chosen as

a solution for magazine Nonograms.

Problem solving is very different for humans and computers – they have complemen-

2



CHAPTER 1. BACKGROUND 3

tary strengths [37]. For successful creation of tools for human-computer interaction, we

need to understand what makes problem difficult for humans. Among another appli-

cations belongs intelligent tutoring systems [9], which serve for teaching and training.

If confronted with adequate difficulty, people enjoy solving problems – if the problems

are too hard it’s deterring, if too easy it’s boring.

In practice, we can observe that even though solving these puzzles in general is

undoubtedly hard, on real data we can predict the time of the solution which would

human solver need.

How humans solved problems is a complex question which consists of many different

parts. We cannot answer fully how people solve the problem, so we will try to answer

parts of this problematics.

1.2 Puzzle

The cornerstone of this thesis is a puzzle or a game. We will consider only games

played by one player.

We propose the definition of a puzzle1:

Definition 1.1 Puzzle is a game that satisfies the following conditions:

(1) There is one player.

(2) For every instance, there is a set, usually finite, of possible positions of the game.

(3) The rules of the game specify for each position legal moves to other positions.

(4) The game ends, when a winning position is reached, declared by rules.

If the game never ends, it is declared to be lost.

(5) It is a game of perfect information with no random moves such as the rolling of

dice.

We can consider puzzle to be a computational problem. In this way, puzzle can be

viewed as an infinite collection of instances together with an answer, whether solution

exists, for given instance. The input is referred to as a problem instance, and should
1Inspired by definition of the combinatorial game of two players in Game theory [14]
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not be confused with the problem itself. For example, consider the 15-puzzle2 in general

version: (n2 − 1)-puzzle. The instance is a grid 4 × 4 (e.g. 1.1) filled with numbers

from one to fifteen (excluding one cell) and solvability answer “yes” or “no”. The case

below is solvable, hence the answer is “yes”.

3 2 1 4

5 - 11 8

9 14 10 12

13 7 6 15

Table 1.1: 15-puzzle instance

In addition, instances of one puzzle share common “look” and rules. We propose a

formal definition of a puzzle, where an instance is a string over a finite alphabet.

Definition 1.2 Puzzle P is a 5-tuple (Σ, S, val, win, init), where:

• Σ is a finite alphabet,

• position is a string Σ+,

• val : Σ+ → {true, false} is a recursive predicate determining, whether given

position is valid,

• let V be auxiliary set of all valid positions V = {p | p ∈ Σ+ ∧ val(p)},

• S : V → 2V is a recursive successor function determining set of valid following

positions,

• win : V → {true, false} is a recursive predicate determining, whether given

position is winning and

• init : V → {true, false} is a recursive predicate determining, whether given

position is a valid starting position.

Definition 1.3 Puzzle instance of a game P = (Σ, S, val, win, init) is a position I ∈

Σ+, where init(I) = true.

Based on the previous definitions, we introduce a definition of state graph and a

solution, both of them needed in further parts.
2Rules can be found on Wikipedia [1]
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Definition 1.4 For instance I of puzzle P = (Σ, S, val, win, init), the state graph is

a directed graph G = (V,E), where:

V = {vp | ∃ p0, . . . pk : p0 = I ∧ pk = p ∧ ∀i < k : pi+1 ∈ S(pi)}

E = {e | ∃ p, q : vp, vq ∈ V ∧ e = (vp, vq) ∧ q ∈ S(p)}

Definition 1.5 A solution of an instance I of puzzle P = (Σ, S, val, win, init) is a

path in the state graph G starting in the vertex vI and ending in some vertex vp, such

that win(p) = true.

Example of usage is presented in the next section.

1.2.1 Sokoban

Sokoban is one of the well-known puzzles created by Hiroyuki Imabayashi.

Rules: The game board is divided into square cells, forming two-dimensional grid.

Each cell is either a wall or a floor. There are k boxes and one man, occupying exactly

k + 1 different floor cells. Moreover, exactly k floor cells are labeled as targets for the

boxes. Man can move horizontally or vertically onto empty squares. He can also push

one box before him, moving it to another empty cell in that direction. The game ends,

when each box stands on one target cell.

Wall cell

Floor cell

Target cell

Box cell

Man

Figure 1.1: Sokoban instance

On the picture 1.1 we can see one instance of Sokoban.

Formally, Sokoban can be defined using definition 1.2. Let’s first define the alpha-

bet:

Σ = {6‖‖, ,&,∼,+, ∗,×, $}

• 6‖‖ – a wall cell; – a floor cell
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• & – the man; ∼ – the man on a target cell

• + – the box; ∗ – the box on a target cell

• × – a target cell; ∗ – a target cell containing a box; ∼ – a target cell containing

the man

• $ – new line

For the instance 1.1, the initial position looks like:

6‖‖ 6‖‖ 6‖‖ 6‖‖ $

6‖‖ 6‖‖ 6‖‖ 6‖‖ 6‖‖ $

6‖‖ 6‖‖ 6‖‖ $

6‖‖ 6‖‖ 6‖‖ 6‖‖ 6‖‖ $

6‖‖ × × 6‖‖ & + 6‖‖ 6‖‖$

6‖‖ 6‖‖ + + 6‖‖$

6‖‖ × 6‖‖ 6‖‖$

6‖‖ 6‖‖ 6‖‖ 6‖‖ 6‖‖ 6‖‖ 6‖‖ 6‖‖ 6‖‖ 6‖‖$

The position is written in separate lines for better readability.

For the other parts of Sokoban definition:

• win(p) = (#+(p) = 0), if there is no box not on a target cell

• init(p) = (#+(p) > 0), if there is at least one box not on a target cell

The definition of val predicate:

val(p) = (r = #$(p)) ∧ (p = p0$p1$ . . . pr−1$) ∧

c = |p0| ∧ ∀i : pi ∈ Σc ∧

#&(p) + #∼(p) = 1 ∧

#+(p) + #∗(p) = #×(p) + #∗(p) + #∼(p) ∧

#+(p) + #∗(p) ≥ 1 ∧

p0 = pr−1 =6‖‖c ∧

∀i : pi,0 = pi,c−1 =6‖‖

The definition is strict, because it forces walls all around the perimeter. However,

all real Sokoban levels have areas of floor cells enclosed inside wall perimeter, which
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isn’t necessarily in form of a rectangle. Nevertheless, these levels can be modified by

changing all empty cells outside the perimeter to walls (image 1.2), hence satisfying

the val predicate.

(a) Original (b) Walls added

Figure 1.2: Sokoban instance

Last part of the definition missing is the recursive successor function S, which we

define with help of four auxiliary functions for different directions:

S(p) = {move_up(p),move_right(p),move_down(p),move_left(p)}

We show only the definition of move_down and leave the other three for the reader.

First, let’s define three helper functions:

man_left(cell) =

 if cell = &

× if cell = ∼

man_came(cell) =

& if cell ∈ { ,+}

∼ if cell ∈ {×, ∗}

box_came(cell) =

+ if cell =

∗ if cell = ×

Using these functions, we define the move_down function:

move_down(p) =



p if pmr+1,mc =6‖‖

p if pmr+1,mc ∈ {+, ∗} ∧ pmr+2,mc ∈ {+, ∗, 6‖‖}

p′ if pmr+1,mc ∈ {×, }

p′′ else

where :
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r = #$(p) ∧ p = p0$p1$ . . . pr−1$ ∧ c = |p0|

∃! (mr,mc) : pmr,mc ∈ {&,∼}

∧

p′mr = pmr,0 . . . pmr,mc−1 man_left(pmr,mc) pmr,mc+1 . . . pmr,c−1 ∧

p′mr+1 = pmr+1,0 . . . pmr+1,mc−1 man_came(pmr+1,mc) pmr+1,mc+1 . . . pmr+1,c−1 ∧

p′ = p0$ . . . pmr−1$ p
′
mr$p

′
mr+1$ pmr+2$ . . . pr−1$

∧

p′′mr+2 = pmr+2,0 . . . pmr+2,mc−1 box_came(pmr+2,mc) pmr+2,mc+1 . . . pmr+2,c−1 ∧

p′′ = p0$ . . . pmr−1$ p
′
mr$p

′
mr+1$p

′′
mr+2$ pmr+3$ . . . pr−1$

The first case describes the event when the man cannot move down, because there

is a wall right below him. The second case is similar, there is a box below the man,

but he cannot push it, since there is a wall or another box below the box.

The third case is simply the man moving one step down to an empty cell.

The fourth specify the case, when the man pushes one box below him to the next

empty cell that’s why three lines are changed.

1.2.2 Tilt maze

Tilt maze is a game with a lot of various designs. Most popular is a wooden maze,

where you can tilt the board on four different sides. You need to get a ball from starting

position to goal position without falling into one of the holes (example 1.3)

Figure 1.3: Wooden tilt maze [2]
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Online games used this idea, but instead of avoiding holes, you need to collect

checkpoints.

Rules: The game board is divided into square cells, forming two-dimensional grid.

Each pair of cells can be separated by a wall. Moreover, there are walls on every

perimeter edge. Exactly k cells are occupied by checkpoints and one other by a ball.

The ball can move in one of the four basic directions, moving until it hits the nearest

wall.

Every time the ball goes across the cell containing a checkpoint (or stops on it), the

checkpoint will be collected (resulting in it’s disappearing from the board). The game

ends when all checkpoints are collected.

Formally, Tilt maze can be defined using definition 1.2. For better understanding

of the definition, we’ll show the position string for one small instance (image 1.4).

Figure 1.4: Small Tilt maze instance

Position is:

B$ C $C $#WWW$W $ W$WWW$#WWW$ W$W $WWW$#

The position has three parts separated by #. Character $ is used as a newline. In

the first part, every means an empty cell, every C a checkpoint and B is the ball.

The second and third part describes horizontal (described from left to right) and

vertical (from top to bottom) walls, the character representing missing wall.

The definition of the alphabet, win and init predicate:

• Σ = { ,B,C,W, $,#}; is an empty cell or no-wall, B is the ball, C is a

checkpoint, W is a wall, $ is end of line, and # is a separator for different parts.

• win(p) = (#C(p) = 0); if we collected all checkpoints

• init(p) = (#C(p) ≥ 1); if there is at least one checkpoint to collect
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Defining val predicate will be little more complicated. We need to check, that the

input string follows the intended structure.

val(p) = (##(p) = 3) ∧ (p = g#h#v#) ∧

r = #$(g) ∧ g = g0$g1$ . . . gr−1$ ∧

c = |g0| ∧ ∀i : gi ∈ { ,B,C}c ∧

#B(g) = 1 ∧

#$(h) = r + 1 ∧ h = h0$h1$ . . . hr−1$, hr$ ∧

∀i : hi ∈ { ,W}c ∧

h0 = hr = Wc ∧

#$(v) = c+ 1 ∧ v = v0$v1$ . . . vc−1$, vc$ ∧

∀i : vi ∈ { ,W}r ∧

v0 = vc = Wr

The predicate checks three different parts: the first part must have r rows with c

characters from the set { ,B,C}, having B on exactly one place; the second part has

r + 1 rows, where first and last row needs to be full of walls; and the third parts is

similar to the second.

The last part of definition missing is the recursive successor function S. We define

it using four auxiliary function for different directions:

S(p) = {move_up(p),move_right(p),move_down(p),move_left(p)}

We show the definition of move_up, as the other three are fairly similar.

move_up(p) =

p if hbr,bc = W

move_up(p′) if hbr,bc 6= W

where

p = g#h#v# ∧ r = #$(g) ∧ g = g0$g1$ . . . gr−1$ ∧

∃! (br, bc) : gbr,bc = B ∧

g′br = gbr,0 . . . gbr,bc−1 gbr,bc+1 . . . gbr,c−1 ∧

g′br−1 = gbr−1,0 . . . gbr−1,bc−1 B gbr−1,bc+1 . . . gbr−1,c−1 ∧

g′ = g0$ . . . gbr−2$ g
′
br−1$g

′
br$ gbr+1$ . . . gr−1$ ∧

p′ = g′#h#v#
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In the function move_up we split the position into different parts and get row and

column of the ball. If there is a wall above this cell (hrb,rc = W), we will return the

same position p, since the ball cannot move in this direction.

If there is no wall, we can define next position p′, where the ball is replaced by

empty cell and the cell above it is replaced by the ball. However, the function doesn’t

return p′ directly, but calls itself recursively on this position. The returned position

will be the one, where the ball cannot go up anymore.

Conveniently, this definition will take care of collecting the checkpoints along the

way, since the ball always replaces the next cell, and leaves empty one when moving.

1.3 Problem Difficulty

1.3.1 Computational complexity

Computational complexity describes asymptotic difficulty of a game, using O-no-

tation or determining membership in a complexity class.

1.3.1.1 Definition of complexity classes

Complexity classes are defined using Turing machines.

Hopcroft and Ullman [19] formally define a (one-tape) Turing machine as a 7-tuple

M = (Q,Σ,Γ, δ, q0, B, F )

whose components have the following meanings:

Q: The finite set of states of the finite control.

Σ: The finite set of input symbols.

Γ: The complete set of tape symbols ; Σ is always a subset of Γ.

δ: The transition function. The arguments of δ(q,X) are a state q and a tape symbol

X. The value of δ(q,X), if it is defined, is a triple (p, Y,D), where:

1. p is the next state, in Q.

2. Y is the symbol, in Γ, written in the cell being scanned, replacing whatever

symbol was there.
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3. D is a direction, either L or R, standing for “left” or “right”, respectively,

and telling us the direction in which the head moves.

q0: The start state, a member of Q, in which the finite control is found initially.

B: The blank symbol. This symbol is in Γ but not in Σ; i.e., it is not an input symbol.

The blank appears initially in all but the finite number of initial cells that hold

input symbols.

F : The set of final or accepting states, a subset of Q.

Turing machine model suitable for this section is TM with input and several working

tapes – the input tape is read-only. Also, the input tape is bounded to the length of

the input string and working tapes are infinite to the right.

Definitions of time and space-bounded machines [33]:

Definition 1.6 Deterministic Turing machine A is S(n) space-bounded, if every com-

putation A on the string w of length n uses at most S(n) cells on every working tape.

Definition 1.7 Non-deterministic Turing machine A is S(n) space-bounded, if:

• (strong def.) Every computation on the input string w of length n uses at most

S(n) cells on every working tape.

• (medium def.) Every computation on the input string w ∈ L(A) of length n uses

at most S(n) cells on every working tape.

• (weak def.) For every input string w ∈ L(A) of length n exists computation that

uses at most S(n) cells on every working tape

Definition 1.8 Deterministic Turing machine A is T (n) time-bounded, if TM makes

at most T (n) steps on every input string w of length n.

Definition 1.9 Non-deterministic Turing machine A is T (n) time-bounded, if

• (strong def.) Every computation on every input string w of length n uses at most

T (n) steps.

• (medium def.) Every computation on every input string w ∈ L(A) of length n

uses at most T (n) steps.
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• (weak def.) For every string w ∈ L(A) of length n exists computation that makes

at most T (n) steps.

1.3.1.2 Complexity classes

Definition 1.10 For every function, there is TM bounded by it, defining a class of

languages. Classes are divided by determinism of TM and whether it is time or space

bounded, using the strong definition of non-determinism (1.7, 1.9).

Define classes:

DSPACE(S(n)) = {L | ∃ DTM A, that is S(n) space-bounded ∧ L = L(A)}

NSPACE(S(n)) = {L | ∃ NTM A, that is S(n) space-bounded ∧ L = L(A)}

DTIME(T (n)) = {L | ∃ DTM A, that is T (n) time-bounded ∧ L = L(A)}

NTIME(T (n)) = {L | ∃ NTM A, that is T (n) time-bounded ∧ L = L(A)}

Especially interesting are classes that are space or time bounded by polynomial, or

other simple function (regarding only type, not coefficients). Most famous classes are

P , NP and PSPACE

Definition 1.11

P =
⋃

f is polynomial

DTIME(f(n)) =
⋃
k>0

DTIME(O(nk)) = DTIME(nO(1))

NP =
⋃

f is polynomial

NTIME(f(n)) =
⋃
k>0

NTIME(O(nk)) = NTIME(nO(1))

PSPACE =
⋃
k>0

DSPACE(nk) = DSPACE(nO(1))

Less formally, we can describe each complexity class as:

• P – problem is in P, if there exists deterministic algorithm to find the solution

in polynomial time with respect to the size of the input

• NP – problem is in NP, if there exists deterministic algorithm to verify the

solution in polynomial time with respect to the size of the input

• NP-complete – problem H is NP-complete, if it is NP and every other problem

in NP, can be transformed to H in polynomial time
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• PSPACE – problem is in PSPACE, if there exists algorithm to find the solution

in polynomial space with respect to the size of the input

• PSPACE-complete – problem H is PSPACE-complete, if it is in PSPACE and

every other problem in PSPACE, can be transformed to H in polynomial time

The transformation used in the definition of NP-complete and PSPACE-complete

problems is a deterministic many-one reduction running in polynomial time.

1.3.1.3 Puzzle

There is a lot of research, asking how hard are puzzles for the computer – described

in terms of complexity classes.

To determine a membership of the puzzle to a complexity class, we define the puzzle

as a language.

The puzzle instance is winnable if there exists a solution, corresponding to the

definition1.5.

Definition 1.12 The language of winnable instances L(P ) of the puzzle P is

L(P ) = {I | I ∈ Σ+ ∧ val(I) ∧ init(I) ∧ I has a solution}

where P = (Σ, S, val, win, init).

Using these definitions, we can determine the membership of a puzzle P to a com-

plexity class, by asking how hard it is to determine for arbitrary instance I of a puzzle

P whether I ∈ L(P ).

Many of puzzles are proved to be NP-complete. Especially puzzles that require

filling the grid – a few examples from Wikipedia [4]:

• Nurikabe – proofed by McPhail [26]

• Fillomino – proofed by Yato [40]

• general Sudoku, also called Number Place – proved by Yato and Seta [39]

Examples of sliding-block problems that are PSPACE-complete [5]: Sokoban [12]

and Rush Hour [15].
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There is also a small number of games belonging to P. For example Tilt Maze,

which can be reduced to Quell that was proved to be polynomial by Tejada [36].

Puzzles are of various types. Sokoban and Sudoku are both puzzles, both satisfying

the definition 1.2, but they have different difficulty. When we look onto the state graph

of Sudoku, it is a directed acyclic graph – while playing, we always add numbers, so we

cannot get to the same state twice. This means that this graph has polynomial depth,

which concludes that Sudoku is in NP, because you can guess a solution and check it

in polynomial time. This holds for every puzzle where the goal is filling a grid (with

numbers, colors etc.).

1.3.2 Human problem solving

On the other hand, there is the question, how hard are puzzles for people. Still,

it is not known how these two things relate. We have no ambition in understanding

the whole process behind human solving. Hence we focus on interesting parts from the

view of Computer Science, considering our insufficient background in psychology and

human cognition.

This section gives a brief overview of research on difficulty assessment with a focus

on automated methods for puzzle games.

Ashlock and Schonfeld [10] automatically grade the difficulty of Sokoban. The

difficulty is measured by two different approaches: mean time-to-solution by an evolu-

tionary algorithm and number of failures to solve a board. These measures are used to

order the levels by difficulty.

Mantere and Koljonen [25] study the problems involved in solving, generating and

rating Sudoku puzzles with genetic algorithms (GA). The last objective, whether GA

can be used as a rating machine that evaluates the difficulty of a given Sudoku instance,

is approached by testing whether puzzles that are considered difficult for humans are

also difficult for the genetic algorithm.

Kreveld, Löffler and Mutser [38] introduce a method for automatically rating the

difficulty of puzzle game levels. They study three games: Flow, Lazors and Move. Their

method takes multiple attributes of these games, such as level size, and combines these

into a difficulty function.

Komanová [21] introduces thirteen logic rules, which describes solving of the game
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Nonograms. She uses this methods to solve various instances and predict the time of

a human solver.

Other example is research done by Czech team in Brno. They have several papers,

from which we chose articles by Jarušek and Pelánek What Determines Difficulty of

Transport Puzzles? [20] and Human Problem Solving: Sokoban Case Study [31].

In first work, they study three games: Sokoban, Rush hour and Replacement puz-

zle. The second is focused only on Sokoban. They ask a question “What determines

difficulty of solving a problem?”. They found problems, where the difficulty isn’t ex-

plained by previous research. They argue that metrics like state space size, or length

of the shortest solution cannot capture the difficulty. They propose a computational

model of human problem solving. They analyzed user data and observed that human

players behave more randomly at the beginning, and later go more straightforwardly

to the goal. The model is a combination of random and optimal walk, however it does

not provide explanation of “how people think”, it just simulates their behaviour.

In Sokoban Case Study they also formalize a metric based on state space bottleneck.

Humans spent most of the time in states before the bottleneck, but once it’s passed

they quickly find a way to the winning state. The concept is not specific for Sokoban

and can be used for any puzzle. Unfortunately, it didn’t turned out to be good difficulty

metric.

In our work, we use similar approach as Kreveld, extracting attributes from different

games and trying to learn the difficulty function. However, for training we decided to

use machine learning.

1.4 Data sources

In order to study difficulty of solving puzzles, we needed to collect the data. Since

the goal is to determine how solving time depends on syntactic attributes of levels, we

need to know how every level looks like.

Besides that, we have to be able to compute one metric, which we will use for

predicting (e.g. average time or median of time)

The subject of our work is Tilt maze and Sokoban. The first puzzle is rather un-

known. Every website contains the same set of several tens of instances. Furthermore,
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they do not collect the data about individual users and their solutions.

Sokoban on the other hand is fairly popular and there are many websites offering

playing Sokoban. Unfortunately, nor in this case, there isn’t a lot of pages, where

they collect time data. For example the website sokoban.info measure your solving

time, but you cannot find the time of other players for specific level3. We successfully

contacted the website sokobanonline.com, which also measures the time of solution.

Unfortunately, they do not save this information.

The most useful page turned out to be logic-games.spb.ru/. It is a Russian

website, where you can play different games including Sokoban. It saves all data about

their players. Every level has difficulty rating, which is average time of playing. Per

every player, you can only see his last five hundred plays. Sadly, we were not able to

contact administrators of this website, so we didn’t get the access to full data about

users. Thus we decided to only use the last plays for every user, since there is less than

two hundred users who played more levels. The data are from March 2018.

Finally, since we follow the research of Czech team, we have access to the data

from their Problem Solving Tutor tutor.fi.muni.cz. This page offers wide range of

puzzles and games. Every move of every game is saved for every user. They also save

the time of every step. For every game one table is generated, with relation between

users and all levels. Every cell contains either a number - time took by user to save

the level, or nothing, if the user did not solve the level.

From this website we downloaded the data for Sokoban and Tilt Maze. Tilt maze

user data are from January 2016 and Sokoban data from February 2018.

3We tried to contact them, but they never replied.

sokoban.info
sokobanonline.com
logic-games.spb.ru/
tutor.fi.muni.cz


Chapter 2

Predicting average log solution time

In this chapter, we study two puzzle games: Tilt maze and Sokoban. Our goal is

to explain how difficulty of a puzzle depends on its syntactic attributes.

In the first section, we give a brief explanation of syntactic attributes. In the second

section, we provide a short introduction to machine learning, which is used for training

and prediction of solution time. For each game, we use the same models and techniques

that are described in parts 2.2.2 and 2.2.3.

The last two sections describe Tilt maze and Sokoban respectively. First we explain

how we collect necessary data, followed by a section about feature engineering – where

we break down every syntactic attribute computed.

The last part of every puzzle section consists of experiments and results using

models introduced in the subsection 2.2.2.

2.1 Syntactic attributes

As we stated before, we want to predict the solution time based on syntactic features

of level instances. We consider syntactic features anything that can be deterministically

computed from the description of level instance.

For example, number of boxes in Sokoban, number of checkpoints in Tilt maze,

width of grid etc. Great source of syntactic features is a state space (state graph, def.

1.4) of a level instance. We extract attributes such as number of reachable states,

length of the shortest solution, number of viable states etc.

On the other hand, Sokoban level may consist of several similar parts that have to

18
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be solved in very similar way. This fact has positive influence on the solution time by

a human solver, since he can “learn” this pattern and use it multiple times. However,

we cannot rigorously measure or quantify this “property”. Hence, we do not consider

this property to be a syntactic attribute. We could define some attribute which would

relate to this property, but it would be only inaccurate approximation.

Previous example indicates that we are not able to fully explain the difficulty of

the majority of puzzles using only syntactic features.

Syntactic features transform a description of level instance to a vector of numbers.

In this setting, its clear we want to learn a difficulty function. We choose to learn it

by using methods of machine learning, which are discussed in the next section.

2.2 Machine learning

“Machine Learning is the science of getting computers to learn and act like humans

do, and improve their learning over time in autonomous fashion, by feeding them data

and information in the form of observations and real-world interactions.” [7]

Machine learning tasks can be categorized into a wide range of categories. The basic

distinction is to supervised and unsupervised learning. We talk more about supervised

learning in the next section.

2.2.1 Introduction

Supervised learning refers to any machine learning process that learns a function

from an input type to an output type using data comprising examples that have both

input and output values. Two typical examples of supervised learning are classification

learning and regression. In these cases, the output types are respectively categorical

(the classes) and numeric. [34]

Our goal is to predict solving time, which indicates towards the regression. We need

to construct an input matrix X with features for every level and an output vector y

with one number per every level – the value we want to predict (average time, median

etc.).

There is a number of models solving regression tasks. However, we don’t only want

to predict solving time, but also understand which features have the largest impact.
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This rules out for example regression based on k-nearest neighbors, since we cannot

extract information about impact of individual features.

We talk about chosen models in the next section.

2.2.2 Models

We use three types of models: Linear regression, Support vector machine and Ran-

dom Forest. All models are implemented in Python library – scikit-learn [30]. Spe-

cific models are:

• LinearRegression – Ordinary least squares Linear Regression.

• Ridge – Linear least squares with L2 regularization.

• Lasso – Linear Model trained with L1 prior as regularizer.

• LassoLars – Lasso model fit with Least Angle Regression.

• ElasticNet – Linear regression with combined L1 and L2 priors as regularizer.

• LinearSVR – Linear Support Vector Regression.

• RandomForestRegressor

The first six models contain an output attribute called coef_ and the last one

contains feature_importances_ – all of them giving us a clue how each feature affects

the model.

2.2.3 Training

Our goal is to train a model which generalizes well. Generalization can be measured

by testing error – error on previously unseen data. When training a model on dataset

with an input matrix X and an output vector y, we split the dataset to a training and

testing dataset. While training, the model never sees any sample from the testing set.

The split is done only once and randomly.

Many of the models assume that the individual features look like standard normally

distributed data: Gaussian with zero mean and unit variance. For this, we use stan-

dardization, which is implemented as StandardScaler in scikit-learn. The mean

and variance is determined only from the training data and then the same transfor-

mation is used to both training and testing set. Every one of our models except the

RandomForestRegressor uses dataset with scaled features.
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Many estimators have hyper-parameters. These are the parameters that are not

directly learnt during the training. For example Lasso has alpha, or LinearSVR has

hyper-parameter C. These parameters can be chosen by hand, but it is common to

search a space of parameters to find the ones with best cross-validation score.

Cross-validation is a process, where the training set is partitioned into k folds –

subsets. The learning algorithm runs k times, each time one fold acts as a validation

set, and all others creates an estimation set. The algorithm learns on an estimation

set, and computes score on validation set. The final score is average of the k validation

scores.

Searching for the optimal hyper-parameters can be done using GridSearchCV –

exhaustive search over specified parameter values for an estimator. Parameters for

each model are:

• LinearRegression – no hyper-parameters

• Ridge – 49 values of alpha evenly spaced on a log scale from 10−3 to 103

• Lasso – 49 values of alpha evenly spaced on a log scale from 10−3 to 103

• LassoLars – 49 values of alpha evenly spaced on a log scale from 10−3 to 103

• ElasticNet – 49 values of alpha evenly spaced on a log scale from 10−3 to 103

• LinearSVR – 36 values of C evenly spaced on a log scale from 10−2 to 103

• RandomForestRegressor – n_estimators from list [1, 5, 10, 15]

GridSearchCV refits an estimator using the best found parameters on the whole

dataset.

Feature selection [24] is an important and widely used approach to dimensionality

reduction. For a dataset with N features and M dimensions (or features, attributes),

feature selection aims to reduce M to M ′ and M ′ ≤M . It is an important and widely

used approach to dimensionality reduction. It is important to note that the selected

features are a subset of original features.

RFE from Python package scikit-learn selects features by recursively considering

smaller and smaller sets of features. RFECV performs feature ranking with recursive

feature elimination and cross-validated selection of the best number of features.

Because we don’t have a large amount of data – many features and small number

of samples, we use this approach to try to reduce the dimensionality. This also gives
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us a clue, which features are important and which are not.

The output vector consists of an average logarithmic time. For one specific level,

with user times in a vector t = (t0, . . . tn−1) considering only users that solved this

level, the output variable is:
1

n

∑
i

log ti

2.2.3.1 Score

The quality of prediction can be measured in different ways. We choose the coef-

ficient of determination, which can be directly extracted from all trained models by

calling the score() method.

Coefficient of determination R2 is defined as:

R2 = 1− SSres

SStot

SSres =
∑
i

(yi −
∧
yi)

2

SStot =
∑
i

(yi − ȳ)2

where y = (y0, . . . yn−1) is the output vector, ȳ is the mean of y, and ∧y is a vector of

predicted values.

The best possible score is 1.0. The constant model, which would always predict

the mean, would get a score 0. Since the model may perform worse than the constant

model, the score can drop below zero.

The coefficient of determination shows how well a regression model fits the data.

Its value represents the percentage of variation that can be explained by the trained

model. If every point fits the data, the score would be 1.0; if the score is 0.5 – only

half of the variation is explained.

2.3 Tilt maze

The first game we study is called Tilt maze. Rules of this game are described in

subsection 1.2.2. In this part, we talk about data collection and extraction of features,

ending in results.

2.3.1 Data collection

Before we can use supervised learning, we need to create a proper dataset. Every

dataset consists of an input matrix X and an output vector y. In our case, the output
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vector is average log time for every level and X consists of one vector per each level

containing all features.

2.3.1.1 Time data

In section 1.4 we mentioned website Problem Solving Tutor. We obtained special

user from administrators, which allows us to download all data for every puzzle. Specif-

ically, we download a data table – relation between users and levels. A small fraction

from this table can bee seen in the table 2.1, where the first line are level IDs and the

first column are user IDs. Each cell contains number of seconds of solution.

Login 221 223 225 227 228 229 230 231 232 233 234 235 236 294 295 296

U1 11 12 64 42

U2 2 28 45 59 41 27 100 107 83 21 78

U4 25 205 12 29 32 116 55 89 96 49 38

U5 5 9 45 160 53 41 39 32

U6 10 11 89 46

U7 5 11 10 41 16 49 204 28 39 89 85 283 123 18 27

U8 5 11 43 54 60

U9 8 11 18 45 20 82 53 44 392

U10 44 15 26

U13 9 12 19 37 49 28 128 42 66 50 37 273 136 47 40 460

U14 65 33 86 65 135 59

U15 18 38 32 96 70

U17 4

U20 22 28 35 48 31 141 270 124 163 41 176 179 47 35 123 494

U21 35 42 129 63 37 83

U22 11 29 32 31 51 98 161

U24 10 20 19 194

U25 26 16 23 96 23 57 514 15 99 120 268 156 22 48 251

U26 23 86 22 58 306 37 80 51 144 184 192 65 47

Table 2.1: Tilt maze user time data

In the table 2.2 we provide a summary of collected data.

For our objective, we computed the average log time for every level.
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#users 6265

#levels 110

avg #users per level 882

avg #levels per user 15

total time 90 days 5 hours

Table 2.2: Summary information about collected data

2.3.1.2 Levels

To compute any features, we need to know how every level looks like. We use

Python [16] programming language, specifically library Selenium [28] and its module

webdriver to scrape the data from the website.

First, we need to login into the website, since the games aren’t accessible otherwise.

From the time table, we have all level IDs. After analyzing the website, we learned

that every level has its own unique URL, which can be constructed from its ID. Using

javascript on this specific URL, we can extract all necessary variables:

• hasTopWall – 2D bool array – for each cell, whether it has a top wall

• hasRightWall – 2D bool array – for each cell, whether it has a right wall

• hasBottomWall – 2D bool array – for each cell, whether it has a bottom wall

• hasLeftWall – 2D bool array – for each cell, whether it has a left wall

• isCheckpoint – 2D bool array – for each cell, whether it contains a checkpoint

• ball_row and ball_col – integer coordinates of the starting ball position

• width, height – size of the game board

Using webdriver we open a browser instance and navigate through all the level

URLs, where it executes scripts returning the all required variables. We put all the

variables into a dictionary and save it using the json library to one file per level.

2.3.2 Feature engineering

In this subsection we describe every feature used for prediction. The basic features

are width of a level1, tile count and checkpoint count. All three can be easily

extracted from level description.
1height is omitted, since all game boards are squares.
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Other features are computed using one of two graphs – state graph and segment

graph. An explanation of these graphs is given in following sections.

2.3.2.1 State graph

The definition 1.4 of state graph offers general description of state space over posi-

tions. However, when we talk about the state graph of one specific instance, we don’t

have to include the information about walls. We simplify every position (or state) to

a pair:

[ball position, set of collected checkpoints]

There exists a homomorphism from this description of states, to a valid positions

satisfying the definition 1.2.

To explain the set of collected checkpoint, we number checkpoints from zero, as

displayed in image 2.1. With this numbering, the second part of the state is essentially

a bitfield – one bit for each checkpoint.

For the game instance in image 2.1, the starting state is: [(2, 2), 0], because no

checkpoints are collected yet. In the winning state all checkpoints have to be collected,

so the bitfield is 511, corresponding to binary number 11111111.

Figure 2.1: Tilt Maze with numbered checkpoints

We construct a state graph, where every state has at most four neighbors – the ball

can only move in four directions, sometimes hitting a wall before it actually moves –

this will not create any new vertex or edge.

In reality, we first compute neighbours for each cell and remember for each edge a

bitfield – which checkpoints can be collected during this move. Later, during traversing

of the state space, we can use this information directly: if we are in the state [ball0, ch]
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and the edge UP points to ball1 with checkpoint change change, we can easily get the

next state as [ball1, ch|change]. The bitwise or will compute new collected checkpoints

perfectly – if we already collected some of the checkpoints on this edge, it will not be

counted twice and new checkpoints will be added to the state bitmap.

Using state graph traversal we can compute five features: shortest_path,

reachable_states_count, reachable_tile_count, viable_states_count

and shortest_path_tiles. First, we run a basic BFS algorithm [27] from the starting

state to all the others. We intentionally traverse the whole state space in the interest

of computing the number of reachable states. During the BFS we also remember the

shortest path from starting state to all the others.

If we encounter final state – which we can detect by comparing its checkpoint bitfield

to the number (2#checkpoints+1−1) – we do not continue traversing the state space from

this vertex, as the game ends when all checkpoints are collected. We also remember

the shortest path to first winning state visited.

To compute the feature reachable_tile_count, we initialize a set containing only

first position of the ball. During the exploring of neighbours we add ball position to

this set.

Lastly, we remember the previous map, which gives us previous states for every

state visited and final_states array, which includes all winning states.

After the first BFS completes, we run the second – reversed BFS, which starts from

all final states, and goes along the edges in the transposed graph (with help of the

previous map), to visit all states reachable from winning states. This gives us the

number of viable states – in which the game is still winnable.

Feature shortest_path_tiles should correspond to a minimal number of tiles that

the ball has to traverse along any shortest path. We “create” a graph, where every node

lies on some shortest path. In reality, we only create a set of vertices lying on shortest

paths and use this set to filter vertices during the search.

From the first BFS we have the length L of the shortest path. Initially, the set

of on_shortest vertices contains only winning states with distance L. After that, we

traverse the transposed graph, but for vertex v only considering previous neighbour u,

if dis(u) + 1 = dis(v) stands – so the vertex u is closer to the start.

After that, we run Dijkstra’s algorithm [13] to find the minimal number of tiles along
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any shortest path. We compute this on filtered graph – only vertices in on_shortest set

are considered and every edge has weight, based on how many tiles the balls traverse

during this move.

2.3.2.2 Segment graph

We already mentioned that Tilt maze belongs to complexity class P. The game

Quell is essentially the same, however walls aren’t between cells, but each cell can be

a wall. The instance of Quell is displayed on image 2.2, where the blue rain droplet

collects small golden pearls.

Figure 2.2: Quell level [6]

Quell was proved to be in P by Tejada [36]. Since each game of Tilt maze can be

reduced to Quell, Tilt maze is in P too.

The proof is based on maximal segments – every row and column can be divided

into these segments (discarding segments of length 1). The illustration can be found

on images 2.3a and 2.3b.

(a) Horizontal (b) Vertical

Figure 2.3: Maximal segments
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It’s possible to construct directed graph G, where every segment is a vertex and

containing one special vertex v0 for starting location of the ball. G has directed edges

from v0 to the vertices corresponding to the maximal segments incident to the starting

position of the ball. In our case, it would be v4 and v11. In graph G, every other edge

from vertex u to v exists, only if one of the endpoints of the maximal segment for u is

on the maximal segment for v.

Graph G is shown on image 2.4, we call is Segment graph The red vertex is special

vertex for starting location of the ball. Vertices, which correspond to segments with

checkpoints, are marked blue.
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Figure 2.4: Tilt Maze – segment graph G

In the graph G we find the strongly connected components, constructing graph G′,

which is directed acyclic graph, where every checkpoint belongs to at most two vertices.

The graph in the picture 2.5 is G, with coloured groups of vertices corresponding to

strongly connected components.

The proof in Tejada’s article is based on reduction to 2-SAT. We can construct

clause, which is satisfiable only if all the checkpoints can be collected. Since we can

solve 2-SAT in polynomial time, subsequently we can construct the path of solution

from it in polynomial time.

We use the number of strongly connected components and the number of strongly

connected components containing at least one checkpoint as two features: scc_count

and scc_checkpoint_count.

In implementation, we start by creating special starting node with ID 0. Then we

create nodes for all horizontal maximal segments and all vertical maximal segments.
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Figure 2.5: Graph G with coloured strongly connected components

Every vertex gets at most two children – nodes matching the segments at the endpoints.

Also, every checkpoint remembers, which nodes it belongs to.

After that we run the Kosaraju’s algorithm [8] for finding strongly connected com-

ponents, which essentially consist of two separate runs of depth-first search algorithm

– first to order vertices, the second to traverse the transposed graph and mark the

components.

From this run, we can easily extract the number of strongly connected compo-

nents to get the feature scc_count. With one pass over the checkpoints, we can de-

tect, which components have checkpoints in them, and get their count for the feature

scc_checkpoint_count.

2.3.3 Experiments and results

In this section, we describe the results of experiments. First, we adjust the set of

features, afterwards we predict the average log time using different models and find

their parameters using methods GridSearch and select the best features by running

RFECV from the section 2.2.3.

2.3.3.1 Final set of features

Many machine learning models expect that features are drawn from normal distri-

bution. Hence, we decided to plot histograms of all features. They can be found in

appendix A.1, images A.1a – A.10a. One of the basic transformations, when dealing

with non-normal data, is logarithmic function. We applied natural logarithm to all
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features, producing histograms A.1b – A.10b.

Captions of all histograms contain a p-value of Kolmogorov-Smirnov test for nor-

mality. If the p-value is less than 0.05, the feature is probably not normally distributed.

All histograms are generated only from the training set.

Features reachable_states_count, viable_states_count, shortest_path and

scc_count don’t have normal distributions, but their log versions have distributions

more similar to normal. Hence we use only the log features. One example is in the

image 2.6, where we clearly see that the original feature has a lot of small values and

only a few large values.

(a) Original (p-value: 8.882e-16) (b) Log (p-value: 0.229)

Figure 2.6: Reachable States Count

Not all other features have normal distribution, but neither their log versions have

it, so we just use the original versions.

One special case is the feature shortest_path_tiles. We use the log version of

this feature, because it has a higher p-value and intuitively, when looking on images

2.7a and 2.7b, the log feature seems to be more linearly dependent.

(a) Original (b) Log

Figure 2.7: Shortest Path Tiles Scatter Plot
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Finally, we remove features checkpoint_count and tile_count, because they

highly correlate with features reachable_states_count and width respectively (with

use of Spearman’s correlation coefficient). The correlation would skew the results and

the feature coefficients would be affected by it.

The final set of features is: width, shortest_path_log, reachable_tile_count,

reachable_states_count_log, viable_states_count_log, scc_checkpoint_count,

shortest_path_tiles_log, scc_count_log. We believe that a level is more difficult

with increase of any of these features.

2.3.3.2 Grid search

We explained Grid search in the section 2.2.3. It trains all models and finds the

best parameters. Best parameters, train and test score of all models are in the table

2.3.

Model Parameters Train score Test score

LinearRegression 0.72 0.6887

Ridge alpha: 56.23 0.64 0.5360

Lasso alpha: 0.10 0.64 0.5402

LassoLars alpha: 0.10 0.64 0.5402

ElasticNet alpha: 0.18 0.64 0.5433

LinearSVR C: 0.37 0.68 0.5792

RandomForestRegressor n_estimators: 15.00 0.79 0.4611

Table 2.3: Tilt maze – GridSearch parameters and scores

As we can see, the best train score has RandomForestRegressor. Random forests

have a tendency to overfit, which is probably the case, since the test score is the

lowest. The second best estimator is basic Linear Regression, which has the best test

score 0.6887. It means, we can explain 69% of the data variance, as described in the

subsection 2.2.3.1.

Now, let’s look onto the individual coefficients. They are shown in the table

2.4. Note that the first six lines contain coef_ field and the last row corresponds

to feature_importances_ field, which values are from range [0, 1] summing up to
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1.02.
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LinearRegression -0.26 0.39 -0.19 0.39 0.79 -0.35 -0.39 0.21

Ridge 0.10 0.10 0.10 0.11 0.14 -0.01 0.06 0.15

Lasso 0.0 0.13 0.0 0.06 0.27 0.0 0.0 0.24

LassoLars 0.0 0.13 0.0 0.06 0.27 0.0 0.0 0.24

ElasticNet 0.04 0.11 0.03 0.08 0.22 0.0 0.0 0.20

LinearSVR 0.03 0.17 -0.01 0.31 0.39 -0.29 -0.05 0.13

RandomForestRegressor 0.03 0.22 0.12 0.21 0.33 0.04 0.02 0.04

Table 2.4: Tilt maze – GridSearch coefficients

In the table 2.4, the highest coefficients in each row is marked bold. Feature shortest

path tile log has the largest impact on all models, except for Ridge, where it’s the second

highest.

2.3.3.3 RFECV

RFECV is described in the section 2.2.3. It recursively eliminates features and

finds the optimal number of features. Train and test scores are shown in the table 2.5.
2Values in the table are rounded to two decimal places, therefore the sum of the last row may be

less or more than 1.0
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Model Train score Test score

LinearRegression 0.46 0.4779

Ridge 0.64 0.5373

Lasso 0.61 0.5054

LassoLars 0.61 0.5054

ElasticNet 0.60 0.4981

LinearSVR 0.45 0.4613

RandomForestRegressor 0.80 0.4055

Table 2.5: Tilt maze – RFECV scores

More interesting are the features that this methods selected. In the table 2.6, we

can see the coefficients of all models. If a feature wasn’t selected during training the

model, its cell contains False.
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LinearRegression False False False 0.78 False -0.40 False False

Ridge 0.10 0.10 0.10 0.10 0.14 False 0.06 0.15

Lasso False 0.11 False False 0.28 False False 0.23

LassoLars False 0.11 False False 0.28 False False 0.23

ElasticNet False 0.12 False False 0.27 False False 0.22

LinearSVR False False False 0.75 False -0.40 False False

RandomForestRegressor 0.01 0.19 0.07 0.24 0.36 0.01 False 0.11

Table 2.6: Tilt maze – RFECV coefficients

The highest value in each row is marked bold. As you can see, features reachable

tile count, reachable states count log, shortest path tiles log and scc count log are chosen

by at least half of the models. We may say, these are the most important ones. On

the other hand, features width, scc checkpoint count and shortest path log are chosen

by two or only one model. We assume, these do not impact the difficulty very much.
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2.3.3.4 Conclusion

We conclude that the difficulty of Tilt maze levels depends on given syntactic at-

tributes. The most impact has shortest path tiles features, followed by reachable tile

count, reachable states count log and scc count log.

Using these attributes, we are able to explain 69% of data variance. Since we had

a rather small number of levels, it would be worth to get more data. Since we now

know which features impact difficulty the most, it would be worth to generate levels

where these features are fixed, but other things vary. This could help us to find new

attributes effecting the difficulty.

2.4 Sokoban

The second game we study is Sokoban. Rules can be found in section 1.2.1. In this

part we describe the collection of the data, extraction of all features and finally the

experiments and their results.

The Data collection and Experiments and results sections are divided into two parts:

Czech and Russian dataset. We use the same algorithms and the same features for both

datasets, which are described in subsection Feature engineering.

2.4.1 Data collection

Before we can create features and train models, we need to get the output variable

– average logarithmic solving time and the representation of all levels.

2.4.1.1 Czech data

We have the data table – relation between users and levels, where every cell corre-

sponds to seconds the user took to solve a level (or empty, if not solved). The table

looks the same as in the section about Tilt maze 2.3.1.1. In table 2.7 we can observe

the summary for the Sokoban game.

Levels

For scraping all levels from the website, we use Python [16] programming language,

specifically library Selenium [28] and its module webdriver.
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#users 5081

#levels 81

avg #users per level 415

avg #levels per user 7

total time 60 days 23 hours

Table 2.7: Summary information about collected data

Every level lives on its own unique URL, with only one javascript variable rows.

This variable represents a game board. It consist of characters:

• ␣ – a space, if a cell is empty

• # – a wall

• @, + – the man on and empty cell or on a target cell

• $, * – a box on an empty cell or on a target cell

• ., *, + – a target cell with nothing, a box or the man standing on it

From this two-dimensional character array, we construct variables width, height,

isWall (2D bool array), boxes (array of int pairs), targets (array of int pairs),

man_row, man_col, which we save as json to one file per level.

We use the same structure of saved files in the Russian dataset, which gives us the

ability to handle them in the same way.

2.4.1.2 Russian data

Scraping data from Russian Sokoban website is a bit trickier, since it is only one

PHP site. But using asynchronous javascript calls, we are able to get information

and navigate through various levels.

One javascript execution for variable this.levelList give us all level IDs. With

execution of: this.controller.requestGame(level_id); we can navigate through

all instances.

When on level page, we can retrieve the grid where every cell is a dictionary. From

the values, we can detect whether it is a wall or an empty cell; whether there is a box

or not; whether there is a man or not; whether it is a target cell. We process it to a

dictionary, which is later saved as json to a text file. The structure is the same as in
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the previous section.

The total number of levels is 3525. However, since one of the features is number

of states in the state space, some of the levels were too large to have the state space

constructed and held in 16GB RAM of the computer. Discarding all large levels get

us to final number of 762 levels, which is still almost ten times more than the Czech

dataset.

In this case, we weren’t able to contact the owners of the website, so we don’t have

full data about all users. However, we have access to last five hundred plays of every

user. We get the data for every player from the rating table who had at least three

plays, totaling in almost 13000 users. However, since we filter out most of the levels,

there is only 1584 users that played at least one of the chosen level instances. In the

table 2.8 we can see the final summary of the data.

#users 1584

#levels 762

avg #users per level 55

avg #levels per user 26

total time 76 days 12 hours

Table 2.8: Summary information about collected data

2.4.2 Feature engineering

In this section, we talk about every feature created for predicting the average log

time. The basic features, extracted directly from a level, are box_count, tile_count,

width and height.

For creation of other features, we always need to run an algorithm on a state graph.

Because of that, we create the state graph only once and save it to a file.

For graph creation and all algorithms we use C++ library called Boost [3].

2.4.2.1 State graph

The state graph is defined using the definition 1.4, where nodes are positions. When

creating the state graph of a specific instance, we can consider every node (state) to
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be a pair:

[man_position, boxes_positions]

We don’t have to include information about walls or targets, because they don’t

change locations during playtime. There exists a simple homomorphism from these

states to a positions satisfying the definition 1.2.

We represent the man position as an integer pair and positions of the boxes as a

set of integer pairs. Set is more suitable than list, because it doesn’t impose arbitrary

order on the boxes.

There are at most four edges from every vertex v, because the man can move in

four directions. However, sometimes he may immediately hit an obstacle. When the

man moves in one direction, there are five possible cases:

• man moves to an empty cell;

• man tries to walk into a wall;

• man pushes the box into empty cell in the same direction, and takes its place;

• man tries to push a box into a wall;

• man tries to push a box into another box.

Only in two cases the state actually changes.

Furthermore, there are no outgoing edges from winning state, since the game ends

there.

2.4.2.2 Graph creation

During the graph creation, we traverse the state space and produce new ver-

tices. Every vertex gets new ID and a few other fields: starting, winning, h,

min_pushes. First two are bool indicators, whether the state corresponding to this

vertex is starting/winning. The h field is an integer, which is a value of heuristic func-

tion in this vertex. We talk about the heuristic function more in the section 2.4.2.7

about A*. The last integer field min_pushes is discussed in the section 2.4.2.6.

Furthermore, we save one information about every edge, called pushed, which is

true for every edge (u, v), where the boxes positions in v are different from positions

in u. This field is used during computation of shortest_boxes_path in 2.4.2.5.

In the interest of saving space, nodes do not remember which states they represent.

Almost none of the algorithms need to know anything about the man position or boxes
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positions. Everything needed is included in the vertex fields. However, if necessary,

the mapping between the states and vertices is saved to a specific file using boost

bidirectional map – bimap.

2.4.2.3 Features: shortest_path and reachable_states_count

Natural choice for first features is shortest_path and reachable_states_count.

We expect that level is more difficult, if the shortest solution is long. The same goes

for the number of reachable states, if there is a lot of states – it would take more time

to find the right solution.

Reachable states count can be extracted directly from the state graph, which is

loaded from a file created during graph creation phase. Reachable states count corre-

sponds to the number of vertices.

Shortest path is computed via basic breadth-first search algorithm.

2.4.2.4 Features: viable_states_count and good_boxes_tiles

Level is simple, if no matter what we do, we can still win it. On the other hand,

level is hard when every wrong step takes us to a dead state ( the game is lost ). The

number of dead states is difference between reachable states and viable states. We

believe that more viable states means level is more difficult.

We count viable states with BFS run on the transposed graph. Since boost library

support only BFS with one starting point, we create artificial vertex which has incoming

edges from all winning vertices. After the run, the count of visited vertices is giving us

the number of viable states.

The trick with transposing the graph is also used when counting good boxes tiles.

The tile is defined as good for a box, if there exists a viable state in which some box

is positioned at this tile. Some cells are often bad – e.g. in corners, along walls. If

the instance has small number of good tiles, the player must move boxes carefully. We

assume that small good_boxes_tiles means level is more difficult.

On image 2.8, you can see good tiles marked as blue shaded squares.

After getting all viable vertices, we load the mapping of vertices to states. With

one pass over viable states, we add all boxes positions to a set of good boxes tiles.
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Figure 2.8: Good tiles

2.4.2.5 Feature: shortest_boxes_path

Other interesting feature is the length of solution using the smallest number of box

pushes. E.g. on Russian Sokoban website, it’s possible to control the man using mouse.

We can even click to a cell, and if it’s possible he will go there. So this feature should

correlate with solution time3.

Edge of the state graph can be annotated with zero or one – if one of the boxes

moved or not. We get a graph, in which we want to find the shortest path based on

the edge weight. In this case, we use Dijkstra algorithm [13], for finding the shortest

path.

2.4.2.6 Feature: counter_intuitive_steps

In Sokoban, the move may be considered counter-intuitive, if it gets a box further

from target cells. Humans while playing, wants to get boxes closer, not further from the

target cells. Hence, we compute at least how many counter-intuitive moves you have

to do along any shortest path. Formally, in every state we compute value min_pushes:

min_pushes =
∑
i

min
j

dis(bi, tj)

where b is a vector of boxes positions and t is a vector of target cells positions. This

value is saved in every vertex during graph creation.
3However, we don’t know how many users know about this feature and use it.
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In practice, before creating the graph, we run BFS several times, once from every

target cell, to get the shortest distance from each target cell to all other cells. We can

use this information directly when creating new state to find the nearest target cell for

every box and sum over it.

Every move – every edge from a vertex u to a vertex v in the graph – is considered

counter-intuitive, if the difference min_pushes(v) − min_pushes(u) is greater than

zero.

To compute the minimal number of counter-intuitive moves, we need to create a

graph, where every edge lies on some shortest path. We start by running BFS algorithm

and computing distance from starting to all vertices. After that, we identify the length

L of the shortest path.

We create a set of vertices on the shortest paths, starting with the winning vertices

with distance L. Than we run a special search from this winning states to other states,

but for vertex v only considering neighbours u, where dis(u) + 1 = dis(v) stands – so

the vertex u is closer to the start.

After that, we create a graph G′ using filtered_graph, where we specify to only

use vertices from the created set. We construct weight map which assign all edges 0 or

1 – based on positiveness of min_pushes difference.

Finally, one run of Dijkstra algorithm on G′ will compute the shortest distance to

winning states – giving us the minimal number of counter-intuitive steps along any

shortest path.

2.4.2.7 Feature: astar_states_count

A* [18] is a heuristic search on a weighted directed graph guided by a heuristic

function h. Intuitively, A* follows paths to the goal that are estimated by the heuristic

function to be the best paths. The heuristic should be a lower-bound of real distance

from each node to the goal.

In our case, the goal is every state, where all boxes are positioned on target cells.

As a heuristic function we use a minimal number of pushes needed to get all boxes to

target cells:

h(b) = min
b′∈S(b)

∑
i

dis(b′i, ti)

where S(b) is a set of all permutations of vector b.
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Vector b is a vector of all boxes positions and vector t is a vector of all targets

positions. The dis function is computed using simple BFS search from each target cell

to all other cells – computing minimum number of pushes to get a box from each cell

to the specific target cell.

Since we find the minimum through all permutations of boxes, we find the matching

which needs minimum number of pushes. The value of h function is computed during

graph creation and saved inside each vertex.

During the A* search, we compute how many vertices where visited. We believe,

that humans do something similar to A* search, so the higher number of visited nodes

means level is more difficult.

2.4.2.8 Features: scc_count and scc_shortest

The next interesting feature is a number of strongly connected components. Level

with one component (except the one for the winning component) is easy, we can never

do any wrong move. These two features are similar to first two features shortest_path

and reachable_states_count, only on graph of strongly connected components.

First, we run Tarjan’s algorithm [35] to find the components. After that we create

the graph, where every vertex corresponds to one strongly connected component. Every

winning vertex will have its own component, since there are no outgoing edges. The

component containing starting vertex is marked starting as well. On this graph we

run simple BFS algorithm, to get the shortest path – feature scc_shortest. The

scc_count feature is simply the number of vertices in this graph.

2.4.2.9 Feature: reachable_tile_count

The last feature is number of reachable tiles. Every floor cell may be reachable,

if there exists a state in which the man stands on this tile. We believe that more

reachable tiles means easier level, because the man isn’t restricted by the space and

can easily maneuver the boxes.

This feature is computed with the same algorithm used in the graph creation. We

traverse the state graph without explicitly creating the edges, and create a set of all

tiles on which the man ever stood.
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2.4.2.10 Technical details

Computing the features was also a technical challenge. We started by implement-

ing everything in Python. At the beginning, we only traversed the state space once,

computing shortest path, reachable states count and reachable tiles count.

Russian dataset brought a lot of problems, because running Python on eight hun-

dred levels wasn’t fast enough. We switched to C++ and started computing each feature

with different file – giving us the possibility to rerun only one feature. Since every fea-

ture is based on a state graph, we decided to use boost to create these graphs and save

them.

At first, we saved files in readable .dot format, which was over 2GB for the largest

instances. Using boost archive, we could get the space used down to 50%, and at the

same time we sped up the writing and reading of graphs.

2.4.3 Experiments and results

In this section we talk about the experiments and their results. This section is

divided into three parts: Czech dataset, Russian dataset and conclusion.

2.4.3.1 Czech dataset

We first adjust the set of features, then run Grid search and RFECV from the

section 2.2.3.

Final set of features

A lot of machine learning models expect that features are drawn from the normal

distribution. Because of that, we plot histograms for all features (appendix A.2) – all

a) images from A.11a to A.24a. The b) parts are logarithmic versions of all features

(images from A.11b to A.24b).

Because not all features are normal, we try to apply log function on them, which is

often used to normalize data. We also test each feature and its log version for normality

using Kolmogorov-Smirnov test. The p-value is a part of every caption, when the value

is larger than 0.05 we consider the feature to be normal.

One example is shown on image 2.9, where the original feature isn’t considered

normal, but the log-transformed one is.
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(a) Original (p-value: 1.513e-10) (b) Log (p-value: 0.738)

Figure 2.9: Viable States Count

In the end, we apply log function to features: tile_count, astar_states_count,

scc_shortest, scc_count, viable_states_count, counter_intuitive_steps and

reachable_states_count. Thus, we only use the log of these features and remove the

original. Some of the other features do not have normal distribution, but neither their

log versions, so we just use the original features.

Furthermore, we actually remove reachable_states_count and scc_count fea-

tures, because they both highly correlate with the feature astar_states_count_ (we

use Spearman’s correlation coefficient), which would skew the coefficients.

The final set of features is: box_count, width, height, reachable_tile_count,

shortest_path, shortest_boxes_path, tile_count_log, astar_states_count_log,

viable_states_count_log, counter_intuitive_steps_log, scc_shortest_log and

good_boxes_tiles. We expect that level is easier, if we increase number of good boxes

tiles or reachable tiles, but harder if we increase any other feature.

Grid search

Grid Search finds the best parameters for a model (description in 2.2.3). The best

parameters, train and test score for all models is shown in the table 2.9.



CHAPTER 2. PREDICTING AVERAGE LOG SOLUTION TIME 44

Model Parameters Train score Test score

LinearRegression 0.8149 0.7293

Ridge alpha: 1.33 0.8047 0.7164

Lasso alpha: 0.01 0.8056 0.7154

LassoLars alpha: 0.01 0.8056 0.7154

ElasticNet alpha: 0.01 0.8037 0.7149

LinearSVR C: 0.52 0.7768 0.6815

RandomForestRegressor n_estimators: 15.00 0.8146 0.6039

Table 2.9: CZ Sokoban – GridSearch parameters and scores

LinearRegression has the best train and test score. The test score 0.7293 means

that the model can explain 73% of the data variance (description of score in 2.2.3.1).

The second best estimator (regarding train score), RandomForestRegressor has the

lowest test score, probably because of overfitting.

Now, let’s look on coefficients of individual features, which are shown in the table

2.10. We note that in first six models, the table contains coef_ field, however, the last

row is feature_importances_ field4.
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LinearRegression 0.23 -0.19 -0.15 -0.61 0.64 -0.24 0.41 -0.34 0.11 0.21 -0.16 0.58

Ridge 0.25 0.04 0.05 -0.47 0.57 -0.15 0.21 -0.22 0.14 0.14 -0.15 0.19

Lasso 0.26 0.0 0.0 -0.53 0.61 -0.14 0.20 -0.15 0.12 0.10 -0.14 0.26

LassoLars 0.26 0.0 0.0 -0.53 0.61 -0.14 0.20 -0.15 0.12 0.10 -0.14 0.26

ElasticNet 0.26 0.0 0.0 -0.49 0.59 -0.13 0.18 -0.16 0.13 0.10 -0.14 0.25

LinearSVR 0.24 -0.06 0.01 -0.57 0.63 -0.15 0.40 -0.35 0.15 0.23 -0.21 0.27

RandomForestRegressor 0.01 0.01 0.03 0.03 0.77 0.04 0.01 0.01 0.03 0.01 0.04 0.01

Table 2.10: CZ Sokoban – GridSearch coefficients

The highest value in each row of the table 2.10 is marked bold. Clearly, the length of

shortest path has the highest impact on every model. It has the largest coefficient, even
4Values are from the range [0, 1], summing up to 1.
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when we look on absolute values. The second interesting feature is reachable tile count,

which has the lowest value for every model, except RandomForestregressor. The

lowest number in the random forest would mean that this feature is least important.

This means that longer the shortest path is, the harder a level is. On the other

hand, more reachable tiles means easier level, probably because the man has more

space for moving and maneuvering boxes.

RFECV

Train and test scores for all models after RFECV are shown in the table 2.11.

Model Train score Test score

LinearRegression 0.81 0.6827

Ridge 0.74 0.6304

Lasso 0.74 0.6317

LassoLars 0.74 0.6317

ElasticNet 0.74 0.6318

LinearSVR 0.74 0.7261

RandomForestRegressor 0.79 0.6370

Table 2.11: CZ Sokoban – RFECV scores

We show features selected by RFECV in the table 2.12, where every cell is either

False, if feature wasn’t selected, or corresponds to the RFECV coefficient.
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LinearRegression 0.21 -0.25 -0.19 -0.7002 0.6410 -0.15 0.45 -0.37 False 0.27 -0.18 0.69

Ridge 0.33 False False -0.5954 0.5979 False False False False False False 0.33

Lasso 0.33 False False -0.6045 0.6037 False False False False False False 0.34

LassoLars 0.33 False False -0.6046 0.6036 False False False False False False 0.34

ElasticNet 0.31 False False -0.5241 0.5829 False False False False False False 0.28

LinearSVR 0.37 False False -0.5484 0.7336 -0.37 0.23 -0.21 0.17 0.12 False 0.29

RandomForestRegressor False False False 0.0571 0.7433 0.06 False False 0.04 0.10 False False

Table 2.12: CZ Sokoban – RFECV coefficients
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As expected, two most important features: shortest path and reachable tile count

were chosen by every model. Two other features: box count and tile count were chosen

by six out of seven models, which means they probably impact the difficulty as well.

All other features were chosen by less than half of models.

However, if we look onto LinearSVR and LinearRegression models, they are the

only one choosing almost all features, but they also preserved high test score compared

to other models. This could mean that even though those four features are the most

important, they are not sufficient.

2.4.3.2 Russian dataset

We start by adjusting the dataset, then we run Grid search and RFECV described

in the section 2.2.3.

Final dataset

We couldn’t afford to remove outliers before, because of the small number of levels.

Now, for this dataset, we have 762 levels, so the part of preprocessing is removing

outliers.

An outlier is an observation that lies an abnormal distance from other values. We

remove outliers based on interquartile range – IQR. We indetify lower an upper fences:

lower = q1 − 1.5 · IQR upper = q3 + 1.5 · IQR

where q1 and q3 are the first and third quartiles and IQR = q3− q1. Every point lying

outside the fences is considered to be an outlier.

First, as we already mentioned twice before, machine learning models assume that

features are drawn from a normal distribution. Since not all our features are normal,

we transform all features using logarithmic function, which may help them to become

normal.

Histograms of all features and their log versions are in appendix A.3, images A.25 –

A.38. We note that data on figures in only from the training set. Moreover, we remove

the outliers, because they skew the information about normality. The p-value under

all figures is from Kolmogorov-Smirnov test and if its value is larger than 0.05, the

feature is normal.
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Features which we apply log to are: shortest_boxes_path, shortest_path and

viable_states_count. All others are used in their original form.

However, because some groups of features are highly correlated (regarding Spear-

man’s correlation coefficient), we remove some of the features. For example scc_count

and reachable_states_count, because they correlate with astar_states_count; fea-

ture tile_count correlates with reachable_tile_count and viable_states_count

with good_boxes_tiles.

So the final set of features is: box_count, width, height, astar_states_count,

scc_shortest, reachable_tile_count, shortest_boxes_path, shortest_path_log,

good_boxes_tiles and counter_intuitive_steps_log, We expect that level is eas-

ier, if we increase number of good_boxes_tiles or reachable_tiles, but harder if

we increase any other feature.

As we mentioned, we remove outliers from dataset. This means that final training

set has 442 levels and final test set has 106 levels.

Grid search

First experiment is running Grid search, which is described in the section 2.2.3. It

find the best parameters for every model. You can see the output in the table 2.13,

including train and test scores.

Model Parameters Train score Test score

LinearRegression 0.594123 0.5074

Ridge alpha: 0.001 0.594123 0.5074

Lasso alpha: 0.00133 0.593980 0.5095

LassoLars alpha: 0.00133 0.593982 0.5096

ElasticNet alpha: 0.001 0.594092 0.5086

LinearSVR C: 10.00 0.576651 0.4847

RandomForestRegressor n_estimators: 10.00 0.783464 0.3739

Table 2.13: RU Sokoban – GridSearch parameters and scores

The best estimator, with regard to train score, is RandomForestRegressor, however

it has the lowest test score. This models probably overfit, since random forests have

tendency to do it. All other models trained to almost identical train and test score.
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Let’s look onto individual coefficients in the table 2.14. We note that first six lines

contain coef_, however the last contains feature_importances_ field, which ranges

from zero to one and sums up to one.
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LinearRegression 0.42 -0.03 0.03 -0.15 -0.11 0.13 -0.01 -0.04 -0.06 0.55

Ridge 0.42 -0.03 0.03 -0.15 -0.11 0.13 -0.01 -0.04 -0.06 0.55

Lasso 0.41 -0.03 0.02 -0.13 -0.11 0.12 -0.01 -0.04 -0.04 0.53

LassoLars 0.41 -0.03 0.02 -0.13 -0.11 0.12 -0.01 -0.04 -0.04 0.53

ElasticNet 0.42 -0.03 0.02 -0.14 -0.11 0.13 -0.01 -0.04 -0.05 0.54

LinearSVR 0.43 0.11 0.04 -0.21 -0.13 0.12 0.01 -0.00 -0.14 0.56

RandomForestRegressor 0.05 0.03 0.02 0.04 0.04 0.03 0.42 0.04 0.06 0.27

Table 2.14: RU Sokoban – GridSearch coefficients

Clearly, the most important features are shortest path log and reachable tile count,

first with the highest, second with the lowest values (everywhere, except for random

forest, which has the worst test score). We believe that the longer the shortest solution

is, the harder the level is. On the other hand, more reachable tiles means easier level,

probably because the man isn’t limited when manipulating boxes.

RFECV

RFECV recursively eliminates features, until optimal number is reached(description

in 2.2.3). The test and train score is shown in the table 2.15.
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Model Train score Test score

LinearRegression 0.593120 0.5123

Ridge 0.593158 0.5007

Lasso 0.588178 0.5223

LassoLars 0.588177 0.5223

ElasticNet 0.584241 0.5239

LinearSVR 0.386366 0.2610

RandomForestRegressor 0.742122 0.3398

Table 2.15: RU Sokoban – RFECV scores

You can see that random forest still overfits and linear SVR has low train and test

score compared to other models. Let’s look onto chosen features in the table 2.16.
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LinearRegression 0.41 False 0.04 -0.20 -0.12 0.13 False False -0.09 0.56

Ridge 0.40 -0.04 False -0.14 -0.11 0.13 False False -0.08 0.55

Lasso 0.37 -0.04 False -0.09 -0.11 0.09 False False False 0.46

LassoLars 0.37 -0.04 False -0.09 -0.11 0.09 False False False 0.46

ElasticNet 0.35 -0.04 False -0.07 -0.09 0.09 False -0.00 False 0.44

LinearSVR 0.30 -0.02 False False -0.12 0.08 -0.09 -0.28 False 0.40

RandomForestRegressor 0.07 False False False False False 0.53 False 0.09 0.32

Table 2.16: RU Sokoban – RFECV coefficients

Every cell in the table 2.16 contains False if a feature was not chosen by a model,

otherwise contains corresponding coefficient.

Feature shortest path log has still the highest values and was chosen by all models.

Interesting are also features box count, width, scc shortest and counter intuitive steps,

which were chosen by almost all models. Moreover, the box count feature has the

second highest values, suggesting that it has important impact on the difficulty. Also

number of reachable tiles has still negative values, even though not always the lowest,

but it was chose by all models with score more than 0.5.
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2.4.3.3 Conclusion

We conclude that the difficulty of Sokoban levels depend on given syntactic at-

tributes. In case of Czech dataset, we are able explain 73% of data variance; in the

case of Russian dataset only 51% of data variation.

In both cases, features corresponding to the length of the shortest path and number

of reachable tiles are the most important. When eliminating features, box count was

chosen as an important feature in both cases as well.

In the future, it would be worth trying to get all data for Russian dataset, since

missing data could be responsible for low scores. Furthermore, we could optimize the

graph creation process, so it would be possible to compute features for larger levels,

thus expanding number of samples.

In case of Czech dataset we have access to all user data, including individual steps

user took to solve an instance. We could use this data for better state space analysis,

visualization of the state space, eventually better understanding of human solving and

creation of better features.



Conclusion

In our work, we studied how the structure of puzzle instances affects their difficulty,

both from the viewpoint of computational complexity and the challenge it provides to

human solvers. For our experiments, we chose puzzles Tilt maze and Sokoban, which

provide a suitable challenge while remaining computationally tractable. We begin

with formalizing these puzzles as decision problems and analyzing their computational

complexity.

In the core of this work, we devise syntactic attributes and implement their ex-

traction from level instances for the two chosen puzzles. We use these features to run

experiments for prediction of the solution time of human players, thus assessing what

makes these games difficult for humans. We are able to identify features which impact

the difficulty the most.

In the case of Tilt maze, we identified attributes shortest path tiles, reachable tile

count, reachable states count and scc count to be the most important – as their increase

can help predict the growth in difficulty. From the computational point of view, finding

solution of Tilt maze instances can be done in polynomial time with respect to the

number of tiles. This means that the attribute reachable states count doesn’t affect

computational complexity at all – we can add one checkpoint to the level, which would

almost double the number of reachable states, but doesn’t change number of tiles.

On the other hand, the number of strongly-connected components (scc count) in a

segment graph affects computational complexity, since the polynomial algorithm is

based on solving 2-SAT formula where every component gets one variable.

Number of reachable tiles in any instance corresponds to endpoints of segments,

which means this attribute also affects computational complexity (every segment is

a vertex in a segment graph). Contrarily, computational complexity doesn’t directly

depend on the feature shortest path tiles. We can create levels with millions of tiles

51
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where the shortest path will only need one step to the right, or levels where the solution

needs to visit all tiles at least once or some even twice. So the number of tiles on shortest

path only gives us a lower bound of reachable tiles.

Sokoban game is NP-hard, more precisely it belongs to PSPACE-complete prob-

lems. Adding just one tile to a level instance may exponentially increase the difficulty

for a computer. We identified three features which most affect complexity for human

solvers: length of the shortest path, reachable tile count and box count. First of these

features doesn’t directly impact computational complexity. We can create a level with

wide state space, but short solution or state space containing only one long solution

path. So it only gives us a lower bound on states. The second feature reachable tile

count is interesting. If a level contains a lot of reachable tiles, it’s easier for a human

than a level containing only a small number of reachable tiles. However, if we increase

the number of reachable tiles, computer complexity increases.

When we look onto the third feature box count we find that the difficulty for both

humans and computers grows as value of this feature increases. We can fix a level

instance and just add one box, the number of states will grow exponentially, making

it a lot harder for computers to find the solution.

When predicting the solution time of Sokoban, we couldn’t get a better score (coef-

ficient of determination) than 0.73. Hence, there is still a lot of space for improvement.

There are two possible explanations, first, people solve this game in a fundamentally

different way and we were not successful in capturing the essential attributes; alterna-

tively, there may be other factors affecting the difficulty which we have yet to identify.

There are many directions for future research. We could find new well-defined

problems, particularly other “move” puzzles and apply the same approach. We may

design new attributes which would better explain the difficulty. Also, differences among

individual solvers could be studied.
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Appendix A

Feature histograms

A.1 Tilt Maze

(a) Original (p-value: 0.010) (b) Log (p-value: 1.818e-06)

Figure A.1: Tilt Maze Feature – Checkpoint Count

(a) Original (p-value: 0.003) (b) Log (p-value: 0.001)

Figure A.2: Tilt Maze Feature – Tile Count
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(a) Original (p-value: 0.009) (b) Log (p-value: 0.001)

Figure A.3: Tilt Maze Feature – Width

(a) Original (p-value: 0.290) (b) Log (p-value: 0.207)

Figure A.4: Tilt Maze Feature – Reachable Tile Count

(a) Original (p-value: 3.217e-04) (b) Log (p-value: 0.561)

Figure A.5: Tilt Maze Feature – SCC Count
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(a) Original (p-value: 0.002) (b) Log (p-value: 0.010)

Figure A.6: Tilt Maze Feature – SCC Checkpoint Count

(a) Original (p-value: 0.012) (b) Log (p-value: 0.556)

Figure A.7: Tilt Maze Feature – Shortest Path

(a) Original (p-value: 8.882e-16) (b) Log (p-value: 0.229)

Figure A.8: Tilt Maze Feature – Reachable States Count
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(a) Original (p-value: 0.000e+00) (b) Log (p-value: 0.051)

Figure A.9: Tilt Maze Feature – Viable States Count

(a) Original (p-value: 0.214) (b) Log (p-value: 0.570)

Figure A.10: Tilt Maze Feature – Shortest Path Tiles
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A.2 Sokoban - Czech dataset

(a) Original (p-value: 3.814e-04) (b) Log (p-value: 6.642e-05)

Figure A.11: CZ Sokoban Feature – Box Count

(a) Original (p-value: 0.030) (b) Log (p-value: 0.247)

Figure A.12: CZ Sokoban Feature – Tile Count

(a) Original (p-value: 0.002) (b) Log (p-value: 0.011)

Figure A.13: CZ Sokoban Feature – Width
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(a) Original (p-value: 0.006) (b) Log (p-value: 0.033)

Figure A.14: CZ Sokoban Feature – Height

(a) Original (p-value: 0.319) (b) Log (p-value: 0.832)

Figure A.15: CZ Sokoban Feature – Reachable Tile Count

(a) Original (p-value: 0.276) (b) Log (p-value: 0.299)

Figure A.16: CZ Sokoban Feature – Shortest Path
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(a) Original (p-value: 1.120e-09) (b) Log (p-value: 0.853)

Figure A.17: CZ Sokoban Feature – Reachable States Count

(a) Original (p-value: 0.064) (b) Log (p-value: 0.793)

Figure A.18: CZ Sokoban Feature – Shortest Boxes Path

(a) Original (p-value: 0.093) (b) Log (p-value: 0.558)

Figure A.19: CZ Sokoban Feature – Good Boxes Tiles
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(a) Original (p-value: 1.513e-10) (b) Log (p-value: 0.738)

Figure A.20: CZ Sokoban Feature – Viable States Count

(a) Original (p-value: 7.067e-09) (b) Log (p-value: 0.780)

Figure A.21: CZ Sokoban Feature – SCC Count

(a) Original (p-value: 1.880e-04) (b) Log (p-value: 0.068)

Figure A.22: CZ Sokoban Feature – SCC Shortest
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(a) Original (p-value: 0.002) (b) Log (p-value: 0.307)

Figure A.23: CZ Sokoban Feature – Counter Intuitive Steps

(a) Original (p-value: 6.351e-09) (b) Log (p-value: 0.709)

Figure A.24: CZ Sokoban Feature – A* States Count
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A.3 Sokoban – Russian dataset

(a) Original (p-value: 6.146e-13) (b) Log (p-value: 0.000e+00)

Figure A.25: RU Sokoban Feature – Box Count

(a) Original (p-value: 1.352e-10) (b) Log (p-value: 8.875e-06)

Figure A.26: RU Sokoban Feature – Tile Count

(a) Original (p-value: 1.199e-14) (b) Log (p-value: 7.437e-11)

Figure A.27: RU Sokoban Feature – Width



APPENDIX A. FEATURE HISTOGRAMS 67

(a) Original (p-value: 2.220e-16) (b) Log (p-value: 1.279e-13)

Figure A.28: RU Sokoban Feature – Height

(a) Original (p-value: 0.004) (b) Log (p-value: 0.003)

Figure A.29: RU Sokoban Feature – Reachable Tile Count

(a) Original (p-value: 1.154e-04) (b) Log (p-value: 0.316)

Figure A.30: RU Sokoban Feature – Shortest Path
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(a) Original (p-value: 0.000e+00) (b) Log (p-value: 0.001)

Figure A.31: RU Sokoban Feature – Reachable States Count

(a) Original (p-value: 0.000e+00) (b) Log (p-value: 0.424)

Figure A.32: RU Sokoban Feature – Viable States Count

(a) Original (p-value: 3.291e-04) (b) Log (p-value: 0.169)

Figure A.33: RU Sokoban Feature – Shortest Boxes Path
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(a) Original (p-value: 0.000e+00) (b) Log (p-value: 0.001)

Figure A.34: RU Sokoban Feature – SCC Count

(a) Original (p-value: 1.051e-08) (b) Log (p-value: 3.749e-04)

Figure A.35: RU Sokoban Feature – SCC Shortest

(a) Original (p-value: 1.400e-09) (b) Log (p-value: 3.688e-04)

Figure A.36: RU Sokoban Feature – Counter Intuitive Steps
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(a) Original (p-value: 0.000e+00) (b) Log (p-value: 0.014)

Figure A.37: RU Sokoban Feature – A* States Count

(a) Original (p-value: 0.004) (b) Log (p-value: 3.721e-04)

Figure A.38: RU Sokoban Feature – Good Boxes Tiles



Appendix B

Source code

Source code for the diploma thesis, README file for instructions and all data are

located on GitHub page (http://github.com/Arasid/DiplomaThesisCode) and on

the attached CD.
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http://github.com/Arasid/DiplomaThesisCode
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