
Department of Informatics Faculty of

Mathematics, Physics and Informatics

Comenius University, Bratislava

Modular redesign of the blog.matfyz.sk portal
(Master thesis)

Martin Rejda

Thesis advisor: RNDr. Martin Homola Bratislava, 2010

Modular Redesign of The blog.matfyz.sk Portal

Master thesis

Martin Rejda

COMENIUS UNIVERSITY, BRATISLAVA, SLOVAKIA

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

DEPARTMENT OF INFORMATICS

9.2.1 Informatics

Thesis advisor: RNDr. Martin Homola

BRATISLAVA 2010

iii

By this I declare that I wrote this master thesis by myself, only

with the help of the referenced literature, under the careful

supervision of my thesis advisor.

. .

Abstract

This work concern about analysis of original code of blog.matfyz.sk portal, proposition

of new architecture and its implementation. In proposition of new architecture we used

modular programming and several principles from software engineering domain. We have

to create modular architecture regarding to different types of languages and technologies

which are used in this web application.

During analysis we discuss about biggest issues of portal such as improper separation of

classes or extended functionality implemented directly into portal in complicated way. In

our proposition we introduce new architecture which contains key paradigms from modular

programming domain applied onto different programming languages such as XSLT, XQuery

or XPath and technologies like XML which does not allow easily modularize data or code.

At the end we presents implementation with class diagrams and methods of connection

technologies and programming languages.

keywords: Weblogs, Modular design, XSLT, XML, XML Database

iv

Contents

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Problem . 2

2 Weblogs domain 3

2.1 Objects . 3

2.2 Actions . 4

2.3 blog.matfyz.sk . 5

3 Modular Programming and Principles 8

3.1 Modular Programming in Weblogs Domain 11

4 Used technologies 14

4.1 PHP . 14

4.2 XML . 15

4.3 XSL . 17

4.3.1 XSLT Processing . 18

4.4 XML Database . 19

4.4.1 XQuery . 20

5 Code Analysis of blog.matfyz.sk 22

5.1 Original Model . 22

5.2 Revealed Problems . 27

5.2.1 Functional Oriented Classes . 27

5.2.2 Filtering Articles . 28

v

CONTENTS vi

5.2.3 XSLT . 28

5.2.4 Caching . 29

5.2.5 Connection With Courses . 30

5.2.6 Backward Compatibility . 31

5.2.7 Database Performance . 31

5.2.8 Missing documentation . 33

6 Proposed Solution 34

6.1 Improved Model . 34

6.2 Core . 35

6.2.1 Main XSL Template . 37

6.3 Portlets . 38

6.3.1 Generating XML . 39

6.3.2 Modular XQuery . 40

6.3.3 Modular XPath . 41

6.3.4 Portlet XSL Template . 42

6.4 Improving Database Performance . 43

6.5 Introducing Hooks . 45

7 Implementation 48

7.1 Core . 48

7.2 Libraries . 50

7.3 Portlets . 51

7.3.1 PHP Part . 51

7.3.2 XML Part . 53

7.3.3 XSLT Part . 53

7.3.4 Portlet Layout . 54

8 Conclusion 57

9 Related Work 59

9.1 Teamwork Organization . 59

9.2 Database Issues . 60

Chapter 1

Introduction

1.1 Background

Today, the weblogs are social phenomenon. It is medium which allows people to present

their personal opinions and observations to the public. In spring of 2007, the blog por-

tal blog.matfyz.sk was developed. Portal had two primary goals. First was research of

usability of XML, XND and XSLT in real life with testing of several ranking algorithms.

Second was to create portal for community at our faculty. This community is made of

students, teachers and other employees. Blog portal is independent of school from begin-

ning and content is not censored or modified until it counteract with netiquette or authors

rights.

In autumn 2007, blog engine was firstly used in learning process at course Modern

Approaches to Web Design. Students had to create their own blog with emphasis on valid

HTML and CSS, usability, accessibility and understanding XML and XSL technologies.

Today blog portal is used also in other courses for different purposes. However, it is still

research platform and students added complex support for tags with ontology in behind.

In future is planned support for extended collaborative editing over many attributes, not

just an articles, suggestions for many actions and many other algorithms based on artificial

intelligence and knowledge systems.

1

CHAPTER 1. INTRODUCTION 2

1.2 Motivation

During development and testing of new algorithms, we had many regressions. Regression

happens when some function breaks in new version, however it was working in previous.

Development was slow because of inappropriate code structure which was oriented by action

type. We spent more time fixing bugs, learning and fixing structure than implementing

new algorithms. Initially we had to implement support for extend collaboration. After few

months we decided to rewrite portal from beginning and try to preserve old functionality

while new structure would allow us to easily implement new features.

1.3 Problem

We had to analyse root cause of problems arose during development. Based on analysis

we had to propose abstract architecture model of new application also usable for planned

features using modular programming over many types of languages. We also had to preserve

current functionality and try to reuse as much as possible from existing code. Finally we

had to reimplement original code into new architecture.

Chapter 2

Weblogs domain

Weblogs are a web applications designed to express opinions or observations of a person,

company or community in form of articles or comments. There exists many types of blogs:

tumblogs, videoblogs, microblogs, team/project blogs. We can also classify blogs according

to topic: blogs about cooking, promoting new videos, personal blogs and so on.

Typical blog user enter on his personal blog, write an article about particular subject

to share with community. Usually everyone can react to article by comment or by its own

articles on written one to give feedback to author. Blogs also contains features like tagging,

searching, voting, charts of top 10 users, archive list, most commented articles and most

visited articles for some period.

For our goal we need to analyze structure of blog and separate it into logical parts,

describe its actions and interactions.

2.1 Objects

On weblogs we have following objects we need to store informations for:

• Articles - contains main text, title, creation time. It is associated with author and

its blog, votes, comments, visits, tags, categories and much more metadata

• Blog - associated with single user (however some blogs allow collaborative editing

and many users may contribute on single blog)

• Comments - every article may have comments which are stored in tree structure.

So comments are associated with article or another comment. Every comment has

3

CHAPTER 2. WEBLOGS DOMAIN 4

author, time and may have title, rating, ...

• Users - users of portal with many personal informations associated

• Categories - each category contain articles with similar topic

• Portlets - part of page where are showed informations related to current blog or

article. Each shows different kind of informations

• Tags - keywords associated with article. Tag describe an item and allows it to be

found again by browsing or searching

• Rating - express opinion of visitors and other users on rated item. It is represented

by single number

• Layout - deals with arrangement of elements like header, footer and portlets on blog

2.2 Actions

Each user is assigned to role. Each role has a set of available actions. These are common

actions:

• Reading - reading article or comment

• Writing, editing, deleting - writing article and comments, editing and deleting

own articles

• Commenting - leave a comment responding to article or another comment

• File uploading - upload photos, videos or any other content used in own article

• Filtering - filter articles according to its attribute (language, text match, tag, cate-

gory)

• Voting - each user may rate articles and potentially comments

• Recommendations - we are using recommendation mark for articles. This mark

can be attached only by administrators

CHAPTER 2. WEBLOGS DOMAIN 5

Each portlet usually defines its own set of actions available to users. Many blog portals

support almost all from actions above and many portals support even more actions. Actions

are main logic of portal and controls flow of application.

2.3 blog.matfyz.sk

First version of blog portal blog.matfyz.sk had been developed by Anton Kohutovič.

Portal is aimed at community of faculty of Mathematics, Physics and Informatics. This

community is made of students, teachers, graduate, future students and other employees.

We are using this portal with three main goals:

1. Communication channel in our community for sharing informations mostly related

with life at university

2. In process of learning. We are using portal many courses (Modern approaches to

web design, DVUi, ...) to learn students work with new technologies and understand

many principles.

3. Research platform for graduating students. We are testing new or modified algo-

rithms (ex. EigenRumour), testing new technologies (ex. XML databases) and

principles of usability, accessibility with focus on SEO. SEO - Search engine opti-

mization is a process of web application output optimization using meta tags, proper

use of headings and other properties which search engines takes into account during

indexing. SEO optimized web is placed higher in search engines results. Higher place

usually leads to more visitors.

We are using own implementation of blog portal instead of existing one because:

• There is not known blog system which is using XML database, XML and XSLT

processing

• We already have many algorithms developed which uses current infrastructure and

data formats

• There is not known system which is ready enough for our future plans (collaboration

infrastructure)

CHAPTER 2. WEBLOGS DOMAIN 6

• In case of existing one we would need to keep its core up to date to avoid potential

security problem and track changes after update to maintain full functionality of our

portlets

• Implement backward compatibility for links and user entered data

• Transform current data to another format

In addition we have also wiki.matfyz.sk with common informations for community

where everyone can read and write.

CHAPTER 2. WEBLOGS DOMAIN 7

Figure 2.1: Title page of blog.matfyz.sk

Chapter 3

Modular Programming and

Principles

Modular programming is a programming technique which splits application code into sev-

eral logical parts. Each part is called module. Modules represents principle of separation

of concerns. Each module usually contain one or more classes which implements meth-

ods defined by known interface. Each module should have no dependencies or as few as

possible. Main application mostly consists of decision tree and logic which calls modules

methods.

Modularization have following advantages:

• easier maintainability

• better code clarity

• allow split project into many smaller ones

• modules are reusable in other projects

• programmers may focus on specific sub-tasks without knowledge of other parts or

whole system

Definition 3.0.1 Module implements basic functions for manipulation with abstract ob-

ject implementing predefined interface.

example: User (info about specified user), Sedna (query interface for database), Session

(data related to active session), XSLT (basic operations with XSL templates), ...

8

CHAPTER 3. MODULAR PROGRAMMING AND PRINCIPLES 9

Definition 3.0.2 Library implements set of algorithms related to specific task.

example: RankManager (may provide several rating algorithms of users or articles), Tag

(manipulation with ontology in many different ways)

During modularization we will try to follow several principles.

Definition 3.0.3 Single responsibility principle states that every object should have

a single responsibility, and that responsibility should be entirely encapsulated by the class.

Robert C. Martin [Mar03]

This principle tells that reason to change class should be only one. Let’s have a module

that compiles input data and print a report. This module have two reasons for its change.

First, content of report may change. Second, format of report may change.

Definition 3.0.4 Separation of concerns is a process of separating program code into

distinct features that overlap in functionality as little as possible.

Application should have separated processes of working with databases (data access),

output results (presentation), program flow decisions (logic) into layers. Main goal is to es-

tablish a well organized system where each part fulfills a meaningful and intuitive role while

maximizing its ability to adapt to change. This is achieved by logical or physical constraint

which delineates a given set of responsibilities. There exists two main approaches.

Horizontal Separation

Main application is separated into three main layers. Presentation, business and resource

access layers. Presentation layer contain components and all program all logic directly

responsible for user interface. Business layer contain all logic responsible for application

domain processes. Resource access layer provide abstract access to database, files on disk

and other resources.

Vertical Separation

Vertical separation means that application is separated to modules. Each module relate

to the same feature and implements presentation, logic and data resource part. It usually

implements interface for each of these three main tasks. This method is useful for delegation

between teams.

CHAPTER 3. MODULAR PROGRAMMING AND PRINCIPLES 10

Business layer

Presentation layer

Resource access layer

BlogReader

PortalReader

Page

XSLT

Controler
BlogWriter

Sedna

System

Figure 3.1: Horizontal separation
M

o
d
u
le

 B

M
o
d
u
le

 A

M
o
d
u
le

 C

(p
o
rt

le
t

A
rt

ic
le

)

(p
o
rt

le
t

Ta
g

s)

(p
o
rt

le
t

B
e
st

R
a
te

d
)

Figure 3.2: Vertical separation

However vertical separation groups a set of concerns based on their relevance in ap-

plication, we can still use other separation methods. We can still separate module A on

Figure 3.2 into three layers like on Figure 3.1.

During separation process we have to try to:

• eliminate the duplication of functionality

CHAPTER 3. MODULAR PROGRAMMING AND PRINCIPLES 11

• restrict the scope of work to a maintainable size

• restrict the scope of work to the description of the containing boundary

• restrict the scope of work to the inherent behavior of the containing boundary

• minimize external dependencies

• maximize the potential for reuse

Definition 3.0.5 KISS (keep it small and simple) states that simplicity should be a key

goal in design, and that unnecessary complexity should be avoided.

We used these principles and techniques during proposition of new application model.

For modularization of source code we need (optionally) language support for several

paradigms which help us separate code into modules:

• source code include from multiple files

• procedures, functions or templates

• classes

• source code generation at run-time

3.1 Modular Programming in Weblogs Domain

It was separated into three layers - presentation, business and resource access. Business

layer was separated into modules that processed users input and had written data into

database. One functionality was placed in many classes. Each member of our team has

a responsibility for some features (see Chapter 9). Thus we needed to separate it into

modules where each module has responsibility for a single feature.

Portlet

Current blog systems are separated into libraries implementing basic functionality like

working with database, abstraction of user management and many more. Another types of

modules are portlets. Portlets are mainly used by presentation layer and provides output

CHAPTER 3. MODULAR PROGRAMMING AND PRINCIPLES 12

for part of page. Portlets often works as a plugins into many blog systems. Most common

blog system is WordPress.

Portlets are pluggable user interface software components that are managed and

displayed in a web portal. Portlets produce fragments of markup code that are

aggregated into a portal page. Typically, following the desktop metaphor, a

portal page is displayed as a collection of non-overlapping portlet windows,

where each portlet window displays a portlet. Hence a portlet (or collection of

portlets) resembles a web-based application that is hosted in a portal.

Wikipedia [Wik10]

Definition 3.1.1 Portlet contain code logic for several use cases and provides interface

for basic operations required by core (mainly for output generation).

example: Portlet article handles logic: what to do if required action is adding new article,

replace existing, vote for existing.

Libraries are used by portlets. Example of portlets is on Figure 2.1. There are portlets

Blogeri, Najlepšie hodnotené, Kampane and list of articles. There are two logical states of

portlet. One is side placed portlet and second is main content placed portlet.

Hooks

Hooking is set of techniques for altering or extending program behaviour using external

code. Many web application frameworks contains hooks as a method used by plugins for

extending application functionality. Such applications are MyBB, WordPress, pmWiki.

Hook is an method for extending application functionality using callBack method.

If we would like to use hooks and extend functionality of remote application it must

also support hooks. Such application contain call for particular hook. If we want to extend

application functionality we have to register our function for such hook. Once the target

application reach point of call for hook, our function will be called.

For example, let’s have an application with authentication interface and several points

in source code where the call for hooks is invoked. We would like to extend such appli-

cation with notification of administrator for each failed login. We need to register our

notification function for particular hook which is invoked by authentication system in case

CHAPTER 3. MODULAR PROGRAMMING AND PRINCIPLES 13

of authentication failure. If we do it, once authentication fail, our function will be called

by the system, because we have made its registration.

Hooks would allow us to extend application functionality transparently in modular way.

Chapter 4

Used technologies

In this chapter we present most important technologies we are using on portal, with respect

to modularization we were doing. Many of these technologies support some level of key

features we needed. Since we need to split code into several modules, we need support

for including (or merging source files at some level), functions or classes support, respec-

tively some kind of paradigm which allow us to separate code for users registration from

code creating output. Since we are using imperative (PHP), declarative (XSL), functional

(XQuery) and query (XPath) languages, each with different level of support of key features,

it is not easy to fully modularize code into semantically separate modules.

4.1 PHP

PHP is imperative object-oriented scripting language, designed for development of web

applications. We are using PHP for our main web application and most of logic is written

in PHP. On the side of webserver, when request is received, web server runs PHP interpreter

with parameters gathered from request on requested script file. PHP interpret script file

and prints output which is sent back to user by web server. Request contain all form data

including address of requested page.

PHP has a support for almost every feature that can be used for good code separation.

We can use following features for separation process:

• classes

• interfaces

14

CHAPTER 4. USED TECHNOLOGIES 15

• inheritance

• sources across multiple files (support for includes)

• passing objects, classes and functions as parameter

• namespaces

Namespaces were added in the latest version of PHP (5.3) and support is still in exper-

imental state. PHP has a great support for different platforms, include support for many

databases (including Sedna), many data formats (including XML) and external processors

(like XSLT). It is free, open-source, widely adopted on the web and used by many big

companies like Facebook for many years.

We are using PHP also for data and code generation of other languages we are using

on our portal. We could use PHP for processing input, storing informations and generate

output, but it would be ineffective and complicated. In case of storing informations we

use database which could handle fast large amount of data. Output generation could by

done using existing templates systems but it still require checking for valid output date

to prevent XSS attacks. XSS attack consists in injection of web browser executable to

database. Once this code is sent to output without proper checks, it is executed in visitors

browser.

4.2 XML

XML is a language derived from SGML. XML is used for description, sharing and exchang-

ing data between different systems. Main advantages of XML are simplicity and flexibility.

XML is text format with support of unicode. XML itself does not specify type of content,

it only specify syntax for data and optionally description of data structure.

Physical structure of XML consists of XML header listed in Listing 4.1, comments,

elements, attributes and their values, entities and content inside elements. XML has exactly

one root element. Element may contain recursively more elements. Each element may

contain attributes and for each attribute there must be value. Element itself is pair of

opening and closing tag.

Listing 4.1: XML declaration

<?xml version=” 1 .0 ” encoding=” utf−8” ?>

CHAPTER 4. USED TECHNOLOGIES 16

Listing 4.2: XML example

<?xml version=” 1 .0 ” encoding=” utf−8”?>

< !DOCTYPE post SYSTEM ” post . dtd”>

<post lang=”en” p r i v a t e=” yes ”>

< t i t l e>Hel lo world !</ t i t l e>

<s u b t i t l e />

<content><p>Welcome to my blog . . .</p></ content>

<tags>

<tag>debug</ tag>

</ tags>

</ post>

In case of Listing 4.2 there is also (optional) pointer to DTD document. DTD describe

constraints for structure and data type for each part of document. For example, there may

be constraint, that inside post element there must be elements title, subtitle, content,

tags and optionally element comments. There exists more formats for XML structure

description, like XML Schema, which is XML file describing structure of another XML file.

Therefore even complex XML document can be checked against DTD for validity.

There exists two levels of XML documents:

• Well-formed - XML document that satisfy all syntax requirements according to

[W3C06].

• Valid - well-formed XML with DTD (or another structure description format) where

all elements are defined.

Advantages of XML:

• Easily readable and parsable

• Hierarchical structure makes it appropriate for many types of documents and data

• Support for namespaces

• Easily extendible without problems with backward compatibility

• Built-in support for validity checking

CHAPTER 4. USED TECHNOLOGIES 17

• Support for Unicode

• Widely used and deployed

Disadvantages of XML:

• Overhead, as each tag has to be paired

• Slower data processing compared to other formats

• No support for built-in includes of multiple documents (support has to be written in

processor itself)

We are using XML on our portal as a main data format. It allow us to easily check input

documents for validity and in conjunction with HTML avoid several security problems like

XSS attacks.

4.3 XSL

The Extensible Stylesheet Language Family (XSL) is declarative language used for trans-

formation of one XML document into another XML document. XSLT stylesheet has form

of XML document. It describe how to translate input XML. XSLT has a form of XML

template with instructions for XSLT processor to let him known desired form of output

XML.

XSL has these basic programming constructions:

• iterations through nodes

• conditions

• one-time definable variables (local and global)

• built-in XPath processor that allow further transformations over processing data

• ”functions”

• multiple documents import

CHAPTER 4. USED TECHNOLOGIES 18

Basic XSL stylesheets can be extended by more constructs, but this require support

of this constructs by XSLT processor. For our purposes the most important features are

”functions” (in XSLT we mean templates) and import of external documents. However,

second feature could be simulated in higher language, we are using it. In case of our portal,

we are using XSL for transformation of data from database to HTML output. We don’t

need to handle input for injection attacks since XSLT processor handle this correctly itself.

Today XSL proccesors are slow so we should avoid use them for complex computations

and processing of large documents. Moreover since XSL is XML it has its disadvantages.

In this case XSL has a code overhead and each instruction has a long notation. For the

last, XSL has less features usable for modularization than PHP and thus it is more difficult

to maintain.

Listing 4.3: Example of XSLT

<?xml version=” 1 .0 ” encoding=”utf−8”?>

<xsl :stylesheet version=” 1 .0 ”

xmlns :x s l=” ht tp : //www. w3 . org /1999/XSL/Transform”>

<xsl:import h r e f=” f u n c t i o n s . x s l ”/>

<xsl:param name=” userID ”/>

<xsl:template name=”main” match=”/”>

<user id=”$ userID ”>

<name>

<xsl:value−of s e l e c t=” person [@ID=$userID] ”/>

</name>

</ user>

</xsl:template>

</ xsl :stylesheet>

4.3.1 XSLT Processing

Processing of XML using XSLT in PHP consists of these steps:

1. in PHP we load XSLT from file or from String to DOM object (used for storing

generic XML documents)

CHAPTER 4. USED TECHNOLOGIES 19

2. in PHP we create object of type XSLTProcessor and let it load XSLT document from

DOM object, created in previous step

3. (optionally) we set input parameter for XSLT processor which can be accessed from

loaded template

4. call processing function with DOM object, where is input XML. Result is processed

XML

Figure 4.1: XSLT processing

In first step we may load XSLT from file or we can create dynamically one. In third,

if we will create dynamic stylesheet or input XML, we can encode input parameter into

it. So there exists possibility of writing fully optimized XSLT stylesheet, generated in

runtime. This is how works Gallium3D with combination of LLVM. LLVM is low-level

virtual machine. Gallium3D is a new framework for graphic drivers. It takes source code,

compile it to its own bytecode and then this bytecode is transformed to specific instruction

set of target hardware. It can take code for graphics shaders and recompile it to binary

form with optimizations for specific graphic card. In our case, it could be optimization for

specific XSLT processor.

4.4 XML Database

We are using XML database Sedna. Basically it is storage for XML documents that allow

manipulating with these documents using XQuery language. Basic unit of information

in XML databases is XML document. Documents are organized in collections. For each

CHAPTER 4. USED TECHNOLOGIES 20

collection we may define specific schema that describe structure of XML documents inside

one collection (like DTD).

There are some differences against relational databases:

• In relational databases we store data in many tables and these data are almost

somehow logically separated. In XML database we can store whole XML tree, which

is in our case input and output. Thus we may not need to transform data from one

form to another as they are in the same format

• In relational DB basic unit of information is row in a table, in XML DB basic unit

is XML document

• In XML DB equivalent to tables are collections

In PHP we work with XML database similarly to relational databases. We connect,

create and send query and then retrieve result. The main difference is that the result we

get single XML document and we do not need to iterate through many lines of result like

in case of relational database.

4.4.1 XQuery

XQuery is functional language used in XML databases. XQuery allow us to retrieve, insert,

replace or delete some nodes from documents. It also allow us to make some processing

over retrieved or inserted data. XQuery has support for functions. This feature can be

used for modularization of complicated queries. Here are some examples of XQueries:

Listing 4.4: Retrieve XQuery

c o l l e c t i o n (’ weblog ’)/ user [@ID=’ u74 ’] / i n f o

Listing 4.5: Insert XQuery

update i n s e r t

<post ID=”p16084” accessCount=”0”

lang=” sk ” s t a t u s=” d r a f t ” p r i v a t e=”no”>

<t i t l e >example</ t i t l e >

<content> example </content>

CHAPTER 4. USED TECHNOLOGIES 21

<tags><tag>example</tag></tags>

</post>

i n t o c o l l e c t i o n (”weblog”)/ user [@ID=”u190”] / blog

Listing 4.6: Replace XQuery

update r e p l a c e $ i in

c o l l e c t i o n (”weblog”)/ user [@ID=”u74”] / blog / post

[@ID=”p16016”] / @accessCount

with a t t r i b u t e accessCount { $ i +1}

Listing 4.7: Delete XQuery

update d e l e t e

c o l l e c t i o n (”weblog”)/ user [@ID=”u190”] / blog / post [@ID=”p16084”]

XPath

As a part of XQuery is XPath language which is query language, used to specify which

XML node from each document in collection we want retrieve, update or delete. XPath

is also used in XSLT. XPath defines what parts of XML document will be used for pro-

cessing. XPath consist of expression made by slashes, element names, attribute names and

its values, XPath functions and angle brackets where are constraints over elements. In

examples above it is a part that defines nodes of documents for which the operation have

to be performed. In case of Listing 4.4 whole query is just an XPath expression. More

complicated example can be found in Listing 6.8. XPath does not provide support for

modularization. The only possibility is dynamic generation of XPath by another language.

Chapter 5

Code Analysis of blog.matfyz.sk

In this chapter we will present results of original code analyses. We will reveal and describe

most critical problems with reasons why we consider our findings to be the problems.

Analysis start with model description, summary of problems we found and exact description

of each problem.

5.1 Original Model

Original data model and some classes description can be found in [Koh08]. We consider

XML database data model to be good enough and during development of new features

we were able extend it without problems with regards to semantic of its structure. Main

application used horizontal separation model of modules. Modules Page, XSLT represents

presentation layer. Modules Controler, BlogReader, BlogWriter, PortalReader, User

represents business logic layer. Modules Sedna, System, Session represents resource access

layer.

On Figure 5.1 we can see main modules of original web application providing main

input processing logic. On Figure 5.2 are modules responsible for generating output of

each section of portal.

• Session - keeps session information about current visitor. This module was used for

retrieving informations about current session, like currently logged user or selected

language

• User - provide logic for reading and writing data, like password, email, name, about

22

CHAPTER 5. CODE ANALYSIS OF BLOG.MATFYZ.SK 23

-system

-user

Session
- user : User
+ __construct()
+ logout()
+ login(userID : int, password : string) : bool
+ getUser() : User
+ setUser(userID : int)
+ isLogged() : bool

-blogWriter

Controler
- system : System
- page : Page
- blogWriter : BlogWriter
+ __construct()
+ serve(params : int)

User
- ID : int
- email : string
- nick : string
+ __construct(ID : int)
+ __destruct()
+ getID()
+ getEmail()
+ setEmail(email : string)
+ getUserRank()
+ getUserID()
+ getNick()
+ getRealName()
+ setRealName(realName : string)
+ setPassword(password : string)
+ setCSS(style : string)
+ setAbout(info : string)
+ uploadFile(tmpName : string, newName : string) : bool
+ setUserType(type : string)
+ getUserType()

System
- db : Exist
- dbAdmin : int
+ __construct()
+ createAccount(userName : string) : int
+ deleteUsersAccount(userName : string) : bool
+ getDB()
+ getDBAdmin()
+ getUserID()
+ getMaxID()
+ getSystemWideTags()

BlogWriter
- userID : int
+ __construct(userID : int)
+ newPost(title : string, content : string, categories : undef, description : string = "", subtitle : string = "")
+ newComment(postID : int, commentID : int, text : string)
+ editPost()
+ deletePost()
+ setTitle()
+ getUserData()

Figure 5.1: Main modules containing almost all logic of portal

particular user to database.

• System - provide access to database object (of NXD1 type) and other actions of

various type and semantic

• BlogWriter - contains logic for writing data which are related to main blog of each

1Native XML Database

CHAPTER 5. CODE ANALYSIS OF BLOG.MATFYZ.SK 24

-dataSource

DataSource
- data : string
+ __construct()
+ getData()

BlogReader
- userID : int
- title : string
+ __construct(userID : int)
+ getBlog(start : int, offset : int, filter : int)
+ getPost(postID : int)
+ getAllComments()
+ getComment(postID : int, commentID : int)
+ getUserSettings()
+ getData()
+ getUserData()

Page
- dataSource : DataSource
- data : string
- XSLT : XSLT
- xsltProc : undef
+ __construct(type : string)
- loadDataSource()
- transformDataSource()
+ output()

XSLT
- xsl : string = 'default.xsl'
+ __construct(params : int)
+ getXSL()

PortalReader

+ __construct()
+ getNewUsers()
+ getTopPosts()
+ getNewPosts()
+ getData()

-XSLT

Figure 5.2: Modules providing logic for presentation layer

user. This modules was used for writing data to database related to particular blog.

It writes new articles, comments, blog title.

• Controler - main class controlling code flow of main application, checks security

and permissions

CHAPTER 5. CODE ANALYSIS OF BLOG.MATFYZ.SK 25

• Page - this module was used for generation of application output. It contained main

logic of presentation layer. It took one of BlogReader or PortalReader object type,

asked for XML and according to page type choose XSL template, transformed XML,

parsed using DokuWiki and sent to output.

• XSLT - helper module for simple working with XSL templates. It was used for XSL

transformations of XML documents by module Page

• DataSource - interface defining methods for output modules implemented by BlogReader

and PortalReader

• BlogReader - contained everything logic needed for generating of user blog. It was

used for generation of XML with informations about particular blog. Informations

like articles, comments, blog title were retrieved from database

• PortalReader - contained everything logic needed for generating of main portal

page. This module generated XML with informations about portal, informations for

each portlet placed on main page. Such informations were articles, portal users, top

10 articles

Original application was separated into three layers: presentation, logic and resource

access. Inside business layer, there was several modules that contained main logic and can

be classified as modules used for reading (BlogReader, PortalReader) and modules for

writing (BlogWriter). Moreover we can classify them as abstraction over page type (main

page, blog).

Modules such as Session, User, Page, XSLT has been used as an abstraction over data

objects and we can call them libraries. Controler was used for decision of what to do

(write data or generate page) according to input parameters. Moreover it contained logic

for users registration, login, permissions checking, saving user settings and management

for file upload.

On Figure 5.3 we can see code flow and interaction between modules and libraries.

Flow can be described by following steps:

1. user send request

2. controler create necessary objects and checks permissions using session and user

library

CHAPTER 5. CODE ANALYSIS OF BLOG.MATFYZ.SK 26

User

XSLT

BlogWriter

SessionControler

PortalReader

Page

BlogReader

Figure 5.3: Application code flow

3. upon input action, it demands where to redirect flow

4. in case of login, registration, changing user settings and file upload

(a) ends by redirecting user to blog of logged or new user

5. in case of doing change related to user blog (adding comment, writing new article,

...)

(a) create new instance of BlogWriter and pass control to it

(b) BlogWriter checks input and apply required changes

(c) finally it redirects user to page that belongs to users blog depending on input

action

6. in other cases control is passed to Page module to generate output for user

CHAPTER 5. CODE ANALYSIS OF BLOG.MATFYZ.SK 27

(a) upon action Page choose one of classes which support DataSource interface

(BlogReader or PortalReader)

(b) call getData() method from that class

(c) called class generate all XML data needed for output

(d) Page use XSLT for transformation of previously generated data to HTML format.

In XSLT is all logic of choosing the right stylesheet.

(e) output of XSLT is transformed using DokuWiki parser as we support multiple

formats for articles

(f) output is sent to user

5.2 Revealed Problems

In this section we mention most critical problems we have found during analyses. Most of

them lead to regressions, code duplication, slow development, ambiguity of functionality

and making so called ”ugly hacks”.

One of hacks was applying DokuWiki parser over output from XSLT, where all parts

that had to be transformed had been marked with special tags. Most of regressions origi-

nated from ambiguity of function of each class, code duplication and missing documenta-

tion.

5.2.1 Functional Oriented Classes

In Section 5.1 we mentioned that almost all logic over data is separated in three classes

(BlogReader, PortalReader, BlogWriter). If we would like to add some features like

private articles, categories, collaborative editing, their functionality should be separated

into this three modules depends on what action we want to do (read or write and where).

Thus with any new feature, the number of methods in this classes would grow up.

In our team, each developer has responsibility for particular function such as tags,

private posts, design. Thus original decomposition lead to state where each developer had

to edit multiple files, multiple shared functions. Basically everyone edited everything.

Finally in almost every class, main logic is inside constructor. In original code, user

authentication was fully implemented inside class constructor. According to B. Meyer

CHAPTER 5. CODE ANALYSIS OF BLOG.MATFYZ.SK 28

[Mey97] class constructor should only initialize local variables and no exception should be

thrown.

5.2.2 Filtering Articles

Articles in our database has many attributes (language, private, author, title, date ...).

During data retrieving we often need to filter articles by various criteria. For this purposes

there was a function getPost. This function had for each attribute we wanted to filter one

parameter. Another two parameters were used for paging, to tell function that we want

ten articles and skip first 20 articles.

As we had added tags, private articles, search and so on, we always needed to change

the function interface. This function was called from several places and different modules.

Sometimes we didn’t want to filter for tags or private articles. As a result, during devel-

opment, there were two forks of this function with only small changes, mainly because of

different sorting algorithm inside XQuery that were in this function. As we describe in

Section 5.2.3 all this changes had to be applied also inside templates.

As we added more and more filters and properties, we have needed to rewrite all three

functions. Adding more and more properties in future would lead to many regressions as

it was in the past. Moreover, using different sorting algorithms would leads to more forks.

Finally, it is not clear which function we want to call in many cases.

5.2.3 XSLT

Functionality in Templates

XSLT has to be used for transformation of XML to another XML we are using it only

for transformation of input data from database to HTML. However, XSLT has a power

of Turing machine [RO06]. According to single responsibility principle almost every func-

tionality has to be in PHP code and XSLT should be used only as a template engine for

HTML output.

In original implementation of portal there was many computing and filtering function-

ality in XSLT instead of PHP which has to be used for logic. This lead to duplicity of

semantically similar code between many files and languages.

Following logic was in templates:

CHAPTER 5. CODE ANALYSIS OF BLOG.MATFYZ.SK 29

• additional filtering of articles based on user input parameters

• computing of tag clouds

• many case-of statements demanding upon filter type

• texts translations - we have support for multiple languages on our portal

• opening external XML files used for caching. More in Section 5.2.4

• hardcoded file paths - to CSS, images, translation files

• link modifiers - used as a part of SEO optimizations. For example instead of

http://tbc.blog.matfyz.sk/?postID=p14617 we have

http://tbc.blog.matfyz.sk/p14617-boli-ste-uz-tam

Moreover, in future we want to add some level of design and functional customizations

for user blogs. It would arise complexity of templates.

Code Sharing

There were almost no modularization over templates. As a result, many templates had

large parts of code same. There were no single template for header or footer that are same

on each page. As a result, once we needed to change a footer, it had to be changed in

many files instead of one.

5.2.4 Caching

We are using several algorithms that needs to run offline because makes complex calcula-

tions which takes long time. For example: recomputing users karma, article score takes

several hours. Computing answers for tag-cloud and ontology over tags takes approxi-

mately one minute. Since web application should response as soon as possible to users

requests, we can’t run such calculations for each response. This is unacceptable long time.

Thus we are using cache for storing intermediate results of calculations. Each request that

needs results of such calculations provide data from cache.

Original code has two main problems.

CHAPTER 5. CODE ANALYSIS OF BLOG.MATFYZ.SK 30

Caching Codepath in PHP

Creating XML files with results for cache was done through special codepaths created for

this purpose. There were no class that managed caching results. Decision whether to use

cached results or compute them was done in constructor of main class instead of function

that calculated data itself. Caching has to be transparent from definition. Another problem

was, that caching and recalculations were done periodically, using cron task2, even if source

data was not modified since last computation. As a result, caching was not transparent

and ineffectively slows database responses.

Use of Cached Results

Because caching was not transparent, there were calls from XSLT templates to open ex-

ternal XML documents with cached results. These results had to be filtered and modified

according to user input parameters, because in the time of caching, these parameters were

not known. For example: articles had to be filtered by tags, searched words, selected lan-

guage, and many more. Thus we had duplicate code logic, doing the same in two different

languages.

5.2.5 Connection With Courses

Our portal is also used for learning purposes, where each student of course have to create

its own XSL template. There was support for this feature. It was implemented across each

library and interfere with many methods. In many cases it was not clear which code is

related to logic of blog portal and which manage logic of course.

For example: blog portal support different user levels such as visitor, regular user or

admin. Code related to courses added new types: student, teacher, coursevisitor. According

to this new types portal enabled new features and disabled some common. Students can

write posts, but they has special editor which use its own syntax.

If we would like to add a support for new course with its own set of features to original

code, we would need to add it to each class, change many existing code to reflect our

changes. Code will become too complex and removing it would be hard.

Adding support for courses needs to be more transparent and clearly separated from

portal code.

2Cron is a service that periodically runs defined tasks

CHAPTER 5. CODE ANALYSIS OF BLOG.MATFYZ.SK 31

5.2.6 Backward Compatibility

We had problems with students templates, which were created few years ago. This problems

are results of changes in input format of XML that was extended with global tags database.

We found, that many old templates used //tags as XPath expression for iterations over

tags in articles.

Backward compatibility of links to articles and some parts of portal is important for

SEO optimizations. There was several changes of links format. This leads to breakage

of links from other portals. This needs to be defined for future to avoid regressions in

templates.

5.2.7 Database Performance

During development, we had several performance issues with our Portal. Sometimes request

takes over one minute and many times it was over one second. This is unacceptable for

web applications that interact with users. Another problem was that application reached

limit of connection number to database at the same time however there were not so many

user requests.

We added basic logging. It simply gets system time at request start, get system time

just before output is sent and add difference to the end of output.

This first benchmark showed us, that the problem is not in line speed to user, but

application itself. As next step, we added time measurement for each XQuery request

(Figure 5.4).

Difference between total time and page generated time is time used by PHP and XSLT

processor.

Our analysis showed that most of the time, our application was waiting on XML

database. This vary from request to request. Most of time had take write requests such as

in Listing 5.1.

Listing 5.1: XQuery that increase number of accesses to article

update r ep l a c e $ i in

c o l l e c t i o n (”weblog”)/ user [@ID=”u77”] / blog / post [@ID=”p123”] / @accessCount

with a t t r i b u t e accessCount { $ i+1}

We’ve tried to split this request into two. One, that get accessCount value and second

that write that value, increased by 1. This didn’t help so we had to analyze Sednas

CHAPTER 5. CODE ANALYSIS OF BLOG.MATFYZ.SK 32

Figure 5.4: Table with debug time measurement

• Page generated time - total time from request to final output, including requests

on DB

• Total time - sum of time that takes each query to database

behaviour itself. We used program top. This program can show overall CPU usage, CPU

usage per process, memory usage, I/O wait, CPU idle and many more. We monitored

Sedna during requests. After while, problem appeared to be I/O wait, while CPU was in

almost idle state.

According to [fSPR10] Sedna is using temporary file database.setmp for intermediate

results and for caching. This was causing heavy I/O load and was root cause of slow

responses.

After we improved performance (description in Section 6.4), we had still sometimes

page response over 1 second. Further analyses showed, that there must be problem in

Sednas locking mechanism, because we had made several concurrent requests on database

and there was no O/I wait, but CPU was almost at 60% idle. This was reported. At this

time, we are waiting for confirmation from Sednas team.

CHAPTER 5. CODE ANALYSIS OF BLOG.MATFYZ.SK 33

5.2.8 Missing documentation

During development we had only documentation of class relations and data model of

database. There was missing:

• description of format of input XML for templates created by students

• list of input parameters and their values from user requests

• description of code flow

• methods and their description implemented in each class (especially BlogReader,

PortalReader and BlogWriter)

Chapter 6

Proposed Solution

In previous chapter we analysed problems of our portal. In this chapter we will describe

proposed solution which would solve these problems using code modularization. As not

every language, we are using, provide same or enough level of support for modularization,

we need to consider it in our propositions and solve it using different techniques. During

analysis we found also problems with performance and time generation of pages. We

identified that source of this problems is XML DB and implementation of its several parts.

We propose preliminary solution, however complete solution is to fix Sedna itself. Web

application code was fast enough. Finally we proposed library which allow us to extend

any part of application in future using hooks.

6.1 Improved Model

We need approach how to separate existing code into many semantically different portlets,

but still can easily provide at least same level of functionality and increase overview over

code from developers point of view. Moreover we want to group semantically same func-

tionality together. For example: almost everything that is related to tags should be in one

portlet. In Chapter 2 we identified basic objects and actions applied on them. This will be

used as a key in our propositions. Almost everything related to graphic design in another

with minimum overlap. Once we had overlap, we strictly define how to solve it.

Web application basically consists of two tasks. First is to process input data from

request. Second is to provide output based upon user request. Our model will use ver-

tical separation of web application to portlets and one resource access layer common for

34

CHAPTER 6. PROPOSED SOLUTION 35

each portlet. Each portlet will be separated horizontally to two layers. Business and

presentation layer. Each layer of each portlet will be called from application core.

We make an assumption that web application consists of three main steps:

1. main initialization

2. process input data from user

3. generate output

In first step we will load and initialize each portlet responsible for one feature. In

second step core let every portlet process input data and in third step each portlet have

to provide data for output.

6.2 Core

Core of our application is responsible for main application work flow. The only assumption

it has is that we works with XML as input data for presentation layer and XSLT as final

output generator.

On Figure 6.1 is code flow of proposed application core. In our case, taking into account

used technologies, core consists of following steps:

1. Initialize libraries - main initialization and creation instants of libraries which

represents abstract object (database, user, session, ...)

2. Create portlets - create instants of portlets

3. Process input data - process input data from user (check, modify, write to database)

4. Generate XML - generate input for templates (XML and parameters)

5. Apply XSL - apply XSLT templates on generated XML and send result to output

In first step we will create libraries responsible for communication with database, ma-

nipulation with session, user data and some libraries which help us to manipulate with

XML and XSL. In second step we load and initialize each portlet. In third step, every

CHAPTER 6. PROPOSED SOLUTION 36

initialize libraries

create modules

generate XML

apply XSL

process input data

modules

libraries

Figure 6.1: Main application code flow

portlet has to process input data from request. In fourth step core let every portlet gener-

ate XML data for requested page. In last step each portlet has to provide XSL stylesheets

used for generation of final output.

Each portlet has to work only with data which are related to its feature which imple-

ments. Steps 4. and 5. are responsible for output and represents presentation layer. From

above assumption, we design new core and portlets called by core.

In our model libraries are used for manipulation with data and logical objects and

are available to each portlet. Portlets provide methods for processing input data, gen-

erates XML and processing instructions for templates. Portlets initialization is done in

constructor in step 2.

CHAPTER 6. PROPOSED SOLUTION 37

After step 4. we get XML data from each portlet for future processing by XSL tem-

plates. There are two ways how we could manage output XML data for stylesheets.

• Save output and then use it as an input for templates from the same portlet.

• Join portlet generated XML parts together into single one, mark each chunk by

portlet name, identifier or use namespaces, which produced it and process final XML

We decided to use second option. However it is less cleaner in terms of modular pro-

gramming. It has following advantages:

• it allow portlets to share common informations through XML (for output, however

it is not recommended)

• allow us to make modular layout much more simple. Otherwise we would need to

merge processed XML (for final output) in another special step.

• save multiple calls for processing XML by XSLT and process it in a single pass

• makes application core simple

6.2.1 Main XSL Template

There are three ways how to merge templates from portlets by core:

• static merging template - is one file on disk importing static templates from files

returned by portlets. List of files for import have to be passed in input XML. This

method require static templates from portlets.

• dynamic template creation with imports - template is dynamically created

during runtime and its code contains paths to templates returned by portlets. This

method require static templates from portlets.

• merging templates using PHP - each template is merged into one template using

PHP in similar way XML was. This method may accept both types of templates and

in case of static templates uses xsl:import.

CHAPTER 6. PROPOSED SOLUTION 38

Using static merging template would require adding instruction for imports XML inside

XSL template. Dynamic templates uses advantage of XSLT processor xsl:import feature

and list of imported templates can be generated during main template generation. In

Listing 6.1 is example of dynamically created template which imports static templates

provided by portlets.

Listing 6.1: Example of template generated by dynamic template creation with imports

method in core

<?xml version=” 1 .0 ” encoding=”utf−8”?>

<xsl :stylesheet version=” 1 .0 ”

xmlns :x s l=” ht tp : //www. w3 . org /1999/XSL/Transform”>

<xsl:import h r e f=” a r t i c l e s . x s l ” />

<xsl:import h r e f=” tagc loud . x s l ” />

<xsl:import h r e f=” u s e r l i s t . x s l ” />

</ xsl :stylesheet>

6.3 Portlets

We are using portlets in similar way to other blog portals but our portlets have simple

interface, does contain only high level logic and could implement only functional part

without presentation part. Moreover every functional part of our page is a portlet. Other

blog systems use portlets only as a simple side-showed functional panels which provides

several simple actions or display content specific informations. We extends idea of portlets

to almost everything. Every part of page responsible for some functionality. Thus portlets

from Figure 2.1 will be language menu, main menu, search field, login/logout field. We use

one special portlet for managing blog layout. Full description is in Section 6.3.4.

We use portlets as a tool for grouping same functionality into one place. Thus we uses

almost combination of vertical and horizontal separation principle together described in

Section 3. Our portlet has to:

1. process input data from users request

2. generate XML

3. provide template for processing XML returned from previous step to output

CHAPTER 6. PROPOSED SOLUTION 39

For each step, portlet has to implement method. All steps are called consecutively

from core. In first step, portlet has to process all input data from users request. In step 2.

portlet has to take all needed data for requested page from database and other resource

access modules, process it and return. In step 3. portlet has to return XSL templates

needed for proper transformation of data to output, returned from step 2.

Portlet can be used twice at a time. Once showing extending informations in main

content area and second in side panel. However, our design allow one portlet to generate

output for both places showed at the same time, we propose to separate both parts into

two portlets for better code clarity.

We propose following interface for portlets:

• init($params) - handles user input and performs all necessary writes to database.

It should return true if everything related to its function performed successfully

otherwise false

• getXML($params) - returns generated XML inside string for further XSLT pro-

cessing, according to requested page type, available in $params[’type’]

• getXSLlist($params) - return XSL templates in array

• getXSLParams($params) - returns associated array of parameters for XSLT pro-

cessor. Every portlet that use xsl:param inside template have to return required

parameters through this function

Variable $params stores all input parameters from users request. Every portlet should

react only to known requested type. In other case for unknown types added in future it

will produce undesirable output.

Introducing portlets would lead to many small modules with single responsibility and

almost constant number of public functions. In future, adding new feature would lead to

new portlet instead of new function inside existing module as it was in original application.

6.3.1 Generating XML

During phase of XML generation, portlet should collect all informations required for proper

generation of output. Collected informations should be returned as well-formed XML. As

we will need to match correct data during XSL processing phase, we need to uniquely sign

generated data. We have three choices:

CHAPTER 6. PROPOSED SOLUTION 40

• using unique XML namespace

• wrap data inside element and with unique identifier for each portlet

• combination of both

In Listing 6.2 we are using combination of both methods. Identifier article is names-

pace prefix and attribute id has unique value for each portlet.

Listing 6.2: Example of proposed XML generated chunk

<a r t i c l e : m o d u l e id=” jkg645 jkg ”>

< !−− module data −−>
</ a r t i c l e : m o d u l e>

If we would like to allow multiple use of same portlet at one time, we have to use

unique identifiers for each module instance for proper identification of XML data during

XSL transform process. This identifiers should be generated by core and assigned to each

module during runtime for proper data generation and match.

For backward compatibility with students templates from courses and future support

of courses there should be module which generates XML in original format.

6.3.2 Modular XQuery

XQuery is used by portlets mostly in data processing and XML generation phase for

querying database. As we intend to use several sorting algorithms inside XQuery we would

like to modularize it. Since XQuery doesn’t support import of additional files we need to

create full query each time at runtime of PHP. Some level of modularization of XQuery is

possible since XQuery support functions. Example of functions used in extended XQuery is

in Listing 6.8. Inside each XQuery original code had implemented several algorithms related

to calculations of tags strength, sorting algorithms and filters for nodes with specified

attributes. We propose modularization of XQueries for sorting algorithms and for node

filters described in Section 6.3.3.

This modularization had to be done by dynamic generation of different parts of XQuery.

Each part is generated by one PHP class which implements interface in Listing 6.3.

CHAPTER 6. PROPOSED SOLUTION 41

Listing 6.3: Interface for XQuery sorting algorithms

i n t e r f a c e SortQuery {
pub l i c func t i on getQuery ($params) ;

}

Function getQuery should return string where is part of XQuery with algorithm re-

turning the value of key used by compare function. Example of such function is in Listing

6.4. Inside each class we can implement different sorting algorithm based on different cri-

teria. Once we will need to change one algorithm for another it would be easy to replace

one implementation for another just by changing parameter in function call.

Listing 6.4: Example of sort function for XQuery
c l a s s ReputationSortQuery implements SortQuery {

pub l i c func t i on getQuery ($params){
r e turn ’

order by (

i f ($ i / ranks / r eputa t i onScore) then xs : double ($ i / ranks / r eputa t i onScore)

e l s e xs : double (0 . 0)

)

descending ’ ;

}
}

This construction should solve problem with many forks of function getPost mentioned

in Section 5.2.2. It also provide great interface for future implementation of new sorting

algorithms based on different criteria.

6.3.3 Modular XPath

As we dynamically create XQuery we may dynamically create also parts of XPath which

identify nodes in database. We will use it in construction of XPath which selects articles

according to its attributes. Conditions inside XPath are in conjunctive normal form, thus

we can transform each previously created XPath conditions to it with same functionality.

For this purpose we propose Filter interface listed in Listing 6.5. If we would like to

add new property to articles, according we may want to filter, we just needs to implement

class with algorithm which generates needed condition in XPath. During call of function

which creates XQuery we would pass new filter as a parameter. Such function has to call

getQuery function and result use in XPath. In Listing 6.6 we implements basic filter for

articles which are tagged by tag from user request.

CHAPTER 6. PROPOSED SOLUTION 42

Listing 6.5: Filter interface for XPath conditions

i n t e r f a c e F i l t e r {
pub l i c func t i on getQuery ($params) ;

}

Listing 6.6: Example of XPath filter for tags

c l a s s TagFi l t e r implements F i l t e r {
pub l i c func t i on getQuery ($ params){

i f (i s s e t ($ params [’ tag ’]))

r e turn ’ [tags / tag=” ’ . formatText ($ params [’ tag ’] , f a l s e) . ’ ”] ’ ;

r e turn ”” ;

}
}

Functions that generates XQuery with XPath may include support for multiple filters.

These functions need only to add array as additional parameter to their interface where

will be stored classes implementing interface Filter. Each of these classes would produce

its part of XPath condition.

Modularization of XPath using PHP solves problem with changing interface of function

getPost each time we would like to add new property to article (or any other element)

inside database.

6.3.4 Portlet XSL Template

According to our model described in Section 6.1 each portlet generate templates used for

generation of proper output from generated XML in previous step. There exists two ways

how portlet can generate templates:

• staticaly - templates are static files on disk and getXSLlist function returns paths

to templates

• dynamically - templates are generated at runtime and returned from getXSLlist

function

Templates generated by portlet has to match its parts of generated XML in case of

single merged XML without namespaces. As we proposed in previous Section 6.3.1 portlet

CHAPTER 6. PROPOSED SOLUTION 43

generated parts should have unique attribute value to be properly matched by template. In

that case, core has prepared single XML file that consists of many portlets generated XML

parts. Once dynamic XSL is generated, it contain each template returned by portlets.

There have to be one which will match / root element and call other templates in proper

order.

In Listing 6.7 is example of template for portlet Lang. Core generates main XSL

template which import templates from all portlets including one from example. One of

template have to contain match for root element. This template is executed and calls

xsl:apply-templates for each element module in proper order according to settings

passed during XML generation phase. Each template match its part of XML according to

unique identifier name and generates proper HTML output.

Listing 6.7: Proposed form of template generated by portlet

<?xml version=” 1 .0 ” encoding=”utf−8”?>

<xsl :stylesheet version=” 1 .0 ”

xmlns :x s l=” ht tp : //www. w3 . org /1999/XSL/Transform”>

<xsl:template match=”module [@name=’Lang ’] ”>

< !−− HTML output f o r p o r t l e t −−>
</xsl:template>

</ xsl :stylesheet>

Example in Listing 6.7 template will match XML part generated by portlet Lang. This

portlet should return template in such form. There have to be exactly one portlet that

generate template which match / root element and will be used as a main layout defining

position of each portlet.

6.4 Improving Database Performance

In this Section, we describe solution for problem with database performance described in

Section 5.2.7.

As we noted in Section 5.2.7, the main bottleneck was I/O wait. We had created

ramdisk and then we moved temporary file to ramdisk. This caused almost zero seek

CHAPTER 6. PROPOSED SOLUTION 44

time and immediate data access. We have tested several XQueries and we compared their

execution time. There were speed up from 0 do 10 times for single non-concurrent XQuery

that were just reading data. We have tested XQueries that we are using in our code. Most

notable difference was on XQuery from Listing 6.8.

Listing 6.8: example XQuery

de c l a r e func t i on l o c a l : g e tA l lTag s ($ lang as x s : s t r i n g) as element (tag)∗{
f o r $ pos t s in c o l l e c t i o n (”weblog”)/ user / blog / post

[@status=” publ i shed ”] [conta in s ($ lang , @lang)] ,

$ tags in $ pos t s / tags ,

$ tag in d i s t i n c t−va lu e s ($ tags / tag) ,

$ tagCanonica l in c o l l e c t i o n (”weblog”)/ tags / tag [a l t=$tag]

[normalize−space (data (@canonical)) != ””]

[normalize−space (data (@canonical)) != ”Test tag ”]

r e turn

<tag id=”{$ tagCanonica l /@id}” post=”{$ pos t s /@ID}”>
{normalize−space (data ($ tagCanonica l /@canonical))}
</ tag>

} ;

d e c l a r e func t i on l o ca l : g e tUse rTag s ($ userID as x s : s t r i n g , $ lang as x s : s t r i n g)

as element (tag)∗{

f o r $ pos t s in c o l l e c t i o n (”weblog”)/ user [@ID=$userID] / blog / post

[@status=” publ i shed ”] [conta in s ($ lang , @lang)] ,

$ tags in $ pos t s / tags ,

$ tag in d i s t i n c t−va lu e s ($ tags / tag) ,

$ tagCanonica l in c o l l e c t i o n (”weblog”)/ tags / tag [a l t=$tag]

r e turn

<tag post=”{$ pos t s /@ID}”>
{normalize−space (data ($ tagCanonica l /@canonical))}
</ tag>

} ;

d e c l a r e func t i on l o c a l : f i l t e rR e l a t e dTa g s ($ tags as element (tag)∗ , $ tag as x s : s t r i n g)

as element (tag)∗{

f o r $ s e l e c t e d in c o l l e c t i o n (”weblog”)/ tags / tag [@canonical=$tag]

r e turn

$ tags [@post=$tags [t ex t ()=$ s e l e c t e d / a l t / t ext ()] / data (@post)]

} ;

d e c l a r e func t i on l o c a l : f i l t e rU s e rT a g s ($ tags as element (tag)∗ , $ user as x s : s t r i n g)

as element (tag)∗{

f o r $ use rPost s in c o l l e c t i o n (”weblog”)/ user [i n f o / n ick / text ()=$ user] / blog / post /@ID

return

$ tags [@post=$userPost s]

CHAPTER 6. PROPOSED SOLUTION 45

} ;

d e c l a r e func t i on l o ca l : c ountTags ($ tags as element (tag)∗) as element (tag)∗{
f o r $ tag in d i s t i n c t−va lu e s ($ tags)

order by count ($ tags [.=$ tag]) descending

re turn

<tag id=”{ subsequence ($ tags [.=$ tag] /@id , 1 , 1)} ” count=”{ count ($ tags [.=$ tag]) } ”>
{$ tag }

</ tag>

} ;

d e c l a r e func t i on l o c a l : l o g ($n as xs :doub l e) as x s :doub l e {
i f ($n>1) then l o c a l : l o g ($n div 2)+1 e l s e 1

} ;

l e t $ t a g s :=subsequence (l o ca l : c ountTags (l o ca l : g e tUse rTag s (”u9” , ” sk”)) , 1 , 5 0)

(: l e t $ tags := f o r $ tag in $ tags

re turn <tag count=”{ l o c a l : l o g ($ tag /@count div 100) ∗ 100}”>{$ tag / text ()}</ tag> :)

l e t $ tags := f o r $ tag in $ tags re turn <tag count=”{$ tag /@count}”>{$ tag / text ()}</ tag>

l e t $maxTagCount := max($ tags /@count) l e t $minTagCount := min ($ tags /@count)

l e t $ t a g sRe su l t := f o r $ tag in $ tags order by lower−case ($ tag / text ()) ascending

re turn

<tag percent=” { (($ tag /@count − $minTagCount) div ($maxTagCount − $minTagCount+1))}”>
{$ tag / text ()}

</ tag>

r e turn $ tagsResu l t

In case of concurrent reading XQueries, we had speedup from 2 to 100 times. Write

non-concurrent queries was slower from 0 to 3 times. Write queries depends on locating

xml part, that are going to be modified and then are written on disk. We can also speed

up this part, using same trick (with ramdisk), but we can lost database when server crash.

Temporary file can be deleted without any penalty. We don’t know about any other

workaround at this time. The only definitive solution would be fix in Sedna itself.

For problem with reaching limit number of connections to database at the same time,

we propose to use only one instance of class Sedna during application lifetime.

6.5 Introducing Hooks

We would need mechanism of how to extend different parts of application without altering

existing code. We may use it for other courses which would like to use portal engine in

future. Alternatively we may want to use portlet architecture but we may want to bind

two or more portlets together without code separation. This can be done using hooks.

CHAPTER 6. PROPOSED SOLUTION 46

Proposed model of portlets allow good separation of code, but we may want to call function

for processing one feature in portlet for another feature in middle of processing input.

We propose HookManager with following interface and behaviour:

Listing 6.9: Interface for hook managment

c l a s s HookManager {
pub l i c func t i on reg i s t e rHook ($act ion , $ funct ion , $ c l a s s=nu l l) ;

pub l i c func t i on cal lHook ($act ion , $params) ;

}

• registerHook - call function $function from class $class at desired place in pro-

gram

• callHook - call all functions registered for $action with parameters inside array

$params

For example, we got request with new article. We want to process tags related task

right after checking validness of input article but before data are written to database in

portlet Article. Without hooks, we have to add some explicit functionality to portlet

Article which is related to tasks. With hooks, we will call every function which will reg-

ister with this purpose at certain point. In this case tags will register its function for key

articleCheckDone. In portlet Article we call all functions registered for key articleCheck-

Done at certain point. In Listing 6.10 is part of portlet for managing tag related features

and in Listing 6.11 is a part of portlet for managing articles.

Listing 6.10: Example of program extending main one using hooks

r eg i s t e rHook (’ art ic leCheckDone ’ , prepareTags) ;

. . .

f unc t i on prepareTags ($params){
//do something

}

Listing 6.11: Example of main program for hooks

//do something

. . .

ca l lHook (’ art ic leCheckDone ’ , $ a r t i c l e) ;

. . .

//do something

CHAPTER 6. PROPOSED SOLUTION 47

New model should improve developers overview over system. For backward compati-

bility, analysed in Section 5.2.6, with links from other pages we remain in identifying page

type by one GET parameter. Every portlet should demand what to do according to this

parameter. Since modules are grouped by same functionality (ex. everything related to

article (reading, writing,...)) this should solve problem with classes functions analysed in

Section 5.2.1). Also connection, analysed in Section 5.2.5, with courses would be cleaner

since there exists option to inherit new module from old one and extend it with specific

functionality.

Chapter 7

Implementation

In this chapter we will describe our implementation. We implemented almost everything

from proposed solutions. In cases where we had several options we choose one and we will

give reason why. On Figure 7.1 is class diagram of main application.

7.1 Core

Main application core consists of class Controler. Implements function Serve which runs

entire process described on Figure 6.1 and function registerPortlet. Main core is fully

implemented in PHP. We are using method of dynamically merging XML generated by

portlets into one single XML for faster processing and to avoid merging of output which

would be even more complicated.

We decided to use dynamic template creation with imports because we don’t need dy-

namically generated stylesheets. We don’t use static merging template because generation

is straight forward and we won’t alter input XML with additional data needed for imports

of static templates.

Main flow consist of these steps:

1. Inside constructor initialize main libraries (Database, User, Session, XSLT, Hook-

Manager, ...) and making them available through array $GLOBALS

2. Include list of files defined in settings. Included files should contain code of portlets.

3. Create an instance of each registered portlet

48

CHAPTER 7. IMPLEMENTATION 49

«interface»
Filter

+ getQuery(params : array) : string

«interface»
Portlet

+ init(params : array)
+ getXML(params : array) : string
+ getXSL(params : array) : array
+ getXSLParams(params : array) : array

XSLT

+ getXSL(getXSL : DOMDocument)
+ createTemplate(files : array) : string
+ applyTemplate(xml : string, xsl : string, params : array) : string

«interface»
SortQuery

+ getQuery(params : array) : string

System

+ __construct()
+ createAccount(userName : undef) : undef
+ deleteUsersAccount(userName : undef) : undef
+ getDB()
+ getDBAdmin()
+ getUserID()
+ getMaxID()
+ getSystemWideTags()

Controler

+ Serve(params : array)
+ registerPortlet(name : class)

HookManager

+ registerHook(action : string, function : function, class : class)
+ callHook(action : string, params : array)

User

+ __construct(ID : undef)
+ __destruct()
+ getID()
+ getEmail()
+ setEmail(email : undef)
+ getUserRank()
+ getUserID()
+ getNick()
+ getRealName()
+ setRealName(realName : undef)
+ setPassword(password : undef)
+ setCSS(style : undef)
+ setAbout(info : undef)
+ uploadFile(tmpName : undef, newName : undef) : undef
+ setUserType(type : undef)
+ getUserType()

Figure 7.1: Class diagram of our application

4. Call init function of each portlet (where input data has to be processed)

5. Call all hooks registered to name of requested page type

6. Get XML from each portlet and merge them together

CHAPTER 7. IMPLEMENTATION 50

7. Get list of XSLs from each portlet and merge them using using dynamic template

creation with imports method to main template

8. Get input parameters from each portlet and pass them to XSLT processor

9. Process merged XML with main template using XSLT library and send result to

output

It is almost implementation of model from proposed solution. We have added two

steps. Step 5. which allow portlets to create specific functions for each page type (instead

of creating decision tree inside init function). Step 8. was added to allow portlets to pass

parameters for stylesheet not through XML but in semantically correct way using function

of XSLT processor.

7.2 Libraries

Libraries Sedna, Session, User, System were left untouched. Library XSLT has been

extended by function which generates templates with imports.

We are also using following libraries and interfaces:

• User - implements abstract methods over users data

• System - provide access to database and implements several functions related to

database

• Session - provide methods for manipulation with informations related to current

session

• HookManager - used for controlling hooks

• XSLT - library for merging stylesheets and processing XML with merged stylesheet

• Sedna - implement methods for working database

• Portlet - interface for portlets described in Section 6.3

• Filter - interface for XPath conditions used inside XQueries described in Section

6.3.3

• SortQuery - interface for sort algorithms inside XQuery described in Section 6.3.2

CHAPTER 7. IMPLEMENTATION 51

7.3 Portlets

We reimplemented everything from original code into portlets. Portlets are separated

according to their functionality described in Section 6.1. For layout generation we are

using special portlet layout. It is the only one which has template matching / (root)

element. Its description is in Section 7.3.4.

We have implemented following portlets:

• Article - reading, writing, voting, listing of articles

• BestRated - portlet showing top 10 best rated articles

• Lang - changing portal language and showing language menu

• Layout - management of portal layout according to page type

• Login - manage login and logout function and provide login form

• Menu - displays menu according to user type (visitor, logged user, student)

• MostRead - portlet with top 10 most read articles

• Search - search field

• TagCloud - dynamic tag cloud with top 50 tags on our portal

7.3.1 PHP Part

Every portlet has its PHP part and implements interface described in Section 6.3. Each has

access to libraries mentioned above through array $GLOBALS. Since we decided for static

templates, function getXSLlist returns array of strings. Each string represents path to

.xsl file with template. Currently we defined this page types (names were preserved from

original code to maintain compatibility) that should be recognized inside portlets to make

desired action:

• blogView - blog of user specified in userID

• commentForm - show comment form replaying to comment with commentID or post

with postID

CHAPTER 7. IMPLEMENTATION 52

• loginForm - show page with login form

• login - login action

• logout - logout action

• getTagBrowserSVG - used by tag browser for generation of graph with tags rela-

tionship in SVG format

• portalView - main page

• postForm - form for creating or editing existing (postID) post

• postView - show article with postID

• registration - show registration form

• rss - RSS version of portal

• search - search mode for and article with specified attributes

• settingsForm - page with specific user (userID) options

• showStudentXSL - used by courses portlet for rendering users blog using its own

template

• uploadForm - page for user (userID) file management

• userPosts - page with management of users (userID) posts

• vote - user vote for an opened article or comment (deprecated)

• ajax - special type for ajax requests

Original code was using ajax1 for preview of article during writing. Since ajax returns

only small portion of output and not full page, portlets that uses ajax has to handle this

type and also use parameter portlet which will specify which portlet has to render output.

No portlet has to generate output for unknown type.

1Asynchronous JavaScript and XML

CHAPTER 7. IMPLEMENTATION 53

7.3.2 XML Part

Each portlet has to return string with well formed XML. We don’t use namespaces to

make implementation simplier. Each data part has to be inside element module with

attribute name. Its name is used as a value. Example of such XML is in Listing 7.1. As

we don’t use namespaces in PHP, portlet name is unique in our application.

Listing 7.1: XML output format for portlets

<module name=” a r t i c l e ”>

< !−− module data −−>
</module>

7.3.3 XSLT Part

There should be no complex calculations in templates. Everything what can be calculated

in PHP should be done that way. XSL templates have to be used only for formatting of

output. Each portlet have to return list of .xsl files using getXSLlist function if it wants

to produce output. Each template have to match XML data generated by same portlet.

This should be done using xsl:template construction. Example is in Listing 7.2.

Listing 7.2: Interface for hook managment

<?xml version=” 1 .0 ” encoding=”utf−8”?>

<xsl :stylesheet version=” 1 .0 ”

xmlns :x s l=” ht tp : //www. w3 . org /1999/XSL/Transform”>

<xsl:template match=”module [@name=’ Ar t i c l e ’] ”>

< !−−
t rans format ion f o r (HTML) output

−−>
</xsl:template>

</ xsl :stylesheet>

CHAPTER 7. IMPLEMENTATION 54

7.3.4 Portlet Layout

Portlet layout is used for placing final content of each portlet into right place in right

order. It also implements support for portlet order customization available for each user

on its own blog. During phase of XML generation it generate description of position of

each portlet, such as listed in Listing 7.3. Then it generates XSL template and calls

xsl:apply-templates in right order over XML data. Example of dynamically generated

main template is in Listing 7.4.

Listing 7.3: Example of XML generated by layout

<module name=’ Layout ’>

<p o r t l e t name=’ TagBrowser ’ c o l=’ 1 ’ row=’ 1 ’ />

<p o r t l e t name=’ A r t i c l e s ’ c o l=’ 1 ’ row=’ 2 ’ />

<p o r t l e t name=’ BestRated ’ c o l=’ 2 ’ row=’ 1 ’ />

<p o r t l e t name=’ MostRead ’ c o l=’ 2 ’ row=’ 2 ’ />

</module>

Listing 7.4: Example of XSL with two column layout

<?xml version=” 1 .0 ” encoding=”utf−8”?>

<xsl :stylesheet version=” 1 .0 ”

xmlns :x s l=” h t t p : //www. w3 . org /1999/XSL/Transform”

xmlns : func=” ht t p : // e x s l t . org / f u n c t i o n s ”>

<xsl:template match=”/”>

<div c l a s s=”colA”>

<xsl:for−each s e l e c t=” output /module [@name=’Layout ’] / p o r t l e t [@col = ’1 ’] ”>

<x s l : s o r t s e l e c t=”@row”/>

<xsl :variable name=”name” s e l e c t=”@name”/>

<xsl:apply−templates s e l e c t=”/ output /module [@name=$name] ”/>

</xsl:for−each>

</ div>

<div c l a s s=” colB ”>

<xsl:for−each s e l e c t=” output /module [@name=’Layout ’] / p o r t l e t [@col = ’2 ’] ”>

<x s l : s o r t s e l e c t=”@row”/>

CHAPTER 7. IMPLEMENTATION 55

<xsl :variable name=”name” s e l e c t=”@name”/>

<xsl:apply−templates s e l e c t=”/ output /module [@name=$name] ”/>

</xsl:for−each>

</ div>

</xsl:template>

</ xsl :stylesheet>

xsl:template has one additional attribute - mode. It could be used as a key for calling right

template, but it does not match correct data.

We have three types of layout on our blog. Three column (Figure 7.2) for title page, two

column (Figure 7.3) for user blog and single column (Figure 7.4) for user settings, posts and

other management tasks.

Figure 7.2: Three column layout

CHAPTER 7. IMPLEMENTATION 56

Figure 7.3: Two column layout

Figure 7.4: One column layout

Chapter 8

Conclusion

Our work consists of three main parts. In first we analysed original portal and pointed out to

main problems we had found. In second part we proposed new architecture usable for our blog

and in third part we describe our implementation a proposed solution.

During analysis we revealed several problems of original code. We found that original code

was using horizontally oriented architecture which lead to increasing number of functions in

classes with every new feature we would like to add. Filtering of articles were parametrized

through function interface which was changed each time we added new filter parameter. Changing

function interface lead to another regressions. Moreover filter function used sorting algorithm

inside XQuery. This algorithm had to be changed according page type. Original code contained

three copies of filter function for articles, each with different algorithm.

Original XSL templates contained calculations and many duplicate logic which were also

in main PHP. Moreover templates directly opened files used for cached results which is not

transparent. Transparency is important in case we added additional modification of calculated

data in PHP we had to add it also to XSLT. With transparent caching modification of templates

won’t be needed. Portal has been also used for several courses. For each course there where

modifications included directly in portal code without any separation. This lead to higher code

complexity. Finally we had problems with database performance.

In second part we proposed new model of application architecture by using modular program-

ming and several other techniques, such as combination of vertical and horizontal separation or

code generation at run-time. New model introduces portlets. Portlets are basic independent

modules providing small features available on our blogs. Our portlets uses vertical separation

architecture. Each portlet is separated horizontally to business logic and presentation logic. We

also proposed solution for modular filtering of XPath queries using PHP run-time code gen-

57

CHAPTER 8. CONCLUSION 58

eration. We proposed similar method for modularization of XQuery which we parametrized by

custom sort function. We also proposed preliminary solution for improving database performance

without changing database itself. Finally we proposed method of hooks as additional modular

method for extending portal functionality in future.

We reimplemented original portal to new architecture. In this work we also focus on sev-

eral implementation details where we describe why we choose several options when we had more

choices. As a consequence of problems mentioned in analysis, during development in past we

remarked many regressions and development of new features was very slow. New architecture

would speed up development, reduce number of regressions and allow making changes more easier

without side effects. During reimplementation we found out that new core is easily understand-

able, reimplementation was quite fast and new model separate each feature we have, enough.

Moreover new model should easily allow us to implement planned features.

Chapter 9

Related Work

9.1 Teamwork Organization

During research on our portal I became a team leader. This portal was used by other students

for their diploma and bachelor thesis. Namely:

• Juraj Frank - worked on Tags and their semantic with ontology in background

• Juraj Ďuďák - worked on many graphical representations of tags

• Marek Sivčo - portal layout with respect to accessibility and usability

• Martin Králik - portal security

• Marek Kováčik and Daniel Adam - connection between blog engine and course Modern

approaches to web design

• Tomáš Juŕık - Advanced XML editor for students of Modern approaches to web design

We had almost regular meetings where we discussed our next steps, we planned every release

cycle and solved other common problems. I also did code reviews that result into suggestions

how to make better integration with our code architecture.

From beginning we used SVN versioning system for code repository, that helped us with

coordination, code conflicts resolution and reverting changes when needed. I took a lesson and

for future projects that will contain many different functionality developed in parallel I will use

GIT, since it is more friendly to parallel development of branched code. However its price is in

more work during code merge process, it would easily allow us to defer some functionality for

next release cycle.

59

CHAPTER 9. RELATED WORK 60

9.2 Database Issues

For main data we used Sedna XML database as this was part of previous research. Unfortunately

this database is still in heavy development. However, authors of Sedna declared that it has ACID

properties, we had several crashes that leads to dataloss.

I created script that made regular backups of DB. During research we helped Sedna team to

identify several bugs that resulted in

• corrupted database

• suddenly stopped (crashed) Sedna

• DB governor was in indefinite loop (bug in Sednas deadlock detection algorithm)

This bug were reported.

Sedna is logging every XQuery into text file with specific format for bug reports. Once we’ve

needed replay queries from this log files. Unfortunately there were no utility available which was

able to parse those log files and extract only write / delete queries. So I had to write one using

flex and made those queries replayed over DB from last backup.

Listing 9.1: Code for Flex

%x query

%opt ion noyywrap

%%

−−−[]+update [ˆ\ r \n]+[\ r \n]+−−−[]+<ranks> /∗ i gno r e ∗/
”−−− update” { BEGIN(query) ; p r i n t f (”update”) ; }
”−−− CREATE DOCUMENT” { BEGIN(query) ; p r i n t f (”CREATE DOCUMENT”) ; }

<query>̂ −−− /∗ i gno r e ∗/
<query>ˆ[ˆ−] BEGIN(INITIAL) ;

<query> . p r i n t f (”%c” , yytext [0]) ;

a | [ˆ a] /∗ i gno r e ∗/
%%

i n t main (i n t argc , char ∗∗ argv)

{
yylex () ;

}

CHAPTER 9. RELATED WORK 61

This code was transformed using flex -i file.l and then compiled using gcc. Final pro-

gram take sedna logs from standard input and put on output only XQueries that make changes

in database, except those that change user ranks (that are counted regularly using our scripts

and during recover process were just a waste of time).

However, database has still problems, we are still using Sedna XML database, which was

choose by Anton Kohutovič [Koh08], because authors are providing feedback and great support.

Bibliography

[Cha02] D. Chamberlin. Xquery: An xml query language. IBM Syst. J., 41(4):597–615, 2002.

[fSPR10] Institute for System Programming RAS. Sedna documentation.

http://modis.ispras.ru/sedna/documentation.html, 2010.

[Gil04] W. Jason Gilmore. Velká kniha PHP5 a MySQL. Zoner Press, 2004.

[Gre08] Derek Greer. The art of separation of concerns.

http://www.aspiringcraftsman.com/2008/01/art-of-separation-of-concerns/,

2008.

[JC10] editor J. Clark. Xsl transformations (xslt) version 1.0.

http://www.w3.org/TR/xslt, 2010.

[Koh08] Anton Kohutovič. blog.matfyz.sk community portal. Master thesis, Comenius univer-

sity, 2008.

[MAea10] editors Mehdi Achour et al. Php manual.

http://www.php.net/manual/en/, 2010.

[Mar03] Robert Martin. Agile Software Development. Twayne Publishers, Boston, 2003.

[Mey97] B Meyer. Object-oriented software construction. Prentice Hall, second edition, 1997.

[MFea10] editors M. Fernandez et al. Xquery 1.0 and xpath 2.0 data model.

http://www.w3.org/TR/xpath-datamodel, 2010.

[MK10] editor M. Kay. Xsl transformations (xslt) version 2.0.

http://www.w3.org/TR/xslt20, 2010.

[Pec07] Rudolf Pecinovský. Návrhové vzory. Computer Press, 2007.

[rB02] Jǐŕı Bráza. PHP4 učebnice základ̊u jazyka. Grada Publishing a.s., 2002.

62

BIBLIOGRAPHY 63

[RO06] Zeki Bayram Ruhsan Onder. Implementation and Application of Automata, volume

4094/2006. Springer Berlin, 2006.

[SBea10] editors S. Boag et al. Xquery 1.0: An xml query language.

http://www.w3.org/TR/xquery, 2010.

[W3C06] W3C. Extensible markup language (xml) 1.0 (fourth edition).

http://www.w3.org/TR/REC-xml, 2006.

[Wik10] Wikipedia. Portlet — wikipedia, the free encyclopedia. [Online; accessed 28-April-

2010], 2010.

Abstrakt

Táto práca sa zaoberá analýzou pôvodného kódu portálu blog.matfyz.sk, návrhom jeho novej

architektúry a následne jej implementáciou. Počas návrhu je využité modulárne programovanie

a niekǒlko prinćıpov z oblasti softwareového inžinierstva. Modulárny návrh je potrebné vytvorǐt

aj s oȟladom na rôzne typy jazykov a technológíı, ktoré sa použ́ıvajú v tejto webovej aplikácii.

Počas analýzy sa zaoberáme najväčš́ımi problémami portálu ako je zle navrhnuté delenie tried,

či rozš́ırenie o dodatočnú funkcionalitu zapracovanú priamo do portálu zložitým a nepreȟladným

spôsobom. V návrhu predstavujeme nový model obsahujúci ǩlúčové prvky z oblasti modulárneho

programovania aplikované na jazyky ako XSLT, XQuery či XPath a technológie ako XML, ktoré

neumožňujú jednoducho modularizovať dáta alebo kód.

Na záver predstavujeme implementáciu s návrhom tried a spôsobom prepojenia jednotlivých

technológíı a jazykov.

Kľúčové slová: Weblogy, Modulárny dizajn, XSLT, XML, XML databáza

64

