COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

PROBABILISTIC MODELS FOR GENOME
ASSEMBLY WITH CHROMATIN INTERACTION
FREQUENCIES
DIPLOMA THESIS

2018
Bc. ASKAR GAFUROV

COMENIUS UNIVERSITY IN BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

PROBABILISTIC MODELS FOR GENOME
ASSEMBLY WITH CHROMATIN INTERACTION

Study programme:

Field of study:
Department:

Supervisor:

Bratislava, 2018
Be. Askar Gafurov

FREQUENCIES
DIPLOMA THESIS

Computer Science
Computer Science
Department of Computer Science

doc. Mgr. Bronislava Brejova, PhD.

11599116

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZAVERECNEJ PRACE

Meno a priezvisko §tudenta: Bc. Askar Gafurov

Studijny program: informatika (Jednoodborové $tidium, magistersky II. st.,
dennd forma)

Studijny odbor: informatika

Typ zaverecnej prace: diplomova

Jazyk ziverecnej prace: anglicky

Sekundarny jazyk: slovensky

Nazov: Probabilistic Models for Genome Assembly with Chromatin Interaction

Anotacia:

Veduci:
Katedra:

Frequencies
Pravdepodobnostné modely pre zostavovanie gemomov s vyuZitim
chromatinovych interakcii

Zostavovanie gendmov je bioinformaticky problém, ktorého cielom je urcit
neznamu sekvenciu genomu urcitého organizmu z dat produkovanych ré6znymi
technologiami sekvenovania DNA. Typické sekvena¢né data pozostavaji
z kratkych citani z cielového genému. Nedavno sa objavili metody, ktoré
na skladanie gendému pouzivaju aj data povodne urcené na objavovanie
interakcii medzi ¢astami chromozomov v jadre bunky. Cielom diplomovej
prace je o takyto typ dat rozsirit’ modely a algoritmy programu GAML, ktory
sklada genémy na zaklade pravdepodobnostnych modelov.

doc. Mgr. Bronislava Brejova, PhD.
FMFI.KI - Katedra informatiky

Veduci katedry: prof. RNDr. Martin Skoviera, PhD.
Datum zadania: 13.12.2016

Datum schvalenia: 14.12.2016 prof. RNDr. Rastislav Kralovi¢, PhD.

garant Studijného programu

Student

veduci prace

11599116

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT
Name and Surname: Bc. Askar Gafurov
Study programme: Computer Science (Single degree study, master II. deg., full
time form)
Field of Study: Computer Science, Informatics
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak
Title: Probabilistic Models for Genome Assembly with Chromatin Interaction

Frequencies

Annotation: Genome assembly is a computational problem in bioinformatics aiming to infer
an unknown genomic sequence of a given organism from data produced by
various DNA sequencing technologies. A typical sequencing data set consists
of short reads originating from the target genome. Recently, data originally
produced for exploring interaction among parts of chromosomes in a nucleus
was also used to improve genome assembly. The goal of the thesis is to extend
models and algorithms of the GAML framework for genome assembly based
on probabilistic models so that it supports such data sources.

Supervisor: doc. Mgr. Bronislava Brejova, PhD.

Department: FMFIKI - Department of Computer Science

Head of prof. RNDr. Martin Skoviera, PhD.

department:

Assigned: 13.12.2016

Approved: 14.12.2016 prof. RNDr. Rastislav Kralovi¢, PhD.

Guarantor of Study Programme

Student Supervisor

111

Acknowledgment:
I’d like to thank my family for their endless love and support, my supervisor
doc. Brejova for her guidance and patience, and fellow students in M-25 lab for creating

a unique working atmosphere.

Abstrakt

V tejto praci sme sa venovali tlohe zostavovania genémov pomocou dét, popisujicich
interakcie jednotlivych ¢asti chromozémov v jadre bunky (nazyvané Hi-C). Nadvéizujuc
na pracu Kaplana a Dekkera [1], vyvinuli sme novy pravdepodobnostny model pre
Hi-C data, prisposobeny programu GAML [2], ktory sklad4d genémy prave na zéklade
pravdepodobnostnych metod. Nakol'ko pévodné implementéacia GAMLu nebola uréenéa
pre modifikdcie, museli sme najprv prepisat zna¢nu cast jeho funkcionality do novej
implementacie, nazvanej GAML2. Experimentélne vysledky ukazuja, Ze nami rozsireny
GAML2 dokaze skladat genémy lepsie za pouzitia Hi-C déat.

KTacové slova: Zostavovanie genémov, maximalna vierohodnost, pravdepodobnos-

tné modelovanie, Hi-C, frekvencie chromatinovych interakcii, GAML

Abstract

In this paper we have addressed the task of genome assembly using the data of chro-
matin interactions (Hi-C). Inspired by the work of Kaplan and Dekker [1], we have
proposed our own probabilistic model for Hi-C data, suited specifically for the GAML
framework for genome assembly [2]. As the original GAML implementation was a
prototype not meant to be extended, we have reimplemented most of its features in
the second implementation, called GAML2, and then added our model and algorithms
to process Hi-C data. We have shown that our implementation of GAML is able to
perform better with Hi-C data available.

Keywords: Genome assembly, maximum likelihood, probabilistic modeling, Hi-C,

chromatin interaction frequencies, GAML

Contents

Introduction

1

2

3

Background

1.1 Genome assembly

1.2 Conventional methods of genome assembly
1.2.1 Overlap-layout-consensus method
1.2.2 De Bruijn graph method
1.2.3 Measuring the quality of genome assembly

1.3 Probabilistic approach to genome assembly
1.3.1 Probabilistic model for a genome assembly in GAML framework
1.3.2 Approximation of the probabilistic model
1.3.3 Simulated annealing
1.3.4 GAML implementation details

1.4 Chromatin interactions in genome

Enhancements of GAML2 framework
2.1 Better probability model for single reads
2.2 Adding apriori probability of an assembly
2.3 Penalty for spuriously joined contigs
2.4 Support of paired end reads
2.5 Existing moves in simulated annealing
25.1 "Break"move
2.5.2 "Random extend" move
2.6 "Join with advice" move in the simulated annealing
2.7 "Untangle crossed paths" move in the simulated annealing
2.8 Caching of evaluated alignments

2.9 Improved simulated annealing

Usage of Hi-C data in GAML framework

3.1 The probability model for Hi-C data.
3.1.1 The probability model for cis-reads
3.1.2 The probability model for trans-reads

vi

© © 0 I O O w W

— = = =
S =W N

19
19
20
21
22
22
22
23
23
24
25
26

CONTENTS

3.1.3 Updating the probability

3.2 Implementation details of model evaluation for Hi-C data

4 Experimental results
4.1 Verification of the model for Hi-C reads
4.2 GAML2 experiments

4.2.1 Pipeline

4.2.2 Estimating of parameters for experiments.

4.2.3 Results

Summary

vii

31
32

33
34
37
37
39
39

42

List of Figures

1.1

1.2

1.3

1.4
1.5

2.1
2.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

DNA structure (Public domain) (source: https://commons.wikimedia.
org/wiki/File:DNA_simple2.SVE) v v v v v v i 3
Deoxyribose with a phosphate group, attached to its 5’ carbon (Public
domain) (source: https://en.wikipedia.org/wiki/File:Nukleotid_
UL SVE) « o o o v v e e e e e e e e e 4
Paired end reads (Creative Commons CC0 1.0 Universal Public Domain

Dedication) (source: https://commons.wikimedia.org/wiki/File:Mapping_

ReadS.PRE) - -« « o e e e e 7
GAML program flow 15
Chromatin interaction capturing (source: [3]) 17
Detection of poorly covered bases 21
Change types for “Untangle crossed paths” move 25
Sizes of chromosomes of Saccharomyces cerevisiae 33
Interaction rate between chromosomes 34
Trans interaction rate estimation 35
Estimation of cis-reads count for chromosomes 36
Coverage for chromosome XII 37
Insert sizes for cis-reads on every chromosome 38
Experiment pipeline Lo 38
Score during the computation of GAML2 40

viil

Introduction

The discovery of DNA molecules and of their role as transmitters of hereditary infor-
mation and “blueprints” for every living organism was one of the turning points of the
twentieth century. This discovery led, on the one hand, to better under- standing of
our world and connections between different species. On the other hand, it allowed
to better understand ourselves and in particular how to cure and prevent diseases in
better ways.

The discovery of DNA sequencing techniques was the key moment for molecular
biology and genetic studies. These techniques were refined over several decades until,
in year 2001 [4], the humanity successfully decoded the human genome. This was
possible due to our substantial advances in engineering and Chemistry, but also in
Computer Science. The amount of calculations, required to assemble long genomes
remains gigantic even for today’s computers.

Programs that assist in the task of decoding the genome are called sequence as-
semblers. Their task is similar to the task of a child playing with puzzle. They take
small pieces of digitised DNA sequences and try to reconstruct the original picture, the
genome, from them.

Although modern sequence assemblers are quite usable, they still have several draw-
backs. Firstly, they rely mostly on heuristics approaches (similarly to a child from the
metaphor above). Secondly, they are suited for specific types of data and are typically
incapable to combine several types of data at the same time.

These issues have been addressed by a probabilistic approach to the task of genome
assembly, developed by Boza during his Ph.D. studies at our faculty [2]. Our goal is
to enhance his framework GAML and adapt it to new types of sequencing data.

This thesis consists of four chapters. In the first chapter, we will give an overview of
genome assembly, current approaches to it, and describe the probabilistic approach to
this task, implemented in GAML framework. We will finish this chapter by describing
a new type of data, which until recently was not used in this task: the frequencies
of chromatin interactions (Hi-C). In the second chapter, we will describe our work on
GAML2, the second implementation of the GAML framework. In the third chapter,
we will describe a new probabilistic model for Hi-C data, compatible with GAML2. In

the fourth chapter, we will show experimental results of genome assembly with GAML2

LIST OF FIGURES

and Hi-C data.

Chapter 1

Background

In this chapter we will briefly cover basics of genome assembly: what it is, what methods

are used and what are main challenges. Then we will describe probabilistic approach
to this task and in particular the details of the GAML framework. We will finish this

chapter with a description of a new type of data potentially useful for genome assembly:

frequencies of chromatin interactions (or Hi-C for short).

1.1 Genome assembly

Hereditery information of all living organisms (except
some types of viruses) is stored in molecules of deoxyri-
bonucleic acid (or DNA for short), located in the cells.
A DNA molecule is usually formed by two polymer
strands, forming a so-called double heliz (figure 1.1).
Each strand of DNA is a chain of monomers, called
nucleotides. Each nucleotide consists of one of four
nitrogen-containing nucleobases (adenine (A), cytosine
(C), guanine (G) or thymine (T)), a phosphate group
and a deoxyribose (sugar). Nucleotides in a chain are
joined together by covalent bonds between the phos-
phate group of one nucleotide and the sugar of another.

The phosphate groups are bounded with the 5" and 3’

—= = Adenine
1 = Thymine
=3 = Cytosine

== = Guanine

[]=Phosphate

backbone

Figure 1.1: DNA structure

carbons of the deoxyribose (Figure 1.2). Therefore, one of the ending bases of a DNA

strand has a “free” 3’ carbon (bound with a —OH group instead), and the other end

of the strand is ended with a phosphate group, bounded on the 5’ carbon of the last

nucleotide. These ends are referred to as 5’- and 3’-ends. Nucleotides of two strands

are bound together by hydrogen bounds between their nucleobases, according to base

pairing rule: adenine bounds with thymine, and guanine bounds with cytosine. The

CHAPTER 1. BACKGROUND 4

orientation of the strands in the molucle is reversed, i.e. a nucleobase of the 5-end of
one strand is bounded to a nucleobase of the 3’-end of the other strand. Each DNA
molecule in a cell is called a chromosome. A full collection of chromosomes in a cell is
called a genome.

We represent a DNA molecule as a string of letters

A,C,G and T, corresponding to the order of nucleotides O
of one of its strands starting from the 5-end. For every O=P—O0O
DNA molecule consists of two complementary strands, Cl)H

by reversing the order of the string (to preserve the ori-

entation of 5" and 3’ ends) and replacing all letters ac-

cording to the base pairing rule we can obtain another
representation of the same molecule (e.g. ACCGTCA
and TGACGGT represent the same DNA sequence).

. o Figure 1.2: Deoxyribose with
DNA sequencing is the process of determining the

_ _] a phosphate group, attached

precise order of nucleotides in each chromosome of a i
] ~ toits 5 carbon

genome. The first successful results were obtained in
early 1970s. Since then methods of DNA sequencing have been improved, reducing
cost and time and automating the whole process. Due to inability of sequencing tech-
nologies to capture the whole sequence of long DNA molecules!, DNA molecules are
first fragmented into smaller chains, which are digitised by various methods. The task
of reconstructing the sequence of the original molecule from these digitised fragments,
called reads, is called sequence assembly (or, in case of sequencing of an entire genome,
genome assembly).

More precisely, DNA sequencing process consists of:
1. Extraction of the DNA from cells
2. Fragmentation of extracted DNA molecules

3. Amplification — to create additional copies of DNA fragments to increase chance

that every region of DNA will have sufficient coverage by reads
4. Sequencing of DNA fragments, producing reads

5. Computational assembly of reads

To be able to speak about genome assembly, we need to establish several formal

definitions:

e DNA sequence S = 5153 ... 5, is a finite string over an alphabet {A,C,G, T, N}.

|S] := n denotes a length of the string. N stands for "unknown nucleotide".

!Some genomes have more than 100 billions basepairs [5]

CHAPTER 1. BACKGROUND)

e Complementary base cb: {A,C,G,T,N} — {A,C,G,T, N} is a function over a
set {A,C,G,T, N}, defined as follows: cb(A) =T,cb(T) = A, cb(C) = G, cb(G) =
C,ch(N) = N

e Reverse complement rc : {A,C,G, T,N}" — {A,C,G,T,N}" is a function over
DNA sequences, defined as follows: rc(sq...,) = cb(s,)cb(sp—1) ... cb(s2)cb(s1)

e Chromosome S is a DNA sequence. We will refer to its two representations S

and rc(S) as to strands of the chromosome.

o Assembly A Cfinie {A,C,G, T, N}" is a finite (multi)set of DNA sequences. Each

DNA sequence in the genome assembly may be referred to as contig

e Single read r is a finite string over an alphabet {A, C, G, T, N} (sometimes N is
excluded from the alphabet)

e Paired read r is a pair of single reads. The individual single reads are mostly

reffered to as left read r; and right read

e Global (end-to-end) alignment of DNA sequence A to DNA sequence B is a se-
quence of single-letter operations (substitution of a symbol, insertion of a symbol,
deletion of a symbol) that transform the string A to the string B. If we assign
a penalty for each type of edit operation, we can evaluate the penalty score of a
global alignment as a sum of penalties of individual edits. The alignment with
minimum possible penalty score of operations is called best global alignment. The

penalty score of the best global alignment is called edit distance between A and B.

e (Read) alignment of a read A to a DNA sequence B (where |B| > |A]) is an

global alignment of A to a contiguous subsequence of B.

The goal of the genome assembly is to produce an assembly equal or very close to
the original genome, based on an input set of reads. However, this definition cannot
be used in case that the given genome has not been yet sequenced. Such task is called
de novo genome sequencing. In that case, the goal is to produce the most plausible
assembly with respect to our prior knowledge of biology.

One of the attempts to convert this task to exact computational problem is a so-
called problem of shortest superstring. The input is a set of strings R = {ry,...,r,},
and the demanded output is the shortest possible string A* that contains every string
r; as its continuous substring. This formulation suffers from the fact that genomes are
not evolved as a succinct storage of the information (e.g. some genes are known to
have several copies in a genome).

Even in this simplified case, the task of genome assembly from individual reads is

N P-hard [6]. Moreover, assembly is complicated by several factors:

CHAPTER 1. BACKGROUND 6

e contamination — there may be reads from other molecules (e.g. from vector

bacteria, used in amplification of DNA fragments)

e unequal coverage — some parts of the DNA molecule may have more correspond-
ing reads in the resulting library as others. Some parts could even have no

corresponding reads and thus be completely invisible to us.

e amplification and sequencing errors — each read (string representation) may

contain errors (insertions, deletions, substitutions, etc.)

e repetitive sequences — the original DNA molecule may contain the same subse-

quence in several places

e tandem repeats — there may be a short sequence repeating itself many times

(e.g. AAAACAAACAAACAAACAAAC..)

e complementarity — reads are produced from both strands of a DNA molecule.
For example, if one strand is ACCTGCTAA, the other strand is TTAGCAGGT,
which is obtained by reverse complementing. We could obtain reads ACCTGC
or TTAGCAG

In order to overcome problems with repetitive segments, some technologies (e.g.
[lumina [7]) offer so-called paired end reads, where both ends of a DNA fragment
are sequenced (see figure 1.3). This way we get both precise reads and long-range
information about sequence. Other technologies (e.g. PacBio [8]) offer longer reads

(20,000 bp), but with higher sequencing error rate

1.2 Conventional methods of genome assembly

There are two major approaches to genome assembly: overlap-layout-consensus [9]
(or OLC for short) and de Bruijn graphs [10] (DBG for short).

1.2.1 Overlap-layout-consensus method

This method is based on the following idea: if an end of one read is nearly identical
to a beginning of another (i.e. they overlap), then they probably represent the same
segment of the original sequence. Such overlapping segments are merged into continu-
ous segments (called contigs). These contigs are then joined further using long-range
information from paired or long reads (this sequences of contigs are called scaffolds
and this process is often being referred to as scaffolding). In this step, it is sometimes

allowed to leave some bases undefined (often denoted as “N”), if we are convinced that

CHAPTER 1. BACKGROUND

: Reference Genome Sequence

\]

~N
~N
N
— ~N
35 bp identified 330 - 430 bp unknown sequence | 35bp identified ‘

Figure 1.3: Paired end reads

I

two particular contigs lie in the same chromosome and have the predicted distance,
but we have little information about the basepairs between them.

The overlap-layout-consensus method is a standard method for sequencing from
long reads (e.g. PacBio, Sanger). The main issue with this approach is that it is
computationally heavy.

This method is used e.g. in Arachne [11], Canu [12] and Celera [9] assemblers.

1.2.2 De Bruijn graph method

This approach works on the assumption that the sequencing process generates large
amount of data, and therefore we can afford to lose some of the information.

For simplicity of explanation, we assume that the genome consists of only one
chromosome, which is fully covered by reads. Moreover, we assume that every read
comes from the same strand of the chromosome, so we may ingore the complementarity
of the data.

At the beginning, each read is split into overlapping fragments of length k (referred
to as k-mers). We then build de Bruijn graph from these k-mers by the following rules:

e Let K be a set of all k-mers, produced from the data
e Nodes of de Bruijn graph is a set of all (k — 1)-mers, produced from the data

e Nodes ajay...a,_1 and biby...b,_1 are connected by an edge iff as...ap_ 1 =

CHAPTER 1. BACKGROUND 8

bi...bp_o and ay...ap_1b_1 € K

In an ideal case, the solution to the assembly problem then would be an Eulerian
path of the graph. However, even then it may differ from the original sequence (due
to information loss). In practice, de Bruijn graph could have several Eulerian paths or

none at all. Therefore, many heuristics are used, for example:

e Removal of nodes and edges, that likely correspond to sequencing errors

e Creation of multiple edges between two nodes, if there is evidence that the cor-

responding k-mer has multiple occurences in the original sequence

e Merging of nodes, that correspond to non-branching paths in the graph (these

nodes are then considered contigs in the output)

This method is employed e.g. in SPAdes [13] and Velvet [10] assemblers.

1.2.3 Measuring the quality of genome assembly
Total assembly length

The total length of an assembly serves as an estimation of the genome size. Because
the genome size could be estimated with non-sequencing methods [5], this metric could

be used even in de novo assembly.

Nz and Lzx statistics

Nz statistics targets the contiguity of an assembly, i.e. whether contigs or scaffolds
are sufficiently long. This metric does not depend on a real genome, and therefore can
be used in de novo assembly. Assume we have an assembly A = (Sy,...,S,). Let M
denote the total length of scaffolds. Nz statistics of an assembly A is then defined as a
maximum possible length [such that scaffolds with length at least [have total length

at least % of the total assembly size. Formally,

x
Nz(A, G) := max {z eN: S; 1S [1S| > 1] > mM}
The x is often set to 50 or 90, so the statistics is then called N50 or N90.

We will show the example of an evaluation of N50 statistics. Let our assembly have
scaffolds with lengths (50,60, 70,80, 100, 120). The total assembly length is therefore
equal to 480. Then the N50 is equal to 80, because 80 + 100 + 120 = 300 > 240 =
50% - 480.

The Lx statistics is defined as a smallest number of contigs that have total length
is at least 2% of a genome size. In other words, Lx is equal to the number of contigs

of length greater or equal to Nx. For the example above, the L50 would be equal to 3.

CHAPTER 1. BACKGROUND 9

NAzx and LAx statistics

This statistics are very similar to Nz and Lx. The only difference is that all scaffolds
are first aligned to the real genome and misaligned scaffolds are split into smaller blocks
at the misassembly events. The resulting assembly is then passed as an input for the
Nz (Lx) statistics, described above. Note that this metric could not be used in de
novo assembly, as the real genome sequence is used to identify misassemblies.
However, if we know the genome, this metric is more useful than Nz and Lz,

because Nx and Lx can be easily fooled by concatenating all contigs into one scaffold.

1.3 Probabilistic approach to genome assembly

Due to the stochastic character of genome sequencing, it is only natural to define the
task of genome assembly in the language of theory of probability. This approach has
several potential advantages: first, we can incorporate our knowledge of molecular
biology into our model; second, instead of devising custom heuristics for each type
of data, we can devise a precise model and then find the best solution using general
well-established heuristic frameworks; third, we can use several types of data without
discarding any information.

Ghodzi et al. in [14] devised a generative statistical model to evaluate the quality
of a genome assembly. Boza et al. [2| later adapted their model to directly find a
high-quality assembly by finding a maximum a posteriori probability estimate. Their
work resulted in an assembler called GAML. The main challenge of this approach are
computational requirements.

The general idea is to define a conditional probability P(X|0) of observations X
(in our case, reads) with respect to parameters of the model 6 (in our case, a genome
assembly) and a prior probability of parameters P(f). Then, we can find the optimal

parameters by maximisation:

P(X|0)P(6)

0*(X) = argmax P(8|X) = arg max
() = argmax P(81X) = argmax — 5

= argmax P(X|0)P(0)
0

The rest of this section discusses the original GAML framework in detail.

1.3.1 Probabilistic model for a genome assembly in GAML
framework
To better explain the model, we will first establish a simplified model for single reads

with several assumptions. First assumption is that a genome consists of only one

chromosome. Second, there are no sequencing errors, i.e. each observed (single) read is

CHAPTER 1. BACKGROUND 10

a substring of a chromosome, either from a direct or a reverse strand. Third, every read
is sampled independently from every position of the chromosome with equal probability.
Fourth, every (single) read has the same length I.

With these assumptions in mind, the probability of a single read r to be observed
from a chromosome S is simply:

ar g + ar,rc(S)

P(T’S):2<|S|—z+1>’

where a, g stands for the number of occurences of the read r as a (contiguous) substring

of strand S. Formally,
ars=[{ie{l,...(|S|—1+1)} | Sli:i+l—1]=r}

Then the probability of observing a read set R = {rq,...,r,,} from the chromosome
S is simply the product of individual probabilities:

m m

. A . Qr; .S +ari,rc(S)

Term a, g could be also be written as a sum over Iverson brackets (Iverson bracket [A]

is equal to 1 if condition A is true, and is equal to 0 otherwise):

n—l+1
arsi= > [r:S[i:i+l—1]
i=1
We can interpret i-th term of the sum as a level of our belief that, if we start sequencing
from the -th position of the strand S, we would generate the read r. Due to our second
and fourth assumptions, this term could only be either 0 or 1.

But, if we abandon the second assumption and allow sequencing errors, the read
could potentially be obtained from any position in the genome. Ghodzi et al. modelled
this belief as €9(1 — €)™, where m and ¢ are the numbers of matches and errors (in-
sertions, deletions and substitutions) respectively in a best alignment of read r to the
respective subsequence of the chromosome?, and ¢ is a chance of error. This implies
that the probability of each type of error is the same. We will denote this belief as a
b;(r,.S). Using this notation, the probability of observing a read r from a chromosome
S is equal to:

Plris) = 3 S b(5e(5)

i=1
Note that now every base of the chromosome may be a starting position, although
not very believable. We have also simplified 2(|S| — [+ 1) to 2|S| as [— 1 is typically

negligible compared to the chromosome size |S].

2the ¢ is essentially a Levenshtein distance between the read and a respective subsequence

CHAPTER 1. BACKGROUND 11

We are now ready to abandon our first assumption, and examine the situation
where the genome A consists of several chromosomes Sy, Sy, ...,S,. Due to our third
assumption, each read could be generated from any chromosome with the probability,
proportional to its length:

_ iP(rlSk)- iSk\ _ Dkt Pn(r\Sk) 1Skl _
1 Zj:l |Sj| Zj:l |Sj|

Skl

1 n
=3 bi(r, Sk) + b;(r,re(S
22j1|8j|;; (r, Sk) + bi(r, re(Sk))

Notice that term |Si| has disappeared from the inner summation part of the equation.

Now we are ready to extend this model to the paired reads. We assume that
a paired read is a pair of a prefix and a reverse complement of a suffix of an unknown
single read. We further assume that both parts of a paired read have the same fixed
length [, and that the length of the original unseen single read (we will refer to it as
insert length) has the distribution pjpser. In the GAML framework, pi,sert is set to be
a normal distribution and the parameters 1 and o2 are estimated from the data.

The probability of obtaining a paired read r = (r,72) from a chromosome S is

therefore:

IS 1S
i(r1, S N o bi(ry,re(S)) . .
;jzl(2’5«' TZaTC(S))poment@?])‘{' 215 bj<7"275)poment(],l) ,

where Porient 18 equal to pipsers iff 71 and ro are well-aligned (i.e. the prefix comes

before the suffix), and 0 otherwise. Formally,

~ L. pinsert<j+l—1—i) 1f2§j_|_l_1
pomem&(Z j) = .
0 otherwise

In cases of several reads and several chromosomes, paired reads behave in the same
way as single reads.

As was told earlier, one of the advantages of this approach is that we can use
several datasets at the same time. Assuming read sets R;, Rs,... Ry are conditionally

independent with respect to an assembly A, the joint probability is a simple product:

P(Ry,...Ry|A) - P(A) P(Ri|A)...P(Ri|A)- P(A)
P(Ry,... Ry) B P(Ry, ... Ry)

We can omit P(Ry, ... Ry) as it remains constant during optimisation process.

We did not specify apriori distribution of an assembly P(A) in this section, be-
cause in the original GAML framework it is set to be a constant, essentialy reducing
the problem to maximising a likelihood function (hence the name of the framework:

"Genome Assembly by Maximum Likelihood").

CHAPTER 1. BACKGROUND 12

1.3.2 Approximation of the probabilistic model

The obvious problem of this model is that in order to evaluate it we have to align
every read of a dataset to each position of each chromosome, which is immensely time-
consuming. It is also obvious, that each read has only a few places, where it could align
well, therefore for most of positions the belief score would be negligible. For example, a
read of length 300 bp is expected to have 300 — % = 225 substitution errors if aligned
with a random part of a DNA sequence. For the error rate € set to 0.01 it would gave
a belief score of 0.012% - 0.99™ ~ 0.47 - 10~%Y. Even if we will sum this score among 1
billion positions, it would give us the total score equal to 1074 (which is way below
the limit of double-precision floating point variables). In comparison with the belief
score of a single perfect matching 0.993%° = 0.049 it is truly negligible.

Therefore, the total probability is evaluated not for every position, but only where
a good alignment exists. A good alignment for a single read is defined as an alignment
with fewer than max_err errors of any type. For purposes of this section, we define
an alignment of a single read r to a strand S as a tuple a = (p, m, q), where p stands
for the starting position on the strand, m stands for the number of matches and q
stands for the number of errors in the alignment. We may refer to the components of
an alignment a as a,, a,, and a, respectively. We denote a set of good alignments of a
single read r to a strand S as AL(r,S). We will also denote our model for observing
a single read from a given position as pginge(a) = (1 —).

Using this notation, we are now ready to write down an approximation of a proba-

bility of a single read r being observed from a chromosome S

1 DPsin le(a) Psin le(a)
R I T
a€AL(r,S) ’ | a€AL(r,rc(S)) | ’
1
= 5Tl Z psmgle(a)
215
a€AL(r,S)JAL(r,rc(S))
To reduce the bulkiness of formulas, we will introduce some additional notations.

We denote a set of alignments of a single read r to both strands of a chromosome S as
BAL(r,S). Formally,

BAL(r,S) := AL(r,S) x {0} U{(|S| = p+ 1,m,q)|(p,m,q) € AL(r,rc(S5))} x {1},

where x denotes the Cartesian product of two sets.

Informally, we added the information about whether the read was aligned to the
direct or reverse strand as the fourth value in the tuple (we will refer to it as a,), and
unified the position of the alignment. This notation allows to evaluate the insert size

and mutual orientation of reads more simply.

CHAPTER 1. BACKGROUND 13

The approximation of a probability of a paired read r = (r1,72) being observed

from a chromosome S is then:

1
P(T|S) ~ oo Z psingle(al)psingle(a2)porient(a17 a2)a

2|5|
a1€BAL(r1,S)
ag€BAL(r2,8)
where porient(a1,a2) is equal to pipsers if the mutual orientation of the two alignments

is correct, and zero otherwise. Formally,

0 ite,+yo #1Vy,—z, <l

Porient (T, Y) 1= { .
Dinsert(Yp — Tp) Otherwise

In case, that a read has no good alignments, this formula would raise zero, thus

reducing the total result to zero too. To prevent that, we restrict the probability P(r|A)

of each read to be at least e“t¥ for a single read and e“T#(1+2) where [is the length

of a single read, [; and [y are the lengths of left and right parts of a paired read, and &

and c are the scaling constants. Ghodzi et al. [14] proposed this scoring system as an

analogy to the case that the read would be added as a new contig to an assembly.

1.3.3 Simulated annealing

The simulated annealing [15] is a metaheuristic method for finding a global optimum
of a given target function (in our case, the posterior probability of the assembly). This
approach is an extension of a simpler method, called hill climbing or local neighbourhood
search.

The idea of hill climbing is simple: First, we define a relation called neighbour (hence
the name of the method) between elements of the space of all possible solutions (in our
case, all genome assemblies). All points that are neighbouring with a given point, are
called neighbourhood of the given point. Second, we choose a starting (initial) point
in the searched space. Third, we iteratively look at the neighbouring points of the
current point, evaluate their target function and choose the best one. If no point in the
neighbourhood is better than the current point, we stop and return the current point
as the result. If the defined neighbourhood is too big to evaluate at each iteration, one
can pick a point from the neighbourhood at random and see if it is better. In that
case, the algorithm is usually terminated after a certain number of iterations.

The drawback of the hill climbing method is that there is no guarantee that the
result is a global optimum (not just a local one). The tendency of hill climbing to end in
a local minimum near the starting point is addressed (although still with no guarantees)
by simulated annealing. The difference between the two methods is that in the latter,
it is allowed to choose a worse solution if no better is available. The probability

of transition to the worse solution depends on the difference of the target function

CHAPTER 1. BACKGROUND 14

values — bigger loss means lower chance of the transition. The probability of picking
a worse solution is also governed by a parameter called temperature — higher the
temperature means greater chance of transition to a worse solution. The temperature
is usually set to be very high at the beginning, and then gradually decreases until it
eventually reaches zero (this process is therefore being referred to as a cooling schedule).
This method is based on an analogy with annealing in metallurgy, a technique to
eliminate defects in a material by heating it up and then cooling in a controlled manner.

There are many ways to choose the transitional probability and the cooling schedule.

In GAML framework, the temperature of n-th iteration is chosen as

T
T(”) = —On’
log (1 + 3)
where d is a constant called divisor, which governs the pace of cooling, and Tj is an
initial temperature. The transitional probability from a point xz to a point z’ (for a

maximisation) is then defined as

1 if f(2') > f(x)

f@)—f(=)

Ptransit(xv iCl) = .
exp (T) otherwise

1.3.4 GADML implementation details

In GAML framework, the searched space for simulated annealing is defined as a multiset
of all finite walks (i.e. sequences of coincident® nodes) in a de Bruijn graph, constructed
from input reads by Velvet assembler. Velvet removes nodes that likely correspond to
sequencing errors and merge nodes that are likely consequent in the genome. Therefore,
nodes of the graph may correspond to longer DNA sequences. GAML obtains both
reads and the de Bruijn graph as its input. The initial assembly is chosen as a set
of walks of length 1, consisting of nodes with corresponding DNA sequences that are
longer than 500 bp. Such nodes are called big or long (the rest of nodes are called
small or short).

We will use terms paths and walks interchangeably. Both terms would correspond
to the common meaning of a graph walk, i.e. a sequence of coincident nodes, that are
allowed to have multiple occurrences in the sequence.

The neighbourhood of a multiset of paths (walks) is defined by the allowed set of
changes on them, called moves (e.g. split one path into two, join two paths, etc). These
moves are described thoroughly in chapter 2.

The target function (or score) of an assembly is defined as a logarithm of posterior

probability of the assembly with respect to input read sets, divided by the total length

3Nodes are coincident iff they are connected by an edge in a graph

CHAPTER 1. BACKGROUND 15

deBruijn graph

Make a move

Proposed
assembly

Initial
assembly

Extract big nodes
(>500 bp)

Current
assembly

Read sets

Eval difference between
old and proposed

Added Removed
walks walks

Align reads to
added/removed walks

Alignments
to added walks
Update
current assembly

Alignments
to removed walks

Eval probability
change

Accept/Reject changes
based on temperature

Figure 1.4: GAML program flow

CHAPTER 1. BACKGROUND 16

of the reads. Formally,

log (P(R1|A)P(R2|A) . P(ka)P(A))
fscore(Aa R17'°'7Rk) = Zk Z
=1 reR;

The normalisation by the total length of input reads has no impact on the topology of

Ti|

the searched space, but it is convenient for tuning of the cooling schedule parameters.

We will call the contribution of individual paths (walks) of an assembly to the
resulting total score as to path’s score.

The computation flow of GAML is depicted in figure 1.4. As we have mentioned
earlier, the initial assembly is created from sufficiently big nodes of an input de Bruijn
graph. In the beginning of each iteration, a random type of change (move) is picked
and applied to the current assembly, producing the new assembly. If the picked type of
change fails to produce a viable move, then new changes are generated until we would
obtain a viable one (without the change of the temperature, as it is still the same
iteration).

It is crucial not to evaluate the total score of the new assembly from scratch in each
iteration, as the aligning of reads to the paths is the most time-consuming operation.
Instead, we compare the old and the new assemblies and determine the difference
between them, i.e. added and removed paths. Then we evaluate the alignments for
these paths. Based on the obtained alignments, we evaluate the score difference between
the old and new assemblies.

If the score difference is positive (i.e. the new assembly is better than the old),
we accept the change, store the new assembly as the current and move on to the next
iteration. If the score difference is negative (i.e. the new assembly is worse than the
old), we decide whether to accept it based on the temperature of this iteration (as it

has been described above in subsection 1.3.3) and then move on to the next iteration.

1.4 Chromatin interactions in genome

DNA molecules in a nucleus are not stored as linear molecule, but in a very compact
structure, called chromatin. In order to study this structure, scientists evolved several
methods ([3, 16-19]) to capture fragments of DNA that are at close physical proximity
in a nucleus. We will briefly describe the Hi-C method by Lieberman-Aiden et al. |3]
(figure 1.5).

First, the DNA is treated by formaldehyde to crosslink fragments of DNA that are
spatially close. Second, the segments of DNA, connected by formaldehyde, are cut out
from the rest of the DNA structure. Third, the ends of these two segments are “glued”
(ligated) together to form a single double-stranded DNA molecule. Fourth, the regions

CHAPTER 1. BACKGROUND 17

Crosslink DNA Cut with Fill ends Ligate Purify and shear DNA; Sequence using
— restriction and mark e pull down biotin paired-ends
Hindll enzyme with bistin Nihel \

) N f

= / 1|

AR

Figure 1.5: Chromatin interaction capturing

LI
| -h

l;

near the ligation joints are cut out and both ends of resulting segments are sequenced
by Illumina technology, producing paired reads.

The resulting parts of the paired reads come from spacially close regions of the
DNA. By aligning these reads to the genome, one can evaluate mutual interaction
rate (i.e. the number of aligned reads) between regions (e.g. 100 kb long segments)
of the genome. The interaction rates closely correlate with physical proximity, and
therefore are often called contact maps. These contact maps are essential for devising
and verifying models of macrolevel structure of DNA molecules in nuclei.

Later, Kaplan and Dekker in [1] adapted this type of data for genome scaffolding.
They established two fundamental patterns that Hi-C reads exhibit: cis-trans-ratio
(CTR) and distance-dependent decay (DDD). The CTR pattern means that interaction
rate between segments that are on the same chromosome (cis-segments) is much higher
than between two segments from different chromosomes (trans-segments). The DDD
pattern means that the interaction rate between two segments on the same chromosome
is roughly exponentially decreasing with the genomic distance between them.

In their article [1], the authors used Hi-C data in two tasks: adding a small amount
of contigs to the mostly completed assembly, and scaffolding of contigs during de novo
assembly. We will discuss their approach to the latter task.

The input for a task is a set of contigs, and a dataset of Hi-C paired reads. The
scaffolding runs in three phases: evaluation of interaction rates, clusterisation to obtain

putative chromosomes and ordering contigs in the individual clusters.

Evaluation of interaction rates First, Hi-C reads are aligned to the contigs, each
part of the paired reads separately. Second, the interaction rate is evaluated between
every pair of contigs. We will denote the number of interactions (the number of well-

aligned trans-reads) between two contigs S; and S; as h(S;, S;).

Clustering The goal of this phase is to determine the number of chromosomes and

also assign individual contigs to them. This goal is achieved by employing hierarchical

CHAPTER 1. BACKGROUND 18

agglomerative clustering [20], utilising the CTR pattern, i.e. contigs that belong to the
same chromosome should have higher interaction rates. The resulting clusters, formed
of the contigs, correspond to the chromosomes.

The clustering method requires a definition of a distance between two clusters to
work. The distance between two contigs S5; and S; is chosen as a logarithm of the
number of trans-chromosomal reads between them, flipped from similarity measure to

distance by subtracting the data from the maximum value among all pairs of contigs:
D(S;, S;) = log (1 + max,2.h(Sy, Sy)) — log (1 + h(S;, S;))

Constant 1 is added to avoid undefined log 0.
The distance d(C, Cy) between the two clusters Cy and C} is defined as an average

distance between pairs of contigs in them:

1
~ G-Iyl 2 DiSis)

S1 GCl,SQECQ

diSt(Cl, CQ) :

Ordering of the contigs in the clusters The goal of this phase is to order the
contigs in each cluster to create the resulting chromosomes. This phase utilises the
DDD pattern, i.e. the interaction rate between the contigs should be proportional
(not necessary linearly) to their distance in the chromosome. The goal is achieved by
multidimensional scaling [21].

The method works in the following way. First, we evaluate a so-called dissimilarity
matriz D, where D, ; denotes the dissimilarity (or distance) between i-th and j-th
contig in the cluster, based on their interaction rates. Second, we find a set of points in
a one-dimensional Euclidean space (i.e. a line), which satisfies the dissimilarity matrix
the best (i.e. their distance matrix is as close as possible to the dissimilarity matrix of
the contigs). Third, we use the resulting positions of points on the line as the ordering
for the contigs on the chromosome.

Kaplan and Dekker defined the distance (dissimilarity) and the measure of quality
of their resulting solution in a rather convoluted way, based on their probability model.
They tested this methods on data from a human genome, and the experiments were

very promising.

Chapter 2

Enhancements of GAML2 framework

The original GAML implementation [2] was a prototype not designed for extendabil-
ity. Boza had started the work of rewriting GAML, naming the new implementation
GAML2 [22]. Unfortunately, his work was not finished, and GAML2 has been missing
several key features. Nevertheless, we have decided to use this incomplete implemen-
tation as our basis.

In this chapter, we will describe our work on reimplementing and enhancing GAML2.
Because of the incomplete documentation of GAML, some features were redesigned al-
most from scratch. It is important to mention, that most of design decisions were

resolved in favor of time and memory efficiency.

2.1 Better probability model for single reads

As we have described in section 1.3, Ghodzi et al. [14], as well as Boza [2| used
g9(1 — &)™ for modelling the probability of an alignment with m matches and ¢ errors.
This formula raises from the generative representation of the sequencing process. At
each step, the sequencer either will read the current basepair correctly with the prob-
ability equal to (1 — ¢), or will commit an error (substitution, insertion or deletion)
with probability equal to . We have two objections to this formula.

First, if the chance of commiting each type of error is the same (which both articles
assumed), then the chance of producing individual type of error is equal to 5. Therefore,
the resulting belief should be equal to (%)q (I —¢)m.

Second, reads produced by Illumina technologies have a much lower chance of in-
sertion and deletion errors than substitutions. Therefore it makes sense to assign
individual error rates €;, €4, and ¢, for each respective type of error. The resulting

probability will then have following form:

bnew(a) == e'cf?el* (1 — de; — g4 — 3e5)"™,

19

CHAPTER 2. ENHANCEMENTS OF GAML2 FRAMEWORK 20

where a; denotes the number of insertions, ag denotes the number of deletions, a, de-
notes the number of substitutions and a,, denotes the number of matches in the align-
ment a.

To accommodate this extension, we had to extend the aligner algorithm to be able
to report this data. Read alignment is done in two phases. First, at the beginning of
the program, all reads are processed by storing each k-mer (default & is set to 13) into
a hash table. Second, during the search of alignments for a given contig, each k-mer of
the contig is looked up in the hash table and used as a seed for aligning reads containing
this k-mer to the respective position of the contig. This corresponds to finding exactly
matching k£ bases between a read and the contig.

Alignment is done by greedy 0-1 BFS in both directions from the position of the
seed. We augmented the output with the number of insert, deletion and substitution
edges along the best found alignment.

The drawback of this approach is that aligner does not prefer one type of error over
other (because each edge has the weight equal to either 0 or 1). We decided to keep
the algorithm instead of expanding it to the full-blown Dijkstra algorithm because of

speed requirements.

2.2 Adding apriori probability of an assembly

In our early experiments, the assembler had often returned assemblies that are signifi-
cantly longer than the target genomes. We have realised that if we would take an assem-
bly A = (S1,...,S,) and add a copy of each contig A% := (S}, 51,55, 52, .., S5, Sn),
the conditional probability for reads would not change, i.e P(R|A) = P(R|A?):

53]
R|A?) = A?) =) =
| H P | H Z P(T’S) ZSJEAQ |S]|

r€R re€R S;c A2
s
— 23" P(r|S;) -
T2 et ol
ISz-I
=11 > P(r1s) - == =[] P(r|4) = P(R|A)
reR S;€A ZSJEA|SJ| reR

That means we have to control the length of assemblies in other way. If we assume
that every chromosome of length k has equal probability, then the a priori probability
of such a chromosome is equal to 47 (ignoring the dual representation of two strands

DNA sequences). We have used this rudimentary formula for constraining the total

CHAPTER 2. ENHANCEMENTS OF GAML2 FRAMEWORK 21

Covered bases Reference strand

b b+x e-x e

:_. .. _E Paired read

Figure 2.1: Detection of poorly covered bases. Green bases are sufficiently covered.

length of an assembly:
P(A) i~ [4715 =47 Zseald
SeA

We acknowledge that this formula does not satisfy the definition of a probability density
function, because we do not model the number and lengths of chromosomes. Thus,
the sum over all possibilities is not even finite. However, we did not want to add any
additional skewness toward any concrete length without any knowledge. It is possible
to incorporate the karyotype (i.e. the number of chromosomes) and relative lengths of

chromosomes to obtain better solutions.

2.3 Penalty for spuriously joined contigs

Boza in the original GAML framework devised a method for preventing joins of contigs
with little support from the data. The method is based on adding a penalty for bases,
that are not covered by any reads, so there is no evidence of connection. Because every
node of the graph is produced from the reads, and therefore is covered by at least
one, we define poorly covered bases as bases that are not covered by an inner part of
any read alignments. Inner part of an alignment with beginning position b and ending
position e is defined as an interval [b+ x, e — x|, where z is a threshold (defined by the
user) (figure 2.1).

Formally, assume that we have a contig S = (s1, ..., s,), a set of begins and ends of
(paired) read alignments AL = {(by, e1), (b2, €2), ..., (b, em)} and a threshold x. Then
we define poorly covered base as such base s; that there is no alignment, such that its

inner part contains (covers) the given base s;:
is_poorly covered(i) := =3 (bg,ex) € AL b+ <i<ep—ux

The enumeration of poorly covered bases for the chromosome S of length n and
a read set R with m alignments can be done trivially in O(n - m) time complexity.
However, this could be improved to O(n + m) time complexity by employing the idea
of prefix sums.

We start with an array A of length n + 1, filled with zeros. Then, for each interval

(bg, er) we increase Alb, + x] by one and decrease Ale, — x + 1] by one. Finally, we

CHAPTER 2. ENHANCEMENTS OF GAML2 FRAMEWORK 22

evaluate the prefix sums P for the array A, formally P[i] := Z;‘:l Alj]. This is achieved
in linear time, thanks to this simple recurrence: P[i] = P[i — 1] + A[i]. The array P
then holds the amount of covering reads for each base.

It is expected of bases on the ends of contigs to be poorly covered, as their covering
reads are not yet aligned due to contig split. We therefore ignore the first and last y
bases of every contig (the threshold y is set by the user).

The resulting probability P(R|A) is then penalised by a factor =%, where d is the

number of poorly covered bases (by the dataset R) and « is the penalty constant.

2.4 Support of paired end reads

The support of paired reads was implemented in the original GAML, but GAML2
lacked it. Due to architecture changes in GAML2, we have decided to implement this
feature in a different way.

We treat the paired read set as a pair of single read sets (referred to as left and
right read sets) with additional information about insert size distribution and expected
orientation of left and right reads. The mathematical foundation was described in the
section 1.3.

The alignment of the paired reads to individual contigs worked in the following
way. First, we aligned both sets of single reads separately to a contig (we refer to this
alignments as to partial alignments). Second, we sorted the alignments by the read
identificator. This allowed us to efficiently “merge” both arrays of partial alignments
by the read identificators and check for correct mutual orientation of merged pairs (see

section 1.3).

2.5 Existing moves in simulated annealing

We will start by briefly describing the two types of moves that were already imple-
mented in GAML2.

2.5.1 "Break" move

A random path from the current assembly is chosen. This path is then split at a
randomly chosen node. The resulting paths are also stripped of short nodes (nodes
representing shorter than 500 bp long sequences, see section 1.3.3 for details) to preserve
the invariant that every path starts and ends with a big node. This move was left

unchanged.

CHAPTER 2. ENHANCEMENTS OF GAML2 FRAMEWORK 23

2.5.2 "Random extend" move

A random path from the current assembly is chosen. Then we start a random walk
from one of its ends, until we hit a big node or the upper limit for extension length
is exceeded. Random walk works in the following way: from the starting position, we
uniformly randomly choose an outgoing edge and repeat the same process. If we have
hit a big node that is an ending node of a path, we join the chosen path and the found
one. If the found big node is not the end of any path, it is appended to the extended
path with probability v (the probability v is set by the user) and with probability
(1 —v) we declare the move unsuccessful. We have added the parameter v because the
old version led to unsupported overgrowing of the resulting assembly, as the same node

was reused in many paths.

2.6 "Join with advice" move in the simulated anneal-
ing

This move was implemented in the original GAML and was considered the main move
for scaffolding using long-range data (e.g. paired reads or PacBio reads). However,
this move was missing in GAML2.

We start by randomly picking any path from the current assembly as a starting
path. Next, we exclude paths that have intersecting ends with the starting path (i.e.
last h bases of the starting path is the same as first h bases of another path) from our
set of candidate paths to join. This is made mainly to simplify the process of paths’
joining (paths that have common nodes are handled separately by “untangle crossed
paths” move). We then align (or rather load the alignments from the cache, see section
2.8) all left and right parts of paired reads separately to the starting and candidate
paths.

The caching of partial alignments is essential here, because otherwise we would have
to realign each read to each path in the current assembly in each iteration. This would
be a waste of computational resources, considering the fact that most of the assembly
remain unchanged between consecutive iterations.

The number of reads that have one part aligned to the starting path and another
part to the candidate defines a score for this candidate path. We use this score to
randomly choose the target path. Formally, if a candidate path p; has z; reads, aligned
partially to the target path and partially to the candidate path, then the probability

2

ijj‘

We then sample random walks between the ends of the starting and target paths

of choosing the path p; as a target is equal to

(random walks are sampled in the same way as in “Random extend” move). To speed

CHAPTER 2. ENHANCEMENTS OF GAML2 FRAMEWORK 24

up the process, we first find all nodes, that could lead to the target path’s ends, by the
standard BFS algorithm and then restrict the random walks to that nodes.
We finally choose a random walk with the best score among sampled as our result.

The original paths, both target and starting, are discarded from the assembly.

2.7 "Untangle crossed paths" move in the simulated

annealing

This move was implemented in the original GAML, but not in GAML2. Our imple-
mentation is loosely based on the GAML version, as the original move was described
in a rather laconic way.

This move targets paths that have common nodes (figure 2.2a). Such situations
mostly occur as artifacts from "random extend" move, but can correspond to genuine
repeats.

First we randomly pick a path from the current assembly. Second, for every node
in the picked path we compute their occurrences in other paths of the current assembly
and store them in a hash table. Third, we randomly pick a node that belongs to two or
more paths. This way we assure that each joint is picked proportionally to its length in
node count (i.e. if two paths have common path of length 30, then there are 30 nodes
that could be picked). Fourth, if the node belongs to more than one other path, we
randomly pick the second path to untangle.

We then compute the length of the common subpath for these two paths. We will
denote the first path as A — B — C' and the second as D — B — E, where B is the
common subpath (the longest common subpath containing the picked node) (figure

2.2a). We now have several possibilities:

e delete the middle part B from one of the paths, trim small nodes from the ends
of the residual paths (figure 2.2b), obtaining paths A—, —C and D — B — E (or
D—, —FE and A— B —C)

e create a new path A— B—F (or D — B — (') as a combination of the input paths
and keep trimmed residual paths D— and —C' (A— and —F) (figure 2.2c)

e switch residuals to create paths A — B — F and D — B — C (figure 2.2d).

We evaluate the probability change for each move and then return the best one as

a result.

CHAPTER 2. ENHANCEMENTS OF GAML2 FRAMEWORK 25

A A
C C
B B
A e
E E
(a) Starting position (b) Move type 1
A
A B
C E
B

K B ¢

(c) Move type 2 (d) Move type 3

Figure 2.2: Change types for “Untangle crossed paths” move.

2.8 Caching of evaluated alignments

One of the key enhancements of the speed in GAML was caching of already evaluated
alignments. However, such caching was not implemented in GAML2. The idea is to
store the alignments for big nodes (nodes representing at least 500 bp long sequence,
see section 1.3.3 for details) and then evaluate alignments for a path by aligning read
to the joints and extracting cached alignments for the rest of the path. As the original
caching algorithm was considered too complex to implement, we have devised less
efficient, but simpler (and therefore less prone to implementation errors) solution.

We store all full and partial (see section 2.4) alignments for whole paths in a hash
table. This way, we have to reevaluate alignments for a path, created by altering of
the old paths, from scratch, but we still save computational time for example during
“Join with advice” move (see section 2.6).

We had several possibilities for hash function for paths, e.g. linear hashing (where
the sequence of the path’s nodes is taken as a sequence of coefficients of a polynomial
over a finite field, and the resulting hash is a value of this polynomial for a fixed (prime)
element of the given finite field). Hashing functions of this type are usually used for
string hashing.

We have in the end settled for the identificator of the first node in the path as the
path’s hash. Such a hash function is very computationally efficient and at the same

time produces almost no collisions, because contigs are not expect to start with the

CHAPTER 2. ENHANCEMENTS OF GAML2 FRAMEWORK 26

same node (and if such paths emerge, they are likely to be altered by "untangle crossed

paths" move).

2.9 Improved simulated annealing

In this section we describe three improvements of the simulated annealing in GAML2.
The last of the three, namely cleaning of an assembly, was implemented in the original
GAML, but not in GAML2. Our implementation of this feature is simpler than as the
original version. We are not aware of any features in the original GAML similar to the

first two modifications.

Setting the temperature to zero at the end Because of the cooling schedule cho-
sen by Boza, the temperature never reaches zero, therefore always leaving a possibility
of worsening the resulting assembly. To prevent that and reach a local minimum, we
keep the temperature at constant zero at the end to compensate for possible decrease
in quality score in moves towards the end of the search, thus effectively reducing the

algorithm to hill climbing (see subsection 1.3.3).

Adaptive choice of moves At the beginning of each iteration of the simulated
annealing, each move type has a predefined probability of execution. The problem is
that not every move type can always produce a viable solution’s change (e.g. there
are no tangled paths). If a move fails to produce a candidate, a new move is sampled
in the same iteration (see subsection 1.3.4 for details). As some types of moves are
computationally heavy, having them running many times in the same iteration with no
expected result is wasteful. Therefore, we decrease the probability of picking a move
type after its failure during one iteration. These probabilities are restored back to the
original settings for the next iteration.

For example, let p = (5,5, 5,5) be the original probability scores for four move types

denoted B, E, J and U. We evaluate probability for move type 7 as Pi , therefore

Zj Dj
the initial probabilities of each move at the beginning of each iteration of simulated

m = %1. Assume that J move was picked, but produced

no viable change. We then decrease the score for the unsuccessful move type by one,

annealing are equal to

changing the probability scores to p’ = (5,5,4,5). Now the probability of choosing .J

move type is equal to 1% (as opposed to 1% for the other three move types). Assume

that U move was picked next, and produced a viable change. We then return the
change as a result, and in the next iteration the probability scores will be set back to

the original (5,5,5,5).

CHAPTER 2. ENHANCEMENTS OF GAML2 FRAMEWORK 27

Final cleaning of an assembly after the simulated annealing After the finish
of the simulated annealing, we run several iterations of “break” move with very low
temperature (the number of iterations is set by the user). This helps to identify and

disconnect contigs that have little evidence for being joined.

Chapter 3

Usage of Hi-C data in GAML

framework

In this chapter, we will describe our work on adding Hi-C data processing into GAML2.
We build on our extended implementation of GAML2, described in the previous chap-
ter. The probabilistic model of Hi-C data, described in this chapter, is inspired by the
model from [1], but is adapted to fulfill the need of the GAML framework.

3.1 The probability model for Hi-C data

Each Hi-C read is a paired read, sequenced by Illumina. Some key assumptions, used
in modeling paired reads, still hold: each read is generated independently from the
same distribution, and the probability of generating a single part of a Hi-C read is the
same as for [llumina reads.

There is a major difference from common Illumina reads though: the left and right
parts of a Hi-C read could be generated either from the same chromosome (such Hi-C
reads are called cis-reads) or from two different ones (such Hi-C reads are called trans-
reads). Furthermore, there are usually a lot more of cis-reads, but the exact ratio varies
between species (see the DDD pattern in section 1.4).

We denote the probability that a Hi-C read is generated from the same chromo-
some as p.s. We denote the probability of a given Hi-C read r being generated as
a cis-chromosomal read from a given assembly A as P.(r|A). Similarly, P.qns(r|A)
stands for the probability of being generated as a trans-chromosomal read. The total

probability of the Hi-C read r being generated from the assembly A is then equal to:

Phic(T|A) = Pcis * Pcis(r|A) + (1 - pcis) : Ptrans(/r|A)

In the rest of the section, we will define P.;s(r|A) and Piqns(r]A), and then discuss
the effective way of updating the probability for a new assembly.

28

CHAPTER 3. USAGE OF HI-C DATA IN GAML FRAMEWORK 29

3.1.1 The probability model for cis-reads

The cis-reads are very similar to the common paired reads, described in section 1.3.
There are however two differences. First, the insert lengths have exponential distribu-
tions, specific for each chromosome (see section 1.4 for details). Second, the orientation
of the individual parts of the paired Hi-C reads is less strict: both reads could be sam-
pled from the same strand of a chromosome. Instead of devising a new formula, we
will adapt the formula for the paired reads from the section 1.3. We show it here once

more:

1
Ppaired(T|S) ~ m Z psingle(a'l)psingle(CLQ)porient(a'l7 Clz)

a1€BAL(r1,S)
GQGBAL(TQ,S)

Let’s start with the former difference. We need to change the p;,se+ distribution
to model the exponential distribution instead. The probability density function of

an exponential distribution is:

e ™M >0

0 otherwise

fexp(x;)\) = {

where A is its only parameter. The parameter A is at the same time equal to an inverse
of the expected value of this distribution, and therefore can be estimated from the
mean of the data (in our case, insert sizes of all alignments of reads R to a particular
contig S):

> IBAL(r,S)| - |BAL(rs, 5)|
__ (rim2)€ER

SN ST

(ri;r2)€R a(MDeBAL(r,S)
a@eBAL(r,S)

5\MLE<R7 S)

The change in read orientation handling is very easy to incorporate. It is enough
to omit the respective condition from the definition of the p,yien: function from the
formula for common paired reads.

The resulting approximation of the probability of observing a Hi-C paired read

r = (r1,re) from a Hi-C read set R as a cis-read from chromosome S is:

1 .
Pcis(T|S) ~ m Z Psingle (a'(l)) Psingle (Q(Q)) fegcp (|a1()1) - a1(;2)|;)\MLE(Ra S))
aMeBAL(r,S)
a(®eBAL(r3,5)

3.1.2 The probability model for trans-reads

We denote as Pyqns(7|S1, S2) the probability of observing a Hi-C paired read r = (ry, r2)
as a trans-read from chromosomes S; and S, where rq is obtained from the S; and

ro is obtained from the S;. Analogically to single reads, we approximate our belief

CHAPTER 3. USAGE OF HI-C DATA IN GAML FRAMEWORK 30

that the left read r; was generated from the S7 as), 54 L(r1.,51) 1%5(?1) (the right
’ 1

read 7 is evaluated in the same way), and therefore the resulting approximation of the

probability Pj.qns(r|S1, S2) is:

Z psingle(CLl) psingle(OQ)

Ptrans(r’ShSz) ~ 2’51‘ 2’5’2‘

a1€BAL(r1,S1)
a2€BAL(r2,52)

We assume that the probability for a Hi-C read to be produced from a particular

pair of chromosomes among an assembly is proportional to their lengths:

|53 - 1551 1 1
Ptrans(HA) ~ Z _Ptrans(r|5'ia Sj) + _Ptrans<7n‘sja Sz) =
1<i<j<|A| Z1Su<vS|AI [Sul - [5u] \2 2
1
= Z (Ptmns<7"‘sz‘;sj)+Ptran8<r‘5j75i))) |Sl|) |Sj| =
2 Z |SU| ’ ’Sv| 1<i<j<|A]
1<u<v<|A|

1
= Z (Z psingle(al)psingle(aQ) +
8 Z |SU| ’ |SU| 1<i<j<|A| a1EBAL(r1,S;)

1<u<v<|A| aQEBAL(’I‘Q,Sj)

+ Z psingle(al)psingle<a2)>

a1€BAL(r1,S;)
az€BAL(r2,S;)
For the purpose of the following subsection, we will establish a few additional no-

tations. First, we will hide the inner parts of these formulas into following symbols:

(b(ra S) = Z psingle (a(l)) psingle (CL(2)) fexp <|CL£1) - a1(;2)|; 5\MLE‘(fgv S))

aMeBAL(r1,9)
a@eBAL(r,9)

1/1(7“7 Slu SQ) = Z psingle(al)psingle(a2)

(lleBAL(Tl,Sl)
a2€BAL(r2,52)
Bu using this notation, we can rewrite our formulas:
1
> 6(r, 5)

2 ZSZ‘EA |S'L| ScA

1
Prrans(r|A) ~ > (WS, S) +(r, S5, S)
8 Z |Su| ’ |Sv| 1<i<j<|A|

1<u<v<|A|

Pcis(T|A) ~

As you can see, the notation greatly simplifies the resulting formulas. Notice that
both terms ¢(r,S) and (r, S1,S2) depend only on their input parameters r, S and
r, S1, Se respectively (¢ also depend on the whole read set R, but the dataset remains

constant during the maximisation process).

CHAPTER 3. USAGE OF HI-C DATA IN GAML FRAMEWORK 31

We now add more notation to simplify the situation:

O(r,A) = ¢(r,5)

SeA

U, A) = > ((r,5;,8;) +¥(r,8;,5))

1<i<j<| 4]
Now we are finally able to write down the whole formula for the probability of a
Hi-C read set R to be observed from the assembly A:

DPcis 1- Pcis
Puc(RIA) =~ [] | =="— @(r. 4) + U(r, A)
TER 2 Z |Sz| 8 Z |Su’) ‘Sv|
S;€A 1<u<v<|A|

We will refer to the multiplication factors (i.e. fractions multoplying ® and V) as to

cis- and transconstant.

3.1.3 Updating the probability

Assume that we have a Hi-C read set R, an old assembly A = {S,...,S.} and a new
assembly A" = {S],...,S.L}. We will denote added contigs as N := A" — A, removed
contigs as D := A — A’ and kept contigs as K := AN A’. We assume that the changes
are small, i.e. [N| << |A| and |D| << |A4].

Because the total conditional probability for the read set is a product of the proba-
bilities for the individual reads and the cis- and transconstant are likely to change, we

will reevaluate probabilities for all reads from the read set.

cls 1 — Feis
Prio(r|A) ~ =P8 _p(r, A) + P

225;614/ |S{’ 821§u<v§\A/| ‘SL’ ’ ‘Szl)’

As for the new ® score, it is relatively straightforward. We just need to remove the

U(r, A"

® scores, corresponding to the cis-alignments for the deleted contigs, and add ® scores,

corresponding to the cis-alignments for the added contigs:
O(r,A') = o(r,A) — ®(r, D) + &(r, N)

The situation with the W score is a bit more convoluted. We need to remove
all 1 scores, corresponding to the trans-alignments between deleted contigs, trans-
alignments between deleted and kept contigs, and add ¢ scores, corresponding to

the trans-alignments between added contigs, and between added and kept contigs:
(r,A") = W(r,A) = ¥(r, D) — Z (W(r, S1,52) +¥(r, S2,51)) +
S1€D,S2eK

+U(, N+ > ((r,S1,5) +(r, S, 1)

S1EN,S2eK

CHAPTER 3. USAGE OF HI-C DATA IN GAML FRAMEWORK 32

3.2 Implementation details of model evaluation for
Hi-C data

Probability score evaluation

As we have discussed in subsection 1.3.4, alignment caching is crucial for efficient
probability score evaluation. After each update, we need to align our read set to all
new paths and add their score to the result and remove all old alignments, belonging
to the removed paths, similarly to the common (paired) reads. The difficulty here is
that for trans-reads, we need to consider alignments between pairs of paths, whereas
for paired reads we only considered paired alignments within a path. We reduce the
computational cost by caching alignments for every left and right read (i.e. parts
of Hi-C reads) for each path, and check for trans-alignments only where necessary
(see subsection 3.1.3). We also store the ® and ¥ score for each read, because the
cis- and trans-constants are reevaluated for each iteration, and therefore the resulting

probability has to be reevaluated from scratch.

Implementing “Join with advice” move

This move is the most useful application of Hi-C data in GAML2, because Hi-C reads
hold information about extremely distant segments of chromosomes.

We have decided to use the same method for utilising the advice from Hi-C reads as
for common paired reads (see section 2.6). One possible modification is to change the
scoring scheme of target path by utilising the clustering metric, developed by Kaplan
and Dekker (see section 1.4). This way allows to mimic the clustering method by
the simulated annealing. However, we do not need to stick strictly to this metric as
the final decision for joining also depends on the de Bruijn graph characteristics, i.e.

whether there is a sufficiently short path.

(Non)usage of Hi-C data for detection of spuriously joined contigs

We have decided not to use Hi-C data for detecting poorly covered bases, as we did
with paired reads (see section 2.3). The reason is that Hi-C reads have a tendency to

span over very long distances, hence possibly masking spurious joints.

Chapter 4
Experimental results

In this chapter, we will present our experimental results of using Hi-C data in tan-
dem with paired reads. For our experiments, we have chosen organism Saccharomyces
cerevisiae (baker’s yeast), strain S288c, with 16 chromosomes and one mitochondrial
(non-nuclear) circular DNA, and total genome length of 12 - 10° bp (the lengths of the
individual chromosomes are shown in the figure 4.1). We have used two read datasets
from the NCBI database (https://www.ncbi.nlm.nih.gov/):

e SRR4446972 — paired reads, obtained by Illumina HiSeq 2000 technology.
Length of reads is 125 + 125 bp. Total number of read pairs is 6, 162,477. Mean
coverage is 6,162,477 -2 - 125/(12 - 10°) ~ 128.

e SRR5077811 — Hi-C reads, obtained by Illumina HiSeq 2000 technology. Length
of reads is 102+ 102 bp. Total amount of read pairs is 91,776,947. Mean coverage
is 91,776,947 - 2 - 102/(12 - 10%) ~ 1506.

1000000
|

0 400000

10 11 12 13 14 15 16 MT

Figure 4.1: Sizes of chromosomes of Saccharomyces cerevisiae

33

CHAPTER 4. EXPERIMENTAL RESULTS 34

1

0 40000 1e+05

49214

© 00 N o g A~ W N P

T
5 o o b w N R O

Figure 4.2: Heatmap of the interaction rates between chromosomes. Cells on the diagonal
shows the number of cis-alignments for a given chromosome. MT stands for the mitochon-
drial DNA

4.1 Verification of the model for Hi-C reads

Our goal is to verify our model for the CTR pattern, described in the subsection 3.1.2
and the DDD pattern, described in the subsection 3.1.1. For this purposes, we sampled
one million Hi-C reads from our dataset and aligned them to the reference genome with

Bowtie2 aligner|23], left and right reads separately.

CTR pattern

We counted the cis- and trans- alignments between each pair of the chromosomes. The
figure 4.2 shows the interaction rates (cells on the diagonal show the amount of cis-
alignments for a given chromosome). Note that the mitochondrial DNA (marked as
“MT” in the figure 4.2) has almost no interactions with the nuclear DNA molecules,
since they are located in different organelles within the cell. This corresponds to
the main goal of the Hi-C method — to uncover the spatial distance between DNA
segments. We have excluded the cis- and trans- alignments for the mitochondrial
DNA from further analysis. We will denote the interaction rate between i-th and j-th
chromosome as h; ;.

As we can clearly see, the number of cis-alignments (783,943 after excluding the

mitochondrial DNA) is much greater than the number of trans-alignments (90,858).

CHAPTER 4. EXPERIMENTAL RESULTS 35

— Xf
@
@© o o7
: 8
S X .
g g -
£ o | X ’,"’ _,—"'——
e « X X,," —‘—___—'
o} - X
n 9 .- e X
Q Q XX ¢ é—'%——x(x
@) o ,»’_,‘,e'—%)Q‘

‘/—ai‘x—
© | | | |
0 500 1000 1500 2000

Predicted interaction rate

Figure 4.3: Trans interaction rate estimation. Green line shows the prediction of h; ; based
on chromosome size, red lines show the boundaries of 70% and 130% relative errors. Overall,
91 out of 120 rates were predicted with relative error in the boundaries (green circle stands

for successful estimation and red cross for failure).

This result supports the main idea of the CTR pattern.

Trans-interactions rate

As it was declared in chapter 3, we model the relative trans-interaction rate g; ; between

the chromosomes S; and S; as

g 8115
! 21§u<v§n ’Su| ’ ’Sv|’

and therefore our estimation for h;; is simply g;,; times the total number of trans-

alignments. As we can see in the figure 4.3, if we allow £30% error rate, then 91 out
of 120 interaction rates are predicted successfully.

It is important to mention that this model is very simple and does not account for
the complex fractal structure of the chromatin [3]. This model was chosen because of

low computational requirements and surprisingly adequate estimation power.

CHAPTER 4. EXPERIMENTAL RESULTS 36

8e+04
|

4e+04
|

0e+00
L

Laltaluatelll

9 10 11 12 13 14 15 16

Figure 4.4: Estimation of cis-reads count for chromosomes. Dark grey stands for

predicted counts and light grey for the observed counts.

Distribution of cis-alignments among chromosomes

In chapter 3, we have modelled the relative frequency of cis-alignments for individual

chromosomes from the genome G = (Sy,...,S,) as:

|Si]
Z?ﬂ |Sj|

The figure 4.4 shows the estimated cis-read counts (dark grey) versus the real cis-

C; ‘=

read counts (light grey). As you can see, most chromosomes are only slightly overesti-
mated, but chromosome 12 is significantly underestimated by the model

We assume that increased number of cis-alignments in chromosome 12 occurred due
to tandem repeats of ribosomal RNA. This is supported by the coverage plot for this
chromosome (figure 4.5). There is a 10-fold increase in the coverage (5000 instead of
500) due to fact, that the ribosomal RNA has only two repeats in the reference genome,
whereas in reality there could be dozens of such repeats. This would mean that the
length of the real chromosome is greater than it is shown in the database (and the

reference genome).

The DDD pattern

We have evaluated insert sizes of cis-reads for each chromosome (figure 4.6). Each

point represent a bin of size 1000 bp (i.e. each graph is a very dense histogram).

CHAPTER 4. EXPERIMENTAL RESULTS 37

500 5000

Coverage rate
50
|

T T T T T T
0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

Position

Figure 4.5: Coverage rate for 12-th chromosome. We assume that the spike corresponds

to tandem repeats of the ribosomal RNA

The data suggests the exponential decrease of interaction rate, as well as slightly
different distributions for the individual chromosomes. The artifacts (e.g. spikes at the
longer ranges) were also observed by Kaplan and Dekker [1]. We have decided not to

incorporate these abnormalities into our model.

4.2 GAML2 experiments

In this section, we will talk about experimental runs of our implementation of GAML2.
First, we will describe the pipeline, then we will describe how we estimated the param-
eters. We will finish this section with the comparison of results with and without Hi-C

data and the discussion of the results.

4.2.1 Pipeline

Our pipeline is built in the following way (figure 4.7). First, we construct de Bruijn graph
from the paired reads by Velvet assembler with conservative settings -cov_cutoff
auto. Second, we subsample both datasets to obtain 1 million reads of each type
(mean coverage is then approximately 21 for the paired reads and 16 for the Hi-C
reads).

We have been forced to such fierce subsampling by the immense computational

requirements. Third, we run GAML2 on the subsampled read sets and the de Bruijn

CHAPTER 4. EXPERIMENTAL RESULTS

frequency

frequency

frequency

frequency

100
|

100
|

100
|

Paired read set

Interactions for chr 1

distance

Interactions for chr 5

-600 -200 200

distance

Interactions for chr 9

600

e
T

T T
0 200

distance

Interactions for chr 13

-500 0 500

distance

Interactions for chr 2

- -
o
5]
= o H
g 9 X
L
T T T
-500 O 500
distance

Interactions for chr 6

frequency
100
1

T
=200 0 100

distance

Interactions for chr 10

. .
o
5]
= Q| t
g S A
- ettt EEtieielue. .
[
T T T
-500 0 500
distance

Interactions for chr 14

frequency
100
1

T T T
-500 O 500

distance

Interactions for chr 3

frequency
100
1

-300 -100

100

distance

Interactions for chr 7

- |
o
c
[
3 o
g 21
o 4 ot .-
T T T T T
-1000 0 500
distance
Interactions for chr 11
- |
(8]
5
=] =4 3
PR A
= L ocal e
i
T T 1T 17T 17T 1771
-600 0 400
distance
Interactions for chr 15
- |
Q
=
S o :
o o -
IS . A .
o oo el Bds
T T T T T
-1000 0 500
distance

Y

Velvet assembler

—%De Brujin graph/
|

38

Interactions for chr 4

frequency

100
|

0 1000

distance

Interactions for chr 8

frequency
100

-600

A

-200 200 600

distance

Interactions for chr 12

frequency

100
|

distance

Interactions for chr 16

frequency

Hi-C read set

A\

Subsampling

4%

Subsampled paired
read set

Subsampling

Subsampled Hi-C
read set

Figure 4.7: Experiment pipeline

distance

Figure 4.6: Insert sizes for cis-reads on every chromosome (y axis is logarithmic)

A\ 4

GAML2

CHAPTER 4. EXPERIMENTAL RESULTS 39

graph using a configuration file, containing the estimated parameters for both datasets.

4.2.2 Estimating of parameters for experiments

Our probabilistic model has several parameters, which describe insert size distribu-
tion, sequencing error rates, cis-trans-ratio. The estimation of parameters from the
input data (i.e. read sets) is beyond the scope of this thesis. Therefore, we have
made our estimations based on the reference genome (except for A parameters for Hi-C
cis-reads, which are estimated for each path separately during computations (see sub-
section 3.1.1)). In future work, initial parameter estimates could be refined within the

simulated annealing framework.

Parameters for single read model The individual error probabilities were set to
0.01 for substitution and 0.0001 for indels (because both datasets are produced by

[lumina technologies).

Insert length for paired reads We have used the estimation of mean and standard
deviation of insert size of the paired reads, computed by BWA-mem aligner. The mean

was estimated as 387.2 and the standard deviation as 92.7.

Hi-C data parameters Base on the data, described in section 4.1, we have es-

timated the cis-trans-ratio, or p.s, using the notation, established in chapter 3, as
783943 ~ 0.896.

783943490858
The rest of parameters had no clear mathematical foundations (parameters of cool-
ing schedule and penalties) and were chosen based on preliminary experiments with

smaller organism, Fscherichia coli.

4.2.3 Results

We have run two experiments: the first with only paired reads, and the second with
both paired and Hi-C reads. The first experiment’s simulated annealing phase lasted
for 30000 iterations and 20000 for the second experiment. Both experiments then
proceeded to the hill climbing phase and finishing cleaning (both described in section
2.9). Both experiments took about three days to finish.

The score evolution during iterations is depicted in the figure 4.8. It is important
to mention, that scores are not comparable between different datasets (i.e. the final
score —0.337 of the second experiment is not better nor worse than the score —0.365

of the first experiment).

CHAPTER 4. EXPERIMENTAL RESULTS 40

o
[{e}
o 4 :]
o S SN v 4 :
| M"Nﬁ"“ﬂ .
1o} - -
84 |
? Vi '
; Lo
o 4 : :
~ i Vo
o9 L
? / L
f L
2 ‘ L
~ { Vo
® o P
o [
T / v
/| .
i [
o ! o
w L 1]
@ .
? | T T T T T —
0 5000 10000 15000 20000 25000 30000
Iterations
(a) Paired reads only.
Q 7
g N M“"""‘.’fl’\
1 m‘/\w , :
Pl -
- \ |
o ' !
&] = b
5 p B
0 y P
™ i '
T / L
i Lo
o / | ‘
i) | .
o [/]
CID' i .
T T T T —
0 5000 10000 15000 20000

Iterations
(b) Paired and Hi-C reads.

Figure 4.8: Score during the computation of GAML2. Vertical blue line marks the start of
hill climbing phase, vertical red line marks the start of cleaning phase. Transparent blue line
stands for score decrease, which will be allowed by the temperature with probability 10%.

Transparent red line — 1%.

CHAPTER 4. EXPERIMENTAL RESULTS 41

Metric Velvet output Only paired Paired + Hi-C
contigs (> 500 bp) 1450 1098 986
misassemblies 2 76 102
Total length 11217354 11264014 11289460
N50 14 809 18720 21075
L50 241 176 170
NAS50 14765 17564 19608
LA50 242 197 181

Table 4.1: Quality metrics for experimental results (by Quast analyser).

Notice that during the cleaning phase of the first experiment (figure 4.8a), the
resulting score dropped quite a bit. We assume that this happened due to extremely
low coverage, and thus low support for keeping the contigs joined.

In order to compare the results of the experiments, we rely on the common quality
metrics, described in subsection 1.2.3. We have used Quast analyser [24] for the quality
metrics evaluation. The results are shown in the table 4.1.

As we can see, the second experiment is better by all quantitative metrics, except
for misassemblies. The results have shown that in the second experiment we have
joined 1450 — 986 = 464 contigs and we did 464 — 102 = 362 of them correctly (in
comparison with 352 joins and only 276 of them good in the first experiment).

These results are of dual nature. On the one hand, they have proved that the way
we have used Hi-C data is viable and it is possible to gain additional information from
them. On the other hand, our implementation of GAML still has several challenges to
overcome, mainly its computational requirements and non-conservativeness in joining.
The latter partially depends on the former, because greater coverage rate may lead to

better precision, but also requires more computation.

Summary

In this work, we have described the probabilistic approach used in GAML framework,
reimplemented several key features of the original framework in GAML2 and added
several new ones in a way that is more open to further extensions. We have also
improved the original probability model by adding a distinction between different types
of sequencing errors. We have then designed and implemented a probabilistic model
for Hi-C data, compatible with GAML framework. The experimental results confirmed
that adding Hi-C data improved the results.

Future work

There are several ways to proceed with this research. The first line of works concerns

the improvements in the core of the GAML2 engine:

e Reimplementing the rest of moves in the simulated annealing, designed by the
original author. These moves are interesting mainly due to their focus on tandem

repeats.

e Adding a better caching of the evaluated alignments. Because the solution space
is defined by the input de Bruijn graph, it is possible to store alignments for

individual nodes of the graph, thus reducing computational cost.

e Change of the core metaheuristic. It may be interesting to abandon simulated
annealing method and venture further into a land of discrete optimisations, trying

methods like taboo search or memetic algorithms.

e Adding the possibility of parallel evaluations. As aligning of many short reads
may be done in parallel; this direction could substantially improve time require-

ments.

e Improve the scaffolding with the distance measures. Kaplan and Dekker used

multidimensional scaling to predict the order of contigs in the scaffolds.

Further improvements could also be done in modeling of Hi-C and other types of
data:

42

SUMMARY 43

e Adding new types of data. There are now many sequencing technologies (such as
PacBio, MinION, 10x Genomics, RNA-seq) and adding them would surely prove

the universality of the probabilistic approach to the genome assembly.

e Take coverage rate into account. The current model does optimise for the uniform

coverage rate, but only implicitly.

e Designing a better model for Hi-C data. We have used a very simple model, and

there is still the possibility of improvement.

e Adding a prediction of a genome’s karyotype.

Additional materials

Electronic materials (source materials of GAML2 and instructions on how to execute
it) are available on the attached CD.

Bibliography

1]

Noam Kaplan and Job Dekker. High-throughput genome scaffolding from in vivo
dna interaction frequency. Nature biotechnology, 31(12):1143-1147, 2013.

[2] Vladimir Boza, Brona Brejova, and Tomas Vinaf. Gaml: genome assembly by

3]

4]

[5]

(6]

7]

8]

9]

maximum likelihood. Algorithms for Molecular Biology, 10(1):1, 2015.

Erez Lieberman-Aiden, Nynke L van Berkum, Louise Williams, Maxim Imakaev,
Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R Lajoie, Peter J Sabo, Michael O
Dorschner, Richard Sandstrom, Bradley Bernstein, M A Bender, Mark Groudine,
Andreas Gnirke, John Stamatoyannopoulos, Leonid A Mirny, Eric S Lander, and
Job Dekker. Comprehensive mapping of long-range interactions reveals folding
principles of the human genome. Science (New York, N.Y.), 326(5950):289-93,
oct 2009.

Venter et al. The sequence of the human genome. Science (New York, N.Y.),
291(5507):1304-51, feb 2001.

JAUME PELLICER, MICHAEL F. FAY, and ILIA J. LEITCH. The largest eu-
karyotic genome of them all? Botanical Journal of the Linnean Society, 164(1):10—
15, sep 2010.

John Gallant, David Maier, and James Astorer. On finding minimal length super-
strings. Journal of Computer and System Sciences, 20(1):50-58, feb 1980.

Elaine R. Mardis. Next-Generation DNA Sequencing Methods. Annual Review of
Genomics and Human Genetics, 9(1):387-402, sep 2008.

Anthony Rhoads and Kin Fai Au. PacBio Sequencing and Its Applications. Ge-
nomics, Proteomics € Bioinformatics, 13(5):278-289, oct 2015.

Eugene W. Myers, G G Sutton, A L Delcher, I M Dew, D P Fasulo, M J Flanigan,
S A Kravitz, C M Mobarry, K H Reinert, K A Remington, E L. Anson, R A
Bolanos, H H Chou, C M Jordan, A L. Halpern, S Lonardi, E M Beasley, R C
Brandon, L Chen, P J Dunn, Z Lai, Y Liang, D R Nusskern, M Zhan, Q Zhang,

44

BIBLIOGRAPHY 45

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

X Zheng, G M Rubin, M D Adams, and J C Venter. A whole-genome assembly
of Drosophila. Science (New York, N.Y.), 287(5461):2196-204, mar 2000.

Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read

assembly using de bruijn graphs. Genome research, 18(5):821-829, 2008.

Serafim Batzoglou, David B Jaffe, Ken Stanley, Jonathan Butler, Sante Gnerre,
Evan Mauceli, Bonnie Berger, Jill P Mesirov, and Eric S Lander. ARACHNE: a
whole-genome shotgun assembler. Genome research, 12(1):177-89, jan 2002.

Sergey Koren, Brian P Walenz, Konstantin Berlin, Jason R Miller, Nicholas H
Bergman, and Adam M Phillippy. Canu: scalable and accurate long-read assembly
via adaptive k-mer weighting and repeat separation. Genome research, 27(5):722—
736, may 2017.

Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A. Gurevich, Mikhail
Dvorkin, Alexander S. Kulikov, Valery M. Lesin, Sergey I. Nikolenko, Son Pham,
Andrey D. Prjibelski, Alexey V. Pyshkin, Alexander V. Sirotkin, Nikolay Vyahbhi,
Glenn Tesler, Max A. Alekseyev, and Pavel A. Pevzner. SPAdes: a new genome as-
sembly algorithm and its applications to single-cell sequencing. Journal of compu-
tational biology : a journal of computational molecular cell biology, 19(5):455-77,
may 2012.

Mohammadreza Ghodsi, Christopher M Hill, Irina Astrovskaya, Henry Lin, Dan D
Sommer, Sergey Koren, and Mihai Pop. De novo likelihood-based measures for

comparing genome assemblies. BMC' research notes, 6(1):1, 2013.

V. éerny. Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of Optimization Theory and Applications,
45(1):41-51, jan 1985.

Job Dekker, Karsten Rippe, Martijn Dekker, and Nancy Kleckner. Capturing
chromosome conformation. Science (New York, N.Y.), 295(5558):1306-11, feb
2002.

J. Dostie, T. A. Richmond, R. A. Arnaout, R. R. Selzer, W. L. Lee, T. A. Honan,
E. D. Rubio, A. Krumm, J. Lamb, C. Nusbaum, R. D. Green, and J. Dekker.
Chromosome Conformation Capture Carbon Copy (5C): A massively parallel so-

lution for mapping interactions between genomic elements. Genome Research,
16(10):1299-1309, oct 2006.

Marieke Simonis, Petra Klous, Erik Splinter, Yuri Moshkin, Rob Willemsen, Elzo

de Wit, Bas van Steensel, and Wouter de Laat. Nuclear organization of active and

BIBLIOGRAPHY 46

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

27]

28]

inactive chromatin domains uncovered by chromosome conformation capture—on-
chip (4C). Nature Genetics, 38(11):1348-1354, nov 2006.

Zhihu Zhao, Gholamreza Tavoosidana, Mikael Sjolinder, Anita Gondor, Piero Mar-
iano, Sha Wang, Chandrasekhar Kanduri, Magda Lezcano, Kuljeet Singh Sandhu,
Umashankar Singh, Vinod Pant, Vijay Tiwari, Sreenivasulu Kurukuti, and Rolf
Ohlsson. Circular chromosome conformation capture (4C) uncovers extensive net-
works of epigenetically regulated intra- and interchromosomal interactions. Nature
Genetics, 38(11):1341-1347, nov 2006.

Marie Lisandra Zepeda-Mendoza and Osbaldo Resendis-Antonio. Hierarchical
Agglomerative Clustering. In Encyclopedia of Systems Biology, pages 886—887.
Springer New York, New York, NY, 2013.

Jianzhong Wang. Classical Multidimensional Scaling. In Geometric Structure of
High-Dimensional Data and Dimensionality Reduction, pages 115-129. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

Vladimir Boza. Gaml2. https://github.com/usamec/GAML2, 2016.

W B Langdon. Performance of genetic programming optimised Bowtie2 on genome
comparison and analytic testing (GCAT) benchmarks. BioData Mining, 8(1):1,
jun 2015.

Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. Quast:
quality assessment tool for genome assemblies. Bioinformatics, 29(8):1072-1075,
2013.

Philip N Benfey. Quickstart Molecular Biology: An Introductory Course for Math-

ematicians, Physicists, and Computational Scientists. 2014.

J Craig Venter, Mark D Adams, Eugene W Myers, Peter W Li, Richard J Mural,
Granger G Sutton, Hamilton O Smith, Mark Yandell, Cheryl A Evans, Robert A
Holt, et al. The sequence of the human genome. science, 291(5507):1304-1351,
2001.

Paul Medvedev and Michael Brudno. Maximum likelihood genome assembly. Jour-
nal of computational Biology, 16(8):1101-1116, 20009.

Scott Clark, Rob Egan, Peter I Frazier, and Zhong Wang. Ale: a generic as-
sembly likelihood evaluation framework for assessing the accuracy of genome and

metagenome assemblies. Bioinformatics, page bts723, 2013.

BIBLIOGRAPHY 47

[29] Martial Marbouty, Axel Cournac, Jean-Frangois Flot, Hervé Marie-Nelly, Julien
Mozziconacci, and Romain Koszul. Metagenomic chromosome conformation cap-

ture (meta3dc) unveils the diversity of chromosome organization in microorganisms.
Elife, 3:e03318, 2014.

