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Abstract

Snarks are non-trivial bridgeless cubic graphs that are not 3-edge-colourable. This
thesis extends the analysis of the structure of small bicritical snarks by the same author
to strictly critical snarks. This analysis divides examined snarks into several infinite
classes. We show that if we impose additional requirements on construction blocks
used in the described classes, we are able to prove that the resulting snark is critical or
bicritical. Using appropriate snarks we construct infinite families of snarks with girth
6 and cyclic connectivity 5 or 6. Additionally, we construct all non-trivial snarks with
girth 6, cyclic connectivity at most 5 and order 40.

Keywords: snark, irreducible, critical, bicritical, strictly critical, cyclical connectiv-
ity, girth, Tait colouring, flow
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Abstrakt

Snakry sú netriviálne bezmostové grafy, ktoré nie sú hranovo-3-zafarbiteľné. Táto
práca rozširuje analýzu štruktúry malých bikritických snarkov od rovnakého autora
na striktne kritické snarky. Táto analýza rozdeľuje skúmané snarky do niekoľkých
nekonečných tried. Ukážeme, že pokiaľ položíme dodatočné podmienky na konštrukčné
bloky použité v opísaných triedach, tak sme schopný dokázať, že výsledný snark je
kritický, resp. bikritický. Vhodnou voľbou použitých snarkov skonštruujeme nekonečné
triedy snarkov obvodu 6 a cyklickej súvislosti 5 alebo 6. Taktiež skonštruujeme všetky
netriviálne snarky obvodu 6 s cyklickou súvislosťou najviac 5 a rádom 40.

Kľúčové slová: snark, ireducibilný, kritický, bikritický, striktne kritický, cyklický
súvislosť, obvod, taitovo farbenie, tok
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Introduction

Various famous conjectures in graph theory such as the cycle double cover conjecture
or the 5-flow conjecture are sufficient to solve for cubic graphs. The Vizing’s theorem
says that every cubic graph is either 3-edge-colourable or 4-edge-colourable. It is not
difficult to prove that the aforementioned conjectures are true for 3-edge colourable
cubic graphs. Therefore, the class of cubic graphs that are not 3-edge colourable
became the subject of comprehensive research since it could contain counterexamples
to those conjectures. Such graphs are called snarks and they are additionally required
to be bridgeless inasmuch as most of the involved conjectures are stated for bridgeless
graphs.

Despite that snarks were rather rare in the early studies, at present, there is
a plethora of infinite families of snarks. Also, in 2013 G. Brinkmann et al. generated
all “non-trivial” snarks up to order 36 using a computer [4].

Although the essence of the definition of a snark consists of being a bridgeless
cubic graph that is not 3-edge-colourable, we can observe that plenty of snarks are
more or less trivial modifications of other snarks. R. Nedela and M. Škoviera have
formalized some of those questions of the triviality of the snarks introducing critical
and bicritical snarks [17]. As we shall discuss in Section 1.5, every non-critical snark
can be constructed form some critical snark using a fairly simple operation.

In our previous work [19], we have analysed all bicritical cyclically 5-connected
snarks up to order 36. Using these snarks, we were able to explain the uncolourability
of every snark up to order 36. Also, we have introduced several infinite families covering
those snarks.

In this work, we illustrate that if we lay down additional requirements for snarks
used in our constructions, we are able to guarantee that the constructed snarks are
bicritical. Moreover, we aim at snarks that are cyclically 5-connected and snarks
with girth 6. As follows from the research of Chladný and Škoviera [6] and Carneiro
[5], critical snarks that are not bicritical, or for short strictly critical snarks, also
deserve an investigation. Therefore, we extend our analysis of small snarks to strictly
critical snarks of order up to 36. Then we use structures observed in small snarks to
construct infinite families of strictly critical snarks. Using appropriate snarks in these
constructions, we shall be able to construct families of strictly critical snarks with
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Introduction 2

girth 6 and even cyclic connectivity 6.
Furthermore, we shall make an attempt to construct other cyclically 6-connected

snarks. We illustrate several methods of obtaining construction blocks with useful
colouring properties. We also illustrate several techniques on how we can construct
cyclically 6-connected snarks using described construction blocks. To offer suitable
snarks for these constructions, we aim at generating snarks with girth 6 of order 40.
We generate all such snarks with cyclic connectivity 4 or 5.



Chapter 1

Multipoles and snarks

1.1 Multipoles

Constructions of snarks are often described in terms of multipoles, that is, graphs
allowed to contain dangling edges (see e. g. [9, 15, 17]). Formally, a multipole is a pair
M = (V (M), E(M)), where V (M) is a finite set of vertices and E(M) is a finite set
of edges. Every edge e ∈ E(M) has two ends ; an end of e may or may not be incident
with a vertex. The edges of a multipole M are of four types.

1. A link is an edge whose ends are incident with two distinct vertices.

2. A loop is an edge whose ends are incident with the same vertex.

3. A dangling edge is an edge which has only one end incident with a vertex.

4. An isolated edge is an edge whose both ends are incident with no vertex.

A semiedge is an end of an edge that is incident with no vertex. The set of
all semiedges of a multipole M is denoted by S(M). For the purpose of our work, we
suppose that the set of semiedges S(M) is endowed with a linear ordering of semiedges.
If a multipole has k semiedges, it is called a k-pole (for instance, a 0-pole is a graph).
Note that every dangling edge contains one semiedge and every isolated edge has two
semiedges. If there is only one dangling edge incident with a vertex v, we will denote
the semiedge contained in the dangling edge by (v).

Usually, it is convenient to divide the set S(M) into pairwise disjoint sets
S1, S2, . . . , Sn, called connectors. Each connector is endowed with a linear ordering of
semiedges. Then, the ordering of S(M) is obtained naturally as the union of orderings
for its connectors. A multipole M with n connectors S1, S2, . . . , Sn such that |Si| = ci

for i ∈ {1, 2, . . . , n} is denoted by M(S1, S2, . . . , Sn) and called a (c1, c2, . . . , cn)-pole.
If a connector S contains only one semiedge s, we will usually only write s in place
of (s).

3



CHAPTER 1. MULTIPOLES AND SNARKS 4

A graph of a multipole M is the graph which is obtained from the multipole
M by removing all dangling edges and isolated edges; it is denoted by G(M) and it is
always subcubic. As one could expected, the order |M | of a multipoleM is the number
of its vertices and the girth g(M) of a multipole M is the length of the shortest cycle
of G(M). In this paper, we will only consider cubic multipoles, i. e. multipoles where
each vertex is incident with three edge ends.

Further, we describe a method of joining two multipoles together. Let e and f
be two edges (not necessary distinct) of a given multipoleM and let e, f have semiedges
e′, f ′ respectively such that e′ 6= f ′. We can identify e with f and construct a new
multipole M ′ in the following way. If e 6= f , we replace e and f with a new edge g
whose ends are the other ends of e and f , so E(M ′) = (E(M)−{e, f})∪{g}. If e = f ,
then e is an isolated edge, and we simply put E(M ′) = E(M)− {e} (the loop with no
vertices is deleted since it has no impact on colourability). We say that the multipole
M ′ arises from M by the junction of e′ and f ′.

Let M = M(e1, e2, . . . , ek) and N = N(f1, f2, . . . , fk) be two k-poles. Then the
junction M ∗N ofM and N , is the graph that arises from the disjoint unionM ∪N by
performing the junctions ei with fi for i ∈ {1, 2, . . . , k}. Similarly, for connectors S1,
S2 of the same size k of a multipole M , we define the junction of the connectors S1,
S2 as an operation consisting of k individual junctions of i-th semiedge from S1 with
i-th semiedge from S2 for i ∈ {1, 2, . . . , k}.

1.2 Common constructions of multipoles

Throughout our work, we shall very often use several constructions of multipoles from
graphs or other multipoles. Since the organisation of semiedges into connectors is
sometimes ambiguous, we clarify it here. The only space for ambiguity is left in the
order of semiedges in a connector as this order is not determined. However, in plenty
of cases, the order of semiedges in a connector is not important.

LetM(C1, C2, . . . , Ck) be a multipole and v one of its vertices. We can construct
a new multipole N(C1, C2, . . . , Ck, Ck+1) by removing the vertex v from the multipole
M and putting the three semiedges formerly incident with v in the connector Ck+1.
Note that if the vertex v is incident with a dangling edge e, the end of e is retained
in the multipole N as an end of an isolated edge. We will denote the multipole N by
M − v. To keep our notation short, we shall write just M − (v1, v2, . . . , vn) instead of
(((M −v1)−v2)− . . . )−vn. Remark that this operation is not commutative; the order
of the connectors changes with a change of the order of the removed vertices.

If we choose a link of a multipole M(C1, C2, . . . , Ck) and cut it into two dan-
gling edges e1, e2 each incident with one end vertex of e, we construct a new multi-
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pole N(C1, C2, . . . , Ck, (e1, e2)) which we denote by M − e. Again, we shall write just
M − (e1, e2, . . . , en) instead of (((M − e1)− e2)− . . . )− en.

When we choose two adjacent vertices u, v of a multipole M(C1, C2, . . . , Ck),
we can remove the vertices u, v alongside one link between them. Denote the dangling
edges formerly incident with u by e1, e2 and the dangling edges formerly incident
with v by f1, f2. We denote the arisen multipole N(C1, C2, . . . , Ck, (e1, e2), (f1, f2)) by
M − [u, v]. If there are two or more links between the vertices u, v, one of them is
removed and the others remain in the (2, 2)-pole M − [u, v] as isolated edges.

In the following example, we call attention to the difference of two similar nota-
tions that will appear pretty often as we would need to view a snark with two adjacent
vertices removed sometimes as a (3, 3)-pole with an isolated edge and sometimes as
a (2, 2)-pole.

Example 1. Let u, v be an adjacent vertices of a snark S. The multipole S− (u, v) is
a (3, 3)-pole which contains in its first connector the semiedges formerly incident with
u and in its second connector the semiedges formerly incident with v. By the notation
M((e1, e2, e3), (f1, f2, f3)) = S− (u, v), we gave names to those semiedges (in some not
specified order). For some i and j, the semiedges ei and fj are ends of an isolated edge
which corresponds to the former link between u, v.

On the other side, the multipole S − [u, v] is a (2, 2)-pole N((e1, e2), (f1, f2)),
where e1, e2 correspond to the edges distinct from the edge uv incident with the vertex
u in the snark S and similarly the semiedges f1, f2 correspond to the vertex v.

1.3 Tait colourings of multipoles

Generally, in our work, we shall colour multipoles instead of restricting to graphs,
so also the dangling edges shall have assigned a colour. It is important to choose
a convenient set of colours. As we shall show later, the set of non-zero elements of the
Klein group Z2 × Z2 has very good properties. We denote this set by K.

Definition 1. LetM be a multipole and let ϕ : E(M)→ K be a mapping assigning to
each edge of M a colour from K. Then ϕ naturally induces an assignment of colours to
the edge ends of M . The mapping ϕ is called a 3-edge-colouring or simply a colouring
of the multipole M , if for each vertex v ∈ V (M) the three edge ends incident with v
have assigned pairwise distinct colours.

If there exists a colouring for a multipole M , we say that M is colourable,
otherwise uncolourable.

Using the colours from the set K, we can use addition in the group Z2 × Z2 to
analyse properties of the mapping ϕ : E(M) → K. If we denote δ(v) the set of edge
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ends incident with the vertex v, then obviously ϕ is a colouring if and only if∑
e∈δ(v)

ϕ(e) = 0

for each vertex v. This equation is the Kirchhoff’s law for flows in graphs. Thus,
a colouring of a multipole induces a nowhere-zero (Z2 × Z2)-flow and vice-versa (for
a definition of the flow see e. g. [8]). Considering that each element in K is its inverse,
we do not have to distinguish the orientation of the flow. Such colouring using the
colour set K is also called a Tait colouring.

When we view a colouring ϕ of a multipole M as a flow, then we can easily
observe form the properties of a flow that∑

e∈S(M)

ϕ(e) = 0.

Let k1, k2 and k3 be the numbers of dangling edges coloured by colours (0, 1),
(1, 0) and (1, 1), respectively. If the first entry of the sum of colours from Z2 × Z2 has
to be 0, then k1 and k2 have to have the same parity. The same holds for k2 and k3.
This result is known as the Parity Lemma which was first published by Blanuša [2]
and then by Descartes [7], originally stated for the numbers of the used colours in an
edge-cut of a 3-edge-colourable graph.

Theorem 1.1 (Parity Lemma). Let M be a k-pole and let k1, k2 and k3 be the numbers
of dangling edges coloured by colour (0, 1), (1, 0) and (1, 1), respectively. Then

k1 ≡ k2 ≡ k3 ≡ k (mod 2).

1.4 Snarks and their triviality

Before we define snarks, we explain one crucial property we shall use in the character-
ization of snarks. A very important property of cubic graphs is connectivity, precisely
the edge-connectivity. However, as each cubic graph is at most 3-edge-connected,
there is a need to better distinguish connectivity of cubic graphs. We say that a cubic
graph G is cyclically k-edge-connected if there is no set S containing less than k edges
such that the graph G − S contains at least two components with a cycle. A cyclic
edge-connectivity of a graph G is the smallest number k such that G is cyclically k-
edge-connected and it is denoted by λc(G). If a graph G has no cycle separating cut
(e. g. K4, K3,3), then we put λc(G) = ∞. As the cyclic edge-connectivity and cyclic
vertex-connectivity of a given cubic graph are equal [16], we shall omit the word edge
and say only cyclically k-connected and cyclic connectivity.

In our work, we will use a definition of a snark which follows several famous
conjectures which are proposed for bridgeless graphs.
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Definition 2. A snark is a connected bridgeless cubic graph which is not 3-edge-
colourable.

As snarks often serve as counterexamples, in many definitions of snarks oc-
curs in some form a word non-trivial. This follows that many snarks are only small
modifications of other snarks.

If a snark S contains a triangle, we can replace it by a single vertex as shown
in Figure 1.1 resulting in the graph S ′. It can be easily shown that the graph S is
colourable if and only if S ′ is colourable. We can look at this from the other side as an
operation allowing us to construct infinitely many snarks from a given one, but they
will be only trivial modifications of the former one.

Consider a snark S with a cycle of length 4. We can replace it by two parallel
edges as in Figure 1.1 resulting in the graph S ′. Again, it is easy to see that if S ′

is colourable, then S is also colourable. Note that this does not in general work in a
reverse way.

Figure 1.1: Removing triangles and 4-cycles in a snark

Now we take a look at snarks with small cyclic connectivity. From the Parity
Lemma, it is easy to see that a cubic graph with a bridge is uncolourable.

Consider a snark S with an edge-cut of size 2 which decompose it into two 2-
polesM , N . If bothM and N are colourable, then by the Parity Lemma, both dangling
edges in M and also in N have the same colour, so we can extend the colourings of M
and N to a colouring of the snark S. Therefore at least one of the components M , N
is uncolourable. So we can construct a smaller snark from the snark S by joining the
two semiedges in the uncolourable component.

When a snark S has a 3-edge-cut, then again, one of the components M , N
has to be uncolourable. Otherwise, the dangling edges of M and N would have three
different colours by the Parity Lemma. Thus, by connecting the dangling edges of the
uncolourable component of S, we can construct a smaller snark.

These were the most common properties of non-trivial snarks which also appear
directly in many definitions of snarks. To distinguish these properties we will call
snarks trivial and non-trivial.

Definition 3. A snark with girth at least 5 and cyclic connectivity at least 4 is called
non-trivial. The other snarks are called trivial.
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Often we shall work with a class of snarks with given cyclic connectivity, girth
and sometimes also order. To make our writings more compendious, we denote the class
of all snarks with cyclic connectivity at least c and girth at least g by S(c, g). Moreover,
the subclass of S(c, g) consisting of snarks of order exactly n is denoted by S(c, g, n).
Sometimes, we would like to consider snarks of the class S(c, g) with cyclic connectivity
exactly c, we denote such class by S(= c, g). Analogously, the denotation S(≤ c, g)

stands for a class of snarks S with λc(S) ≤ c and g(S) ≥ g. We also use a similar
denotation for the girth: S(c,=g) = S(c, g)−S(c, g+1), S(c,≤g) = S(c, 1)−S(c, g+1)

and order: S(c, g,≤ n) = ∪nm=1S(c, g,m), S(c, g,≥n) = ∪∞m=nS(c, g,m).

1.5 Critical and bicritical snarks

With the discussion about the non-triviality of snarks, we can go further. One such
approach consists in asking how many and which vertices of a snark we can remove
to get a colourable graph. Because if we can remove many vertices from a snark, it
contains in some way redundant parts.

By the Parity Lemma, removing one vertex from a snark leaves always an un-
colourable graph, so we have to remove at least two vertices. A pair of vertices {u, v}
of a snark S is called non-removable, if the 4-pole S − [u, v] is colourable, otherwise
it is called removable. A snark S is called critical if every pair of distinct adjacent
vertices in S is non-removable. Furthermore, if every pair of distinct vertices in S is
non-removable, we call the snark S bicritical. These notions were introduced by Nedela
and Škoviera in [17].

A similar approach can be done with edges of a snark. Again, if we split only
one edge in a snark, we get an uncolourable 2-pole. A pair of edges {e, f} of a snark
S is called non-removable if the (2, 2)-pole S − (e, f) is colourable, otherwise it is
called removable. Chladný and Škoviera introduced also a stronger concept than the
non-removable pair of edges.

Definition 4 (Chladný and Škoviera [6]). A pair of distinct edges {e, f} of a snark G is
essential if it is non-removable and for every 2-valent vertex v of the graph G−{e, f},
the graph obtained from G− {e, f} by suppressing v is colourable.

Every pair of essential edges {e, f} is non-removable, so the 4-pole M − (e, f)

is colourable. Moreover, this notion requires that other four 3-poles M1, M2, M3, M4

illustrated in Figure 1.2 are colourable.
Essential pairs of edges play a crucial role in the study of snarks of cyclic connec-

tivity 4. We shall also use this notion to obtain specific colourings of various multipoles.
Nedela and Škoviera also introduced another concept of measuring a triviality

of snarks. Firstly, they generalized the decomposition theorems of Goldberg [10] and
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e f

M0

M1

M2

M3

M4

Figure 1.2: Five multipoles that are required to be colourable for a pair of the edges
{e, f} to be essential

Cameron et al. [18] and published the following theorem [17].

Theorem 1.2. Let G be a snark and let k ≥ 1 be an integer. Then there exists an
integer function κ(k) such that if G = M ∗N is a k-junction of two k-poles, then one
of the following statements holds.

(a) One of M and N is not colourable.

(b) Both M and N can be extended to snarks M̄ and N̄ by applying the junction with
k-poles M ′ and N ′, each having at most κ(k) vertices. Moreover, |M̄ | ≤ |G| and
|N̄ | ≤ |G|.

Theorem 1.2 describes two cases which we can observe in edge-cuts of snarks.
We take a closer look at the part (a). Let us consider a snark G = M ∗ N satisfying
the condition (a), so let us say that M is uncolourable. Then M can be extended to
a snark M̄ ⊇ M of order not greater than |G| by simply restoring its 3-regularity. In
this case, we have reduced snark G to the snark M̄ which is called a k-reduction of G.
If additionally |M̄ | < |G|, then we call such k-reduction proper.

If the snark G has any proper k-reduction, the essence of its uncolourability can
be found in the smaller snark M̄ and the k-pole N contained in G can be viewed as
redundant. Therefore, snarks which do not admit k-reductions can be considered as
“sufficiently non-trivial”. To formalize this approach, we define that a snark is called
k-irreducible if it has no proper m-reduction for each m < k. If a snark is k-irreducible
for each k, then it is called irreducible. The following characterisation of k-irreducible
snarks has been given by Nedela and Škoviera [17].

Theorem 1.3. Let G be a snark. Then the following statements hold true.

(a) If 1 ≤ k ≤ 4, then G is k-irreducible if and only if it is cyclically k-connected.

(b) If 5 ≤ k ≤ 6, then G is k-irreducible if and only if it is critical.

(c) If k ≥ 7, then G is k-irreducible if and only if it is bicritical.

Corollary 1.1. A snark is irreducible if and only if it is bicritical.
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If we have a snark S that is not critical, i. e. the 4-pole S− [u, v] is uncolourable
for some adjacent vertices u, v ∈ V (S), then we can complete the 4-pole S − [u, v] to
a snark T by performing junctions of its two pairs of semiedges. The snark T has
a smaller order than the snark S. In reverse, we can choose two distinct edges e, f
of a snark T . Then we subdivide each of f and g with a new vertex and add an edge
between the two new added vertices. We denote the resulted graph by S and we say
that S was obtained by an I-extension across e and f . Nedela and Škoviera proved in
[17] that the graph S is a snark if and only if the pair of the edges {e, f} is removable
in S.

This means that we can construct any non-critical snark from a smaller snark
by an I-extension. Therefore, research of critical snarks is needed. For instance, if
we would like to generate all non-trivial snarks of order 38, it is sufficient to generate
critical ones since the remaining snarks can be obtained using I-extensions.

1.6 Colouring sets

To study the colourability of snarks, we will decompose a snark into smaller multipoles
and look at possible colourings of their semiedges. Because we will work mostly with
critical snarks, each multipole would be colourable. One such multipole has several
possibilities how its dangling edges can be coloured. However, if we look at all mul-
tipoles contained in a snark, we would not find any common colouring which would
assign to all corresponding dangling edges the same colours.

Definition 5. Let M(e1, e2, . . . , ek) be a k-pole. The colouring set of the k-pole M is
the set

Col(M) = {(ϕ(e1), ϕ(e2), . . . , ϕ(ek)) | ϕ is a Tait colouring of M}.

The k-tuple (ϕ(e1), ϕ(e2), . . . , ϕ(ek)) is denoted by ϕ(M) for a given colouring ϕ of the
k-pole M .

Definition 6. Let S = (e1, e2, . . . , ek) be a connector of a multipole M . The flow
through S it the value ϕΣ(S) =

∑k
i=1 ϕ(ei). The k-tuple (ϕ(e1), ϕ(e2), . . . , ϕ(ek)) is

denoted by ϕ(S).

Definition 7. A connector S is called proper if ϕ∗(S) 6= 0 for each colouring ϕ of the
multipole M . A multipole is called proper if all of its connectors are proper.

1.7 Substitutions

In section 1.4, we introduced two simple operations allowing us to construct a snark
from another one. In one, we replaced a vertex of a snark with a triangle, in other,
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we replaced a 4-cycle with two parallel edges (see also Figure 1.1). In general, we can
replace a k-pole M1 contained in a graph G1 = M1 ∗ R with another k-pole M2 to
obtain a graph G2 = M2 ∗ R. For some pairs of k-poles M1, M2, the graph G1 is
uncolourable if and only if G2 is uncolourable (e. g. a vertex and a triangle), for some
other pairs, the uncolourability of G1 implies the uncolourability of G2 and not vice
versa (a 4-cycle and two parallel edges). Using the relations between the colouring sets
of M1, M2, we are able to describe relations between the colourability of the graphs
G1, G2 [9].

A k-poleM1 is said to be colour-contained in a k-poleM2 if Col(M1) ⊆ Col(M2).
If Col(M1) = Col(M2), then we say that the multipoles M1 and M2 are colour-
equivalent. The following result was published by Fiol [9].

Lemma 1.1. If a k-pole M1 is colour-contained in a k-pole M2 and M2 ∗ R is un-
colourable for some k-pole R, then the graph M1 ∗R is also uncolourable. Moreover, if
M1 and M2 are colour-equivalent k-poles, then the graph M1 ∗R is uncolourable if and
only if the graph M2 ∗R is uncolourable.

A similar result can also be applied to a substitution of a multipole which is
contained in a larger multipole.

Lemma 1.2. LetM1 andM2 be two colour-equivalent k-poles such thatM1 is contained
in some multipole M . Denote the multipole obtained from M by substituting the k-pole
M1 for the k-pole M2. Then Col(M) = Col(N).



Chapter 2

Commonly used multipoles

In many snarks, we can observe several similarities. There are some types of multipoles
which occur in many snarks. They are constructed from smaller snarks by removing
some vertices or splitting some edges. Those multipoles are commonly used in various
constructions of infinite families of snarks [14], [15]. In this chapter, we describe the
multipoles we shall use in our work and their properties.

2.1 Paths and cycles

At first, we describe some common simple multipoles. Although denotation for graphs
which corresponds to them is already known, we need to specify connectors of those
multipoles.

Definition 8. For k ≥ 1, a path of length k is a (2, 2, k − 1)-pole

Pk((i1, i2), (o1, o2), (r1, r2, . . . , rk−1))

whose graph is a path v0v1 . . . vk, the dangling edges i1, i2 are incident with the vertex
v0, the dangling edges o1, o2 are incident with the vertex vk and the dangling edge ri
is incident with vi for 1 ≤ i < k.

Definition 9. For k ≥ 1, a cycle of length k, or for short a k-cycle, is a k-pole
Ck(e1, e2, . . . , ek) consisting of a cycle v1v2 . . . vk where the dangling edge ei is incident
the vertex v for each 1 ≤ i ≤ k.

At some times, a 6-cycle is better represented as a (2, 2, 2)-pole. Then we shall
use the following notation

Definition 10. A (2, 2, 2)-pole consisting of a cycle of length 6 v1v2v3v4v5v6 with
a dangling edge ei incident with the vertex vi for each i ∈ {1, 2, 3, 4, 5, 6} is denoted by
C ′6((e1, e3), (e2, e4), (e3, e6)).

12
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2.2 Isochromatic

Isochromatic is a (2, 2)-pole of the form S−[u, v] for a snark S and a pair of its adjacent
vertices u, v. Since we work mostly with cyclically 5-connected snarks, it shall not
appear in our constructions, however, we shall often use its colouring properties to
obtain colourings of multipoles constructed from critical snarks. The following lemma
follows from the Goldberg decomposition theorem [10].

Lemma 2.1. Let S be a snark and {u, v} a pair of its non-removable vertices. Then

Col(S − [u, v]) = {(a, a, b, b) | a, b ∈ K}.

Proof. Since the pair of the vertices {u, v} is non-removable, the (2, 2)-pole
M((e1, e2), (e3, e4)) = S− [u, v] is colourable by a colouring ϕ. From the Parity lemma,
we know that ϕ(e1) = ϕ(e2) = a and ϕ(e3) = ϕ(e4) = b for some a, b ∈ K. For any
a 6= c ∈ K, we can obtain the colours c on the semiedges e1, e2 by interchanging the
colours on the a–c Kempe chain. This Kempe chain has to have its ends in the same
connector, otherwise after interchanging the colours, we could extend the new colouring
of M to a colouring of the snark S.

2.3 Negator

Let S be a snark and uwv a path of length two in S. A negator is a (2, 2, 1)-pole
N(I, O, r) = S − uwv which is denoted by Neg(S, u, v). In other words, the negator
N was constructed from the snark S by removing the path uwv while the connector I
contains its semiedges formerly incident with u, the connector O contains the semiedges
formerly incident with v and the semiedge r is the remaining semiedge formerly incident
with w. This semiedge r is also called a residual semiedge.

We have to say that the notation Neg(S, u, v) is ambiguous if there is more than
one common neighbour of the vertices u, v. This can happen only if the girth of the
snark S is at most 4, so the snark S is trivial. As we study primarily non-trivial snarks,
we will use this notation (used also in [15]) and the possible ambiguity will play no
significant role in our work.

For each colouring of a negator N(I, O, r) = Neg(S, u, v), the flow through
exactly one of its connectors I, O is zero. Otherwise, we could extend such colouring of

u

w

v N

Figure 2.1: The snark S and a symbolic representation of the negator N = Neg(S, u, v)
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N to a colouring of the snark S [15]. By the Parity Lemma, the flow through the other
connector is the same as through the residual semiedge. In other words, the colouring
set of every negator is a subset of

C = {(x, x, a, b, a+ b) | x, a, b ∈ K, a 6= b} ∪ {(a, b, x, x, a+ b) | x, a, b ∈ K, a 6= b}.

A negator whose colouring set is equal to C is called perfect. The characterisation of
perfect negators was published by Máčajová and Škoviera in [15].

Theorem 2.1. A negator N = S−uwv is perfect if and only if each of the pairs {u,w}
and {v, w} of adjacent vertices is non-removable in S.

Observe that each negator constructed from a critical snark is perfect.

2.4 Proper (2,3)-pole

Let S be a snark, v a vertex in S and e an edge in S not incident with v. The (2, 3)-pole
T (D,E) = (S − e)− v is called a proper (2, 3)-pole.

ve T

Figure 2.2: The snark S and a symbolic representation of a proper (2, 3)-pole T

As its name says, the proper (2, 3)-pole is always proper, i. e. flow through
both of its connectors is always non-zero [19].

We call a proper (2, 3)-pole T perfect if

Col(T ) = {(a, b, c, d, e) ∈ K5 | a+ b+ c+ d+ e = 0, a+ b 6= 0 6= c+ d+ e}.

2.5 Odd (2,2,2)-pole

Let G be a snark and v one its vertex with neighbours u1, u2 and u3. Remove from
G the vertices v, u1, u2, u3. For i ∈ {1, 2, 3}, denote the two semiedges incident with
ui by ei and fi. Group these semiedges into connectors Si = (ei, fi). The resulting
(2, 2, 2)-pole H(S1, S2, S3) is called an odd (2, 2, 2)-pole.

The name of this multipole is derived from its colouring properties and a similar
name was used by Goldberg [10]. For each colouring ϕ of H, the number of connectors
of H having a zero flow is odd. As the Parity Lemma says, it is impossible that flow
through exactly two connectors is zero, thus, it is sufficient to show that flow through
at least one of the connectors S1, S2, S3 is zero.
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Suppose the contrary. If ϕ∗(Si) = ai 6= 0 for every i ∈ {1, 2, 3}, then we can
connect the semiedges ei and fi with a new vertex ui. The third semiedge incident
with ui can be coloured by the colour ai. From the Parity lemma, we have that
a1 + a2 + a3 = 0, so all three new semiedges incident with u1, u2 and u3, respectively
have pairwise different colours, so we can connect them to a new vertex v resulting in
the snark G witch is colourable by a extension of ϕ and that is a contradiction.

A simple example of an odd (2, 2, 2)-pole is the 6-cycle C ′6. It arises from the
Petersen graph by removing an arbitrary vertex with its three neighbours.

We shall denote the (2, 2, 2)-pole removed from the snark G as V4(S1, S2, S3). It
consist of four vertices v, u1, u2 and u3, where v is the common neighbour of u1, u2,
u3. The connector Si contains the two semiedges incident with ui for i ∈ {1, 2, 3}. The
colouring set of V4 is the set

Col(V4) = {(a, b, c, d, e, f) ∈ K | a 6= b, c 6= d, e 6= f, a+ b+ c+ d+ e+ f = 0}.

2.6 Multipoles from Isaacs snarks

The family of Isaacs snarks was the first known infinite family of snarks [11]. The
Isaacs snark Jk consists of k copies of the (3, 3)-pole Y ((i1, i2, i3), (o1, o2, o3)) depicted
in Figure 2.3 connected in a circle for an odd integer k ≥ 3. The examples of the snarks
J5 and J7 are shown in Figure 2.4. A (3, 3)-pole consisting of n copies (Yi(Ii, Oi))

n
i=1

of the (3, 3)-pole Y where junctions of the connectors Oi and Ii+1 for 1 ≤ i < n were
performed is denoted by Yn.

i1
i2

i3

o1
o2

o3

Figure 2.3: The (3, 3)-pole Y used in the construction of Isaacs snarks

Figure 2.4: The Isaacs snarks J5 and J7

Isaacs snarks have very satisfying properties, thus we shall use them a lot in our
constructions. For an odd n ≥ 5, all Isaacs snarks are irreducible [17]. Moreover, each
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pair of their edges is essential [6]. Along with the Petersen graph and the double star
snark, the Isaacs snarks are the only known snarks with this property [6].

Another useful property of the Isaacs snarks is their inductive construction.
Therefore, additional properties of Isaacs snarks can be proven using mathematical
induction. In such proofs, we shall often use the following lemma which can be found
also in [17, Propostion 4.7].

Lemma 2.2. For each n ≥ 1, one has that Col(Y2n) = Col(Y2).

Since Isaacs snarks except J3 are irreducible, every negator constructed from
them is perfect. The same holds also for the proper (2, 3)-poles as we prove in the
following lemma.

Lemma 2.3. Let T be a proper (2, 3)-pole (Jn− e)− v for odd n ≥ 5 and non-incident
edge e and vertex v. Then the proper (2, 3)-pole T is perfect.

Proof. Using a computer, we verified that the lemma holds for J5 and J7. Suppose that
the lemma holds for some odd n ≥ 7. Then the proper (2, 3)-pole T = (Jn+2 − e)− v
contains the 6-pole Y4 which is colour-equivalent to the 6-pole Y2. Therefore, the
colouring set of T is equal to the colouring set of some proper (2, 3)-pole constructed
from Jn which is perfect by the induction hypothesis.

Lemma 2.4. Let u, v be arbitrary non-adjacent vertices of the Isaacs snark Jn for some
odd n ≥ 5. Then the (3, 3)-pole M((e1, e2, e3), (f1, f2, f3)) = Jn− (u, v) is colourable by
a colouring ϕ such that ϕ(e1) = a, ϕ(e2) +ϕ(e3) = b, ϕ(f1) = c and ϕ(f2) = ϕ(f3) = d

for any {a, b, c} = K and any d ∈ K.

Proof. Since by Lemma 2.3, the proper (2, 3)-pole T ((g1, g2), (f1, f2, f3)) = (Jn−e1)−v
is perfect, it is colourable by a colouring ϕ such that ϕ(g1) = a, ϕ(g2) = b, ϕ(f1) = c

and ϕ(f2) = ϕ(f3) = d. The (3, 3)-pole M is contained in the (2, 3)-pole T where the
semiedge e1 corresponds to the semiedge g1 of T and the semiedges e2, e3 correspond to
the two edge ends in T which are adjacent to the semiedge g2 and thus ϕ(e2) +ϕ(e3) =

ϕ(g2) = b. Hence the colouring ϕ has the desired properties.

2.7 NT (2,3)-pole

Suppose that we have a negator N and a proper (2, 3)-pole T and we connect them
as depicted in Figure 2.5. The constructed (2, 3)-pole is denoted by NT(N, T ). If
we denote the (2, 3)-pole which contains one isolated edge with ends e1, e2 and one
vertex incident with three dangling edges f1, f2, f3 by Mev((e1, e2), (f1, f2, f3)), then
Col(NT(N, T )) ⊆ Col(Mev). Moreover, if both the negator N and the proper (2, 3)-
pole T are perfect, then the (2, 3)-poles NT(N, T ) andMev are colour-equivalent. Both
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N T

Figure 2.5
,

T TP

NP

Figure 2.6

these results was proven in [19, Section 3.4]. Therefore, if we substitute an isomorphic
copy of Mev in some snark S for a (2, 3)-pole NT(N, T ), then we always get a snark
S ′. Note that the snark S ′ = T ′ ∗ NT(N, T ) has the structure depicted in 2.6 where
T ′ = (S − e)− v, so T ′ is a proper (2, 3)-pole .

A (2, 3)-pole NT(NP , TP ) consisting of a negator NP from the Petersen graph
and a proper (2, 3)-pole TP from the Petersen graph is denoted by PNT.



Chapter 3

Strictly critical snarks

Almost all critical snarks up to order 36 are also bicritical. Chladný and Škoviera
studied criticality and bicriticality of cyclically 4-connected snarks and stated that
critical snarks that are not bicritical deserve a research. These snarks are called strictly
critical and they were studied also in [5]. The smallest strictly critical snark has order
32. Chladný and Škoviera showed in [6] that there exists a strictly critical snark of
each even order greater than 30. Since we understand strictly critical snarks with
cyclic connectivity 4 pretty well [6], we aim at cyclically 5-connected ones. Using the
methods developed in our bachelor thesis [19], we analyse strictly critical snarks up to
order 36. Then, we generalize some of them to infinite classes of strictly critical snarks
containing snarks with strong properties—girth 6 and even the cyclic connectivity 6

(Theorem 3.3) which solves Problem 6.3 in [6].

3.1 Structure of strictly critical snarks up to order 36

Among the snarks of order at most 36, there are only 84 cyclically 5-connected strictly
critical snarks, all having 36 vertices. Of those, 77 arose by a substitution of a copy of
the (2, 3)-pole Mev by the (2, 3)-pole PNT (see Section 2.7) in some non-critical snark
of order 20. The structure of the remaining 7 snarks is very similar, they arise from
the Petersen graph by substituting a copy of V4 with the multipoleM described below.
Recall that V4 consists of one vertex with its three neighbours.

Let T1, T2, T3 be three perfect proper (2, 3)-poles. We connect them with three
additional vertices into a (2, 2, 2)-pole M as shown in Fig. 3.1 which we denote by
TTTsc(T1, T2, T3). The (2, 2, 2)-poleM is obviously proper, so Col(TTTsc(T1, T2, T3)) ⊆
Col(V4). Note that the three vertices of the multipoleM contained in none of the proper
(2, 3)-poles can be removed, since the three connectors ofM remains still proper. Hence
any snark containing M is not bicritical. All 7 snarks contain proper (2, 3)-poles taken
from the Petersen graph.

18
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T1 T2

T3

Figure 3.1: A (2, 2, 2)-pole contained in 7 strictly critical snarks from S(5, 5, 36)

3.2 Strictly critical snarks from S(5, 6)

In this section, we generalize the structure of the 7 strictly critical snarks of order 36 and
describe an infinite class of strictly critical snarks from S(5, 6). For the simplicity, we
shall always replace V4 in the Petersen graph. In other words, the resulting snark will
be of the form (2, 2, 2)-pole C ′6 ∗ TTTsc(T1, T2, T3) for some proper (2, 3)-poles T1, T2,
T3. Recall that C ′6((e1, e3), (e2, e4), (e3, e4)) is the denotation of the 6-cycle v1v2v3v4v5v6

organized as a (2, 2, 2)-pole where the dangling edge ei is incident with the vertex vi.
Since a proper (2, 3)-pole can be uncolourable, even if it is constructed from

a critical snark, it is not sufficient to take the proper (2, 3)-poles T1, T2, T3 from
critical snarks. To be able to prove that the resulting snark is critical, we require from
the used proper (2, 3)-poles an additional, rather technical, property.

Definition 11. A proper (2, 3)-pole T = (S − e) − v is called good if for every end
vertex w of the link e and every edges f , g such that f is incident with w and g is
incident with v, the pair of edges {f, g} is essential in S.

Lemma 3.1. Let S be a snark and u, v two its vertices such that for each edges e,
f incident with u, v, respectively, the pair of edges {e, f} is essential in S. Then
there exists a colouring ϕ of the 6-pole M((e1, e2, e3), (f1, f2, f3)) = S− (u, v) such that
ϕ(e1) = a, ϕ(e2) = ϕ(e3), ϕ(f1) = b and ϕ(f2) + ϕ(f3) = c for {a, b, c} = K.

Proof. Since the pair of the edges {e1, f1} is essential in S, the 3-pole (S− (e1, f1)) ∼ u

is colourable and using this colouring, the desired colouring of S−(u, v) can be obtained
in a straightforward way.

Theorem 3.1. Let T1, T2 and T3 be three perfect good proper (2, 3)-poles. Then the
snark C ′6 ∗ TTTsc(T1, T2, T3) is strictly critical.

Proof. We shall suppose that Ti = (Si − ei) − vi for each i ∈ {1, 2, 3}. Clearly, the
snark S is not bicritical, so it is sufficient to show that it is critical, precisely, that for
arbitrary adjacent vertices x, y of S, the 4-pole M = S − [x, y] is colourable. We shall
distinguish four cases.
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Case (i). When both the vertices x, y belong to the 6-cycle the 4-pole M can be
coloured as shown in Figure 3.2. All proper (2, 3)-poles admit colourings as in the
figure since they are perfect.

Case (ii). The vertex x is from the 6-cycle and the vertex y is from some proper
(2, 3)-pole, say, T1. The colouring of the 4-pole M is depicted in Figure 3.3. By
Lemma 3.1, the 6-pole T1 − y admits such colouring as it is equal to S − (y, v1) and T
is a good proper (2, 3)-pole.
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Figure 3.2: Colouring for case (i)
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Figure 3.3: Colouring for case (ii)

a

c

bc

a

c

a

b
b

a b

b
aa

a

a

b

b

p p

p
p

cc

c

T3

T2T ′
1

Figure 3.4: Colouring for case (iii)

Case (iii). Both the vertices x, y belong to the same proper (2, 3)-pole, say, T1. The
sought colouring of S − [x, y] is illustrated in Figure 3.4 while the colouring of the 9-
pole T ′1 = T1 − (x, y) can be obtained in the following way. We colour all the dangling
edges of the 4-pole S1 − [x, y] by the same colour p (see Lemma 2.1). Let the link e1

of S1 − [x, y] is coloured by the colour a ∈ K. The links incident with the vertex v1

have pairwise distinct colours a, b, c in some order, which is not important due to the
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symmetry of the snark S. After the removal of the vertex v1 and splitting the link e1,
we get the sought colouring of the 9-pole T1 − (x, y).

Case (iv). The vertex x is from some proper (2, 3)-pole, say, T1 and y is one of the
vertices connecting two proper (2, 3)-poles, say T1 and T3. Initially, we find a colouring
of the 6-pole T1 − x ∼= (S1 − [v1, x]) − e1. Since the snark S1 is critical, the 4-pole
S1 − [v1, x] is colourable in such a way that all its dangling edges are coloured by the
same colour c. Denote the colour of the link e1 of S1 − [v1, x] by p. After splitting the
link e1, we obtain the 6-pole T1− y ∼= (S1− [v1, x])− e1 with its semiedges coloured by
(c, c, c, c, p, p). If p 6= c, the colouring of the 4-pole M = S− [x, y] is depicted in Figure
3.5a where p = a. Otherwise, if p = c, then we can colour the 4-pole M according to
Figure 3.5b.

b

a

ac

c

b

c
c

a b

b
aa

a

a

b

b

c c

cc

c

T3

T2T1 − x

(a) when p = a 6= c

b

a

ac

c

b

c
c

a b

b
ac

c

c

b

b

c c

ca

a

T3

T2T1 − x

(b) when p = c

Figure 3.5: Colouring for case (iv)

If we use proper (2, 3)-poles obtained from the Isaacs snarks in this construction,
we create an infinite class of strictly critical snarks from S(5, 6). Its smallest member
(depicted in Figure 3.6) consist of 66 vertices and up to our knowledge, it is the smallest
known strictly critical snark in S(5, 6).

In this construction, the (2, 2, 2)-pole TTTsc(T1, T2, T3) can be combined with
any odd (2, 2, 2)-pole. An interesting approach to how we can construct a larger odd
(2, 2, 2)-pole with girth 6 from smaller ones shall be shown in Lemma 5.18. However,
currently, we do not know under what conditions the resulted snark will be critical.
It is very likely that we would have to put some restrictions on odd (2, 2, 2)-poles we
could use as we could see in Definition 11.
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Figure 3.6: A strictly critical snark of order 66 from S(5, 6)

3.3 Strictly critical snarks of cyclic connectivity 6

To construct cyclically 6-connected snarks, we shall use the superposition introduced
by Kochol [13]. In superposition, we replace each vertex of a given graph G by a su-
pervertex which is a multipole with tree connectors and we replace each edge of G by
a superedge—a multipole with two connectors. After that, we perform junctions of
corresponding connectors, hence they have to have the same width. Superposition is
a far more general notion than we need, therefore we only describe one type of the
superposition we shall use.

For a start, we define a specific type of a junction of two connectors we shall often
use in this section. Consider that we have a (i, c, r1)-pole M(I, C1, R1) and (c, o, r2)-
pole N(C2, O,R2). Inspired by the notation in [15], we define a serial junction M ◦N
of M and N as the (i, o, r1 + r2)-pole P (I, O,R1 ∪R2) which arises by the junction of
the connectors C1, C2 and by union of the connectors R1 and R2. In this case, we allow
r1 or r2 to be zero and we treat a multipole M(S1, S2, ∅) with an empty connector as
the multipole M(S1, S2).

For k ≥ 1 and a multipole M(S1, S2, . . . , Sk) where |S1| = |S2|, the closure M
of M is constructed by the junction of the connectors S1, S2.

We shall use the supervertex V depicted in Figure 3.7 which contains two con-
nectors of width 3 and one connector of width 1 in this order. For the superedge E5,
we remove the two non-adjacent vertices from the Isaacs snark J5 as shown in Figure
3.8. For odd k ≥ 7, the superedge Ek is constructed by substituting the 6-pole Y2

contained in E5 by the 6-pole Yk−3. We call these superedges Isaacs superedges.
Using the superedges and the supervertices defined above, we recursively define

a k-chain as follows: A 1-chain is any (3, 3, 1)-pole of the form F0 ◦ V ◦ F1 where F0

and F1 are arbitrary Isaacs superedges. A (k + 1)-chain is a (3, 3, k + 1)-pole of the
form Rk ◦ V ◦ Fk+1 for an arbitrary Isaacs superedge Fk+1 and an arbitrary k-chain
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Figure 3.7: The supervertex V
Figure 3.8: The superedge E5

Rk. Then, we define a supercycle of length k, or for short a supercycle, as a k-pole of
the form SCk = Rk ◦ V where Rk is an arbitrary k-chain. The k-chains have colouring
properties similar to properties of the (k− 1)-path which is illustrated in the following
lemma.

Lemma 3.2. Let Rk = F0 ◦ V1 ◦ F1 ◦ · · · ◦ Vn ◦ Fk be an arbitrary k-chain and let
(i, o, r1, . . . , rn) be a colouring of the dangling edges of the path of length k− 1. Choose
arbitrary a, b, c, x, y, z such that a+ b+ c = i and x+ y + z = o. Then the colouring
(a, b, c, x, y, z, r1, . . . , rn) is contained in the colouring set of Rk.

Proof. We employ mathematical induction on n. For n = 1 and F0 = F1 = E5, we
verified using a computer that the (3, 3, 1)-pole E5 ◦ V ◦ E5 has the desired colouring
set. Every other superedge El can be obtained from E5 by substituting the (3, 3)-
pole Y2 by the (3, 3)-pole Yl−3. Since these (3, 3)-poles are colour equivalent, we have
Col(F0 ◦ V ◦ F1) = Col(E5 ◦ V ◦ E5).

Let us suppose that Lemma 3.2 holds for some n = t and let (i, o, r1, . . . , rt+1) be
a colouring of the path of length t+1. Consider arbitrary a, b, c, x, y, z ∈ K such that
a+b+c = i and x+y+z = o. Suppose that Ft+1((d1, d2, d3), Ot+1) = Jlt+1−(ut+1, vt+1),
denote the end vertex of the dangling edge d1 by w. Since the proper (2, 3)-pole
T ((d1, d4), (e1, e2, e3)) = (Jlt+1 −ut+1w)− vt+1 is perfect, it is colourable by a colouring
ϕ such that ϕ(e1, e2, e3, d1, d4) = (x, y, z, o+ r1, r1). After removing the vertex ut+1, we
obtain the (3, 3)-pole Ft+1 coloured by the colouring ϕ in such a way that ϕ(d1, d2, d3) =

(o+ r1, p, q) where p+ q = r1. Then the semiedges in the first connector of Vt+1 ◦ Ft+1

are coloured by colours (o, p, q). Finally, by the induction hypothesis, the (3, 3, t)-pole
Rt is colourable with its dangling edges coloured by (a, b, c, o, p, q, r1, . . . , rt) and after
applying a junction, the (3, 3, t + 1)-pole Rt ◦ Vt+1 ◦ Ft+1 is colourable by the desired
colouring.

Lemma 3.3. For every k ≥ 2 and every supercycle SCk, Col(SCk) = Col(Ck).

Proof. The inclusion Col(SCk) ⊆ Col(Ck) follows from the properties of a proper
superposition [13]. Let G(Ck(e1, e2, . . . , ek)) = v1v2 . . . vk and SCk = Rk ◦ V . Consider
a colouring ϕ(Ck) = (c1, c2, . . . , ck) ∈ Col(Ck). The (3, 3, 1)-pole V is colourable in such
a way that flows through its connectors are a = ϕ(vk−1vk), b = ϕ(vkv1) and ck. Since
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(b, a, c1, c2, . . . , ck) is a colouring of the (k − 1)-path v1v2 . . . vk−1, by Lemma 3.2, the
k-chain Rk admits desired colours on its semiedges and thus ϕ(Ck) ∈ Col(SCk).

Theorem 3.2. Let S = M ∗ Ck be a critical snark with a k-cycle Ck(e1, e2, . . . , ek) =

v1v2 . . . vk and let SCk be a supercycle of length k consisting of superedges Fj for 1 ≤
j ≤ k. Then the snark T = M ∗SCk obtained by employing a superposition of the cycle
Ck in S is critical.

Proof. In this proof, we consider that

SCk(r1, r2, . . . , rk) = F1 ◦ V1 ◦ F2 ◦ · · · ◦ Vk−1 ◦ Fk ◦ Vk

where for 1 ≤ j ≤ k, Vj is a copy of the supervertex V and Fj((ij1, i
j
2, i

j
3), (oj1, o

j
2, o

j
3)) =

Jlj − (uj, tj) for some odd lj ≥ 5. We shall use the denotation ijι , ojι also for the
corresponding links of the snark Jlj . Furthermore, we denote the only vertex contained
in Vj by wj. All these indices are taken modulo k. A scheme of the snark T we shall
use is depicted in Figure 3.9.

Let x, y be arbitrary adjacent vertices in the snark T . To show that T is a
critical snark, we have to show that the 4-pole T − [x, y] is colourable. The vertex
x can be taken from k-pole M , from some superedge contained in SCk or from some
supervertex contained in SCk. According to this, we divide the proof into several cases.

· · ·

wj−1 wj wj+1Fj Fj+1

M

SPk−2

Figure 3.9

Case (i) Both the vertices x, y belong to the k-pole M . Since the snark S is critical
the 4-pole S − [x, y] = M ∗Ck − [x, y] is colourable and as the k-poles Ck and SCk are
colour equivalent, the multipole M ∗ SCk − [x, y] = T − [x, y] is also colourable.

Case (ii) The vertex x belongs to M and y = wj for some 1 ≤ j ≤ k. The (2, 2)-
pole N((f1, f2), (f3, f4)) = S − [x, vj] is colourable by some colouring ϕ such that
ϕ(f1) = ϕ(f2) = ϕ(f3) = ϕ(f4) = a. For this colouring, we have ϕ(vj−1vj−2) = p 6= a,
ϕ(ej−1) = p + a, ϕ(vj+1vj+2) = q 6= a, ϕ(ej+1) = q + a for some (not necessary
distinct) p, q ∈ K. We colour the (k + 1)-pole SCk − y as shown in Figure 3.10 where
ϕ(rj) = ϕ(ej) for j 6= i. From Lemmas 2.4 and 3.2, we know that the superedges Fj,
Fj+1 and the chain SPk−2 admit such colourings.
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p
a a
a
a

qp q
p+ a

aa
q + a · · ·

q + ap+ a

Fj Fj+1

M − x

SPk−2

Figure 3.10: Colouring for the case (ii)

Case (iii) The vertex x is identical with wj for some 1 ≤ j ≤ k and y belongs to
some superedge, say, Fj. The (2, 2)-pole N1 = Jlj − [y, tj] is colourable by a colouring
which assigns the same colour q to all its dangling edges. When we remove the vertex
uj from the (2, 2)-pole N1, we get the (3, 2, 2)-pole E ′lj = (Jlj − uj) − [y, tj] with its
dangling edges coloured by (a, b, c, q, q, q, q) for {a, b, c} = K. Since S is a critical snark,
the (2, 2)-pole N((f1, f2), (f3, f4)) = S − [vj−1, vj] is colourable by a colouring ϕ such
that ϕ(f1) = ϕ(f2) = p 6= a and ϕ(f3) = ϕ(f4) = q for not necessary distinct p, q ∈ K.
This colouring ϕ assigns to the link ej+1 a colour r 6= q because the link ej+1 and the
semiedge f4 = (vj+1) are adjacent in N . Since the proper (2, 3)-pole (Fj+1−oj+1

1 )−uj+1

is perfect, it admits the colouring (q+ r, r, q, q, q) and hence the superedge Fj+1 admits
a colouring (q, q, q, q+ r, c1, c2) for some c1, c2 ∈ K such that c1 + c2 = r. The colouring
of the (2, 2)-pole M − [x, y] is depicted in Figure 3.11.

p + a a
b
c

q
q q
q
q

q+r

p q r · · ·

r

q + r

F ′
j Fj+1

M

SPk−2

Figure 3.11: Colouring for the case (iii)

Case (iv) Both the vertices x, y belong to the same superedge Fj for some j. Then
from a colouring of the (2, 2)-pole Jlj−[x, y], we can obtain a colouring of the (3, 3, 2, 2)-
pole (Jlj − (uj, tj))− [x, y] assigning to its first six dangling edges colours (a, b, c, p, q, r)

such that a+b+c = p+q+r = 0. Since the (2, 2)-pole S− [vj, vj+1] admits a colouring
(a′, a′, p′, p′) for some a′ 6= a and p 6= p′, we can colour the (2, 2)-pole T− [x, y] as shown
in Figure 3.12. We obtained the colouring of SPk−2 ◦Vj−1 ◦Fj−1 = SPk−1 from Lemma
3.2.
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a
b
c

p
q

r

a′ p′
a′ p′ · · ·

Fj−1 F ′
j

M

SPk−2

Figure 3.12: Colouring for the case (iv)

Case (v) The vertices x, y belong to two different superedges, say x ∈ V (Fj) and
y ∈ V (Fj+1). The (2, 2)-pole N1 = S − [vj, vj+1] is colourable by a colouring that
assigns the same colour a to all its semiedges. The link ej−1 of N1 has assigned a colour
b different from a since it is incident with the dangling edge (vj−1). Now, according to
Lemma 2.4 the (3, 3)-pole N2((ij1, i

j
2, i

j
3), (f1, f2, f3)) = Jlj − (uj, x) is colourable by a

colouring ϕ such that ϕ(ij1) = c = a + b, ϕ(ij2) + ϕ(ij3) = b, ϕ(f1) = a = ϕ(oj1) + ϕ(oj2)

and ϕ(f2) +ϕ(f3) = 0. If we remove the vertex tj along with its dangling edge f1 from
N2, we get two more dangling edges oj1 and oj2 which have assigned the colours b, c
in some order in the colouring ϕ, so let ϕ(oj1) = b′ and ϕ(oj2) = c′. Furthermore, the
(2, 2)-pole N3((g1, g2), (g3, g4)) = Jlj+1

− [uj+1, y] is colourable by a colouring ψ such
that ψ(g1) = ψ(g2) = c′ and ψ(g3) = ψ(g4). The colouring ψ assigns to the links oj+1

1 ,
oj+1

2 and oj+1
3 pairwise distinct colours p, q, r, respectively. We may assume that p 6= a

because if we had ψ(oj+1
1 ) = a, then we could permute the colours a, b′ 6= a and get

ψ(oj+1
1 ) 6= a. Using all described colourings, the (2, 2)-pole T − [x, y] can be coloured

as shown in Figure 3.13.

c b′ c′
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SPk−2

Figure 3.13: Colouring for the case (v)

For now, we are ready to describe an infinite class of strictly critical snarks with
cyclic connectivity 6.

Theorem 3.3. For each n ≥ 414 such that n ≡ 4 (mod 8), there exists a strictly
critical cyclically 6-connected snark of order n.
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Proof. We take one of the 7 strictly critical snarks of order 36 consisting of three proper
(2, 3)-poles from the Petersen graph and one 6-cycle, and perform a superposition
alongside the cycle of length 21 as shown in Figure 3.14. This eliminates all 5-cuts. By
Theorem 3.2, the new snark is critical and as it still contains three pairs of removable
vertices, it is not bicritical. When we use all superedges from J5, we obtain a snark
S414 of order 414. A snark of order 414 + 8k is obtained when we replace the superedge
E5 by the superedge E5+2k.

Figure 3.14: A cycle of length 21 to be replaced in a superposition

Up to our knowledge, the snark S414 is the smallest strictly critical cyclically
6-connected snark. It is hard to believe that there is none such smaller snark, how-
ever, discovering it would probably require a new method of constructing cyclically
6-connected snarks. We leave it as a problem.

Problem 3.1. Does there exist a strictly critical cyclically 6-connected snark of order
smaller than 414?



Chapter 4

An infinite class of bicritical snarks

In this chapter, we illustrate how we can use the structures observed in small bicritical
snarks to construct infinite classes of bicritical snarks. We will focus on the infinite
classes described in our bachelor thesis [19], namely on the most simple class. We aim
to find conditions of used multipoles sufficient for the constructed snark to be bicritical.

As mentioned in [19, page 30], multipoles used in constructions of bicritical
snarks need not be created from bicritical snarks. Obviously, it is necessary to eliminate
all pairs of removable vertices from the used construction blocks, but generally, we do
not understand under what conditions this is sufficient. Even if all the construction
blocks were taken from bicritical snarks we cannot be sure that the resulting snark will
be bicritical.

Example 2. Consider, for instance, the Goldberg-Loupekine snark GL consisting of
three Petersen negators arranged along a circle, with residual edges joined in an addi-
tional vertex (cf. Figure 4.1). We know that the snark GL is bicritical and that it has
three pairs of removable edges. Take one such pair e, f = uv and replace the vertex v
and the edge e with the colour-equivalent NT (2, 3)-pole PNT consisting of a negator
NP and a proper (2, 3)-pole TP constructed from the (bicritical) Petersen graph P (see
also Section 2.7). The resulting snark has order 38 and we have checked (with the help
of a computer) that it is not bicritical despite the fact that all the construction blocks
are taken from bicritical snarks.

The purpose of this chapter is to illustrate that imposing certain additional
requirements on the multipoles can assure bicriticality of the resulting snark in a fairly
general setting. The described requirements are not overly restrictive and it is even
possible that most construction blocks taken from bicritical snarks (of any given order)
satisfy them.

28
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e

f
u v

Figure 4.1: The Goldberg-Loupekine snark GL

4.1 Class NNN

For our demonstration, we have chosen snarks constructed by an NN-expansion (cf.
[19, Section 3.2]). This class is perhaps the simplest of the described infinite classes,
but a similar approach also works for the rest of them. For the purpose of proving
irreducibility, we will view these snarks as consisting of three negators Ni(Ii, Oi, ri) =

Neg(Si, ui, vi) for i ∈ {1, 2, 3} arranged along a circle with an additional vertex at-
tached to the residual semiedges (see Fig. 4.2). We denote the resulting graph by
NNN(N1, N2, N3).

N1 N2

N3

Figure 4.2: A schematic drawing of a snark NNN(N1, N2, N3)

As mentioned at the beginning of this chapter, restrictions are to be imposed
on construction blocks, not on the snarks they originated from. We will call a negator
N = Neg(S;u, v) bicritical if the 6-pole S − (x, y) is colourable for every two distinct
vertices x, y ∈ V (N). The following theorem shows that this property is necessary.

Theorem 4.1. Let N1, N2, N3 be three negators such that S = NNN(N1, N2, N3) is a
bicritical snark. Then all the negators N1, N2, N3 are bicritical.

Proof. Consider one of the negators, say, N1 = N(S1;u, v), and two of its vertices x,
y. Since S is a bicritical snark, the 6-pole S − (x, y) is colourable. By replacing the
5-pole NN(N2, N3) with the colour-equivalent P2, we get the 6-pole S1 − (x, y) which
is thus also colourable. Hence the negator N1 is bicritical.
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We do not know whether this property—or even the stronger assumption that
all three negators are taken from bicritical snarks—is also sufficient. We have tested
approximately 600,000 snarks of the class NNN constructed using at most two different
negators. We used negators from bicritical snarks from S(5, 5,≤ 30). All of the tested
snarks were bicritical.

In order to state a sufficient condition, we introduce the following rather tech-
nical property of negators (we will henceforth assume that the negator comes from a
snark of girth at least 5 to avoid ambiguity of notation and certain corner cases).

Definition 12. A negator N((i1, i2), (o1, o2), r) = Neg(S;u, v) is called good if it sat-
isfies both of the following properties:

(i) For any pair of vertices x ∈ {u, v}, y ∈ V (N) and any pair of dangling edges e,
f of the 6-pole S − (x, y) formerly incident with x, there exists a colouring ϕ of
the 6-pole S − (x, y) such that ϕ(e) = ϕ(f).

(ii) For any vertex y ∈ V (N), there exist colourings ϕ1 and ϕ2 of the 8-pole N − y
satisfying

– (ϕ1(i1), ϕ1(i2), ϕ1(o1), ϕ1(o1), ϕ1(r)) = (a, a, b, b, a),

– (ϕ2(i1), ϕ2(i2), ϕ2(o1), ϕ2(o1), ϕ2(r)) = (a, a, b, b, b),

where a, b ∈ K and a 6= b.

Recall that we consider the multipole M = S − (x, y) where x 6= y always as
a 6-pole even if the vertices x, y are adjacent—in such a case the edge xy from S

and remains in M as an isolated edge. Observe that in this case, the property (i)
is always satisfied. The 6-pole M is colourable by the irreducibility of S and by the
Parity Lemma, we get that the two dangling edges formerly incident with x have the
same colour—this colour can be assigned to the one isolated edge in M , so all three
semiedges formerly incident with x have the same colour for some colouring of M

If we consider an bicritical snark S, the 6-pole M = S − (x, y) is colourable
for any removed different vertices x, y ∈ V (S). By Parity Lemma, we know that in
every colouring of M , two semiedges formerly incident with x have to have the same
colour. The property (i) enables us to choose these two semiedges arbitrary. We tested
all bicritical snarks from S(5, 5,≤ 36) and only six of them can be used to create
a negator violating the condition (i). We describe them in Section 4.2. Also, we tested
the same snarks for the property (ii). Although, there are much more negators violating
the condition (ii), on average, about 90 percent of removed paths of length two from
some bicritical snark from S(5, 5,≤ 36) yields a good negator.

Now, we are ready to state sufficient condition.
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Theorem 4.2. Let N1, N2, N3 be three good bicritical perfect negators. Then S =

NNN(N1, N2, N3) is a bicritical snark.

Proof. For i ∈ {1, 2, 3}, assume that the negator Ni was constructed from a snark Si
by removing a path uiwivi. We will denote the two connectors of the negator Ni by
Ii = (ii1, ii2) and Oi = (oi1, oi2) and its residual edge by ri. Let x, y be two arbitrary
vertices of the snark S. We shall show that the 6-pole S − (x, y) is colourable and
hence S is bicritical.

Case (i) If both vertices x, y belong to the same negator Ni, we can replace the
other two negators with the colour-equivalent P2 (path of length two), completing the
negator Ni to the snark Si. Since Ni is bicritical, Si − (x, y) is colourable, hence so is
S − (x, y).

Case (ii) Let the vertices x, y belong to two different negators, let us say that
x ∈ V (N1) and y ∈ V (N2). Remove the vertices v1 and x from the snark S1 and
denote the semiedges formerly incident with v by e1, e2, e3 so that e3 is incident with
w1. According to the property (i) of the good negator N1, there exists a colouring
ϕ1 of the 6-pole S1 − (v1, x) such that ϕ1(e1) = ϕ1(e2) = p. Let ϕ3(e3) = a and
ϕ1(u1w1) = b 6= a. We can simply restrict the colouring ϕ1 to a colouring of the
multipole N1 − x in which ϕ1Σ(I1) = ϕ1(u1w1) = b, ϕ1(r1) = a+ b and ϕ1Σ(O1) = 0.

N1u1

w1
ϕ1(e3) = a

ϕΣ
1 (O1) = 0

b

b

a

a+ b

Figure 4.3: The colouring ϕ1 of N1

N2

a

p

p

q

q

a

Figure 4.4: The colouring ϕ2 of N2

By the property (ii) of the good negator N2, there exists a colouring ϕ2 of N2−y
such that ϕ2(i21) = ϕ2(i22) = p, ϕ2(r2) = a and ϕ(o21) = ϕ(o22) = q 6= p. Note that
this can be always achieved. When p = a, we choose q = b and when p 6= a, we choose
q = a.

Now, we can unite the multipoles N1 − x, N2 − y and perform junctions of the
connectors O1 and I2 and joining the semiedges r2 and r1 with a new vertex. We obtain
the multipole M = NN(N1, N2)− (x, y) coloured by a colouring ϕ which can be easily
obtained from the colourings ϕ1 and ϕ2 (see Fig. 4.5).

Finally, we unite the negator N3(I3, O3; r3) with M and perform junctions of
connectors I3 and O2, O3 and I1, r3 and the residual edge r of the multipole M .
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N1 N2ϕΣ(I1) = b ϕΣ(O2) = 0

0

a+ b a

b

a a

Figure 4.5: Colouring of the 5-pole

Observe that ϕΣ(O2) = 0, ϕΣ(I1) = ϕ(r) = b 6= 0. Since the negator N3 is perfect,
it admits flows 0, b and b through its connectors, so the obtained 6-pole S − (x, y) is
colourable.

Case (iii) Let the vertex y belongs to none of the negators, so it is the vertex
connecting the residual semiedges from all three negators N1, N2, N3. Let x ∈ V (N1).
We take the colouring ϕ1 of N1 − x such that ϕ1(i11) = ϕ1(i12) = a and ϕ1(r1) =

ϕ(o11) = ϕ1(o12) = b 6= a. Since N2 is a perfect negator, it admits a colouring ϕ2 such
that ϕ2Σ(I2) = 0, ϕ2(r2) = ϕ2Σ(O2) = b. Further, we proceed similarly as in Case 2:
we join all three negators and get a colouring of the 6-pole S − (x, y).

In order to create an infinite class of bicritical snarks, we need an infinite family
of good negators. As one could expect, negators constructed from Isaacs snarks are
good. Recall that each pair of non-adjacent edges of the Isaacs snark is essential (cf.
Section 2.6).

Lemma 4.1. For every odd k ≥ 5, every negator N constructed from the snark Jk is
good.

Proof. Let x, y be arbitrary non-adjacent vertices of the Isaacs snark Jk for an odd
k ≥ 5 and let e1, e2, e3 be the edges incident with x. There always exists an edge f
incident with y that is not adjacent to e3. The pair of edges {e3, f} is essential in Jk
which means that the multipole (S − {e, f}) with x suppressed has a colouring ϕ. If
we cut the edge arisen from the suppression of x into two dangling edges corresponding
to e1 and e2 and remove y, we get the (3, 3)-pole Jk − (x, y) with a colouring in which
the dangling edges corresponding to e1, e2 have the same colour. By a suitable choice
of e3, we can obtain the same colour on any two dangling edges formerly incident with
x. This holds for an arbitrary choice of non-adjacent x, y ∈ Jk and the same holds
trivially for any adjacent x, y, thus every negator constructed form Jk satisfies the
property (i).
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The fact that these negators also satisfy the property (ii) will be proved by
induction on k. For the basis, we checked by a computer that all the negators derived
from the snarks J5, J7 and J9 satisfy the property (ii).

Consider the Isaacs snark Jk for an odd k ≥ 11. Remove an arbitrary path
uwv from Jk and an arbitrary vertex x from the negator N = Neg(Jk;u, v); denote the
resulting 8-pole M and the dangling edges corresponding to the dangling edges of the
negator N by i1, i2, o1, o2 and r in the usual way. The path uwv intersects at most three
consecutive copies of the Isaacs (3, 3)-pole Y and the removal of the vertex x corrupts
at most one other copy of Y . Consequently, there are at least four intact consecutive
copies of Y in M ; let us denote Y4 the (3, 3)-pole they induce. We replace them with
a (3, 3)-pole Y2 consisting of two copies of Y and denote the resulting multipole M ′.
Clearly, M ′ is isomorphic to the multipole obtained from Jk−2 by removal of a certain
path of length two and a certain additional vertex. By the induction hypothesis, there
exists a colouring of M ′ in which the dangling edges corresponding to i1, i2, o1, o2, r
have colours exactly as desired for either ϕ1 or ϕ2 from the property (ii). Since the
multipoles Y4 and Y2 are colour-equivalent (Lemma 2.2), the desired colours can also
be assigned to the semiedges i1, i2, o1, o2, r of M . Hence, any negator constructed
from the Isaacs snark Jk satisfies the property (ii).

Theorem 4.3. Let k, l, m be three odd integers greater or equal 5. Moreover, let N1,
N2, N3 be negators from the snarks Jk, Jl, Jm, respectively such than none of those
negators contains 5-cycle. Then S = NNN(N1, N2, N3) is a bicritical snark with girth
6 and cyclic connectivity 5.

Proof. The bicriticality of the snark S follows from Lemma 4.1 and Theorem 4.2.
Suppose that the snark S contains a cycle Cg of length g < 6. Since all the negators
N1, N2, N3 have girth 6, the vertices of Cg belong to at least two negators of the snark
S. Because g < 6, one negator N contains exactly two of the vertices u, v of Cg. The
vertices u, v are adjacent and they are incident with one dangling edge of N each.
When we complete the negator N to a snark Jn, n ∈ {k, l,m}, the edge uv would be
contained in a triangle which a contradiction, since the snark Jn has girth at least 5.

Since Isaacs snarks Jk for odd k ≥ 5 do not contain cuts of size smaller than 5,
the snark S has cyclic connectivity 5.

When we use negators N17 from the smallest admissible Isaacs snark J5 (we
choose the removed path of length two in such a way that it contains at least one
vertex from the only 5-cycle in J5), we get a snark S52 = NNN(N17, N17, N17) ∈ S(5, 6)

which has 52 vertices (it is depicted in Figure 4.6). Up to our knowledge, it is the
smallest known snark in S(5, 6) except the double star snark.
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Figure 4.6: The second smallest known snark from S(5, 6)

4.2 Non-removable edges which are not essential

As promised in the previous section, we are going to take a detailed look at snarks
containing negators violating the condition (i) in Definition 12. All six known such
snarks belong to the class NNN; they consist of two Petersen negators and one negator
from a reducible snark of order 24 depicted in Figure 4.7 where the removed path of
length 2 is dashed.

Figure 4.7
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Figure 4.8: The snark S36

One of these snarks, denoted by S36, is illustrated in Figure 4.8. If we remove
the pair of vertices 12, 3 (or 12, 8), we get a 6-pole M such that for each colouring of
M , the dangling edges incident with the vertices 20, 4 (or 20, 28) have different colours
(this property has been verified by exhaustive computer search). When we construct
a negator from the snark S36 by removing a path of length two starting from the vertex
12, it violates even the weak version of the good negator condition in Definition 12.

The snark S36 has another interesting property. If we take the 6-pole S36 −
{3, 12} and perform a junction of the semiedges (4) and (20), we get a 4-pole that is
uncolourable (because the two joined semiedges have different colours in any possible
3-edge-colouring). Furthermore, we can add one vertex incident with semiedges (8) and
(23); the resulting uncolourable multipole is isomorphic with (S36−{{12, 28}, {3, 7}}) ∼
12. This implies that the pair of edges {12, 28}, {3, 7} is not essential in S36. This pair
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of edges is non-removable, as we verified with the help of a computer. This solves
Problem 5.7 proposed by Chladný and Škoviera in [6] by showing that there exists a
pair of non-removable edges in an bicritical snark which is not essential. The same
holds for the pairs of edges {{12, 28}, {3, 23}}, {{12, 4}, {8, 0}} and {{12, 4}, {8, 26}}.



Chapter 5

Small snarks with girth 6

Brinkmann et al. generated all snarks from S(4, 6,≤ 38) [4]. Aim of this chapter is to
generate all non-trivial snarks from S(≤ 5, 6, 40). At present, there are not so many
known small cyclically 6-connected snarks—only the Isaacs snarks Jk for odd k ≥ 7.
Except them, the smallest known snark from S(6, 6) has order 118 and was constructed
by Kochol in [12]. Therefore, finding another small snark from S(6, 6) would require a
different approach and thus we do not hope to find all cyclically 6-connected snarks of
order 40. However, snarks with smaller cyclic connectivity can be found thanks to the
decompositions theorems by Goldberg [10] and Cameron et al. [18]. Note, there is no
snark in S(1, 7,≤ 42) [3].

Some snarks from S(4, 6, 40) have already been generated and are available at
[3]; all of them have cyclic connectivity 4. Recall that in Section 4.1 we stated that the
smallest, up to our knowledge, known snark in S(5, 6) has order 52 except the double
star snark of order 30. Small snarks with girth 6, mainly those with a little number
of small cuts, can provide us a good base for constructions of cyclically 6-connected
snarks. At the end of this chapter, we present several ideas which can be used to
construct cyclically 6-connected snarks.

Since we will work with snarks with small cyclic connectivity, it is useful to recall
that for k ≤ 2 and any cubic graph G one has that λ(G) = k if and only if λc(G) = k,
where λ(G) is the edge-connectivity of a graph G. Also, a 3-edge-connected cubic
graph is also cyclically 3-connected. Therefore, we shall only say k-connected when we
shall deal with connectivity k ≤ 3.

5.1 Generation of snarks with cyclic connectivity 3

As it will appear later, we shall use snarks with cyclic connectivity 3 in our construc-
tions. A list of these snarks up to 24 vertices can be obtained from the list of all cubic
graphs with girth 3 up to order 24 available at [3] by filtering uncolourable cyclically

36
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3-connected ones. We know that every snark containing a 3-cut (and no smaller cut)
is constructed by removing a vertex from a snark in S(3, 3) and performing a junction
with some 3-pole M . The 3-pole M can be completed to a cubic graph by adding one
vertex, hence by removing a vertex from an arbitrary cubic graph, we can reconstruct
it back—we only need to check if it contains no small cut.

To generate all snarks from S(=3, 3, n), we tried to combine all pairs of a snark
S ∈ S(3, 3) of order at most n−2 and a cubic graph G of order at most n−10+1+1 =

n−8 (because the smallest such snark is Petersen graph of order 10). For each u ∈ V (S)

and v ∈ V (G) we generated six snarks of the form (S − u) ∗ (G − v), one for each
ordering of semiedges in the 3-pole S − u. Then we filtered cyclically 3-connected and
non-isomorphic snarks.

We were able to generate all 253,088,654 cyclically 3-connected snarks up to
order 30. We expect that the number of snarks in S(= 3, 3, 32) is over 2 milliards
(about 150 GB) and that the class S(=3, 3, 32) contains at least 20 milliards of snarks.
That would be hard to generate and also difficult to process in further constructions.
Reaching order 34 is currently impractical since we would need cubic graphs of order
26 which are not readily available.

5.2 Cyclic connectivity 5

Suppose that we have a snark S ∈ S(= 5, 6), in other words, we can represent the
snark S as a junction of two 5-poles M1 ∗M2. Then according to [18] either one of the
multipoles M1, M2 is uncolourable, or both of them can be completed to a snark by
performing a junction with one of the following multipoles: the 5-cycle C5, the path
of length two P2 or the multipole Mev consisting of one isolated edge and one vertex
incident with three dangling edges. Denote the snarks the multipoles M1, M2 can be
completed to by S1 = M1 ∗N1, S2 = M2 ∗N2.

In the beginning, we state a few useful lemmas.

Lemma 5.1. If Ni = Mev then the snark Si is 3-connected or it is 2-connected with
only one 2-cut that separates a parallel edge (a 2-cycle).

Proof. Suppose that λc(Si) ≤ 2. Let Si be a junction of two k-poles C1, C2 with
minimal possible k. Denote the removed edge by e and the removed vertex by v.
Without loss of generality, let v ∈ V (C1). The edge e has to be a link of C2. Otherwise,
the multipole C2 would be separable in S by at most 2 edges.

If k = 1, then both of the multipoles C1−v and C2−e have at most 4 semiedges.
Because Mi = (Si − e)− v contains a cycle, at least one of the multipoles C1 − v and
C2 − e contains a cycle which implies λc(S) ≤ 4. However, when k = 2, then the
multipole C2 − e contained in the snark S has 4 dangling edges. Therefore, the 4-pole
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C2−e has to be acyclic. This leaves us the only possibility—it consists of two adjacent
vertices. Thus the component C2 is a parallel edge.

Suppose that the snark Si contains another pair of parallel edges f , g. Since the
snark S contains no parallel edges, the edges f , g has to be incident with v. However,
then the snark S would contain a 4-cut as shown in Figure 5.1.

f g

e

v →

Figure 5.1

Lemma 5.2. If Ni = P2 then the snark Si is 3-connected.

Proof. Suppose that the snark Si has a cycle separating k-cut Si = C1 ∗ C2 for some
k ≤ 2. Consider the multipoles C1−P1 and C2−P2 obtained by removing P2 from the
snark S1 and denote the number of links between multipoles C1 − P2 and P2, C2 − P2

and P2, C1 − P2 and C2 − P2 by x, y, z, respectively. Additionally, we can assume
that x ≥ y due to symmetry. If y = 0, then the multipole C2 containing a cycle would
be separable in the snark S by x ≤ 2 edges—a contradiction. Now, we know that the
k-cut S1 = C1 ∗ C2 has to contain at least one link of P2, hence z ≤ 1. If y = 1, then
the multipole C2−P2 is separable by z+ y ≤ 2 edges in S, so λc(S) = λ(S) ≤ 2 which
is again a contradiction.

Therefore, y = 2 and x = 3. However, the multipoles C1 − P2 and C2 − P2 are
connected with at most one edge in the snark S, so one of them has to contain a cycle
and that multipole is separable with at most x+ z ≤ 4 edges—a contradiction. Thus,
the snark Si is cyclically 3-connected.

Lemma 5.3. If Ni = C5 then the snark Si is cyclically 4-connected.

Proof. The proof remains similar to the proof of Lemma 5.2. The only difference is that
since the 5-cycle is 2-edge-connected, then when it is contained in the cut Si = C1 ∗C2,
at least two of its edges belong to the cut. So, k ≤ 3 would imply z ≤ 1.

Lemma 5.4. Let M , N be two k-poles each containing a cycle such that the graph
M ∗N has girth 6. Then the minimal order m(k) of the multipole M (and also N) is
for small values of k:
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k 2 3 4 5 6

m(k) 14 13 12 11 6

Proof. We have done the proof by exhaustive computer verification of all cubic k-poles
for desired values of k.

Lemma 5.5. There is no uncolourable 5-pole with girth 6 and order 29 or less.

Proof. Suppose that there is such 5-pole M . Then T = M ∗ C5 is a snark of order
at most 34. According to Lemma 5.3, we have λc(T ) ≥ 4. We tried to remove every
5-cycle from every snark of S(4, 4,≤ 34) using a computer. We determined the girth
of each 5-pole arisen after a removal of C5 and if it was at least 6, we checked whether
it was colourable. This test found no desired 5-poles.

Lemma 5.6. Let both of the 5-poles M1, M2 are colourable, N1 = C5 and N2 ∈
{P2,Mev}. Then the graph M1 ∗M2 is colourable.

Proof. We use the graphs X1, X2 defined in the proof of Theorem 2 in [18]. The graph
X1 corresponding to the colouring set of M1 consists of one 5-cycle. Since the graph
X2 contains a cycle and it has not length 5, the graphs X1, X2 share at least one edge
and thus, the graph M1 ∗M2 is colourable.

Lemma 5.7. If both 5-poles M1, M2 are colourable and the order of M1 ∗M2 is at
most n, then each of them was obtained by one of the following ways:

(i) Remove a vertex v and split an edge not incident with v in a snark from
S(3, 3,≤ n− 16).

(ii) Choose a snark S ∈ S(3, 3,≤n−14), an edge e ∈ E(S) and a vertex v ∈ V (S) not
incident with e. Subdivide the edge e with two additional vertices each incident
with one dangling edge and remove the vertex v from the snark S.

(iii) Remove a path of length two in a snark from S(3, 3,≤ n− 14).

(iv) Remove a 5-cycle in a snark from S(4, 4, n− 10).

Proof. Ignoring the requirements of order, the lemma is the consequence of the Ca-
meron’s decomposition theorem [18] and Lemmas 5.1, 5.2 and 5.3. Using a computer
search, we found that the smallest 5-poles of girth 6 constructed in the ways (i), (ii),
(iii) and (iv) have orders 19, 21, 17 and 15, respectively. If M1 = S1 − C5, then the
5-pole M2 has at least 15 vertices, so |M1| ≤ n− 15 and |S1| ≤ n− 10. Moreover, by
Lemma 5.6, if the 5-poleM1 is constructed by (i), (ii) or (iii), then the 5-pole could not
be constructed by (iv) and hence |M2| ≥ 17 and |M1| ≤ n− 17 which gives us desired
upper bounds for order of the snark S1.
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Now, we are ready to describe an algorithm to find all snarks of order 40.
According to Lemma 5.4, the minimal size of the 5-poles M1, M2 is 40− 11 = 29 and
all such 5-poles are colourable by Lemma 5.5. Hence, it is sufficient to consider only
the case when both of the multipoles M1 and M2 are colourable.

Initially, we construct all 5-poles as described in (i), (ii), (iii) and (iv) of Lemma
5.7 and retain only those with girth 6 and no cycle separating cut of size 4 or smaller.
Denote the set of the multipoles constructed according to (i), (ii), (iii) by A and the
set of the multipoles constructed according to (iv) by B. For each two multipoles M1,
M2 from the set A and each of the 5! = 120 orderings of the dangling edges of M1,
we generate a graph G = M1 ∗M2 and if G is uncolourable, g(G) = 6 and λc(G) = 5,
then we keep it. In the end, we filter non-isomorphic snarks from the set of generated
graphs. We do the same for each pair of multipoles M1, M2 from the set B. Note that
it is required to test the colourability of generated snarks.

Results of the described algorithm show that the class S(=5, 6, 40) contains no
snarks and we have not found any such snarks on 42 or 44 vertices from incomplete
sets of larger multipoles. Remark that the set B consists of only one 5-pole J5 − C5.
Hence there is only one snark that can be constructed using the multipoles from the
set B and it is the Double Star snark.

5.3 Cyclic connectivity 4

Foremost, we define a fundamental operation used in constructions of snarks with
cyclical connectivity 4 introduced by Isaacs [11]. Let S1, S2 be two snarks. A graph
of the form (S1 − (e, f)) ∗ (S2 − [u, v]), for some non-adjacent edges e, f ∈ E(S1) and
adjacent vertices u, v ∈ V (S2) is called a dot-product of S1, S2 and it is always a snark.

Consider a snark S ∈ S(=4, 6). Since it contains a 4-cut, it can be represented as
a junction S = M1∗M2 of two 4-polesM1,M2. According to Goldberg’s decomposition
theorem [10], either one of the 4-poles is uncolourable or the snark S is a dot-product
of two smaller snarks S1, S2. One of the 4-poles is completed by the 4-pole L consisting
of two vertices linked by a link, each of them is incident with two semiedges. The other
4-pole is completed by the 4-pole R consisting of two isolated edges.

Lemma 5.8. There is no uncolourable 4-pole with girth 6 and order at most 28.

Proof. Suppose that there is a cyclically 4-connected snark S = M1 ∗M2 such that the
4-pole M2 is uncolourable. According to Lemma 7 published by Andersen et al. in [1],
the 4-pole M2 can be completed to a cyclically 4-connected cubic graph S2 = L ∗M2

by adding two adjacent vertices. Since M2 is uncolourable, S2 is a snark. Henceforth,
every uncolourable 4-pole M2 can be obtained by removing two adjacent vertices from
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some snark from S(4, 4,≤ 30). After an exhaustive computer search, we found no
uncolourable 4-poles of order up to 28.

Lemma 5.9. If Si = Mi ∗R, then the snark Si is 2-connected.

Proof. To the contrary, suppose that Si has a bridge dividing the snark Si into compo-
nents C1 and C2. Each of these components has to contain one edge of the 4-pole R.
Therefore a cycle of the 4-pole Mi is separable by at most 3 edges which contradicts
the fact that λc(S) = 4.

Lemma 5.10. If Si = L ∗Mi then the snark Si is 3-connected.

Proof. Let e be a dangling edge of M1 and v its only end vertex. Then we can remove
the vertex v along with its dangling edge e from the (2, 2)-poleMi and we get a (2, 2, 1)-
pole isomorphic to Si−P2 which still has girth at least 6. Therefore, Lemma 5.2 implies
that λc(Si) ≥ 3.

Lemma 5.11. If both of the 4-poles M1, M2 are colourable and the order of M1 ∗M2

is at most n, then one of them was obtained by the method (i) and the other by the
method (ii):

(i) Remove two vertices along with link between them from a snark from
S(3, 3,≤ n− 18).

(ii) Split two arbitrary links of some snark in S(2, 2,≤ n− 20).

Proof. The smallest 4-poles with girth 6 which arise by the constructions (i) and (ii)
have order 18 and 20, respectively. We verified this using a computer. The fact that
both of the 4-poles M1, M2 cannot be constructed by the same method follows from
Goldberg’s decomposition theorem [10]. IfM1 is constructed by the method (i) andM2

by method (ii), then since M1 has at lest 18 vertices, M2 has at most n− 18 vertices.
Similarly, we obtain that M1 has at most n− 20 vertices.

Finally, we present an algorithm to find all snarks of the class S(= 4, 6, 40).
For each snark S ∈ S(2, 2,≤ 22), we try to split every pair of non-adjacent edges
e, f ∈ E(S). If the 4-pole S − (e, f) has girth 6 and no cut of size less than 4, then
we add the 4-pole S − (e, f) into a set A. Similarly, for each snark T ∈ S(3, 3, 20) and
every its pair of adjacent vertices u, v we determine the girth of the 4-pole T − [x, y].
If it is at least 6 and the 4-pole contains no cut of size smaller than 4, we add the
4-pole T − [x, y] into a set B. Afterwards, for each 4-poles M1 ∈ A and M2 ∈ B

and every ordering of the semiedges of M1, we add the graph M1 ∗ M2 to a set of
constructed snarks C. Finally, we filter from the set C only snarks that are mutually
non-isomorphic.
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By Lemma 5.8, it is sufficient to consider only the latter case of the decomposi-
tion theorem. Then, the correctness of the algorithm follows from Lemma 5.11. Note
that we do not need to check the uncolourability of the generated snarks since they are
dot-product of snarks which are guaranteed uncolourable.

By implementing this algorithm, we found out that the class S(=4, 6, 40) con-
sists of 276 snarks.

5.4 Conclusion and greater orders

Summarising the results of the previous two section, we can say the following.

Theorem 5.1. There are 276 non-trivial snarks of order 40, girth 6 and cyclic con-
nectivity at most 5.

We believe that our ideas can be used to generate snarks with girth 6 and order
42 or even 44. Currently, the greatest drawback is Lemma 5.5 since there are about 400

millions of cyclically 4-connected snarks of order 36 and it is currently computationally
infeasible to generate the complete list of such snark for order 38. A solution to this
problem is to complete the considered uncolourable 5-poles to a snark in a different
way, most likely by a path of length 2. Yet we also need to improve the requirements
for the snarks in Lemma 5.2. Although the bound 3 for the cyclic connectivity is best
possible, small cuts are allowed only around the removed path of length 2. Therefore, it
is possible to require that the snark Si is cyclically 4-connected after excluding several
special cases. On the other side, it requires more precise case analysis and a care for
technical details. We aim at generating snarks from S(4, 6) of higher orders in our
further research.

5.5 Construction methods

Negators and proper (2, 3)-poles have very useful colouring properties and they appear
in plenty of constructions of cyclically 5-connected snarks. However, they can not
be used in constructions of cyclically 6-connected snarks where we miss convenient
multipoles. Therefore, we illustrate several methods for constructing multipoles with
at least 6 dangling edges and useful colouring properties. These properties mostly
include that for each colouring of a given multipole, flow through some of its connectors
is zero or non-zero. Each of the following lemmas describes one construction of some
multipole and its colouring properties.

Lemma 5.12. Let e, f be a pair of removable edges of a snark S and g another edge
of S. Then for each colouring ϕ of the (2, 2, 2)-pole M1(C1, C2, C3) = S−{e, f, g}, one
has that ϕΣ(C3) 6= 0.
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Proof. To the contrary, assume that ϕΣ(C3) = 0 for some colouring ϕ of the (2, 2, 2)-
pole M1. Then the (2, 2)-pole S − {e, f} is also colourable which contradicts the fact
that the pair of the edges {e, f} is removable.

Lemma 5.13. Let e, f , g be three distinct edges of a snark S such that each pair of
them is removable in S. Ten the (2, 2, 2)-pole M2(C1, C2, C3) = S − (e, f, g) is proper,
in other words, for each colouring ϕ of M2, ϕΣ(C1) 6= 0, ϕΣ(C2) 6= 0 and ϕΣ(C3) 6= 0.

Proof. It is a corollary of Lemma 5.12.

Lemma 5.14. Let e, f be a pair of removable edges of a snark S and v ∈ V (S). Then
for each colouring ϕ of the (2, 2, 3)-pole M3(C1, C2, C3) = S − {e, f} − v, one has that
ϕΣ(C3) 6= 0.

Proof. Existence of a colouring ϕ of M3 such that ϕ(C3) = 0 would imply an existence
of a colouring of S − {e, f}.

Lemma 5.15. Let uv, xy be a pair of removable edges of a snark S. Consider the (3, 3)-
pole M4((e1, e2, e3), (f1, f2, f3)) = S − {u, x} where the semiedges e1, f1 are incident
with the vertices v, y, respectively. Then for each colouring ϕ of M4 one has that
ϕ(e2) + ϕ(e3) = 0 or ϕ(f2) + ϕ(f3) = 0.

Proof. Suppose the contrary. Then we can add to the multipole M4 one vertex and
connect it with the semiedges e2, e3 and similarly, add another vertex incident with
the semiedges f2, f3. Afterwards, we get a (2, 2)-pole isomorphic to S − {e, f} which
can be coloured by a simple extension of the colouring ϕ—a contradiction.

Lemma 5.16. Let u, v be a pair of removable vertices of a snark S and w a neighbour
of u. Then for each colouring ϕ of the (3, 2, 2)-pole M5((e1, e2, e3), (f1, f2), (g1, g2)) =

S − v − [u,w], one has that ϕ(g1) + ϕ(g2) = 0.

Proof. If we had ϕ(g1) +ϕ(g2) 6= 0, then the (3, 3)-pole S−{u, v} would be colourable
by a extension of the colouring ϕ.

Lemma 5.17. Let u, v be a pair of removable vertices of a snark S and let w be
another vertex of S. Then for each colouring ϕ of the (3, 3, 3)-pole M6(C1, C2, C3) =

S − {u, v, w} one has that ϕΣ(C3) 6= 0.

Proof. If we had that ϕΣ(C3) = 0 for some colouring ϕ of M6, then we could extend
the colouring ϕ to a colouring of S − {u, v}.

Lemma 5.18. Let H1, H2, H3, H4, H5 be five odd (2, 2, 2)-poles (see Section 2.5).
Then the multipole K(C2, C3, C4) (the connector Ci contains the semiedges of the mul-
tipole Hi) depicted in Figure 5.2 is also an odd (2, 2, 2)-pole.
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H1
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H5

Figure 5.2

Proof. To the contrary, suppose that the (2, 2, 2)-pole K is colourable by a colouring ϕ
such that ϕΣ(Ci) 6= 0 for each i. This implies ϕΣ(C2) = a, ϕΣ(C3) = b and ϕΣ(C4) = c

for {a, b, c} = K. According to the properties of H4, flow through one of its remaining
two connectors has to be 0 and through the other a, so without loss of generality, let the
flow between H4 and H5 is a. Therefore, flow between H5 and Hi for some i ∈ {2, 3}
is equal to a. However, the flow between Hi and H1 is zero by Parity Lemma. That is
a contradiction with the colouring properties of Hi.

This odd (2, 2, 2)-pole K can be completed to a snark of order 34 by performing
a junction with V4 and this snark is described also in our bachelor thesis [19] in Class
34-6.

The described multipoles can be combined to create a snark in various ways.
Since these multipoles have width at least 6 we can obtain snarks with girth 6 or cyclic
connectivity 6 when we use appropriate snarks. We illustrate several methods of using
aforementioned multipoles to construct snarks from S(5, 6) and S(6, 6) in the following
examples.

Example 3. We start with a snark S52 of the class NNN consisting of three negators
from the Isaacs snark J5 which has order 52. We choose a pair {e, f} of its removable
edges along with another edge g of the snark S52 and according to Lemma 5.12, we con-
struct the (2, 2, 2)-poleM52((f1, f2), (f3, f4), (f5, f6)) = S52−(e, f, g). Then, we take the
strictly critical snark S66 of order 66 depicted in Figure 3.6 and choose a pair {u, v} of
its non-adjacent removable vertices along with a neighbour w of the vertex u. Accord-
ing to Lemma 5.16, we construct the (3, 2, 2)-pole M63((e1, e2, e3), (e4, e5), (e6, e7)) =

(S66 − v) − [u,w]. If we perform a junction of the connectors (e6, e7) and (f5, f6), we
get an uncolourable 9-pole M115 of order 115. Such 9-pole can be completed to a snark
or order 116 in many ways—one completion is depicted in Figure 5.3 and it has order
116 and girth 6. The links joining the two incompatible connectors (e6, e7), (f5, f6) are
marked by the dashed line.
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Figure 5.3: A snark of order 116 and girth 6

Example 4. For the second example, we take a cyclically 6-connected snark S118 of or-
der 118 constructed by Kochol in [12] and choose a pair of its removable edges {uv, xy}.
Therefore, we construct a (2, 2, 2)-pole M116(C1, C2, C3) according to Lemma 5.15—we
remove the vertices u and x from the snark S and group the accrued semiedges in
three connectors in such a way that for each colouring ϕ ofM116 one has ϕΣ(C1) = 0 or
ϕΣ(C2) = 0. Additionally, we construct two copiesM118(D1, D2, D3) andN118(E1, E2, E3)

of (2, 2, 2)-pole S118 − (ev, xy, f) where f is another edge of S118 non-incident with uv
and xy. After a disjoint union of the multipoles M116, M118 and N118 and perform-
ing junctions of the connectors C1 and D3, C2 and E3, we get an uncolourable 10-pole
which can be completed to a snark of order 352. A scheme of one such snark is shown in
Figure 5.4. The computer verification showed that this snark is cyclically 6-connected.

M116M118 N118

Figure 5.4: A scheme of a cyclically 6-connected snark of order 352

Lemma 5.13 seems very promising since every (2, 2, 2)-pole can be completed
to a snark with only a 6-cycle. In our bachelor thesis [19], we constructed a proper
(2, 2, 2)-pole of order 244 which is not acyclic and has no cuts of size 5 or smaller. In
the following example, we construct such proper (2, 2, 2)-pole of order 118.

Example 5. The Kochol’s snark S118 contains three edges e, f , g such that each pair
of them is removable. Therefore, the (2, 2, 2)-pole V = S − (e, f, g) is proper and
S124 = V ∗ C ′6 is a snark. We verified that the snark S124 is cyclically 6-connected.
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We do not know if these constructions can be used to construct smaller snarks.
However, it is difficult to find small snarks suitable for this construction. Most of them
either contain no pairs of removable edges and thereby no removable pairs of vertices
(the Isaacs snarks, the double star snark) or too many cuts of size 5 or smaller.



Conclusion

In our thesis, we explained the structure of strictly critical snarks of order up to 36.
Using these results alongside the results of our bachelor’s thesis [19] we constructed
several infinite classes of critical or strictly critical snarks with cyclic connectivity 5

or 6.
To be able to prove criticality or bicriticality of snarks contained in the exam-

ined classes, we had to impose additional requirements on used construction blocks.
Testing these requirements can be performed by a straightforward verification using
a computer. The effectiveness of such tests is comparable with the effectiveness of tests
of bicriticality since they test the colourability of some graph O(n2) times where n is
the order of the examined multipole. Despite that fact, it is still more efficient than
to test the criticality of a resulted snark since it could have thrice as large an order
as the used constructions blocks and determining whether a cubic graph is colourable
is an NP-complete problem. Moreover, if we would like to generate a large number of
critical snarks, we can prepare a set of admissible multipoles and connect them in all
possible ways.

Additionally, we solved two problems proposed in [6]. In Theorem 3.3 we con-
structed infinitely many cyclically 6-connected strictly critical snarks solving Problem
6.3. Also, we solved Problem 5.7 by providing an example of bicritical snark which
contains a pair of non-removable edges that is not essential.

In Chapter 5, we generated all non-trivial snarks with girth 6, cyclic connectivity
at most 5 and order 40. We utilised the decomposition theorems of Goldberg [10] and
Cameron et al. [18] to compose the desired snarks from two smaller ones. A consider-
able obstacle we had to overcome was to deal with trivial snarks which could appear
in the decomposition of a cyclically 5-connected snark. We had to generate a list of all
trivial 3-connected snarks with up to 30 vertices

The last chapter also describes several methods on how to obtain multipoles
with width at least 6 and useful colouring properties. These multipoles can be used in
constructions of snarks with girth 6 or cyclic connectivity 6 as we illustrated in three
examples.
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