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professional guidance and for keeping me on the right track while writing this thesis. The
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Abstract

MapReduce is a paradigm used for processing large sets of data in parallel. FlumeJava,

developed by Google, is a library providing an abstraction of this MapReduce in form of Col-

lections and operations on these Collections. The operations defined by programmer form

an execution plan, and FlumeJava has to transform this plan into pipelines of MapReduces.

There are many options on how to create these pipelines from given execution plan, and

some are better in terms of network usage. This thesis studies the creation of MapReduce

pipelines with optimal network usage when given an execution plan.
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Abstrakt

MapReduce je paradigma využívaná na spracovávanie vel’kého množstva dát paralelne.

FlumeJava, vyvinutá v Google, je knižnica poskytujúca abstrakciu MapReduce-u vo forme

množín a operácií na týchto množinách. Operácie na týchto objektoch, ktoré sú definované

programátorom, tvoria plán výpočtu a FlumeJava má za úlohu tento plán pretransformovat’

do jednotlivých MapReduce kôl.

Je mnoho možností, ako vytvorit’ MapReduce kolá z daného plánu výpočtu, a niektoré

sú lepšie v zmysle zat’aženia siete. Táto práca skúma spôsoby vytvárania MapReduce kôl s

optimálnym zatažením siete z daného plánu výpočtu.
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Introduction

In this thesis, we study MapReduce algorithms and libraries using these algorithms as a

primitive, and aim to optimize the execution plans of these libraries.

In general, MapReduce algorithm is a distributed algorithm used for problems which are

very well parallelizable. When defining a parallel program distributed among thousands of

machines, the programmer has to deal with problems such as fault tolerance, data synchro-

nization, load balancing, etc. MapReduce lifts the programmer from the necessity of dealing

with these problems for exchange of following the MapReduce paradigm. However, using

solely the MapReduce may be inconvenient, because real-world computations often require

a pipeline of different MapReduce jobs. Therefore, some libraries using this MapReduce

algorithm as a primitive were developed (FlumeJava, Apache Crunch, Cascading, Plume,

Pig). Especially, libraries using the FlumeJava design (Apache Crunch, Plume) are meant

to deal with data collections and define convenient operations on these collections. Because

the collections are often very large (TB, PB) , most operations are parallel - in other words,

executed using the MapReduce primitive. The programmer specifies the input sources, op-

erations on these sources, and the output stream. However, the MapReduce requires very

specific functions (Map, Reduce), hence some transformation of these operations is required.

For this reason, FlumeJava uses deferred evaluation. This means that the functions called on

some object are not executed directly, but rather registered, and thus form an acyclic directed

graph - execution plan. When the program is executed, the library forms this execution plan,

transforms groups of operations into MapReduce rounds, and finally runs the pipeline.

Often, there are many solutions for these transformations. The most important aspects of

created pipelines are the number of MapReduce rounds, and the amount of data transferred

through common storage - network usage. Lower bound for the number of MapReduce

rounds can be reached easily, hence this thesis focuses on optimization of the network usage.

We will show that if the network usage during the transformation is not given much at-

tention, the resulting network usage can be higher by a large factor when compared to the

optimal.
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Chapter 1

Basic knowledge

In the following chapter we will introduce some terms and models we will use throughout

the thesis. We will also describe functionality of FlumeJava in section 1.2 and introduce the

execution plans we would like to improve.

1.1 MapReduce

In general, MapReduce is a programming model with an associated implementation for

processing large data sets in parallel. Initially, the MapReduce framework was developed by

Google, but it has recently been under wide adoption and has become a standard for large

data analysis. The Google MapReduce itself is a closed source project, but there are also

open source implementations with similar behaviour, such as Apache Hadoop. Firstly, we

will describe how the MapReduce works.

We shall now explain the basic phases of MapReduce. The basic element in this model is

a key-value pair - input and output of any MapReduce algorithm is a set of key-value pairs.

Operations are executed in the following three stages: map, shuffle and reduce. Programmers

specify functions map and reduce. The shuffle stage is hidden for programmer, and is handled

by the system. The basic work-flow should look like this:

Init - the system divides the input into many parts, determines the number of processors

(mappers & reducers) it will use, and distributes a key-value pair based on the input to

each mapper (possibly many times)

Map - every mapper takes a single key-value pair as an input and produces an output con-

sisting of a set of any key-value pairs. It is required that the map function is stateless

and pure - not depending on any other key-value pairs, and not causing any side effects

(e.g. changing a global variable).
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Shuffle - the system is responsible for this phase. Output from mappers is grouped by key.

Every reducer is supplied with a unique key and all values associated with that key.

Note that the shuffle phase can not start before all mappers are done - the system is

responsible for this synchronization

Reduce - every reducer takes a key and all values associated with it. As the reducer has ac-

cess to all values associated with the given key, it can perform sequential computations

on these values. Note that parallelism is exploited by the fact that reducers with dif-

ferent keys are independent and can be executed simultaneously. The reducer should

eventually output a set of key-value pairs (mostly one).

After all these stages are finished, a possibly smaller set of key-value pairs is ready for

either another round or final output. A program in the MapReduce paradigm may consist of

many rounds of different MapReduces scheduled one after another.

Additionally, a MapReduce can be generalized by allowing more types of mappers with

their associated inputs. This allows for great optimization, which we will introduce in section

1.2.2.

A few simple examples of how a MapReduce program could be used:

• Frequency statistics: Every mapper gets some key and one line of document as a

value, and for every word in a line emits a pair <word, n>, where n denotes number of

occurrences of word. Following the workflow, every reducer gets a word and number

of occurrences in each of the lines, so it only sums them up and outputs the result.

• Reverse Web-Link Graph: The mappers emit <target, source> pairs for each link to

target found in page source. Reducers concatenate these sources into a list and emit a

pair: <target, list(sources)>.

• Distributed Grep: All the work is done in the mappers - the map function only emits

the full line if it matches the given pattern. The reducers are just identity functions,

and copy the data to the output.

As we now have a slight image of what the MapReduce algorithm is, we shall introduce a

formal definition of this algorithm.
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Figure 1.1: Frequency statistics example of MapReduce

1.1.1 MapReduce Class

If we want to formally define a MapReduce Class, we need to properly define mappers and

reducers. We will use the definitions stated in [6].

Definition 1.1.1. A mapper is a function which takes as input one ordered <key,value> pair

of binary strings. As output the mapper produces a finite multiset of new <key,value> pairs.

Definition 1.1.2. A reducer is a function that takes as an input a binary string k as a key,

and a sequence of values v1, v2, . . . , which are also binary strings. As output, the reducer

produces a multiset of pairs of binary strings {< k, vk,1 >, < k, vk,2 >, . . . }.

A simple corollary form definitions stated above is, the mappers may change the keys

anyhow, whereas the reducers can not. Following these definitions, we shall now formally

define an algorithm in MRC class.

Definition 1.1.3. Let input be a finite sequence of pairs (k j, v j), then n =
∑

j( |k j| + |v j| ) is

size of the input. An algorithm in MRCi consists of sequence <µ1, ρ1, µ2, ρ2, . . . , µr, ρr> of

operations where exists ε > 0 such that:

• Each µr (resp. ρr) is a randomized mapper (resp. reducer) implemented by a RAM

(Random Access Machine) with O(log n) length words, that uses O(n1−ε) and time

polynomial in n.

• Let Ur be the multiset of output by ρr, then the total space
∑

(k,v)∈Ur
( |k| + |v| ) used by

(key, value) pairs output by µr is O(n2−2ε)

• The number of rounds is O(logi n)
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This definition gives restrictions to memory, it requires the memory of mappers and re-

ducers to be substantially sublinear to the size of input. However, we should also restrict the

number of machines - as an algorithm requiring n2 machines, where n is the size of web, is

not very practical. Therefore, we require the number of required machines to be also sub-

stantially sublinear in the data size. Note that more than one instance of a reducer may run

on the same machine, as the total number of keys may be as large as O(n2−2ε).

1.1.2 Apache Hadoop

Google has recently (August, 2014) been granted a patent for MapReduce algorithm, and

their implementation of MapReduce is a closed source. For these reasons, we will not work

with the Google MapReduce itself in this thesis, but rather with an open source implementa-

tion from Apache - Hadoop.

Hadoop, like many of these open source implementations of MapReduce, is based on the

specification of the Google MapReduce model. That said, we will not lose too much by

examining this implementation instead of the one from Google. Additionally, Hadoop is

currently used by many large companies (Facebook, Twitter, LinkedIn, Yahoo, . . . [2]) and

is periodically updated, so it is not just some forgotten open-source software. Now we will

shortly introduce, what are the components of Hadoop and how it works.

The Apache Hadoop MapReduce is a software framework meant for writing applications

processing vast amounts of data in parallel (following the MapReduce paradigm described

above) conveniently, and in a fault tolerant manner. Although Hadoop framework is imple-

mented in Java, the map / reduce tasks are not required to be written in Java. They just have

to be executables with proper input & output following the specification of MapReduce. As

this framework can operate on large data, stored across many clusters, Apache has developed

technologies to assure easy synchronization, handle hardware failures, and assure efficiency.

HDFS (Hadoop Distributed FileSystem) is a distributed filesystem designed to run on a

commodity hardware. There are many similarities with existing distributed filesystems, but

there are also some differences. As the HDFS is usually running on hundreds of thousands

of server machines, hardware failures are very common and the HDFS needs to be fault-

tolerant - quick and automatic recovery is a core architectural goal of HDFS. Besides that,

HDFS is designed to support large files stored across several nodes, and to provide interface

for applications to move closer to where their data for computation is stored in order to

improve efficiency.
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YARN is a structural architecture for Hadoop MapReduce. The idea is to have one global

ResourceManager and ApplicationMaster (for job scheduling). The ResourceManager and

per node slave NodeManager form the data-computation framework. ResourceManager

is responsible for arbitrating resources among all applications, and the ApplicationMaster

is library tasked with negotiating the resources from ResourceManager and working with

NodeManager-s to execute the tasks.

1.2 FlumeJava

We have introduced MapReduce paradigm, a framework using it, but in real life, using solely

the MapReduce for computation is not very easy nor convenient. Most of the real compu-

tations need a pipeline of MapReduces. Therefore, additional coordination code to chain

together the separate MapReduce stages require additional work to manage the creation and

deletion of the intermediate results between the pipeline stages. With all these low level

details, the logical computation is obscured, and the computation itself is less transparent

and less understandable. Additionally, division into pipelines gets hardcoded and difficult

or inconvenient to change later, when the computation logically changes. For these reasons,

some libraries helping to resolve these issues have been developed. One of these libraries

is FlumeJava. In this chapter, we will present the functionality and the important parts of

specification of FlumeJava.

FlumeJava is a model with associated implementation developed at Google. It aims to

support the development of data-parallel pipelines. It is a Java library with a few major

classes which represent parallel collections. These parallel collections support many parallel

operations, which implement data-parallel computations. These parallel collections abstract

programmer from the details of how the data is represented - it does not matter if it is a

single or more files, or some database. Similarly, the implementation strategy of the parallel

operations is abstracted. These abstractions allow for simple debugging on a smaller set of

data using even the standard Java IDE debugger.

More importantly, FlumeJava uses deferred evaluation in order to achieve better perfor-

mance and to actually transform the plan into MapReduce pipeline. When a programmer

writes a logical code to be executed, it may not always be the most effective plan among the

variations of plans with same logical output. Additionally, as the user is abstracted from the

MapReduce itself, a proper mapping to the MapReduce rounds has to be found. Therefore,

the deferred evaluation essentially means that the invocations of operations are not evalu-

ated immediately, but only after the whole execution plan is constructed. All the operations
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are just chained together with their logical outputs to form an execution plan for the whole

computation. This allows the library to firstly optimize the plan before the computation is

actually executed. FlumeJava even chooses the strategy to implement for each operation in

the runtime, based on the size of intermediate data (e.g. local sequential loop vs. remote

parallel MapReduce) and can perform independent operations in parallel. It also handles all

the creation / clean-up of intermediate files created withing the computation. It is much more

effective, and easier to understand or change than hand-optimized chain of MapReduces. As

the Google states,

"The optimized execution plan is typically several times faster than a MapReduce pipeline

with the same logical structure, and approaches the performance achievable by an expe-

rienced MapReduce programmer writing a hand-optimized chain of MapReduces, but with

significantly less effort."[3]

FlumeJava uses the MapReduce algorithm just as described in previous section, but with

a few modifications:

• Map phase is generalized - multiple input sources with associated mappers are allowed.

• If the Reducers first combine all the values using an associative and commutative oper-

ation, Combiner function may be specified by the user so that some partial combining

is performed in the Map phase. The map workers will keep a cache of key-value pairs

emitted by the mappers and try to combine as many as possible before sending them

to the shuffle phase.

• In the Shuffle phase, each group of key-values pair is sent to a deterministically chosen

reduce worker. As there may be many more distinct keys than workers, many distinct

keys may be sent to the same worker machine (for different reduce instances of course),

typically by using a bucket hash function. Alternatively, user can define a Sharder

function to aid load balancing by specifying, which reducer should receive the group

for given key.

1.2.1 Core classes

The major class is PCollection<T>, which is a huge immutable collection of elements of

type T. It can be either ordered or unordered. This collection can be created either from a

Java Collection<T> or by reading a file (multiple files spread across the cluster), which may

be even binary if the process is given specification on how to read such file.
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Another core class is PTable<K,V>, which is essentially a PCollection<Pair<K,V> >, and

it is a large immutable multimap of pairs of specified types. The reason for creation of such

class even if there is an equivalent representation by another class is, that it can implement

different methods working only with the given type of data in the collection.

Last class worth to mention is PObject<T>. This class is a container for a Java object of

type T. As the above-mentioned object can be either deferred or evaluated (we will get to this

in the next section), the result is stored in this PObject<T> and the value can be extracted

using getValue() after materialization.

For manipulation of these classes, the main way is to invoke a parallel operation on it.

FlumeJava defines only a few primitive operations and the others are defined based on terms

of the primitives. Together, there are only a few primitives:

1. parallelDo() - implemented by PCollection<T>. It is an elementwise computation on

the whole input which produces a new output of type PCollection<S>. This operation

takes a function-like object DoFn<T,S> as a main argument specifying, how to map

each object from the input to values in output. This mapping function is specified

in the process() function of DoFn<T,S>. The function process() will be passed an

element from the PCollection<T> and an instance of emit function emitFn, which has

to be invoked for every element which should be in the result. Second argument for

parallelDo() is a type of object returned by the DoFn<T,S>. As there may be many

instances of DoFn<T,S> running concurrently, it must not access any global variables,

and ideally, should be a pure function.

2. groupByKey() - implemented by PTable<K,V>. It converts a multimap into a map of

type PTable<K, Collection<V> > (more specifially, PGroupedTable), where each key

is mapped to a collection of all values occurring in the former PTable<K,V> associated

with the key.

3. combineValues() - implemented by PGroupedTable<K, Collection<V> >. It takes as

an argument an associative and commutative combining function on the values of type

V, and returns a PTable<K,V>, where each Collection<V> was reduced to a single

value V using the given function. This function is, generally, just a special case of

parallelDo. However, the associativity of given function allows part of this combining

be done in mappers and finished in reducers, which is faster than doing it all in the

reducer.

4. flatten() - function that merges the given list of PCollection<T> into one large PCol-

lection<T>. More precisely, it does not copy all the inputs as this would be very
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ineffective, but rather just creates a logical view of them as one PCollection<T>.

5. operate() - used to embed an arbitrary computation withing a FlumeJava pipeline,

so that it is executed in a deferred fashion. This function can be used to manipulate

contents of PObject<T> within the execution of a pipeline. Basically, it takes a list of

PObject as an argument and returns another list of PObject as a result.

Indeed, there are many more operations defined for every of the mentioned class, but they

are defined using these primitives, no different than just helper methods a programmer could

write (e.g. count() is implemented using parallelDo(), groupByKey() and combineValues).

1.2.2 Optimizer

As mentioned before, FlumeJava uses deferred evaluation to enable optimization. Every

PCollection (or any other of the classes in previous section) can be either in deferred or

materialized state. A deferred object holds reference to the operation, which computes it. A

deferred operation holds reference to its arguments and the objects, where the results are to be

stored. As we can see, result of executing some series of FlumeJava operations is a directed

acyclic graph. This graph is called an execution plan. An example execution plan may look

like the following, as stated in FlumeJava: easy, efficient data-parallel pipelines[3]:

Figure 1.2: Example execution plan[3]

Nodes A,B,C,D,E,F represent different

parallelDo functions.

1. Inputs 2 and 3 are fed into parallelDo B

and C. Input 4 is counted using special op-

eration count and the result is processed

by E. One copy of input 1 is written to an

output file and the other copy is processed

by A.

2. Results of B,C are flattened together and

pushed as an input for D.

3. Results of A,D,E are joined together using

derived operation join() and the result is

processed by F.

4. Result of F is written to an output file.
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Programmer specifies this pipiline using object MRPipeline and can eventually invoke

materialization of all objects in this pipeline by calling MRPipeline.done(). This will at first

start the built-in optimizer, which will try to optimize the execution plan. The main aim

of the optimizer is to map groups of operations to MapReduce rounds in the most efficient

manner, in terms of time and resources. Eventually, after the optimization, the plan is run

and all the given objects are materialized. We’ll now take a closer look into the optimizer

strategies.

ParallelDo Fusion

Fusion is very simple and intuitive, intended to reduce the number of parallelDo functions.

As combineValues operation can be thought of as a special case of parallelDo, these fusions

apply on that operation too. We distinguish between two types of fusions:

1. producer-consumer - Let f and g be two parallelDo functions. If the result of f is

used as an input for g, then these two parallelDo functions can be replaces by a single

multioutput parallelDo, which computes g ◦ f .

2. sibling - Two or more parallelDo operations use the same input - they can be fused

together into one multioutput parallelDo operation, which computes all the results in

a single iteration over the input.

Sink flattens

In the execution plan, there might be a flatten directly followed by set of subsequent par-

allelDo operations O. For the optimizer it is better to create a parallelDo operation for every

operation from O before the flatten for every input source and flatten them afterwards. Opti-

mizer then has better opportunities of constructing the ParallelDo Fusion. In terms of func-

tions f , g, h, which operate on multisets: h( f (a) + g(b)) is transformed to h( f (a)) + h(g(b)),

so that the optimizer has the opportunity to fuse it to (h ◦ f )(a) + (h ◦ g)(b).

MSCR (Map Shuffle Combine Reduce) Fusion

This is the core optimization pattern in FlumeJava. It transforms combinations of paral-

lelDo, groupByKey, combineValues and flatten into one MapReduce. As the algorithm may

not be obvious from the first sight, let us introduce the MSCR operation. The MSCR consists

of M input channels and R output channels. All of these input channels perform one (or any

amount, because of the producer-consumer fusion) parallelDo (or as to say, map) operation

with R outputs. These outputs may go to one or more of the R output channels. All inputs

per channel are flattened, and in the next stage we allow for two types of output channels:
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1. groupByKey ("shuffle") will be perfomed, and optional combineValues and parallelDo

(as a "reduce") may be performed afterwards.

2. Outputting the value is required. No grouping nor parallelDo is performed and the

values are just pushed through the channel.

After both cases, the data from every channel is pushed to one of the R output channels.

Figure 1.3: Optimized MSCR from figure 1.4[3]

MSCR is a generalization of one

MapReduce round. We can think

of the initial parallelDo phase in

every input channel as the map

phase, of the groupByKey phase as

the shuffle phase and eventually, of

the combineValues and parallelDo

as the optimized reduce phase in

MapReduce. It is a generaliza-

tion, because it allows more types

of mappers and reducers. This gen-

eralization has less constraints and

is thereby a better target for opti-

mizer.

We will show one way, how MSCR can be performed in a single MapReduce round.

• Map phase - as we assume a generalized MapReduce model, which allows multiple

input sources with associated mappers, we can use different mappers for each input

channel. For the next stage to work properly, without mixing the elements between

channels, we can tag key from every emitted pair with a channel (e.g. from < K, V >

make < < Channel, K >, V >). If combineValues is specified for a channel, the map-

pers will try to combine as much as possible before emitting a pair to the channel, as

specified in 1.2.

• Shuffle stage - this is where the groupByKey will be executed in every channel. Be-

cause of the previously done marking, all of these keys will stay in their appropriate

channels and the distribution in channel will be exactly the same as if the groupByKey

was running independently (not in optimized MSCR).
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• Reduce stage - Reducers will receive pairs with a channel specified in the key. This

way, they can determine the channel they work with and the reducer they should mirror.

If the combineValues was specified in the channel, reducer firstly finishes combining,

removes the channel from key, and runs the mirrored reducer on the new pair. The

output from the mirrored reducer is again tagged by a key, so that it could be sent to

proper output channel.

Now only remains to show, how to create the described MSCR fusion. Firstly, we need to

find a proper pattern in the execution plan. We will start with a few definitions to ease the

description of searched pattern.

Definition 1.2.1. We say that a PCollection is an input source for groupByKey operation, if

it is one of the arguments of the preceding flatten operation, or is a direct argument of the

groupByKey operation.

Definition 1.2.2. We say that two groupByKey operations are source related, if any of their

input sources is common (produced by the same parallelDo operation). Furthermore, if we

assume a transitive closure (Φ) of this relation, we say that a set M of groupByKey operations

is source related, if ∀x, y ∈ M : (x, y) ∈ Φ.

Figure 1.4: Example pattern for MSCR[3]

We find a groupByKey operation, and then

the largest source related set containing this

operations. Every of these groupByKey op-

erations will form a distinct groupByKey

type channel. Then, we find all the par-

allelDo operations, where one of their out-

puts is used as an input source for any of

the considered groupByKey operations, and

construct a new channel for every output of

these operations, which is not consumed by

any of these groupByKey operations. These

new channels will be the outputting type

channels. The input channels will be all the

channels, which are input sources for the

considered parallelDo operations.

The output channels are now logically equivalent to the corresponding output channels in

the former execution plan, but the plan can be executed in a single MapReduce round.
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Eventually, when all the groupByKey operations are replaced by appropriate MSCR oper-

ations, the optimizer creates a trivial MSCR operation for every remaining parallelDo oper-

ation. Afterwards, there remain only the MSCR, flatten and operate operations.

Optimizer strategy

Now that we have defined all the optimizations the optimizer uses, we shall explain the

algorithm how the optimizer actually optimizes the execution plan.

1. Sink Flattens - optimizer prepares transforms the execution plan to one with more

opportunities for ParallelDo Fusion

2. Lift combineValues - if a combineValues is about to happen immediately after group-

ByKey operations, the groupByKey remembers it, which allows for combining opti-

mization while grouping. The original combineValues is then treated as a regular par-

allelDo, able to fuse.

3. Create fusion blocks - Preparations for producer-consumer and MSCR fusions. The

MSCR fusions can be dependent - two groupByKey operations can be connected by a

chain of parallelDo operations. The optimizer has to decide, which parallelDo oper-

ations should it fuse "up" and which "down". The optimizer firstly estimates the size

of intermediate PCollection-s along the chain and tries to find one with minimal size.

This will be the boundary between the two MSCR fusions.

4. ParallelDo fusion - fuse parallelDo operations with respect to the fuse blocks, using

either producer-consumer fusion or sibling fusion.

5. MSCR fusion - create MSCR operations from the fuse blocks.

6. Dispose of parallelDo - convert any remaining parallelDo operation to trivial MSCR

operation.

1.2.3 Optimizer imperfections

The optimizer described above is not perfectly optimal. As any optimizer, even this

has some space for improvements. As stated in FlumeJava: easy, efficient data-parallel

pipelines[3], there are a few imperfections:

1. redundant operations - sometimes, the users write execution plans containing dupli-

cate operations or more subsequent groupByKey operations (maybe disguised as join),

resulting in less efficiency. The optimizer should be able to detect such cases, and

remove the unnecessary operations.
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2. user-code analysis - this optimizer does no analysis on user-written code. While de-

termining the boundary of a fusion block, it only decides based on the structure of the

execution plan and some optional hints provided by the user on the size ratio of input

and output. The optimizer can be improved by running a static analysis of the user

code and get better expectations for the size ratios.

3. modifying the user-code - the optimizer does not modify user-code. Better perfor-

mance may be achieved by generating a new code, which would represent the appro-

priate composition of the user’s functions.

1.2.4 Execution

FlumeJava executor now supports batch execution. This means, that the independent op-

erations in forward topological order are executed concurrently. This way, it enabled a kind

of task parallelism.

We will now take a look, how the executor runs the newly constructed MSCR. Firstly,

FlumeJava decides, whether to run the operation locally, or as a remote - parallel MapRe-

duce. This decision is made based on the size of input sets. FlumeJava estimates the sizes

based on the hints about the input / output ratio provided by user and the structure of ex-

ecution plan. As there is some overhead in launching a remote job, the local, sequential

evaluation is preferred for smaller inputs, while the remote, parallel MapReduce, is used

mainly for large input sets. If the FlumeJava decides to run the operations as a remote, it

automatically chooses a reasonable number of workers (mappers & reducers) based on the

observations of input data and the optional user hints.

FlumeJava also makes it easier when finding a bug in a large pipeline: it supports a cached

mode, where the FlumeJava will rather use the result from the previous run, than recompute

the whole operation from scratch. This will happen, when the FlumeJava determines the

reuse of previous results is safe.

1.3 Apache Crunch

In the previous section, we have introduced the FlumeJava model, along with its features.

However, FlumeJava is a closed-source implementation bound by a software patent, so we

will not be able to work directly with the associated implementation of FlumeJava by Google.

On the other hand, some open-source implementations based on FlumeJava model have been

developed after the release of FlumeJava (Apache Crunch, Plume).
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Apache Crunch claims to be based on the FlumeJava model - as is the optimizer, which

will be the main point of interest in this thesis. Indeed, according to the documentation in

[1], the API and workflow is very, very similar.

In the next chapter, we will take a closer look at the abstraction of the optimization problem

itself, and discuss its complexity.
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Chapter 2

Optimization of network usage

Basically, the main aim of the optimizer is to prepare a plan, which processes the data in

the fastest way possible while using the least resources. These jobs are mostly run on a large

network with huge number of workers. As the MapReduce is highly scalable, it only makes

sense for the companies to have one (or very few) large network used for MapReduce jobs.

Also, there are companies offering to run these jobs as a service. In both cases, there is a

high possibility that more jobs will be running concurrently on one large network. Hence,

one of critical points of the optimizer should be to minimize the network usage.

During the execution of a plan, there are basically two options for what is happening to

the data at any point. The data may be:

1. processed or moving within a worker

2. sent to another worker via network

There is no network usage in the first case, because all the data is only moving within the

worker, without touching the network. This happens when the data is being processed in a

worker by a particular (possibly fused) map or reduce operation.

For the latter case, there are again two possibilities where it can take place: the data is

travelling from worker at the end of one MapReduce round to a worker at the beginning of

another, or the data is being sorted by distributed sort in the shuffle phase. We cannot influ-

ence the amount of data sorted in the shuffle phase by modifying the creation of MapReduce

pipelines from given execution plan, because if we want to create an equivalent plan in terms

of input and output, the total amount of data flowing through an operation should stay the

same. The amount of the data travelling between two MapReduce rounds directly depends

on where the fusion block is inserted. The optimizer is responsible for dividing the plan to

fusion blocks. In this chapter, we will study how to improve it.



CHAPTER 2. OPTIMIZATION OF NETWORK USAGE 17

2.1 Execution plan as a graph

As we’ve previously stated, the execution plan consists of derived, and a few primitive

operations. After all these derived are replaced by a combination of primitive operations,

the plan eventually consists only of these four primitive operations: parallelDo(PD), com-
bineValues(CV), groupByKey(GBK), flatten.

Firstly, we will consider a very straightforward graph representation of an execution plan:

1. we create a vertex v ∈ V for each of the primitive operations

2. ∀u, v ∈ V : if there is an edge between u, v in execution plan, then (u, v) ∈ E

3. contract the edge between every flatten operation and the operation it is flattening into

(right after it in the plan)

a b c

f f

GBK

GBK

e

d

a b c

GBK

GBK

e

d

Figure 2.1: Example transformation of plan to a graph, where a, b, c, d are

parallelDo, f is flatten, GBK is groupByKey, and e is combineValues

Additionally, for every edge (u, v) ∈ E we define the capacity function c(u, v) as the

amount of data flowing between the operations corresponding to u and v in the original exe-

cution plan. Moreover, as the combineValues operation is just a special case of parallelDo
operation, we will treat them both equally - as a parallelDo. This yields quite simple DAG
representation of an execution plan, which we will use from now on.
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As we have this representation now, we can define a following simple property:

Definition 2.1.1 (dependency). Given a graph G as a representation of an execution plan,

we say that operation b is dependent on operation a if there exists a path in G from the vertex

corresponding to a to the vertex corresponding to b.

2.2 Partitioning for basic plans

If there is at most one GBK operation, the final execution plan produced by the optimizer

is very simplistically optimal, because everything there can be done in a single MapReduce

round. The network usage in this case is optimal, as there are no intermediate writes to

common storage.

We shall now consider a simple class of execution plans with exactly two GBK operations.

Additionally, to ensure that the plan can not be executed in a single MapReduce round (or

two parallel), we consider only plans where one of the GBK operations (b) is dependent on

the other (a).

As stated in previous section, the optimizer can affect the network usage by dividing op-

erations into fusion blocks. As we now have only two of these GBK operations, there will

only be two fusion blocks, and the aim of the optimizer is to minimize the data transferred

between these blocks. The operations which are dependent on GBK B have to be in the same

block as the GBK b and, similarly, the operations on which the GBK a is dependent have

to be in the same block as GBK a. Therefore, these operations will never affect the choice

of fusion blocks, and it is unnecessary to consider them in this graph. Thus, the graph is

reduced only to these two GBK operations and operations on the path from a to b.

Before we continue any further, we should remind ourselves of the definition of a Mini-
mum s-t cut

Definition 2.2.1 (Minimum s-t cut). Given a directed graph G = (V, E) with edge capacity

function c(u, v), a cut refers to a partition of the node set into two nonempty parts S and

N − S . An s-t cut C = (S ,T ) is a partition of V such that s ∈ S and t ∈ T. The capacity of

and s-t cut is c(S ,T ) =
∑

(u,v)∈(S×T )∩E
c(u, v). The minimum s-t cut problem is to determine sets

S and T such that c(S ,T ) is minimal.
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2.2.1 Direct application of min-cut

While still considering the reduced graph as in previous section, it may seem obvious that

the minimum network usage is the minimum cut in this graph. Hence, we will now analyze

this minimum cut between GBK a and GBK b.

As an example, consider the graph on the

right, and that the minimum cut divides the

operations to sets S and T as shown on the

image. The edges going from S to T will be

the only edges transferring data between these

two MapReduce rounds. However, there can

also be edges going from T to S - and as the

block S has to be processed strictly before the

block T, there is no way to transfer data from

an operation in T to an operation in S, and we

have to handle this case differently. At this

moment, we make use of the stateless prop-

erty of PD operations. This means that the PD

operations should only depend on their input,

and nothing else. Therefore, if we interpret the

operation as a function f getting inputs a and

b, then f (a + b) = f (a) + f (b). In other words,

the operations behave as linear functions, and

we can transform the data by parts.

GBK a

a b c

d

f

e

g

GBK b

S

T

Figure 2.2: Partitioning the execution plan

Before we make any modifications to a plan, we should define what it means when two

plans are equivalent.

Definition 2.2.2 (Equivalency). Two plans are equivalent, if for every input dataset, both

plans output the same dataset.

Taking into account this case, where only two dependent GBK operations are present, we

assume that the input dataset is the output from GBK a and the output dataset is the input for

GBK b.

Operation division Consider an operation f taking inputs a and b. We make a copy, f ′ of

f , and make a the input for f and b the input for f ′. As for the outputs, the capacities of both

f (a) and f (b) must have changed, because they receive less input sources. However, there is
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no way to decide the sizes of these outputs from the capacity function as it is now defined.

Hence, we will now define the capacity function in a different manner.

Definition 2.2.3 (Dataflow coefficient). For every pair of edges e1 = (u, v), e2 = (v,w), e1, e2 ∈

E we define the dataflow coefficient d f (u, v,w) ∈ R+ as the ratio between the size of the out-

put to w and input of v, provided that the input comes from u.

Using this definition, the capacity function can be computed using the following recursion:

c(v,w) =
∑

(u,v)∈E
c(u, v)d f (u, v,w), where ∀e = (GBK a, u) ∈ E the c(e) are sizes of outputs

from GBK a given in the graph.

We will now use this division of an opera-

tion to dispose of edges from T to S. When-

ever there is such edge between u ∈ T and

w ∈ S , we divide w, and place the copy w′

connected to u into T . If w was connected to

v, then the corresponding outputs of the w′ and

w are divided, and they merge back as inputs

for v. By making use of the stateless prop-

erty of operations, the plan after this step is

equivalent to the original plan. If we repeat

this until there are no edges from T to S, we

finally have a graph, which is valid in terms of

creating MapReduce rounds.

However, the sum of capacities of the edges

from S to T in the final graph will always be

lower (if there were any edges from T to S in

the former graph) than in the former. Thus, it

might happen that there is a cut which is not

minimal in the former graph, but will eventu-

ally (after dividing the necessary operations)

be smaller in the final graph.

GBK a

a b c

d

f

e

g

GBK b

e

Figure 2.3: Operation division

Note that after an operation is divided, they both represent the same operation. Although

there are now two vertices representing the operation, they both maintain the dataflow coef-

ficient of the original operation.
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We will elaborate on this hypothesis using an example. Consider a graph in figure 2.4.

Weights on edges illustrate expected amount of data (the units are now irrelevant) flowing

between the operations. For every two vertices x, y in the graph, we will now denote the data

going from x to y as p(x, y). Consider that the PD d has the following behavior: |d(p(c, d))| =

3 and |d(p(a, d))| = |d(p(e, d))| = 1. The minimum cut of weight 3 + 5 + 2 = 10 is obtained

by partitioning the vertices into sets {a, c, d} and {b, e}. Then, after the graph is prepared for

insertion of fusion blocks, the total data passing through common storage is 3 + 4 + 2 = 9.

GBK a

GBK b

c d e

4 210

3 3

5 33

GBK a

GBK b

c d

e

4

2

10

3

3
1

3

4

d

3

Figure 2.4: Direct application of Min-cut

However, this naive direct application of min-cut does not take in account the behavior

of operations on particular inputs, but only on all inputs merged together. If we consider

also the outgoing data flow for every particular input for operations with more than one

input (currently, only d), we might get better final results. The operation d has, basically, 3

outgoing edges of weights 3, 1, and 1. Previously, we let the edges of weights 3 and 1 pass

through the common storage. It might be more beneficial to run the heavy edge (3) locally,

and let the light edges pass through the common storage.

Consider partitioning this graph into sets {a, d} and {c, e, b}, as seen in figure 2.5. Then,

the cut has weight 4 + 5 + 2 = 11. However, after the graph is prepared for insertion of

fusion blocks, the data passing through common storage is expected to be only of weight

4 + 1 + 2 = 7, which is less than the partition found by direct application of min-cut.
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GBK a

GBK b

c d e

4 210

3 3

5 33

GBK a

GBK b

c

d

ed

4
2

3

10

1

33

3 4

Figure 2.5: Counterexample for direct application of Min-cut

Therefore, we need to find a way how to take these outgoing edges into consideration

when calculating this Min-cut.

2.2.2 Optimal partitioning

The problem in previous section was that the graph, after it was partitioned, needed to be

adjusted for insertion of fusion blocks, and therefore its final dataflow through a common

storage might have changed. We will try to pre-modify this graph in such a way, that this

problem will be eliminated.

Definition 2.2.4 (Normalized plan). We call and execution plan normalized, if every paral-

lelDo and combineValues operation has at most one input stream.

Lemma 2.2.1. Consider a normalized plan. The weight of Min-cut on a graph corresponding

to this plan is also the minimum data flow in the normalized plan.

Proof. We will prove this by contradiction. Denote the partitions S and T as in previous

section. Find a Min-cut on the graph and consider the opposite. Then, there must have been

an edge from t ∈ T to s ∈ S , otherwise the plan would be prepared for fusion blocks without

any modifications, and the data flow would not change. Consider a graph H induced by

vertices in S reachable from s. By definition of H, all outgoing edges from H end in T and

thus contribute to the cut. Denote these edges EHT . We now move all vertices in H to T .

As all of the vertices have exactly one incoming edge, there are no new edges between S
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and T . However, the weight of the cut is reduced by the sum of weights of edges in EHT .

Contradiction with the previously found Min-cut. �

Finally, what remains is to normalize any given execution plan. Then, using the lemma

2.2.1, we will find find the Min-cut of the normalized plan, and construct the final and optimal

execution plan, prepared for insertion of fusion blocks.

Corollary 2.2.1.1. Consider execution plans G and H. If for every path from GBK a to GBK

b in G exists a path in H consisting of the same operations in the same order, and vice versa,

the plans G and H are equivalent.

Lemma 2.2.2. For every graph G of an execution plan consisting of distinct vertices and

two dependent GBK operations, there exists a normalized plan H, such that G and H are

equivalent.

Proof. We will present an algorithm for finding a normalized plan. Consider a reverse topo-

logical order of vertices in G. Such order must exist, as the graph is directed and acyclic.

Process vertices in the defined order as follows:

1. Let v be the currently processed vertex, and Pv be the set of predecessors of v.

2. Create |Pv| copies of subgraph induced by vertices reachable from v.

3. For every vertex in Pv, remove the edge to former v and connect one copy as a child.

After all vertices are processed, we might end up with more copies of GBK b - we merge

these into a single one. Note that it follows from the order defined, that each time a subgraph

is copied, every vertex in the subgraph was already processed. Therefore, this algorithm

produces a normalized plan H in a finite time. What remains to show is that G and H are

equivalent. Consider a path p from GBK a to GBK b in G. Let Ep be the set of edges on this

path. Every edge (x, y) ∈ Ep is also in H, because it was created when y was being processed.

Vice versa, consider a path q from GBK a to GBK b in H. Every edge (w, z) ∈ Eq is again in

G, because the edge (w, z) was created when z was processed, and therefore w must be parent

of z in G =⇒ (w, z) ∈ G.

Lastly, we will show that even though there are duplicate vertices in H, there are no duplicate

paths. Notice that every vertex has at most one child with given label, because every vertex

is processed exactly once and his copies are attached to distinct parents. It follows that there

must be no two paths distinct in terms of vertices, but matching in terms of labels (labels

of duplicated vertices stay the same), as there would be a vertex having 2 children with the

same label. It follows now from corollary 2.2.1.1, that G and H are equivalent. �
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Figure 2.6: Algorithm for plan normalization

Lemma 2.2.3. Consider a normalized graph, and a vertex u in this graph. The edges on all

pairs of paths starting at distinct outgoing edges of u, and ending in GBK b, are completely

disjoint.

Proof. If we omit the GBK b, the graph is, essentially, a rooted tree with U as root. Therefore,

for every node, the subtrees rooted in its children are completely disjoint. �

Lemma 2.2.4. The Min-cut between a node u and GBK b in a normalized plan can be

computed using the following recursion:

mc(u) =
∑

(u,v)∈E
min(c(u, v),mc(v)), where ∀(u,GBK b) ∈ E : mc(u) = c(u,GBK b)

Proof. Every cut starting at an outgoing edge from u has to be cut somewhere. Following the

Lemma 2.2.3, these paths are independent per child of u. Hence, cutting an edge in subtree

of child x of u does not cut any edge in subtree of any other child y of u. The cut can be then

calculated recursively for each child x of vertex u by choosing the minimum between cutting

the edge (u, x) or separating x from the GBK b. �

Corollary 2.2.4.1. The value mc(GBK a) stores the Min-cut of the given normalized plan.

Complexity

Running time of this algorithm is linear O(|V|), as we touch every edge at most twice (one

can imagine this as a DFS traverse). Slight modification can be made if we want the edges
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of the cut - each node would also remember the choice it made for every edge (it has either

added that edge to the cut, or some edge from the subtree on the other end). The cut can then

be reconstructed again in linear (O(|V|)) time.

Computations on the normalized graph are linear, however, the transformation of a graph

to the normalized form can exponentially increase the number of vertices. See example 2.7.

GBK a

c e

GBK b

f g

c e

f g f g

...

GBK a

...

GBK b

Figure 2.7: Exponential increase in graph size

The worst case, in terms of graph expansion, is when the input graph is a complete directed

acyclic graph - adding additional edge would create a cycle. The normalized form of this

graph, also contains an exponential number of vertices.

Lemma 2.2.5. There are as many as 2n−1 vertices in a normalized form of a complete di-

rected acyclic graph with n vertices.

Proof. We will prove this by induction. Base - graph with one vertex is already normalized.

By adding a new vertex v, connected to each of the previous vertices, the normalized graph

can be constructed in the following fashion - construct a normalized graph rooted in each of

the former vertices, and connect the roots of each to v. Therefore, the size of the normalized

form of a graph with n vertices can be expressed recursively: a(n) = 1 +
∑

0≤i<n
a(i), where

a(1) = 1. Hence, a(n + 1) = a(n) + 1 +
∑

0≤<i<n
a(i) = 2a(n). �
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Although this increase in graph size can be exponential, the algorithm is still much better

than a brute-force, which we will analyze in the next section.

a

b

c

d d

c

d

c

dd

b

a

Figure 2.8: Normalized complete directed acyclic graph

2.2.3 Comparison with brute-force algorithm

Definition 2.2.5 (Viable). A partitioning of a graph G = (V, E) to partitions S and T , such

that @(u, v) ∈ E : u ∈ T ∧ v ∈ S , is called viable.

Corollary 2.2.5.1. Every viable partitioning directly defines fusion blocks without any nec-

essary changes to the plan.

A brute-force algorithm would work in the following fashion - find every viable partition-

ing, compute the weight of the cut, and return the smallest one. However, the number of

viable partitionings may be very large. Basically, as we are able to split any node by its

incoming and outgoing edges, we can also consider a very strict form, which consists of

only vertices with a single incoming and outgoing edge. This representation contains a path

consisting of unique edges for every path between GBK a and GBK b. Every viable cut has

then cut every of these paths. If we interpret the GBK v as a leaf for every path, the number

of viable cuts can grow as large as Π(GBK a,u(height(u) + 1). Hence, the number of viable

partitionings in 2.7 is
(

n−2
2

)2
n−2

2

, where n = |V |.

This expression really denotes the total number of viable cuts, because there are no back-

ward edges if the cut is constructed as described, and the MapReduce rounds can be con-
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structed. However, there are edges in different paths which contain identical data, so if one

is cut, it only makes sense to cut the other (in terms of finding the minimal cut) - in other

words, some data could flow through the same operations (in terms of types), but end up

in different nodes. The given calculation does not take this into account. A more precise

enumeration of meaningful viable cuts can be calculated on a graph representation, where

all the data which has flown through the same sequence of operations ends up in the same

node (with the exception of GBK b). This property is maintained in the normalized graph

representation.

Lemma 2.2.6. In the normalized plan, all data which was computed by composition of the

same sequence of operations end up in the same vertex. (except for GBK operations)

Proof. There are no duplicate children of any vertex in the normalized plan, because there

would have to be duplicate operations in the original plan, as the operation type of children

of any vertex was not changed. Additionally, as there is only one incoming edge to every

vertex u, there exists a unique path between the root node (GBK a) and vertex u. �

Lemma 2.2.7. Number of viable cuts between any node u and node GBK b in the normalized

graph can be computed by the following recursion: cuts(u) = Π(u,v)∈E(cuts(v)+1), with initial

value cuts(GBK b) = 0.

Proof. As every node except the GBK b has a unique parent, the sets of edges in subtrees

rooted in children of u are disjoint. Therefore, every child v of u has to be either cut some-

where in the rooted tree of v, or the edge (u, v) has to be cut. Additionally, as the sets of edges

for children are disjoint, the cuts for each child are independent, hence the multiplication. �

Following the Lemma 2.2.7, the number of meaningful viable cuts of the normalized plan

in 2.7 can be computed by the following recursion c(2n) = (c(n) + 1)2, c(2) = 1, where n

denotes the number of vertices. We will use the recursion a(n) = (a(n − 1) + 1)2 which

was solved by Aho and Sloane in The Online Encyclopedia of Integer Sequences [7] labeled

A004019 - a(n) ≈ b2n−1
− 1, where b ≈ 2.258518. The definitions imply the following:

c(n) = a(lg(n)) ≈ b
n
2 . If the original plan in 2.7 has n vertices, the normalized plan has 2

n
2

vertices⇒ the number of meaningful viable cuts in given example is O(c(2
n
2 )) ≈ O(b2

n
2 −1

).

Theorem 2.2.8. A brute-force algorithm for finding the optimal partitioning by enumerating

all viable cuts would in worst-case have to enumerate approximately bc2n
c cuts, where c ≈

1.59791

Proof. Similarly, using the Lemma 2.2.7 for the complete directed acyclic graph in example

2.8, and approach used in the proof of Lemma 2.2.5, the number of meaningful viable cuts

can be calculated using the following recursion:

a(n) = Π0≤i<n(a(i) + 1)
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Hence,

a(n + 1) = (a(n) + 1)Π0≤i<n(a(i) + 1) = (a(n) + 1)a(n) = a(n)2 + a(n)

This recursion was solved and published by Benoit Cloitre in The Online Encyclopedia of

Integer Sequences [7], yielding a(n) = bc2n
c, where c ≈ 1.59791 �

The proposed algorithm is better by the factor of the number of viable cuts in the normal-

ized version of a graph, while the number of these cuts may be exponential.

2.2.4 General model

In the previous section, we’ve supposed that all the data flowing from through an edge

between two vertices in the graph is unique - in other words, that there are no two edges

carrying the same data. However, if in the program there are more operations performed on

a PCollection, which is the result from some operation u, then in the plan these outgoing

edges from u carry identical data. Therefore, if there’s a cut through more of these outgoing

edges, it is only necessary to transfer the data once and copy it upon reading, as they are all

identical. We will call this model the General model.

Additionally, as all the output edges from a vertex carry identical data, then for the

dataflow coefficient, the following holds: ∀u, v ∈ V,∃c ∈ R+,∀(v,w) ∈ E : d f (u, v,w) = c.

In other words, the last argument in d f is irrelevant, as it necessarily yields the same result

for all possible values. Hence, we will use the short form of d f (u, v) in this section.

Similarly, we will also modify the capacity function, as it does not matter, where the out-

put leads to.

Definition 2.2.6 (Output function). For a given plan, we de-

fine the out function out(w)∀w ∈ V as the amount of data

flowing from the vertex w, when given all input data for w.

Corollary 2.2.8.1. The output function out(w) for each w ∈

V can be computed recursively from given dataflow coeffi-

cient (provided that the input data from GBK a is normalized

to 1)

out(w) =
∑

(u,w)∈E
(d f (u,w) out(u)), out(GBK a) = 1

u1 u2

w

out(u
1 ) ou

t(u 2
)

df(u1,w)out(u1) + df(u2, w)out(u2)

Figure 2.9: Out function of

operation
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Similar problem with edges like these was solved in [10]. The authors H. H. Yang and D.

F. Wong propose a polynomial-time algorithm for finding a form of a Min-cut (minimizing

the number of edges from S to T ) in such graph. The algorithm firstly transforms all the

outgoing edges from each vertex into a structure with similar properties as a hyperedge, and

then computes a Min-cut on the transformed graph. However, even if we generalized the

solution to finding a regular Min-cut, we would still face the same problems with backward

edges as in section 2.2.1.

Algorithm for optimal partitioning

As in the previous model, we can solve this problem by transforming the plan into a normal-

ized plan. Although there are many copies of the same vertex in the transformed plan, their

outputs are independent. They do not transfer the identical data, because the path to each of

the copies of a given operation is different. Hence, given a normalized plan we can compute

the Min-cut in a similar manner.

Lemma 2.2.9. Consider a normalized plan, where all output channels from an operation

carry the identical data. The Min-cut between any node u and GBK b can be computed

using the following recursion:

mc(u) = min(out(u),
∑

u,w)∈E
mc(w)) where ∀(w,GBK b) ∈ E : mc(w) = out(w)

Proof. Similarly, as in Lemma 2.2.4, for every edge (u,w) of node u, either the edge has to

be cut, or the subtree rooted in w has to be cut. In this case, however, we can cut all outgoing

edges from u for unit price. Hence, we take the smaller from cutting the outgoing edge, and

cutting all subtrees rooted in all children of u. �

Complexity of this algorithm stays exactly the same as in section 2.2.2, for the same rea-

sons. And again, the normalization step of a plan can exponentially increase the number of

vertices, so the worst case running time is again O(c|V |) for some constant c.

2.3 Partitioning for general plans

In previous section we have only discussed the most simplistic case, where only 2 GBK

operations were present in a plan, and these operations were dependent. However, most of

the plans contain many more GBK operations, and some of them may not even be depen-
dent. Therefore, we need to generalize the former algorithm in such a way, that it would be

applicable for any execution plan.
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2.3.1 Abstraction of general execution plan

Firstly, we will try to use the methods which worked in the previous section for the most

simplistic case - normalization.

In the previous section, we have supposed

that the data is created in the GBK a and con-

sumed in GBK b. In other words, that there

is no input for GBK a and no output for GBK

b. However, in the plans in the real world the

data has to get to each of the GBK operations

somehow, and, similarly, every output of ev-

ery operation is either consumed by another

operation or outputted somewhere. Addition-

ally, there might exist some operations which

would like to read input directly, rather than

the output of some other operation. Therefore,

we will introduce a new Input vertex and Out-

put vertex.

GBK A

GBK C

Output

Input

GBK B

GBK D

Figure 2.10: Example of a plan with more

GBK operations

Definition 2.3.1 (Input). The Input vertex provides inputs for the FlumeJava program. Input

vertex in plan has no incoming edges, and may have many outgoing edges, which do not

necessarily provide the same data. There is always just a single Input vertex in any plan.

Definition 2.3.2 (Output). The Output vertex is used as a stream for outputting (from the

FlumeJava program) any data from its inputs. Output vertex in a plan has no outgoing

edges, and may have many incoming edges.

Since we have these new vertices, it is worth to mention that a plan with an operation

without any incoming edge can be reduced to a smaller, equivalent plan by removing that

operation - as it takes no inputs, its outputs are also empty, and it is meaningless. Similarly,

a plan with an operation without any outgoing edge can be also reduced - if the output of an

operation is never used nor outputted from the program, the operation is meaningless. Hence,

we will now consider only graphs, where each operation (apart from Input and Output) has

at least one incoming and outgoing edge.
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2.3.2 Approaches to partitioning the plan

The plan might contain many GBK operations. Some of these operations might be depen-

dent on other GBK operations, some do not have to be dependent on any. We will denote the

set of GBK operations as M. As stated in previous section, no two dependent operations can

be processed in single MapReduce round. Therefore, we need to separate each of the pairs

g1, g2 ∈ M, where g1 is dependent on g2. However, as finding such cut in the original plan

did not yield any reasonable results even for the simple case yet, we try to normalize the plan

beforehand.

GBK a

GBK c

b c

Output

Input

GBK b

GBK d

d

f

e

a

i

h

lk

g

j

Output

Input

b

h

j

i

j

GBK c

k

i

j
k

ll

GBK d

d

f
g

l

g

GBK b

e

a

c

c

GBK a

Figure 2.11: Normalized general plan

Although we have introduced new vertices (Input and Output), the definition of a normal-

ized plan stays the same. However, as the plans may now potentially contain more GBK

operations, we need to change the normalization algorithm. The GBK operations should not

be divided, and it does not make sense to divide them, as we are looking for MapReduce

block for each GBK. The data traveling through more GBK operations should only have

memory of the last GBK operation in went through. In other words, if there are more data

streams incoming to some GBK a, and we can not split it, then there is no sense in copying

the subtrees rooted in a, as there would only by identical duplicities. Hence, when the nor-

malization algorithm encounters a GBK operation, it will not split it nor copy its subtree. As

for the Output operation, there should be only single one in the whole plan, and so it can be

treated like a GBK operation. Input type vertex has no incoming edges, which makes it be

skipped by the normalization algorithm. Although we do not copy the subtrees under GBK-s
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for GBK-s they are dependent on, the graph may also exponentially increase in its size.

One direct approach would be to apply Min-multi-cut, however, this problem is known to

be NP-hard [4], so we would like some better solution on a possibly large graph.

We will use similar approach as in the previous section - for every node we computed the

cost of partitioning the vertex from the GBK used as sink. However, we now may have many

more GBK operations in the graph. What we would like to achieve is that every GBK is

separated from its dependent GBK operations. In terms of these vertices, we would like to

separate the given vertex from all GBK operations, which are reachable from the vertex.

Definition 2.3.3 (Direct reachability). A GBK a is directly reachable from vertex u if there

exists a path from u to a not going through any other GBK operations.

Corollary 2.3.0.1. If a vertex is separated from all of its directly reachable GBK operations,

it is separated from all reachable GBK operations.

Consider now a GBK operation a in the normalized plan. According to corollary 2.3.0.1,

it is only sufficient to separate the vertex from all directly reachable GBK operations. This

can be achieved by dynamic programming similar to the version used for simple graphs with

2 GBK-s.

Algorithm

In every vertex, we will keep an information about how much does it cost to separate it

from all of its directly reachable GBK operations. One can easily see, that the set of directly

reachable GBK-s from an operation u is union of the directly reachable GBK-s of the children

of u. Additionally, by Lemma 2.2.3, if some GBK a is directly reachable from more children,

edges on each of these paths are completely disjoint. Hence, if we would like to separate the

vertex from the set of GBK-s, we need to either separate each of its children from its directly

reachable GBK-s, or separate this vertex from its children. Because we are looking for a

Min-cut, we choose whichever is smaller, and thus we propose almost the same recursion as

in Lemma 2.2.9, but with initial values adjusted for more GBK-s:

mc(u) = min(out(u),
∑

(u,v)∈E
mc(v)), where ∀a ∈ M : ∀(u, a) ∈ E : mc(u) = out(u)

If we compute this for every GBK in the plan, then, by Corollary 2.3.0.1, all GBK-s are

separated from their reachable GBK-s. In other words, every pair (a, b) of dependent GBK

operations is separated (if they were not, there would be a path from a to b, and a would not

be separated from (directly) reachable a - a contradiction).
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The Map and Reduce phases for each GBK a (fusion blocks) can then be reconstructed in

the following fashion:

• Map - traverse the edges in opposite direction starting from a and avoid passing

through any vertex which is in the global cut. All encountered vertices are part of

the Map phase.

• Reduce - traverse the edges starting from a until any of the vertices in cut is reached.

All encountered vertices are part of the Reduce phase.

• Fusions - vertices of the same type in the same phase of one fusion block can be

merged into operation with more incoming and outgoing streams. These operations are

then subjects to further merging by fusions into a single (or more - per input stream)

operations.

Complexity

Consider a vertex u in the normalized graph. This vertex is touched when the algorithm

travels into it by its incoming or one of its outgoing edges. As all vertices have only one

incoming edge, there exists (at most) one GBK operation, from where u is reachable. Hence,

the algorithm touches u only on at most one of the runs (computations per GBK). As similar

as this algorithm is to the previous one used for the simplistic case, this also touches each

edge at most twice. Hence, if we run the algorithm for every GBK in the graph, every edge

is touched at most twice, and hence the algorithm has running time of O(|E|).

The proposed algorithm has potentially exponential time and space complexity, but it finds

the optimal partitioning for each GBK. In the next section, we will propose another realistic

model with relaxed constraints, and strive to find algorithm with better running time for this

special case.

2.3.3 Relaxed model

Until this moment, we have supposed that each operation can behave differently on each of

its inputs (it may increase the data in size by different coefficients). Although this is possible

in FlumeJava, it is not very common. Mostly, the streams are treated as one, and the dataflow

coefficient is the same for all these inputs. Hence, we will now study this model.

Once again, as we have relaxed the dataflow coefficient, we have to redefine it slightly. In

this model, as we consider it, the following holds: ∀u ∈ V,∃c ∈ R+ : ∀(v, u) ∈ E : d f (v, u) =
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c. Hence, we will use the short form of d f (u) in this section, which simply denotes how

much does the data increase in size anytime it passes through vertex u.

Additionally, we set the d f (Output) = 0, as it really has no outgoing edges, and such

definition is helpful for algorithm proposed in next section. The amount of data outputted

can be calculated by summing the weights of edges incoming to the output node.

We could use the normalization trick even in this model, as it is only a special case of

the previous one, but it will not be any more efficient. Rather, we shall study what exactly

happens during the normalization.

When the algorithm reaches a vertex with n incoming edges, it wants to make n copies of

the subtrees rooted in this vertex and assign one to each of its parents. However, when the

algorithm later tries to find the Min-cut, it computes the cut for all of these copies separately,

even though they are identical.

2.4 Polynomial time algorithm for optimal partitioning

In this section we will exploit the fact, that many computations are redundant when apply-

ing the normalization method. We will introduce a polynomial time algorithm computing the

optimal partitioning for the relaxed model, and later generalize it for the previous models.

2.4.1 Relaxed model

Firstly, we will analyze and propose an algorithm working for the relaxed model intro-

duced in the previous section. The main observation allowing this optimization is summa-

rized in the next Lemma.

Lemma 2.4.1. Consider the optimal cut and a vertex u in normalized graph of the relaxed

model. If the subtree rooted in u is cut, then every copy of subtree rooted in u is cut in the

same (corresponding) vertices.

Proof. As they are all identical copies, the only difference between them is the input data

for U. Suppose that the input data is of size d. The size of outgoing data from any vertex in

the subtree can be computed by multiplying the d f coefficients on the path and finally by the

size of incoming data, d. The price of any cut of vertex U is the sum of outgoing data from

all vertices in the cut, hence the expression can be modified into the form d · S (U), where

S (U) is an expression not dependent on d. Notice that out(U) = d · d f (U). Then, by these

definitions and the algorithm:
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mc(U) = d · S (U) = d · min(d · d f (U),
∑

(U,V)∈E
d · d f (U) · S (V))

⇓

S (U) = min(d f (U),
∑

(U,V)∈E
d f (U) · S (V))

u1 u2

w

out(u
1 ) ou

t(u 2
)

df(w)(out(u1) + out(u2))

Figure 2.12: Vertex in relaxed model

Hence, the decision on cutting the vertex or its children does not depend on the incoming

data, d. �

According to Lemma 2.4.1, the algorithm does not need to compute the cut for each of

the copies, as the cut does not depend on the incoming data. Rather, for each vertex u, it

can remember how much the cut would cost if the incoming data to u were of size 1 (this is

exactly the meaning of the function S in the proof of Lemma 2.4.1).

Definition 2.4.1 (Subtree dataflow coefficient). Consider a vertex u and a subtree rooted in

u in the relaxed model. We define function S (u) as the ratio between the weight of optimal

partitioning between u and any reachable GBK, and the size of data incoming to u.

Corollary 2.4.1.1. The function S can be computed recursively by:

S (u) = min(d f (u),
∑

(u,w)∈E
d f (u) · S (w))

where

∀a ∈ M : ∀(u, a) ∈ E : S (u) = d f (u)

S (Output) = 0

Note that all the data passing through edges incoming to the Output vertex will have to

be written to the shared storage. Those edges should have no effect on finding the Min-cut,
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hence we set the S (Output) = 0.

We will now propose an algorithm for find-

ing the cost of the optimal partitioning, along

with the vertices in cut. The algorithm will

only be able to process plans, where the Out-

put is not directly reachable from Input. This

case will have to be handled differently, which

we will discuss later. Additionally, we will de-

fine the term supertree, as we will be using it

in the algorithm.

u

w1

w3

w4

GBK

Figure 2.13: Supertree of u

Definition 2.4.2 (Supertree). Let u be a vertex in a plan. Let H = {w | w , u ∧ u is directly

reachable from w}. We will call the graph induced by H a supertree.

Algorithm 2.4.1. Consider a plan, where the Output is not directly reachable from Input. In

each of the GBK a, we are interested in the value S (a). We compute this recursively starting

in every GBK. Additionally, each vertex will remember, which one of cutting itself or all of

its children was optimal. Note that not all of vertices will be touched during computation of

S . Before creating the MapReduce rounds, we precompute the following functions:

• FIR(u) - denotes if u is directly reachable from Input (fromInputReachable)

– FIR(u) =
∨

(w,u)∈E
FIR(w)

– ∀b ∈ M : FIR(b) = f alse, FIR(Input) = true

• OR(w) - denotes if Output is reachable from w (outputReachable)

– OR(w) =
∨

(w,u)∈E
OR(u)

– ∀b ∈ GBK : OR(b) = f alse,OR(Output) = true

• C(w)⇔ u was touched during computation of S (computed)

• T (u) - denotes the choice the vertex made for minimal cut (traverse)

– T (u)⇔ vertex u chose to cut its children

• AT (u) - denotes if all vertices in supertree of u chose to cut children (allTraverse)

– AT (u) =
∧

C(w)∧(w,u)∈E
(AT (w) ∧ T (w))

– ∀b ∈ M : AT (b) = true
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• margin(u) - denotes margin nodes (part of cut)

– margin(u) = ¬T (u) ∧ ((
∨

C(w)∧(w,u)∈E
(AT (w) ∧ T (w))) ∨ (u ∈ M))

Then, the vertices for Map and Reduce phases for each GBK operation a can be found

in the following fashion:

• Reduce - build graph by traversing vertices reachable from the GBK. Only traverse

into children of a vertex u if T (u) = true. Copy every traversed vertex into a new

graph. Output of the vertices which were cut should be written to shared storage.

Define function outputs(u):

1. add u if u was not yet added, else return.

2. ∀(u,w) ∈ E : if OR(w) then outputs(w)

Run outputs(a), while adding these vertices into a separate graph. Eventually, merge

this graph with the former.

• Map - Define recursive functions add(u):

1. add u if u was not yet added, else return.

2. ∀(w, u) ∈ E : if ¬AT (w) then add(w)

marginInputs(u):

1. ∀(w, u) ∈ E : if margin(w), expect input from copy of w for all children of w

And inputs(u):

1. add u if u was not yet added, else return.

2. ∀(w, u) ∈ E : if FIR(w) then inputs(w)

Lastly, run add(a), and copy all added vertices to the Map phase of a. Then, run

marginInputs(a) and gather inputs for the vertices. Eventually, run inputs(a) while

adding the vertices into a separate graph - merge the graphs afterwards.

In order to prove the time complexity and correctness of the algorithm, we will note and

prove a few properties the functions defined in the algorithm have. Also, any node for which

margin(u) defined in the algorithm is true will be called margin node. The next few Lemmas

will all be bound to Algorithm 2.4.1.
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It is worth to mention that if node u is in cut, then T (u) defined in Algorithm 2.4.1 must

be false - otherwise the cut would be somewhere in each of its children. Moreover, note

that in optimal partitioning, every path between two directly reachable GBK operations a

and v has a continuous path for Reduce phase of a ending after reaching the first vertex with

T (u) = true, inclusive. In a valid partitioning, the Map phase for b should contain all vertices

on this path starting from u, exclusive.

Lemma 2.4.2. Every margin node is in at least one cut in Reduce phase in the resulting

plan.

Proof.

Let U be margin node. By definition, T (u) =

f alse. Additionally, either u is a GBK opera-

tion, or there exists a parent w of u, such that

T (w) ∧ AT (w). If u is a GBK operation, then

it is part of trivial Reduce phase (with iden-

tity Reducers). If it is the latter case, then on

every path between some GBK and directly

reachable w, the value of function T on any

of those vertices is true. Hence, u is first with

T (u) = f alse on any continuing path, and so

it is part of the cut in Reduce phase for these

paths.

v
T(v)

AT(v)
u

false

false

x1
false

false

x3
true

false

x2
false

true

w
true

true

Reduce

Figure 2.14: Margin node u in reduce phase
�

Lemma 2.4.3. If AT (u) = f alse, then supertree of u contains a margin node.

Proof. We will prove this by induction on the length k of the longest path from some w,

where AT (w) = true, to u.

• Base - k = 1: because all of the paths start in some GBK, ∀a ∈ M : AT (a) = true, all

of the parents w of u must have AT (w) = true. Additionally, as AT (u) = f alse, there

must exist a parent w, such that T (w) = f alse - this is the margin node.

• Step - k+1: at least one the parents w of w must dissatisfy the condition AT (w)∧T (w).

If AT (w) = true, then T (w) = f alse and w is margin node. Otherwise the margin node

is in supertree of W by induction.

�

Lemma 2.4.4. For every u reached during construction of Map phase for given GBK a:

¬AT (u)⇔ u is in the Map phase of a.
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Proof. We will divide this proof into two cases, by evaluation of AT (U):

• If AT (u) is true, then all of the nodes in the supertree of u decided to cut their chil-

dren rather then themselves. Hence, none of the vertices in the supertree are in cut.

Additionally, u is not part of any Map phase - every path between two directly reach-

able GBK operations, which is passing through node u, has to be cut either in u or in

successors of u, as the AT (u) is true.

• If AT (u) is false, then by Lemma 2.4.3, supertree of u contains a margin node w.

Hence, by Lemma 2.4.2, there exists a path between w and u, such that w is in cut of

some Reduce phase, and, therefore, all other vertices on this path from w (including u)

are part of Map phase.

�

By Lemma 2.4.4, the function add defined in 2.4.1 will add all and only those vertices

to the Map phase, which belong there. As for the inputs function - by Lemma 2.4.2, every

margin node is part of some Reduce phase, hence the nodes in Map phase have to expect

inputs from some copy of this margin node.

We will now analyze the time complexity of this algorithm.

Theorem 2.4.5. Consider a plan, where Output is not directly reachable from Input. Let M

be the number of GBK operations, V the set of vertices and E the set of edges in the plan.

Then, the Algorithm 2.4.1 computes MapReduce rounds for every GBK, such that amount of

data written to common storage is minimal, in O((M + 1) · |E|) expected time.

Proof. We will divide the algorithm into two parts - precomputation and round construction:

• precomputation - while pre-computing the S (u) for every vertex u, we can avoid

computing the same value twice by using memoization. After computing the S (u), we

remember this value in a Hashmap along with values T (u) and C(u) while using the

vertex as a key. As the S (u) is oblivious of the GBK which started the computation,

the Hashmap is shared for all GBK-s. Every edge is traversed at most twice, and the

lookup & insert into Hashmap is O(1) expected, hence the pre-computation of S takes

O(|E|) expected. Similarly, all other functions FIR,OR, AT,margin are also oblivious

on the GBK which started the computation, and can be shared. The computations of

these functions can be also done in O(|E|) expected time.

• round construction - for each GBK we run a separate, independent process. All

edges in construction of the reduce phase are traversed at most twice, and each vertex
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is copied to the new graph exactly once. While constructing the Map phase, each edge

is also traversed at most twice in computation of function add. The check if the node

was already added can be done in O(1) expected by keeping the added nodes in a

Hashmap. The added vertex is copied to the new graph only once, and each of these

vertices is traversed only once in function inputs. As the lookup for function AT and

margin is now O(1) expected, the construction of Map and Reduce round for a GBK

is in O(|E|) time, hence O((M + 1) · |E|) for all GBK-s together.

�

Although Algorithm 2.4.1 does not count with plans, where the Output is directly reach-

able from Input, these cases can be easily solved.

If the Output is directly reachable from Input, then it means there exists a path between

Input and Output not passing through any GBK operation. Hence, we need to create a sepa-

rate MapReduce round with all these operations in Map phase, and trivial Shuffle and Reduce

phases. To achieve this, we will make use of the FIR, and inputs function defined in the algo-

rithm. The graph for Map phase can be created very simply, just by running inputs(Output).

Then, we have created a separate MapReduce round which is independent of any other, and

does not change the total Network usage in any direction (because the data would have to be

written to Output anyways).

2.4.2 General model

The difference from the relaxed model is only that the dataflow coefficient also depends

on the input stream the data came from. Hence, we can’t use exactly the same approach as

in the previous section, because the amount of data flowing out of some node can depend on

the input stream.

In order save some computations again, we need to lift the dependency of function S on

its inputs. Therefore, we will use a slightly different approach, and redefine the meaning of

S .

Definition 2.4.3 (Subtree dataflow coefficient for general model). Consider a vertex u and a

subtree rooted in u in the relaxed model. We define function S G(u) as the ratio between the

weight of the optimal partitioning between u and any reachable GBK, and the size of data

outgoing from u.

Corollary 2.4.5.1. The function S G can be computed recursively by:
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S G(u) = min(1,
∑

(u,w)∈E d f (u,w) · S G(w))

where

∀a ∈ M : ∀(u, a) ∈ E : S G(u) = 1

S (Output) = 0

The d f function used in Corollary 2.4.5.1 is the dataflow coefficient function for general
model. Also, note that S G(u) does not depend on input stream to u, hence it is identical for

all input streams and we can use the same approach as in Algorithm 2.4.1.

2.4.3 Optimizing the reads

Until now, we have only discussed about making the plan optimal in terms of the data writ-

ten. The Algorithm 2.4.1 creates a plan, where for each GBK operation exists one MapRe-

duce, and each of the MapReduces has its own copies of every operation it uses.
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Input

GBK b

GBK d
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h
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MR1
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Figure 2.15: Merging independent MapReduce rounds

However, if two GBK operations are independent and they share some of their inputs are

identical, the GBK operations can be executed in the same Shuffle phase by using channels,

similarly as in MSCR optimization shown in Figure 1.3. Then, the operations taking the
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same input can be merged into one using the sibling fusion introduced in section 1.2.2, thus

decreasing the amount of data read from common storage.

Still, there might be many independent GBK operations, hence many different possibilities

for merging the MapReduces. We can enumerate all the possibilities, calculate the amount

of data read for each, and return the minimal.

If we think only about the GBK operations and their dependencies, we have to decide,

which groups of operations should be performed in a single MapReduce round. For this

purpose, we will distribute these GBK-s into several buckets, and execute all the GBK-s

in one bucket in the same MapReduce round. Eventually, we will order these buckets and

execute the pipeline by running each bucket one after another. Of course, no two dependent

GBK operations can be in the same bucket, more specifically, if GBK a is dependent on GBK

b, a has to be in a bucket which is run after the bucket b is in.

Consider the GBK dependency graph, where the GBK operations are vertices and there

is an edge from GBK a to GBK b if b is dependent on a. Since we would like to run the

buckets one after another (none in parallel), we would like the number of buckets be as low

as possible. Because an operation has to be run only after every operation it depends on was

run, we need at least as many buckets, as is the number of vertices on the longest path in

this GBK dependency graph. Firstly, we will propose an algorithm for finding every valid

distribution of these GBK-s into buckets.

Algorithm 2.4.2. Consider the GBK dependency graph G = (V, E) of an execution plan.

For every node u in the plan, compute its height (longest path starting in u). Let m =

max{height(u) | u ∈ V}. Create m buckets labeled 0, . . . ,m − 1. Define function:

• place(H, Buckets)

1. If H is empty, return Buckets.

2. Let u be a vertex in H which has no parents in H.

3. If u has no parents in G, let low = 0

If u has parents in G, let low = max{i | (v, u) ∈ E ∧ v ∈ Buckets[i]}

4. Let high = m − height(u)

5. ∀i, low < i ≤ high : output place(H with u removed, B with u added to B[i]) as a

solution

Finally, let Buckets be an empty array of length m, and return place(G, Buckets)
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Algorithm 2.4.2 returns all possible valid distributions of the GBK-s into buckets, in time

asymptotic to the number of these solutions.

Now we will propose an algorithm for finding a plan, such that the amount of data read

and written to common storage is optimal.

Algorithm 2.4.3. Consider an execution plan. Find every valid distribution of GBK-s into

buckets using the Algorithm 2.4.2. For each of these distributions, compute the amount of

data read in the following manner:

• Firstly, find all the Map and Reduce phases for optimal writes using Algorithm 2.4.1

• Define readsInBucket(Buckets, i)

1. ∀g ∈ Buckets[i]: find its Map phase and for each vertex in its Map phase add all

outside vertices it expects input from into S

2. Remove duplicates in S

3. return
∑
u∈S

out(u), where out(u) is the expected outgoing flow from operation u.

• Eventually, return
∑

0≤i<m
readsInBucket(Buckets, i)

Complexity

The complexity of this algorithm is not easily determined, as it highly depends on the

structure of the graph. However, given a distribution of GBK-s into the buckets, the algorithm

crawls all the operations in the Map phase of each GBK once. Since each of these GBK

operations can have at most |V | vertices in its Map phase, the algorithm has running time of

O(M·|V |). Thus, if there are s solutions for distribution of GBK-s into buckets, the complexity

of Algorithm 2.4.3 is O(s · M · |V |).

For some graphs, however, the amount of valid distributions can be as large as M
2

M
2 (de-

pendency graph containing one path M
2 long, and another M

2 independent GBK-s).

2.5 Constraints

For these optimizations to work, we require the knowledge of all the dataflow coefficients.

Nevertheless, the companies often run the same plans with structurally similar data many

times, and some machine learning could be used to determine these coefficients quite accu-

rately.
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Besides that, we suppose the data is homogeneous - every computation of a function on

an input takes approximately the same time. Hence, we suppose that all the workers in the

Map and Reduce phases are finished approximately at the same time, because of the load

balancing the MapReduce does. However, if the data is not homogeneous, it might happen

that some worker in Reduce phase of one MapReduce would get a slow block of data, and

the other workers would have to wait for him to synchronize after they are done. If we knew

that the operation the worker computed was getting a large fraction of small datasets, we

could move the operation into the next Map phase and, possibly, there would be less time

spent by workers synchronizing, hence the data would be processed faster. On the other

hand, the network load is optimal the way the proposed algorithm has computed it, and the

homogeneousness of data has no effect on the solution.
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Chapter 3

Experimental results

In this chapter, we will analyze the solutions proposed for optimization of network usage

on various execution plans. However, the actual implementation of FlumeJava’s optimizer is

not known to public, and the optimizer in Apache Crunch’s implementation is not discussed,

nor can it be easily analyzed.
Nevertheless, Apache Crunch allows

outputting the graph in .dot format [9],

and user may create an image represen-

tation using another tool for transforming

.dot into image, such as Graphviz - http:

//www.graphviz.org/. This is useful

for the programmer to see, what the cre-

ated execution plan looks like, and how

do the MapReduce rounds look. How-

ever, it is not very suitable for comparing

the plans with the proposed algorithm,

because Crunch gives ids to the vertices

in some order of execution, and this or-

der may be differ per solution if there

are independent operations. Additionally,

it gives no information whatsoever about

the expected network load. Hence, as

we can only hypothesize the actual imple-

mentation, we will compare the proposed

solution to a naive heuristic solution, and

show that in some plans, the network load

can change drastically if the partitioning

is not given enough caution.

Figure 3.1: Entwined graph resulted in cloned

Map and GBK phase, computed as 2 MapRe-

duces

http://www.graphviz.org/
http://www.graphviz.org/
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Figure 3.2: Sin-

gle MapReduce

round

Figure 3.3: Partition-

ing of an almost en-

twined graph

Figure 3.4: Dependent MapRe-

duce rounds

Many generated plans had the GBK-s in their cuts. Therefore, in order to compare the

optimal cut to just some cut, we will introduce a naive algorithm cutting the graph either

before or after a GBK.

Algorithm 3.0.1 (Naive heuristic). Suppose an execution plan. For every GBK a in the plan,

find all of directly reachable GBK-s. Then, cut either the edges outgoing from GBK a, or all

the edges incoming to these GBK-s, which are on path from a. The Map and Reduce phases

can be built similarly as in Algorithm 2.4.1.
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3.1 Library for generating plans

Basically, we would like to generate directed acyclic graphs (DAG) with 4 types of vertices

- GBK, PD, Input and Output, with Input having no incoming and Output no outgoing edges.

We will create a library for generating pseudo-random DAG-s with these properties, and also

a special type of graphs, entwined, shown on Figure 2.7.

3.1.1 Pseudo-random directed acyclic graphs

Firsly, we omit the dataflow coefficients, and focus on the vertices and edges in the graph.

We could generate the graphs based on these parameters:

• Number of vertices - total number of GBK and PD operations (as there are always

one of each Input and Output vertices, we will omit those)

• Number of GBK-s - number of GBK operations. The more GBK operations are in

graph, the less options for cuts are available.

• Edge probability - probability, that edge between given two vertices exists.

Additionally, we would not like the graphs to be completely random. We would like the

graphs to be similar to execution plans. For example, it is senseless to send output of one

GBK into another, as the data is already grouped. Even if such plan was constructed, where

output of GBK a is sent to GBK b, the optimizer could make b take all the input a has, and

remove the edge from a to b. Hence, we will generate only graphs, where no edges between

GBK-s exist.

Datafow coefficients - after generating the graph, we will give each edge its coefficient.

There may exist plans where the coefficients are of mostly low or mostly high factor (either

increasing or decreasing), some may have mostly increasing or decreasing coefficients, and

some may be completely random. We would like to study all of these types, and thus we

generate the dataflow coefficient for an edge based on these parameters:

• Highest factor (high) - bottom threshold of factor from interval (0, 1], by which the

coefficient can be either decreasing or increasing

• Lowest factor (low) - upper threshold of factor from interval [low, 1], by which the

coefficient can be either decreasing or increasing

• Decreasing probability (dprob) - probability that the factor is decreasing
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Using these parameters, we can generate the dataflow coefficient by choosing a random

number f ∈ [high, low] and random d ∈ [0, 1], where the output is either f if d ≤ dprob or

1/ f otherwise.

Test cases

We have tested graphs with various parameters, up to 30 vertices and selected a few,

which show radical improvements in network load. All statistics per setting are taken from

1000 generated graphs with given parameters. The statistics we have been studying for each

setting are:

• Average improvement ratio (Avg.) - percentual improvement compared to the naive

algorithm, computed as an average through all runs

• Improved cases (Cases) - percentual ratio of graphs, where the optimal solution was

different from the naive (graphs which were improved by more than 0%)

• Maximum improvement (Max) - maximum percentual improvement by the optimal

algorithm encountered in the 1000 generated graphs with given setting

Vertices GBK-s Edge prob. High Low dprob Avg. Cases Max
28 2 0.6 0.01 0.01 0.9 422.81% 30.3% 4801.48%

26 5 0.2 0.01 0.01 0.32 310.35% 10.1% 9900%

25 3 0.3 0.01 0.04 0.7 307.32% 20% 58526.3%

28 5 0.2 0.01 0.04 0.64 206.64% 23.1% 28858.2%

30 7 0.5 0.01 0.01 0.32 194.39% 5.3% 9899.76%

28 3 0.4 0.01 0.04 0.64 194.27% 18.1% 6586.39%

28 4 0.2 0.04 0.04 0.7 172.63% 20.1% 19921.8%

22 2 0.3 0.04 0.04 0.7 158.56% 14% 2400%

19 2 0.5 0.04 0.16 0.9 156.02% 15.9% 4241%

20 2 0.3 0.04 0.08 0.64 107.77% 11.8% 7738.82%

24 2 0.3 0.01 0.04 0.16 86.02% 2.8% 8384.64%

19 4 0.4 0.01 0.08 0.8 77.55% 16.1% 6563.43%

30 2 0.2 0.08 0.16 0.64 64.66% 13.6% 5447.26%

25 4 0.3 0.04 0.08 0.8 58.05% 24.4% 1756%

26 4 0.2 0.02 0.16 0.64 44.99% 17.1% 2564.54%

30 2 0.2 0.08 0.16 0.64 43.12% 11.6% 1142.98%

28 3 0.3 0.04 0.32 0.7 24.71% 22.9% 670.13%

Table 3.1: Tests for DAG-s with various settings, sorted by average improvement rate (Avg.)
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The tests show that if the dataflow coefficients are of a high factor, the optimal algorithm

tends to rapidly improve the plan, compared to a naive solution. Also, the maximum im-

provements show that in some cases, the optimal solution can be better by a huge factor, than

some random (or slightly sophisticated) cut. Although the naive algorithm finds the optimal

solution in most cases, the number of cases, where the optimal algorithm is better is for some

types of graphs quite high.

3.1.2 Pseudo-random special graphs

In this section, we will study special entwined graphs similar to the graph shown on figure

2.7, as these graphs show even more radical results.

Entwined graph consists of two GBK operations, one directly connected to Input and the

other to Output. Between these GBK-s are numerous levels, each level consisting of the

same amount of PD operations, where all outputs from every PD on level k are used as input

for each of the PD-s on level k + 1.

Similarly, we will generate random graphs based on a set of parameters. The parameters

for dataflow coefficients stay the same as in previous section, and the graph itself will be

generated based on the following parameters:

• Height - number of levels

• Width - number of PD operations in each of the levels

Note that the number of vertices (except Input and Output) in the generated graph is height ∗

width + 2.

We have also tested these graphs with various parameters, up to 60 vertices, and we se-

lected a few, which show tremendous improvements in network load. Again, the statistics

are taken from 1000 generated graphs with given parameters.
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Height Width High Low dprob Avg. Cases Max
20 2 0.01 0.01 0.9 1.09 × 109% 62.5% 9.91 × 1011%

17 2 0.02 0.02 0.64 1.63 × 106% 48.3% 6.47 × 108%

15 2 0.01 0.04 0.64 1.59 × 106% 52.4% 1.48 × 109%

19 2 0.02 0.16 0.8 4.11 × 105% 82.6% 2.81 × 108%

9 2 0.02 0.02 0.64 79300% 46.2% 3.75 × 107%

18 3 0.08 0.08 0.9 20394% 83.9% 2.63 × 106%

6 2 0.02 0.02 0.64 20316% 42.3% 3.06 × 106%

10 4 0.01 0.04 0.9 19520% 76% 3.593 × 106%

9 3 0.04 0.16 0.9 1643% 82.8% 1.45 × 105%

15 2 0.02 0.6 0.8 347% 69.9% 12790%

Table 3.2: Tests for entwined graphs with various settings

The naive algorithm would cut this graph only after the first GBK or before the second,

whichever yields smaller cut. However, the dataflow coefficients could be mostly decreasing

until some point in the graph and from that point mostly increasing (see Figure 3.5 . Then,

the optimal dataflow might drastically lower in that point, compared to outgoing flow from

GBK a or incoming to GBK b.

GBK a GBK b

decreasing coefficients increasing coefficients

... ...

Figure 3.5: Entwined graph with radically better optimal than naive cut

The results also show that the number of cases where the optimal algorithm is better is

quite high. Hence, the phenomena of decreasing and increasing coefficients is very likely,

the only difference is the extent. The higher the factor is, the higher probability of some

greatly improved graph. Indeed, if we found a graph which has the optimal cut somewhere

in the middle, l levels from the start, and then generated the same graph but with k times

greater factors (decreasing coefficients would be k times smaller and increasing k higher),

this graph would have the optimal cut approximately kl times smaller than before. Thus, by

increasing the factors the improvements can get any high even for small graphs.
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Conclusion

Execution plans in FlumeJava tend to have many different mappings to MapReduce pipelines.

We have analyzed the problem of finding the optimal in terms of network usage, and found

a proper and viable abstraction into a more transparent graph problem, which is not very far

from the reality. We have proposed several approaches to solving this graph and, eventually,

found a polynomial solution. Hence, the partitioning with optimal network usage can be

found in almost trivial time, provided the fact that the graphs are usually not too large (< 100

vertices) in real life computations.

Additionally, we have shown that if the network load during partitioning is not given much

attention, the results given by some trivial algorithm can in some cases (even up to ≈ 30% for

random graphs) deviate by a tremendously large factor from the optimal solution (as shown

on Table 3.1). Hence, finding a partitioning with optimal network usage can lead to great

optimizations, when compared to the case, where this aspect is neglected.

Future work - as mentioned in section discussing the constraints (2.5) we assume through-

out this thesis, we assume that the data is homogeneous. This, however, may not be true in

the real life computations, and it may make some operations be waiting for synchronization,

thus making the pipeline running time longer. To consider this aspect, one could propose and

study a whole different model, which, aside from the network load, also takes into account

the non-homogeneousness of data.
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