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Abstrakt

Táto práca sa venuje výpočtovým modelom s radou, pomerne novému mod-

elu určenému na meranie obtiažnosti online problémov. Najprv poskytujeme

prehľad obvyklých metód používaných na analýzu poradnej zložitosti online

problémov. V ďalšej časti ukazujeme nový horný aj dolný odhad na poradnú

zložitosť problému alokácie disjunktných ciest pre takmer optimálne rieše-

nia. V poslednej časti práce zavádzame nový model offline výpočtov s radou

a poskytujeme základy pre ďalší výskum v tejto oblasti.

Kľúčové slová: online problém, poradná zložitosť, kompetitívna analýza,

alokácia disjunktných ciest, subset sum
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Abstract

This work focuses on computation with advice, a relatively new model for

measuring the complexity of online problems. First, we give an overview of

common methods of analysis of the advice complexity of online problems.

Then, we show new upper and lower bounds on the advice complexity of

near-optimal solutions of the disjoint path allocation problem. Finally, we

introduce a model of offline computation with advice and lay out a basic

framework for future research in this area.

Key words: online problem, advice complexity, competitive analysis,

disjoint path allocation, subset sum
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Introduction

Online problems often appear in real-world application both inside and out-

side of the field of computer science. Until recently, the standard way of

estimating the difficulty of online problems was competitive analysis.

A new model for analyzing online problems has been introduced in the

last decade, which measures the amount of additional information required

for an online algorithm to perform better. This model is referred to as the

model of advice complexity. This is the model this thesis focuses on.

In the first chapter we give an informal introduction to the world of online

computation and explain the concept of online computation with advice.

The second chapter summarizes techniques which make it possible to

analyze online problems from the point of view of advice complexity in a

standard way. We also demonstrate how these techniques have been applied

in recent results for multiple online problems.

In the third chapter we focus on the problem of disjoint path allocation.

We summarize latest findings concerning this problem and complement them

with our own improvements.

Finally, in the last chapter we extend the model of computation with

advice to offline problems. We define a new formal computational model of

Turing machines with advice and offer initial crude results about this model

as a basis for future research in this area.
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Chapter 1

Prerequisites

This chapter introduces the basic concepts studied in this thesis. After ex-

plaining the motivation behind these concepts, we proceed to define them in

a formal manner.

1.1 Online Problems

One of the countless ways to categorize algorithmic problems is into offline

and online problems. Offline problems are those where the algorighm can

access the whole input instance before yielding the output. On the other

hand, the instance of an online problem is revealed to the algorithm in smaller

pieces and after each piece a partial solution has to be produced. This partial

solution cannot be changed later.

A slightly different way of looking at online algorithms is that the algo-

rithm waits for an input query, processes it and outputs an answer to this

query immediately. Then it waits for another query and repeats the process

until there is nothing more to do.

Solving a problem online is obviously more difficult than solving the same

instance knowing the whole input at once. For many problems it is even

impossible to compute the optimal partial solutions without the knowledge

of the rest of the input sequence. Therefore we define a competitive ratio of
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an algorithm, which is the quotient of the cost of the solution produced by the

online algorithm and the cost of the optimal solution. An optimal solution

is one produced by an optimal offline algorithm. Since the competitive ratio

can depend on the input instance, we study the worst-case competitive ratio

an algorithm achieves.

We may consider randomized online algorithms as well. In this case we

examine the expected competitive ratio.

Let us describe a few examples of simple online problems to give a better

idea of what they are about. A very simple online problem is ski rental.

Suppose we are going to take an unknown number of ski trips and we do not

own a pair of skis. Renting a pair of skis for a single trip costs 1, buying one

costs s. The input consists of a sequence of queries “take a ski trip” and after

each query an answer is expected that is either “rent”, “buy” or “use skis

already bought”. In [Kar92] it is proved that to minimize the competitive

ratio the algorithm needs to rent for the first s − 1 rounds and then buy a

pair of skis; this way, the competitive ratio is 2s−1
s
≈ 2.

Another classic online problem is the paging problem. Assume a two-level

memory divided into uniform, fixed-size pages. Let k be the number of pages

that can fit within the fast memory. The input consists of n queries, each

specifying a page we want to access. This page needs to be loaded into the

fast memory thus replacing a page called a victim (unless it is there already).

The goal is to minimize the number of page faults, i.e. the number of times

we need to load a page from the slow memory into the fast level.

In [ST85] the authors show that for any deterministic online algorithm

solving the paging problem it is possible to construct an instance using k+ 1

pages where the online algorithm will produce a page fault on each request

by always choosing the page that is not in the fast memory. However, an

offline algorithm can decrease the number of page faults by at least a factor

of k, therefore the competitive ratio of any online paging algorithm is at least

k.

In addition, in [ACN96] the authors describe a randomized online algo-

3



rithm for the paging problem whose competitive ratio is Hk.

1.2 Advice Complexity

In the previous section we showed that there are problems which cannot be

solved optimally by a deterministic online algorithm. This means that having

access to the whole of the input sequence can help the algorithm to provide

better partial results. However, sometimes it may not be necessary to access

the whole input sequence in order to compute the optimal solution, in some

cases a significantly smaller amount of information is required.

That is why a computational model of online algorithms with advice has

been introduced in [DKP08]. In this model, the online algorithm is assisted

by an oracle with access to the entire input sequence. The oracle has unlim-

ited computational power and provides the online algorithm with information

about the input sequence that it requires. We define the advice complexity

of an online algorithm as the minimal number of bits it needs to read from

the oracle in order to solve the problem optimally. The advice complexity of

an online problem is then defined as the lowest advice complexity of online

algorithms solving it.

There have been multiple formal definitions of this model with various

drawbacks. [DKP08] contains a definition in which the online algorithm

has access to a finite binary advice tape. That means, however, that ad-

ditional information can be encoded into the length of the advice tape. In

[Eme+09] the authors define a slightly different model where the online al-

gorithm receives the same amount of information in each round. This makes

it impossible to use a sublinear amount of advice.

The model used in this thesis has been defined in [Böc+09]; this model

uses an infinite advice tape and we measure the number of bits the algorithm

accesses. The following sequence of events can therefore be imagined: before

we start feeding an online algorithm A with the input, first we give the entire

input instance to an oracle which produces a binary string ϕ. This binary
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string is then written at the beginning of an infinite advice tape which can

be accessed by A throughout the whole computation.

This model of algorithms with advice suggests a similarity with the model

of randomized algorithms. Common definitions of randomized algorithms use

a tape filled with random characters from a certain alphabet, often simply

with random bits. Our model of algorithms with advice can therefore be

looked at as a special case of randomized algorithms, in which the oracle fills

the random tape with the string which leads to the best outcome.

To demonstrate the power of advice, we show the amount of advice re-

quired to solve the two aforementioned online problems optimally. The ski

rental problem is trivial to solve using a single bit of advice – this bit tells

the algorithm whether there will be at least s queries. The online algorithm

reads this before answering the first query and it knows immediately whether

to buy a pair of skis or just rent them on each trip.

The paging problem is slightly more complex to solve optimally using

advice. Following the proof in [DKP09], this can be done using n bits of

advice. The oracle calculates one optimal solution to the input instance and

assigns a single bit to each request. This bit indicates whether the page

will be accessed again before it is replaced by another one in the optimal

solution, such pages are called active; if the page will not be accessed again,

it is passive. The online algorithm then just picks a passive page as the

victim on each page fault.

Thus far we only covered the amount of advice required to obtain the

optimal solution using an online algorithm. However, it is also useful to

examine the amount of advice required to achieve a certain competitive ratio

and the tradeoff between these two. In this thesis we will study this aspect

as well.

Another possible area of research is the amount of advice required to solve

a partially online problem. This is a special case of an online problem where

only a part of the input instance is served in pieces and at some point the

whole rest of the input is served in a single piece.
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Taking the previous notion one step further, it also makes sense to apply

the concept of advice to offline problems. In that case, we no longer study the

competitive ratio. Instead, we can use advice to help an algorithm achieve

better efficiency, mainly in terms of its time complexity, especially for known

hard problems, such as NP -complete problems. This direction of research is

explored further in the last chapter of this thesis.

1.3 Adversaries

When proving lower bounds on the competitiveness of an online problem, it

is often useful to model instances on which an online algorithm computes the

worst solution. The concept of an adversary, denoted by Adv, does precisely

that.

A computation of an online algorithm can be thought of as a game in

which there are two players: the online algorithm, trying to compute the

best solution possible, and an adversary which tries to coerce the algorithm

into making as bad decisions as possible by using information about the

decisions of the algorithm to construct an instance that is as difficult for the

algorithm to solve as possible.

For deterministic online algorithms, informally, the two entities take turns

– the adversary submits the first part of the input and the online algorithm

provides its first result. Then, the adversary can decide how best to construct

the next part of the input instance in order to keep the cost of the solution

as far from the optimum as possible.

More formally, we define Adv as an offline algorithm with knowledge of

how an algorithm A works in the sense that Adv is able to simulate A, making

it possible to anticipate every reaction A makes. The output of Adv is then

an instance which is used as the input for A.

If we can show that given an online problem P , there is an adversary

Adv such that for every algorithm A, Adv is able to construct an instance

for which A fails to be c-competitive, that means there is no c-competitive

6



algorithm for P .

For randomized online algorithms, there are multiple definitions of adver-

saries [Ben+94]: the oblivious adversary, the adaptive online adversary and

the adaptive offline adversary. The oblivious adversary works in the same

way as described for offline algorithms – it can only simulate A without any

information about the random data based on which A may make decisions.

In the adaptive online model, A and Adv play the game described earlier

and Adv creates the input for A in an online fashion. In other words, Adv

knows the results of the previous decisions of A when constructing the next

piece of input. Finally, the offline adaptive adversary is omniscient – it has

full information about the source of randomness based on which A makes its

decisions.

When dealing with algorithms with advice, we need to consider whether

to allow an adversary to access the advice or not. In this thesis, we follow

the model from [Kom12], which gives Adv full information about the advice

string corresponding to an instance it creates.

The rationale is that we usually show the existence of an adversary for

online algorithms using at most b(n) bits of advice as a way of proving a

lower bound of b(n) bits on the advice complexity. This can be done by

showing that for each pair (A,O), where A is an online algorithm and O is

an oracle which computes the advice string for A, there is an adversary Adv

which forces A to fail some criterion, e.g. optimality, or competitiveness.

We can thus assume when constructing Adv that the advice does not

exceed b(n) bits. Since we do not impose any restrictions on the computa-

tional power of A, Adv, or O, Adv can easily simulate the algorithm A it

is working against with all of the 2b(n) possible advice strings and find out

which one leads to the best outcome. We can then simply assume that Adv

knows which advice string is the best one for a given instance.

The previous idea suggests a slightly different approach. By choosing

a fixed advice string ϕ, an online algorithm becomes fully deterministic.

Thus an algorithm with b bits of advice can be viewed as a collection of 2b

7



deterministic algorithms. Showing that for any collection of 2b deterministic

algorithms, there is an adversary which forces each of them to compute a

bad output is therefore equivalent to showing that for each algorithm with b

bits of advice, there is such an adversary.

1.4 Formal Definitions and Notations

Having described the basic concepts in informal terms, let us now proceed

to formally define the model we are working with.

Definition 1.1 (Online Algorithm). Let I = (x1, . . . , xn) be an input se-

quence of an online problem. An online algorithm A computes the output

sequence A(I) = (y1, . . . , yn) such that yi = f(x1, . . . , xi) for some function

f . We denote the cost of the solution computed by A as C(A(I)).

An optimal solution for I will be denoted by Opt(I). By optimal solution

we mean one which can be computed by an offline algorithm with unbounded

computational power, such that, in the case of maximization problems, it

maximizes the cost. We will use E[X] to denote the expected value of a

random variable X.

Definition 1.2 (Competitive Ratio). Consider an optimization problem in

which the goal is to maximize the cost of a solution. An algorithm A is c-

competitive if there is a constant α such that for each instance I we have

C(A(I)) ≥ C(Opt(I))/c−α. If α = 0, we say that A is strictly c-competitive.

The competitive ratio of A is the smallest c such that A is c-competitive.

For minimization problems, competitiveness is defined analogously, only

the inequality changes to C(A(I)) ≤ c · C(Opt(I)) + α.

The previous definition can easily be extended to randomized algorithms.

For each instance I we require E[C(A(I))] ≥ C(Opt(I))/c− α. We say that

the expected competitive ratio of A is the smallest value of c satisfying the

above inequality.

We shall now extend the above definitions to include advice.

8



Definition 1.3 (Online Algorithm with Advice). Consider an input sequence

I = (x1, . . . , xn) and an infinite binary string ϕ. An online algorithm A with

advice computes the sequence Aϕ(I) = (y1, . . . , yn) if yi = f(ϕ, x1, . . . , xi).

We call ϕ the advice string.

As stated earlier, the computation of A can be interpreted as a series

of turns, where in the i-th turn the algorithm reads xi and yields yi using

all the information read so far and possibly some additional bits from the

advice string ϕ. It is worth noting that the definition does not restrict the

computational power of A.

Definition 1.4 (Advice Complexity). The advice complexity of an algorithm

A is a function s such that s(n) is the smallest value such that for each

input sequence of size n there is an advice string ϕ such that the algorithm

A examines at most the first s(n) bits of ϕ. The advice complexity of an

online problem is the smallest advice complexity of an online algorithm which

computes an optimal solution for each instance.

Definition 1.5. An online algorithm with advice A is c-competitive if there

is a constant α such that for every n ∈ N and for every instance I of size at

most n there is an advice string ϕ for which C(Aϕ(I)) ≥ C(Opt(I))/c − α
holds.

Throughout this thesis we use log x to denote the binary logarithm of x.

9



Chapter 2

Known Results and Related

Work

The aim of this chapter is to provide an overview of techniques commonly

used for analysis of the advice complexity of online problems. After describ-

ing the most successful techniques, we demonstrate some of their applications

on the online versions of graph coloring and the problem of finding the max-

imum clique in a graph.

2.1 Common Analysis and Proof Techniques

Despite the fact that the computational model of online algorithms with

advice has been only concieved a few years ago it is already possible to

notice the emergence of common techniques to analyze online problems and

find lower and upper bounds for their advice complexity.

To find an upper bound the most straightforward method is, same as with

other complexity metrics, to find an algorithm which solves the problem and

then determine its advice complexity. Any optimal algorithm cannot then

have any worse advice complexity. While this method is obvious, it is often

the most demonstrative one.

Proving lower bounds is usually significantly more difficult. Instead of

10



showing an algorithm which does not need more than a certain amount of

advice, to prove that b is a lower bound, we need to show that any algorithm

with a certain guarantee on the competitive ratio cannot achieve this without

reading at least b bits.

2.1.1 Common Prefix

Probably the most basic approach to finding the lower bound on the advice

complexity of a particular online problem is to find a set of instances with

the following properties:

(i) for a given non-negative integer k the prefixes (x
(i)
1 , . . . , x

(i)
k ) of instances

I(i) are equal, i.e., for two instances I(i) 6= I(j), for each l such that

1 ≤ l ≤ k, the members x(i)l and x
(j)
l are equal

(ii) for each pair of instances I(i) 6= I(j) there are no optimal solutions

Opt(I(i)) = (y
(i)
1 , . . . , y

(i)
ni ), Opt(I(j)) = (y

(j)
1 , . . . , y

(j)
nj ) such that

(y
(i)
1 , . . . , y

(i)
k ) = (y

(j)
1 , . . . , y

(j)
k )

In other words, we find a set of instances such that the algorithm cannot

possibly distinguish the prefixes of these instances, however, for each instance

a unique solution needs to be yielded in the prefix already. To achieve this,

the advice string must necessarily be used. If the size of this set of instances

is m, at least logm advice bits need to be accessed which gives a lower bound

on the advice complexity of the problem.

This technique is used in various proofs in [FKS12] and in [Kom12] to

prove a lower bound on the advice complexity of disjoint path allocation.

It is possible to generalize this technique to show lower bounds not only on

the advice complexity of an optimal solution, but also to show lower bounds

for c-competitive algorithms for a given constant c.

In this case, it is useful to look at an online algorithm with b bits of advice

as a collection of 2b deterministic online algorithms with different strategies.

11



If the problem in question has the property that a strategy (sequence of de-

cisions on the common prefix) leading to an optimal solution for a particular

instance I also leads to a competitive solution for a set of similar instances,

we can estimate an upper bound on the number of such similar instances,

let us denote this by s. A lower bound on the number of required strategies

is then obtained as m/s, which means that log m
s

is a lower bound on the

number of advice bits.

2.1.2 Reduction to String Guessing

In [Böc+12], the authors use reductions to a simpler problem that is easier

to analyze as a method to prove lower bounds. Specifically, they picked the

string guessing problem in two variants.

Definition 2.1 (String Guessing with Known History). The string guessing

problem with known history over an alphabet Σ of size q ≥ 2 (denoted as q-

SGKH) is defined as follows. The input instance I = (n, d1, . . . , dn) consists

of an integer n specifying the length of the instance and a sequence of n

characters, where di ∈ Σ, 1 ≤ i ≤ n. Let A be an online algorithm that solves

q-SGKH, then A(I) = (y1, . . . , yn, ), where yi ∈ Σ. We define the cost of a

solution as the Hamming distance between the sequence (y1, . . . , yn) and the

sequence (d1, . . . , dn), i.e. the number of wrongly guessed characters.

Definition 2.2 (String Guessing with Unknown History). The string guess-

ing problem with unknown history over an alphabet Σ of size q ≥ 2 (denoted

as q-SGUH) is defined as follows. The input instance I = (n, ?2, . . . , ?n, d)

consists of an integer n specifying the length of the instance, n − 1 queries

without additional information and a string d = d1d2 . . . dn, where di ∈
Σ, 1 ≤ i ≤ n. Let A be an online algorithm that solves q-SGUH, then

A(I) = (y1, . . . , yn, ), where yi ∈ Σ. We define the cost of a solution as

the Hamming distance between the sequence (y1, . . . , yn) and the sequence

(d1, . . . , dn).

12



Both q-SGKH and q-SGUH consist of n+ 1 queries where for the first n

queries the algorithm is expected to guess a single character of the instance;

for the last query no meaningful response is expected, its purpose is only to

reveal the input string to allow an offline algorithm to guess the whole string

correctly. The only difference between the two variants is that in q-SGKH

it is revealed whether the algorithm guessed correctly after each guess and

in q-SGUH this is revealed in the last turn.

For the sake of simplicity, we may sometimes speak about the input string

d = d1d2 . . . dn instead of the corresponding input instance I = (n, d1, . . . , dn)

in the case of q-SGKH or I = (n, ?2, . . . , ?n, d) in the case of q-SGUH.

It is easy to observe the following relationship between bounds for the

two variants of the string guessing problem.

Observation 2.3. Any upper bound on the advice complexity of q-SGUH

is also an upper bound on the advice complexity of q-SGKH – any algorithm

that solves q-SGUH can be used to solve q-SGKH as well, simply ignoring

the characters provided in each query. Similarly, any lower bound for q-

SGKH is also a lower bound for q-SGUH.

With this in mind, bounds on the advice necessary to achieve optimality

for both veriants have been shown.

Theorem 2.4 ([Böc+12]). The advice complexity of q-SGUH is at most

dn log qe.

Proof. We prove this theorem by describing an algorithm A using dn log qe
bits of advice which solves both q-SGKH and q-SGUH.

The total number of strings of length n is qn. These can be sorted in a

lexicographic order in which each instance has a position. To encode this

position, dn log qe bits are required.

Therefore, after receiving the number n in the first query, A reads the

position m of the string from the advice string and enumerates the first m

strings of length n in lexicographic order until it finds the correct one. Then

it just yields one character from the string per query.
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Theorem 2.5 ([Böc+12]). The advice complexity of q-SGKH is at least

dn log qe.

Proof. We prove this by contradiction. Suppose there is an algorithm A

which solves q-SGKH using m bits of advice, m < dn log qe. The total

number of instances of length n is qn. However, using m bits of advice it

is possible to only encode 2m ≤ 2dn log qe−1 < 2n log q = qn different values.

Therefore, there are two input strings d, d′ where the same m-bit advice

string ϕ leads to the optimal solution.

Consider the first position i at which strings d and d′ differ, i.e., di 6= d′i.

Since A gives the optimal result for the input string d, in the i-th turn it

emits di. However, since up until the i-th turn, the input is the same for

d′ as well and since the advice string is also the same, A is in exactly the

same state in the i-th turn when processing d′ as it is when processing d.

Therefore, for the input string d′, A outputs di in the i-th turn as well. This

contradicts the assumption that A provides an optimal solution for d′.

The following corollary follows from the previous two theorems and ob-

servation 2.3.

Corollary 2.6. The advice complexity of both q-SGKH and q-SGUH is

dn log qe.

The following lower bounds on the number of advice bits required to

guarantee that an algorithm guesses at least a certain amount of characters

right have been established.

Theorem 2.7 ([Böc+12]). To guarantee that an online algorithm A guesses

at least αn characters right for an instance of either q-SGUH or q-SGKH

of length n, where 1
q
≤ α < 1, A needs to access at least(

1 + (1− α) logq

(
1− α
q − 1

)
+ α logq α

)
n log q = (1−Hq(1− α))n log q

advice bits, where Hq is the q-ary entropy function defined as

Hq(p) = p logq(q − 1)− x logq x− (1− x) logq(1− x)
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for any q ∈ N≥2, 0 ≤ p ≤ 1.

Even though thanks to observation 2.3 it would suffice to show this bound

for q-SGKH, it has been proved for each problem independently as both

proofs are interesting in their own right.

The proof for q-SGUH uses the common prefix technique described in

the previous subsection. This is possible thanks to the fact that all instances

of length n are identical except for the very last query.

In this problem, each strategy is in fact one hard-coded string of length

n that an algorithm outputs for each instance. Since the output is allowed

to differ in at most (1− α)n characters, all instances for which a strategy is

acceptable have a Hamming distance of at most (1 − α)n from the guessed

character. The lower bound is then obtained by estimating the number of

strings of length n within the appropriate Hamming distance.

For q-SGKH, however, the common prefix technique is no longer appli-

cable, because an algorithm receives information about the correctness of

its guess after each round. Even though this information does not correlate

with the rest of the instance in any way, an algorithm may make different

decisions based on the correctness of its previous guesses.

The formal proof of this bound is therefore significantly more complicated

than in the q-SGUH problem and involves representing each computation as

a walk through a complete rooted q-ary tree of depth n and estimating the

number of instances in each subtree for which an adversary is able to enforce

at most e errors. This number of instances turns out to be the same as in

the case of q-SGUH, which leads to the same lower bound.

These results have been used in [Böc+12] to establish lower bounds on

the advice required to attain a certain competitive ratio for the online version

of the maximum clique problem and the online set cover problem.

2.1.3 Partition Tree

A generalization of the common prefix technique has been introduced in

[Bar+14]. It is not always possible to isolate enough instances which all have
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the same prefix of sufficient length. However, it may be possible to find a

set of instances such that certain pairs of instances share common prefix of

some length (where the length may differ for each pair) and, again, require

different handling on this prefix.

The technique is formalized by organizing instances into a tree based on

their common prefixes.

Definition 2.8 (Partition Tree). Consider an online problem and a set of

instances I for this problem. We define a partition tree T (I) of I as a

labeled rooted tree with the following properties:

(i) Each vertex v of T (I) is labeled by a non-empty set of instances Iv ⊆ I
and by a natural number kv, such that any two instances I1, I2 ∈ Iv have

a common prefix of length at least kv.

(ii) For each non-leaf vertex v, the instance sets of its children form a

partition of Iv. For each child w of v, kw ≥ kv.

(iii) The instance set of the root of T (I) is I.

These properties ensure that if an algorithm processes two instances from

the instance set of a single vertex v, the algorithm cannot distinguish these

instances based on their prefix of length kv. If we combine this property with

an additional one, that for any two instances belonging to different children

of v, different outputs for the common prefix are required, these outputs are

only determined by the advice, as the following lemma states.

Lemma 2.9 ([Bar+14]). Let I be a set of instances for an online problem

and let T (I) be a partition tree of I. Let v1, v2 be two different vertices of

T (I) such that neither is an ancestor of the other and let v be the lowest

common ancestor of v1 and v2. Let I1 ∈ Iv1 and I2 ∈ Iv2 and let OPT (I)

denote the set of optimal output sequences for any instance I.

If, for all π1 ∈ OPT (I1), π2 ∈ OPT (I2), π1 and π2 differ in the first kv

elements, then any optimal algorithm needs a different advice string for each

of the two instances I1 and I2.
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If we take, for instance, a partition tree satisfying the prerequisite of

lemma 2.9, and apply the lemma to its leaves, we can see that each leaf

requires a unique advice string. This observation leads to the following the-

orem.

Theorem 2.10 ([Bar+14]). Let I be a subset of the set of all instances

of an online problem P and let T (I) be a partition tree of I satisfying the

prerequisite of lemma 2.9.

Then, any optimal online algorithm for P needs to read at least logm bits

of advice, where m is the number of leaves of T (I).

While the prerequisite of lemma 2.9 might appear to be rather difficult

to prove, it is easily satisfied if we create a set of instances I orgainzed in a

partition tree T (I), such that every leaf of T (I) contains only one instance,

each instance has only one optimal output sequence and an optimal sequence

for some instance from I is not optimal for any other instance in I.

If a tree satisfies these three conditions, all that is left to show for lemma

2.9 to hold is that for every pair of instances from I, the output sequences

differ in the first k items, where k is the length of their common prefix.

2.2 Selected Known Results

This section gives an overview of selected known results in advice complexity

which we use to demonstrate the techniques described in the previous section.

First we show some applications of the common prefix technique on a few

online graph coloring results and then we show an application of the string

guessing problem for the maximum clique problem.

2.2.1 Graph Coloring

Graph coloring is a classic, well-known computational problem. Its offline

version is one of the original 21 NP -complete problems published by Karp
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[Kar72]. It comes as no surprise, then, that for the most genral version of

this problem, online algorithms are unable to perform well [HS94].

An online graph coloring algorithm works roughly as follows. In each

round, a single vertex of the input graph is revealed to the algorithm, which

in turn has to assign a color to this vertex. More precisely, assuming the

vertices of a graph are ordered in a sequence, in t-th turn the algorithm has

the knowledge of the subgraph induced by the first t vertices in this sequence.

That means, each edge is revealed as soon as both of its ending vertices are

known.

In the offline version of graph coloring, making certain assumptions about

the input graph may dramatically reduce the difficulty of the problem. For

instance, if we assume the graph is bipartite, the difficulty drops from NP -

hard to a basic polynomial graph exploration algorithm.

This property carries over to online graph coloring as well. The difficulty

of this problem depends greatly on any assumptions we make about the in-

put instance, e.g. restrictions on the class of graphs, such as trees, bipartite

graphs, cycles or a relationship between the number of vertices and the num-

ber of edges, or the order in which their vertices are revealed to the online

algorithm. All these assumptions provide the algorithm with additional in-

formation. This means that by comparing the advice required to solve these

special cases to the advice complexity of the general case we can quantify

the amount of information provided by a particular set of assumptions.

The order in which vertices are revealed is referred to as the presentation

order. In the most general case, the vertices will appear in a fully arbitrary

order. We can restrict this to a connected presentation order, which means

that in each turn the vertex currently revealed is connected to at least one

vertex revealed previously. This can be restricted even further to the order

in which a depth-first search (DFS) or a breadth-first search (BFS) will

visit vertices. Another common presentation order is when the sequence of

vertices is sorted by their degrees.

Definition 2.11. In OnlineColoring the instance is an undirected graph
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G = (V,E) with V = {1, 2, . . . , n}. This graph is presented to an on-

line algorithm in turns: In the k-th turn the online algorithm receives the

graph Gk = G[{1, 2, . . . , k}], i.e., a subgraph of G induced by the vertex set

{1, 2, . . . , k}. As its reply, the online algorithm must return a positive in-

teger: the color it wants to assign to vertex k. The goal is to produce an

optimal coloring of G – the online algorithm must assign distinct integers to

adjacent vertices, and the largest integer used must be as small as possible.

When talking about a variant of OnlineColoring, we always need to

specify the class of graphs it is restricted to and the presentation order. We

denote this by OnlineColoring(X, Y) where X is the class of graphs

G will belong to and Y is the presentation order. For the class of graphs

we will use its common name (e.g., “bipartite”, “planar”) with the spe-

cial class called “any” meaning that there is no restriction on G at all.

For the presentation order we will use “connected”, “BFS”, “DFS” and

“max-degree” with meanings as discussed earlier and, again, “any” with

the meaning that the vertices may be presented in a fully arbitrary order.

For instance, OnlineColoring(bipartite, connected) denotes that the

problem is restricted to bipartite graphs and their vertices are revealed in a

connected order. As a special case, OnlineColoring(any, any) denotes

the most general version of the problem where no assumptions are made at

all.

The value of n is not known to the online algorithm beforehand. The

reason for this is that it would provide the algorithm with additional infor-

mation about the input instance which may (and in some cases does) affect

the advice complexity of the problem.

This problem has been studied in [FKS12; Her13]. We reproduce some

of the results below.

General Graphs

The following asymptotically tight estimates on the advice complexity of the

most general case of online graph coloring have been established.
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Theorem 2.12 ([FKS12]). There is an online algorithm with advice which

solves OnlineColoring(any, any) using n log n− n log log n+O(n) bits

of advice.

The general idea is to encode the position of an optimal coloring in a

lexicographically sorted list of all partitions of the set of vertices on the

advice tape.

Theorem 2.13 ([FKS12]). The OnlineColoring(any, BFS) problem

has an advice complexity of at least n log n− n log log n+O(n).

Proof outline. The proof of this theorem uses the common prefix technique

described in section 2.1.1. We will not reproduce the details as they are

relatively complicated. For a full proof, refer to the original paper.

These results are crucial in order to quantify how much a restriction

on the class of graphs simplifies the coloring problem by means of advice

complexity.

Bipartite Graphs

As a reminder, bipartite graphs are those that can be colored using two

colors.

Theorem 2.14 ([FKS12]). There is an optimal deterministic online algo-

rithm for OnlineColoring(bipartite, connected) without advice.

Proof. The algorithm for an optimal coloring is trivial. For the first vertex

it picks an arbitrary color and afterwards, for each vertex there is at least

one neighbor whose color has already been assigned. Therefore the algorithm

just picks the other color.

This result shows that for bipartite graphs it does not really make any

sense to analyze any of the connected presentation orders. However, for pre-

sentation orders without any restrictions this class of graphs is still interesting

from the point of view of advice complexity.
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Figure 2.1: Example of an independent set on a path with n = 16

vertices for x = 4. Vertices from Px ∪Qx are filled.

Paths

Paths are a subclass of bipartite graphs, therefore it is only interesting to

analyze the most general presentation order.

Theorem 2.15 ([FKS12]). The OnlineColoring(path, any) problem

has an advice complexity of
⌈
n
2

⌉
− 1.

Proof. For the upper bound, consider an algorithm A which selects an ar-

bitrary color for the first vertex and then reads one bit of advice for every

isolated vertex in the input, which is interpreted as the color. For each vertex

u connected to some already processed vertex v, A needs to output the color

opposite to that of v.

It is easy to see that on a path, at most
⌈
n
2

⌉
vertices can be selected this

way, since the selected vertices have to form an independent set.

To show a lower bound of
⌊
n
2

⌋
− 1, we use the common prefix technique.

Assume n is even and let us denote the vertices v1, . . . , vn according to their

order on the path. Note that this notation does not correlate with the pre-

sentation order.

For any 1 ≤ x ≤ n/2, consider two sets of vertices Px = {v2i−1 | 1 ≤ i ≤
x} and Qx = {v2i | x+ 1 ≤ i ≤ n/2}. The set Px ∪Qx forms an independent

set such that vertices from Px have to share one color while all vertices from

Qx need to have the other color. An example is shown in figure 2.1.

Consider the set of all strings of the form {p} · {p, q}n/2−1. For each such

string we can now create an instance. Let x be the number of p characters in

a given string w. An instance can be created such that for each p character,

a vertex from Px is selected and for each q, a vertex from Qx is chosen.

This sequence of vertices forms the prefix of an instance, which is also an

independent set.
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For every such instance, an optimal algorithm needs to assign one color

for every vertex from Px and the other color for all vertices from Qx, while

the prefix of length n/2 looks the same for each instance. The number of

different strings is 2n/2−1, which gives a lower bound of n/2−1 on the number

of advice bits.

If we also consider odd n, the above proof implies a lower bound of bn/2c−
1 bits. An additional bit can be forced, however, this requires a more detailed

analysis which can be found in [FKS12].

2.2.2 Maximum Clique

The problem of finding the maximum clique in a graph is another example

of an NP -complete problem, which is also part of the original 21 problems

published by Karp [Kar72]. Similar to the graph coloring problem, in the

online version of maximum clique, the vertices of an input graph are revealed

to an algorithm one by one and the algorithm needs to decide whether to

select a vertex into its solution or not.

We use this problem to show an example of a proof by reduction to string

guessing, as discussed in section 2.1.2, offered in [Böc+12]. The authors

of this paper use a cost function which allows the algorithm to produce a

graph that is not a clique with a penalty for every selected vertex that is not

part of the maximal clique in a graph induced by the vertices selected by A.

This is to avoid pathologic edge cases where A cannot select any vertex after

accepting an isolated vertex at the beginning.

The problem is formally defined as follows.

Definition 2.16 (MaxClique). In MaxClique, the input is an undirected

graph G = (V,E) with V = {1, . . . , n} and the goal is to select a clique C ⊆ V

in G. The graph is presented to an online algorithm A in turns: in the k-

th turn, the online algorithm receives the graph Gk = [{1, . . . , k}], i.e., a

subgraph of G induced by the vertex set {1, . . . , k}. In each turn, A has to

decide whether i ∈ C or not.
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Let A(I) be the set of vertices selected by A and let CA(I) be a maxi-

mum clique in the graph GA(I). The cost function is defined by C(A(I)) =

|CA(I)|2/|A(I)|.

If an algorithm selects a clique, the value of the cost function thus defined

is as we would expect – the number of vertices selected. This holds for the

optimal solution as well, which means the competitive ratio of an algorithm

A can be expressed as

c =
C(Opt(I))

C(A(I))
=
|A(I)|
|CA(I)|

· |Copt|
|CA(I)|

,

where Copt denotes the maximum clique in G. The first ratio can be in-

terpreted as a measure of how many wrong vertices A has selected and the

second one measures how many correct vertices A has rejected.

The following lower bound forMaxClique has been proved. Recall that

Hn is defined in theorem 2.7 as the n-ary entropy function; as a special case,

H2(x) is commonly denoted by H(x).

Theorem 2.17 ([Böc+12]). Any (c− ε)-competitive algorithm A for Max-

Clique needs at least

(1 + (c− 1) log(c− 1) + (2− c) log(2− c))n− 2

2
= (1−H(c− 1))

n− 2

2

bits of advice for any 1 < c ≤ 3/2 and ε > 0.

Proof outline. The full proof of theorem 2.17 consists of many nontrivial

steps, most of which are not interesting for our purpose of deminstrating the

string guessing reduction. Thus we only focus on the first part, where we

show how MaxClique can be used to solve 2-SGKH; the rest of the proof

can be found in [Böc+12].

We consider the following set of instances such that every instance cor-

responds to a binary string. Let b = b1b2 . . . bn′ be a binary string of length

n′. We construct a graph Gb = (Vb, Eb) corresponding to b, with n = 2n′ + 2

vertices. Let

Vb = {vi,j | 1 ≤ i ≤ n′, 0 ≤ j ≤ 1},
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Figure 2.2: Example of the graph G0010. Maximum clique is

highlighted in black.

and let V ′b = {vi,bi | 1 ≤ i ≤ n′} be a subset of Vb selected by the string b.

The set of edges is chosen as

Eb = {{vi,bi , vj,k} | 1 ≤ i < j ≤ n′, 0 ≤ k ≤ 1}

∪ {{v, vn′+1,0}, {v, vn′+1,1} | v ∈ V ′b} ∪ {{vn′+1,0, vn′+1,1}}.

The vertices are presented according to the lexicographic order of their in-

dices. An example of such a graph is presented in figure 2.2.

The graph Gb is constructed in such a way that V ′b , together with vertices

vn′+1,0 and vn′+1,1, forms the only maximum clique. In addition, for every

1 ≤ i ≤ n′, the two vertices vi,0 and vi,1 are indistinguishable at the time of

their presentation to an algorithm, since both of them are connected to the

same set of preceding vertices.

An algorithm A′ for solvingMaxClique can be used as an oracle for the

2-SGKH problem in the following way. For every time step of the 2-SGKH

computation, A simulates two time steps of a computation of A′. For the

i-th character of the string guessing problem, A submits the vertices vi,0 and

vi,1 to A′ and guesses 0 if A′ selects vi,0, otherwise it guesses 1.

A constructs the graph Gb in an online fashion based on the information

about the string b it is guessing. After reading the i + 1-th query, A knows

the value of bi, which means it can decide which one of the vertices vi,0, vi,1

belongs to V ′b . This way, A is able to build the set V ′b online and reveal edges

from Gb to A′ in a consistent manner.
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A careful analysis of this algorithm shows that assuming there is no algo-

rithm for 2-SGKH which guesses more than αn′ characters correctly using

b advice bits, for every algorithm A for MaxClique using at most b bits of

advice,

C(A(Gb)) ≤
(αn+ 2 + (1− α)n′)2

αn′ + 2 + 2(1− α)n′
.

The next step of the proof is to show that for each pair of wrongly guessed

vertices vi,0, vi,1, the cost function is maximized if an algorithm selects both

vertices. The theorem then follows from these facts and from theorem 2.7.
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Chapter 3

Disjoint Path Allocation

Disjoint path allocation is a well-studied specialization of the more general

problem of call admission in arbitrary networks. In the general case, a dis-

patcher needs to decide which calls to admit based on the topology of the

network, capacities of its edges, and the bandwidth and duration of each call.

In the case of disjoint path allocation, we restrict ourselves to a path on

L+ 1 vertices where all edges have the same capacity, which is equal to the

bandwidth of each call. In addition, each call has an unlimited duration.

In this chapter we build on the results published in [Bar+14], therefore

we use the same definition of the problem as in the aforementioned article.

Definition 3.1 (DPA). The disjoint path allocation problem (DPA) is the

following maximization problem on a path P = (v0, . . . , vL). First, the value

of L is revealed. Then n requests of the form (ik, jk) follow, where each such

pair denotes the subpath of P from vik to vjk . For each pair an algorithm

decides whether to admit or deny the request. All admitted requests must

be pairwise edge-disjoint. The goal is to maximize the number of admitted

requests.

This problem can be looked at as a series of call requests where each call

has infinite duration and each edge can accommodate at most one call. Note

that the number of requests is not known in advance, only the length of the

path.
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3.1 Competitiveness without Advice

Before we delve into the area of advice complexity, we focus on an analysis

of deterministic online algorithms without advice.

Section 13.5 of [BE98] presents a proof that no deterministic algorithm

can guarantee a competitive ratio better than linear in the number of vertices

when restricted to strict competitiveness. We reproduce the proof below.

Theorem 3.2 ([BE98]). On a path on L + 1 vertices, any deterministic

online algorithm A has a competitive ratio of at least L. Specifically, there

exists either an input instance I1 where C(Opt(I1)) = L and C(A(I1)) = 1

or an instance I2 for which C(Opt(I2)) = 1 and C(A(I2)) = 0.

Proof. We prove the theorem using an adversary Adv. Consider an algorithm

A. The adversary reveals L and issues as the first query (0, L). If A rejects

this query, Adv terminates the input instance, which leads to the second case

in the theorem and it means A is not competitive.

If A admits the first query, Adv follows up with L requests: (0, 1), (1, 2),

. . . , (L − 1, L). Since A has already admitted a request spanning the whole

path P , it cannot admit any of these following requests, while the optimal

solution is to reject the first request and admit all of the following L requests.

This leads to the first case and means that the competitive ratio of A is at

least L.

The proof of theorem 3.2 might appear to rely on a pathologic edge case

made possible by the definition of strict competitiveness: it leans on the fact

that each algorithm that denies the first request can be made non-competitive

and setting the parameter α from definition 1.2 to a value of only 1 would

eliminate this.

Indeed, Komm described in [Kom12] an algorithm that achieves a com-

petitive ratio of
⌈

L
α+1

⌉
, which seems to indicate that relaxing the definition

of competitiveness might lead to better results. However, he also proved that

the competitive ratio of any deterministic algorithm is at least linear in the

number of requests.

27



Since we study DPA primarily with respect to the length of the commu-

nication network, we complement this with a lower bound on the competitive

ratio, which is one of our new results.

Theorem 3.3. Consider an arbitrary value of α in the definition of compet-

itiveness. On a path on L + 1 vertices, any deterministic online algorithm

has a competitive ratio of at least b
√
Lc

α+1
.

Proof. Let A be a c-competitive deterministic online algorithm for DPA, let

α be a positive constant such that C(A(I)) ≥ C(Opt(I))
c

− α. We use an

adversary Adv to prove the bound.

Let k := b
√
Lc. Adv starts by issuing non-overlapping requests of length

k: (0, k), (k, 2k), . . . , until either A admits a request, or Adv submits the

request (k(k − 1), k2).

In the former case, let (ik, (i+1)k) be the first (and only) request admitted

by A. Adv then submits the following k requests and terminates the input:

(ik, ik+ 1), (ik+ 1, ik+ 2), . . . , ((i+ 1)k− 1, (i+ 1)k). Each of these requests

overlaps the single admitted request, therefore A has to deny all of them.

The optimal solution for this instance is to admit the first i requests of

length k, deny the i+ 1-th request and admit all of the following k requests

of length 1, which means C(Opt(I)) = i+ k, while C(A(I)) = 1. Since A is

c-competitive, the following inequalities hold.

1 ≥ k + i

c
− α

c ≥ k + i

α + 1
≥ k

α + 1
=
b
√
Lc

α + 1

In the latter case, Adv terminates the input after request (k(k − 1), k2).

The optimal solution of this instance is to admit all k requests, while A

rejects everything, which results in these inequalities:

0 ≥ k

c
− α

c ≥ k

α
≥ b
√
Lc

α + 1

28



This result indicates that even though relaxing the condition of compet-

itiveness does make it possible to obtain a better competitive ratio with a

deterministic algorithm, it still leaves a significant gap between the optimal

solution and deterministic online algorithms. Therefore in the rest of this

chapter we will adhere to the strict definition, unless noted otherwise.

3.2 Advice Complexity of Optimal Solution

The first result regarding the advice complexity of DPA has been published

in [Kom12] and it states that the minimum amount of advice required to

achieve optimality is L/2 bits. The proof of this bound uses the common

prefix technique described in section 2.1.1: the common prefix consists of

L/2 requests of length 2 and then in each instance, a different subset of these

two-edge paths is chosen and for each of them two single-edge requests are

issued. We generalize this bound for competitive algorithms in theorem 3.12.

This bound has since been improved in [Bar+14] to L− 1 bits. The new

bound is tight – an optimal algorithm using exactly L− 1 bits has been pub-

lished as well. We reproduce the algorithm below, since multiple competitive

algorithms discussed later on are modified versions of this particular optimal

algorithm.

Theorem 3.4 ([Bar+14]). There is an online algorithm which guarantees

an optimal solution using L− 1 bits of advice.

Proof. The algorithm A works as follows. After obtaining the length L, A

reads L− 1 bits from the advice string with the following meaning: the i-th

bit (denoted by bi, for i ∈ {1, . . . , L− 1} indicates whether A should accept

a request starting in vertex vi. We always set b0 to 1.

Then, whenever A processes a request (i, j) that does not conflict with

any already admitted request, A accepts it iff bi = 1 and bk = 0 for all

i < k < j.

The proof of the lower bound uses the partition tree technique from sec-
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tion 2.1.3. Since the technique used in this proof might be used to improve

our bound proposed in section 3.3.2, we summarize it below.

Theorem 3.5 ([Bar+14]). Any optimal online algorithm for DPA needs to

read at least L− 1 bits of advice.

Proof. We construct a set I of instances which can be organized in a partition

tree T (I) in a way that they satisfy the conditions described at the end of

section 2.1.3.

Each instance I corresponds to a binary string b of length L + 1, where

b = b0b1 . . . bL and b0 = bL = 1. The i-th bit of b is a label for the i-th vertex

of the path in I. All vertices labeled by 1 are the end points of two requests

that are supposed to be accepted except for v0 and vL, each of which is the

end point of only a single request.

Instance I consists of L phases numbered from L down to 1. In phase p,

all requests of length p are asked from left to right, with some exceptions, as

required by the bit vector associated with I. Specifically, if a request (i, j)

is supposed to be admitted, i.e. bi = bj = 1 and bk = 0 for all i < k < j,

the request (i, j) is the last one on the subpath vi, vj and in all subsequent

phases, requests on this subpath are omitted. Figure 3.1 shows an example

of an instance constructed in this way.

Now we need to show that this set of instances has the required proper-

ties. We show by contradiction that for each instance from I, the solution

described in the previous two paragraphs is the only optimal solution. Let

us denote by Opt(I) the expected solution and assume there is a solution

Opt′(I) such that C(Opt′(I)) ≥ C(Opt(I)) which differs from Opt(I) in at

least one answer. We know the expected solution is indeed optimal, as the

binary string associated with each instance is precisely the one used by the

optimal algorithm presented above. There are two possibilities how this can

happen. Either Opt′(I) rejects a request (i, j) admitted by Opt(I), in which

case there are no further requests on subpath vi, vj, which means Opt′(I)

admits one less request than Opt(I), which means its cost is lower than that

of Opt(I). Otherwise, Opt′(I) needs to admit a request (i, j) not admitted
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Figure 3.1: Example of an input instance for the string 1010011.

The optimal solution is highlighted in gray.
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by Opt(I). However, by construction of I we know that there is at least one

1 bit between i and j, which means Opt′(I) cannot admit at least two other

requests admitted by Opt(I), which, again, leads to a contradiction.

This also implies that each output sequence is optimal for only one in-

stance from I.

The only property left to show is that for each two instances, the optimal

outputs differ in the common prefix of the two instances. Let I1, I2 ∈ I be

two different instances, let p be the first phase in which they differ, without

loss of generality let rp = (i, i+ p) be a request which appears in I1, but not

in I2. Since phase p + 1 is identical in the two instances, both contain the

request rp+1 = (i, i + p + 1). Since rp appears in I1, rp+1 is not admitted

by Opt(I1), however, it is admitted by Opt(I2). Thus the optimal output

sequences for I1 and I2 differ in phase p+ 1 already.

Since it is easy to organize all 2L−1 instances into a partition tree based

on their common prefixes and each instance gets its own leaf, the prerequisite

of lemma 2.9 is satisfied and the number of bits required is at least L−1.

3.3 Bounds for Constant Competitiveness

3.3.1 Upper Bound for Small c

An upper bound on the amount of advice required for c-competitiveness for

c close to 1 has been published in [Bar+14] as a modification of the optimal

algorithm. The original paper only contains a sketch of a proof; we describe

the modified algorithm in detail below.

Theorem 3.6 ([Bar+14]). For each c = k/(k − 1), where k is an integer

greater than 1, there is a c-competitive algorithm for DPA that uses⌈
log

c

c− 1

⌉
+ L− 1−

⌊⌊
(L− 2)

c− 1

c

⌋
· (2− log 3)

⌋
bits of advice.
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Proof. Let ϕ = b1 . . . bL−1 be an advice string for the optimal algorithm from

the proof of theorem 3.4 leading to an optimal solution. We modify the advice

string by adding the value of every k-th bit to the bit immediately preceding

it and omitting the bit itself from the sequence. This way, we replace some

pairs of successive bits with ternary numbers. For example, consider the fol-

lowing sequence: (1, 0, 1, 1, 0, 1, 0, 0, 1, 0). For k = 4, we obtain the following

sequence: (1, 0, 1 + 1, 0, 1, 0 + 0, 1, 0) = (1, 0, 2, 0, 1, 0, 1, 0). Assuming the

positions of ternary numbers in the sequence are known beforehand, it is

possible to encode the modified sequence using L − 1 − 2p + dp log 3e bits,

where p is the number of added pairs.

Given a sequence thus shortened, it is possible to reconstruct most of

the original sequence ϕ. Each sum of two bits needs to be replaced by a

pair of bits. In cases where the sum is 0 or 2, the original pair of bits is

unambiguous, however, if the sum is 1, there are two possibilities. In this

case, our algorithm will always assume that the original pair of bits was 0, 1.

With this reconstructed sequence ϕ′ it is now possible to simulate the optimal

algorithm.

Clearly, using ϕ′ as the advice instead of ϕ can lead to the algorithm

rejecting some requests which would be admitted in an optimal solution.

This can happen only in case a pair of bits was 1, 0 before adding them;

in this case, the algorithm would expect a request starting at the second

position, which might not arrive. It will, however, not block any requests

starting before the first of the two bits. Therefore, if e is the number of pairs

reconstructed incorrectly, the cost of a solution produced by this algorithm

will be at least C(Opt(I))− e.
However, simply selecting bits bk+1, b2k+1, . . . does not lead to the required

competitive ratio. For example, let k = 3 and assume the original advice

string ϕ is 010010010. By selecting every 3-rd bit, the compressed string

becomes 010101 and the reconstructed ϕ′ becomes 001001001. Now, if the

only requests the instance contains are those starting on positions 2, 5, and

8, our algorithm would admit no request and thus fail to be competitive.
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The solution is to consider all strategies for choosing the pairs of bits

to add of the following form: for each 1 ≤ i ≤ k, the i-th strategy is to

choose bi+ak, bi+ak+1 for all integers a such that 0 ≤ a ≤
⌈
L−2
k
− 1
⌉

as the

pairs to add. In each strategy, the number of pairs is p ≥
⌊
L−2
k

⌋
. Of all

such strategies, the one with the smallest number of errors is chosen, and its

number i is encoded in the advice string.

This way of choosing strategies ensures that for each bit bj, exactly two

strategies are considered where bj is part of an added pair, once in the position

of the first bit and once in the position of the second bit (with the exception

of the first and last bit, of course). Thanks to this fact, if we sum all encoding

errors over all strategies, each bit can contribute to this sum at most once,

and in addition, only 1 bits can contribute at all. From this and from the

fact that the cost of the optimal solution is at least the number of 1 bits

(possibly +1 if the optimal solution accepts a request starting in v0) follows

that C(Opt(I)) ≥ ke, where e is the number of errors in the best strategy.

The competitive ratio of this solution is then obtained as follows.

C(Opt(I))

C(Opt(I))− e
≤ C(Opt(I))

C(Opt(I))− C(Opt(I))
k

=
k

k − 1

The amount of advice required is therefore dlog ke bits to encode the

number of strategy used, and L− 1− 2p+ dp log 3e, where the value of p is

described above, which matches the theorem.

We present a new result which simplifies the above algorithm and requires

less advice for the same competitive ratios.

Theorem 3.7. For each c = (p+ q)/q, where p, q are positive integers, there

is a c-competitive algorithm for DPA which uses

dlog(p+ q)e+ L− 1−
⌊

(L− 1)
p

p+ q

⌋
bits of advice.
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Proof. The algorithm works in a similar fashion to the one presented in the

proof of theorem 3.7. However, instead of adding certain bits to the previous

ones, it simply leaves them out of the advice string.

More precisely, given an advice string ϕ leading to an optimal solution,

we split ϕ into alternating blocks of lengths p and q bits (with a possible

exception of the first and last blocks, which may be shorter). We retain

blocks of length q and we leave out blocks of length p, thus removing s bits,

where s ≥ b(L− 1)p/(p+ q)c.
Again, our algorithm A first reconstructs an approximation ϕ′ of the

original string ϕ, by filling all the gaps in ϕ′ with zeroes and then simulates

the optimal algorithm with ϕ′.

Some of the omitted bits will have been ones; for every such bit, C(A(I))

will decrease by 1 compared to the optimal solution. In order to guarantee

the expected competitive ratio, again, we need to consider p + q possible

strategies based on whether the first block is retained or omitted and setting

its length to some nonnegative integer less than or equal to q or p respectively,

and choose the best strategy.

Let us denote the number of errors (i.e. bits whose value in ϕ is 1 and

in ϕ′ it is 0) in the i-th strategy as ei. We already know that if we choose

the i-th strategy, C(A(I)) ≥ C(Opt(I))− ei. Every 1 bit contributes to the

error count of p strategies, which, combined with the fact that C(Opt(I)) is

at least the number of 1 bits, gives p ·C(Opt(I)) ≥
∑p+q

i=1 ei ≥ (p+ q)e, where

e is the error count of the best strategy, i.e. the lowest of all ei.

The competitive ratio is therefore obtained from the following inequalities.

C(Opt(I))

C(Opt(I))− e
≤ C(Opt(I))

C(Opt(I))− p·C(Opt(I))
p+q

=
p+ q

q

The advice string consists of a binary encoding of the number of chosen

strategy taking dlog(p + q)e, bits followed by the shortened string from an

optimal solution taking L− 1− s bits.

Other upper bounds were shown in [Bar+14] as well, such that each of

them is the best for a certain interval of competitive ratios.
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Theorem 3.8 ([Bar+14], Theorem 6). There is a c-competitive online algo-

rithm, for c = 2
√
k with k ∈ N, that uses at most⌈⌈

4L

c2

⌉
log 3

⌉
bits of advice.

Theorem 3.9 ([Bar+14], Theorem 7). There is a c-competitive online algo-

rithm, for c ∈ N, that uses at most⌈
2(L− 1)

c

⌉
bits of advice.

Theorem 3.10 ([Bar+14], Theorem 8). There is a c-competitive online al-

gorithm, for c = 4 log k with k ∈ N≥2, that uses at most⌈
L

2c/4
·
( c

2
+ dlog ce+ 0.33

)⌉
bits of advice.

Taking into account only the bounds from [Bar+14], the bound from

theorem 3.6 is the best for the interval 1 ≤ c ≤ 3; for 3 ≤ c ≤ 2
√

3, theorem

3.9 takes over; for 2
√

3 ≤ c ≤ 64, theorem 3.8 is even better; and the rest,

c > 64, is covered by theorem 3.10.

Our bound from theorem 3.7 is obviously better than the one from the-

orem 3.6, which makes it the best one for 1 ≤ c ≤ 3. However, it also

outperforms both bounds from theorems 3.8 and 3.9 for c ≤ 4 log 3 ≈ 6.34,

which makes theorem 3.9 obsolete.

3.3.2 Lower Bound for Small c

We obtain a lower bound by applying the generalized common prefix tech-

nique from section 2.1.1. First, we isolate a set of instances with these two

properties: 1. all instances share the same prefix, and 2. for any two instances,
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the decisions of an online algorithm on the common prefix must be different

in order to obtain an optimal solution. We use the same set as described in

section 3.2 for the first lower bound on the advice required by an optimal

solution.

Next, we observe that the decisions leading to an optimal solution for an

instance I are sufficient to obtain a good enough solution (i.e. one whose

cost fits within the range allowed by a given competitive ratio) for a set

of “similar” instances CI and compute an upper bound on the number of

such instances. Finally, a lower bound on the length of the advice string is

obtained as the binary logarithm of a fraction of the number of instances and

the upper bound of |CI |.
In order to estimate the size of CI , we will use the following lemma. Recall

that H(x) is the binary entropy function as defined in theorem 2.7.

Lemma 3.11 ([FG06]). Let n ≥ 1 and 0 < q ≤ 1/2. Then

bqnc∑
i=0

(
n

i

)
≤ 2n·H(q).

A more straightforward way to write the above bound is

2n·H(q) =

(
1

q

)nq
·
(

1

1− q

)n(1−q)
.

This allows us to state the following lower bound, which is an original

result of our work.

Theorem 3.12. Any online algorithm for DPA which guarantees a compet-

itive ratio 1 < c ≤ 4
3

needs to read at least

L

(
1

2
+

(
1− 1

c

)
log

(
2− 2

c

)
+

1

2

(
2

c
− 1

)
log

(
2

c
− 1

))
bits of advice.

Proof. Let L = 2k for some positive integer k. Consider the following set I of

instances consisting of two phases. The first phase of each instance consists
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phase 1

phase 2

Figure 3.2: Input instance corresponding to the string 11010.

of requests (2i, 2i+ 2) for all 0 ≤ i < k. The second phase is unique for each

instance and consists of pairs of requests (2i, 2i+ 1), (2i+ 1, 2i+ 2), where i

is chosen from some subset of {0, . . . , k − 1}.
Each instance corresponds to a binary string of length k: if the i-th bit

in the binary string is 1, the second phase contains requests (2i, 2i+ 1), (2i+

1, 2i+ 2), otherwise, it contains no request on this subpath. For an example,

refer to figure 3.2.

The optimal solution for each instance is to admit all requests in phase 2

and those in phase 1 that do not overlap any requests in phase 2. If we look

at the binary representation of an instance, that means the optimal solution

admits one request for every zero bit (phase 1) and two requests for every

one bit (phase 2).

A crucial observation is that for each mistake an online algorithm Amakes

in phase 1, the cost of its solution decreases by at least one: if A admits a

phase 1 request corresponding to a one bit, it will not be able to accept any

of the two phase 2 requests on this subpath, and if it rejects a phase 1 request

corresponding to a zero bit, there will not be any further requests in phase

2 for this subpath.

Moreover, for each instance I ∈ I, the equality C(Opt(I)) = pL holds for

some p ∈ [1/2, 1]. That means, if we allow A to make e mistakes in phase 1,

its competitive ratio is described by the inequality

pL

pL− e
≤ c.

38



Solving this inequality for e gives us an upper bound on the number of errors:

e ≤ qL
c− 1

c
≤ L

c− 1

c
. (3.1)

Since the first k queries are the same in all instances, all phase 1 decisions

an online algorithm makes only depend on the advice string. Each sequence

of decisions in phase 1 is optimal for one instance I ∈ I with its corresponding

bit vector B. In addition, if we allow at most e errors in phase 1, the same

sequence of decisions is acceptable for an instance I ′ with a bit string B′ if

Ham(B,B′) ≤ e, whereHam denotes the Hamming distance. The number of

such acceptable instances is then V ol2(k, e) =
∑e

i=0

(
k
i

)
, which is the volume

of a binary Hamming ball of radius e around a string of length k.

We already have an upper bound on e from (3.1). If we substitute this

into the bound on V ol2(n, qn) from lemma 3.11, we obtain an upper bound on

the number of instances from I that can be served with a single advice string

in order to achieve c-competitiveness. For simplicity, we use q to denote the

expression 2(c− 1)/c.

V ol2(k, e) ≤ V ol2

(
k, 2k

c− 1

c

)
=

bqkc∑
i=0

(
k

i

)

≤
(

1

q

)kq(
1

1− q

)k(1−q)
(3.2)

If we denote the length of advice strings by b, we know that there are at

most 2b possible advice strings, whereas there are 2k instances in I. (3.2)

gives us an upper bound on the fraction of these two numbers, which we can

solve for b and thus obtain the lower bound on the amount of advice required
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for c-competitiveness.

2k

2b
≤
(

1

q

)kq(
1

1− q

)k(1−q)
k − b ≤ kq(− log q)− k(1− q) log(1− q)

k − b ≤ −2k
c− 1

c
log

2(c− 1)

c
− k
(

1− 2(c− 1)

c

)
log

(
1− 2(c− 1)

c

)
b ≥ k + 2k

(
1− 1

c

)
log

(
2− 2

c

)
+ k

(
2

c
− 1

)
log

(
2

c
− 1

)
In order for (3.2) to hold, q cannot exceed 1/2, which gives us the restric-

tion on c for which this bound holds.

q ≤ 1

2

2
c− 1

c
≤ 1

2

c ≤ 4

3

This lower bound is certainly not tight. The bound is a linear function

where for c = 4/3, the coefficient is 0 and for c→ 1, the coefficient approaches

1/2. See figure 3.3 for a plot of the coefficient with respect to the competitive

ratio. However, from theorem 3.5 we know that to achieve optimality, i.e.

c = 1, we need L− 1 bits.

Even though we have not succeeded in proving a better lower bound, we

believe it is possible to obtain a tighter bound by generalizing the proof of

theorem 3.5. It should be possible to use the same partition tree T (I) as in

the aforementioned proof and combine it with the technique used to prove a

lower bound for the string guessing problem with known history, as discussed

in section 2.1.2.

Each computation of an algorithm in an instance I ∈ I can be viewed as

a path from the root of T (I). We would need to calculate for each vertex of

T (I) the number of instances for which an adversary can force an algorithm

A to miss at most e requests.
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Figure 3.3: Plot showing the relationship between the competitive

ratio and the coefficient in the lower bound in theorem 3.12.

Unfortunately, due to the complex structure of T (I), we have not man-

aged to obtain such an estimate.

41



Chapter 4

Offline Algorithms with Advice

The model of algorithms with advice appears to be a useful tool to give a

quantitative measure on the difficulty of online problems, which is more fine

grained than what competitive analysis alone offers. A new question arises:

Is it possible to use advice complexity to quantify the difficulty of hard offline

problems?

The concept of a Turing machine with advice is nothing new – it has

been introduced in [KL82]. However, the motivation behind the Karp-Lipton

model of advice differs significantly from ours – their model is closely tied

to Boolean circuits and it requires that given a Turing machine A, for every

number n ∈ N there be some advice string αn such that for every input x of

size n, A(x, αn) gives the correct answer.

Our interest lies somewhere else: We want to find out what amount of

additional information about a specific input instance can help an algorithm –

or a Turing machine – to perform better in terms of time or space complexity.

In other words, while Karp and Lipton allow only a single advice string for a

given size of input, we allow an advice string specially tailored to each input

instance.

The purpose of this chapter is not to give any conclusive results. Instead,

our intention is to lay out the groundwork for future research in this area.

42



4.1 Formal Definition of the Model

There is a wide collection of computational models from which we can choose

one to extend with advice. We pick Turing machines due to their status of

the de-facto standard computational model.

Definition 4.1 (Turing Machine with Advice). A Turing machine with ad-

vice is a deterministic Turing machine A with alphabet Σ = {0, 1}, two

read-only tapes and one read-write tape such that one read-only tape con-

tains the input word and the other one contains an infinite binary advice

string. A accepts an input word x if there exists an advice string ϕ such that

when the input tape contains x and the advice tape contains ϕ, A terminates

in an accepting state.

A Turing machine with advice and output has an additional write-only

output tape. Let S be some subset of Σ∗ and let f : S → Σ∗ be some function.

Turing machine A computes the function f if for each x ∈ S there is an

advice string ϕ such that if the input tape contains x and the advice tape

contains ϕ, A writes f(x) to the output tape and terminates in an accepting

state.

The same considerations as in the case of online algorithms apply here

as well. We define the model to use an infinite advice tape in order to avoid

giving away any additional information in the form of the length of advice.

This definition resembles nondeterministic Turing machines and in a sense

it is equivalent – it is easy to see that one computational step of a nonde-

terministic Turing machine A with k possible outcomes can be simulated by

dlog ke computational steps of a Turing machine B with advice. In each step,

B reads one bit of advice and after reading all dlog ke bits, decodes the num-

ber k indicating which decision to take. Conversely, we can easily simulate a

Turing machine B with advice using a nondeterministic Turing machine A:

A can simply nondeterministically fill one tape used to emulate the advice

tape with a string of nondeterministically chosen length and then proceed

to simulate B without any further changes. The key difference is, as we will
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see in a little while, that the model with advice gives us fine-grained control

over how much information the machine can obtain nondeterministically.

The definition of a Turing machine with output is somewhat peculiar.

Since the result of a computation of a given machine A with a given input

x can vary depending on the advice string, it is practically impossible to

determine what function A computes. Instead, we choose the opposite direc-

tion. In our work we concentrate on problems for which we know what the

expected output looks like, i.e. we already have a function f and we want to

find a machine such that it can reach the correct output if it receives correct

advice.

It is easy to modify the definition of a machine with output to make it

better suited for analysis of optimization algorithms. Instead of requiring

that the machine computes the correct output, we can define a cost function

whose value is∞ for invalid outputs (or −∞, depending on whether we talk

about a minimization or maximization problem) and define the output as

the outcome with the minimal (or maximal) cost.

Let us now define the complexity measure which lead to the conception

of this computational model in the first place.

Definition 4.2 (Offline Advice Complexity). The advice complexity of Tur-

ing machine A with advice is a function b : N→ N such that for every input

x such that |x| = n, A accesses at most b(n) positions on the advice tape.

This complexity measure is analogous to the measure of space complexity

in nondeterministic Turing machines [AB09], except we are only interested

in the advice tape; on the work tape, A can use as much space as it needs

to. Also note that while the space complexity of a Turing machine is usually

defined in a way that allows any multiplicative constant, this is not the case

of advice complexity. The reason is that in the case of traditional space

complexity, the linear tape compression theorem holds [SHL65], and even

though it is possible to represent multiple advice symbols in one position by

extending the advice alphabet in a similar way, we are specifically interested

in the amount of advice information in terms of the number of bits.
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4.2 Related Work

As we have indicated earlier, a different model of Turing machines with advice

by Karp and Lipton has been around for more than 30 years. This model has

been introduced as a means to provide complexity measures for languages

accepted by Boolean circuits. Using this model, various complexity classes of

languages have been analyzed and included in known complexity hierarchies,

such as P/poly or L/poly, with important implications on the polynomial

hierarchy.

This area of research is, however, very distant from ours. While the pur-

pose of the Karp-Lipton model is to analyze complexity classes, the purpose

of our model is to analyze individual problems.

Our research has not revealed any paper focusing on a model equivalent

to the one we introduced. This correlates with the fact that thus far, research

in this area has been very limited.

One particular area in which similar research has been done is crypt-

analysis of the RSA cryptosystem, where Coppersmith has shown that it is

possible to find the factors of N = PQ given the high order 1/4 logN bits

of P [Cop96]. His method works by reducing the factoring problem to the

problem of finding a root of a bivariate integer polynomial. This problem

can in turn be solved by constructing a basis of an appropriate lattice and

running a basis reduction algorithm in order to obtain a basis consisting of

short vectors. These short vectors are then used as candidates for a solution.

In terms of our model of advice complexity, the 1/4 logN bits can be

interpreted as advice corresponding to the input N . This translates in an

upper bound on the advice complexity of the factoring problem for inputs N

such that N is a product of two primes: for any input of length n (i.e. the

binary representation of N consists of n bits), n/4 bits of advice are sufficient

to obtain a solution in polynomial time.
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4.3 Subset Sum Problem

We devote the rest of this chapter to an analysis of the subset sum problem,

which is another example of an NP -hard problem [GJ79]. This problem can

be formulated as the following 0-1 integer programming problem.

Definition 4.3 (Subset Sum). Given a vector −→a = (a1, . . . , an) of positive

integers and a positive integer M , find a feasible solution to the 0-1 integer

programming problem
n∑
i=1

aixi = M ; xi ∈ {0, 1} for all i (4.1)

This problem is of interest because of its applications in cryptography:

multiple asymmetric cryptographic schemes have been proposed based on

this problem [MH78; CR88]. These are usually referred to as knapsack-

based cryptosystems, since subset sum is a special case of the 0-1 knapsack

problem. In these schemes, the public key generally consists of a set of

weights {ai | 1 ≤ i ≤ n} and ciphertext is obtained from a plaintext binary

message (b1, . . . , bn) as
∑n

i=1 aibi. The private key then consists of additional

information which makes it possible to solve instances of the subset sum

problem with the given sequence of ai in polynomial time.

First we present some rudimentary properties of the advice required to

solve subset sum and other NP -hard problems in polynomial time and then

we look at a more sophisticated algorithm which applies to a specific class of

subset sum instances.

4.3.1 General Results

A nondeterministic algorithm for the subset sum problem might guess the

values of variables xi in (4.1) and verify that the guess is correct. This

suggests a trivial algorithm with advice: it simply reads the values of xi

from the advice tape, writes them to the output and finishes. Obviously,

there is nothing interesting about this algorithm, since it reads the whole

output from the advice.
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A slightly better algorithm is obtained if we do not read the whole output

from advice, but instead stop after reading the k-th bit, i.e. A now knows

the values of the first k variables xi. Then, our algorithm can find the correct

values for the remaining n− k varibles xi by exhaustive search, which takes

O(2n−k) time. This observation leads to the following claim.

Theorem 4.4. The subset sum problem can be solved in polynomial time

with n−O(log n) bits of advice.

Proof. Let f(n) ≤ c log n for some c, let k = n − c log n. A reads k bits of

advice and interprets them as the values of x1, . . . , xk from (4.1). A then

performs an exhaustive search for the remaining c log n values xk+1, . . . , xn,

which takes O(P (n)·2c logn) = O(P (n)·nc), where P (n) is a polynomial bound

on the time required to verify the correctness of a single vector (x1, . . . , xn).

This result can be generalized to any problem from NP . This class of

problems can be characterized as those where for each input instance, a

polynomial-length certificate exists such that the correctness of the certificate

can be verified in polynomial time [Cor+09]. If the upper bound on the length

of the certificate for a given problem P is c(n), the sufficient advice to solve

P is c(n)−O(log n).

We can establish a lower bound on the amount of advice for any NP -

hard problem in a similar way: If we can solve some NP -hard problem

using O(log n) bits of advice, it is easy to perform an exhaustive search

in polynomial time for the right advice string using a deterministic Turing

machine.

Theorem 4.5. For any NP -hard problem P, the amount of advice required

to solve P is ω(log n), unless P = NP .
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4.3.2 Lattice-Based Algorithm for Low-Density Subset

Sum

Lagarias and Odlyzko proposed in [LO85] an algorithm called SV (Short

Vector) which solves almost all instances of subset sum with a low density.

The density of a vector −→a of n elements is defined as

d(−→a ) =
n

log max
i
ai
.

Informally, instances with a low density are those consisting of elements

significantly larger than 2n.

We formulate the following observation which clarifies the importance of

this restricted version of the subset sum problem.

Observation 4.6. If there is an algorithm A for solving all instances (−→a ,M)

of subset sum such that d(a) < c for some c ∈ R+ in polynomial time, we can

solve any instance of subset sum in polynomial time, regardless of density.

Proof. Assume we can solve all instances with density lower than c for some

c > 0. Consider an instance (−→a ,M) such that d(−→a ) > c. Let e = n/c −
log maxi ai. From d(−→a ) > c follows that e > 0.

If we multiply both −→a and M by 2dee+1, we obtain an instance (−→a ′,M ′)

with identical solutions to those of (−→a ,M).

For the density of −→a ′, the bound

d(−→a ′) =
n

log
(

2dee+1 max
i
ai

) ≤ n

e+ 1 + log max
i
ai

=
n

1 + n
c
− log max

i
ai + log max

i
ai

=
cn

c+ n
= c ·

(
1− c

n+ c

)
< c

holds, which means (−→a ′,M ′) can be solved in polynomial time in the size of

the new instance.

To be entirely correct, we note that the number e is polynomial in n and

the size of a binary representation of (−→a ′,M ′) is e times larger than the
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binary representation of (−→a ,M), thus this transformation keeps the size of

the input polynomial.

This observation implies that restricting the density does not make the

problem significantly easier to solve than it is in the general case. Neverthe-

less, it does not mean we cannot use any special properties of low-density

instances to our advantage.

In the rest of this section, we focus on an analysis of the Lagarias-Odlyzko

algorithm. The ultimate goal of this analysis is to better understand the class

of instances for which this algorithm fails to find a solution. We believe this

should, in theory, make it possible to use less advice for low-density instances,

since we can tailor the advice string specifically to the failing instances.

Unfortunately, we have not managed to obtain a sufficient characteriza-

tion of this class. We describe the results of our statistical analysis of this

algorithm and draw some conclusions in hopes they will be useful for future

research.

The SV algorithm reduces the problem of finding a solution for (4.1) to

the problem of finding the shortest vector in a n+ 1-dimensional lattice with

Euclidean norm. This problem is known to be NP -hard for the supremum

norm and this is conjectured to hold for the Euclidean norm as well [Emd81].

Nevertheless, a polynomial algorithm for finding short (albeit not necessarily

the sortest) vectors in a lattice is due to Lenstra, Lenstra and Lovász [LLL82],

commonly referred to as LLL.

The output of the LLL algorithm is a y-reduced basis, where 1/4 ≤ y < 1

is a parameter whose value, unless noted otherwise, is usually 3/4, containing

at least one relatively short vector.

Theorem 4.7 ([LLL82]). Let [−→v1 , . . . ,−→vn] be a y-reduced basis of a lattice L.

Then

|−→v1 |2 ≤
(

4

4y − 1

)n−1
min

−→x ∈L,−→x 6=−→0
|−→x |2, (4.2)

where |−→x | denotes the Euclidean norm of −→x .
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Specifically, for y = 3/4,

|−→v1 |2 ≤ 2n−1 min
−→x ∈L,−→x 6=−→0

|−→x |2. (4.3)

The SV algorithm works as follows.

Algorithm 4.8 (SV, [LO85]). Let −→a = (a1, . . . , an),M be the input.

1. Use the following vectors as a basis [
−→
b1 , . . . ,

−−→
bn+1] of an n+1-dimensional

integer lattice L(−→a ,M):

−→
b1 = (1, 0, . . . , 0,−a1)
−→
b2 = (0, 1, . . . , 0,−a2)

... (4.4)
−→
bn = (0, 0, . . . , 0,−an)
−−→
bn+1 = (0, 0, . . . , 0,M).

2. Find a reduced basis [
−→
b1
∗, . . . ,

−−→
bn+1

∗] of L(−→a ,M) using the LLL algo-

rithm.

3. Check if any
−→
bi
∗ = (b∗i,1, . . . , b

∗
i,n+1) has all b∗i,j ∈ {0, λ} for some fixed

λ for 1 ≤ j ≤ n. For any such
−→
bi
∗, check if xj = 1

λ
b∗i,j gives a solution

to (4.1) and if so, halt, otherwise continue.

4. Repeat steps 1 through 3 with M replaced by M ′ =
∑n

i=1 ai−M , then

halt.

The intuition behind this algorithm is that if a vector −→e is a solution to

(4.1), then the vector
∑n

i=1 ei
−→
bi has −M on the last position and −→e on the

first n positions; adding the last vector eliminates the last position. Since the

solution vector is binary, it should presumably be one of the shortest vectors

in L(−→a ,M).

The SV algorithm has been analyzed thoroughly and it has been shown

that the solution to (4.1) is indeed the shortest nonzero vector in the lattice
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spanned by vectors bi from (4.4) for almost all instances such that d(−→a ) <

0.645 . . . [LO85; Cos+92]. As stated earlier, though, the LLL algorithm does

not guarantee finding the shortest vector, which further decreases the chance

of success of SV.

We have implemented the SV algorithm using an implementation of LLL

from the NTL library [Sho]. We then tested this implementation on ran-

domly generated instances of subset sum with varying parameters. We have

analyzed the results to find characteristics of those instances that the SV

algorithm cannot solve.

In fact, Lagarias and Odlyzko state one possible reason for failure of the

SV algorithm in item (4) in the discussion at the end of [LO85]. If the vector
−→a contains many linear dependencies

n∑
i=0

aiλi = 0

with |
−→
λ | small, the lattice L(−→a ,M) will contain the short vector (λ1, . . . ,

λn, 0) for all M . If there are a lot of these small linear dependencies, the

lattice reduction algorithm may find those instead of the sought solution

vector.

The two important parameters we varied are the dimension n and the

density of generated instances. For dimensions, we considered 10, 20, . . . , 70,

and for densities, we tried 0.3, 0.4, 0.5, 0.6, and 0.645.

For each combination of these parameters, we generated 100 random vec-

tors −→a and for each such vector, we sampled 100 random nontrivial subsets

(i.e., neither the whole −→a , nor the empty set).

Table 4.1 shows the percentages of random instances solved by the SV

algorithm for all combinations of density and dimension. This table clearly

shows that the critical density above which the SV algorithm has a very low

chance of success decreases rapidly with increasing dimension.

The original article [LO85] contains a proof that if the density is below

0.645 . . . , the probability of L(−→a ,M) containing a vector shorter than the

solution to the subset sum instance approaches zero for n→∞. This means
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Table 4.1: Percentages of successfully solved random instances

for all combinations of density and dimension.

density

0.300 0.400 0.500 0.600 0.645

di
m

en
si

on

10 100.00 100.00 100.00 100.00 100.00

20 100.00 100.00 99.59 92.68 87.61

30 100.00 97.31 68.19 30.78 18.69

40 99.51 60.82 9.79 1.14 0.89

50 81.54 6.03 0.28 0.05 0.02

60 17.46 0.14 0.00 0.00 0.00

70 0.77 0.00 0.00 0.00 0.00

that the inability of the SV algorithm to solve high-dimension instances can

only be due to LLL not finding the shortest vector.

Indeed, according to theorem 4.7, the upper bound on the lengths of

short vectors found by LLL, compared to the shortest vector in the lattice,

grows exponentially in the dimension. In other words, the guarantee of the

shortness of vectors found by LLL becomes exponentially worse for large n.

A cursory look at some of the reduced bases computed by LLL for the

unsolved high-dimension instances rules out the small linear dependency ar-

gument stated above. There appear to be very few vectors whose last com-

ponent is equal to zero.

This observation suggests a possible method to improve the success rate

of high-dimension instances. If a good enough estimate of the function of

density for which a solution can be found with high probability, depending

on n, can be found, and if this function decreases only polynomially, it may

be possible to obtain a solution with high probability at a polynomial increase

in time complexity by using the reduction described in observation 4.6.
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Conclusion

In this thesis we accomplished three separate goals. First, we summarized

the most successful methods of analysis of online problems which have been

used to obtain better insight on various online problems recently.

Then, we improved an upper bound on the advice required for competitive

solutions of the disjoint path allocation problem and we established a lower

bound on the advice required for near-optimal solutions as well.

In the final chapter, we introduced a new model of algorithms with advice

which makes it possible to study offline problems as well. We offered some

rudimentary results which apply to the subset sum problem and other NP

problems in general. We showed how the general case of subset sum can

be reduced to a class of instances with low density and performed statistical

analysis on an algorithm designed specifically for these low-density instances.

We suggest multiple ways in which to extend our research. We note that

our lower bound on the advice complexity of competitive solutions for disjoint

path allocation is certainly not tight and offer a possible way to improve it.

The bigger area, however, is the newly-introduced model of offline com-

putation with advice in which there has been minimal research thus far and

which allows us to look at many problems that are considered to be well-

known in a new light.
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