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Abstract

Hidden Markov models (HMMs) are probabilistic models that have been extremely suc-
cessful in addressing problems in bioinformatics, error-correcting codes, natural language
processing, and other important areas. In many of these applications, the Viterbi algo-
rithm is used to find the most probable state path through the model generating sequences
that can be extremely long. Known algorithms either use at least Ω(n) memory in the best
case and always find the most probable state path, or use o(n) memory in the worst case,
but do not guarantee correct result.

We introduce a modification of the Viterbi algorithm which is guaranteed to find the
most probable state path and uses anywhere between O(1) and O(n) memory, depending
on the model and the input sequence. For a simple class of models, we show that the
expected memory needed to process a sequence is O(log(n)). We present results from ex-
periments with more complicated models for the problem of gene finding in bioinformatics
that indicate similar expected memory requirements.

Keywords: hidden Markov models, Viterbi algorithm, information theory, gene finding
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Chapter 1

Introduction

Hidden Markov models are probabilistic generative models that have hidden states and in
each state generate observable emission. The transitions between hidden states are gov-
erned by a Markov chain and the emissions from each state are governed by a distinct
probability distribution. The principal use of hidden Markov models is sequence annota-
tion. On input, we have a sequence of observations generated by a hidden Markov model
and we would like to know its annotation, the concrete sequence of hidden states that have
generated each observation. Obviously, this problem usually does not have an exact and
correct solution. Instead of finding the actual annotation, or state sequence, that have
generated the observed sequence, we will try to find the state sequence that would have
generated the observed sequence with the highest probability.

Hidden Markov models are a tool used in a multitude of applications. They include
convolutional code decoding [21], speech recognition [18], protein secondary structure pre-
diction [13] and gene finding [4]. The problem is usually to determine, what has caused
observable outcome. In the problem of convolutional coding, we determine the data that
were encoded from the resulting code sequences; in speech recognition we seek the words
that were said by measuring the sound frequencies.

The sequences of observations we are trying to annotate can be very long or even
continuous. This is indeed the case for convolutional code decoding and speech recognition;
we would like to be able to construct devices that decode convolutional codes on-line and
for arbitrary lengths of time. Same applies for systems that do speech recognition. In other
applications, the sequences may be finite, but still very large. For instance DNA sequences
used as an input for gene finding have tens of millions of symbols.

The principal method of sequence annotation in hidden Markov models is the linear time
dynamic programming Viterbi algorithm. The algorithm fills in a dynamic programming
matrix. Every element of the matrix is derived from one of the elements in previous
column and denotes the probability, that the most probable path to generate the prefix
of the observation sequence ending in the corresponding symbol ends in the corresponding
state. To find the most probable state path, the sequence annotation, the algorithm
finds the maximum in the last column and finds the states, from which was this number
sequentially generated.
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4 CHAPTER 1. INTRODUCTION

The Viterbi algorithm in its original form is insufficient for annotation of long or con-
tinuous sequences. It needs to finish reading the complete sequence in order to output
any result, which is impossible if the sequence is continuous. The situation is not much
better with long finite sequences; the algorithm will require the length of the sequence
times the number of states of system memory. This may be more than we can allocate.
Various solutions of this problem have been proposed and are used in praxis. Some mod-
ifications of the Viterbi algorithm address the issues with continuous sequences; they use
only bounded amount of memory and generate output before the whole sequence is read.
These solutions however sacrifice the property of always returning the most probable state
path, they may generate sub-optimal results. Different modifications lower the memory
requirements substantially, but they increase the running time and need to finish reading
the sequence in order to begin outputting data.

In this work, we propose the on-line Viterbi algorithm, a different modification of the
Viterbi algorithm that addresses both of these problems at the same time. The ”derived
from” relationships between the matrix entries form a tree. If we start tracing the branches
of the tree that correspond to the most probable state paths from the states we are currently
processing (the last column of the dynamic programming matrix), we will often find that
they coalesce in one point. The paths will be identical beyond this point and we can be sure
that the paths beyond this point will be in the correct output. Our algorithm exploits this
property by effectively detecting such coalescence points and outputting the unambiguous
path prefixes. It is only negligibly slower than the original Viterbi algorithm.

A central part of our work focuses on the memory complexity of the on-line Viterbi
algorithm. The memory it requires to process a sequence depends on the properties of
the hidden Markov model and on the properties of the sequence itself. While in the best
case it has ideal constant memory complexity, worst case is linear, as bad as the original
algorithm. However, we proved that there exists no algorithm with same properties and
better worst case complexity. Expected maximum space complexity is therefore of interest,
as it determines how much memory should be enough to process a sequence of certain
length.

First, we studied symmetrical two-state models. We transformed the problem to a
problem of random walk on integers, or the probability of ruin in a game of chance. Using
results from the theory of random walks and extreme value theory, we succeeded in showing
that the expected maximum space grows logarithmically with the length of the sequence.

We did not find a way to extend these results to multi-state HMMs. Instead, we
implemented the algorithm and used it to solve the problem of gene finding. We found, that
the maximum space complexity seems to grow logarithmically and that the algorithm uses
only modest amount of memory. Indeed, it was able to process whole DNA chromosomes at
once and achieved running time comparable with the Viterbi algorithm, before the Viterbi
algorithm ran out of memory.

The rest of this thesis is organized as follows. In first part of Chapter 2, we introduce
hidden Markov models and related important algorithms. Then we introduce the problems
of gene finding and convolutional code decoding and we finish with showing modifications
of Viterbi algorithm that address individual issues of the Viterbi algorithm. In Chapter
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3 we introduce our on-line Viterbi algorithm and present proofs for the time complexity
and best and worst case memory complexities. In Chapter 4 we prove expected memory
complexity for two-state HMMs and in chapter 5 we present experimental results.
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Chapter 2

Previous results

2.1 Hidden Markov models

Definition 1 Hidden Markov model (HMM) is a 5-tuple M = {S, Σ, T, E, Π}, where S =
{S1, S2, . . . , Sm} is a finite set of hidden states, Σ is an output alphabet, T, {{ti(j)}m

i=1}m
j=1 is

a matrix of transition probabilities between states, E, {{ei(j)}m
i=1}

|Σ|
j=1 is a matrix of emission

probabilities, Π = {π1, π2, . . . , πm} is the initial state distribution.

Hidden Markov model generates sequences of observations over an alphabet Σ. Such
generative process starts in of the m states chosen according to the initial distribution Π.
At each step of this process, a new state is chosen according to the probability distribution
given by the vector {tk(1), . . . , tk(m)}, where k is the current state, and a symbol is emitted
according to the distribution given by the vector {el(1), . . . , el(m)}, where l is the state
chosen in previous step. We call a sequence of these states a state path.

Definition 2 (State path) We will call a sequence s1, . . . , sn of HMM states a viable
state path if for every 1 ≤ i < n, tsi

(si+1) > 0.

Definition 3 A HMM generates a sequence X1, . . . , Xn if there exists a viable state path
s1, . . . , sn for which esi

(Xi) > 0 for all 1 ≤ i ≤ n. Furthermore, the probability of generating
sequence X is esn(Xn)πs1

∏n−1
i=1 tsi

(si+1)esi
(Xi), the product of the initial probability all

transition and emission probabilities.

In common applications of HMMs, the internal states of the model are not observable,
thus the states are said to be hidden. We can observe only the emitted symbols (sequences).
Our goal will be to extract some information about the internal states from the model
parameters and emitted symbols.

2.1.1 Forward and backward probabilities

A simple task is to determine the probability of a sequence being generated by a model.

7
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Figure 2.1:

A simple Hidden Markov model with S = {A, B}, Σ = {0, 1}, T =

(
0.95 0.05
0.1 0.9

)
,

E =

(
0.65 0.35
0.5 0.5

)

Problem 1 Given a Hidden Markov model M and sequence X = X1X2 . . . Xn, compute
the probability P (X) that the sequence X was generated by M .

We will show two methods of obtaining this probability. Even though this may seem
redundant, we will use both of these methods to solve more complicated problems later.

Definition 4 (Forward probability) Let αt(i) = P (st = i, X1, X2, . . . , Xt) be the prob-
ability that the HMM generates sequence X1X2 . . . Xn, ending the generative process in
state i. We will call αt(i) the forward probability of sequence X1X2 . . . Xi ending in state
i.

The forward probability of a sequence X with model M is the sum of the probabilities
of sequence X of all possible state paths. A brute-force method would be to generate all
possible state paths, determine the probability of generating X for each and sum these
probabilities. The problem however be solved by a simpler and faster dynamic program-
ming algorithm. The recurrence used will be based on the fact that αi+1(j), the probability
of being in state Sj and having generated sequence X1X2 . . . XiXi+1 can be expressed as a
sum of the probabilities of the state paths that generate sequence X1X2 . . . Xi and end in
the states Si for all i in {1, . . . ,m}, multiplied by the transition probability into state Sj

and the emission probability of Xi+1. The recurrence αi+1(j) =
∑m

k=1 αi(k)tk(j)ej(Xi+1)
holds for all states, which leads us to a simple dynamic programming algorithm (Figure
2.2), the forward algorithm ([14]).

The answer to problem 1 is the sum of the probabilities of generating sequence X and
ending in a particular state, P (X) =

∑m
i=1 αn(i).

Theorem 1 The forward algorithm computes the forward probabilities in O(nm2) time
using O(m) space.

We only need to store the vectors αi−1 and αi while calculating αi. Therefore, if we are only
interested in solving problem 1 O(m) memory is sufficient. However in some applications,
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Forward(M , X)
1: for i = 1 to m do
2: α0(i) = πi {Base case}
3: end for
4: for j = 1 to n do
5: for i = 1 to m do
6: αj(i) =

∑m
k=1 αj−1(k)tk(i)ei(Xj) {Recurrence}

7: end for
8: end for
9: return α

Figure 2.2: Forward algorithm

Backward(M , X)
1: for i = 1 to m do
2: βn(i) = ei(Xn) {Base case}
3: end for
4: for j = n− 1 to 1 do
5: for i = 1 to m do
6: βj(i) =

∑m
k=1 βj+1(k)ti(k)ei(Xj) {Recurrence}

7: end for
8: end for
9: return β

Figure 2.3: Backward algorithm

it will be convenient to pre-calculate values of αi, for all 1 ≤ i ≤ n, the space complexity
would be O(nm) in this case.

Another way to solve problem 1 is by summing the probabilities that the sequence
starts at state Si and continues to generate X.

Definition 5 (Backward probability) Let βt(i) = P (Xt+1, Xt+2, . . . , Xn|st = i) be the
probability that if the HMM is in state i at time t, it generates the sequence Xt+1, Xt+2, . . . , Xn

in the following steps.

The backward probability βt(i) can be computed recursively in a similar fashion as the
forward probability However, the computation will progress from right to left (see Figure
2.3).

Analogically to the forward algorithm, P (X) =
∑m

i=1 β1(i)πi is the answer to problem
1.

Theorem 2 The backward algorithm computes the backward probabilities in O(nm2) time
using O(m) space

As in the case of the forward algorithm, we will sometimes need to store all vectors βi. In
such case, the space complexity will be O(nm).
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2.1.2 The most probable state path

One of the most important features of hidden Markov models is an ability to deduce
information about the hidden states of the model. In this section we show how to compute
the most probable state path that could have generated the observed sequence. Knowing
such path reveals some information about the ”hidden” states of the HMM, and can help
solve a variety of problems, as we will show in next sections.

Problem 2 Given a hidden Markov model M and an observed sequence X = X1, X2, . . . , Xn,
find the most likely sequence of states s = s1, s2, . . . , sn which could have generated X. We
call the sequence s the most probable state path or sequence annotation and the process
of obtaining the most probable path decoding.

The Viterbi algorithm ([20], [7]), solves the problem 2. The algorithm consists of two
phases. In the first phase we use simple dynamic programming to calculate the probability
of the most probable state path ending in each state. In the second phase we use data
gathered in the first phase to find the most probable state path.

Definition 6 Given sequence X1, X2, . . . , Xt, let γt(i) be the probability of the most prob-
able sequence of states s1, . . . , st−1 that ends in state i i.e., st = i.

We can compute γi(j) in a similar way as the forward probability αi(j). The algorithm
is summarized in Figure 2.4. The difference between the forward and Viterbi algorithms
is that we are interested only in the single most probable path, not in the sum of all
paths generating a particular sequence. We calculate the value of γi(j) as the maximum
probability of the state path terminating in state j, using previous values of γi−1. The value
γi(j) is therefore derived from exactly one of the previous values γi−1(1), . . . , γi−1(m). To
simplify the computation in the second phase, we will remember the state δi(j), from which
the value of γi(j) is derived (see figure 2.4, line 8). This is the second-last state of the
most probable state path ending in state j. We finish the first phase of the algorithm by
computing the probability P (s, X) of the most probable path s, which will be the maximum
value in the vector γn.

In the second phase of the algorithm, which we call back-tracing, we reconstruct the
sequence of states in the most probable state path. We do this by starting from the
maximum value in the last vector and working our way back to the beginning of the
sequence by following the back pointers which we stored as δi(j). We will then output
this sequence of states (in reverse order) as the most probable state path (Figure 2.4, lines
11–14).

In the actual implementation of Viterbi algorithm, we first take logarithms of all values
of ti(j) and ei(j). This allows us to replace all multiplications by (faster) addition. Further,
as probabilities in the model will be small, multiplying even few of them would cause
underflow of double-precision variables. On the other hand, situations where we would
need to normalize the logarithms of probabilities in order to avoid underflow are extremely
rare. Another simplification is that the majority of models with m states have fewer than
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Viterbi(M , X)
1: for i = 1 to m do {Initialization}
2: γ0(i) = πj

3: δ0(i) = 0
4: end for
5: for j = 1 to n do {First phase}
6: for i = 1 to m do
7: γj(i) = maxm

k=1 γj−1(k)tk(i)ei(Xj) {Recurrence}
8: δj(i) = arg maxm

k=1 γj−1(k)tk(i)ei(Xj)
9: end for

10: end for
11: sn = arg maxm

k=1 γn(k)
12: for i = n− 1 to 1 do {Second phase (back-tracing)}
13: si = δi+1(si+1)
14: end for
15: return s

Figure 2.4: Viterbi algorithm

(
m
2

)
non-zero state transitions. Therefore we can use adjacency list instead of the sparse

adjacency matrix T . The recurrence us ed to calculate the matrix entries would thus be
λi(j) = maxk,tk(j) 6=0{λi−1(k)+log(tk(j))+log(ej(Xi))}. Finally, it is sufficient to store only
the matrix δ and the last column of matrix γ at any given moment, reducing the actual
space requirements.

Theorem 3 Given a hidden Markov model M and observed sequence X, the Viterbi al-
gorithm finds the most probable state path in Θ(n|E|) time, where |E| is the number of
non-zero transitions, using Θ(nm) space.

Proof. We compute γi(j) for all states j and for all symbols Xi in the observed sequence.
Using the adjacency list representation of T , we require in total

∑m
j=1

∑m
k=1(tk(j) 6= 0) =

|E| comparisons to find the maximum in lines 7 and 8, |E| being the number of non-zero
probability transitions in the model. Using the adjacency matrix representation, we would
need

(
m
2

)
= O(m2) comparisons. The back-tracing in lines 11-14 takes only O(n) time, as

each of the n back pointers is followed once. The running time is Θ(n|E|).
The space complexity of the Viterbi algorithm is Θ(nm), as we need to store a n×m

matrix of either values or back pointers.

2

2.1.3 Posterior decoding

The Viterbi algorithms gives us the single most probable path that could have generated
a sequence. In a situation, where multiple paths have high probability, the single most
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Forward-backward(M , X)
1: α = Forward(M , X)
2: β = Backward(M , X)
3: for j = 1 to n do {Loop}
4: for i = 1 to m do
5: εj(i) = αj(i)βj(i)ei(Xi)

−1 {ei(Xi) is in both αj(i) and βj(i)}
6: ti = arg maxk εj(k)
7: end for
8: end for
9: return t

Figure 2.5: Forward-backward algorithm

probable path can differ from the rest and, in fact, can be less relevant if we want to find
out the states, through which a number of high-probability states pass, or the path that
has parts shared by more high-probability state paths [3].

The problem 2 can be modified, and we can get a different solution, perhaps more
relevant in some situations.

Problem 3 Given hidden Markov model M and sequence X = X1, X2, . . . , Xn, find for
each position 1 ≤ i ≤ n the state ti that most likely generated symbol at that position. The
process of finding such states is called posterior decoding.

Definition 7 (Posterior state probability) Let εt(i) = P (X1, X2, . . . , Xn, st = i) be
the probability that the HMM generates sequence X = X1, X2, . . . , Xn and passes through
state i at time t.

To find out the posterior state probability for all states, we will use forward and back-
ward probabilities, defined on pages 8 and 9. The forward probability αi(j) is the probabil-
ity of generating the sequence X1, . . . , Xi and ending in state j, the backward probability
βi(j) is the probability of generating the sequence Xi, . . . , Xn given that the HMM starts
in state j. We will use the output of the forward and backward algorithms (Figures 2.2 and
2.3) in the forward-backward algorithm (Figure 2.5) The output for the forward-backward
algorithm is a sequence of states t, such that state ti is the most probable state the hidden
Markov model is in, when it generates the sequence X.

Theorem 4 The forward-backward algorithm finds the posterior state probabilities in O(nm2)
time and O(nm) space.

A potential problem with forward-backward algorithm is that the sequence t1, t2, . . . , tn
may not be a viable state path (Definition 2). We can only guarantee that such path is
viable in Markov models that have all state transition probabilities non-zero, but these
form a small and rare subset of all hidden Markov models. In order to eliminate paths
that are not viable, we will use the posterior-Viterbi algorithm ([5]).
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posterior-Viterbi(M , X)
1: ε = Forward-backward(M , X) {We will use a version of the Forward-backward

algorithm that returns ε instead of t}
2: for i = 1 to m do {Initialization}
3: ζ1(i) = πi ∗ ε1(i)
4: end for
5: for j = 1 to n do {Recursion}
6: for i = 1 to m do
7: ζj(i) = maxm

k=1 ζj−1(k)(tk(i) 6= 0)εj(i)
8: ηj(i) = arg maxm

k=1 ζj−1(k)(tk(i) 6= 0)
9: end for

10: end for
11: un = arg maxm

k=1 ζn(k)
12: for i = n− 1 to 1 do {Back-tracing}
13: ui = ηi+1(ui+1)
14: end for
15: return u

Figure 2.6: posterior-Viterbi algorithm

The posterior-Viterbi algorithm finds a path v1, v2, . . . , vn that maximizes the average
posterior probability of its states. It first calculates the posterior probabilities, then uses
a slightly modified Viterbi algorithm to find such path through them (Figure 2.6).

Theorem 5 The posterior-Viterbi algorithm will find the best possible posterior decoding
in O(nm2) time and O(nm) space.

Proof The posterior-Viterbi is a combination of the forward-backward and Viterbi algo-
rithm, first running the forward backward algorithm in O(nm2), then the Viterbi algorithm
in O(nm2). Both use only O(nm) space.

2

2.1.4 Hidden Markov model training

So far we have described some of the uses of hidden Markov models, but we have neglected
the problem of creating them and estimating their parameters. First thing we need to
do when creating a hidden Markov model is to determine its topology. A possibility
would be to guess the number of states and train a model with all possible transitions
(the transition graph being a complete graph on m vertices). This was however shown
to be impractical and slow in practice. Usually, the hidden Markov model topology is
given beforehand (designed by an expert or heuristically). We only need to determine the
transition probabilities for the transitions allowed by the model topology and the emission
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probabilities. We will call the process of estimating the transition and emission probabilities
of a hidden Markov model training.

In a supervised training, we receive a sequence X and the corresponding state path s
that has generated X. The training is then straight-forward, but this situation is rather
rare.

Problem 4 (Supervised training) Given a hidden Markov model topology, sequence X
and a state path s, find the set of transition and emission probabilities that maximizes the
probability of X being generated by the state path s.

We have a complete emission and state sequence. It is possible to simply count the
number of times each emission and transition was used. We will set the transition and
emission probabilities to reflect the acquired distribution of transitions and emissions used.
Usually, we want to train the model on whole dataset of different emission/state sequences,
not just on one. Training the model parameters on one or just few sequences will cause
the model to lack generalizing property, only sequences from the training set will be gen-
erated with high probabilities. Given the dataset, a set of o training sequences X i and
corresponding state paths si, we will denote the count of transitions from state u to state
v used in the dataset Tu(v) and the number of times symbol x was emitted from state u
we will denote Eu(x). We will now set the transition and emission probabilities as

tu(v) =
Tu(v)∑m

k=1 Tu(k)
(2.1)

eu(x) =
Eu(x)∑m
k=1 Eu(y)

(2.2)

in order to maximize the probabilities of generating the sequences in the dataset using
corresponding paths.

The problem is more complicated, when we have training sequences, but do not have
access to the internal mechanism of the process we are modeling and thus, we do not know
the state paths that have generated the training sequences. This is unfortunately the usual
case. We want to find such transition and emission probabilities that make the generation
of the training sequences most likely.

Problem 5 (Unsupervised training) Given a hidden Markov model topology and a set
of sequences X1, . . . , Xo of lengths n1, . . . , no find the set of transition and emission prob-
abilities that maximize the probability of X1, . . . , Xo being generated by the hidden Markov
model.

Currently, there is no known efficient algorithm to solve this problem. The Baum-Welch
algorithm, a version of the expectation maximization algorithm, was proved to converge
to a local maximum, which is often sufficient [1].

The Baum-Welch algorithm iteratively improves the transition and emission probabil-
ities in order to maximize the probability of the sequences X i being generated. We start
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with initial values of ti(j) and ek(l). In every iteration, we calculate the forward and back-
ward probabilities and use them to determine the expected number of times each transition
and emission event happened during the generation of sequences X i. The newly estimated
transition probabilities will be

t′i(j) =
o∑

k=1

1

Pr(Xk)

nk∑
l=1

αk
l (i)ti(j)ej(X

k
l+1)β

k
l+1(j) (2.3)

where Xj
i is the i-th symbol of j-th input sequence, αj

i (k) and βj
i (k) are the forward and

backward probabilities for i-th symbol of k-th input sequence and state j. We summed
the probabilities that transition from state i to state j was used for every position in every
sequence and then normalized the sum for each sequence by dividing by the probability of
that sequence being generated. New emission probabilities e′i(j) will be determined in a
similar manner.

e′i(j) =
o∑

k=1

1

Pr(Xk)

nk∑
l=1,Xl=j

αk
l (i)β

k
l (i)ei(X

k
i )−1 (2.4)

We are summing the probabilities that each symbol j in the sequence was generated by
state i and again normalizing by dividing by the probability of generating each sequence.
As emission probability ei(X

k
i ) is in both forward and backward probability, we need to

divide each summand by it.
The algorithm usually terminates, when the change in transition and emission proba-

bilities between succeeding iterations is small and local maximum has been reached.

2.1.5 Higher order Markov models

In a k-th order hidden Markov model, the emission probabilities depend on the k previous
emissions: ei(j) = P (Xi|Xi−1Xi−2 . . . Xi−k). The hidden Markov models described until
this point were of order 0. Instead of the matrix E, a k + 2 dimensional matrix Ek needs
to be used. The first two dimensions will denote the state and emission symbol as in E,
the rest k dimensions will determine the previous k symbols. Only trivial changes need to
be done to here described algorithms to convert them to use emission matrix Ek instead
of E. For instance in the Viterbi algorithm (Figure 2.4) all instances of ei(Xj) need to be
replaced by ei(Xj, Xj−1, . . . , Xj−k). The case where j < k needs to be treated specially,
for instance, by averaging values for the unknown sequence symbols.

2.2 Case study: Gene finding

The decoding of hidden Markov models is a powerful tool. It has been successfully used in
many fields, among others bioinformatics, speech and pattern recognition and information
theory. In the this section, we will focus on gene finding, one of the applications of hidden
Markov models in bioinformatics, in order to bring forth a more concrete example.
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Genetic information of each organism is stored in a macro-molecule called deoxyri-
bonucleic acid (DNA). Information stored in DNA is coded by a sequence of four types of
nucleotides: adenine, cythosine, guanine and thymine. In this thesis, we will view DNA
as a string over the four letter alphabet Σ = {a, c, g, t}. The genome of an organism is
a complete set of its DNA. It consists of a number of chromosomes, continuous strings
of DNA. The process of determining the DNA string of an organism is called sequencing.
DNA of a number of organisms has been sequenced to date.

The central dogma of molecular biology explains, how the information in DNA is used
to synthesize proteins, the building blocks of all organisms. From this point of view, DNA
logically consists of three types of subsequences: intergenic regions, introns and exons.
Introns and exon together form genes, units that code one or more complete proteins. Exons
are gene subsequences that directly translate into amino acids. Introns are subsequences
that are not used at all or have structural, regulatory, or other function. Sometimes, it
is possible to divide a gene into introns and exons in more than one way, synthesizing
different proteins. Intergenic regions do not code proteins and are nucleotide sequences
that can have regulatory or structural function, but are mostly junk DNA that is not used
at all.

The central dogma is illustrated in Figure 2.7. The DNA is first transcribed into pre-
mRNA, with chemical, but no logical change done. In the next step, introns are left out
(spliced out) of the pre-mRNA, to form mRNA. The adjacent exons are joined together
and are translated into amino acids, each amino acid being coded by three nucleotides
(together called a codon). These amino acids then form a protein. There are 20 different
amino acids synthesized by living cells, and 43 = 64 possible codons. Some amino acids
can be coded by different codons and some codons have structural function (like coding
the beginning or end of a gene).

Given a known DNA sequence, the problem of segmenting the sequence to intergenic
regions, introns and exons is called gene finding. When we know the location of a gene
in the DNA and its introns and exons, we can determine the amino acids and thus the
protein the amino acids form. One of the methods used to predict the segmentation of
DNA uses HMM decoding. If we have a HMM that captures the properties of DNA with
states corresponding to various parts of intergenic, intron and exon sequences that emit
symbols from {a, c, g, t}, we can treat the DNA sequence as a sequence generated by our
model and decode it to obtain the most probable state path. As state of the most probable
state path will correspond to intron, exon or intergenic region; the decoding gives us a
segmentation of the DNA.

This approach to gene-finding is implemented in a number of gene finders. For instance
GENSCAN, described in [4] or ExonHunter, described in [2]. Such gene finders often use
HMMs in concert with other methods to determine the DNA segmentation.

The optimal method is to process the DNA by chromosomes. However, chromosomes
can be tens of millions of bases long; for example the longest human chromosome has
approximately 245 million bases. Simple calculation shows that using a modest model of
100 states and remembering only the back pointers δi(j) (1 byte per pointer), we would
need at least 24.5GB of memory in order to decode the whole chromosome using the Viterbi
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Figure 2.7: Transcription, splicing and translation of DNA

or posterior-Viterbi algorithm. This is clearly impractical, we will need to process each
chromosome as more separate pieces. If we split a chromosome, the split may occur in
the middle of a gene, thus lowering our chance of detecting it. In order to overcome this
problem, we need a algorithm with lower space requirements than the Viterbi algorithm.

The main focus of this thesis is on the memory complexity of hidden Markov model
decoding. We will look at known methods for improving this complexity in sections 2.4.1
and 2.4.2. In order to explain the algorithms in section 2.4.2, we need to introduce one
more field of application for hidden Markov models.

2.3 Convolutional code decoding

The Viterbi algorithm was originally conceived for the decoding of convolutional codes [20].
Here, we present a brief and simplified version of convolutional code coding and decoding.
For a more comprehensive explanation of convolutional codes see [15].

Convolutional codes are error-correcting codes, often used to increase reliability of var-
ious communication lines, such as mobile phone networks, satellite communication and
deep space data links. The codes are (m, n)- codes, m bits of input being encoded by n
bits (m < n). The ration m/n is called a code rate. Each bit of the encoded sequence
depends on the previous k bits of the input sequence, the value k is the order of a convolu-
tional code. The encoding is realized by shift-register with a set of k registers (Figure 2.8).
Initially set to zero, at each step, each register takes the value of the register to its left,
the left-most (first) register takes the new input bit. The output is generated by n (mod
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Figure 2.8: Two consecutive steps of a convolutional coder

2)-adders, each taking as input those registers that correspond to its generator polynomial.
The convolutional coder in Figure 2.8 represents a (1, 3) code, with generator polynomials
g1 = x + x2 + x3, g2 = x + x2 and g3 = x2 + x3. For every bit of input ii, the three bits
of output, o3i, o3i+1, o3i+2 are generated. It is possible to construct (m, n) codes using
multiple (1, n) codes [21]. During the transmission, error e is added to the transmitted
sequence o, resulting in the sequence t = o + e.

One of the ways to decode the transmitted sequence t in order to obtain the input
sequence i that generated it with highest probability is to use the Viterbi algorithm [21].
We will create a hidden Markov model, corresponding to the convolutional coder. The
states of the hidden Markov model will represent the states of the encoder. In above
mentioned example, S = {000, 001, 010, . . . , 111}, all the possible states of the 3 registers.
In a general case, S = {0, 1}k.

We define the transition matrix T as follows

ti(j) =

{
0.5 if transition between Si and Sj is possible
0 otherwise

(2.5)

A transition between states Si and Sj is possible if Sj is a right shift of Si with 0 or 1 in
the first register. For example, transition between 010 and 101 is possible, but transition
between 010 and 100 is not possible. Every state has two possible outgoing transitions,
because either 0 or 1 can be put in the first register from the input, and two possible
incoming transitions because 0 or 1 could have dropped out of the last register.

The alphabet is Σ = {0, 1}n, all possible n bit outputs, {000, . . . , 111} in the fore-
mentioned example. In the absence of transmission errors, each state Si can generate
exactly one n-bit output Oi = o3io3i+1o3i+2. In order to be able to decode sequences with
errors, we need to consider the probability of bits flipping during transmission. In a simple
case, where each bit flips independently with the probability p, we would calculate the
emission matrix E as

ei(j) = ph(oi,j)(1− p)n−h(oi,j) (2.6)

where h(oi, j) is the Hamming distance of the output of state i and a symbol j ∈ Σ. The
value ei(j) is the probability of the symbol oi being transformed into j by the data channel.
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Figure 2.9: A path through trellis, with input and output sequences.

For example, given p = 0.1, the probability that 101 will be transformed to 001 will be
0.1 ·0.92 = 0.081. One possible way of graphical representation of the coding and decoding
of convolutional codes using the Viterbi algorithm is the trellis (Figure 2.9).

The trellis consists of all possible state paths of the encoder that could have generated
given transmitted sequence t. All sequences have the same trellis, as the probability of
the output of the encoder o being transformed by the data channel to any other sequence
of the same length is non-zero. The encoding of each sequence can be represented as
a single path through the trellis (Figure 2.9). Although a trellis diagram can be used
to represent sequence generation and decoding for any HMM, it is especially useful to
represent convolutional code decoding where transition matrix is very sparse.

On the receiving side, we can use the Viterbi algorithm to find the most probable
state path that generated the transmitted data [20]. Having the most probable state
path, we can simply transform it into the corresponding input sequence by considering
only the first register of each state. This would be the most probable decoding, providing
that the probability p and the error model we used were correct. Devices used to decode
convolutional codes in this way are called Viterbi decoders. They use various modification
of the Viterbi algorithm, as the original algorithm needs to keep the whole (and finite)
sequence in memory during the decoding. This would be a problem when the decoder
should run in real-time on continuous sequences.

2.4 Improving the Viterbi algorithm

As we have shown in the previous section, the original Viterbi algorithm for finding the
most probable state path, has two kinds of problems in many applications. Its memory
requirements are too high, and we need to read the complete sequence to start decoding.
There are several known algorithms that improve on the original Viterbi algorithm, we will
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divide them according to two criteria.

Definition 8 We will call an algorithm solving the most-probable state path problem on-
line if it returns parts of the solution before it finishes reading the input. We call other
algorithms off-line.

Definition 9 An algorithm solving the most-probable state path problem is called correct
if it always returns the most probable state path. We will call other algorithms heuristic.

In this section we describe known modifications of the Viterbi algorithm that attempt to
address the above mentioned issues. All of these algorithms are either off-line or heuristic.
In the rest of the thesis, we then present an algorithm that is both on-line and correct, and
its analysis.

2.4.1 Correct algorithms

Trivial

We can trivially lower the space complexity to Θ(n + m) while increasing the time com-
plexity to Θ(n2|E|). We will not store any columns of the matrices γ and δ except the
current one and recompute each column from the beginning during the back-tracing run.
Such algorithm would be extremely impractical on longer sequences. In the rest of this
section, we show several algorithms that present more practical instances of this trade-off
between memory and running time.

Checkpointing

Checkpointing algorithms, first introduced by Grice et al. [10], are based on the following
idea. We divide the input sequence into K blocks of n/K symbols. During the forward
pass, we store only γ`(n/K)+1 for 0 ≤ ` < K, the first column of each block. We will call
these matrix columns checkpoints. After finding the maximum in the last column as in the
Viterbi algorithm (Figure 2.4), we start the back-trace by recomputing the matrix columns
γ(K−1)(n/K)+2 to γn and back-tracing them (Figure 2.10). Now we can discard the columns
γ(K−1)(n/K)+2 to γn and replace them with recomputed columns γ(K−2)(n/K)+2 to γ(K−1)(n/K)

and continue the back-tracing. We start the re-computation of each block in the matrix
from its first column, which we have stored. The pseudocode of the algorithm for a simpler
case where K|n is shown in Figure 2.11.

Theorem 6 The checkpointing Viterbi algorithm can find the most probable state path in
Θ(n|E|) time and Θ(n + m

√
n) space.

Proof. The algorithm recomputes every column of the matrix γ (except the K first columns
in every block) twice. The complexity of the back-trace is the same as in the original Viterbi
algorithm. Therefore asymptotic running time remains the same. As for space complexity,
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Figure 2.10: Checkpointing algorithm with n = 16 and K = 4 and the back-trace for
the last block. Shaded columns are stored in the memory, all other columns have been
discarded and will be recomputed at later stages.

we store at most K + n/K − 1 matrix columns, K checkpoints and the block of size n/K
we are currently back-tracing (the first column of the block is also a checkpoint). In order
to minimize the sum K + n/K, we will set K =

√
n. We also need to store the input

sequence of n symbols. Therefore, we need n + m(2
√

n− 1) = Θ(n + m
√

n) space.

2

The actual running time increases approximately by a factor of two compared to the original
Viterbi algorithm because each column in the matrix γ needs to be recomputed twice.

Multilevel checkpointing

The idea of checkpointing can be generalized to L-level checkpointing [10]. In the check-
pointing Viterbi algorithm described above, we place

√
n checkpoints and then process

blocks of
√

n columns in a way similar to the Viterbi algorithm. In multilevel checkpoint-
ing algorithms, we further recursively checkpoint these blocks until we reach recursion level
L, where we recompute the blocks of size nK−L as in the original Viterbi algorithm. The
optimal space is achieved for K = L

√
n. We have to recompute each column L times,

but we only need to remember L L
√

n columns, L − 1 layers of L
√

n checkpoints each, and
the final block of size L

√
n. The resulting space and time complexities will therefore be

Θ(n + Lm L
√

n) and Θ(Ln|E|) respectively.

2.4.2 On-line algorithms

All of the algorithms covered in the previous section were off-line. They require multiple
passes of the input data. In contrast, on-line algorithms can often compute the prefix
s1, . . . , sk of the most probable state path even before finishing reading the input sequence.
In such case, the algorithm can free the memory storing the corresponding input sequence
X1, . . . , Xk and all the associated results computed by the algorithm. On-line algorithms
can thus use less than Θ(n) of system memory in practice.

None of the algorithms described in previous section is suitable for the decoding of
convolutional codes (see Section 2.3 for description of convolutional codes). Neither of
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Checkpointing-Viterbi(M , X, K)
1: for i = 1 to m do {Initialization}
2: γ0(i) = πj

3: δ0(i) = 0
4: end for
5: for j = 1 to n do {First phase}
6: for i = 1 to m do
7: γj(i) = maxm

k=1 γj−1(k)tk(i)ei(Xj) {Recurrence}
8: end for
9: if j mod n/K 6= 2 and j > 2 then

10: delete γj−1

11: end if
12: end for
13: sn = arg maxm

k=1 γn(k)
14: for l = K − 1 to 1 do
15: for i = l(n/K) + 2 to (l + 1)(n/K) do {Recompute l-th block}
16: for i = 1 to m do
17: γj(i) = maxm

k=1 γj−1(k)tk(i)ei(Xj) {Recurrence}
18: δj(i) = arg maxm

k=1 γj−1(k)tk(i)ei(Xj)
19: end for
20: end for
21: for i = (l + 1)(n/K) to l(n/K) + 1 do {Back-tracing}
22: si = δi+1(si+1)
23: end for
24: end for
25: return s

Figure 2.11: Checkpointing Viterbi algorithm

them has the on-line property. Therefore we would need to finish reading the data stream
in order to decode it. This is impossible under most circumstances.

It is impossible to always find the correct answer to the most probable state path prob-
lem with any bounded amount of memory. More precisely, in Section 3.2.2 we prove that
for any algorithm, and fixed amount of memory, we can find a HMM and an observa-
tion sequence such that algorithm will either exceed this memory allowance, or return an
incorrect answer.

In this section, we present several algorithms that use only bounded amount of memory.
Though they are practical for hardware implementation, they do not always find the most
probable state path and therefore can only be considered heuristics.
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Figure 2.12: All paths from the last column of the trellis

Merging depth

In order to be able to successfully decode convolutional codes, we need to make one further
observation. In Figure 2.12 is a trellis from Section 2.3. The figure only shows the most
probable paths from all states. The most probable paths leaving the states in the last
column (the actual state, when we are processing the sequence), are depicted in bold.
Note that all paths coalesce in the fourth last column. Therefore, regardless of the state
we begin the back-tracing in, the prefix of the most probable state path will be the same
(01010 in this example).

If we are able to determine the depth D, in which all the paths have merged with
high probability, we can start the decoding in any state, and after D steps output the
last state which should be identical for all paths. Then we can truncate the last column
of values γi(j) and δi(j). It is necessary to find such D that the probability of the paths
not coalescing in less than D steps is negligible compared to the probability of incorrect
decoding caused by erroneous transmission. We will call D the merging depth. The actual
depth in which we will truncate the memory is called truncation length T .

The minimum number of changes that need to be done to transform a correct encoded
sequence into a different correct encoded sequence is called a code free distance dfree. For the
code used as an example in Section 2.3, dfree = 6. For an example of two correct sequences
differing in six characters we can take the all-zero path 000− 000− 000− 000− 000− 000
corresponding to the input sequence 000000 and the path 000−100−110−011−001−000
corresponding to the input sequence 011000 (see Figure 2.9). The corresponding code
words are 000− 000− 000− 000− 000− 000 and 000− 110− 001− 010− 101− 000 (see
Figure 2.8), differing in six bits. Note that since the transition probabilities are symmetric,
we could have chosen any path instead of the all-zeroes path. When no truncation is used
a convolutional code can always repair at least bdfree/2c errors. For longer sequences,
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multiple non-adjacent groups of at most bdfree/2c errors can usually be corrected.

If we have an algorithm with truncation length T , we will call the minimum hamming
distance between two paths that do not merge in T steps the truncation distance dT . In the
previously mentioned example, the truncation distance d7 for T = 7 is 7, as the minimum
weight path that does not merge with the all-zeros path is 000− 100− 110− 111− 111−
111− 111. The output (emission) sequence 000− 110− 001− 100− 100− 100− 100 has
hamming distance of seven to the all-zero-path all-zero-output sequence.

It was shown in [8] that a truncation length of 5k is enough for the loss from truncation
to be comparable to the loss caused by errors in transmitted data. Later more precise
results on a variety of channels have shown that the truncation length needs to be chosen
so that dfree < dT [12], [16].

We say that models, for which the paths merge with high probability after T steps,
satisfy the merging property. The path suffix that is common for all paths starting from
current column is called survivor path. The memory, where all paths are stored is usually
called survivor memory.

There are two basic methods for implementing Viterbi decoders: register exchange
(RE) algorithms and trace-back algorithms. Most of Viterbi decoder implementations use
a modification of one of these algorithms. All of these algorithms exploit the property of
convolutional code models that each state (except the first and last one) has two possible
predecessor and two possible successor states. This reduces the complexity of implemen-
tations of convolutional code decoders dramatically.

Register exchange algorithms

In register exchange algorithms, the survivor memory has m × (T + 1) registers, where
T is the size of survivor memory and should be larger than the merging depth D. The
register connections are reversed compared to the connections in the trellis. The i-th row
of registers contains the survivor path that begins in state i. When we process a symbol
of the observation sequence, we need to update the survivor path for each row of registers.
As mentioned earlier, due to a special structure of the trellis for convolutional codes, the
current value of γi(j) is derived from one of only two possible previous values, see Figure
2.13. If the value γi(j) is derived from γi−1(k), we need to copy the path in the row k to
the row j, shifted one register to the left, so that we don’t overwrite the current state. This
is always possible, as registers (i, j) and (i+1, k) are always connected due to the reversed
connections (Figure 2.14). We can therefore update the columns of registers from right to
left. The first column will be set to the input that corresponds to the actual state.

If the merging property holds, and T > D, all paths will coalesce and the values in the
registers in the left-most column should all hold the same value. Thus, we can output any
element from the left-most column as the next decoded bit.
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Trace-back algorithms

Register exchange methods are fast, but have large hardware complexity. Another method
is a trace-back method, very similar to the standard Viterbi algorithm, described in the
beginning of this chapter. A simple implementation would have m × T + 1 registers,
containing back pointers (also called decision values). The T + 1 registers in each row
are linked. In each iteration, we shift all values to the left and we put new values to the
right-most column of registers (dashed arrows in Figure 2.15). Then we start a back-trace
from an arbitrary register, and the last result of the back-trace is returned. Again, given
the merging property, we expect that all paths coalesce in less than T steps and the result
will not depend on the register where we started the trace-back.

This method is obviously not very practical as each trace-back operation traces through
T states in order to output a single bit. A number of improved practical algorithms involve
increasing the memory size and running the trace-back less often, outputting bigger chunks
of data at once [17].
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Chapter 3

The On-line Viterbi Algorithm

All algorithms for decoding of hidden Markov models shown in the previous chapter are
either on-line (Definition 8) or correct (Definition 9), but never both. In almost all ap-
plications, having both properties would be desirable or beneficial. Here we propose an
algorithm, that has the on-line property of algorithms associated with convolutional code
decoding, while preserving correctness by using a memory of dynamic size.

As we have shown before, if there exists a coalescence point where all paths merge, we
can output the initial segment of the most probable path up to that coalescence point. In
this section, we show how to detect the existence and position of such coalescence point
without adding significant overhead to the original Viterbi algorithm.

We can represent δ, the matrix of back pointers from the original Viterbi algorithm, as
a tree of back pointers (Figure 3.1). We will store a compressed version of this back pointer
tree in the memory. The nodes of the tree, each corresponding to a matrix element γi(j),
will contain the number of its children, its parent node, and the numbers i,j. In order to
compress the tree, we will omit all leaves, except those in the last column. This will leave
out paths that cannot be part of the most probable state path. We will further compress
all internal nodes that have exactly one child. Paths containing only such nodes will be
contracted to a single edge. The node of the tree corresponding to the coalescence point
will have at least two children, as at least two paths will merge in it. It will therefore be
left in the compressed tree (Figure 3.2). The compressed tree will have m leaves, one for
each of the m last states and at most m − 1 internal nodes. We will store the tree in a
linked list, ordered by the position of the node in the sequence (Figure 3.3). We also keep
a list of pointers to the leaves of the tree.

Whenever we read an input symbol we update the tree as follows. First, we add the m
new leaves, each having a parent in one of the former leaves. We append these new leaves
to the end of the linked list. Then we proceed with the compression of the new tree. We
process the linked list of nodes from the end. If a node has zero children, we remove it from
the list and decrease the child count of its parent node. If it is the new leaf or an internal
node, we check if its parent has more than one child. If not, we erase it and update the
parent pointer to the parent’s parent. We repeat this step, until the original node’s parent
has more than one child.

27
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If the root node of the tree is changed by the compression, we begin trace-back from
γij, the entry in the matrix γ corresponding to the new root node, erasing the columns of
the matrices γ and δ on the way. When we finish reading the sequence, we need to start a
regular trace-back from the maximum in the right-most column to output the suffix of the
sequence for which no coalescence point has been found. The pseudo-code for the algorithm
is shown in Figure 3.6, with auxiliary functions for tree compression and trace-back shown
in Figures 3.4 and 3.5 respectively.

3.1 Running time analysis

Theorem 7 Given a hidden Markov model M and observed sequence X, the on-line
Viterbi algorithm finds the most probable state path in Θ(n|E|) time, where |E| is the
number of non-zero transitions.

Proof. The running time of the original Viterbi algorithm is O(n|E|) (Theorem 3). Com-
pared to the Viterbi algorithm, we add the tree compression routine at each iteration. On
every call of the compression routine each list and parent pointer will be followed at most
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once. There are at most 3m − 1 nodes in the tree before compression, at most m − 1
internal nodes, m previous leaves, and m current leaves. Therefore the tree has at most
3m − 2 list and parent pointers. The tree compression will therefore run in O(m) time.
Trace-back of both algorithms traces through n symbols, only in different order.

The total running time will be Θ(n(|E|+ O(m))) = Θ(n(|E|)) because m = O(|E|).

2

3.2 Space analysis

The space analysis will not be as straight forward as in the case of the previous algorithms.
Our new algorithm does not use a predetermined amount of memory because we do not
know the location of the coalescence points. We will show, that in the best case, we will
only use a constant amount of memory, and in the worst case, our space complexity will
be Θ(nm), same as the Viterbi algorithm.

3.2.1 Best case space analysis

Theorem 8 There exists a hidden Markov model M such that given an arbitrary observed
sequence X, the on-line Viterbi algorithm will find the most probable state path while using
only O(m) memory.

Proof. Consider a hidden Markov model M = {S, Σ, T, E, Π}, where S = {S1, S2}, Σ =
{0, 1}, ti(j) = 0.5 for i and j in {0, 1}, ei(j) = e for i = j and ei(j) = 1− e otherwise, for
some e ∈ (0.5, 1) (Figure 3.7), Π = {0, 1}. The two states generate symbols with different
probabilities, but the transition probabilities are equal.
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Compress(L)
1: while L.next 6= NULL do
2: if L.children < 1 then
3: dec((L.parent).children)
4: T = L.next
5: delete L
6: L = T
7: else
8: while (L.parent).children = 1 do
9: T = (L.parent).parent

10: delete L.parent
11: L.parent = T
12: end while
13: end if
14: L = L.next
15: end while
16: return L

Figure 3.4: Tree compression function

Trace-back(δ, i, sk)
1: while δi do
2: dec(k)
3: sk = δi(sk+1)
4: dec(i)
5: end while
6: return s

Figure 3.5: Trace-back function

Let’s examine one step of the algorithm at time t for this model. With the transition
probabilities ti(j) equal, both states γt(0) and γt(1) will be derived from the state with
higher γt−1 value, which will thus be a coalescence point. For example, if γt−1(0) is the
maximum probability state in time t − 1 and Xt = 0 then γt(0) = γt−1(0)t0(0)e0(0) =
0.5γt−1(0)e and γt(1) = γt−1(0)t0(1)e1(0) = 0.5γt−1(0)(1 − e). Since e > 1 − e, one of the
new states will be more probable leading to a new coalescence point when we process Xt+1.
Given the initial distribution Π = {0, 1} there will be a single maximum γ matrix element
in every column of the matrix γ which will also be the coalescence point when we process
the next column. We will therefore never need to store more than two columns of the
matrix. Additionally, the resulting state path will be equivalent to the input sequence, as
the coalescence points always occur in the states that have maximum probability in their
column.

2



3.2. SPACE ANALYSIS 31

On-line Viterbi(M , X)
1: for i = 1 to m do {Initialization}
2: γ0(i) = πj

3: δ0(i) = 0
4: Pi = new node
5: Pi.i = 0
6: Pi.j = i
7: L.Push(Pi)
8: end for
9: for j = 1 to n do

10: for i = 1 to m do
11: γj(i) = maxm

k=1 γj−1(k)tk(i)ei(Xj)
12: δj(i) = arg maxm

k=1 γj−1(k)tk(i)ei(Xj)
13: Ni = new node {Add new leaf nodes}
14: Ni.i = j
15: Ni.j = i
16: Ni.parent = Pδj(i)

17: L.Push(Ni)
18: end for
19: Compress(L)
20: if L.root changed then
21: Partial output(Trace-back(δ, (L.root).i, (L.root).j))
22: P = N
23: end if
24: end for
25: sn = arg maxm

k=1 γn(k)
26: Partial output(Trace-back(δ, n, sn)) {Trace back the last part}
27: return

Figure 3.6: On-line Viterbi algorithm

3.2.2 Worst case space analysis

Theorem 9 There exists a hidden Markov model M such that given an arbitrary observed
sequence X, the on-line Viterbi algorithm will find the most probable state path while using
O(nm) memory.

Proof. We can modify the two state HMM used in the previous proof. The new model
is M ′ = {S, Σ, T ′, E ′, Π′}, where Π′ = {0.5, 0.5}, ti(j) > 0.5 for i = j and ei(j) = 0.5 for
all i,j. For arbitrary input sequence X there will be no coalescence point in the matrix γ,
because the states are indistinguishable with respect to the input sequence X. Transitions
between states 0 and 1 and vice versa will never happen, because the values of γi(0) and
γi(1) will remain equal and the transition probabilities between different states are lower
than between the same states. We will need to finish reading the sequence in order to begin
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B

0.5

0.5

0.5 0.5A

0: e

1: 1−e

0: 1−e

1: e

Figure 3.7: Two state model with constant memory requirements.
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Figure 3.8: Model on which any correct decoding algorithm will have at least O(n) time
complexity. Zero probability transitions are depicted by dashed lines.

the trace-back; the algorithm behaves as the Viterbi algorithm, using Θ(mn) memory.

2

Although this seems as an unsatisfactory property of the on-line Viterbi algorithm, we
will show that it is not possible to find the most probable state path with o(n) memory
with any correct algorithm.

One category of algorithms stores X in memory and accesses it multiple times, having
even best-case memory complexity of ω(n). For example, the checkpointing-Viterbi as well
as some versions of the original Viterbi algorithm fall into this category. We will use a
simple example to show, that any algorithm must use at least ω(n) memory in some cases.

Theorem 10 For any algorithm for hidden Markov model decoding exists a HMM M and
observed sequence X, such that the algorithm will require ω(n) memory to find the most
probable state path.

Proof. We will consider a modification of the simple model used in the proof of Theorem
8. The model (see Figure 3.8) will have four states and will be over three letter alphabet,
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Σ = {0, 1, 2}. The model will have two pairs of states, (0, 1) and (2, 3). Initial probability
distribution is uniform, Π = {0.25, 0.25, 0.25, 0.25}. All transition probabilities between
the states of each pair are 0.5, transition probabilities between states from different pairs
are 0. Emission probabilities for states 0 and 1 and symbols 0 and 1 are ei(j) = e for i = j
and ei(j) = 1− e otherwise, e > 0.5. For states 0 and 1 and symbol 2, ei(2) = 0. Emission
probabilities for states 2 and 3 are ei(j) = e−f for i−2 = j and ei(j) = 1−e−f otherwise
for symbols 0 and 1, f < (1− e)/2, and emission probabilities for symbol 2 are ei(2) = 2f .

The most probable paths beginning in both states of either pair converge in one step,
by the same argument as in the proof of Theorem 8. While only symbols 0 and 1 appear in
the sequence, the most probable path in states {0, 1} will be more probable than the one
in {2, 3}, since the transition probabilities are the same and the corresponding emission
probabilities are higher in states {0, 1}. If the sequence ends without the symbol 2, this
most probable state path will be the result. However if symbol 2 occurs, the emission
probabilities of ei(2) in states {0, 1} are 0, this state path will be therefore impossible, and
the state path from the states {2, 3} will be the correct solution. In order to decide, which
state path to output, we need to wait until either the symbol 2 occurs, or we need to read
the whole sequence. We need at least ω(n) memory to remember either the sequence X
or some description of it. If this was not the case, we could code sequences from {0, 1}n

using the description of the algorithm, the HMM, and the memory the algorithm is using
at the point when it finishes reading the sequence, but before it outputs the correct result.
By the argument from the proof of Theorem 8, the result is exactly the same as the input
sequence when there is no character 2 in the input sequence. The total space required
for such representation of arbitrary sequence of length n is o(n) + O(m) + O(1) = o(n)
given that n � m. But there are less than 2n sequences of length shorter than n over the
alphabet {0, 1}. At least two different sequences must be represented by a single shorter
sequence, which is a contradiction.

2

We have shown special cases, where the algorithm requires very large or very small
memory. The worst case was somehow artificial and we would be hard-pressed to find
an application in which we would use such an HMM. Interesting question is, how will
the algorithm perform on average on a random observation sequence. Of special interest
is expected maximum amount of memory used while decoding a sequence of length n.
Knowing this value would enable us to determine the amount of memory necessary to
decode a sequence of known length. In the next chapter, we will prove the expected
maximum memory to be Θ(m log(n)) for two-state HMMs. Then we will show experimental
results for larger and more complex HMMs, which show that our algorithm almost always
satisfies the on-line property implied by its name.
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Chapter 4

Two-state hidden Markov models

We will divide the problem of expected worst case memory complexity for two-state HMMs
into two main categories. Symmetrical HMMs and non-symmetrical, or general, HMMs.
Further, the input sequence can be independently and identically distributed or generated
by a HMM. We will first discuss symmetrical models and i.i.d. sequences. We will present
a proof for the symmetrical, i.i.d. case and then extend it for general models on i.i.d. or
HMM generated sequences.

4.1 Symmetric models

We call a two-state HMM M over two letter alphabet symmetric if M = {S, Σ, T, E, Π}
and ti(j) = t for i 6= j and ti(j) = 1− t for i = j, ei(j) = e for i = j and ei(j) = 1− e for
i 6= j (Figure 4.1a). We will consider the situation with t < 0.5 first. The back pointers
in matrix λ between sequence positions i and i + 1 can form one of configurations i–iii in
Figure 4.1b. Note that configuration iv cannot happen, since t < 0.5. Coalescence point
occurs when either of the configurations ii or iii happens. Maximal memory used by HMM
is proportional to the maximum length of continuous sequence of configurations i. We will
call such a sequence of configurations a run.

Note that the algorithm is actually adding logarithmic probabilities, as mentioned in
Viterbi algorithm description on page 10. The probabilities will be denoted λi(j) = log γi(j)
as before. The recurrence used in the Viterbi algorithm (line 7 in algorithm in Figure
2.4) implies that the configuration i occurs when λi(0) + log (1− t) ≥ λi(1) + log t and
λi(1) + log (1− t) ≥ λi(0) + log t, thus when the difference of λi(0) − λi(1) lies between
log t − log (1− t) and log (1− t) − log t. Configuration ii occurs, when λi(0) − λi(1) >
log (1− t)− log t, configuration iii when λi(0)− λi(1) < log t− log (1− t).

We will be interested in the value of λi(0) − λi(1) during one run. The value will be
initially log (1− t)− log t± (log (1− e)− log e) for configuration ii and log t− log (1− t)±
(log (1− e) − log e for configuration iii. Then, each step it will be changed by log e −
log (1− e) in either direction, depending on the input symbol Xi. We can define an integer

random variable Y = λi(0)−λi(1)
log (1−e)−log e

−(log t− log (1− t)), that will correspond to the value of

35
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configuration i:

A

B

A

B

A

B

A

B

configuration ii:

configuration iii: configuration iv:

(b)(a)

BA

0: e

1: 1−e

0: 1−e

1: e

t

1−t

1−t

t

Figure 4.1: (a) Symmetric two-state HMM. (b) Possible back pointer configurations for
two state HMM.

λi(0)− λi(1). X will be changed by +1 or −1 each step, until leaving the interval (0, K),

where K =
⌈
2 log (1−t)−log t

log (1−e)−log e

⌉
.

First, we consider the input sequence X to be a sequence of uniform, independent and
identically distributed binary random variables. In this case, the sequence of values of Y
will describe a random walk on integers, a well understood problem. This random walk
starts at value +1 and ends by reaching either zero or K. In case that zero is reached,
we have a coalescence point in configuration iii and Y is initialized to value +1, which
corresponds to initial value log t− log (1− t) + (log (1− e)− log e) for λi(0)− λi(1), or to
−1, which causes the following configuration to be a new type iii coalescence point and
corresponds to the initial value log t − log (1− t) − (log (1− e) − log e). The choice of
initialization value depends on the symbol Xi of the input sequence. In the case, where the
random walk is ended by reaching K, the situation is symmetric, with the random variable
Y ′ = −Y .

We can now apply a classical result from the theory of random walks.

Theorem 11 Given 0 ≤ z ≤ a and a, z ∈ N, the expected time before a random walk on
integers that begins in z leaves interval (0, a) is z(a− z).

Proof. See [6, ch.14.3]
We solve our problem by substituting a = K and z = 1.

Corollary 1 Assuming the input sequence is uniformly i.i.d., the expected length of a run
of a symmetrical two-state HMM is K − 1.

Therefore the larger is K, the more memory is required to decode the HMM. The worst
case is achieved as e approaches 0.5. In such case, the two states are indistinguishable, as
in the example used to prove theorem 9. Using the theory of random walks, we can also
characterize the distribution of length of runs.

Theorem 12 Let W be a random variable that realizes a random walk on integers, let p
be the probability of changing W by +1 and 1 − p the probability of changing W by −1.
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The probability of Wz,n, the event that the random walk beginning at z and never reaching
K reaches 0 in n steps, is

Pr(Wz,n) = a−12n+1p(n−z)/2(1− p)(n+z)/2
∑

0<v<a/2

cosn−1 πv

a
sin

πv

a
sin

πzv

a
(4.1)

for n− z even and n > 1, Wz,n = 0 otherwise.

Proof. See [6, ch.14.5])

Lemma 1 Let R` be the event that the length of a run of symmetrical two-state HMM is
either 2`+1 or 2`+2. Then, assuming that the input sequence is uniformly i.i.d., following
holds for some constants b, c > 0:

b · cos2` π

K
≤ Pr(R`) ≤ c · cos2` π

K
(4.2)

Proof. In the case K is odd, the walk can either reach 0 in odd number of steps or K in
even number of steps. Substituting a = K, z = 1 ,p = 1/2 to (4.1) yields the probability
Pr(W1,n) of the random walk on interval (0, K) beginning at 1 and first ending at 0 in
2` + 1 steps.

Pr(W1,2`+1) =
2

K

∑
0<v<K/2

cos2` πv

K
sin2 πv

K
(4.3)

As p = 1/2, the walk ending in K is symmetric of even length and the probability of it is
equal to the probability Pr(WK−1,2`+2), of a walk beginning in K − 1 and first ending in 0.

Pr(WK−1,2`+2) =
2

K

∑
0<v<K/2

cos2`+1 πv

K
sin

πv

K
sin

πv(K − 1)

K
(4.4)

The probability R` will therefore be

Pr(R`) = Pr(W1,2`+1) + Pr(WK−1,2`+2)

=
2

K

∑
0<v<K/2

cos2` πv

K
sin2 πv

K

(
1 +

sin πv(K−1)
K

sin πv
K

cos
πv

K

)
(4.5)

=
2

K

∑
0<v<K/2

cos2` πv

K
sin2 πv

K

(
1 + (−1)v+1 cos

πv

K

)
There are at most K/2 terms in the sum, and all can be bounded by 2 cos2` πv

K
from above.

To get a lower bound, we can use the first term of the sum.

2

K
sin2 π

K

(
1 + cos

π

K

)
cos2` π

K
≤ Pr(R`) ≤ 2 cos2` π

K
(4.6)
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The case, where K is even is similar. The walk will reach either 0 or K in odd number
of steps, therefore

Pr(R`) = Pr(W1,2`+1) + Pr(WK−1,2`+1)

=
2

K

∑
0<v<K/2

cos2` πv

K
sin2 πv

K

(
1 + (−1)v+1

)
(4.7)

=
4

K

∑
0<v<K/4, v odd

cos2` πv

K
sin2 πv

K

At most K/4 summands can again be bounded from above by cos2` πv
K

and from below by
using the first term of the sum. Therefore, for K odd

4

K
sin2 π

K
cos2` π

K
≤ Pr(R`) ≤ cos2` π

K
(4.8)

2

The previous lemma characterizes the length distribution of a single run. However, to
analyze memory requirements for a sequence of length n, we need to consider maximum
over several runs whose total length is n. Similar problem was studied for the runs of heads
in a sequence of n coin tosses [11, 9]. For coin tosses, the length distribution of runs is
geometric, while in our case the runs are only bounded by geometrically decaying functions.
Still, we can prove that the expected length of the longest run grows logarithmically with
the length of the sequence, as is the case for coin tosses.

Lemma 2 Let X1, X2, . . . be a sequence of i.i.d. random variables drawn from a geometri-
cally decaying distribution over positive integers, i.e. there exist constants a, b, c, a ∈ (0, 1),
0 < b ≤ c, such that for all integers k ≥ 1, bak ≤ Pr(Xi > k) ≤ cak.

Let N be the largest index such that
∑N

i=1 Xi ≤ n, and let Yn be max{X1, X2, . . . , XN , n−∑N
i=1 Xi}. Then

E[Yn] = log1/a n + o(log n) (4.9)

Proof. Let Zn = maxn
i=1 Xi be the maximum of the first n runs. Clearly, Pr(Zn ≤ k) =

Pr(Xi ≤ k)n. From the premise bak ≤ Pr(Xi > k) ≤ cak we get (1− cak) ≤ Pr(Xn ≤ k) ≤
(1− bak) and thus (1− cak)n ≤ Pr(Zn ≤ k) ≤ (1− bak)n for all integers k ≤ log1/a(c)

Lower bound: We will show that the expected value of Yn is greater than tn = log1/a n−√
ln n for n →∞. If Yn ≤ tn, we need at last n/tn runs to reach the sum n, i.e. N ≥ n/tn−1

(discontinuing the last incomplete run). Therefore

Pr(Yn ≤ tn) ≤ Pr(Z n
tn
−1 ≤ tn) ≤ (1− batn)

n
tn
−1 = (1− batn)a−tnatn ( n

tn
−1) (4.10)

Since limn→∞ atn(n/tn − 1) = ∞ and limx→0(1−bx)1/x = e−b, we get limn→∞ Pr(Yn ≤ tn) =
0.

For the expected value of a random variable holds:
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E[Yn] =
∞∑
i=1

i Pr(Yn = i) ≥
∞∑

i=k

i Pr(Yn = i)

≥
∞∑

i=k

k Pr(Yn = i) = k Pr(Yn > k) = k(1− Pr(Yn ≤ k)) (4.11)

Substituting tn for k we get the desired bound:

E[Yn] ≥ tn(1− Pr(Yn ≤ tn)) (4.12)

Upper bound: Clearly, Yn ≤ Zn and so E[Yn] ≤ E[Zn]. Let Z ′
n be the maximum of n

i.i.d geometric random variables X ′
1, . . . , X

′
n such that Pr(X ′

i ≤ k) = 1− ak.

We will compare E[Zn] to the expected value of variable Z ′
n. Without loss of generality,

c ≥ 1. For any real x ≥ log1/a(c) + 1 we have:

Pr(Zn ≤ x) ≥ (1− cabxc)n

= (1− abxc−log1/a(c))n

≤ (1− ax−log1/a(c)−1)n (4.13)

= Pr(Z ′
n ≤ x− log1/a(c)− 1)

= Pr(Z ′
n + log1/a(c) + 1 ≤ x)

This inequality holds even for x < log1/a(c)+1, since the right hand side is equal to Pr(Z ′
n <

0) and thus 0 in such case. Therefore, E[Zn] ≤ E[Z ′
n + log1/a(c) + 1] = E[Z ′

n] + O(1).

In [19], authors proved that the maximum of n independent random variables with
geometric distribution Pr(X ′

i ≤ k) = 1 − ak (specifically runs of coin tosses, until head
falls) is log1/a(n) + o(log n), which proves the upper bound for E[Zn] and thus E[Yn].

2

We are now prepared to prove the theorem about the expected memory required to
process a uniform i.i.d. sequence using symmetric two-state HMMs.

Theorem 13 Given a uniform i.i.d. sequence of length n over binary alphabet and a
symmetric two-state hidden Markov model M , the expected maximum memory used to
process the sequence using on-line Viterbi algorithm is less than (2K2/π2) ln n, where K =

d2 log(1−t)−log t
log(1−e)−log e

e
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Proof. In the case t < 0.5, we get from lemma 1:

b · cos2` π

K
≤ Pr(R`) ≤ c · cos2` π

K
∞∑
i=`

b · cos2` π

K
≤

∞∑
i=`

Pr(R`) ≤
∞∑
i=`

c · cos2` π

K

b

∞∑
i=`

cos2` π

K
≤ Pr(Xi > 2`) ≤ c

∞∑
i=`

cos2` π

K
(4.14)

b
cos2` π

K

1− cos2 π
K

≤ Pr(Xi > 2`) ≤ c
cos2` π

K

1− cos2 π
K

b′ cos2` π

K
≤ Pr(Xi > 2`) ≤ c′ cos2` π

K

From lemma 2 we get

E[Yn] = log1/cos π
K

n + o(log n) =
1

ln (1/ cos π
K

)
ln n + o(log n) (4.15)

Now, using the MacLaurin expansion of cos and ln as K grows to infinity, we get:

1

ln (1/ cos π
K

)
ln n + o(log n) =

1

− ln (cos π
K

)
ln n + o(log n)

=
1

− ln(1− π2

2K
+ O(π4

K
))

ln n + o(log n)

=
1

π2

2K2 + O(π4

K
)
ln n + o(log n) (4.16)

= (
2K2

π2
+ O(1)) ln n + o(log n)

=
2K2

π2
ln n + o(log n)

The maximum memory grows approximately as (2K2/π2) ln n.

Above, we supposed that t < 0.5. The case where t = 0.5 is the best case example in
theorem 8, the maximum run length will be 0. Let’s suppose t > 0.5. Configuration iv will
extend the run instead of configuration i, which can not happen. The random walk will
start in position 1 and the sequence of values Y will be updated as Yt+1 = −Yt ± 1. This
corresponds to the update of the difference λi+1(0)−λi+1(1) = λi(1)−λi(0)± (log(1−e)−
log e). In the first step, the value Y will be either 0 or −2, thus terminating the random
walk. The maximum run length will be 1.

2
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BA

0: e

1: 1−e

1−u

0: 1−f

1: f

1−t

t

u

(a)

log(1−u)−log(t)log(u)−log(1−u)

log(e) − log(1−f)log(1−e) − log(f)

log(u) − log(1−t)

(b)

Figure 4.2: a) A general two-state model b) Random walk for configuration iii. and
t < u < 0.5

4.2 General models

The situation is similar in the case of general two-state models. We also have four possible
configurations as in the previous case (see Figure 4.1b). We will label the new transition and
emission probabilities as in Figure 4.2a. Configuration i. happens while log u− log(1− t) <
λi(0) − λi(1) < log(1 − u) − log t, configurations ii. and iii. when λi(0) − λi(1) is outside
of this interval. The value λi(0)− λi(1) updates by log e− log(1− f) or log(1− e)− log f .
These numbers are no longer equal in absolute value. The resulting random walk will be
on real numbers, not integers. It will start in the points log(1− t)− log t+log e− log(1−f)
or log(1−t)− log t+log(1−e)− log f in the case the previous run ended with configuration
ii. and log u− log(1− u) + log e− log(1− f) or log u− log(1− u) + log(1− e)− log f in
the case the previous run ended with configuration iii. . We will consider only those model
parameters that do not result in trivial runs of length 0 or 1.

We are not aware of any results that would allow us to analyze such random walks
directly; we will do upper bounds on their run lengths by transforming them to symmetric
two-state models with longer run lengths.

In Theorem 13 we bounded Pr(Xi > 2`), the probability of a run in a symmetrical two-
state model being longer than 2`. This was the key step necessary for proving the expected
maximum to be less than 2K2/π2 ln n + o(log n). Let us now consider Pr(Xi > 2`), the
probability that a non-symmetrical random walk run is longer than 2`. We need to show
that this probability decays geometrically, as required by Lemma 2. Unless log e = log 1− f
and log(1− e) = log f , which is the pathological worst-case situation from Theorem 9, we
will have at least one step of non-zero size. The interval in which the random walk moves
is of constant size, therefore there exists a number d, such that the random walk will leave
the interval if d consecutive steps in the same direction are taken, regardless of the starting
position before the d consecutive steps. We can bound the probability that d consecutive
steps happen in a sequence of n steps using the following theorem:

Theorem 14 Let Rp(h, n) be the probability of a run of h or more consecutive heads
appearing in a sequence of n independent coin tosses, p being the probability of obtaining
head. Then

lim
n→∞

1−Rp(h, n) = βkα
−n−1
k (4.17)
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where αk is the smallest positive root of the function

1− x + (1− p)pkxk+1 = 0

and

βk =
1− pαk

(k + 1− kαk)p

Proof. See [6, pp. 322-325]
Setting p = 1/2, we can therefore reformulate Theorem 13 for general two-state hidden

Markov models:

Theorem 15 Given a uniform i.i.d. sequence of length n over binary alphabet and a two-
state hidden Markov model M , the expected maximum memory used to process the sequence
using on-line Viterbi algorithm is less than O(ln n).

Proof.
Using the previous theorem, we can bound the probability of a run exceeding length `:

Pr(Xi > 2`) ≤ βd

(
1

αd

)`+1

(4.18)

then using Lemma 2 with only the upper bound, we get the upper bound for expected
maximum run length1:

E[Yn] = logαd
n + o(log n) =

1

ln αd

ln n + o(log n) (4.19)

2

This theorem is applicable also in the case where the input sequence is arbitrary
Bernoulli sequence, or is generated by a HMM which is capable of non-zero steps in the
same direction in both states. We simply take the lower of the two probabilities for p and
the upper bound will still hold.

1Trying to determine the constants as in the symmetric case is not sensible due to the extremely
generous upper bound
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Multi-state hidden Markov models

Analysis technique used in previous chapter to show the expected maximum memory used
can not be easily extended to HMMs with more than two states. A coalescence point
occurrence clears the memory in a two-state HMM but can leave a non-trivial back-pointer
tree in HMMs with more states. The length of the next run depends on the tree left in
memory, the consecutive runs are therefore no longer independent.

For multi-state HMMs, we did not succeed in proving results similar to the two-state
HMMs. Experimental results however suggest that similar bounds could hold.

We have evaluated the performance of our algorithm on the problem of gene finding (see
Section 2.2). The HMM used had 256 states of at most 4-th order. A simplified structure
of the HMM is shown in Figure 5.1. The HMM was trained on RefSeq annotations of
human chromosomes 1 and 22.

We have tested the algorithm on 20 MB long sequences: regions from the human
genome, simulated sequences generated by the HMM, and i.i.d. sequences. Regions of the
human genome were chosen from hg181 so that they do not contain sequencing gaps. Se-
quencing gaps, regions that have not been yet sequenced, almost always cause a coalescence
point and the results would be biased if they were contained in the data. The distribution
for the i.i.d. sequences mirrors the distribution of bases in human chromosome 1.

An example graph for current table length is in Figure 5.2a. Each spike in the graph
corresponds to one run. The results for 20 MB sequences are shown in Figure 5.2b. The
average maximum length of the table over several samples appears to grow faster than
logarithmically with the length of the sequence at least for human genome and for data
generated by HMM. We tried processing 50 longer 100 MB sequences generated by HMM,
as there exist no continuous 100 MB sequences in hg18. The results are still unclear. The
average table length divided by its logarithm increases with sequence length in Figure 5.4b,
while the average table length divided by its square logarithm decreases after reaching
maximum in Figure 5.4c. This suggests that the space complexity should be between
Θ(log(n)) and Θ(log2(n)) and therefore, poly-logarithmic.

We have seen in two-state symmetric HMMs in the previous chapter, that the expected

1Human genome, assembly 18: http://hgdownload.cse.ucsc.edu/goldenPath/hg18/
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Figure 5.1: A simplified HMM for gene finding

run length increases with the difference between emission probabilities decreasing. The
situation is somewhat similar in this case, there are three copies of the state for introns
that have the same emission probabilities and the same self-transition probability. The
more than logarithmic growth may therefore be an artifact that would disappear with
longer sequences.

Nonetheless, we were able to process whole chromosomes at once without significant
memory consumption. The maximum table length did not exceed 222, 000 on any chro-
mosome. This is significant improvement over the Viterbi algorithm, which would keep
the whole chromosome in memory. Indeed, the decoding of, for instance, the first human
chromosome of 245 million bases using our model and the original Viterbi algorithm, would
be impossible on common computational platforms at present time. Furthermore, as can
be seen in Figure 5.2a, most of the time the program keeps only relatively short table; the
average length on the 20 MB human genome segments is only 11, 000. The low average
length can be of significant advantage if multiple processes share the same memory.

We have proved in Section 3.1 that the asymptotic running times of our algorithm and
the Viterbi algorithm are equivalent. For gene finding, we experienced only 5% slowdown
compared to the original Viterbi algorithm, before the original algorithm allocated all
available memory (see Figure 5.3). This is to be expected for large models, because the
cost of the tree maintenance in O(m) time is significantly lower than the calculation of
new values γ and δ in O(|E|) time. The algorithm will therefore likely outperform any
other known correct algorithms capable of decoding whole chromosomes or long sequences
at once, given similar implementation.
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Figure 5.2: Memory requirements of a gene finding HMM. a) Actual length of table
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Conclusion

In this thesis, we introduced new on-line Viterbi algorithm for hidden Markov model de-
coding. Our algorithm is based on efficient detection of coalescence points in the tree
representing the state-paths under consideration of the dynamic programming algorithm.
The algorithm requires variable space that depends on the HMM and on the local prop-
erties of the analyzed sequence. For two-state symmetric HMMs, we have shown that the
expected maximum memory used for analysis of a sequence of length n is approximately
(2K2/π2) ln n, where K depends on the HMM. We implemented our algorithm and ex-
periments on both simulated and real data and the results suggest that the asymptotic
bound Θ(m ln n) could also be extended to multi-state HMMs, and in fact, most of the
time throughout the execution of the algorithm, much less memory is used. We have also
shown, that no algorithm can have better worst case space complexity than our algorithm
if it must always find the correct solution.

Our on-line Viterbi algorithm has multiple advantages over the previously known al-
gorithms. It always returns the most probable state path, but does not need to read the
whole sequence in order to start decoding. We demonstrated our algorithm on the problem
of gene finding, and we found that our algorithm outperforms other decoding algorithms in
this setting. The DNA sequences used as inputs to algorithms used for gene finding have
tens of millions of symbols. Given a HMM with over 250 states, such as the one we used
and similar to models used in real gene finders [2], we would need tens or even hundreds
of gigabytes of memory to process such sequence using the Viterbi algorithm. Various
modifications of the original algorithm can process the sequence with lower memory re-
quirements, but add at least two-fold slowdown, which can be a considerable factor as the
decoding of a sequence of such length takes hours on present computational platforms.
Our algorithm tackles this problem flawlessly with only negligible slowdown compared to
the Viterbi algorithm. Unlike the rest of the algorithms that always return correct solu-
tion, our algorithm can be used to process continuous streams of data, and could lead to
improvement in such applications.
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Future work and open problems

A more thoughtful analysis of multi-state HMMs could perhaps allow us to determine or
at least estimate expected maximum memory used for concrete HMMs. Perhaps we could
also be able to characterize the states that are likely to serve as coalescence points. This
could provide yet another level of useful information about the problem being modeled.



Bibliography

[1] D. B. Rubin A. P. Dempster, N. M. Laird. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodolog-
ical), 39(1):1–38, 1977.

[2] Brona Brejova, Daniel G. Brown, Ming Li, and Tomas Vinar. ExonHunter: a com-
prehensive approach to gene finding. Bioinformatics, 21(S1):i57–65, 2005.

[3] Brona Brejova, Daniel G. Brown, and Tomas Vinar. The most probable labeling
problem in HMMs and its application to bioinformatics. Journal of Computer and
System Sciences, 2007. Early version in WABI 2004. Accepted November 2006.

[4] S. Karlin C. Burge. Prediction of complete gene structures in human genomic dna.
Journal of Molecular Biology, (268):78–94, 1997.

[5] Piero Fariselli, Pier Luigi Martelli, and Rita Casadio. The posterior-viterbi: a new
decoding algorithm for hidden markov models. 2005.

[6] W. Feller. An Introduction to Probability Theory and Its Applications, Third Edition,
Volume 1. Wiley, 1968.

[7] G. David Forney Jr. The Viterbi algorithm. Proceedings of the IEEE, 61(3):268–278,
1973.

[8] G. David Forney Jr. Convolutional codes ii: Maximum likelihood decoding. Informa-
tion and control, 25:222–266, 1974.

[9] L. Gordon, M. F. Schilling, and M. S. Waterman. An extreme value theory for long
head runs. Probability Theory and Related Fields, 72:279–287, 1986.

[10] J. A. Grice, R. Hughey, and D. Speck. Reduced space sequence alignment. Computer
Applications in the Biosciences, 13(1):45–53, 1997.

[11] L. J. Guibas and A. M. Odlyzko. Long repetitive patterns in random sequences.
Probability Theory and Related Fields, 53:241–262, 1980.

[12] F. Hemmati and Jr. Costello, D. Truncation error probability in Viterbi decoding.
IEEE Transactions on Communications, 25(5):530–532, 1977.

49



50 BIBLIOGRAPHY

[13] A. Krogh, B. Larsson, G. von Heijne, and E. L. Sonnhammer. Predicting trans-
membrane protein topology with a hidden Markov model: application to complete
genomes. Journal of Molecular Biology, 305(3):567–570, 2001.

[14] J. A. Eagon L. E. Baum. An inequality with applications to statistical estimation for
probabilistic functions of markov processes and to a model of ecology. Bulletin of the
American Mathematical Society, 73:360–363, 1967.

[15] D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, 2003.

[16] I.M. Onyszchuk. Truncation length for Viterbi decoding. IEEE Transactions on
Communications, 39(7):1023–1026, 1991.

[17] C. B. Shung R. Cypher. Generalized trace-back techniques for survivor memory man-
agement in viterbi algorithm. Journal of VLSI Signal Processing, 5:85–94, 1993.

[18] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[19] Eugene F. Schuster. On overwhelming numerical evidence in the settling of Kin-
ney’s waiting-time conjecture. SIAM Journal on Scientific and Statistical Computing,
6(4):977–982, 1985.

[20] Andrew J. Viterbi. Error bounds for convolutional codes and asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–269, 1967.

[21] Andrew J. Viterbi. Convolutional codes and their performance in communication
systems. IEEE Transactions on communication technology, COM-19:751–772, 1971.



Abstrakt

Skryté Markovovské modely sú pravdepodobnostné modely ktoré sú úspešne používané
pri riešení problémov týkajúcich sa napríklad bioinformatiky, samoopravujúcich kódov a
rozpoznávania reči. V mnohých z týchto aplikácií sa používa Viterbiho algoritmus na
hľadanie najpravdepodobnejšej anotácie sekvencií, ktoré môžu byť veľmi dlhé. Známe
algoritmy buď používajú Ω(n) pamäte a vždy nájdu najpravdepodobnejšiu anotáciu, alebo
potrebujú v najhoršom prípade iba o(n) pamäte, ale negarantujú správny výsledok.
V práci zavádzame modifikáciu Viterbiho algoritmu, ktorá vždy nájde správny výsledok

a použije na to v najhoršom prípade O(1) a v najlepšom prípade O(n) pamäte. Pamäťová
náročnosť závisí na vstupnom modeli a spracúvanej sekvencii. Pre jednoduchú triedu mod-
elov ukážeme, že očakávaná pamäť potrebná na spracovanie sekvencie dĺžky n je O(log(n)).
Ďalej predložíme experimentálne výsledky z oblasti hľadania génov v bioinformatike, ktoré
naznačujú podobnú očakávanú pamäťovú zložitosť.

Kµúèové slová: skryté Markovovské modely, Viterbiho algoritmus, teória informácií,
hľadanie génov
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