
Comenius university in Bratislava

Faculty of Mathematics, Physics and Informatics

Prediction of Properties of
Polymorphic Genomes from Sequencing Data

diploma thesis

2018

Bc. Werner Krampl



Comenius university in Bratislava

Faculty of Mathematics, Physics and Informatics

Prediction of Properties of
Polymorphic Genomes from Sequencing Data

diploma thesis

Study programme: Computer science

Study field: Informatics

Study department: Department of Computer Science

Supervisor: doc. Mgr. Bronislava Brejová, PhD.

Bratislava, 2018

Bc. Werner Krampl



31840380

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Werner Krampl
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Prediction of Properties of Polymorphic Genomes from Sequencing Data
Predikcia vlastností polymorfných genómov zo sekvenačných dát

Anotácia: Moderné prístupy k sekvenovaniu DNA produkujú veľké množstvo krátkych
reťazcov pochádzajúcich z cieľového genómu. Cieľom práce je rozšíriť
existujúce metódy na odhad veľkosti cieľového genómu z takýchto
sekvenačných dát. Tieto metódy sú založené na počítaní výskytov podreťazcov
dĺžky K v sekvenačných dátach a na pravdepodobnostných modeloch
odhadujúcich očakávané počty týchto výskytov. Cieľom práce je rozširovať
použité modely, aby brali do úvahy ďalšie črty reálnych dát, najmä
polymorfizmus, kde sa dve rôzne formy tej istej oblasti genómu nachádzajú
v jednom jedincovi (jedna forma zdedená od matky, druhá od otca).

Vedúci: doc. Mgr. Bronislava Brejová, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 18.11.2015

Dátum schválenia: 16.12.2015 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce



31840380

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT 

Name and Surname: Bc. Werner Krampl
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science, Informatics
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Prediction of Properties of Polymorphic Genomes from Sequencing Data

Annotation: Current DNA sequencing technologies can produce large numbers of short
strings originating from the genome of interest. The goal of the thesis is to
extend existing methods for estimating the size of the target genome from
such sequencing data. These approaches are based on counting occurrences
of substrings of length K in sequencing data and on probabilistic models
estimating expected occurrence counts. The goal of the thesis is to extend
the current models to consider additional features of real data, particularly
polymorphisms, where two different forms of a certain genomic region occur
in a single individual (one form inherited from the father, one from the mother).

Supervisor: doc. Mgr. Bronislava Brejová, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 18.11.2015

Approved: 16.12.2015 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor



I hereby declare that I wrote this thesis by myself, only with the help of the referenced

literature, under the careful supervision of my thesis supervisor.

Werner Krampl



Acknowledgment:

I would like to thank my supervisor, Broňa Brejová, for her infinite patience, her pro-

fessional guidance, her detailed explanations, her friendly support and all the things I

learned from her.

I would like to thank my brother, my mother, my father, my grandma and all my friends

for their love and great support during my studies.

I would like to thank my colleagues at room M25 for the creation of unrepeatable atmo-

sphere during the last days of writing this thesis.

Last, but not least, I would like to thank Katka for her love and support, when it was

most needed.



Abstrakt

Krampl, Werner: Predikcia vlastností polymorfných genómov zo sekvenačných dát.

Diplomová práca. Univerzita Komenského v Bratislave; Fakulta matematiky, fyziky a

informatiky; Katedra informatiky. Bratislava (2018). 71 strán. Školiteľ: doc. Mgr. Bro-

nislava Brejová, PhD.

Táto diplomová práca sa zaoberá odhadovaním vlastností sekvenačných dát genómu

ako veľkosť genómu, hĺbka pokrytia sekvenačnými dátami či chybovosť týchto dát. Kým

štandardné postupy spracovania sekvenačných dát majú pre väčšie genómy vysoké poži-

adavky na výpočtové zdroje, techniky optimalizácie parametrov pravdepodobnostných

modelov sa dajú použiť na získanie odhadu vlastností genómu v oveľa kratšom čase. Ana-

lyzujeme sekvenačné dáta z polymorfných organizmov a ich vplyv na už existujúce modely.

Následne vytvárame nové predikčné modely, ktoré explicitne uvažujú dáta z diploidných

organizmov, testujeme tieto modely na rôznych dátach a vyhodnocujeme ich výsledky.

Ďalej sme identifikovali problém v už zverejnenom modeli, a navrhli sme riešenie.

Kľúčové slová: bioinformatika, odhad vlastností genómu, optimalizácia parametrov,

sekvenačné dáta



Abstract (English)

Krampl, Werner: Prediction of Properties of Polymorphic Genomes from Sequenc-

ing Data. Diploma thesis. Comenius University in Bratislava; Faculty of Mathematics,

Physics and Informatics; Department of Computer Science. Bratislava (2018). 71 pages.

Supervisor: doc. Mgr. Bronislava Brejová, PhD.

This diploma thesis focuses on estimations of attributes from genome sequencing data

such as genome size, depth of coverage by sequencing data or error rate of this data. As

standard procedures of sequencing data processing have high demands on computational

resources for larger genomes, parameters optimization of prediction models techniques can

be used to obtain estimations of genome attributes in a much shorter time. We analyse

sequencing data from polymorphic organisms and their influence on existing prediction

models. We then create new prediction models that explicitly consider the existence of

diploid organisms, we test them on various datasets and evaluate their results. Further-

more, we have identified one problem in an already published model and suggest a solution.

Keywords: bioinformatics, genome attributes estimation, parameter optimization,

sequencing data
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Introduction

Development of genome sequencing techniques allowed researchers to study genomes of a

wide spectrum of organisms - from microscopic bacterias to largest mammals. However,

genome sequencing process creates a huge amount of data that needs to be efficiently

processed. Beside standard techniques of sequecing data processing such as assembly and

alignment, that have high resource complexity, emerges a different approach to estimate

attributes of genomes - optimization of parameters of probabilistic models.

Such parameter optimization returns estimates of several attributes such as genome length

or number of errors in sequencing data at a much higher speed than the standard methods.

One of the main uses is for planning sequencing experiments, when parameter optimization

is used on preliminary data that are not sufficient for genome assembly. Furthermore,

it can be used in specific cases, when standard techniques are infeasible due to high

computational demands such as obtaining information on genome attributes from a larger

genome or larger population of organisms.

There are already several tools for genome parameter optimization, however they have

their conditions on the data they can process. One of the least studied areas of genome

parameter optimization are models that consider data originating in diploid organisms -

organisms, that have two highly similar copies of each chromosome. In this work, we are

focusing on estimation from diploid data first by studying its influence on the existing

prediction models, and then we create new models that estimate attributes of diploid

organisms.

We introduce necessary biological background in the first chapter of this thesis, then we

explain problems connected with genome assembly. We mention several existing tools and

models, their usage and their limitations and at the end of the chapter, we propose our

1
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areas of research.

In the second chapter, we begin with a more detailed explanation of an existing model upon

which we are building our first model. We subsequently explain the optimization process

in a tool named CovEst, that we are expanding with our work. We then analyze how the

existence of diploid genomes affect estimations of models not incorporating diploid data.

Later, we create a new model that considers existence of heterozygous positions under

the condition that there are no repeating sequences in the genome. At the end of this

chapter, we evaluate the results of this model together with other already existing models

on simulated data.

In the third chapter, we have expanded an existing model from CovEst to conduct an

experiment to see whether more parameters will affect the estimation of attributes by this

model. We further notice an inconsistency in claims about results by original authors of

this model and our observations. We state a hypothesis explaining the difference in our

results and their claims and experimentally confirm it, making their statements invalid.

We further suggest a system of equations to estimate values that original authors desired

and test it.

In the last chapter, we expand the considered genomes to diploid genomes containing

repeating sequences. We start by experimenting with existing model from CovEst on

simulated sequencing data corresponding to a real genome. Subsequently, we create a

model that, under a strict assumption, estimates values for a diploid genome and evaluate

it on simulated genomes. Next, we suggest a new model with strong biological basis. In

the end, we evaluate the results of several models on real sequencing data.



Chapter 1

Biological background and problem

statement

In this chapter we will introduce our research problem from both biological and computa-

tional points of view. We will define terminology used throughout our work, explain steps

of genome sequencing and, at the end of the chapter, we will describe aim of our work.

1.1 Biological background

Genomics as a science studies genetic information of organisms. Genome sequencing tech-

niques and bioinformatic algorithms are needed to study genetic information.

Genetic information is stored in every cell of an organism, where it is formed by two

strands of deoxyribonucleic acid (DNA).[4] These strands are composed of nitrogen-

containing nucleobases (adenine - A, cytosine - C, guanine - G, thymine - T) encoding

genetic information and from deoxyribose sugar and phosphate group.

Two strands further connect via hydrogen bonds (weak chemical bonds) into a double

helix.

Different orders of nucleobases (A, C, G, T) are sources of variability of species. [4] Figure

1.1 depicts structure and composition of DNA.

DNA is organised in structures called chromosomes. Chromosomes are part of cell

nucleus and in eukaryotic organisms (which include all animals and plants), shorter chro-

3



CHAPTER 1. BIOLOGICAL BACKGROUND AND PROBLEM STATEMENT 4

Figure 1.1: Double helix DNA and nucleotides. Source: wikipedia.org

mosomes are also stored in cell organelles. [4]

Every biological specie has its characteristic chromosomal constitution, called karyotype.[4]

For example, human karyotype consists of 46 chromosomes, from which 22 has its copy

(22 chromosomes is present two times) called autosomes and the remaining two ale called

allosomes (sex chromosomes, either two X chromosomes representing woman or X and Y

chromosomes representing male).[4]

Figure 1.2 depicts human male karyotype.

Term genome represents Complete genetic information of a given organism, including

genes and non-coding sequences.[5]

Now we will define aforementioned terms computationally.

Definition 1.1.1 Base alphabet is alphabet ΣD = {A,C, T,G}. Symbols of ΣD alpha-

bet are called bases.

Definition 1.1.2 Chromosome is a finite, non-empty string over ΣD.

Definition 1.1.3 Genome is a finite, non-empty language of chromosomes.
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Figure 1.2: A human male karyotype. Source: wikipedia.org

Definition 1.1.4 Genome size is a sum of lengths of all genome chromosomes.

A million bases long string from ΣD is called a megabase. For example, the human

genome has length approximately three thousand megabases.[6]

As we have indicated, the karyotype of an organism may contain one or more copies

of the same chromosome. Number of copies is called ploidy, an organism is haploid if it

has one set of chromosomes, diploid for two sets of chromosomes etc. For example, green

algae Chlamydomonas elegans is a haploid organism[7] and aforementioned human is a

diploid organism. Term haploid also denotes one complete set of chromosomes in a diploid

organism. Example given, human has 46 chromosomes, so haploid set is 23 chromosomes.

Closely related to the term diploid is term heterozygosity. In most diploid organisms,

a chromosome and its diploid copy are not identical, they contain positions with different

bases in the two copies.[6] These positions are called heterozygous positions and they

account (although not exclusively) for inherited variations between individuals of the same

species. They can cause a disease or a trait (for example, people with a certain heterozy-

gosity have a higher incidence of hypertension [8]). Figure 1.3 demonstrates heterozygosity

in one position. Note that genome size is the size of only haploid set of chromosomes.

Genome also may contain repeated sequences or repeats - strings of bases that occur

multiple times in the genome. Human genome consist of ca. 50% of repeats. For example,
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Figure 1.3: Example of a heterozygosity in one position in a diploid genome.

a 300 bases long repeat called Alu makes up for 11% of human genome size with over

million copies. [5]

1.2 Introduction to sequencing

DNA sequencing is a process that analyses a given DNA molecule and yields its order of

bases. This procedure alone is a combination of biochemical processes and bioinformatic

algorithms [9].

History of DNA sequencing extends to 1970s, during which first experiments with

genetic information extraction were conducted. An important milestone was creation

of the so-called Sanger method by British biochemist Frederick Sanger. This method is

in an updated form used up to this day [10] and belongs to so-called First-Generation

Sequencing (abb. FGS). A common feature of FGS methods is that their usage to obtain

higher quantity of data is difficult[10].

Rapid development of DNA sequencing techniques began at the beginning of the nineties.

A variety of new methods and sequencing technologies has been since developed with

diverse properties, such as used resources, sequencing approaches and final cost of obtained

data. Comparison of several technologies can be seen in table 1.1.
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method read

length

accuracy reads per

run

time per

run

cost per

1 mil-

lion bases

(in US

dollars)

Chain ter-

mination

(Sanger

sequencing)

- FGS

400-900

bases

99.9% 9 000 20 minutes

to 3 hours

$2400

Pyrosequen-

cing (454) -

SGS

700 bases 99.9% 1 million 24 hours $10

Sequencing

by synthesis

(Illumina) -

SGS

70-500 bases 99.9% 1.2-1.4

billion

1 to 2 weeks $0.13

Nanopore

Sequencing

- TGS

up to 500

kilobases

95% dependent

on read

length

1 minute to

48 hours

$500-$999

Single-

molecule

real-time

sequencing

(Pacific

Biosciences)

- TGS

10 kilobases

up to >40

kilobases

87% 50 000 30 minutes

to 4 hours

$0.13-$0.60

Table 1.1: Comparison of several sequencing methods. Source: [1, 2]
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Figure 1.4: A genome and its reads. Genome sequence with red mark is not covered. One

read contains a sequencing error marked red.

Up to this point in time, there are two more generations of sequencing technologies

- Second-Generation Sequencing (abb. SGS) and Third-Generation Sequencing (abb.

TGS). SGS technologies are defined as technologies that massively increased through-

put by parallelising many biochemical reactions. TGS allows direct sequencing of single

DNA molecules.[9]

Prevalent feature shared by the majority of sequencing techniques is that they do not

read entire chromosome as a continuous string. Instead, they yield high amount of shorter

DNA sequences called reads (the length between 100-1000 in length for SGS).[10] Reads

are finite, non-empty substrings of chromosomes, however as we later explain, they might

not be identical to their source. Reads can overlap and ideally they cover the entire input

genome. Example of genome and its reads can be seen in figure 1.4.

New genome reads assembly is called de novo assembly.[10] We will describe de novo

assembly in the following subsection.

Second option of standard reads processing is called reads mapping. During mapping,

reads are not assembled together and, instead, they are aligned to a reference genome that

has already been created (either by assembly or mapping to yet another reference).[10]

Overview of sequencing process can be seen in figure 1.5.

Term coverage or depth of coverage denotes the number of reads that contain given
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Figure 1.5: Overview of sequencing process. Source: rayhuitech.com

genome position. Genome coverage is a mean of coverage of every base position the genome

contains. Note that the depth of coverage of individial positions in a genome may vary

with overrepresented regions and regions with no coverage at all. Example of uncovered

region in genome can be seen in figure 1.4.

Unfortunately, reads created by DNA sequencing are not error-free as sequencing methods

are yet to be flawless. This results in false bases in reads. Figure 1.4 includes a read

with a sequencing error, where base G was read as C. Sequencing errors in reads create

several complications as we describe in next subsections. Error rates of several sequencing

techniques can be seen in Table.1.1

Lastly, we will define term k-mer :

Definition 1.2.1 K-mer is a substring of length k of string.

Figure 1.6 shows read with 10 bases in size and all its k-mers for k = 5.

1.3 Genome assembly

As we have mentioned in the previous chapter, de novo assembly is a process during which

given set of overlapping reads are joined (assembled) together forming longer string called
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Figure 1.6: 10 bases long read and all its k-mers for k = 5.

contig.[6]

There are several important complicating factors that adds difficulty to de novo assembly

process [6]:

• Genome division to chromosomes,

• Genome of higher species might have heterozygous positions.

• Genomes of higher species contain repetitive sequences. During assembly it is difficult

to obtain actual number of repeats.

• Genome sequencers create erroneous reads that do not exist in genome further in-

fluencing coverage.

We can divide most assembly algorithms into two groups: Overlap-Layout-Consensus

algorithms (abb. OLC) and algorithms based on De Bruijn graph (abb. DBG).

[11]

Overlap-Layout-Consensus algorithms

OLC algorithms for genome assembly searches for locally best assembly in input reads.

Algorithms are typically divided into three parts: [6]

Overlap:

Overlap part searches for overlapping reads.
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Layout:

Layout part tries to find relative positions of reads within contigs. Problem is occurrence

of repeats, when one suffix of contig is another contigs prefix and it is unknown how many

times does repeating sequence between these two contigs occur.

Consensus:

Consensus part picks most probable base in contig from every read covering given position,

e.g. given position might be heterozygous or there might be occurrence of erroneous read.

Specific algorithm in each part is subject to individual implementation. However,

common feature of every implementation is high demand on computational resources due

to high amount of data being processed. Given several examples, in Overlap part, naively

comparing every pair of reads will result in O(n2) time complexity with n representing

amount of reads.[6] This could be improved by building k-mers out of every read, sorting

them and comparing their positions.[6] Unfortunately, given billions of reads (for example

10-fold coverage of relatively small Drosophila melanogaster [12] yields 6 million reads

with length 300 bases) that needs to be processed, demand on computational resources is

still high.

De Bruijn Graph algorithms

DBG algorithms for genome assembly aim to find globally best assembly in input reads.

Algorithms usually follow these steps:[6]

1. Separation of every read into its k-mers.

2. Creating graph G, where vertices represents all k − 1 substrings of k-mers - two

vertices form one k-mer.

3. Adding edges between vertices that overlap on k-1 bases (k-mer B1...Bk connects

vertices B1...Bk − 1 and B2...Bk.

4. Final order of bases in contig is given by Hamiltonian path in G.
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Figure 1.7: Example of DBG with 4 input reads and k = 4.

Figure 1.8: Example of DBG bubble. Source: researchgate.net

Example of DBG can be seen in picture 1.7. DBG algorithms in practice have to

solve several complications such as processing reads shorter than k, existence of several

Hamiltonian paths or existence of none etc. Determining proper k is another issue as short

k-mers will add many uncertainties and long k-mers will have high memory demand.[6]

Lastly, finding Hamiltonian path in graph is NP-complete in general, demanding high

computational resources.

Sequencing errors will cause existence of so-called bubbles in graph. Bubble is a part

of graph, where exists two ways from one vertex to another and vertices in these ways are

identical with the exception of erroneous base. Way with low coverage is a candidate to

be marked as containing sequencing error. If coverage of both ways is approximately same

(and whole genome coverage is sufficient), this bubble contains polymorphic position.[13]

(picture 1.8)

Table 1.2 shows number of assembled contigs, assembly size, running time and memory

peak of several genome assembly tools on sequencing data from human chromosome 14.
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Sparse

Assem-

bler

Gossamer Minia Diginorm

Velvet

DiMA ZeMA Original

Velvet

Number

of con-

tigs

52785 67160 52926 55002 61039 68253 52085

Assembly

size

101600523 73046277 74079569 79129375 80448331 81139464 81190207

Time

(hours

min sec)

1:1:37 3:6:50 1:33:13 1:18:16 1:21:8 1:15:09 2:27:46

Memory

Peak

(GBs)

1.72 3 0.76 3.34 8.7 1.2 49.3

Table 1.2: Comparison of several assemblers on sequencing data from human chromosome

14. Source: [3]
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1.4 Properties prediction

Approaches introduced in previous section provide us with approximate order of bases in

genome. From this assembled (or aligned) genome we can easily infer several basic prop-

erties of genome and its sequencing run: coverage, genome size, error rate, polymorphism

rate, repeat structure. However, computational resources required to obtain order of bases

in genome are high and not applicable for larger genomes.

If our target is to obtain only genome properties, we can bypass the unnecessary assembly.

Instead, we can estimate these properties straight from sequencing data using probabilis-

tic models and parameter optimization. This approach carries several advantages over

assembly:

• is faster

• is less memory demanding

• avoids additional biases introduced by assemblers

• can be used on smaller set of reads not sufficient for assembly

Disadvantage to this approach is that it only estimates properties instead of explicitly

finding them. We believe that this estimation is sufficient for several important tasks. One

of main examples of usage is using estimation of genome size on preliminary data. As we

will later explain, genome size is closely related to genome coverage. To create sequencing

data, one needs to know genome size to obtain desired coverage. However, without the

information on genome size, correct amount of data can be only guessed. Using estimation

of genome size on small preliminary sequencing data allows us to plan overall sequencing

experiment to desired amount. There are also many other examples of genome properties

estimation uses as phylogeny of large genomes, comparison of polymorphism rates of a

high amounts of individuals of same species etc.

There are several works that focused on properties prediction. Works from Waterman

et al. [14] and Williams et al. [15] estimate only coverage, genome size and repeats struc-

ture. Hozza et al. [16] adds error rate to prediction. However, all three works do not
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Figure 1.9: Example of k-mer abundance spectrum for reads containing no polymorphisms

and no errors, depth of coverage = 8.

consider existence of heterozygous positions in genome and thus are not suitable for use

on diploid organisms. Relatively new work by Vurture et al. [17] (published during our

research) estimates coverage, genome size, simplified repeats structure and polymorphism

rate and ignores error rate that again restricts its usage.

Prediction models in works listed above do not work with reads directly, but with their

k-mers. More specifically, they work with summary statistics called k-mer abundance

spectrum - histogram, that contains for every class j the number of distinct k-mers with j

occurrences in sequencing data. Example of simple k-mer abundance spectrum containing

no erroneous k-mers and no polymorphic positions can be seen in picture 1.9

Existence of errors in reads gives rise to histogram classes with low-occurring k-mers

as errorneous k-mers tends to be unique with low occurences in data. Subsequently, other

histogram classes decreases. We will explain this phenomenon in next chapter. Picture

1.10 depicts a histogram with erroneous k-mers.

There are several approaches to manage sequencing errors in reads. Waterman et al.

[14] errors simply ignores stating that if the error rate is too low, errors have no significant

influence on estimation. We argue that even relatively low error rate of 0.1% might have

significant impact on estimations. Consider standard NGS read length 300. If we set
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Figure 1.10: Example of k-mer abundance spectrum for reads containing no polymor-

phisms and 0.2% error rate, depth of coverage = 8.

k to 21, out of 280 possible k-mers up to 63 will be erroneous. This will further affect

estimations as model will consider erroneous k-mers as unique parts of the genome.

Another approach is to exclude erroneous k-mers through removing all low-coverage k-

mers from histogram. This approach was adopted by authors in works by Williams et al.

[15] and Vurture et al. [17]. We again disagree with this technique as sequencing does not

produce reads and subsequently k-mers from every position with same coverage and as

we stated, there are regions with low-to-no coverage. Trimming low coverage classes from

histogram will, together with erroneous k-mers, dismiss also k-mers that occur in genome.

This further restricts their models to usage only on data with high coverage and low error

rate.

Due to expectation of low-to-none error rate all models accomodating previous approaches

are unable to cope with reads generated by TGS sequencers, as they have higher error-rates

than NGS sequencers (see 1.1). Third option is to incorporate possibility of occurrences

of erroneous k-mers into prediction model. This approach is used in work by Hozza et

al. [16], which results in correct estimations of coverage, genome size and error rate on

datasets with higher error rates and lower coverage.

Out of mentioned works, only Vurture et al. [17] can be used on diploid data and estimate

polymorphism rate (as authors of said work state, it can be used only on diploid data).
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They further limits their model to only consider k-mer duplication in genome and ommiting

k-mers with three or more repeats. Reason for this limit, as they state, is that only a small

proportion of a genome sequence typically occurs in higher level repeats, since copy number

typically falls off quickly in real genomes following a Zeta distribution. We argue that this

gives no guarantee that genome with higher number of more repeating k-mers can occur.

As we have stated, none of already existing models incorporate all properties allowing

universal usage. Therefore, aim of our thesis is to create a model, that estimates

coverage, genome size, error rate, heterozygosity rate and repeats structure

with possibility to be used independently on haploid and diploid organisms. As a basis

of our work, we will use work by Hozza et al. [16].

We have to further analyse properties of selected genomes to create a concept of how

diploid organisms change behavior of already existing models and to choose the best

approach to model polymorphism rate in sequencing data.

Additionaly, we will test existing RE model from Hozza et al. [16] with more repeats

parameters and analyse results.

During our research, we have also found out that repeats parameters in Hozza et al. [16] -

and probably in other works too - do not describe what the authors state. Our objective

is to clarify what repeats parameters actually describe.



Chapter 2

Errors and polymorphisms model

In this chapter we will analyse heterozygosity of genome and discuss the effect of het-

erozygous genome positions on the existing models. Later we will suggest a new model

for diploid genomes without repeating regions, we will describe the optimization process

and test new model. Note that from further on, we will use term polymorphism instead of

heterozygosity, as k-mers that have two variants are polymorphic.

2.1 E model

No errors and no polymorphisms in reads

As we have stated in previous chapter, the input data to prediction models is a k-mer

abundance spectrum - a histogram, that contains for every class j the number of distinct

k-mers with j occurrences in the input sequencing data. There already exist several tools

designed for efficiently counting occurences of k-mers using text indexing techniques such

as hashing [18], Bloom filters [19] or streaming techniques [20].

Note that throughout this chapter we assume that there are no repeating k-mers in

genome (every k-mer in genome occurs only once) and therefore no polymorphic k-mer

has a non-polymorphic copy in genome.

If the reads contain no errors and sequenced genome is without polymorphisms, the

18
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shape of k-mer abundance spectrum follows a Poisson distribution with its peak at genome

coverage. [21] To be more precise, the peak is not at genome coverage C, but at k-mer

coverage Ck (mean number of reads covering a k-mer in genome), which is:

Ck = C · (r − k + 1)
r

(2.1)

where r is the average length of reads.

Idea behind k-mer coverage is that not every read covering part of k-mer will cover its

entire length. Therefore a k-mer coverage Ck is generally less to genome coverage C. Ex-

ample of error-free and polymorphism-free k-mers following Poisson distribution can be

seen in Figure 1.9.

Errors in reads

Sequencing errors in reads add new k-mers to the set of distinct k-mers in the input

reads. These new k-mers, however, have low occurence in input data as sequencing error

creates new k-mers randomly and, subsequently, give rise to low-occurence classes at the

left side of the histogram. This further decreases the size of the other classes. Figure 1.10

demonstrates an example of histogram with errorneous k-mers.

We will first demostrate building the Full error (E) model with steps by Hozza et al.

[16].

As frequences of error-free and polymorphism-free k-mers follow a Poisson distribution

centered at Ck, it is a foundation for E model. However, due to the fact that abundance

of k-mers is for some k-mers equal to zero and histogram will never contain them, model

E applies truncated Poisson distribution defined as:

pj = Cj
ke
−Ck

j!(1− e−Ck
= f(j; ck) (2.2)

where pj is the probability of observing abundance j.
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Next step lies within prediction of erroneous k-mers and results in creating a mixture

of probabilities. As we have already noted, there is a probability that a sequencing error

creates the same k-mer several times and thus, it will contribute to higher classes in

histogram.

Considering two k-mers A and B with Hamming distance (defined as a number of positions

with different characters in two strings of equal length) s, probability of acquiring k-mer B

as a result of sequencing k-mer A is εs(1− ε)k−s3−s. Sequencing k-mer A Ck times will in

expectation results in εs(1− ε)k−s3−sCk copies of k-mer B. If we denote λs as the previous

quantity and create a histogram with Poisson distribution with parameter λs, we will get

a histogram that describes probabilities of occurence of erroneous k-mers with exactly s

errors.

The overall probability distribution pj for abundance class j is modeled as a mixture

of k + 1 probability distributions with λs parameters, where s ∈ 0 . . . k. These partial

distributions need to be weighted.

Let αs be the fraction of k-mers with s errors and ns be the expected number of observed

unique k-mers with Hamming distance s from their respective source k-mers:

ns = n

(
k

s

)
3s(1− eλs) (2.3)

where:

• n: the number of source k-mers,

•
(
k
s

)
3s: the number of different k-mers with s errors for a single source k-mer,

• (1 − eλs): probability of occurence of at least one erroneous k-mer with s errors to

all k-mers.

Mixture weights αs are computed by normalizing ns with their sum, removing unknown

parameter n.

The overall probability pj in model E is then [16]:

pj =
k∑
s=0

αsf(j;λs) (2.4)
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where f is truncated Poisson distribution with parameter λs.

Coverage C (computed from Ck) is then used to determine genome size by the equation:

G · C =
∑

read∈Reads
size(read) (2.5)

G =
∑
read∈Reads size(read)

C
(2.6)

where G is the genome size and Reads is a set of all reads.

2.1.1 Optimization process

Prediction models E and RE that we are using as a basis of our models are implemented

in a tool named CovEst.[16] We will use the same optimization process as is in their tool.

First step of parameter optimization is creating k-mer abundance spectrum out of

sequencing reads. We have decided to use tool named Jellyfish [18] for its fast, parallel

computing of k-mer occurrences. As Williams et al. [15] suggest, we use k = 21. By using

an odd number we avoid a situation where one k-mer is a reverse-complement of itself.

Optimization process subsequently uses k-mer abundance spectrum to find the highest

log-likelihood estimate of model parameters. Log-likelihood of observing k-mer abundance

spectrum W is defined for every prediction model in this work as follows:

L(W |θ) =
m∑
j=1

log(pj) · wj (2.7)

where:

• θ: Model parameters,

• m: highest observed class of W ,

• pj: probability of observing abundance j in a particular model,

• wj: abundance of j in W .
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To speed up computations, histogram is trimmed of higher abundance classes so that

the trimmed histogram will contain 99.999% of all sequenced k-mers.

Next step is choosing the initial values of parameters for optimization. CovEst [16]

uses a heuristic that assumes that all k-mers with abundance at least 2 are correct. If

estimation of initial values fail due to insufficient amount of available data, c = 1 and

ε = 0.5 is used.

Authors of CovEst noticed that sampling the histogram to target depth of coverage

between 12-15 increases accuracy of parameters estimation.

Optimization in CovEst further continues with L-BFGS-B optimization algorithm [22],

more specifically, with its implementation in SciPy library for Python. [23]

2.2 Polymorphism analysis

Recall that in diploid genomes autosomal chromosomes occur in pairs. The two chromo-

somes in a pair have highly similar sequences, yet they differ in some positions which we

call polymorphic. Also recall that we aim to estimate the genome haploid chromosome

set, i.e. we include only one chromosome from each pair.

Sequencing a polymorphic position results in reads, and subsequently k-mers, that differ

at this position. Origin of this difference lies within the source haploid chromosome of the

pair of chromosomes. Since each read is created from one chromosome, it contains only

one base from a pair of bases in a polymorphic position. Since both chromosomes in a pair

enter the sequencing process, sequencer randomly creates reads from both of them. As

the probability of choosing the source chromosome for a read is uniform, i.e. 0.5 for both

chromosomes, the coverage of polymorphic k-mers will be one half of the overall coverage.

An example of a diploid chromosome and its reads can be seen in Figure 2.1.
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Figure 2.1: Example of a diploid chromosome pair and some of its reads. Roughly half of

the reads cover one haploid chromosome and the rest the other haploid chromosome.

Polymorphism in reads

If the sequenced organism was diploid, the resulting k-mers will contain polymorphic po-

sitions and thus, polymorphic k-mers covering these positions. The abundance spectrum

created from these k-mers will show a characteristic two-peak profile researched by Kaji-

tani et al. [24]. Peaks will be centered at coverage Ck and half of coverage Ck/2 - given the

reasonable assumption that abundance of sequenced polymorphic k-mers in one position

is divided in half.

Size of peaks is regulated by the polymorphism rate of the genome. The higher the

rate, the higher the polymorphism peak and consequently, lower the non-polymorphism

peak. The relatively large polymorphism peaks, even at low polymorphism rates are

caused by rapid increase of fraction of k-mers containing a polymorphic position with rel-

atively small increase in polymorphism rate, since every polymorphic position creates 2k

different k-mers with coverage Ck/2. Table 2.1 shows different polymorphism rates and

their corresponding k-mer polymorphism rates for k = 21.
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Figure 2.2: An example of a k-mer abundance spectrum for simulated reads containing no

errors and polymorphism rate 0.4%, 64-fold depth of coverage from section 2.4

π 0.1% 0.2% 0.4% 0.8% 1.6% 3.2% 6.4%

p′ 2.07% 4.11% 8.07% 15.52% 28.73% 49.49% 75.07%

Table 2.1: Different polymorphism rates in genome and their respected polymorphism

rates in k-mers, k = 21, π is polymorphism rate in genome and p′ is k-mer polymorphism

rate.

An example of a histogram from polymorphic k-mers is in Figure 2.2. By [17], "...the

height of the heterozygous peak grows very quickly and matches the height of the homozy-

gous peak at around only 1.2% heterozygosity for k=21." Note that for data with low-

coverage data (less than 8) and low polymorphic rate the polymorphic peak is difficult to

distinguish as it is absorbed by the higher non-polymorphic peak on the right side and

the error peak on the left side.

Polymorphism and existing models

Our model presented in this chapter extends the existing E model from CovEst.[16] E

model does not consider existence of polymorphisms, and therefore does not yield suffi-

ciently accurate estimates for highly polymorphic genomes, as we will demonstrate in next
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section.

In general, E model is insufficient to estimate parameters of diploid data. Recall that

a single polymorphic position overlaps 2k −mers. If we consider a haploid chromosome

of length G, then a diploid pairs of chromosomes will have up to π · G · k new distinct

k-mers, π being the polymorphism rate. However, E model will count these new k-mers

as part of a haploid chromosome and as a result it underestimates the coverage and by

2.6 overestimates genome size.

Nevertheless, there are still cases when E model estimates parameters correctly on diploid

data. From our experiments in section 2.4, we see that there are cases when coverage is

relatively low - on our tests on a million bases long genome, E model yields steadily correct

estimates on 4-fold coverage with polymorphism rate up to 0.8%, since in such inputs,

polymorphic k-mers are not sufficiently covered and therefore only one polymorphic k-mer

out of a pair occurs. Average relative accuracies for a 4-fold coverage and various error

rates and polymorphism rates are in table 2.2. Note that E model, even if its prediction is

accurate, still gives no information on the polymorphism rate in genome, which we would

like to estimate.

We define accuracy of parameter Θ estimation as:

acc = 100(1− abs(1− θ/θ∗)) (2.8)

where θ is estimated value of parameter Θ and θ∗ is the real value of parameter Θ. Acc is

then the percentage of how close estimation of Θ is to real Θ, 100 being the same value.

2.3 EP model

EP model

Keeping in mind our previous observations, we will create a prediction model Errors and

polymorphisms (EP) with three parameters:

• Coverage C
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Table 2.2: Mean accuracy of coverage estimation in percent from 10 samples estimated

by E model for C = 4 and various sets of coverage and polymorphism rate parameters in

samples. Standard deviation is 4.86%. Green color denotes higher accuracy.

• Error rate ε

• Proportion of distinct polymorphic k-mers in reads to all distinct k-mers in reads γ

Let nn be a number of distinct non-polymorphic k-mers in reads. Let np be a number

of distinct non-polymorphic k-mers in reads. Then:

γ = np
nn + np

(2.9)

We will note probability distribution of E model with parameters Ck and ε as E(Ck,ε).

Our EP model determines size pj of histogram class j as:

pj = (1− γ)pn,j + γpp,j (2.10)

where

• pn,j: probability of abundance j from E(Ck,ε),

• pp,j: probability of abundance j from E(Ck/2,ε).

Estimation of pj is divided into two separate non-polymorphic and polymorphic parts

by parameter γ (describing how many k-mers are non-polymorphic and polymorphic).

We have programmed EP model to CovEst as a new model. Starting value of γ is 5%.
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Polymorphism rate prediction

By results in subsection 2.4, our model can be used to estimate the coverage and error

rate from sequencing data, and consequently, the genome size. However, parameter γ that

predicts ratio of polymorphic k-mers in reads including erroneous polymorphic k-mers is

not a useful parameter on its own regarding information it provides to the user. Never-

theless, we can use it to further estimate the frequency of polymorphic positions in genome.

Probability of a k-mer containing one or more polymorphic positions p′ is:

p′ =
k∑
i=1

(
k

i

)
πi(1− π)k−i = 1− (1− π)k (2.11)

where:

• p′ = probability that k-mer contains at least one polymorphic position,

• π = polymorphism rate in the genome (heterozygosity)

To predict polymorphism rate p′ and π, we use estimated parameters Ck and ε to

reconstruct E(Ck/2,ε) distribution that contains only the abundance of polymorphic k-

mers. Let Xp,a be the number of all polymorphic k-mers in input reads. We can estimate

Xp,a as:

Xp,a = γWd

∞∑
i=1

Zi · i (2.12)

where:

• Wd: the number of distinct k-mers in reads (this quantity is known from input data),

• Zi = probability of k-mer abundance i from E(Ck/2,ε)

The second equation computes Xp,a from the genome size as follows:

Xp,a = 2p′GCk2 (2.13)

where:
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• p′ = probability of a haploid k-mer being polymorphic

• G = genome size

The idea behind the second equation is that out of all haploid k-mers (approximated

by the genome size), polymorphic k-mers are covered on average Ck/2 times. Due to the

fact that one haploid k-mer overlapping a polymorphic position creates two distinct poly-

morphic k-mers, we need to multiply the number of polymorphic k-mers by 2.

By combining estimates 2.12 and 2.13, we obtain the following equation:

γWd ·
∞∑
i=1

Zi · i = 2p′GCk2 (2.14)

From equation 2.14, we define p′ as follows:

p′ = γWd∑t
i=1 PiiGCk

(2.15)

We then use p′ to find polymorphism rate π using 2.11:

π = 1− (1− p′)1/k (2.16)

We estimate the infinite sum by a finite sum up to a threshold t. In CovEst, we have

set t to half the size of the input histogram because the mean polymorphic coverage is

half the mean of non-polymorphic coverage. Nevertheless, changes in polymorphism rate

prediction accuracy for any t between half the size of input histogram and size of input

histogram are insignificant by our observation.

2.4 Results

We have evaluated our EP model on simulated data with various parameters settings

together with E model and GenomeScope [17], the newest diploid genome attributes pre-

diction tool up to date. For every set of parameters we created ten simulated genomes and

reads. Genome is simulated as a random string of bases. Polymorphism simulation then
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copies the genome and places random bases on random positions. Reads are simulated

by randomly choosing one chromosome of diploid pair, randomly choosing a position and

creating a read with changed bases with respect to set error rate.

Let B = {2b|b ∈ {0..6}}. Tested coverage values were elements of B and tested error rate

and polymorphism rate values were {0}∪ {0.001 · b|b ∈ B}. Simulated genomes sizes were

set to one million bases.

For the E model, the overall accuracy of parameter ε is 99.91% with standard deviation

0.12% and for the EP model, overall accuracy of ε is 99.95% with standard deviation

0.11%. As the accuracy of this parameter is very high for both models, we summarize

results for all values of this parameter and report the mean over every error rate value for

a given coverage and polymorphism rate. Tables for every set of parameters can be seen

in attached CD, file simulations_for_ep.xlsx.

As we can see in Table 2.3, E model can estimate coverage with high accuracy for

data with low-coverage and low polymorphism rate. However, with rising real coverage,

E model coverage estimation quickly falls down between 4-fold and 8-fold coverage at still

relatively low polymorphism rate 1.6%. For higher coverage and polymorphism rate, E

model proves to be insufficient.

EP model (seen in tables 2.4,2.5), designed to estimate parameters from data containing

polymorphic positions, has coverage estimation accuracies equal or higher to E model at

8-fold real coverage and higher. For lower depth of coverage, there is not enough poly-

morphic k-mers to accurately predict parameter γ, e.g. for C = 4, Ck is 3.2, subsequently

polymorphic k-mer coverage is 1.6 meaning that approximately every second polymorphic

k-mer is sequenced both times. This further creates a situation where EP model consider

these polymorphic k-mers as non-polymorphic and as a part of haploid genome.

For higher depths of coverage, EP model shows no problem in identifying polymorphic

k-mers, resulting in coverage estimations close to actual value.

Estimation of polymorphism rate by EP model has similar challenges for low-coverage

data as it has for coverage estimation. Nevertheless, for depth of coverage 8 and higher,

our EP model estimation accuracy is near to hundred percent.
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Table 2.3: Mean accuracy of coverage estimation in percent estimated by E model for

various sets of coverage and polymorphism rate parameters in samples.

Comparison to web-based GenomeScope tool shows to be difficult (tables 2.6,2.7).

GenomeScope tool, by examples provided by its authors, expects depth of coverage at

least 15. Our tests show that their tool will not work at all with our data having coverage

up to 16 - GenomeScope expects the input histogram to be wider (meaning there are at

least 50 abundance classes). For depth of coverage 32, only a small fraction of samples had

been actually processed - most of samples either have fewer than 50 abundance classes or

their model simply did not converge. Even for coverage equal to 64 the impossibility of

model to converge occurred. From small a amount of results we have managed to obtain we

can clearly see that our EP model outperformed GenomeScope in both coverage prediction

and polymorphism rate prediction. This situation further proves that their model is only

useful for genomes with relatively high coverage and even for those our model yields better

estimations. However, note that due to laborous providing of samples to the web-based

tool without the possibility to create automatic script, only four samples from every set

of samples with same parameters were tested in GenomeScope.
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Table 2.4: Mean accuracy of coverage estimation in percent estimated by EP model for

various sets of coverage and polymorphism rate parameters in samples.

Table 2.5: Mean accuracy of polymorphism rate estimation in percent estimated by EP

model for various sets of coverage and polymorphism rate parameters in samples.

Table 2.6: Mean accuracy of coverage estimation in percent estimated by GenomeScope

for various sets of coverage and polymorphism rate parameters in samples.



CHAPTER 2. ERRORS AND POLYMORPHISMS MODEL 32

Table 2.7: Mean accuracy of coverage estimation in percent estimated by GenomeScope

for various sets of coverage and polymorphism rate parameters in samples.



Chapter 3

Extended repeats and errors model

The Repeats and errors (RE) model in CovEst captures k-mers with more occurences in

genome. In this chapter we will discuss extensions of the RE model. In particular, we will

evaluate RE with additional parameters, we will discuss actual meaning of βo fractions

in this model and we will introduce new algorithm to estimate the true value of desired

fractions βo described by Hozza et al. [16].

3.1 RE model

The Repeats and errors model (RE) is an extension of the E model by Hozza et al. [16]

that incorporate existence of several identical k-mers in genome. Parameters that this

model estimates are:

• Coverage C

• Error rate ε

• Parameters for repeat rate estimation q1, q2, q

We will define term copy number as number of occurrences of k-mer in genome.

Let βo be the fraction of k-mers with copy number o following geometrical distribution.

33
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The probability pj of each abundance class j is:

pj =
∞∑
o=1

βopo,j (3.1)

where po,j is the probability computed according to E model with o · Ck coverage as the

k-mer with copy number o is o times more likely to be sequenced.

The infinite number of βo weights is parametrized by three parameters q1, q2 and q as

follows:

• β1 = q1

• β2 = (1− q1)q2

• βo = (1− q1)(1− q2)q(1− q)o−3; o ≥ 3

This means that this model estimates β1 and β2 separately and repeats classes with at

least three occurences together, geometrically decreasing βo estimations for higher copy

numbers.

3.2 Extended RE model

In this section we extend RE (EREd) model by introducing d as the number of repeats

parameters. Fractions βo will be parametrized by q, q1 . . . qd, if d = 0 we use only q.

Purpose of new parameters is to further increase accuracy by separately optimizing more

copy number classes. βo are in EREd model computed as follows:

βo =



q1 if o = 1 and d > 0

qo
∏o−1
i=1 (1− qi) if o > 1 and o ≤ d

q(1− q)o−d−1∏o
i=1(1− qi) if o > d

EREd model computes probability pj for abundance class j with the same equation as

RE model.

As Hozza et al. [16] claim, the number of repeat parameters d = 2 in the RE model

was set ad-hoc with only a brief analysis of available genomes.
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Table 3.1: Results of EREd|d ∈ {0 . . . 10} on simulated reads of Caenorhabditis elegans

chromosome I, the actual depth of coverage is 32, error rate is 0.3%, genome size is

15072434 bases.

We have analyzed several real-life genomes from both haploid and diploid organisms (more

specifically in diploid organisms, one of their haploid sets). Next we have simulated reads

with various coverage and error rates from analyzed genomes. As a following step, we

have optimized EREd; d ∈ {1 . . . 10} models on genomes reads.

As an example, we show results of two experiments on diploid Caenorhabditis elegans chro-

mosome I. Other experiments, that can be seen in attached CD - file ered_estimations.xlsx,

yield similar results.

As can be seen in Table 3.1, optimizing EREd model with d ≥ 2 gives no significant

increase in accuracy of coverage or error rate.

However, we have noticed in Table 3.2 that values of βo computed from k-mer repeat

parameters do not correspond to actual fractions of repeating k-mers in the genome.

As Hozza et al. [16] states: Let βo be the fraction of k-mers with o occurences in the

genome. However, as RE model works with k-mers in reads and not with k-mers in the

genome, we claim that βo will be ratio of distinct k-mers in reads originating from genomic

k-mers with o copies in genome to all distinct k-mers. This includes erroneous k-mers that

increase number of distinct k-mers in reads. If Hozza et al.[16] claim was true, we should

get the same βo for a higher error rate as we got in our previous experiment. We have



CHAPTER 3. EXTENDED REPEATS AND ERRORS MODEL 36

Table 3.2: The values of βo for o = 1 . . . 10 for EREd (d ∈ {1 . . . 10}) computed from q and

qi shown in Table 3.1. The first columns contain copy number class, number of distinct

k-mers in class and fraction of number of distinct k-mers in class to number of all distinct

k-mers.

Table 3.3: Results of EREd|d ∈ {0 . . . 10} on simulated reads of Caenorhabditis elegans

chromosome I, depth of coverage is 32, error rate is 3%, genome size is 15072434 bases.

run EREd models on reads with the same coverage, but this time, error rate was set to

3%. Optimized parameters can be seen in Table 3.3 and values of βo for this experiment

are shown in Table 3.4. Comparing βo from these two experiments, we can see that they

differ and thus, the claim by Hozza et al. [16] is invalid. We will conduct one additional

experiment supporting our definition of βo. If reads contain no errors, the resulting βo
corresponds to k-mer repeats in the genome, because in the absence of errors and with

sufficient coverage, the set of k-mers in reads and in the genome is practically the same.

Table 3.5 confirms our claim.
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Table 3.4: First 10 βo of EREd|d ∈ {0 . . . 10} on simulated reads of Caenorhabditis elegans

chromosome I, depth of coverage is 32, error rate is 3%, genome size is 15072434 bases.

Table 3.5: βo of ERE3 on simulated reads of Caenorhabditis elegans chromosome I, depth

of coverage is 32, error rate is 0%, genome size is 15072434 bases. Estimated coverage is

31.9820, estimated error rate is 0.0%.
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EREd 0 1 2 3 4 5 6 7 8 9 10

time 15.22 16.49 30.54 37.11 45.39 59.22 70.23 71.46 77.09 85.45 91.34

Table 3.6: Mean running time of EREd models in seconds for various parameters settings

of Caenorhabditis elegans chromosome I data.

Back on our original question if adding more repeats parameters will improve accuracy

of estimations, our answer, based on our experiments, is that improvement is insignificant

and as can be seen on Table 3.6, optimization time is rising with more repeat parameters.

3.3 Genome repeats estimation

Algorithm

As we have stated before, our experiments show that βo are in fact a ratio of distinct

k-mers with copy number o in the genome to all distinct k-mers in reads. We would like

to extend the RE model to estimate the fraction of k-mers with o copies in genome among

all k-mers in the genome, which we denote βG,o. To make the distinction between βG,o and

βo more explicit, we will further denote βo as βR,o. We will also define several variables:

• Wd: the number of all distinct k-mers in reads,

• G′a: the number of all k-mers in genome,

• G′d: the number of all distinct k-mers in genome.

Variable Wd is known from the input abundance spectrum and we set G′a = G, where

G is the genome size we know from previous estimation (in fact, G is higher than G′a due

to chromosomal ends, however the difference is negligible for βG,o estimation).

The idea of our algorithm resembles the estimation of polymorphism rate from γ in the

EP model. The first step is to create histograms Zo with E(o ·Ck,ε) o ∈ {1 . . .m} for some

value m so that remaining βG,o are negligibly small. If the highest copy number m in the

genome is known, we can use it as m. Value Zo,i denotes the k-mer abundance probability
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pj for abundance class j with copy number o. Multiplying this probability by βR,oWdi

gives us the expected number of all k-mers in reads with abundance i and copy number o,

which we denote Xa,o. Sum through all classes of abundance gives us number of all k-mers

with copy number o in reads. Value βR,oWd is the expected number of all distinct k-mers

with copy number o in reads. This computation gives us Xa,o as follows:

Xa,o =
∞∑
i=1

Zo,i · i · βR,o ·Wd (3.2)

On the other hand, we can compute Xa,o from the genome size as well. βG,oG
′
d is

the expected number of distinct k-mers with copy number o in the genome. Multiplying

βG,oG
′
d by o gives us all k-mers with copy number o in genome. We then multiply this

number by k-mer coverage Ck to obtain Xa,o, as every k-mer is sequenced Ck times on

average. Xa,o is therefore computed as:

Xa,o = βG,o ·G′d · o · Ck (3.3)

Value of G′d in 3.3 is not known, we only have an estimate of G′a. However, βG,oG′d is

the number of distinct k-mers with copy number o in the genome. Multiplying this by o

yields the number of all k-mers with copy number o in the genome and sum through all

copy number classes o is the number of all k-mers in genome G′a:

G′a =
∞∑
o=1

βG,o · o ·G′d (3.4)

As we already know G′a, we can express G′d as:

G′d = G′a∑∞
o=1 βG,o · o

(3.5)

Combining equations 3.2 and 3.3 through Xa,o, we get the central equation of our

algorithm:

βG,o · o ·G′d · Ck =
∞∑
i=1

Zo,i · i · βR,o ·Wd (3.6)
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copy num-

ber

k-mers real βG,o estimated

βG,o

real βR,o estimated

βR,o

1 4999970 0.8333 0.8327 0.7872 0.8174

2 999985 0.1667 0.1673 0.2128 0.1826

Table 3.7: Predicted βG,o from a simulated genome, genome size is 7 million bases, depth

of coverage is 32, error rate is 0.1%, m = 2.

For simplicity, we will note the right side of equation as Xa,o (this side is completely

known). By expressing βG,o, we get:

βG,o · o ·G′a · Ck = Xa,o

m∑
o′=1

βG, o
′ · o′ (3.7)

This is, in fact, m×m system of linear equations. We will append one more equation

to our system:

m∑
o=1

βG,o = 1 (3.8)

Equation 3.8 is a natural condition that fractions βG,o sum to 1. However, appending

this equation creates an overdetermined system of linear equations with m unknowns and

m + 1 equations. We have approximated the solution to this system using least-square

method [25] as implemented in SciPy library. [23]

Results

We have conducted experiments with our genome repeat estimation algorithm on several

simulated and real genomes.

Our first experiment is with a simulated genome containing only unique and duplicated

k-mers (m = 2) and 7 million bases in size. Generated reads have depth of coverage 32

and 0.1% error rate. Table 3.7 shows the results of the experiment. Estimation of βG,1
and βG,2 is close to real values.
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repeats k-mers real βG,o estimated

βG,o

estimated

βG,o from

real βR,o

real βR,o estimated

βR,o

1 7999933 0.7273 0.7621 0.7275 0.6471 0.6970

2 1999986 0.1818 0.1599 0.1816 0.2169 0.1950

3 999986 0.0909 0.0720 0.0909 0.1361 0.1080

Table 3.8: Predicted βG,o from simulated genome, genome size is 15 million bases, depth

of coverage is 32, error rate is 0.1%, m = 3.

Our second experiment is with simulated genome with k-mers occuring up to three

times in genome and 15 million bases in size. Generated reads have depth of coverage 32

and 0.1% error rate. Table 3.8 shows us results of the experiment. Estimations of βG,o
from predicted βR,o by RE model differ significantly (up to three percent). However, using

our algorithm with real βR,o parameters, we get estimation of βG,o close to real values.

Third experiment we conducted is with Caenorhabditis elegans chromosome I, with

32-fold coverage and 0.3% error rate and with βR,o from 3.2. Results of this experiment

are in Table 3.9. Results show that estimations of βG,o are correct for copy number 1 and

2 classes. However, starting from copy number 3, our estimates start to differ from the

actual values. As our previous experiments show, our algorithm yields good results on

known m and correct βR,o. In this experiment, we have set m = 13 on the basis that it is

higher than highest used d = 10, so an effect of estimation from geometric distribution of

βR,o would manifest.

Different values of m significantly affect fractions of each βG,o as can be seen in Table 3.10

created from ERE5.

Other results can be seen in attached CD, file ered_estimations.xlsx.

Even if our estimation of βG,o is not optimal, it still outperforms βR,o at denoting k-mer

repeats in genome as can be seen by comparing Tables 3.1 and 3.9.
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Table 3.9: Results of estimated βG,o from EREd|d ∈ {0 . . . 10} on simulated reads of

Caenorhabditis elegans chromosome I, depth of coverage is 32, error rate is 0.3%, genome

size is 15072434 bases. M was set to 13.

Table 3.10: βG,o from various m and their effect on estimation accuracy of individual

repeats classes.



Chapter 4

Repeats, errors and polymorphisms

model

In this chapter, we will combine partial results from the previous two chapters and study

genomes exhibing both repeats and polymorphisms. We will first test RE model on diploid

sequencing data and we will create two more models containing repeats, errors and poly-

morphisms.

4.1 RE model on diploid data

We have tried the RE model on haploid chromosome V from Caenorhabditis elegans. We

have created another copy of this chromosome and randomly modified bases in the copy

to simulate polymorphism. Coverage, error rate and polymorphism rate were in this sim-

ulated cases the same as in EP model testing 2.4.

There are two reasons to try RE model on diploid data. First, we want to see and confirm

that, similarly to EP model, RE model will underestimate the coverage as it has no means

of processing polymorphic reads. Second, by our previous observation, RE model might

still be able to model histogram with repeating, erroneous and polymorphic k-mers as a

haploid genome of double the size and half the coverage. That is, non-repeat polymorphic

k-mers correspond to o = 1 in the RE model and non-repeating, non-polymorphic k-mers

to o = 2. Then we can simply multiply the coverage by two to obtain the actual size of

43
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Table 4.1: Mean accuracy of coverage estimation in percent estimated by RE model for C

= 16 and various sets of error rate and polymorphism rate parameters in samples.

genome. This approach will, similarly to E model on diploid data, yield no information

on polymorphism rate. Again, to simplify our discussion, we will present only one table

with results. Other similar results are in attached CD - file simulations_for_ernpe.xlsx.

As we can see in Table 4.1, RE model has relatively high accuracy of coverage estima-

tion for small polymorphism rates (o = 1 corresponds to non-polymorphic k-mers). How-

ever, with increasing polymorphism rate accuracy of coverage estimations gradually falls

and for high polymorphism reaches a sate where o = 2 corresponds to non-polymorphic

k-mers. As the decrease is gradual, there is no distinctive line after which the coverage

estimation should be doubled. Furthermore, even if there was this line, we still do not have

any information whether coverage estimation in a particular dataset needs to be doubled

or not.

4.2 ERNPE model

Our next prediction model Equal Repeats for Non-polymorphism and Polymorphism and

Error (ERNPE) assumes, that if polymorphism occurs in repeated k-mer, all repeats of

that k-mer will be polymorphic. Although this assumption is not realistic, it greatly

simplifies modeling. We will again introduce a parameter γ with same meaning as in EP
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Table 4.2: Mean accuracy of coverage estimation in percent estimated by ERNPE model

for C = 16 and various sets of coverage and polymorphism rate parameters in samples.

model - fraction of distinct polymorphic k-mers in reads to all distinct k-mers in reads.

ERNPE predicts abundance pj for class j as:

pj = (1− γ)
∞∑
o=1

βopn,o,j + γ
∞∑
o=1

βopp,o,j (4.1)

where pn,o,j is probability for j class computed by E(o ·Ck,ε) and pp,o,j is probability for j

class computed by E(o · Ck/2,ε).

Results on the same simulated reads as in previous model are in attached CD, file

simulations_for_ernpe.xlsx. We will, again, show only results for C = 16 in Table 4.2.

Despite the strong polymorphism assumption, this model yields results with high accuracy

of coverage estimation on simulated data only with the exception of high polymorphism

rate even for relatively low coverage C = 4.

Tests on real sequencing data are in chapter 4.4.

4.3 REP model

Even if our ERNPE model has relatively good results on simulated data, its assump-

tion that if polymorphism occurs in repeated k-mer, all repeats of that k-mer will be
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polymorphic has no biological basis. Furthermore, this assumption makes estimation of

polymorphism rate more difficult. Therefore, we would like to create more general predic-

tion model for diploid organisms.

Keeping in mind our findings from chapter 3.3, specifically difference between βR,o and

βG,o, we have chosen a different approach to model repeats in genome than previous mod-

els. We have one assumption, that there are no polymorphic repeats in genome.

Parameters that will our last model Repeats, errors and polymorphisms optimize are:

• Coverage C

• Error rate ε

• Parameters for repeat rate estimation q1, q2, q

• K-mer polymorphism rate p′

Contrary to usage of repeats parameters q1, q2, q in RE and ERNPE model, we use this

parameters to model k-mers repeats in genome rather than in reads.

Again, G′d is the number of distinct k-mers in genome andW ′
d is the number of distinct

k-mers in reads.

Probability pj of abundance class j is computed as:

pj =
∞∑
o=1

βR,P,o · po,j (4.2)

where:

• βR,P,o: a fraction of distinct k-mers with o occurences in diploid genome to all distinct

k-mers in reads, that considers occurences of polymorphic k-mers,

• po,j: probability for j abundance class computed by E(o · Ck,ε).

Computation of βR,P,o starts with estimation of βG,o in haploid genome. We use the

same estimation process as RE model uses for βR,o. As our experiment with no erroneous

k-mers in section 3.2 shows, geometric distribution yields relatively high estimates of k-

mer occurence in genome, thus it is suitable for our estimation of βG,o as genome contains
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Figure 4.1: Example of k-mer with o copies in diploid genome.

no erroneous k-mers.

βG,o is then used to compute NG,P,o - number of repeats of non-polymorphic k-mers in

diploid genome. Computation of NG,P,o is divided into several cases given the number of

repeats in diploid genome:

NG,P,o =



∑∞
o′′=1

∑o′′

m=1 βG,o′′G′d
(
o′′

m

)
m(1− p′)o′′−mp′m if o = 1∑o

o′′=o′ βG,o′′G′d
(

o′′

2o′′−o

)
(1− p′)o−o′′

p′2o
′′−o if o = 2o′∑o

o′′=o′+1 βG,o′′G′d
(

o′′

2o′′−o

)
(1− p′)o−o′′

p′2o
′′−o if o = 2o′ + 1

These equations denote how many k-mers with o copies is present in diploid genome

as a number of k-mers with preserved repeats (repeats, that have not changed because of

polymorphism).

We will now explain these equations in detail:

• o′: case identification variable,

• o: number of preserved repeats - repeats, that are not polymorphic,

• o′′: number of repeats in diploid genome.

Idea behind equations for cases o = 2o′ and o = 2′ + 1 is following: For every copy

number class o we compute how many k-mers from repeats classes o′ to o (or o′ + 1 to

o) will transfer to repeats class o as a result of polymorphism process. We compute the

probability of one k-mer with copy class o′′ preserving o copies as:
(

o′′

2o′′−o

)
(1−p′)o−o′′

p′2o
′′−o.

Example of k-mer with o preserved copies is in Figure 4.1.
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Figure 4.2: Example ofm polymorphic k-mers from k-mer withm copies in diploid genome.

Case when o = 1 is specific as it describes the number of polymorphic k-mers. One

k-mer with o′′ repeats in haploid genome may have all repeats in second haploid genome

(in the diploid sense) changed to different k-mers. This number of different k-mers is m.

Example of m polymorphic k-mers from one source k-mer is in Figure 4.2.

We then create fractions βG,P,o by renormalizing NG,P,o by their sum.

We further compute βR,P,o. Let XP,a,o be the number of all k-mers in reads with copy

number o and Z = E(o · ck, ε). Similarly to the previous models, we can compute the

number of distinct k-mers with copy number o by weighting Wd with βR,P,o. Sum of all

abundance probabilities pj from Zo multiplied by abundance classes j gives us the number

of k-mers with copy number o in reads. Subsequently, we can compute XP,o,a as:

XP,a,o = βR,P,oWd

∞∑
i=1

Zo,i · i (4.3)

We can again compute XP,a,o from diploid genome as number of all occurences of

k-mers with o occurences in genome multiplied by k-mer coverage Ck:

XP,a,o = βG,P,o ·G′d · o · Ck (4.4)

By connecting equations above through XP,a,o we get:

βR,P,oWd

∞∑
i=1

Zo,i · i = βG,P,o ·G′d · o · Ck (4.5)

Subsequently, we can express βR,P,o as:

βR,P,o = βG,P,o · o · Ck ·G
Wd ·

∑∞
i=1 Zo,i · i

(4.6)
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Our implementation of REP model in CovEst does not yield accurate results of pa-

rameters estimation. We were unable to identify the source of innacuracy in estimations,

whether the problem lies within the optimization process or the prediction model itself.

However, we still believe that biological base of REP model relatively closely models the

real situation.

4.4 Repeat models on real data

We have tested all prediction models incorporating repeats on real sequencing data from

diploid organism Caenorhabditis elegans (worm), strain JU258 (sample taken fromMadeira)

from Caenorhabditis elegans Natural Diversity Resource project [26]. Additionaly, we have

tested GenomeScope tool on this data as well.

Size of reference genome WS245 of Caenorhabditis elegans has 100 286 401 bases. Strain

JU258 has 2.428% polymorphism rate. Reads come from an Illumina sequencer 1.1. We

have tried two read sets, one with 33.3159 depth of coverage, the other with 16.6158 (half

of the first set). Both reads sets has 0.42% error rate and mean read size 98.6 bases. Cov-

erage and error rate were computed from provided aligned reads using Qualimap tool. [27]

Table 4.3 compares results of parameters estimations for set of reads with higher cov-

erage. GenomeScope tool estimation of genome size is closest to original size. Its coverage

estimation is highly accurate only for haploid chromosome, to obtain coverage of both,

we have to multiply coverage by two (although authors does not state if their coverage is

meant as a haploid or diploid). ERNPE model also surprisingly yields relatively correct

estimate of coverage.
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Model Coverage Genome size Error rate Polymorphism

rate

Real 33.3159 100 286 401 0.420% 2.428%

RE 19.7410 179 025 988 0.124% N/A

ERNPE 37.03 95440588 0.120% N/A

GenomeScope 16.75 98 897 045 0.122% 0.178%

Table 4.3: Comparison of results of several models on Caenorhabditis elegans sequencing

data, coverage 33.3159.

Table 4.4 shows results for parameters estimation for second set of reads. Best es-

timation of genome size has again GenomeScope and if we consider coverage C only as

a haploid, then its estimation of this parameter is also the highest. Error rate was not

correctly estimated by any of models.

Model Coverage Genome size Error rate Polymorphism

rate

Real 16.6158 100 286 401 0.420% 2.428%

RE 14.7715 120 102 218 0.111% N/A

ERNPE 18.7159 94 790 300 0.0010% N/A

GenomeScope 8.4125 99 730 353 0.102% 0.218%

Table 4.4: Comparison of results of several models on Caenorhabditis elegans sequencing

data, coverage 16.6158.



Conclusion

Aim of our work was to create prediction models, that could estimate properties from

diploid sequencing data. Models created prior to our work either does not consider an

existence of reads from diploid genome (specifically existence of polymorphic positions) or

have only limited usage due to conditions placed upon input data.

During our research on EREd model, we have found out the true meaning of βo weight

in RE model as a fraction of distinct k-mers with copy number o in reads. We have sup-

ported our claim with results of exhaustive experiments. We consider this discovery as

an extraordinary result, as it both clarifies results of RE model and encourages a future

expansion of genome attributes estimations. Furthermore, we have suggested a system of

equations to compute real number of k-mers with o copy number. Our experiments with

both simulated and real genomes showed a promising path for future research.

We have expanded RE model to EREd model - RE model with d repeats parameters.

Motivation behind EREd creation was to experiment with higher repeats parameters to

find out whether the accuracy of estimations would increase or not, as number of repeats

parameters in RE model was set after only a brief genome analysis. Results of our exper-

iments shows that there is no significant increase in estimations accuracy.

Next, we have explained how diploid genome affects haploid models (specifically E

model). Then, we have expanded the E model to consider an existence of polymorphic k-

mers in reads by adding a new parameter γ, thus creating the EP model suited for diploid

genomes without repeats. We have also incorporated an estimation of polymorphism rate
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into EP model and added EP model into CovEst. We have tested EP model on simulated

data together with E model and GenomeScope, where EP model had the highest accuracy

of all parameters.

Following the EP model creation, we were researching the possibility of usage of RE

model on polymorphic genomes with repeats. As we have shown, RE model can be only

used on diploid data with low polymorphism rate. We have further created an ERNPE

model with assumption that repeating k-mer has polymorphism in all its haploid k-mers.

This model yields surprisingly good results on simulated data from real Caenorhabditis

elegans genome. As the last model, we have suggested an REP model and although we

were unable to obtain meaningful results, this model has relatively strong biological basis.

Genome properties estimation yields several challenges for future research. Continuing

our work on genome repeats estimations from βR,o for RE model may bring fruitful results.

Other approach to address this problem is to avoid computation from βR,o at all and instead

model repeats in genome directly in RE model.

Another challenge is the investigation of REP model, its optimization process and results

it yields. Following research is the creation of prediction model without any assumptions

on input data for diploid genomes.

Prediction models can be also expanded to include other biological phenomenons such

as GC bias, when sequencer prefer reads from areas in genome rich in G and C bases,

thus creating spaces with low-to-no coverage, or eventually expand prediction models to

estimate attributes from several genomes (e.g. bacterias) in one set of reads.
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Appendix A

Content of attached CD is:

• ered_estimations.xlsx

• simulations_for_ep.xlsx

• simulations_for_ernpe.xlsx

56


	Introduction
	Biological background and problem statement
	Biological background
	Introduction to sequencing
	Genome assembly
	Properties prediction

	Errors and polymorphisms model
	E model
	Optimization process

	Polymorphism analysis
	EP model
	Results

	Extended repeats and errors model
	RE model
	Extended RE model
	Genome repeats estimation

	Repeats, errors and polymorphisms model
	RE model on diploid data
	ERNPE model
	REP model
	Repeat models on real data

	Conclusion
	Appendix A

