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Hidden Markov models (HMMs) are an important tool for modeling biological sequences

and their annotations. By sequence annotation we mean an assignment of labels to each

symbol according to its function. For example, in gene finding we want to distinguish the

regions of DNA that encode proteins from surrounding non-coding sequence. A hidden

Markov model defines a probability distribution over all annotations of a given sequence

X.

HMMs are traditionally decoded by the Viterbi algorithm. Viterbi algorithm finds the

most probable annotation for a subset of HMMs. In general, the sequence annotation is

NP-hard and the Viterbi algorithm is used as a heuristic algorithm.

Recently it has been shown that other decoding methods give better results than Viterbi

in specific applications. We propose a new decoding method that allows uncertainty in

region boundaries by considering all annotations with slightly shifted boundaries as the

same. Our method (the highest expected reward decoding – HERD) is an extension of the

framework of maximum expected boundary accuracy decoding introduced by Gross et al..

We evaluate HERD on the problem of detecting viral recombination in the HIV genome

and compare it with an existing tool called jumping HMM which uses the Viterbi algorithm.

HERD has better prediction accuracy in terms of the feature sensitivity and specificity,

where feature is a single-colored block in an annotation.

Keywords: hidden Markov models, sequence annotation, viral recombination
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Chapter 1

Introduction

In this thesis we propose a new algorithm for decoding hidden Markov models (HMMs)

and apply it to the problem of recombination detection in HIV genomic sequences. Mod-

ern sequencing technologies produce large amounts of data and therefore we need efficient

algorithms for analyzing such sequences. The HMMs have numerous applications in anal-

ysis of biological sequences, for example in gene finding [BK97, BBLV05], prediction of

the structure of the transmembrane proteins [KLvHS01] or the detection of protein family

membership [Edd98]. We are particularly interested in the use of HMMs for annotations of

biological sequences. By annotating sequences we mean assignment of labels to each sym-

bol according to its function. For example, in gene finding we want to distinguish between

regions of DNA that encode proteins from non-coding sequences. For our needs, a DNA

molecule can be represented as a finite sequence of four nucleotides – adenine, cytosine,

guanine and thymine or A,C,G,T in short.

HMMs are probabilistic generative models. They are similar to probabilistic finite state

machines. Every HMM is characterized by a finite set of states, emission distribution of

each state and the transition probabilities between states. In each step an HMM emits a

symbol according to its current state, then it changes the state according to its transition

distribution. Every HMM defines a probability distribution over all state paths and se-

quences. Every state has assigned a meaning or function, so we can deduce the function

of particular parts of the sequence from a state path. The problem is that in almost all

applications we observe the sequence, but the state path remains hidden. If we fix the

observed sequence, the HMM defines a probability distribution of state paths. The most

probable state path can be found by the classical Viterbi algorithm in polynomial time

[For73]. Formal definition of the HMM and description of several known algorithm can be

found in Chapter 2.

Recently it has been shown that other methods give better result than the Viterbi

algorithm in specific applications [KKS05, GDSB07, BT10]. One reason is that in various

HMMs several states may have same meaning. For example, most HMMs used for gene

1



CHAPTER 1. INTRODUCTION 2

finding have many states that model coding parts of the DNA. We can label states with

color so that the states generating sequences with same function will have the same color.

Each state path can be then transformed into an annotation which is a sequence of colors.

Annotations are different from state paths, because multiple state paths can share the same

annotation. Therefore the probability of an annotation is the sum of probabilities of all

state paths with that annotation. In some applications, the most probable annotation can

be more accurate than the most probable state path. While finding the most probable state

path can be done in polynomial time, finding the most probable annotation is NP-hard

[LP02, BBV07].

To overcome this problem, we seek objectives that can be computed effectively and have

better results than the Viterbi algorithm for a particular task. As our application domain

we choose the viral recombination detection problem. Genomes of some viruses, such as

human immunodeficiency virus (HIV), can form of a mosaic recombination of several types

of the same virus [RAB+00]. Our goal is to detect if a sequence of the HIV genome belongs

to a known family or if it is a recombination of viruses from different families. Current

tools for such application use the Viterbi algorithm [SZL+06] (see details in Chapter 3).

This application is important for monitoring the HIV epidemics.

In Chapter 4 we define a new objective function appropriate to our application domain

and present a polynomial-time algorithm for finding an annotation optimising our objective.

To bypass NP-hardness of finding the most probable annotation, our objective function

assigns score locally for each recombination point. Finding the exact recombination point

is difficult, because there the annotations with slightly shifted recombination points have

similar probabilities. Our gain function overcomes this problem by considering all nearby

recombination points as equivalent. We expressed our objective in terms of gain functions

[HKS+09]. We will also consider several variants of our objective function to improve the

performance of our algorithm.

Finally, in Chapter 5 we show the results of several experiments on artificial and real

data and compare our algorithm with other decoding methods. We show, that our decod-

ing method have higher predicting accuracy than the existing tool that uses the Viterbi

algorithm [SZL+06] and that our decoding method is effective for recombination detection

in HIV genome.



Chapter 2

Hidden Markov Models

A hidden Markov model (HMM) [DEKM98] is a frequently used generative probabilistic

model, that generates finite sequences over some alphabet. HMMs have numerous applica-

tions in computational biology, but also in speech recognition, image processing and other

areas. In this chapter we define these model and related problems. We show some existing

algorithms and their limitations.

2.1 Definitions

An HMM can be seen as probabilistic finite state machine [HU79] that generates finite

sequences over some alphabet Σ. Each state has its own emission distribution and tran-

sition distribution. Every second the machine will every second toss a coin and generate

a symbol from the emission distribution of the current state. After that the machine will

toss a coin again and move to another state. Once a machine reaches a final state, it halts.

We will define an extended variant of HMMs, allowing silent states.

Definition 1 (Hidden Markov Model with silent states (HMM)) Let

H = (Σ, V,Q, e, a), where Σ is a finite alphabet, V = {v0, v1, . . . , vM−1} is the set of

states where M = |V |, Q ⊆ V is the set of silent states, e : Σ×V →< 0, 1 > are emission

probabilities and a : V × V →< 0, 1 > are transition probabilities.

H is hidden Markov model with silent states, if it satisfies following conditions:

1. For every u ∈ V \Q,
∑

a∈Σ ea,u = 1

2. For every u ∈ Q, a ∈ Σ, ea,u = 0

3. For every u ∈ V \{vM−1},
∑

v∈V au,v = 1

4. For every u ∈ V , avM−1,u = 0

3



CHAPTER 2. HIDDEN MARKOV MODELS 4

Figure 2.1: The HMM that models the process from example 1. State vf represents the

fair die, state vl1 represents the first loaded die, and state vl2 represents the second loaded

die.

5. v0, vM−1 ∈ Q

We will denote the state v0 as the start state and the state vM−1 as the final state.

The conditions 1, 2 and 3 ensure that every state has a proper emission and transition

distribution. As we can see, the silent states does not emit any symbol. The fourth

condition states that once the process goes into final state it ends. The last condition is

only technical; we use it to simplify equations.

Notation 1 We say that there is a transition from state u ∈ V to state v ∈ V , if and

only if au,v > 0. We write that transition as u → v. Let T = {u → v} be the set of all

transitions. Finally, a state path is a finite sequence over V which start with start state

and end with final state.

Example 1 Inspired by [DEKM98]. Consider the following process. We play dice in a

casino. There are three dice. One fair die and two loaded. In the casino they usually use

the fair die, but sometimes they secretly change it for the loaded one. One of the loaded

dice has probability 0.5 of one and probability 0.1 of the numbers from two to six. The

second loaded die has probability 0.5 of six and probability 0.1 of the numbers from one to

five. The casino changes the die with certain probability after each roll. After a roll with

the fair die, the casino will keep the fair die with probability pf , with probability 0.95− pf
will change the die and with probability 0.05 casino will end the game. The casino chooses

one of the loaded dices with equal probability. After each roll with the first loaded die casino

will keep that die with probability pl1 and witch probability 1 − pl1 will change that die to

the fair one. The same applies tor the second loaded dice, but it has the keeping probability

pl2.

This process can be modeled by HMM in Figure 2.1. Start state s and final state f are

the only silent states. Emission distribution of the state vf is efv ,x = 1/6, x ∈ {1, 2, . . . , 6}.
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State vl1 emits the symbol 1 with probability 1/2 and other symbols with probability 1/10.

Therefore efl1 ,1 = 1/2 and efl2 ,x = 1/10, x ∈ {2, 3, . . . , 6}. The emission probabilities of

state vl2 are efl2 ,x = 1/10, x ∈ {1, 2, . . . , 5} and efl2 ,6 = 1/2.

This HMM have 9 transitions T = {s→ vf , vf → vf , vf → f, vf → vl1 , vf → vl2 , vl1 →
vl1 , vl1 → vf , vl2 → vl2 , vl2 → vf}. Transition probabilities are as,vf = 1, avf ,vf = pf ,

avf ,f = 0.05, avf ,vli = (0.95− pf )/2, avli ,vli = pli and avli ,vf = 1− pli , i ∈ {1, 2}.
Sequences (s, vf , vf , vf , vl1 , vf , f) or (s, vf , vf , vf , vl2 , f) are state paths although the sec-

ond sequence contains nonexistent transition vl2f . Sequence (vf , vf , vf , f) is not state path,

because it does not start in state s.

A hidden Markov model is a machine that generates pairs (π,X), where π is a state

path and X is a sequence. Usually we observe only the sequence and the state path remains

hidden (this is the reason, why we called them hidden Markov models). Now we will define

the probability distribution over all pairs of (π,X), but first we need several technical

definitions.

Definition 2 Let π = π1π2 . . . πl, πi ∈ V be a state path, and 0 < i1 < i2 < · · · < ik ≤ l be

the indexes of all non-silent states from π. Then πQ = πi1πi2 . . . πik is the non-silent state

path from path π.

Example 2 Consider the HMM from the example 1. Let π the state path

π = (s, vf , vf , vf , vl1 , vf , vl2 , vf , f) be an state path. Then corresponding non-silent state

path is πQ = (vf , vf , vf , vl1 , vf , vl2 , vf ).

Definition 3 Let H = (Σ, V,Q, e, a) be an HMM and X = x1x2 . . . xn be a finite sequence

over Σ. Let π = π1π2 . . . πl be a state path and πQ1 π
Q
2 . . . π

Q
N be a non-silent state path from

π. Path π is consistent with X if and only if N = n.

In other words, the state path π is consistent with the sequence X if the sequence X could

be generated by π, at least in terms of the number of its non-silent states.

Definition 4 Let H be an HMM and X be a sequence of length n. Let π be the state

path and πQ the corresponding non-silent state path. If π is not consistent with X, then

probability that H will generate X and π is 0. Otherwise

Pr(X, π) =

(
l−1∏
i=1

aπi,πi+1

)
·

(
n∏
i=1

eπQ
i ,xi

)
(2.1)

Example 3 Let H be the HMM from example 1. Let X = 1263526546 be the sequence

generated by H with state path π = (s, vf , vf , vf , vf , vl1 , vl1 , vf , vl2 , vl2 , vf , f). Then the

probability of the sequence X generated by state path π is

Pr(X, π) = 1·p4
f ·

0.95− pf
2

·(1−pl1)· 0.95− pv
2

·pl2 ·(1−pl2)·0.05·
(

1

6

)4

·
(

1

10

)2

· 1
6
·
(

1

10

)2

· 1
6
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Figure 2.2: Demonstration of reducing the number of transitions. The original HMM is on

the left and the resulting HMM is on the right.

Note that if an HMM has a state vi from which the final state is not accessible (and vi
is accessible from the start state), then the sum of the probabilities of all possible state

paths and sequences will be less than one. This is the case because all state paths that

goes through vi will never reach final state and will not be counted. If the HMM contains

such states, there is a nonzero probability that it will generate infinite sequence. On the

other hand, states that are not accessible from the start state can be removed from an

HMM without affecting its probability distribution.

HMMs can be defined in many other ways. For example instead of the start state

we could use a special initial distribution over all states, which represents the probability

of starting in a particular state. We choose this particular definition, because we need

silent states in our application and the silent start state is equivalent to an explicit initial

distribution. We can use silent states to reduce the number of transitions. For example

consider an HMM consisting of n states v0, v1, . . . , vn−1 where state vi is connected with

all states vj, j > i. This HMM has Θ(n2) transitions. We can replace these transitions by

n − 1 silent states s0, s2, . . . , sn−2 with transitions si → si+1, i < n − 2, vi → si, i < n − 1

and si → vi+1, i < n − 1 (in Figure 2.2. This new HMM has an equivalent structure in

a sense that it has the same set of non-silent paths with non-zero probability. However

the new HMM has fewer parameters and it cannot represent all distributions possible in

the original HMM. Note that the reduction to Θ(n) transitions may decrease running time

considerably.

Although silent states are sometimes useful for reducing the overall size of a model,

they do not increase the expressive power of HMMs as we show in the next theorem.

Theorem 1 For every HMM H there exists HMM H ′ that does not have silent states

except start and final state and the distributions of the sequences and non-silent state paths

of both HMMs are the same.

Proof. We show how to remove a single silent state. We can repeat this process until

there will be no silent states (except the start and final state).
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Let vi ∈ Q be the silent state we want to remove. If avi,vi > 0 then we have to

remove that transition. This transition corresponds to paths vki . Sum of the probabilities

of those state paths is
avi,vi

1−avi,vi
. Therefore if vi has more then one transition, we will remove

transition vi → vi from the model and multiply transitions avi,vj > 0 by 1
1−avi,vi

. If vi has

only one transition vi → vi, we can not simply remove it. Therefore we change the silent

state vi into a non-silent state. We can do this because there is no state path that goes

through vi (every state path must end in the final state).

Now the silent state vi does not have self-loop and we can remove it. Let vk → vi and

vi → vj be transitions in H. We will remove those transitions from the model and add

avk,vi · avi,vj to the probability of transition vk → vj. We have an equivalent HMM H ′

without state vi.

Although our definition of an HMM allows silent states we will enforce some restriction

on their usage in order to simplify algorithms and proofs. We disallow silent states with

self-loops as well as longer cycles consisting solely from silent states.

Definition 5 The HMM H is well defined, if and only if it does not contain a cycle

consisting solely of silent states.

Note that self-loop is also a cycle.

2.2 Forward Algorithm

Given a well-defined HMM H and sequence X of length n, we may want to compute the

probability that sequence X was generated by H. As the state path is hidden, we have to

sum over all possible state paths and therefore

Pr(X) =
∑
π

Pr(X, π) (2.2)

Computing this quantity in straightforward way will give us an exponential-time algo-

rithm. Therefore we use the forward algorithm [DEKM98]. The forward algorithm is a

straightforward use of the dynamic programming technique. Let F [i, u] be the sum of the

probabilities of all state paths that start in v0, generate X[1 : i] and end in state u. Then

Pr(X) = F [n, v|V |−1]. F can be computed by the following equations.

F [0, v0] = 1 (2.3)

F [i, vj] =
∑
vk→vj

F [i, vk]avk,vj , vj ∈ Q, i 6= 0 ∨ vj 6= v0 (2.4)

F [i, vj] =
∑
vk→vj

F [i− 1, vk]avk,vjevj ,x, i > 0, vj ∈ V \Q (2.5)
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We can compute F in order of increasing increasing i and in appropriate order of states

vi so the all terms on the right-hand side of 2.4 are evaluated before F [i, vj]. In HMMs

without silent states the order may be arbitrary; 2.4 is never used. Silent states need to

be ordered topologically so that for every two silent states vi, vj, if avi,vj > 0 then i < j.

Now we can compute F [i, vj] in the order of increasing j.

Theorem 2 Let F [i, vj] be defined by equations 2.3,2.4 and 2.5. Then F [i, vj] is sum of

the probabilities of all state paths that start in v0, generate X[1 : i] and end in state u.

Proof. Induction on K, where K = i · |V |+ j.

1. When K = 0, there is nothing to prove, equation 2.3 holds.

2. Let induction hypothesis hold for all 0 ≤ i′ · |V |+ j′ ≤ K. Let i · |V |+ j = K + 1.

Let C = {vk|avk,vj > 0} be the set of states from which is vj accessible. Therefore

all state paths that generate X[1 : i] and ends in vj have last but one state from C.

We can split those paths into |C| disjoint sets Gvk , vk ∈ C. We have to consider two

options.

(a) State vj is silent. This means that Xi was not generated by vj and therefore

we know from induction hypothesis and definition 2.1 that Pr(Gvk , X[1 : i]) =

F [i, vk] · avk,vj . Because these sets are disjoint, we obtain

F [i, vj] =
∑
vk∈C

Pr(Gvk , X[1 : i]) =
∑
vk∈C

F [i, vk] · avk,vj

(b) State vj is not silent. Then Xi was generated by vj, so we know from induction

hypothesis and definition 2.1 that Pr(Gvk , X[1 : i]) = F [i, vk] · avk,vj · evj ,Xi
.

Because sets Gvk are disjoint, the probability

F [i, vj] =
∑
vk∈C

Pr(Gvk , X[1 : i]) =
∑
vk∈C

F [i− 1, vk] · avk,vj · evk,Xi

Probability Pr(X) can be also computed by the backward algorithm [DEKM98]. It is

based on same principle as the forward algorithm, but it proceeds backwards. It computes

the probability that a state path starts in particular state and generates the suffix of the

sequence. Formally, B[i, vj] is the probability, that H generates the X[i : n] and starts in

vj (and vj does not emit any symbol, even if it is not a silent state). Then Pr(X) = B[i, v0].

Values B[i, vj] can be computed by the following equations:

B[n, v|V |−1] = 1 (2.6)

B[i, vj] =
∑

vj→vk,vk∈Q

B[i, vk] · avj ,vk (2.7)

+
∑

vj→vk,vk /∈Q

B[i+ 1, vk] · avj ,vk · evk,Xi
(2.8)
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Figure 2.3: The example of ocasionally dishonest casino. The state corresponding to fair

dice have white color and the states corresponding to the loaded dice are black.

The proof of correctness is analogous to the proof of theorem 2 and we omit it. Despite the

fact, that the backward algorithm is almost the same as forward, we included it because

we will need it later in Section 2.7.

2.3 Sequence Annotation

In the previous section we have introduced algorithms for computing the probability of

sequence X. Another important task is to find a state path that was generated with

X. However in general there may be several state paths that could have been generated

with X, albeit with different probabilities. In that case we might be interested in the most

probable one. But finding the state path is not always what we want. Sometimes the HMM

is too complex, and many states have the same meaning. This is formalized in following

definition that assigns colors to classes of states with different meaning and extends the

definition to state paths.

Definition 6 (Annotation) Let C = {c1, c2, . . . , cM} be the finite set of colors and V,Q

be the set of states and silent states of the model. Then λ : V ∗ → C ∪ {ε} is coloring

function, if it satisfies:

1. λ(v) = ε if v ∈ Q

2. λ(v) ∈ C if v ∈ V \Q.

3. λ(uv) = λ(u)λ(v) if u, v ∈ V +.

Let X ∈ Σ∗ be a finite sequence and π be the corresponding state path that generates

X. Then annotation of X is Λ = λ(π). Usually, we will denote characters of Λ as

Λ = Λ1Λ2 . . .Λn.

Now we can define the probability of an annotation as the sum of the probabilities of

all state path with that annotation.
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Definition 7 Let H be an HMM, X be the sequence and Λ be a annotation of the sequence

X. Then probability that H generates X with annotation Λ is

Pr(X,Λ) =
∑

π,λ(π)=Λ

Pr(X, π) (2.9)

Note that we can compute the conditional probability of Λ for given X simply as

Pr(Λ|X) = Pr(X,Λ)/Pr(X).

Example 4 Intuitively, we can see the annotations as the meaning of the sequence. Con-

sider the HMM from Figure 2.3 that represents the dishonest casino from example 1 with

coloring λ that assigns white color to state vf and black color to states vl1 and vl2. In this

case the meaning is the honesty of the casino. A part of the sequence is honest if it was

generated by the fair die. When we have a sequence of rolls, we want to mark some parts

as a honest and the rest as not honest. If we find the most probable annotation, the black

part of sequences can be marked as not honest and the white parts can be marked as honest.

2.4 Viterbi Algorithm

The most commonly used algorithm for decoding HMMs is Viterbi algorithm [For73]. By

decoding we mean assigning a state path or annotation to an input sequenceX. The Viterbi

algorithm computes the most probable state path π that generates a given sequence X.

We can use annotation λ(π) as the predicted annotation of X.

Let V (i, vj) be the probability of the most probable state path generating X[1 : i] and

ending in state vj. It can be computed by the following formula.

V (0, v0) = 1

V (i, v) = max
u→v

(V (i, u) · au,v) , v ∈ Q, i 6= 0 ∨ v 6= v0

V (i, v) = ev,xi ·max
u→v

(V (i− 1, u) · au,v) , v ∈ S\Q, i > 0

As we can see, this part of the Viterbi algorithm is almost the same as the forward algo-

rithm, with only one difference: the summation is replaced by maximum. The proof of

correctness is also similar to the proof of theorem 2. The probability of the most probable

state path will be stored in V (n, VM), we should reconstruct it. While computing the table

V , we also fill in the table V ′ of size n×M . All V ′(i, vj) will store a pointer to the previous

state vk on the path to vj in computing V (i, vj). Formally,

V ′(i, vj) = arg max
vk

(
V (i− 1, vk) · avk,vj

)
if i > 0 and vj is not a silent state, or

V ′(i, vj) = arg max
vk

(
V (i, u) · avk,vj

)
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Figure 2.4: The simple HMM with the multiple path problem. The transitions without

probabilities shown in the figure have each probability 0.25. This HMM emits symbol 0

with probability 1 in each state (except for first and final state).

if vj is a silent state. By following the pointers in this table from V ′(n, vM) to V ′(0, v0),

we can easily reconstruct the best state path.

The time complexity of the Viterbi algorithm is O(n ·M ·D), where n is the length of

the sequence and M is the number of states and D is the average degree of states in the

model. The memory requirements are O(n ·M ·D), and as we show later in Section 4.4.1,

it can be lowered to O(
√
n ·M ·D). One advantage of the Viterbi algorithm is that it can

be easily implemented with some heuristics optimizations, such as beam search[Low76],

that reduces the running time and memory consumption.

Idea behind this optimization is that we did not compute Viterbi values V (i, v) for all

state paths, but only for small subset of the states. Let v∗ be the state, that maximizes

the value V (i− 1, v∗) and β be the parameter if the beam search called beam-width. We

compute V (i, v) only for those states, which have the higher Viterbi value V (i− 1, v) than

βV (i− 1, v∗).

Applying function λ on the most probable state path we get the desired annotation.

But this is not always the annotation with the highest overall probability. Consider the

HMM from Figure 2.4 and sequence X = 0n. There are two possible annotations. One is

entirely black and the second one is white. There is only one path that goes through state

w and its probability is 0.5 · (1− p) · pn−1. Any state path that goes through black states

have probability 0.5 · 0.25n and there are 2n such paths. If p > 0.25, the most probable

path is the white one. The probability of the white annotation is same, and the probability

of the black annotation is 2n · 0.5 · 0.25n = 0.5n+1. If n is large enough and 0.25 < p < 0.5,

the most probable annotation will be the black one. It is also clear that the probability

of the most probable state path is exponentially smaller than the probability of the most

probable annotation.
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The problem is, that the black annotation corresponds to many path of low probability

and therefore the Viterbi algorithm will ignore it. We say, that this HMM has a multiple

path problem.

Definition 8 [BBV07] Let H be an HMM. We say that H have a multiple path problem

it there exists a sequence X and two different state paths π1, π2 with the same annotation

λ(π1) = λ(π2) and non-zero probability of generating sequence X, Pr(X, πi) > 0.

Note that also the HMM from Figure 2.3 has multiple path problem.

2.5 The Most Probable Annotation Problem

As we saw in the previous sections, the most probable state path does not always lead to

the best annotation. Therefore we need another decoding method. We could try to find

the algorithm that will find the most probable annotation. At first, we will define our

problem.

Definition 9 (The most probable annotation problem) [BBV07] Given an HMM H

and a sequence X, find the annotation Λ that maximizes Pr(Λ|X).

This problem is NP-hard. This was prooved by a reduction from the maximum clique

problem [LP02]. The second, stronger result is that this problem is NP-hard even for a

small fixed HMM [BBV07]. We show the first proof of NP-hardness.

Theorem 3 The most probable annotation problem is NP-hard.

Proof. [LP02]. The original proof was constructed for the consensus string problem and

the most probable annotation was then reduced to this problem. We show a direct reduction

from the maximum clique problem to the most probable annotation problem.

Let G = (V,E) be a graph and v1, v2, . . . vn be the ordering of its vertices. We create

an HMM HG = (VG, QG, e, a) with a separate layer for every vertex vi. We also define a

coloring function λ, for which we will be computing the most probable annotation. The

set of the color of the coloring function λ is C = V ∪ {L}.
Layer for vertex vi will have n + 1 silent states si,j, 0 ≤ j ≤ n. Two silent state si,j

and si,j+1 will be separated by either one non-silent state or a pair of two non-silent states.

There are three rules for constructing HMM HG:

1. There will be a non-silent state qi,i with color λ(qi,i) = vi and transitions si,i−1 → qi,i
and qi,i → si,i with probability one.
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Figure 2.5: On the left side is the graph G and on the right side of the figure is the

HMM HG. The probability of any sequence generated by this HMM is 1/
∑

v∈V 2deg(v).

The numbers in the states in HMM represents the colors. Silent states are gray. Any

unlabeled transitions have probability 1 or 1/2. Any non-silent state generates symbol 1

with probability 1. White states without label have color L.



CHAPTER 2. HIDDEN MARKOV MODELS 14

2. For every vertex vj that is not connected with vertex vj in graph G there will be state

qi,j with color λ(qi,j) = L and transitions si,j−1 → qi,j and qi,j → si,j with probability

one.

3. For every vertex vj that is connected with with vertex vj in graph G there will be

two states q1
i,j, q

2
i,j with color λ(q1

i,j) = vj, λ(q2
i,j) = L and transitions si,j−1 → qki,j, k ∈

{1, 2} with probability 1/2 and transitions qki,j → si,j with probability one.

To finish the construction we add start and final state. Silent states si,n, 1 ≤ i ≤ n

are connected with final state with transition with probability one. From start state there

are transitions to all states si,0, 1 ≤ i ≤ n. Transition from start state to state si,0 have

probability
2deg(vi∑
v∈V 2deg(vj)

The example of this construction is in the Figure 2.5.

The probability of any state path from the HG is 1/
∑

v∈V 2deg(vi) or zero and for every

annotation Λ there is at most one state path p, λ(p) = Λ for every layer. Also every

annotation with non-zero probability can have color vi only on i-th position. Finally if a

path goes through through layer vi and has color vj on position j, i 6= j then in graph G is

the edge (vi, vj).

Let γ =
∑

v∈V 2deg(v). The probability of any annotation is k/γ, k ∈ N, k is the number

of layers which have a path with annotation Λ and non-zero probability. Let vI1 , vI2 , . . . , vIk
be those layers. Then for every 1 ≤ i ≤ k the Ii-th color of Λ is vIi . Since every vertex

vIi is connected with vertices vIj , j 6= i in graph G by an edge, the vertices vIi , 1 ≤ i ≤ k

induce a clique in graph G. Therefore if HG has an annotation with probability k/γ then

in graph is clique of size k.

Also for every clique in graph G there is an annotation with probability k/γ. Let I be

the set of indexes of vertices in that clique. Then the annotation Λ will have on positions Ii
the color vIi and other positions color L. This annotation has probability k/γ. Therefore

finding the most probable annotation in HG is equivalent to finding the maximum clique in

graph G. Since finding the maximum clique is NP-hard, the problem of finding the most

probable annotation is NP-hard.

2.6 Extended Viterbi Algorithm

Despite the fact that finding the most probable annotation is NP-hard (even for some

small HMM), there are effective algorithms, that compute the most probable annotation

for some classes of HMMs. For example for HMMs without the multiple path problem the

Viterbi algorithm finds the most probable annotation.
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However, there is an efficient algorithm that will find the most probable annotation for

a larger class of HMMs than HMMs without the multiple path problem.

Definition 10 (Extended annotation) [BBV07] A critical edge is a transition between

two states of different color. The extended annotation of a state path π1π2 . . . πn is the pair

(Λ, C), where Λ = λ(π) is the sequence of colors, and C = c1c2 . . . ck is the sequence of

critical edges in that path.

The Extended Viterbi algorithm [BBV07] computes the most probable extended anno-

tation in O(n2M3) time, where n is the length of the sequence and M the number of states

of the HMM.

Definition 11 [BBV07] An HMM satisfies the critical edge condition for an input se-

quence if any two paths for with the same annotation have the same sequence of critical

edges. An HMM satisfies the critical edge condition in general if for all input sequences,

the critical edge condition is satisfied.

In all HMMs that satisfies the critical edge condition can the Extended Viterbi algo-

rithm finds the most probable annotation [BBV07]. There is also generalized version of

this algorithm that allows some uncertainty in the sequence of critical edges [BBV07].

2.7 Posterior Decoding

Another way of decoding HMM is the posterior decoding [KKS05, DEKM98]. In this

algorithm we assigns the most probable state to each position. Formally, we assign to

position i state

arg max
v∈V \Q

{Pr(πQi = v|X)} (2.10)

As we can see, we obtain a non-silent state path. To compute such a state path we need

co compute the posterior probabilities of all states and positions by the following formula.

Pr(πQi |X) =
F [i, vj] ·B[i, vj]

Pr(X)
(2.11)

Note that the F [i, v] and B[i, v] are computed by forward and backward algorithm.

The running time and memory requirements are same as in the Viterbi algorithm,

O(n ·M ·D), where n is the length of the sequence, M is the number of states and D is

the average degree of states in the model. In contrast to the Viterbi algorithm, it is harder

to use optimization techniques such as beam-search. If we try to do so, the resulting

posterior probabilities will be wrong because we will throw away many state paths that

have individually low probability, but in sum they can have significant impact.
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Figure 2.6: The simple HMM, on which posterior decoding generates unprobable state

paths. This HMM generates sequences over alphabet Σ = {0}. The start state s and the

final state f are silent. Unlabeled transitions have probability 0.5.

The problem with the posterior decoding is that it can produce an annotation with

zero probability. Consider the HMM from figure 2.6 and sequence X = 00. There are

three possible state paths: svvf, su1u1f and su2u1f , with probabilities Pr(svvf, 00) =

0.1,Pr(su1u2f, 00) = 0.075 and Pr(su2u1f, 00) = 0.75. When we compute the posterior

probabilities of states, Pr(πQ1 = v|00) = 0.4,Pr(πQ1 = ui|00) = 0.3,Pr(πQ2 = v|00) =

0.4),Pr(πQ2 = u1|00) = 0.6 and Pr(πQ2 = u2|00) = 0. Therefore the posterior decoding of

the sequence 00 will be svu1f , but this state path has zero probability.

Inspite of this drawbacks, the posterior decoding optimises an intuitive objective. It

maximizes the expected number of correctly assigned states:

arg max
πQ

=
∑
π′Q

Pr(π
′Q|X)

|πQ|∑
i=1

(πQi = π
′Q
i )

 (2.12)

where term (πQi = π
′Q
i ) is one if πQ and π

′Q are same and zero otherwise.

We can also extend the forward-backward algorithm to optimize the most probable

color for each particular position. We just need to sum the posterior probability over all

states with the same color. This variant can also lead to annotation with zero probability.

2.8 Gain Functions

In this section we present a more general decoding framework based on gain function

[HKS+09]. The previous methods we have searched for an object y with maximum condi-

tional likelihood given the sequence X:

y = arg max
y′

Pr(y′ | X)

where y is a state path or an annotation of sequence X. In this framework we will define

a gain function which characterizes the similarity between proposed annotation and the
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correct annotation. We will also say that the gain function assigns a reward to the anno-

tation given the correct annotation. The correct annotation of sequence X is annotation

Λ′ which was generated together with sequence X. Since the correct annotation is hidden,

we can not search for the annotation with the highest reward (the most similar to the

correct one). But given X we know the distribution of all possible annotations Pr(Λ|X)

and therefore we can search for the annotation with the highest expected reward.

Now we formally define gain functions. We will define the gain function for state paths,

not for annotations, so that we can express the previous decoding methods in terms of gain

functions.

Definition 12 (Gain function) Let H be an HMM and L be the set of all state paths.

Then any function f : L× L→ R is a gain function.

Note. The gain function f does not have to be symmetric (there may be a, c ∈ L, such

that f(a, b) 6= f(b, a)), but we will consider mostly symmetric functions.

The correct state path of the sequence X is defined analogously as the correct annotation.

It is a state path from which was generated the sequence X. Let X the sequence, πX it’s

correct state path and π another state path of X. Then reward of state path π is f(πX , π).

Definition 13 (Expected reward) Let H be an HMM, f be a gain function, X be a

sequence and π be a state path of X. Then the expected reward is defined as

EπX |X [f(πX , π)] =
∑
πX

f(πX , π) · Pr(πX | X) (2.13)

Our goal will be to search for state paths with the highest expected reward. As we

will show, classical decoding approaches from previous sections can be expressed by an

appropriate gain function.

Theorem 4 Let H be an HMM and X be a sequence. Let fV be the gain function defined

in the following way.

fV (π1, π2) =

{
1 if π1 = π2

0 if π1 6= π2

Then the state path π̄ that has the highest expected reward can be found by the Viterbi

algorithm. Moreover, the expected reward EπX |X [fv(πX , π̄)] = Pr(π̄, X).

Proof. Expected reward of a state path π′ is the same as its probability:

EπX |X [fV (πX , π
′)] =

∑
πX

f(πX , π
′) · Pr(πX | X) = Pr(π′ | X)

Therefore the state path with the highest expected reward is the one with the highest

probability. QED
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Using the same argument we can define the gain function for the most probable anno-

tation problem.

fA(π1, π2) =

{
1 if λ(π1) = λ(π2)

0 if λ(π1) 6= λ(π2)

Note that finding the most probable annotation is NP-hard and therefore finding the

annotation with the highest expected reward with respect to gain function fA is also NP-

hard.

It is also possible to define a gain function which is optimized by the same state path as

the posteriori decoding. Recall that if π is a state path, πQ is the same state path without

silent states.

fP (π, π′) =

|πQ|∑
i=1

{
1 if πQi = π′Qi
0 if πQi 6= π′Qi

Computing the expected reward of this function is in fact the equation 2.12.

As we saw, the gain functions are universal framework in which we can express many

decoding methods. This general framework is relatively new and an apparent for the

stochastic context free grammars [HKS+09]. Before it has been used with particular gain

functions designed for the particular application. In the next section we show such decoding

method that was proposed for the de novo gene prediction [GDSB07].

2.9 Maximum Expected Boundary Accuracy Decod-

ing

The maximum expected boundary accuracy decoding maximizes a weighted difference

between the expected number of true-positive and false-positive coding region boundary

predictions [GDSB07]. Boundary is a change of the color in the annotation and we denote

them as the position in the annotation. For example the boundary i in annotation Λ means

that Λi 6= Λi−1. This decoding was proposed for gene prediction where it is important to

find the exact positions of boundaries, since small error in position may significantly change

the predicted protein.

This decoding method was originally proposed for the conditional random fields. Since

conditional random fields are similar to hidden Markov models, we demonstrate this

method on decoding HMMs.

Definition 14 (Maximum boundary accuracy decoding) [GDSB07] Let

Λ = Λ1Λ2 . . .Λl be an annotation. Let B be the set of all boundaries, BΛ = {i|Λi 6= Λi−1}.
Let gain function f be defined in following way:

fM(π, π′) =
∑
i∈BΛ

{
κ if λ(πQi ) = λ(π

′Q
i ) and λ(πQi−1) = λ(π

′Q
i−1)

−1 otherwise
(2.14)
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Then in the maximum boundary accuracy decoding we search for the state path with the

highest expected reward.

This objective can be computed efficiently in O(n|T |+n|C|) time, where n is the length

of the sequence, T is the set of all transitions and C is the set of colors. We do not present

the algorithm for finding the annotation with highest expected reward here, because it is

a special case of our algorithm which can be found in Chapter 4.

2.10 Distance Measures on Annotations

This decoding method is taylored on problems, where there are many annotations with

similar probability and slightly shifted boundaries between colors. For such applications

the decoding method should take into account these similar annotations [BT10].

We express this method in terms of gain functions. Let d be some distance measure

defined on annotations and B̄d(Λ, r) = {Λ′ : d(Λ,Λ′) ≤ r} be the ball of radius r with

centre Λ. We define a gain function in the following way:

fB̄(π, π′) =

{
1 if λ(π′) ∈ B̄d(λ(π), r)

0 otherwise
(2.15)

The expected reward of state path π with respect to function fB̄ is the sum of the proba-

bilities of all state paths π′ for which λ(π′) ∈ B̄d(λ(π), r) holds.

Brown et al. (2010) were using several distance functions for finding the annotation

accumulating annotations with slightly shifted boundaries. Now we define those distance

functions.

Definition 15 (Hamming distance) [BKR02] Let a, b are two words of the same length

over alphabet Σ. Then Hamming distance of a and b is

dH(a, b) =

|a|∑
i=1

(ai 6= bi)

where (ai 6= bi) is one if ai 6= bi and zero otherwise.

Note that the Hamming distance is in fact the number of incorrectly assigned colors.

The let Λ = ck1
1 c

k1
2 . . . ckmm be an annotation where ci 6= ci+1. Then the footprint of the

annotation Λ is the sequence c1c2 . . . cm.

Definition 16 (Border shift distance) [BT10] Let Λ1,Λ2 be two annotations of same

sequence X. Let BΛ1 = {(b1,1), . . . (b1,k)} and BΛ2 = {b2,1), . . . (b2,k)} be ordered sets of the

boundaries of the annotations Λ1,Λ2. Then border shift distace is:

db(Λ1,Λ2)

{
∞ if Λ1 and Λ2 have different footprints

maxi=1..k |b1,i − b2,i| otherwise
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Note that if Λ1 and Λ2 have same footprint then k1 = k2.

Definition 17 (Border shift sum distance) [BT10] Let Λ1,Λ2, BΛ1 and BΛ2 be define

exactly as in the definition 16. Then the border shift sum distace is:

db(Λ1,Λ2)

{
∞ if Λ1 and Λ2 have different footprints∑k

i=1 |b1,i − b2,i| otherwise

Since for any distance function d(Λ1,Λ2) = 0 if and only if Λ1 = Λ2 finding annotation

with highest expected reward is NP-hard even for r = 0. Therefore Brown et al. were

using heuristic algorithms for finding the annotations in the reasonable time. They have

considered several distance measures, such as Hamming distance, border shift distance and

border shift sum distance refined as follows.

In Chapter 4 we will consider a similar objective to the border shift distance. We will

bypass the NP-hardness by scoring the boundaries independently instead of scoring the

annotations as a whole.



Chapter 3

Applications of HMM to Viral

Recombination

HMMs have numerous application. The goal of this chapter is to explain in more details

their use for detecting HIV viral recombinations. We will test our new decoding method

on this particular application domain. We also describe sequence alignment and the profile

HMMs, because they form the basis of jumping HMMs.

3.1 Sequence Alignment

Sequence alignment is one of the basic task in analyzing biological sequences. To create

alignment we have to add gap symbols - to several input sequences, so that they have equal

length.

As we saw in Figure 3.1, there are many possible alignments for any set of sequences.

For example, we can create an alignment by adding |Y | gap symbols before beginning

of the X and |X| gap symbols after the end of the |Y |. Such an alignment is literally

meaningless. To distinguish between good and bad alignments of given sequences we will

1. AAATGTAGAGATAAG---AAGTTCAATGGAACAGGCCCAT

AAGTGT---GATGATAAAAGGTTCAATGGGACGGGGCCAT

2. AAATGTAGA-GATAAGAAGTTCAATGGAACAGGCCCAT

AAGTGT-GATGATAAAAGGTTCAATGGGACGGGGCCAT

Figure 3.1: The first alignment is a part of the multiple alignment of many different HIV

virus genomes The second alignment is an alignment of the same two sequences and was

created manually.

21
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use a scoring scheme. Our goal is to produce an alignment that reflects the evolutionary

history of the sequences.

In evolution theory a sequences car evolve one from another one by a series of mutation

events. An event may be an insertion or deletion of a residue from the sequence or a

substitution of a residue in the sequence. Insertions and deletions are called indels , because

it is hard to distinguish them. For example in the first alignment in Figure 3.1, the sequence

AGA could be deleted from the second sequence or be inserted into the first sequence. We

say that two sequences are homologous if they evolved from one sequence called a common

ancestor. We want to have a scoring system such that homologous sequences will have an

alignment with high score, whereas alignments of non-homologous sequences will have low

score.

At first we will ignore insertions and deletions and consider only the substitutions. We

assume that all evolution events are independent. Let R be the probabilistic model, in

which symbol q has frequency pq, and two sequences X and Y are independent (they are

not homologous). Then the joint probability of both sequences in this model is

Pr(X, Y | R) =
∏
i

pxi ·
∏
i

pyi (3.1)

Now consider another model M , in which symbols xi and yi are derived from some symbol

ci through substitutions with probability pxi,yi . Then the probability of both sequences is

Pr(x, y |M) =
∏
i

pxi,yi (3.2)

The ratio of two probabilities, can be seen as a measure of X and Y being homologous.

Pr(x, y |M)

Pr(x, y | R)
=
∏
i

pxi,yi
pxipyi

(3.3)

If the result is greater than one, the sequences are more likely to be homologous than to

be from a random model and vice versa. Since the computation of the equation 3.3 is not

numerically stable, we use logarithms.

log

(
Pr(x, y |M)

Pr(x, y | R)

)
=
∑
i

log

(
pxi,yi
pxipyi

)
(3.4)

Then a positive score value means homologous sequences and negative non-homologous.

The score of a pair of symbols xi and yi from the same column of an alignment is

log
(
pxi,yi
pxipyi

)
. Values log

(
pxi,yi
pxipyi

)
we will be arranged to a score matrix. One question

remains. What are the probabilities pq and pxi,yi? The frequencies pq can be observed in

sequences, but in sequences we do not observe pxi,yi . There are commonly used matrices,
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CCAGTAGATCCT---AACCTAGAACCCTGGAACCATCCAGGAAGTCAG

CCAGTAGATCCT---AACCTAGAGCCCTGGAATCATCCAG---GTCAG

CCAGTAGATCCT---AGGCTAGAGCCCTGGAACCATCCAGGAAGTCAG

CCA---GACCCT---AACCTAGAGCCCTGGAAGCATACAGGAAGTCGG

CCAGTAGATCCT---AGCCTAGAGCCCTGGAACCATCCAGGAAGTCAG

CCAGAAGATCCTCCCAGCTTGAGC---TGGAACCATCCAGGAAGGCAG

CCAGTACATCCT---AGCCTACAGCCCTGGAACCATCCAGGAAGTCAG

Figure 3.2: Example of a multiple alignment.

PAM, BLOSUM [DEKM98] used as score matrices. The BLOSUM matrix is created from

manually created and verified alignments and PAM matrix is derived from a sequence

alignments and a theoretical model of evolution.

Now we have to cope with gaps. Let g be the length of the gap. We assume, that

probability of a gap of length g at position h is

Pr(g, h |M) = f(g)
∏

h≤i<h+g

pxi (3.5)

To get the measure of sequence X being homologous to an empty sequence Y we take the

ratio of two probabilities.

Pr(g, h |M)

Pr(g, h | R)
=
f(g)

∏
h≤i<h+g pxi∏

h≤i<h+g pxi
= f(g) (3.6)

Now we see, that the score of the gap depends only in the gap length and it is γ(g) =

log(f(g)). Usually the scoring function for the gaps is linear. There are two variants of

scoring function γ(g). The first is the γ(g) = −gd and the γ(g) = −e− (g− 1)d where d is

gap penalty and the e is the opening gap penalty. The opening gap penalty is commonly

greater than the gap penalty, because we usually prefer fewer but longer gaps than many

short gaps.

To find an alignment the highest score we can use the Needleman-Wunsch algorithm

that have time complexity O(|X||Y |). Since for long sequences this algorithm is unpracti-

cal, we usually have to use heuristic algorithms, for example BLAST [DEKM98].

Multiple Alignment

The multiple alignment is the alignment of two or more sequences. The meaning of multiple

alignment is similar to the meaning of the alignment of two sequences. In a multiple

sequence alignment the homologous residues are aligned in the same columns. The residues

are homologous if they evolved from common ancestral residue. Homologous residues may
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Figure 3.3: Example of profile HMM with length 6

have same function in all sequences of the alignment or be in same position in the structures

that sequences creates. In Figure 3.2 we can see a proportion the multiple alignment of

several HIV sequences.

There are many scoring methods for multiple alignment. Most of them assigns score

individually to each column of the alignment as described above. The simplest scoring

method uses a sum of pairwise scores between all pairs of sequences in the alignment. If

the score of the alignment is the sum of the scores of all columns in the alignment, we can

find the multiple alignment with the highest score by dynamic programming in O(2knk)

where k is the number of sequences and n is the length of the sequences [DEKM98]. If

the number of sequences is fixed, the time complexity is polynomial. But in case of the

variable number of each sequence, finding the multiple alignment with the highest score is

for the most score systems NP-hard [WJ94]. In practice exists various heuristic algorithm

that can align large number of long sequences in the reasonable time [DEKM98].

3.2 Profile HMMs

A sequence family is a set of sequences that are in some way similar, for example in their

sequence or function. A profile HMM can effectively represent a family of similar sequences.

It can be used for example to search for new family members in a sequence database.

A profile HMM [DEKM98] of length k consists of 3 ·(k+1) states: the start state B, the

end state E, the match states M1,M2, . . . ,Mk, insert states I0, I1, . . . Ik and delete states

D1, D2, . . . Dk−1. These states are connected by transitions as follows (see also Figure 3.3.

1. There are transitions from state B to states M1, I0 and D1

2. There are transitions from states Dk−1, Ik,Mk to state E.

3. For every i, there are transitions from Mi to states Mi+1, Ii and Di+1 if such state

exists.

4. For every i, there are transitions from Ii to Ii, Ii+1, Di+1 and Mi+1 if such state exists.
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The match states represent the main structure of the family members. In ideal case the

i-th match state represents the i-th symbol of the sequence. Since the insertion or deletion

may have happened, we need insert and delete states. Other way how to represent a family

of the sequences is the multiple alignment. But if we have a large number of sequences

such a representation is too big. We can see the profile HMM as the ”compression” of a

multiple alignment.

Each match state of the profile corresponds to some column in the alignment. Not all

columns in the alignment have necessarily a corresponding match state. For example we

do not want to have match state for columns that consist almost entirely of gaps. To create

a profile HMM we choose the columns from which we create the match states. There are

various heuristics to do this, for example Schultz et al. (2006) used only columns from

multiple alignment that did not have any gaps. The emission probabilities are usually

derived from frequencies of symbols in the column. The transition probabilities between

match, delete and insert states can also be derived from observed frequencies [DEKM98].

We have used the profile HMM as a part of a larger model, but usually they are used to

detect membership in a sequence family. To provide score for a particular membership of

a sequence to the family, we can use the probability of the most probable state path found

by Viterbi algorithm or the probability of the sequence computed by forward algorithm

[DEKM98]. Both of these probabilities are typically compared with a simple background

random model of sequences in a log-odd score, similar to pairwise alignment [DEKM98].

3.3 Jumping HMM

Human immunodeficiency virus (HIV) is a major pathogen causing the pandemic of the

Acquired Immune Deficiency Syndrome (AIDS). The HIV genome mutates rapidly and

currently is divided into three main phylogenetic groups M,N and O. Those groups were

created by three different transmissions of SIV virus from chimpanzee to humans [SZL+06].

Most HIV infections are caused by HIV-1 M group viruses. This group is divided into 10

subtypes and some subtypes are divided into sub-subtypes, as show in Figure 3.4. To

classify a newly sequenced virus into known subtypes, we can use profile HMMs. But some

HIV genomes are a mosaic recombination of viruses from two or more different subtypes

[RAB+00]. These viruses are called circulating recombinant forms (CRFs). Our goal is do

decide, whether the input sequence belongs to certain virus family or if it is a CRF. If it

is a CRF, we want to reconstruct recombination points and to find the source family of

each homogeneous block. The HCV virus have similar structure, and therefore the same

methods can be used to detect recombination in the genome of HCV.

Now we describe in brief the process of the recombination of the HIV genome. Unlike

other viruses, the HIV is diploid. It contains two full-length RNA strands, each able to
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Figure 3.4: Phylogenetic tree of the HIV-M1 group of genomes with branch of HIV-O group

generated by phyml [GG03]. As the source alignment we have used the database distributed

with jpHMM [SZL+06]. The lengths of the branches corresponds to the evolution distances.

The subtypes A and F are divided into sub-subtypes A1,A2 and F1,F2.

replicate in a cell. Once the viron infects the cell, it injects into the cell both strains of RNA

and various proteins including reverse transcriptase. The RNA of the virus is transcribed

into double stranded DNA by reverse transcriptase. After the reverse transcription, the

resulting DNA is incorporated into the cell’s nucleus where it may be replicated. Once the

RNA of the virus leaves the nucleus, it is translated into proteins that are essential to the

survival of the virus and assembled viron leaves the cell [Bur97].

If two virons infects the same cell, the pairs of RNA strains can be mixed into new

”heterozygotous” viron during the viron assembly. This new viron have one strain from

each of the two parent virons. Once this viron infects an other cell, the two strains can be

recombined into new strain during the reverse transcription [Bur97].

Currently the most commonly used recombination detection tool is Jumping profile

HMM (jpHMM) [SZL+06]. Now we describe the model behind this tool.

Let S = {S1, . . . , Sn} be the set of all sequences in the database which is divided into

k subtypes S1,S2, . . . ,Sk. Let A be the multiple alignment of all sequences in S. In the

jpHMM, every subtype Si is represented by profile Pi. The profile Pi was constructed from

subalignment of A composed of sequences in Si.
To model recombination, we have to add transitions between states of the different

profiles. To keep the model simple and of reasonable size, we have limit their number.

Definition 18 [SZL+06] Let T be a state from profile Pi and R be a state from profile Pj,
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Figure 3.5: The simplified structure of jpHMM. Insert and delete state are mitted from

the figure for readibility.

i 6= j. We say that state T is to the right of state R, if and only if the column rt, from

which was the state T created is strictly to the right of a column rR, from which was the

state R created (rt > rj).

The relation to be strictly to the right implies a partial ordering over the set of states

on the jpHMM.

The jumps (transitions) between the profiles are constructed by the following rules

[SZL+06].

1. For a two profiles Pi and Pj, the algorithm can jump from a match state of Si only

to a match state or a delete state of Sj, and from an insert state or delete state of Si
a jump is possible only to a match state of Sj.

2. It is possible to jump from state T in profile Pi to the leftmost state R in Pj, that is

strictly to the right of T .

3. It is not possible to jump from state Mi,k, Di,k or Ii,k to state R in Pj if R is strictly

to the right from the state Mi,k+1.

The first condition reduces the number of jump transitions in the model. The last two

conditions ensure that all insertions and deletions are caused by insert and delete states

and not by jumps. The simplified structure of jpHMM we can see in the Figure 3.5.

To complete the construction of the model, we describe the beginning and the end of

the jpHMM. The starting state of the model is B and end state E. Instead of one insert

state before each profile, there is one global insert state for the beginning of the model.

This state is reachable directly from B and it has transitions to the first match state of

each profile. There is also a similar insert state at the end of the model. There are also

two special delete states, one reachable from state B and one with transition to E. Both

are connected with every match state, so that only partial sequences in the family can

be generated. Finally, there are transitions from state B to the first match state in each

profile and transitions from the last state of each profile to the state E.
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Schultz et al. use for finding annotation the Viterbi algorithm optimized with beam-

search. This algorithm is described in Chapter 2. In jumping HMM there is difference

between the annotation and state path. At first, the jumping HMM have multiple path

problem. In this application we are not interested in the state path, which correspond to

the alignment of the sequence to the source database. We are interested in the annota-

tions, which correspond to the division of the sequence into blocks from different subtypes.

Also the annotations with slightly shifted boundaries between different colors have similar

probability and therefore we want to consider all those annotations while searching for the

recombination points. In the next chapter we will introduce the new gain function that is

designed for this application.



Chapter 4

HERD: The Highest Expected

Reward Decoding

In this chapter we define a new gain function, that allows some uncertainty in boundaries

in annotation and algorithm that finds the annotation with the highest expected reward

with respect to this function. We show the algorithm that finds the annotation with the

highest expected reward with respect to our gain function. Our algorithm is non-trivial

extension of the maximum expected boundary accuracy decoding [GDSB07].

4.1 The Highest Expected Reward Decoding

We seek for a gain function that is appropriate for our application domain. This gain

function should consider the annotation with slightly shifted boundaries as the same. To

bypass NP-hardness, we will have to define this gain function such that it will assign score

individually to each boundary. But first we need some technical definitions.

Definition 19 (Boundary) Let Λ = Λ1Λ2 . . .Λn be an annotation. Let Λ0 and Λn+1 be

the new unique colors. We say that there is boundary b in Λ if Λb 6= Λb−1, 1 ≤ b ≤ n+ 1.

Note. We added the two special colors Λ0 and Λn+1 in order to achieve that the start and

end of the annotation are boundaries.

Definition 20 (Feature) Feature in an annotation is a maximal contiguous region of

labels with the same color.

We will define a buddies of boundaries. The pair of the boundaries in two annotations

are buddies if they divide two similar features in both sequences.

Definition 21 (Buddy) Let Λ and Λ′ be two annotations of the same sequence and W ∈
N. Boundaries i in Λ and j in Λ′ are called buddies if

29
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Figure 4.1: The arrows represent boundaries. Black lines connect boundaries that are

buddies, the gray lines connect boundaries that would be buddies if the condition iii was

dropped from the definition 21

(i) Λi−1 = Λj−1 and Λi = Λj

(ii) |i− j| < W

(iii) There is no other boundary at positions min{i, j}, . . . ,max{i, j} in either Λ or Λ′.

We denote the parameter W as the window size.

The intuition behind the condition iii is that we want buddies to be boundaries of

practically identical features in the two annotations that differs only slightly in the exact

boundary position. Consider the example in Figure 4.1 and the two boundaries connected

by the leftmost gray line. Without condition iii they would be buddies, but the black

features in their left are are completely disjoint. A similar situation occurs at the second

gray line. Another useful property is that each boundary can have at most one buddy (the

last two gray lines). The last two gray lines in Figure 4.1 illustrate that this would not be

true without condition iii.

Definition 22 (The highest expected reward decoding problem) Let gain function

G(Λ,Λ′) assigns reward +1 for every boundary in Λ that has a buddy in Λ′ and reward −γ
to all other boundaries in Λ. The highest expected reward decoding problem (HERD) is

finding the annotation Λ with the highest expected gain

EΛ′|X [G(Λ,Λ′)] =
∑
Λ′

G(Λ,Λ′) Pr(Λ′|X) (4.1)

Note. The highest expected reward decoding is for W = 1 equivalent to maximum accu-

racy boundary decoding.

Example of a reward G(Λ,Λ′) is in Figure 4.2. The expected reward of annotation Λ

can be decomposed as a sum of partial expected rewards for individual boundaries in Λ. In

particular, let B be the set of all boundaries in Λ and pΛ,b be the probability that boundary

b in Λ has buddy. Formally,

pΛ,b =
∑

Λ′,b has a buddy in Λ′
Pr(Λ′|X)
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Figure 4.2: Example of an annotation with reward 4− 2γ.

Figure 4.3: Decomposition of p(i, c1, c2, wl, wr) for W = 3. The condition iii from 21

restricts annotation to the ones, that don’t change color between the buddies.

Let Rγ(p) = p − γ · (1 − p). Then from linearity of expectation we can do following

decomposition:

EΛ′|X [G(Λ,Λ′)] =
∑
b∈B

Rγ(pΛ,b) (4.2)

The quantity Rγ(pΛ,b) is the expected reward of boundary b in the annotation Λ.

We can divide the HERD algorithm into two phases. In the first phase, we compute

posterior probabilities pΛ,b for all possible boundaries. In the second phase we find the

annotation Λ with the highest expected reward.

4.1.1 Computing Posterior Probabilities

In this section we show how to compute posterior probabilities pΛ,b. Let b be the boundary

in Λ. The term pΛ,b can be expressed as
∑

b′ pΛ,b,b′ where

pΛ,b,b′ =
∑

Λ′,b has a buddy b′ in Λ′
Pr(Λ′|X)

From condition ii from definition 21 we know that the buddy b′ can be only at positions

b−W, . . . , b+W . The condition iii restrict the possible positions of buddy b′ even more.

Let b − wL be the rightmost boundary in Λ that is to the left of b and b + wR be the

leftmost boundary in Λ that is to the right of b. The possible positions for b′ are b −
min{W,wL} + 1, . . . , b + min{W,wR} − 1. Let wl = min{W,wL} and wr = min{W,wR}.
The only information about annotation Λ, that we need to compute pΛ,b are the values of

b,Λb−1,Λb, wl, wr and therefore instead of pΛ,b we will write the p(b,Λb−1,Λb, wl, wr). We
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divide the possible buddies of b into two sets. The first set B1 consists of potential buddies

b−wl, . . . , b and the second set B2 consists of buddies b+1, . . . , b+wr. Figure 4.3 illustrates

these two sets. The annotations with buddies b′ from B1 have one white label at position

b′−1 and labels from b′ to b are black (both inclusive), all other labels can be arbitrary. The

annotations for boundaries b′ from B2 have a symmetric structure: the labels b, . . . , b′−1 are

white and the label b′ is black. Therefore we can write pΛ,b,b′ = Pr(Λ′b′...b = Λb−1Λb−b′+1
b |X)

if b′ ∈ B1 and pΛ,b,b′ = Pr(Λ′b−1...b′−1 = Λb′−b+1
b−1 Λb|X) otherwise. Remind that the Λi...j is

the sequence ΛiΛi+1 . . .Λj and Λn
i is the sequence ΛiΛi . . .Λi of the length n. Therefore

The Pr(Λ′b′...b = Λb−1Λb−b′+1
b |X) is the conditional probability, that annotation Λ′ of the

sequence X has on position b′ color Λb−1 and on positions b′+ 1 . . . b color Λb. Now we can

express pΛ,b more precisely.

p(b, c1, c2, wl, wr)

wl∑
w=1

Pr
(
Λ′b−w...b = c1c

w
2 |X

)
+

wr∑
w=2

Pr
(
Λ′b−1...b+w−1 = cw1 c2|X

)
(4.3)

The terms Pr
(
Λ′b−w...b = c1c

w
2 |X

)
and Pr

(
Λ′b−1...b+w−1 = cw1 c2|X

)
are similar, both can

be computed by an extension of the forward-backward algorithm. For simplicity we now

show how to find these quantities for HMMs without silent states and defer the discussion

of general algorithm for well-defined HMMs to Section 4.2.

We will compute Pr(Λi...i+w = c1c
w
2 | W ) by combining all state paths that end at

position i with color c1 and those starting in position i + 1 with color c2 and continuing

with the same color for the next w states.

Pr(Λi...i+w = c1c
w
2 | X) =

∑
v→v′,λ(v)=c1,λ(v′)=c2

F [i, v] · av,v′ ·B[i+ 1, v′, w] (4.4)

Term F [i, v] from the equation can be computed by the forward algorithm and the term

B[i, v, w] by simple extension of the backward algorithm as follows. Value B[i, v, w] is the

sum of the probabilities of all state paths, that start at position i in state w, generate tail

of the sequence and the colors of the first w non-silent states are λ(v). Value B[i, v, 0] is

computed by backward algorithm. The rest of B can be expressed by following equations.

B[i, v, w] =
∑

v→v′,λ(v)=λ(v′)

B[i+ 1, v, w − 1] · ev,Xi
· av,v′ (4.5)

Unlike the backward algorithm defined in Section 2.2 we slightly changed the interpretation

of the quantity B[i, v, 0]. In this case the state v emits the symbol Xi if v is non-silent

state.

The computation of the term Pr
(
Λ′b−1...b+w−1 = cw1 c2|X

)
is symmetric to the computa-

tion of the term Pr
(
Λ′b−w...b = c1c

w
2 |X

)
and therefore we omitted it.
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Figure 4.4: Part of a path in an annotation graph that represents one annotation. A node

with color c and caption (b, w) represents the vertex (b, c, w) of the graph. The dashed

lines connect each vertex to its corresponding feature.

4.1.2 Finding the Annotation

Once we have computed the posterior probabilities, we can find the annotation with the

highest expected reward. We will do it by constructing a directed acyclic graph, in which

every path from the starting vertex to the end vertex corresponds to an annotation of

sequence X and the weight of that path will be reward of that annotation. Conversely,

for every annotation of X there will be a path with these properties. We will refer to this

graph as to the annotation graph.

The vertices of the annotation graph graph will be triples (b, c, w), 1 ≤ b ≤ n, c ∈
C,w ≤ W and a special start vertex (0,Λ0, 1) and end vertex (n + 1,Λn+1, 1). All rules

apply to the regular vertices as well as the start and end vertex. A vertex represents the

feature of color c with left boundary at b and length exactly w if w < W , or at least W

otherwise. There will be an edge between vertices (b1, c1, w1) and (b2, c2, w2) if and only if

b2 = b1 + w1 or b2 ≥ b1 + W,w + 1 = W and c1 6= c2 with weight Rγ(p(i2, c1, c2, w1, w2)).

We call edges for w1 = W long-distance edges. Figure 4.4 shows an example of annotation

graph.

Each edge corresponds to the feature of color c1 at positions b1, . . . , b2−1. The weight of

the edge corresponds to the expected reward of boundary b2. Since b2 > b1, the annotation

graph is acyclic and therefore we can find the longest path from the start vertex to the

end vertex in linear time [CSRL01]. This path will correspond to the state path with the

highest expected reward as we show int he next theorem. But first we need one technical

definition.

Definition 23 The path w = w1w2 . . . wk correspond to annotation Λ, if for all i the edge

(wi, wi+1) correspond to i-th feature of Λ.

Theorem 5 The algorithm described above find the annotation of sequence X with the

highest expected reward.

Proof. First we show that there is one to one correspondence between the paths in graph
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and annotations. In the second part of the proof we show that the weight of the path is

equal to the expected reward of corresponding annotation.

Let w = (0,Λ0, 1)(b1, c1, w1)(b2, c2, w2) . . . (bk, ck, wk)(n + 1,Λn+1, 1) be a path in the

annotation graph. Then the only one corresponding annotation to this path is Λ =

cb2−b11 cb3−b22 . . . c
bk−bk−1

k−1 . We can also reverse this assignment and get the path from an-

notation. It easy to check, that all these assignments are injections and therefore there is

one to one correspondence between the paths and annotations.

Now we prof the rest. Let w = (b1, c1, w1)(b2, c2, w2) . . . (bk, ck, wk), b1 = 1, bk = n + 1

be the path and Λ = cb2−b11 cb3−b22 . . . c
bk−bk−1

k−1 . The weight of the path is

k−1∑
i=1

Rγ(p(bi+1, ci, ci+1, wi, wi+1))

which is exactly the expected reward. QED

The construction described above has one drawback. The number of long-distance

edges is quadratic in the length of the sequence. We can lower this number by adding a

special collector vertices to our construction. The collector vertices have similar function

as the silent states in the HMM. In particular, we add to construction vertices (b, c),

1 ≤ b ≤ n, c ∈ C and replace long distance edges with these edges for every b1, w, c1, c2:

• Edge from (b1, c1) to (b1 + 1, c1) with zero weight.

• Edge from (b1, c1,W ) to (b1, c1) with zero weight.

• Edge from (b1, c1) to (b1 +W, c2, w), c1 6= c2 with weight Rγ(p(b1 +W, c1, c2,W,w)).

This construction is correct because we replace every long-distance edge with exactly one

chain of collector vertices with same total weight and we did not connect any vertices with

collector vertices that were not connected by long-distance edge.

With collector edges, the resulting graph has only O(nW 2C2) edges and therefore we

can find the longest path in O(nW 2C2) time. The overall running time of our algorithm is

O(nW |E|+nW 2C2). Note that the time complexity is linear in the length of the sequence

for a constant-sized HMM. The HERD algorithm is slower than the Viterbi algorithm by

a factor of W .

4.2 Extension to HMMs With Silent States

The algorithm for computation of Pr(ai...i+w = c1c2
w | X) does not work on HMMs with

silent states. We can replace silent states with additional edges, but in the worst case
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Figure 4.5: The submodel of jpHMM that breaks simplicity.

we add O(|V |2) edges to the model, increasing the running time. A good example is

the jpHMM from Chapter 3. jpHMM contains a chain of delete states for every profile.

Removing silent states in the jpHMM will add O(kn2) edges, where n is the length of the

profile and k is the number of profiles. Thus if the sequence has also length n, the running

time of the HERD would be O(kn3W + nW 2k2). To improve running time we show two

extensions of our algorithm. One works on a large class of HMMs with silent states and

the other works on any well-defined HMM.

4.2.1 Simple HMMs

In general, we do not assign colors to silent states (λ(u) = ε for a silent state). We define

an alternative coloring function c′ that assigns colors to silent states.

Definition 24 Let H be an HMM and let c : V → C ∪ {ε} be its coloring function. Then

an alternative coloring function is function λ′ : V → C such that for every non-silent

state v, λ′(v) = λ(v).

Definition 25 State path u1u2 . . . uk is simple if and only if the number of consecutive

state pairs (ui, ui+1) with λ′(ui) 6= λ′(ui+1) is at most 1.

Definition 26 Let H be an HMM, Q ⊆ V be the set of silent states. HMM H is sim-

ple, if and only if there exists alternative coloring function λ′ such that every state path

uu1u2 . . . ukv, u, v ∈ V \Q, ui ∈ Q is simple.

Intuitively we require that any path from say a white non-silent state to a black non-

silent state through several silent states contains first several (possibly zero) white states

followed by several black states and thus changes the color exactly once.

Unfortunately, jpHMM from Chapter 3 is not simple (if it contains more than 2 profiles).

From match state Mk,i it is possible to get to the match state Mk,j, j > i through delete

states. Since both match states have the same color k, all delete states between them need

to have color k in alternative coloring function. Let Dk,l be a delete state on such a path

between match states Mk,i and Mkj (see Figure 4.5). There exists a match state Mk′,l′
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from a different profile from which a jumping edge leads to Dk,l. There also exists an edge

from Dk,l to a match state Mk′′,l′′ , k 6= k′′. Since Dk,l has color k, the path Mk′,l′Dk,lMk′′,l′′

is not simple.

We show how to modify jpHMM so that it is simple. As we can see in Figure 4.5 we

have to remove either jumps from delete states to match states of different profiles or from

match states to delete states of different profiles. Now we show, that if we remove all jumps

from match states to delete states from another profile, the resulting HMM will be simple.

Let λ be the alternative coloring function defined in following way. Let Dij be the

delete state from jpHMM, that is in j-th profile with color cj. Then λ′(Dij) = cj. To other

silent states in the model we will assign new unique color cu. Since transitions to delete

states from another profiles are not allowed, therefore all states paths uu1 . . . ukv, u, v ∈
V \Q, ui ∈ Q is simple, because all ui has same color as u. The other silent states in

jpHMM are at beginning or the end of the sequence. The first ones are not accessible from

any non-silent states and there is no path from ending silent states to non-silent state.

Therefore this changed jpHMM is simple.

Since we have removed from the model delete to match transitions, we doubled the

jump transitions from the match states to the delete states to preserve the probability of

jump from one profile to another profile.

Now we will use the simplicity of HMM to reduce the time complexity of our algorithm.

Let H be a simple well defined HMM and λ′ be the corresponding alternative coloring

function. We show how to compute Pr(ai...i+w = c1c2
w | X). Let F [i, v, w], w ∈ {0, 1} be

the sum of probabilities of all state paths ending in state v and generating the first i symbols

of X such that the last w symbols have annotation λ′(v). Let B[i, v, w], 0 ≤ w ≤ W be the

sum of probabilities of all state paths starting in state v and generating symbols xi, . . . , xn
such that the first symbols xi, . . . , xi+w−1 have annotation λ′(v). Then

Pr(Λi...i+w = c1c2
w | X) =

∑
v→v′,λ(v)=c1,λ(v′)=c2

F [i, v, 1] · av,v′ ·B[i+ 1, v′, w]

Pr(X)
(4.6)

To prove this equality, consider a state path s that satisfies Λi...i+w = c1c2
w. Let u be

the i-th non-silent state in s and let v be the i+ 1-th non-silent state in s. Clearly, state u

is responsible for emission of color Λi and v emitted color Λi+1. States u and v may be in s

connected by several silent states, and the path u = sj, sj+1, . . . , sk = v is simple. Because

λ(u) = c1 and λ(v) = c2, there exists a unique index l where this path changes color from

c1 to c2. State path s is counted in F [i, sl, 1] · asl,sl+1
·B[i+ 1, sl+1, w].

Finally, we show how to compute F and B. Recall that v0 is the start state of H

and vM−1 is the final state. Values F [i, v, 0] can be computed by the standard forward

algorithm and B[i, v, 0] by the backward algorithm from Section 2.2.
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Figure 4.6: Example of an HMM with one silent state s on which the simple extension of

the forward algorithm does not work.

F [i, v, 1] =
∑

u→v,v /∈Q

F [i− 1, u, 0] · ev,xiau,v +
∑

u→v,v∈Q,λ′(u)=λ′(v)

F [i, u, 1] · au,v

B[i, u, 1] =
∑

u→v,u/∈Q

B[i+ 1, v, 0] · eu,xi · au,v +
∑

u→v,u∈Q,λ′(u)=λ′(v)

B[i, v, 1] · au,v

B[i, u, w > 1] =
∑

u→v,u/∈Q,λ′(u)=λ′(v)

B[i+ 1, v, w − 1] · eu,xi · au,v

+
∑

u→v,u∈Q,λ′(u)=λ′(v)

B[i, v, w] · au,v

The states of HMM have to be topologically sorted as in forward algorithm in Section 2.2.

This part of the algorithm works in O(nW |E|) time as in the case of HMMs without

silent states. Jumping HMMs after our modification are simple HMMs and therefore

algorithm described above can be used on them. Space complexity is O(nW |V |) and as

we will discuss in Section 4.4 it can be improved to O(
√
nW |V |).

4.2.2 Well Defined HMM

The algorithm from the previous section does no work correctly on general well-defined

HMMs. Consider the HMM in Figure 4.6. Relevant part of the HMM has one silent state s,

one gray state g1, two white-colored states w1, w2, and two black-colored non-silent states

b1, b2. Without loss of generality, let color of state s be black. Then any state path that

goes through g1sw2 will not be counted but those state paths generates valid annotation.

Therefore we have to had additional information about a color of the last emitted symbol.

We will redefine F and B by adding parameter c, color of the last non-silent state. Let

F [i, v, w, c] be the sum of probabilities of all state paths ending in state v and generating

the first i symbols of X so that the symbols at position i − w + 1, . . . i have color c. Let

B[i, v, w, c] for w ≥ 1 be the sum of probabilities of all state paths starting in state v
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and generating symbols xi . . . xn such that symbols xi, . . . xi+w−1 have color c. Note that

the values F [i, v, 0] and B[i, v, 0] are defined as in the previous section. Obviously, if v is

not silent state and c 6= λ(v), then F [i, v, w, c] = V [i, v, w, c] = 0. Note that now we use

coloring function, not the alternative coloring function, and therefore silent states do not

have assigned any color.

With these changes we will compute quantity Pr(Λi...i+w = c1c2
w | X) using the follow-

ing formula.

Pr(Λi...i+w = c1c2
w | X) =

∑
v→v′,λ(v′)=c2

F [i, v, 1, c1] · av,v′ ·B[i+ 1, v′, w, c2]

Pr(X)
(4.7)

Since v′ has a color, it is a non-silent state. Therefore we sum the probabilities of all

state paths, that have previous color c1 (F [i, v, 1, c1]) and next w symbols have color c2

(B[i+ 1, v′, w, c2]).

The forward and backward quantities can be computed by the following equations.

Note that sates of HMM have to be topologically sorted as in forward algorithm. Values

F [i, v, 0] and B[i, v, 0] are computed by the forward and backward algorithm in Section

2.2.

F [i, v, 1, c] =
∑

u→v,v /∈Q,λ(v)=c

F [i− 1, u, 0] · ev,xi · au,v +
∑

u→v,v∈Q

F [i, u, 1, c] · au,v

B[i, v, 1, c] =
∑

u→v,v /∈Q,λ(u)=c

B[i+ 1, u, 0] · ev,xi · au,v +
∑

u→v,v∈Q

B[i, u, 1, c] · au,v

B[i, v, w > 1, c] =
∑

u→v,v /∈Q,λ(u)=c

B[i+ 1, u, w − 1, c] · eu,xi · au,v +
∑

u→v,v∈Q

B[i, u, w, c] · au,v

Time and space complexity of the algorithm increases by a factor of C. Time complexity

O(nWC|E| + nC2W 2) and space complexity is O(nC|V | + WC|V | + nC2). As in the

previous section, we can improve space complexity to O(
√
nC|V |+WC|V |+ nC2).

4.3 Different Gain Functions

In Section 2.8 we have defined the gain function G(Λ,Λ′). In this section we show how

to change the algorithm to cope with various generalizations of this gain functions. Our

framework is flexible and therefore we we need to change only small parts of the algorithm.

Our gain function does not take into account the distance of boundaries that are bud-

dies, as long as they are within W symbols of each other. We may want to penalise distant

buddies in order to predict breakpoints more precisely. For example, we may assign score

βd to buddies in distance d, where 0 < β ≤ 1. We go further and allow almost any function

to be used as the score.
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Figure 4.7: Annotation 1 and Annotation 2 have the same score (2 + −2γ) in the gain

function G(Λ,Λ′), but the first one is better.

Definition 27 Let f : N →< 0, 1 > be a monotonically non-increasing function. Then

Gf (Λ,Λ
′) is a gain function that assigns score f(|i− j|) to each boundary i in Λ that has

a buddy j in Λ′ and score −γ to boundaries in Λ without a buddy.

Note that condition |i− j| < W still holds and therefore f(n) can be described by W + 1

values.

Given a sequence X, in the highest expected reward decoding we want find the annota-

tion maximizing EΛ′|X [Gf (Λ,Λ
′)]. Let B(Λ) be set of all boundaries in Λ. Using linearity

of expectation, EΛ′|X [Gf (Λ,Λ
′)] =

∑
b∈B(Λ) Rf,γ(b | Λ, X), where Rf,γ(b | Λ, X) is the

expected gain of boundary b in annotation Λ given sequence X. Previously, considering

only constant f we had Rf,γ = pΛ,b − γ(1 − pΛ,b), where pΛ,b is posterior probability that

boundary b in Λ has a buddy. The formula is somewhat mode complicated for general f .

Rf,γ(b | Λ, X) =
∑

b′∈B′(b,Λ)

Pr(b, b′|Λ, X) · f(|b− b′|)− γ(1− pΛ,b) (4.8)

where B′(b,Λ) is the set of all possible buddies of b in any annotation given Λ and

Pr(b, b′ | Λ, X) is the posterior probability that b and b′ are buddies, which can be expressed

as in Section 4.1.

Pr(b, b′ | Λ, X) = Pr(Λ′min{b,b′}...max{b,b′} = Λ
|b−b′|−1
b Λb+1|X)

We will consider another generalisation of the gain function motivated by the example

from Figure 4.7. The two different labeling with same score. One have Both of these

annotations shown in the figure have same score, but the second one has eight incorrect

labels, while the first one has only four. In order to avoid such cases, we will define a gain

function that also receives reward β for each correctly predicted label.

Definition 28 Let f : N→< 0, 1 > be a monotonically non-increasing function. Then

G′f (Λ,Λ
′) = Gf (Λ,Λ

′) + (|Λ| − dH(Λ,Λ′)) · β
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Recall, that dH is a Hamming distance defined in Section 2.10.

With this gain function, annotation 1 in figure has a higher score than annotation 2.

Now we show, how to find a labeling with highest expected gain.

As before, we are searching for the annotation, that maximizes

EΛ′|X [G′f (Λ,Λ
′)] = EΛ′|X [Gf (Λ,Λ

′)] + EΛ′|X [(|Λ| − dH(Λ,Λ′)) · β]

= EΛ′|X [Gf (Λ,Λ
′)] + β · EΛ′|X [(

|Λ|∑
i=1

(Λi = Λ′i)) · β]

= EΛ′|X [Gf (Λ,Λ
′)] + β ·

|Λ|∑
i=1

EΛ′|X [(Λi = Λ′i) · β]

=
∑

b∈B(Λ)

Rf,γ(b | Λ, X) + β ·
|Λ|∑
i=1

Pr(Λi = Λ′i)|X) · β

The posterior probability Pr(Λi = Λ′i | X) can be computed by formula

Pr(Λi = Λ′i | X) =
∑

v/∈Q,c(v)=Λi

F [i, v, 0] ·B[i, v, 0]

ev,Λi
· Pr(X)

(4.9)

To compute an annotation with the highest expected reward using G′ as gain function,

we have to change the algorithm more than with the previous gain function. We have to

alter the weight of each edge in the annotation graph from Section 4.1 increasing it by the

sum of the posterior probabilities of the colors on corresponding feature. For each edge from

vertex (i, w, c) to (j, w′, c′) with weight d we assign new weight d+β
∑j−1

k=i Pr(Λk = c | X).

We can also adapt the construction with collector vertices by altering the weight of the

edges between collector vertices. In particular, the edge from (b1, c1) to (b1 + 1, c1) will

have weight β Pr(Λb1 = c1 | X) and the edge from (b1, c1) to (b1 + W, c2, w), c1 6= c2 will

have weight β Pr(Λb1...b1+W−1 = cW1 | X). All other edges will be altered as in previous

case. This alteration does not affect time and space complexity of the HERD algorithm

if we precompute partial sums of the posterior probabilities Pr(Λi = c | C) in O(|C|n|T |)
time. Then we will be able to alter every edge in the O(1) time.

4.4 Implementation Details

We have implemented several variants of the HERD algorithm in C++. Our implementa-

tion works only on simple HMMs, in order to achieve a reasonable space complexity. We

implemented all variants of the gain functions but we restricted our implementation only

on the simple HMMs.
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4.4.1 Memory Management

Memory requirements of our algorithm depend on the length of the sequence and the size

of the HMM. Recall that asymptotic memory complexity is O(n|V |W + n|C|2W ), where

n is the length of the sequence. For example, a typical HIV genome has length almost

10, 000 and the jumping HMM we use has 365, 596 states. If we use double precision

floating point numbers, then we need 108GB of RAM to store the tables even for W =

1 , which does not allow to run our algorithm on today’s desktop computers. In this

section we discuss techniques for improving the memory complexity of our algorithm. The

unoptimized algorithm can be expressed by the following pseudocode:

1 F = ComputeF ( )

2 B = ComputeB ( )

3 for i in 1 . . . l ength ( sequence ) :

4 Pr [ i ] = ComputePr (F [ i ] ,B[ i +1])

Here ComputePr(...) is the summation 4.6, F [i] are values F [i, c, w] for all c ∈ C, 0 ≤
w ≤ W and B[i] is similar. We will call F [i] and B[i] rows, despite the fact that they

have more dimensions. In order to compute F [i] (or B[i]), we need only F [i − 1] (or

B[i + 1]) respectively. We can compute Pr(Λi...i+w = c1c2
w | X) in the order of increasing

(or decreasing) i, and therefore we have to keep in memory only two rows of F [i] (or B[i])

respectively. We implemented the algorithm with decreasing i, because rows of B are larger

than rows of F . The pseudocode of the optimized algorithm:

1 F = Compute ] ( )

2 B = ComputeInitialRowB ( i )

3 for i in l ength ( sequece ) − 1 . . . 1 :

4 Pr [ i ] = ComputePr (F [ i ] ,B)

5 B = ComputeBFromPreviousRow ( i −1,B)

By remembering only two rows of B, we save some space, but it is not enough. We cannot

do the same for B, because we would have to recompute F [i] each time from F [0] and thus

the time complexity will raise by factor of n.

To compute F efficiently, we have used the classical checkpointing [TH98]. We divided

F into dn/ke buffers, each of k rows (except the last one, which may be smaller). For each

buffer we keep in memory the first row. We also keep one whole buffer. If we need a row

from a buffer, that is not in memory, we recompute that buffer starting at its first row

and return the corresponding row. We need rows in decreasing order, and therefore we

recompute each buffer at most twice. Therefore this trick does not affect the asymptotic

time complexity of our algorithm, but may double the actual running time.

Overall we keep r(k) = n/k+k+O(1) rows in memory. Function r(k) has the minimum

at k =
√
n, which is the buffer size we use.
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Memory requirements are O(
√
n|V |+W |V |+nC2) for simple HMMs and O(

√
n|V |C+

W |V |+ nC2) for well-defined HMM. In our implementation checkpointing can be omitted

for small input.



Chapter 5

Experiments

We have conducted several experiments to measure the accuracy of HERD algorithm. In

each experiment we measure the following attributes:

1. Base accuracy – the fraction of the correctly predicted colors.

2. Reward – the reward of the predicted annotation with respect to correct annotation.

3. Feature specificity and sensitivity – feature is correctly predicted if it’s boundaries

are misplaced by at most W bases. Sensitivity is the ratio of the number of correctly

predicted features and the total number of features in the correct annotation. Speci-

ficity is the ratio of the number of correctly predicted features and the total number

of predicted features.

4. Average error in placement of correctly predicted boundaries – correctly predicted

boundary is boundary of correctly predicted feature and we measure its average

distance to the correct position.

We use synthetic data generated from a small toy HMM as well as real HIV sequences

and simulated HIV sequences generated from the model. We compared the HERD algo-

rithm with Viterbi algorithm and in case of the toy HMM also with the extended Viterbi

algorithm. For all experiments on HIV data, we use jpHMM as the implementation of the

Viterbi algorithm. In some experiments we compare HERD also with posterior decoding.

Note that average error in placement of boundaries is not very accurate measure, be-

cause for every run this quantity is mean over different set of boundaries.

5.1 Toy HMM

The first experiments were done on a small toy HMM [BBV07] shown in Figure 5.1. This

HMM has the multiple path problem, and therefore finding the best annotation should be

43
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Figure 5.1: A toy HMM. Toy HMM emmits symbols over the binary alphabet. The

numbers inside states represent the emission probability of symbol 1. The starting state s

and the final state t are silent. This HMM was insprired by models of CT-rich intron tails

in gene finding [BBV07]. The probabilities p1 and p2 are parameters and during testing

were set to different values.

Table 5.1: The prediction accuracy on randomly generated data generated from the HMM

in Figure 5.1. (i) The fraction of correctly predicted bases with respect to correct anno-

tation. (ii) Reward G(Λ,Λ′) of the predicted annotation and the correct annotation. For

evaluation the gain function parameters were set to W = 5 and γ = 1. (iii) The feature

specificity (sp.) and sensitivity (sn.), (iv) average error in boundary placement

Algorithm % bases Gain Feature Feature Avg.

correct(i) (ii) sp.(iii) sn.(iii) err. (iv)

HMM parameters p1 = 0.9, p2 = 0.9

HERD W = 5, γ = 1 88.7% 12.7 75.9% 66.9% 1.8

HERD W = 1, γ = 1 47.5% 3.0 55.1% 17.8% 0.0

HERD W = 1, γ = 0.1 90.4% 2.4 51.8% 66.0% 0.9

Viterbi 89.4% 8.9 66.3% 47.3% 0.7

Extended Viterbi 91.2% 10.3 69.9% 56.2% 0.8

HMM parameters p1 = 0.7, p2 = 0.8

HERD W = 5, γ = 1 77.6% 5.9 54.8% 39.3% 1.37

HERD W = 1, γ = 1 47.5% 3.0 55.0% 17.7% 0.0

HERD W = 1, γ = 0.1 79.6% -2.7 38.2% 43.9% 0.9

Viterbi 75.0% 3.6 51.2% 25.7% 0.4

Extended Viterbi 79.7% 4.1 49.0% 31.3% 0.6
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more accurate than annotation found by the Viterbi algorithm. We tested the toy HMM

with various combinations of p1 and p2. From each HMM we have randomly generated

5000 sequences of mean length about 500 bases. We report the results for two instances of

toy HMM, specifically p1 = p2 = 0.9 and p1 = 0.7, p2 = 0.8. The results are summarised in

Table 5.1. Since the extended Viterbi algorithm (EVA) finds the most probable annotation

in this HMM, it outperforms the Viterbi algorithm. The HERD with parameters W = 5

and γ = 1 has higher reward than other decoding methods. This is not surprising, because

the data were generated from the same model and the HERD optimizes the expected

reward. The HERD is worse in terms of the fraction of correctly predicted labels, because

it ignores small differences in the boundary position. Finally, the HERD have also the best

results in terms of feature specificity and sensitivity.

The results also show that the parameter setting is crucial for our method. HERD with

parameters W = 1, γ = 1 have poor results in almost all measures. The performance was

improved when we set the parameter γ to 0.1. The reason is that for W = 1, we sum fewer

state paths to the posterior probability of the boundary and therefore most boundaries

usually have negative expected reward. The HERD with parameters W = 1 is equivalent

to maximum expected boundary accuracy decoding [GDSB07].

5.2 Detection of HIV Recombination

Since running the HERD algorithm on the whole HIV genome and whole jpHMM is com-

putationally intensive, we evaluated our algorithm on shorter sequences. The tests were

done on 1696 columns of the whole genomic alignment of the HIV virus, starting at posi-

tion 6925. In this way we can run test with a higher number of sequences than Schultz et

al. (2006) in a reasonable time. First we have sampled data from the model to estimate

optimal parameters for our algorithm. Then we have tested the algorithm on artificial

recombination data. In the end we have done test on several real full-length recombined

sequences.

5.2.1 Sampled data

We have sampled 800 sequences together with their annotations from the model with

jumping probability Pj = 10−5. Recall that the Pj is the probability of a jump between

two profiles in jpHMM. Unlike Schultz et al. we increase the jumping probability to have

recombined sequences in the sampled data. The lower Pj correspond to the sequences

without recombination and higher Pj correspond to the recombinant sequences. We run

the HERD algorithm for various parameter values to find optimal parameter settings, for

our algorithm. The Figure 5.2 demonstrates the impact of the penalty γ on the prediction

accuracy. Based on the results, we set the value of γ to 2.2. With larger values of γ
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Figure 5.2: The prediction accuracy of the HERD algorithm for fixed window size W = 10

and variable value of penalty γ. The jump probability was set to Pj = 10−5. The hithest

highest feature specificity was with γ = 2.3 and the highest feature sensitivity was with

γ = 2.1.
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Table 5.2: The prediction accuracy on data generated from the jpHMM. The table columns

are same as in Table 5.1 with one expection: the evaluation parameters for the gain

functions are W = 10 and γ = 2.2.

Algorithm % bases Gain Feature Feature Avg.

correct sp. sn. err.

HERD, W = 10, γ = 2.2, Pj = 10−5 98.27% 3.96 94.74% 93.45% 0.97

HERD, W = 1, γ = 2.2, Pj = 10−5 81.33% 2.99 75.49% 71.25% 0.39

HERD, W = 1, γ = 0.1, Pj = 10−5 99.31% 2.98 87.03% 91.68% 0.56

Viterbi, Pj = 10−5 99.49% 3.79 92.4% 91.06% 0.55

Viterbi, Pj = 10−9 99.18% 3.68 90.59% 88.23% 0.51

Posterior, Pj = 10−5 99.59% 2.94 94.96% 94.31% 0.55

the feature sensitivity and specificity have slightly decreased, because with larger γ our

algorithm did not have enough confidence to use the jump between colors. Figure 5.3

shows that increasing window size improves the performance of our algorithm. We set the

window size to 10. The larger values would probably improve prediction performance of

our algorithm even more but it would also increase running time. The value W = 10 is a

good compromise between the accuracy and the running time.

The comparison with other decoding methods is in Table 5.2. We compared our al-

gorithm with the Viterbi algorithm, the posterior decoding and the maximum accuracy

boundary decoding (equivalent to HERD with W = 1). We run Viterbi algorithm with its

default value of the jumping probability (Pj = 10−9) and also with the jump probability

we used for generating test data (Pj = 10−5). HERD algorithm again achieved the highest

reward. As we have expected, the posterior decoding has the highest base accuracy which

is equal to its gain function. Perhaps unexpectedly, the posterior decoding has also the

highest feature specificity and sensitivity. In general, the posterior decoding can in uncer-

tain regions change the color frequently, but in the sampled data this event apparently did

not occur. The Viterbi algorithm outperforms the HERD in terms of the base accuracy for

both jump probabilities, but HERD have significantly better performance in with respect

to the feature specificity and sensitivity. The maximum accuracy boundary decoding have

comparable performance to the Viterbi algorithm (with exception to feature specificity

where was Viterbi algorithm better). One surprising result was the high feature sensitivity

and specificity of the posterior decoding.

5.2.2 Artificial Recombinations

To test if our algorithm correctly detects recombination in the HIV genome we have arti-

ficially created recombinant sequences from the real ones. We removed 62 sequences from
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Figure 5.3: The prediction accuracy of the HERD algorithm for the fixed penalty γ = 2.2

and variable window size W . The jump probability was set to Pj = 10−5. The accuracy

raises with growing window size.
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the source alignment. Specifically, from each of the subtypes A1, B, C,D, F1 we took 10

sequences, from subtypes G,A2 and F2 we took 5, 3 and 4 sequences respectively. From

these sequences we created artificial recombinants with recombination every 300 bases.

The remaining sequences we used to estimate the paramteters of the jpHMM. Again, these

tests were done on 1696 columns of the whole genomic alignment of the HIV virus, starting

at position 6925.

With artificial recombinants we do two tests. At first we took subtypes A,B,C,G and

from each pair of subtypes we have created 50 recombinant sequences. Each recombinant

is a mosaic of two real sequences, one from each subtype. From three pairs of sub-subtypes

A1 and A2, F1 and F2, B and D of the same type we created together 170 artificial re-

combinant sequences. Note, that subtypes B and D have very small phylogenetic distance,

and therefore they should be considered as sub-subtypes [RAB+00].

We test the HERD algorithm with the parameters γ and W derived from sampled data,

but our algorithm did not have the expected prediction accuracy. Therefore we have run

the HERD for various values of parameter γ. The results are in the Figure 5.4. Unlike on

the sampled data, the prediction accuracy of our algorithm has significantly decreased for

the larger values of γ. The reason for this is that in this test the recombined data does fit

well our model and therefore the posterior probabilities of the boundaries are significantly

smaller than on the sampled data. To overcome this problem we have decreased the penalty

γ to 1.

We compared our algorithm with the Viterbi algorithm, the posterior decoding and

the maximum accuracy boundary decoding. The results of these experiments are in Table

5.3. In the recombination between different subtypes the Viterbi algorithm have the best

average base accuracy. The HERD with γ = 1 have significantly higher feature specificity

and sensitivity than the Viterbi algorithm and even outperforms the posterior decoding in

some measures. Unlike on the sampled data, the maximum accuracy boundary decoding

has poor performance.

The results on recombinations within the same subtype are similar to the results on

the recombinations between different subtypes, but all methods performs worse then in

the previous case. This is expected, because the sequences from different sub-subtypes are

more similar one to another and therefore it is harder to distinguish between them.

We have also tested our algorithm on the non-recombined sequences that we removed

from an alignment. The Viterbi for any tested jumping probability and the HERD for

jumping probability Pj = 10−9 detected all sequences to be free of recombinations and

classified them to correct subtype. HERD with jumping probability Pj = 10−5 correctly

predicts the non-recombined type in 83.9% sequences and in the rest of the sequences

HERD detected a false recombination.

We also conduct experiments with the different gain functions from Section 4.3. We

demonstrate them on the recombination detection of the recombinants within the same
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Figure 5.4: The prediction accuracy of the HERD algorithm for the fixed window size

W = 10 on the artificial recombinants between different subtypes.
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subtype. At first, we set weight β of the posterior probability to values 1/n, 10/n, 100/n

and 1000/n where n is the length of the sequence. As we expected, adding the parameter β

increased the number of correctly predicted labels and also the larger values of β increased

the feature specificity and sensitivity. We have also tried to penalise the more distant

boundaries to decrease the error of the prediction. The best results were achieved for

the function f(n) = 0.9n + 0.4, but this extension decreased the feature sensitivity and

specificity of the HERD algorithm. The results are in Figure 5.4.

These tests shows that parameter estimation is for HERD important and that there

is one principal problem. On the recombinant sequences HERD gave good results with

Pj = 10−5, but on sequences without recombination this parameter leads to undesired

recombinations. This is not surprising, because the recombinations are infrequent which

correspond to small value of Pj, but if the recombination occurs then in sequence is more

recombinations and this corresponds to the larger value of Pj. In practice, we could perform

a likelihood ratio test with nested models [Fel04], where we optimize the Pj for the input

sequence, and the null model will be jpHMM with Pj = 0. If the test predicts that we

have recombined sequence, we will use the higher Pj for recombination detection.

5.2.3 Circular Recombinant Forms

We have also run our algorithm on 12 naturally occurring recombinants (CRF02-CRF08,

CRF10-CRF14). We used only 12 sequences, because the annotations of others CRFs were

created with help of the jumping HMM, and therefore the comparison would not be very

informative. We set the parameters of our algorithm to Pj = 10−9,W = 10, γ = 1.5, β = 10.

We run the Viterbi algorithm with the original parameter Pj = 10−9. Since the reference

annotations contain unannotated regions of uncertain origin, we have removed such regions

from our statistics. Our algorithm performs slightly better than the Viterbi algorithm, but

the performance of both algorithm are poor. The results are in Table 5.5. Note that we

do not know the methods by which was annotated the sequences we used for evaluation

and therefore we are not sure if we had correct annotations.
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Table 5.3: The prediction accuracy on the HIV recombination data. The table columns

are the same as in Table 5.1 with one expection: the evaluation parameters for the gain

function are W = 10 and γ = 1.

Algorithm % bases Gain Feature Feature Avg.

correct(i) (ii) sp.(iii) sn.(iii) err.

Sequences with artificial inter-subtype recombination

HERD W = 10, γ = 2.2, Pj = 10−5 87.17% 2.44 59.34% 46.41% 1.97

HERD W = 10, γ = 1, Pj = 10−5 95.5% 2.49 62.05% 57.56% 2.37

HERD W = 1, γ = 0.1, Pj = 10−5 81.28% 1.06 37.19% 29.33% 1.36

Viterbi Pj = 10−9 95.06% 2.01 53.08% 47.13% 1.82

Viterbi Pj = 10−5 96.27% 1.88 51.83% 48.21% 1.86

Posterior decoding Pj = 10−5 95.77% 2.26 60.35% 57.72% 2.08

Sequences with artificial intra-subtype recombination

HERD W = 10, γ = 1, Pj = 10−5 91.5% 1.75 46.63% 41.88% 2.65

HERD W = 1, γ = 0.1, Pj = 10−5 74.34% 1.35 28.7% 18.5% 2.8

Viterbi Pj = 10−5 93.17% 1.21 37.56% 35.17% 2.9

Viterbi Pj = 10−9 88.01% 1.32 32.84% 26.08% 2.71

Posterior decoding Pj = 10−5 93.97% 1.3 43.1% 42.61% 2.61

Sequences without recombination

HERD, W = 10, γ = 1, Pj = 10−9 100.0% 2.0 100.0% 100.0% 0.0

HERD, W = 10, γ = 1, Pj = 10−5 93.7% 1.5 83.9% 83.9% 0.0

Viterbi Pj = 10−9 100.0% 2.0 100.0% 100.0% 0.0

Viterbi Pj = 10−5 100.0% 2.0 100.0% 100.0% 0.0
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Table 5.4: The prediction accuracy on the HIV recombination data – the sequences with

artificial intra-subtype recombination. The table columns are the same as in Table 5.1 with

one expection: the evaluation parameters for the gain function are W = 10 and γ = 1.

Algorithm % bases Gain Feature Feature Avg.

correct(i) (ii) sp.(iii) sn.(iii) err.

The gain function with posterior probabilities

HERD W = 10, γ = 1, Pj = 10−5, β = 0 91.5% 1.75 46.63% 41.88% 2.65

HERD W = 10, γ = 1, Pj = 10−5, β = 1
n

93.73% 1.58 46.19% 43.53% 2.67

HERD W = 10, γ = 1, Pj = 10−5, β = 10
n

94.02% 1.49 45.46% 43.16% 2.58

HERD W = 10, γ = 1, Pj = 10−5, β = 100
n

94.04% 1.61 47.35% 47.18% 2.6

HERD W = 10, γ = 1, Pj = 10−5, β = 1000
n

94.11% 1.5 47.66% 47.67% 2.78

Weighted gain function

HERD W = 10, γ = 1, Pj = 10−5 91.5% 1.55 44% 40.97% 2.37

HERD W = 10, γ = 1, Pj = 10−5, β = 10
n

94.09% 1.49 44.73% 43.0% 2.37

Table 5.5: The prediction accuracy on 12 naturally occurring recombinants. The table

columns are same as in Table 5.1 with one exception: The evaluation paramtered for gain

function are W = 10, γ = 1.5 and β = 10

Algorithm % bases Gain Feature Feature Avg.

correct(i) (ii) sp.(iii) sn.(iii) err.

HERD, γ = 1.5, Pj = 10−9, β = 10
n

65.22% -10.5 7.23% 10.02% 2.71

Viterbi, Pj = 10−9 64.51% -10.29 6.4% 9.26% 1.58



Chapter 6

Conclusion

In this thesis we have studied hidden Markov models (HMMs) and their application to

the viral recombination detection problem. In Chapter 2 we have defined hidden Markov

models and summarized the well known decoding algorithms as well as recent decoding

algorithms that give more accurate results in particular applications than the traditional

methods. We express all those algorithm in terms of gain functions [HKS+09].

The third chapter discusses the application of the HMMs to the viral recombination

problem in the HIV genome. In the Chapter 4 we have introduced a new gain function

specifically designed for this application. We have developed an efficient algorithm that

optimizes this function. We also suggest several generalizations of our gain function to

improve accuracy of our decoding method. We call our method the highest expected reward

decoding (HERD). HERD is designed for HMMs where the detection of exact annotation

boundaries is difficult or when we are not interested in the exact boundaries.

We have implemented the algorithm and compared it with other decoding algorithms.

The results in Chaper 5 showed that HERD has higher prediction accuracy than the Viterbi

algorithm, which is currently used on the viral recombination problem. In particular,

HERD has higher feature specificity and sensitivity than the Viterbi algorithm and similar

sensitivity but higher specificity than the posterior decoding.

The experiments show that our method is very sensitive to correct parameter settings.

The open question remains how to estimate the parameters in principal way. Optimizing

the parameters to sequences and annotations sampled from the model did not work well

on sequences that were not directly generated from the model. Other question is how the

HERD would perform on other application domain, such as transmembrane proteins where

similar methods were successful [BT10].

The web page of HERD algorithm is http://compbio.fmph.uniba.sk/herd.
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Skryté Markovove modely (HMM) sú dôležitým nástrojom na modelovanie biologických

sekvencii a ich anotácii. Anotovańım sekvencie mysĺıme priradenie popisov jednotlivým

symbolom sekvencie poďla ich významu. Napŕıklad ak ȟladáme gény, tak sa snaž́ıme

rozdelǐt DNA sekvenciu na časti, ktoré kódujú protéıny (gény) a na tie, ktoré génmi nie sú.

Skryté Markovove modely definujú pravdepodobnostnú distribúciu sekvencii a ich anotácii.

Dekódovanie zo skrytých Markovovych modelov je obyčajne realizované pomocou Viter-

biho algoritmu. Viterbiho algoritmus nájde najpravdepodobneǰsiu anotáciu len pre podtriedu

všetkých skrytých Markových modelov. Vo všeobecnosti je anotácia sekvencii NP-̌tažká a

preto Viterbiho algoritmus môžeme použǐt len ako heuristickú metódu.

V posledných rokoch sa ukázalo, že v určitých aplikáciach iné dekódovacie metódy majú

lepšie výsledky ako Viterbiho algoritmus. V tejto práci predkladáme novú dekódovaciu

metódu, ktorá berie do úvahy neurčitosť v presnej polohe hrańıc jednotlivých regiónov.

Naša metóda považuje anotácie, ktoré sa len trochu ĺı̌sia v hraniciach regiónov za rovnaké.

Nazvali sme ju dekódovanie s najvyššou predpokladanou odmenou (the highest expected

reward decoding – HERD) a je založená na dekódovańı pomocou maximalizácie strednej

hodnoty presnosti hrańıc (maximum expected boundary accuracy decoding) [GDSB07].

Náš algoritmus sme testovali na probléme detekcie rekombinácíı v genóme v́ırusu HIV

a porovnali sme ho s existujúcim nástrojom, ktorý sa volá preskakujúce HMM (jumping

HMM). HERD má lepšiu presnosť predikcie v rámci špecifickosti a senzit́ıvnosti správne

predikovaných jednofarebných regiónov.

Kľúčové slová: Skryté Markovove modely, anotácia sekvencíı, rekombinácie v́ırusov
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