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Abstrakt

V posledných rokoch boli techniky hlbokého učenia úspešne použité na riešenie kom-
binatorických optimalizačných úloh a pomocou myšlienok hlbokého učenia sa tiež
nedávno podarilo navrhnúť nové architektúry neurónových sietí, ktoré dokážu spracú-
vať grafy. V našej práci spájame poznatky z týchto oblastí a pokúšame sa riešiť prob-
lém najväčšej kliky v grafe pomocou jednoduchých grafových neurónových sietí Struc-
ture2Vec a ChebNet. V prvom kroku nášho prístupu učíme tieto siete predpovedať
veľkosť najväčšej kliky v okolí každého vrchola a ako trénovacie príklady pre učenie
s učiteľom používame viacero tried náhodných grafov. V druhom kroku využívame
predpovede grafových sietí pre rozhodovanie, ktorú vetvu navštíviť ako prvú v algo-
ritme branch and bound. Naše výsledky ukazujú, že grafové siete dokážu detegovať
kliky v malých grafoch, hoci naše experimenty zamerané na schopnosť generalizá-
cie naznačujú, že tieto modely ešte nedokážu úplne uchopiť základný koncept klík.
V našej práci tiež ukazujeme, že ak je algoritmus branch and bound usmerňovaný
predpoveďami grafovej neurónovej siete, tak dokáže nájsť najväčšiu kliku efektívnejšie,
než s využitím heuristickej funkcie, založenej na stupňoch vrcholov, no zatiaľ stále
lepšie výsledky dosahuje s využitím heuristickej funkcie, ktorá využíva vrcholové farbe-
nia. Okrem našich hlavných výsledkov v našej práci tiež prinášame množstvo nových
postrehov, ktoré smerujú k lepšiemu využitiu grafových neurónových sietí pre riešenie
kombinatorických optimalizačných úloh.

Kľúčové slová: problém maximálnej kliky, algoritmus branch and bound, hlboké
učenie, grafové neurónové siete
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Abstract

Inspired by recent initiatives to solve combinatorial optimization problems using deep
learning and to process graphs with neural networks, in our work we try to solve
the maximum clique problem using simple graph neural networks Structure2Vec and
ChebNet. We use supervised learning in the first step of our approach – we train
graph neural networks on various types of random graphs to predict the maximum
clique size in the neighbourhood of each vertex. In the second step we then use these
predictions to guide a branch and bound tree search to construct the maximum clique.
Our results show that graph neural networks can learn to predict clique sizes in small
graphs, although our generalization experiments suggest that these models are not
able to grasp the underlying concept of cliques. We also show that when the graph
network is used as a branching heuristic function of branch and bound algorithm, it can
outperform degree-based heuristic, but it does not achieve the effectiveness of a more
advanced heuristic based on vertex coloring. In addition to our main results, we also
provide valuable insights that may improve the methodology of solving combinatorial
optimization problems using graph neural networks in the future.

Keywords: maximum clique problem, branch and bound, deep learning, graph neu-
ral networks
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Introduction

For its various practical and theoretical applications, the maximum clique problem
(MCP) is one of the most studied NP-complete problems in computer science. In its
simplest form, in MCP we search for the largest complete subgraph of an undirected
graph. The most successful exact approaches to MCP use branch and bound frame-
work, where a search tree is pruned using branching and bounding heuristic functions
and the efficiency of resulting algorithms depends mainly on the quality of these func-
tions [49].

The success of deep neural networks led researchers to apply the methods of deep
learning to NP-hard combinatorial optimization problems in recent years. With this
approach, the models are expected to learn to exploit structural patterns in problem
instances, which can lead to automatic design of more effective heuristics. One of the
main propositions of this paradigm is that in order to achieve the best results, machine
learning approaches should not replace the classical algorithmic approaches, but should
be used to enhance them [5, 3].

Motivated by the importance of MCP and by the fact that, to our knowledge, the
techniques of deep learning were not yet directly applied to MCP, we train deep neural
networks to detect large cliques in this work. We subsequently utilize these networks
as branching heuristic functions in branch and bound algorithm.

Since MCP is a graph problem, we use graph neural networks (GNNs) [7], which
were recently designed to process graphs in an end-to-end fashion. GNNs model in-
variances to vertex labels with a message passing framework, where a neuron, which
is placed in a vertex of a graph, aggregates and transforms the outputs of neurons of
neighbouring vertices. One of the advantages of GNNs is that a trained instance of
GNN can be reused on graphs with various structures and sizes, since neurons in all
vertices share a single set of parameters. Following the paradigm of deep learning, the
expressive power of GNNs can be further increased by composition of multiple message
passing layers.

The main goals of our work are to investigate, whether GNNs can be used to detect
cliques, and whether they can improve the branching function of branch and bound.
We believe that with our approach, we might improve, or at least obtain knowledge
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Introduction 2

necessary to improve the capabilities of GNNs and the performance of branch and
bound algorithm.

In the first chapter of this work we summarize previous efforts to solve MCP and we
elaborate on motivation for using machine learning techniques for solving combinatorial
optimization problems. We also describe GNNs in greater detail and we review previous
deep learning approaches to problems similar to MCP.

In brief Chapter 2 we explain our motivations, main design decisions and the ob-
jectives we set to achieve in our work.

The main body of our work is contained in Chapter 3, in which we train graph
neural networks to predict the size of the largest clique in the neighbourhood of each
vertex and to rank vertices according to these values. Our approach uses supervised
learning, so in the first step, we generate small random graphs to serve as training
examples and we use an exact algorithm to compute the target values for these graphs.
In our following experiments we compare the precision of GNNs and simple baselines
using various types of graphs, explore the influence of architectural features on the
capabilities of GNNs and we also test generalization abilities of these models.

The second part of our work, described in Chapter 4, is concerned with using
predictions of these models to guide branch and bound tree search. We compare the
neural heuristic function to commonly used heuristics and to the theoretically optimal
branching rule.



Chapter 1

Background and Previous Work

Since deep learning methods proved useful in solving combinatorial optimization prob-
lems in recent years, we try to use these methods to solve the maximum clique problem
(MCP) in our work. In this chapter we provide the background knowledge necessary
for understanding our work and we also briefly review most recent efforts that are
relevant to our topic.

We first introduce the maximum clique problem and we briefly summarize exact and
heuristic algorithms that were used to solve it. Afterwards, we explain main features
of the general machine learning paradigm and we explain, how machine learning can
be useful in the context of combinatorial optimization problems. In last two sections of
this chapter we describe graph neural networks and we summarize recent approaches
to solve combinatorial optimization problems using machine learning and graph neural
networks.

1.1 Maximum Clique Problem

We begin by formally defining graphs, cliques and the maximum clique problem. Then
we outline the theoretical and practical importance of the maximum clique problem
and finally, we summarize the most successful techniques for finding maximum cliques.

1.1.1 Graph Notation and Problem Definition

Definition. Let us define a graph G as a pair (V,E), where V = {v1, . . . , vn} is a
set of vertices (or nodes) and E ⊆ {(u, v) | u, v ∈ V } is a set of edges. Two vertices
u, v ∈ V are adjacent to each other (or neighbours) if there exists an edge (u, v) ∈ E.
We denote a set of neighbours of a vertex v as N(v) = {u ∈ V | (u, v) ∈ E}.

Definition. A graph G′ = (V ′, E ′) is a subgraph of graph G = (V,E) if V ′ ⊆ V ,
E ′ ⊆ E and ∀(u, v) ∈ E ′ : u ∈ V ′ ∧ v ∈ V ′. We also define a subgraph of G induced by
a vertex set S ⊆ V , as GS = (S, (S × S) ∩ E).

3



CHAPTER 1. BACKGROUND AND PREVIOUS WORK 4

Definition. In a graph G = (V,E), a subset of vertices C ⊆ V forms a clique if each
pair of clique vertices is adjacent to each other in G, ∀u, v ∈ C : u 6= v =⇒ (u, v) ∈ E.
Equivalently, C ⊆ V is a clique of G if GC is a complete graph.

In the maximum clique problem (MCP) we search for the largest clique in a given
graph. Formally, in context of combinatorial optimization, the set of all instances of
the problem is the set of all graphs, the set of feasible solutions for a graph G is the
set of all cliques of G and the measure, which we try to maximize, is the clique size.

The size of the optimal solution of MCP – the size of the maximum clique of a graph
G – is usually called the clique number, denoted as ω(G). There can be multiple cliques
of size ω(G) in the graph G, and in practical applications, we are usually interested not
only in the size of the clique, but also in concrete vertices of G that form the clique,
i.e. in construction variant of the problem.

1.1.2 Theoretical and Practical Importance

The MCP is known to be NP-hard and NP-complete [23] and thus one could solve
many other hard problems with use of clique-finding algorithms and vice versa.

For example, the maximum clique problem can be simply reduced to problems of
maximum independent set (MIS) and minimum vertex cover (MVC). In MIS we search
for the largest set of non-adjacent vertices and in MVC we search for the smallest set of
vertices whose adjacent edges cover all edges of the graph. Let us define a complement
of a graph G as G = (V, V × V − (E ∪ {(v, v) | v ∈ V })). If we denote the maximum
clique of G as C, then the vertices of C form the optimal solution of MIS in G and
vertices VG − C form the solution to MVC in G.

The maximum clique problem has also relations to other combinatorial problems,
such as clique partitioning, graph clustering, graph vertex coloring, max-min diversity,
optimal winner determination, set packing and sum coloring as well as to numerous
practical applications in bioinformatics, chemoinformatics, coding theory, economics,
financial networks, location, scheduling, signal transmission analysis, social network
analysis, wireless networks and telecommunications and thus the MCP became one of
the most studied problems in computer science [49].

1.1.3 Exact Approaches

Most exact methods for solving the MCP are based on a back-tracking algorithm,
which is further improved with a pruning technique called branch and bound. For
simplicity, we will refer to algorithms that use this technique as branch and bound
(B&B) algorithms.
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In this section we first describe general structure of B&B algorithms and then
we summarize most successful branching and bounding strategies. In the end of this
section we outline other exact approaches for the MCP.

Branch And Bound Algorithm Computation of B&B algorithm can be inter-
preted as a tree search where nodes of the tree correspond to cliques and each edge
connecting a parent node to child nodes represents an extension of the parent clique
with one of candidate vertices. To make the search more efficient, bounding rule is
used to prune away branches of the recursion tree that do not contain cliques larger
than the largest clique found so far, and branching rule should lead to fast discovery
of large cliques.

During its execution, the algorithm keeps track of the current partial clique C, the
largest clique found C∗ and the set of candidate vertices P . Both, the partial and the
largest clique are initialized to empty sets, C := ∅, C∗ := ∅, and all vertices are at first
considered as candidates, P := V .

In each recursion call, branching scores hbr(v) ∈ N are assigned to all candidates
v ∈ P according to the branching rule (or branching heuristic) hbr. Candidates are
then processed in order determined by their branching scores, and the vertex with the
highest hbr(v) is then selected as the first one.

Vertex v is only added to the clique if C ∪ {v}, has a potential to form the new
largest clique. The potential hbo(v) ∈ N of each candidate v ∈ P is determined by the
bounding rule (or bounding heuristic) hbo. If the rule provides an upper bound of the
size of the largest clique containing v in the subgraph induced by P , then a branch of
v can be pruned away if |C|+hbo(v) ≤ C∗. If the rule fails to provide this upper bound
however, a part of the search tree that leads to the maximum clique might be pruned
away and the algorithm might produce a sub-optimal solution.

Otherwise, if the addition of v seems promising, v is added to the partial clique
creating a new clique C ′ := C ∪ {v}. The list of candidates is then refined to P ′ :=

P ∩ N(v), so that it only includes neighbours of v. This refinement ensures that
P ⊆

⋂
u∈C N(u) and thus each candidate can be used to extend the clique.

If |C ′| > |C∗|, the new clique is stored as the largest, C∗ := C ′, and a new recursion
call is executed with arguments C ′ and P ′. Finally, vertex v is removed from candidate
set P and a new candidate is selected to extend clique C according to hbr and hbo.

Branching and Bounding Rules A perfect branching rule would assign the highest
score to vertices of the largest clique in GP and a perfect bounding rule would precisely
predict the size of the largest clique in a graph induced by P ∩ ({v} ∪N (v)), or
equivalently ω(GP ′) + 1. While with use of these rules, ω(G) recursive calls would be
sufficient to find the largest clique, a significant amount of computation time might
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be necessary to compute these rules and thus most efficient B&B algorithms have to
exploit the trade-off between the quality of heuristic rules and their computational
complexity.

The early B&B approaches were focused on simple and fast branching and bounding
heuristic functions, while more recent approaches use more complex and more precise
methods that are able to reduce the overall computation time.

Currently, the most successful branching and bounding strategies are based on the
idea of vertex coloring. In the vertex coloring problem we search for the smallest k
such that the vertices of a graph can be partitioned to k color classes where adjacent
vertices belong to different color classes. It is easy to see that k ≥ ω(G) and so vertex
coloring can be used as a bounding rule and Tomita et al. [42] showed its usefulness
as the branching rule as well. While finding a minimum vertex coloring is also an NP-
hard problem [23], for the purposes of branching and bounding, fast heuristic coloring
procedures can be used instead of exact coloring algorithms. We explain these coloring-
based heuristics in greater detail in Section 4.1.2.

The coloring approach was incrementally improved by initial ordering of vertices
according to their degrees [41, 28], improving the coloring subroutine to achieve lower
number of colors [43], using bit-parallel operations [36], solving max-SAT instances to
achieve tighter bounds [30] and by using a heuristic local search algorithm to find a
large clique, which is used as the initial lower bound C∗ [2].

Other Exact Approaches to MCP Other techniques were also explored, but they
were surpassed by the aforementioned B&B approaches for now. These include com-
puting bounds with iterative deepening [34], using only a single initial whole-graph
coloring for bounding [29], computing multiple colorings and directly removing un-
promising and including promising candidates [14].

The comparison of these algorithms, as well as their brief but more detailed expla-
nations, can be found in a clique review paper by Wu et al. [49].

1.1.4 Heuristic Approaches

Although approximation algorithms are also commonly used to solve hard problems,
the maximum clique problem is hard to approximate. Since for any ε > 0 no approxima-
tion algorithm within a factor n1−ε exists [19] (unless P = NP ), clique approximation
algorithms are not useful in practice. Non-exact approaches for MCP are thus limited
to heuristic algorithms with no strong guarantees.

Most successful heuristic approaches use the framework of the local search, where
a population of cliques is modified with add, swap and drop operators on vertices to
search the space of all cliques or of all cliques of a given size.
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Other successful approaches are based on a sequential greedy construction of a
clique using neighbourhood statistics or dynamically computed weights from multiple
restarts to select the next vertex to add to the clique.

An interesting observation made by Wu et al. [49] is that there is no effective re-
combination (or crossover) operator known for MCP and thus evolutionary algorithms
are not competitive to simpler local search approaches.

1.2 Introduction to Machine Learning

After introducing the MCP and previous approaches that were used to solve it, we can
shift our attention to machine learning (ML) methods we intend to use in our work.

Before moving towards more complex graph neural networks, we start with a brief
introduction of the fundamental concepts and terms necessary for understanding the
machine learning approach, neural networks and specifics of deep learning. With clear
understanding of ML paradigm we can then present the motivations to use ML methods
for combinatorial optimization problems such as MCP in Section 1.2.3.

The core idea of solving a problem with ML is to create a program that can be
automatically taught to perform a task, e.g. by observing examples, instead of pro-
gramming a set of hand-crafted decision rules.

Model In machine learning, the program that is trained is usually called a model,
and to solve a problem we first have to specify, what the model can be taught. From
a mathematical point of view, the process of training a model can be defined as a
selection of one function, a hypothesis, from a specified set of hypotheses. To enable a
mathematical analysis of a model, the hypotheses set is most often parametrized with
parameters θ. Training a model is then simplified to selection of the best parameters
θ̂ which define the hypothesis hθ̂.

Learning Paradigms When an architecture of the model (a set of hypotheses) is
selected, the specific abilities of the model (the final hypothesis) depend mostly on the
learning process and on the examples which are provided for training. There are three
main paradigms of learning:

• Unsupervised: examples consist only of inputs and the model is expected to learn
compact representation and/or distribution of the inputs.

• Supervised: examples consist of pairs (input, desired output) and the model is
usually trained to predict the output labels based on inputs.

• Reinforcement: the model is in a role of an agent and is expected to learn a
behaviour that leads to a specific goal – the model manipulates an environment
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by deciding which actions to take and tries to maximize the received reward
signal.

Loss Function To define, which hypothesis is the best for solving the task, a loss
function (or an error function) l(θ, t) is used, where t denotes one training example.
For example, in case of supervised learning, t = (x, y) might be a pair of input x and
desired output y and the quadratic loss l(θ, (x, y)) = (hθ (x)− y)2 might be used. By
minimizing the loss, we might be able to find a hypothesis for which hθ(x) = y holds
for all training examples.

Training With the loss function defined, training a model is most often a non-convex
continuous optimization task that has to be optimized with metaheuristics, such as
gradient descent. In gradient descent we iteratively update the parameters in the
direction of the most steep descent of the loss – in the direction opposite to the gradient:
θ(t+1) = θ(t) − α∇θl(θ).

Generalization To create a program that would reproduce desired outputs for ob-
served inputs, the simplest solution would be to implement a lookup table. We would
store all the input/output pairs in memory and then retrieve the memorized output for
a given input at inference. However, in machine learning we are trying to train models
that can generalize – solve the task for all input instances and, most importantly, for
the unobserved ones.

To make this possible, we have to assume that there are correlations between inputs
and outputs and that these patterns don’t change over time. To formalize this point
of view, we can assume that all examples come from a joint probability distribution
P . To achieve the best general solution, we would have to minimize Et∼P [l(θ, t)], but
since we only have a limited number of examples and a limited training time, we have
to approximate the expected value with 1

|T |
∑T

i=1 l(θ, ti).
To measure the generalization ability of a model, we usually split the available

examples into a training subset and a testing subset. The model is then trained with
training examples and the loss is eventually evaluated on previously unseen testing
examples.

Precision Metrics In addition to the goal of achieving generalization abilities of
models, there is one more main aspect of ML that differentiates it from continuous
optimization.

Architecture of models and the nature of the training algorithm often limits the
possible space of loss functions. For example, to use gradient descent, loss function
and hypotheses have to be differentiable (or differentiable in parts) functions, but in
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case of classification tasks, the desired outputs y might be from set {0, 1} and the goal
might be the maximization of 1

|T |
∑T

i=1 [hθ(x) = y] where [a = b] is 1 if a = b and 0
otherwise.

To make the ML approach useful also for tasks where the goal is not easily express-
ible in a required form, a subsidiary loss function, e.g. quadratic loss, is used to set
the parameters θ, but the final model variant might be selected from a set of trained
models according to the precision metric that is more relevant to the final goal.

1.2.1 Neural Networks

Neural networks provide a modular framework that can be used to represent a broad
class of functions (or hypotheses) and are often used to define ML models.

The simplest neural network, a linear layer, consists of a matrix multiplication of
the input vector with a weight matrix and an addition of a bias vector. This network
is able to learn to perform an affine transformation f(x) = W · x+ b.

Since a composition of affine transformations only yields an affine transformation,
to expand the space of functions that can be represented with a neural network, point-
wise non-linear transformations, such as rectification relu(x) = max(0, x), can be used.
More complex neural networks are then constructed as a composition of simpler func-
tions.

A simple example of a neural network is multilayer perceptron (MLP) – a compo-
sition of multiple linear layers and non-linearities. If we denote a composition of the
linear layer and the non-linearity as hi (x) = relu (fi (x)), MLP with three layers can
be expressed as fMLP (x) = h3 (h2 (h1 (x))). When all of the composed functions are
differentiable, the neural network can be trained with gradient-based methods, such as
gradient descent.

1.2.2 Deep Learning

Most machine learning breakthroughs in recent years were achieved with the use of
deep neural networks that are able to represent more complex functions.

The core idea of deep learning is that apart from the end task (e.g. classification or
regression), the model also learns how to pre-process the input data in lower layers and
composes these representations into more complex concepts that are finally utilized
for the task executed by the final layer [17, Chapter 1]. This end-to-end approach
contrasts with the classical ML where the input examples were at first processed into
sets of hand-crafted features and the trained model was only used to solve the task
using these features.

While almost any real function can be potentially expressed with a deep enough
neural network, networks with too many parameters are very hard to train and are also
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prone to over-fitting – memorizing the training examples instead of generalizing. The
success of deep learning thus does not only come from the increased number of layers,
but also from architectures that incorporate assumptions about application domains.

For example, translation invariance in images is exploited in convolutional neural
networks. Since the same object can appear in different locations of an image, one
filter (implemented with a single neuron) can be applied to all locations of the image
to detect the object. As the same set of parameters is reused in each image location, this
approach significantly decreases the number of the model parameters and contributes
to its efficiency, simpler training process and increased generalization ability.

These architectural features of convolution and recurrent neural networks, jointly
dubbed as inductive biases [3], recently inspired researchers to develop new architec-
tures that can exploit the structure of graphs and process graphs as inputs.

1.2.3 Motivation for Using ML for Combinatorial Optimization

Machine learning approaches proved most useful for problems where the variety of
inputs exceeds human capabilities to design rules to process them effectively. Therefore,
the fact that NP-hard CO problems are currently solved with a wide range of heuristics
presents a perfect opportunity for the use of the ML techniques.

Automatic Acquisition of Expert Knowledge Approximation and heuristic al-
gorithms exploit structural patterns of a problem instance. To produce an algorithm
in a conventional way, however, these patterns have to be at first noticed by a human,
then a way of exploiting this knowledge must be discovered and finally, the algorithm
has to be implemented.

As the tasks of pattern recognition in text, images and sound were most successfully
solved by deep learning approaches, we hope that these approaches will also be able
to find patterns in combinatorial structures, learn their representations and combine
representations of simpler structures to represent more complex ones. This approach
might be much faster and might possibly lead to discovery of more relevant patterns
than those that were acquired with human expert knowledge.

Exploiting the Domain NP-hard problems are hard to solve in general case, but
in particular instance families it might be easier to find the optimal solution, and
heuristic approaches can exploit these features of instances. While this approach can
improve a performance of a heuristic on a particular type of instances, it also leads
to inconsistent performance on different types of instances and thus specific heuristics
might be necessary for solving specific instances.

While simpler machine learning models can be trained to select the best heuristic
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for each instance, deep models can be trained on examples that come directly from the
application domain and learn to distinguish typical patterns. As a result, these models
might outperform domain-independent methods.

A Single General Approach Although multiple combinatorial problems share com-
mon elements, e.g.: the input might be a graph or a set and the solution might be a
subgraph or a subset, conventional algorithms and heuristics share the same drawback
that even a slight change in the task setting demands a change in the algorithm.

In contrast with classical algorithms, a single machine learning algorithm might be
easily reusable for a wide spectrum of tasks when trained on different training sets with
different values of hyper-parameters. Moreover, with reinforcement learning a model
can learn to decide, which subroutines to execute in specific states of the optimization
process and thus it can lead to the design new algorithms.

1.3 Graph Neural Networks

Since MCP is a graph problem, a question of “how to represent a graph as an input
for a neural network” arises. Moreover, as we would like to solve MCP for graphs
that were not observed before, this representation has to be independent of the vertex
labels. Graph neural networks (GNNs) solve both of these problems.

To highlight the abilities of GNNs, we first briefly mention previous ML approaches
that were used to process graphs in this section. Afterwards, we introduce GNNs by
describing their common message-passing architecture and we summarize the ideas that
led to their design. In the end of this section we then present a few recent theoretical
results about the capabilities of GNNs.

With the understanding of deep learning and GNNs, we will be finally ready to
review previous methods that were used to solve CO problems in graphs.

1.3.1 Processing Graphs With ML

There are many kinds of real-world problems that can be represented as graphs and
so a variety of methods was developed to exploit the graph structure of inputs with
machine learning models.

In a classical machine learning setting, the first model usually embeds vertices, edges
or whole graphs into a common space Rk so that their embeddings retain either their
proximity or structural similarity. These models are usually based on factorization of
adjacency matrix, sampled random walks or on kernel methods [9]. The second model
is then usually used to process these embeddings into final predictions.
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While these methods might be effective for some problems, methods based on ad-
jacency matrix factorization usually only focus on retaining the distances between
vertices and do not capture more complex features of the graph structure.

Methods based on random walks use vertex labels to distinguish vertices from each
other and so the final embeddings are specific for a single input graph and the learned
knowledge is not transferrable to other graphs. Although random walk methods can
compute new embeddings for new graphs, they cannot guarantee that two vertices with
a structurally similar surroundings will share similar embeddings if these vertices come
from different graphs. Therefore, only models that process all vertices of a graph all
at once (e.g. clustering methods or possibly recurrent neural networks) might be able
to use the information encoded in these embeddings.

Graph kernel methods are usually used for whole-graph embeddings since they
represent a graph as a set of particular subgraphs contained in it. Although it might
be possible to represent surroundings of each vertex with a set of subgraphs, only
substructures relevant to MCP for a vertex v, would be subgraphs of the immediate
neighbourhood of v – the subgraphs of G{v}∪N(v).

1.3.2 Architecture of GNNs: Message-Passing Framework

Graph neural networks use both the depth (the end-to-end approach and the large
number of layers) and inductive biases (an invariance to vertex labels and an invariance
to the order of neighbouring vertices) to learn representations of graph substructures
that are relevant for the final task. Since they proved successful in various fields, such
as chemoinformatics [16, 10], 3D shape analysis [7] and combinatorial optimization
[11, 31], they currently gain more and more interest.

Currently there are many different architectures of GNNs, but they mostly share
the same message-passing structure [16, 3, 15].

Graph Convolutional Layers In its simplest form, a GNN usually consists of mul-
tiple graph convolutional layers, where i-th layer executes i-th step of a message passing
algorithm and computes new hidden embeddings h(i) using the outputs of the previous
layer, h(i−1). A computation preformed by a single layer can be described in three
steps. In the first step, messages are computed for all pairs of adjacent vertices. In
the second step, the messages of neighbourhood vertices are aggregated for each vertex,
and finally, a new embedding is computed, or updated, using the previous state of the
vertex h(i−1) and the aggregate of messages.

h(i)v := update
(
h(i−1)v , aggregateu∈N(v)

(
message

(
h(i−1)v , h(i−1)u

)))
While messages and updates can be computed with common neural networks, per-

mutation invariant function, such as summation, is usually used for aggregation. Hence
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the invariance to the order of neighbouring vertices is ensured.
Initial embeddings h(0) usually contain input features describing the properties of

vertices, e.g. personal information for people in a social network or properties of atoms
in a molecule. Since in our task we will only process simple graphs with no additional
information, all vertices will have h(0) set to the same constant value, which will ensure
the invariance to node labels.

Notice that the same set of parameters is shared across all vertices in a single layer,
and thus the number of trainable parameters of GNN is independent of the graph
size. Moreover, a single instance of GNN can be deployed on any graph by copying its
topology.

Usage of GNNs We can formally view a graph neural network gθ as a function
parameterized with θ that assigns a k-dimensional real embedding vector hv ∈ Rk to
each vertex v ∈ V of a graph G:

gθ : G 7→ (hv1 , . . . , hv|V |)

After multiple iterations of message-passing, the embeddings can be either used
as inputs for another neural network f : hvi 7→ R in case of regression or classi-
fication task on vertices. In tasks where a single value is predicted for the whole
graph, vertex embeddings are usually first aggregated with a readout function, e.g.
readout(hv1 , . . . , hv|V |) =

∑|V |
i=1 hvi , and the readout value is then passed to the output

network f .
To condition learned vertex or graph representations on the final task, the parame-

ters of convolution layers of g are optimized jointly with the parameters of the output
network f . This ability enables GNNs to process graphs end-to-end as opposed to
a two-step approach mentioned in Section 1.3.1, and to optimize the embeddings to
capture the structural information that is most relevant for the final task.

Extensions Extensions of the basic architecture of GNNs include computation of ad-
ditional embeddings for each edge, sharing parameters across convolutional layers, ad-
ditional pooling vertices that aggregate the information from all h(i−1)v during message-
passing steps and provide it for computation of h(i)v , use of recurrent neural networks
for update computation, contractions of the graph in higher layers and more. The most
general formalization of GNNs was provided by Battaglia et al. [3].

1.3.3 The Inception of GNNs

The concept of GNNs was re-invented multiple times in the recent years [38, 8, 10]. We
consider the fact that each of these approaches introduces GNNs as a generalization of
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a different class of models as fascinating, since it shows the possible directions for the
future applications, analysis techniques and theoretical research.

Recursive Networks and Random Walks Graph neural networks were first men-
tioned by Scarselli et al. [38] as a generalization of recursive neural networks operating
on directed acyclic graphs, and of random walks in Markov processes. In this approach,
a message-passing step using a single set of parameters was repeated until convergence.
Since this work was published before the start of the deep learning revolution, according
to a recent review on GNNs [7], this work remained mostly unnoticed.

Graph Convolution, Spectral Analysis and Fourier Transform The first rein-
carnation of GNNs in the era of deep learning came from Bruna et al. [8] where the
authors were inspired by the success of convolutional image processing architectures.
In their approach, the authors first defined a convolution operation in non-euclidean
spaces (graphs and manifolds) with use of the spectral decomposition of the graph’s
laplacian matrix. Since this approach was computationally demanding, a modification
that avoided the costly eigenvector computation was proposed by Defferard et al. [12]
and with this modification, the whole approach became describable in the message-
passing GNN framework.

The computation of one layer of one such network, ChebNet [12], can be described
by matrix operations

H ′ =
K−1∑
k=0

Zk ·Wk

Z0 = H Z1 = L ·H Zk = 2 · L · Zk−1 − Zk−2
where H,H ′ are the matrices of old resp. new hidden states (the embeddings of vertices
are represented as row vectors), Z is a Chebyshev polynomial, Wk is the weight matrix
for k-th summand of the polynomial and L is a normalized laplacian matrix L =

D−
1
2AD−

1
2 where A is the adjacency matrix of the graph and D is a diagonal matrix

of vertex degrees.
Since the multiplication of the adjacency matrix A with H computes the sum of

embeddings of neighbouring vertices for each vertex, the computation of the ChebNet’s
layer can be equivalently expressed in the message-passing framework for K = 2 (and
with use of multiple graph convolutional layers also for higher K) as:

h(i)v := h(i−1)v W
(i)
0 +

∑
u∈N(v)

1√
deg(u)deg(v)

h(i−1)u W
(i)
1

This approach shows the connections of GNNs to convolutional networks and spec-
tral graph theory. We summarized the main ideas of this approach in Appendix A
– Spectral GNNs, and its long version can be found in a review paper on geometric
learning [7].



CHAPTER 1. BACKGROUND AND PREVIOUS WORK 15

Graphical Models A simple class of GNNs based on graphical models, Struc-
ture2Vec (S2V), was proposed by Dai et al. [10]. In their approach, the authors
enhance message-passing algorithms in Markov network model by replacing the costly
operations on probability distributions with neural networks. The authors use the as-
sumption that any probability distribution P of a random variable X can be injectively
embedded into a point µX of Euclidean space of large enough dimension using a kernel
function φ to transform realizations x of X, x 7→ φ(x) ∈ Rk:

µX = EX∼P [φ(X)] =

∫
X
φ(x)p(x)dx

With distributions embedded in Rk, the authors also embed the operations on
distributions into this space. As a result, neural networks can be used to learn and
perform analogies of these operations. The computation of one step of embedded
mean-field inference in Markov network can be then expressed as the following message-
passing step:

h(i)v := relu

h(0)v W0 +
∑

u∈N(v)

h(i−1)u W1


Notice that in this approach, an initial vertex tag h(0)v is used repeatedly and that

the same set of parametersW0,W1 is used across all layers, since the belief propagation
step was usually iterated until convergence in graphical models.

Although this approach leads to an algorithm that is more efficient than inference
in graphical models, it might be interesting to analyze, whether embedded operations
obtain some properties of the original operations of probabilistic graphical models in
the process of learning.

1.3.4 Theoretical Limitations of GNNs

A recent line of work showed that capabilities of GNNs are strongly related toWeisfeiler-
Lehman algorithm for graph isomorphism [47, 52, 32].

In this algorithm, the same starting tag h(0) ∈ N is assigned to all vertices. New
tags are then computed for all vertices with an injective function (usually implemented
with a hash table) T : N × 2N → N in each consecutive iteration. If we denote all
neighbours of a vertex v as u1, . . . , um, then

h(i)v := T
(
h(i−1)v ,

{
h(i−1)u1

, . . . , h(i−1)um

})
After each iteration, the sequences of tags of all graph vertices

(
h
(i)
v1 , . . . , h

(i)
vn

)
are

compared for two graphs and if these sequences do not match, the graphs are found to
be non-isomorphic. Otherwise the iterations continue until the convergence of tags.
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In the recent work it was shown that message-passing GNNs have the same ability
to distinguish non-isomorphic graphs (and the local neighbourhoods of vertices) as
the Weisfeiler-Lehman method, if summation is used as aggregation function and if
the update function is complex enough to provide injectivity [52]. Moreover if these
conditions are not met, for example, if mean or max functions are used for aggregation,
the ability of GNN to distinguish substructures deteriorates.

Based on these observations, a simple architecture

h(i)v := MLP(i)

(1 + ε) · h(i−1)v +
∑

u∈N(v)

h(i−1)u


was proposed by Xu et al. [52] and was empirically shown to achieve the performance
of the state-of-the-art GNNs as well as kernel methods based on Weisfeiler-Lehman-
subtrees [39].

For Weisfeiler-Lehman method it is well known that it cannot distinguish non-
isomorphic k-regular graphs of the same size and k [13] and so GNNs also cannot
distinguish regular substructures of a graph. These limitations motivate the research
to find stronger variants of graph-processing networks, e.g. networks that would be
able to express more general k-Weisfeiler-Lehman method [32].

1.4 Machine Learning & Combinatorial Optimization

There are many possibilities, how to approach CO problems with ML. To provide a
wider context for our work, we start this section with a brief cross-section through
various ML methods that were used to solve CO problems. We move from the simplest
ML methods to the most recent, most complex and most relevant methods, which use
graph neural networks. We finish this section by summarizing main features of current
ML/CO methodologies and the challenges that ML has yet to face in the field of CO.

1.4.1 ML Approaches to CO

Although there have been attempts to use biologically motivated neural networks, such
as Hopfield networks, to solve the travelling salesman problem (TSP) [4, previous work]
and the MCP [20, 46]. For TSP these approaches did not turn out competitive [37, 4],
however, and for MCP only a limited comparison to older approaches was carried
out. Moreover, since Hopfield networks do not learn any transferrable knowledge, they
cannot be considered as machine learning methods.

Classical Machine Learning The use of classical machine learning was successful
in the field of mixed integer programming, where relatively simple models, logistic
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regression and support vector machines, were used to predict the next variable to set
[24] or a set of heuristics to run [25] in each node of a branch and bound algorithm.

A different approach was used to enhance a mixed integer quadratic programming
solver, where a machine learning model is used in the beginning of the computation
to determine, whether the linearization of the instance will lead to faster computation
[6].

The First Use of Deep Learning To our knowledge, deep learning techniques were
first used for combinatorial optimization in 2015 by Vinyals et al. [45].

The authors solve the metric TSP, the convex hull problem and the Delaunay
triangulation problem using a recurrent sequence-to-sequence architecture [40] which
enables the model to process inputs (a sequence of 2D points) of various sizes. As
their model, a pointer-network, is also enhanced with an attention mechanism [1] it
can produce elements of the input set as its outputs and thus solve the problem in
an end-to-end fashion – directly generate points in the travelling salesman route. The
final solutions are then obtained using a greedy inference algorithm.

According to their results, their model can generalize from training examples of
size 50 to testing examples of size 500 for the convex hull problem, but for the TSP,
the generalization from 20-vertex training graphs only holds up to 30-vertex testing
graphs.

Pointer-networks were later used to solve the metric TSP with reinforcement learn-
ing and with use of more sophisticated inference procedures [4]. In this setting the
authors were able to produce close-to-optimal solutions even for graphs with 100 ver-
tices.

Solving Graph CO Problems With GNNs While the previous approaches did
not exploit the graph structure of the problems, a general architecture, S2V-DQN,
based on the Structure2Vec network (see Section 1.3.3), was proposed by Dai et al. to
solve all combinatorial optimization problems that involve graphs [11].

This approach operates with a Q-learning framework, where a GNN is repeatedly
used to compute Q-values for candidate vertices and the final solution is constructed
with greedy inference guided with Q-values. To avoid the construction of subgraphs
induced by the current candidate set, the vertices in the candidate set are marked with
initial tags h(0) = ~1 and the vertices outside of current candidates are marked with
h(0) = ~0. An illustration of the S2V-DQN framework can be seen in Figure 1.1.

When S2V-DQN is compared to the pointer-network trained with reinforcement
learning [4] that is further enhanced to operate on simple vertex embeddings to in-
corporate graph structural information, S2V-DQN achieves similar performance on
the TSP, but significantly outperforms pointer-networks on minimum vertex cover and
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Figure 1.1: An illustration of the computation of S2V-DQN framework applied to the
minimum vertex cover problem. Reprinted from the original paper [11]. The triplets
of colorful squares represent vertex embeddings computed with S2V network and the
green bars represent the Q-values.

maximum cut problems. Furthermore, S2V-DQN can generalize from training instances
of size 100 to testing instances of size 1000.

An even more recent work by Li et al. solves the problem of the maximum inde-
pendent set using a more complex ChebNet [12], but a simpler, supervised, learning
approach [31]. The network is trained on 40 000 SAT instances converted to MIS
instances with 1 200 vertices.

Since the targets only include binary information (whether a vertex is in the optimal
solution or not), and there are many possible optimal solutions for each instance, the
predictions of the GNN often contain multiple averaged solutions. To overcome this
problem, the authors designed a novel inference framework which computes multiple
probability maps (outputs of multiple GNNs) in each step and maintains a queue of
partial solutions that are expanded with a strategy similar to breadth-first search,
which explores more potential solutions. This search strategy is more exploratory than
the previously used greedy inference.

To achieve even better results, the authors use simple heuristics to reduce the
subgraph induced by candidate vertices before passing it to the GNN and they also
use a local search heuristic to improve final solutions. An illustration of the steps used
in this approach can be seen in Figure 1.2.

This approach is also tested on the instances of SAT, MVC and MCP using reduc-
tions to MIS and can outperform S2V-DQN. This approach solves all tested instances
of SAT and also finds MIS of the same size as a state-of-the-art MIS solver in real-
world graphs. When this approach is used for maximum clique problem, however,
it only solves 62, 5% of the testing instances and the authors expressed a need for a
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Figure 1.2: An illustration of the computation of the framework by Li et al. Reprinted
from the original paper [31]. A graph is repeatedly reduced to only contain promising
vertices and multiple probability maps, which determine the probability that a vertex
will be expanded, are computed using GNNs. In the least step, solutions are post-
processed with a local search heuristic.

specialized approach to MCP.

Currently, there exist many different approaches that try to solve combinatorial op-
timization problems by combining traditional algorithms with machine learning meth-
ods and their systematic overview can be found in review paper by Bengio et al. [5].

1.4.2 Design, Methodology and Challenges of ML for CO

As we have seen in the previous section, in addition to the choice of ML model, main
differences between the existing ML approaches to CO problems are in the choice of
the learning paradigm and in the algorithmic structure used to convert continuous
predictions of the model to discrete feasible solutions. Furthermore, in the evaluation
phases of the previous studies, a special attention is paid to the ability of the models
to generalize on the instances of different size and structure.

In this section we provide a mixture of our own observations and observations made
by Bengio et al. [5] relevant to these topics.

Learning Paradigm The apparent difference of supervised learning compared to
reinforcement learning is in the need for labeled training examples. In case of CO,
a training example consists of a problem instance and of a target in form of a single
optimal solution, a set of multiple solutions or an annotation of the instance that holds
the information about optimal solutions.

Since large instances of NP-hard problems require considerable computation time
to be solved with exact approaches, the researcher either has to invest to computation
power sufficient to solve large instances, or is limited to use exact solutions of smaller
instances and sub-optimal heuristic solutions of larger instances as targets.

Bengio et al. [5] argue that models trained with supervised learning using sub-
optimal solutions only learn to mimic behaviours of heuristics and should be only used
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if they lead to faster implementations of these heuristics. On the other hand, rein-
forcement learning has a potential to lead to the design new, more effective algorithms.
We think that in their review, it is not highlighted enough that the models trained on
optimal solutions in supervised fashion might as well outperform classical approaches
[31] and also lead to new algorithms, when the behaviour of the search algorithm that
encapsulates the model is studied.

We agree with the authors that it might be a good idea to combine supervised and
reinforcement learning by first pre-training the model with supervised learning and
then improve the decision policy based on experiences of the model.

The main challenge for supervised approach, as well as for reinforcement approach,
is the selection of training instances. While random families of instances might be
generated much easier in CO than in the fields of image, text and sound processing, it
might be hard to determine which families to use for training and evaluation of models.
Real-world instances of CO problems should be collected on a larger scale in the future
to exploit the full potential of ML approaches, following the example of other areas
where ML proved to be successful [5].

Algorithmic Structure The simplest way how to utilize a ML model for CO is
to use it to make a single decision in the beginning of an algorithm, e.g. to select a
heuristic that should be run on a specific instance [6].

On the other hand, the most ambitious approaches try to directly predict optimal
solutions, e.g. as a sequence of points outputted by a recurrent pointer-network [45],
but since current approaches cannot guarantee feasibility of the outputted solutions,
special algorithms must be used to construct feasible solutions. For example, in the
case of pointer-networks, the attention mechanism of the network might assign the
highest output probability to a point that was already outputted before, but to ensure
the feasibility of the solution, only the points that were not previously outputted are
used as possible outputs in each inference step. The design of architectures that can
produce feasible solutions remains as a challenge for the future research.

The recent work shows that in order to achieve the best results, machine learning
approaches should not replace the classical algorithmic approaches, but should be used
to enhance them [5, 3]. One example of this approach was an improvement of the
pointer-networks made by Bello el al. [4], where a beam search was used to construct
multiple solutions based on the predictions of the network.

Current architectures can produce outputs in a form of a continuous distribution
for elements of an input instance and these predictions can be utilized in different
algorithmic structures. While we have seen examples of usage of ML models as guiding
heuristics in greedy search, beam search, randomized breadth-first-search and branch
and bound search, there is still a lot of space left to come up with novel usages of ML
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models in other settings.

Generalization to Size and Structure Generalization ability of models is inter-
esting from both practical and theoretical point of view. For practical applications it is
important to know the limitations of the model’s performance on instances of different
sizes and with different properties than those seen in training. On the other hand, one
of the theoretical goals of artificial intelligence is to build models that are able to learn
to understand the underlying principles of problems and generalization experiments
present a method that tests this ability.

We think that the ability of models to distinguish all substructures that are setting
apart optimal solutions from sub-optimal is necessary for grasping the principles of the
problem. Therefore, as suggested by limitations described in Section 1.3.4, it would
be unrealistic to expect current models to learn to understand the cores of the prob-
lems. This point of view might explain some of the negative results of generalization
experiments.

Even if a model is able to detect some important structures of input instances,
another challenge is to select training instances that contain diverse substructures.
Training a model on instances that are too similar to each other might lead to overfitting
to training data and so a slight variation in input might result in large prediction error.

Finally, ML models for CO are usually parametrized with a constant number of
parameters to enable them to process inputs of various sizes. If these parameters only
capture the statistical information about instances, however, ML model might fail to
produce meaningful predictions for larger instances or instances of different types.

Since only training larger models on larger instances might lead to issues with
complexity and their ability to learn, perhaps more attention should be paid to the
development of models that are, at least in theory, able to understand the core of the
problem they are trying to solve.



Chapter 2

Our Solution

In our work we apply the techniques of deep learning to the maximum clique problem.
To our knowledge, there were no previous efforts to solve the MCP in the context

of deep learning at the start of our work. As we mentioned in Section 1.4.1, Dai et al.
[11] tried to solve a related problem of MVC but the authors did not evaluate their
approach on MCP and when Li et al. [31] evaluated their model on MCP instances
reduced to MIS, it achieved considerably worse performance than when evaluated on
instances of SAT, MIS and MVC problems.

We decided to approach the MCP directly, without reductions to other problems.
As branch and bound framework is currently the most successful approach to solve

MCP and a significant part of its success is owed to the quality of its branching and
bounding heuristic functions, our initial motivation was to create a ML model that
would provide one or both of these functions.

The whole MCP and also the more specific problem of designing heuristic functions
might be approached with a variety of ML methods. In order to limit the scope of our
work to a manageable size, we made a few design decisions and we selected particular
goals we hoped to achieve. We present these decisions in two sections of this brief
chapter.

2.1 Initial Design Decisions

From B&B to Task Definition As we already mentioned above, our first idea was
to substitute heuristic functions in B&B with trained models in hope to improve the
exact algorithm for finding the maximum clique.

In B&B, the branching function should order the vertices of a graph (or a subgraph)
from the most promising to the least promising – by the size of the largest clique in
which they are contained and the bounding function should provide an upper bound
of the size of this clique (1.1.3).

22
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Since currently ML models cannot provide guarantees for their outputs, the goal of
creating a learned feasible bounding function seems unrealistic. Therefore, the learned
branching function might be used either in combination with a classical bounding
function and produce an exact algorithm, or a heuristic might be produced by using
a learned bounding function. If we decide to compare our approach with heuristics
however, other algorithmic structures, such as breadth first search used by Li et al.
[31], might find larger cliques faster due to their more exploratory nature.

We resolved this issue by separating the training phase of models from their incor-
poration in B&B. With this approach, whe can first focus on the ability of GNNs to
distinguish vertices of large cliques from vertices of small cliques and later, we can use
predictions of these models to guide the B&B algorithm, or possibly other algorithms.

Definition. Let G = (V,E) be a graph. We define the clique number of vertex v ∈ V ,
denoted as ω(v), as the size of the largest clique in the subgraph induced by vertices
{v} ∪N(v) in G.

With ω(v) defined, we can now also define tasks that should be solved with neural
networks. Analogically to the goal of the optimal bounding rule, we will train selected
networks to predict values of ω(v) for each vertex, but since the precision of clique size
predictions might be not as important as the ability to distinguish vertices of smaller
ω(v) from vertices of larger ω(v), we will focus on a task of ordering vertices according
to their clique numbers.

Learning Paradigm: Supervised Motivated by its relatively low requirements on
computational power and supported by the results of Li et al. [31], we decided to train
our models with supervised learning and with use of small, optimally solved instances
of randomly generated graphs.

In our approach, we label the vertices of training graphs with exact values of ω(v).
Since with knowledge of these labels, the maximum clique could be constructed with
only ω(G) recursive calls of B&B (see Section 1.1.3), we can say that these labels
carry information about the maximum clique. Furthermore, these labels also carry
information about all optimal solutions and also about smaller cliques. Compared to
the approach of Li et al. [31], where binary labels only denoted one optimal solution,
our labels might have potential to provide the trained model with more information
and possibly avoid the problem of predicting multiple solutions simultaneously.

Model and Input Representation: GNNs As neural networks expect real vectors
in inputs, one of the first challenges we faced, was the question of how to represent
vertices of a graph as real vectors.
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After reviewing multiple approaches (see Section 1.3.1) we decided to use graph
neural networks, since they seem to be able to capture more structural information
than other approaches and their invariance to vertex names makes their knowledge
transferrable to new graphs. Finally, their ability to be jointly trained with the net-
work that performs the final task might bring the benefits of deep learning, which we
described in Section 1.2.2.

Although many architectures of GNNs were proposed, we decide to use relatively
simple architectures that were previously used for combinatorial optimization, Struc-
ture2Vec [10] and ChebNet [12], as our starting point.

After making these initial decisions, we formulated our work plan. We present its
objectives in the following section and its results in following chapters.

2.2 Objectives

We set the implementation of the infrastructure for model training and evaluation as
our first objective.

With this infrastructure in place, we can then explore variants of GNNs and their
performance in regression and ranking tasks on various graph families. With this
approach we hope to obtain the knowledge necessary for training the best regression or
ranking model and these experiments should also answer the question whether GNNs
can learn to detect cliques.

Additionally, we would like to analyze the capabilities of our networks, investigate
whether they can generalize on graphs of different structure and size, and possibly
interpret their learned knowledge.

We do not expect to create a better practical algorithm for finding cliques in this
work, but our work should serve as a proof of concept that GNNs can be used to reduce
the number of calls in branch and bound algorithm. To achieve this, we first have to
implement B&B capable of using neural networks and then we have to evaluate its
performance using different heuristic functions.



Chapter 3

Empirical Evaluation of Network
Variants

We present the main body of our work in this chapter, in which we focus on training and
evaluation of neural networks designed for regression and ranking tasks. In regression
task, the goal of the task is to predict values of ω(v) for all vertices of a graph and in
ranking task the goal is to assign real valued scores to all vertices, so that vertices sorted
according to these scores form the same sequence as if they were sorted according to
ω(v) values.

In Section 3.1 of this chapter we describe our experimental framework, which we
used for training and evaluation of neural networks, and we devote subsequent sec-
tions to specific experiments. In Section 3.2 we train models to solve the regression
task, in Section 3.3 we evaluate models on ranking task and finally, we describe our
generalization experiments in Section 3.4.

3.1 Framework for Training and Evaluation of Models

Before moving towards concrete experiments, in this section we describe multiple com-
ponents, which we use in all our experiments. We begin by introducing the architecture
of our GNN-based models, and then we describe our baseline models and the process
of model training.

Note that the implementation of our models and training and evaluation infrastruc-
ture, as well as the code necessary to reproduce our results can be found by following
the link in Appendix B – Implementation.

3.1.1 The Architecture of Models

We can formally view a graph neural network as a function gθ1 : G 7→ (hv1 , . . . , hv|V |)

parameterized with θ1, as we mentioned in Section 1.3.2.

25
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Another neural network, in our case a multilayer perceptron, is then used to map
these embeddings to final predictions, either in form of clique sizes or ranking scores:

mθ2 : Rk → R

If we refer to all trainable parameters of these networks as θ = (θ1, θ2), the function
expressed by our neural network (a composition of GNN with MLP applied to each
embedding) can be defined as Fθ(G) =

(
(Fθ(G))1 , . . . , (Fθ(G))|V |

)
, where

(Fθ(G))i = fθ(vi) = mθ2((gθ1(G))i)

In our implementation, the first graph convolutional layer l1 : R → Rk maps the
node tag (which is always set to 1 for all vertices) to the initial embedding and higher
layers li : Rk → Rk, i > 1 process the embeddings without changing their dimensional-
ity.

We use two architectures of GNNs that are based on two types of graph convolu-
tional layers we described in Section 1.3.3: an architecture of Structure2Vec to which
we will refer as S2V, and an architecture we call ChebNet, which consists of a sequence
of Chebyshev convolutional layers with parameter K = 2 (aggregation through the
1-neighbourhood of each vertex in each layer).

Similarly to convolutional layers, all layers of MLP, except for the output layer,
represent functions of type Rk → Rk with fixed value of k = 64 and we interleave all
convolutional and fully connected layers with leaky rectified linear activation function,
leaky_relu(x) = 0.01 ·min(x, 0) + max(x, 0).

We describe the specifics of output layers and loss functions in Sections 3.2 and 3.3.

3.1.2 Baseline Models

To determine whether our networks are able to learn some structural patterns helpful
for clique prediction, we also evaluate the validation and testing metrics using baseline
models. We use specific baselines for each task.

Mean baseline model is parametrized with only one scalar and learns the mean ω(v)

for all vertices of all training graphs.
Mean-per-degree baseline (or simply degree baseline) model learns a separate mean

ω(v) for all vertices with a specific degree and thus uses at most as many parameters
as the maximum degree of the training set. For vertices with degrees that were not
observed in training this model predicts 0.

Rank-by-degree baseline simply outputs the degree |N(v)| of each vertex v. This
model has no trainable parameters and is only usable in the ranking task where its
behaviour corresponds to sorting all vertices according to their degree.
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Rank-by-degree-and-density baseline has also no trainable parameters and outputs
a pair

(
|N(v)|,

∑
u∈N(v) |N(u)|

)
, so the vertices are ranked primarily on their degree

and in case of ties, the density of their neighbourhood decides.
Note that degree baselines were specifically designed to find out, whether our net-

works use more complex information than just the degree of each vertex, resp. the sum
of degrees of their neighbours.

3.1.3 Training Data Generation

There are two standard benchmark datasets that are commonly used to evaluate algo-
rithms for MCP [49]. The dataset from The Second DIMACS Implementation Chal-
lenge: 1992-1993 [21] contains 80 graphs of 13 types with 100 − 4 000 vertices. These
graphs include random graphs with a fixed probability for each edge, real-world prob-
lem graphs and graphs designed to make the search for maximum clique hard. The
BHOSLIB dataset [51] was created by transforming hard SAT instances that model
binary constraint satisfaction problems and contains 36 graphs with 450−4 000 vertices.

For training and validation purposes we generated random graphs of multiple types
selected from DIMACS and BHOSLIB datasets. A graph type was included to the
dataset if the generating procedure was simple to implement or if we were able to find
an existing implementation of the generator.

We use the following graph families in our datasets:

• random graphs C<N>.5, C<N>.9 with N vertices and edge probabilities of 0.5, 0.9

respectively,

• brock<N> graphs that were designed to hide the maximum clique among the ver-
tices with relatively low degrees; ω(G) is sampled uniformly from range {3, 4, . . . , N}
as a parameter for brock graph generator,

• dsjc<N> k-partite random graphs with k sampled uniformly from range {2, 3, . . . , N}
that mimic C<N>.5 graphs but contain at least one k-clique,

• and small BHOSLIB graphs rb<V>-<D> that represent random hard constraint
satisfaction problems with V variables each with a domain of size D.

We were also considering to generate Hamming graphs hamm<B> from DIMACS
dataset, where vertices correspond to 1–B-bit code-words and two vertices are con-
nected if they have Hamming distance at least d. But since Hamming graphs are
regular, we did not include them into our training sets as GNNs are known to be
unable to process regular graphs (Section 1.3.4).

When the generation process is completed, we label each vertex v of each generated
graph G with the true value of ω(v). We use our own implementation of B&B algorithm
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that uses coloring heuristic functions and produces a sequence ω(v1), . . . , ω(v|V |) for
each graph.

We will provide the details of generated datasets, such as the number of generated
graphs, with individual experimental results.

3.1.4 Training Setup

In our experiments we either use grid search to tune hyper-parameters (number of
GNN and MLP layers, batch size and the initial learning rate) or we use architectures
that proved successful in previous experiments.

Before training, we split each dataset into training and validation set by splitting
the set of graphs of each type in 80 : 20 ratio.

Each model is then trained on the training set using early stopping with at most
200 epochs and the patience of 10 epochs. The learning rate is reduced by the factor
of 0.2 if no improvement of validation loss is observed for 5 epochs.

All our networks are optimized using Adam optimizer [26].

3.2 Solving the Regression Task

In regression task we want to train the network to produce predictions fθ(v) such that:
∀v ∈ V : fθ(v) ≈ ω(v) and we can achieve this by minimizing the mean square loss on
the training set GT :

lMSE(θ, v) = (fθ (v)− ω (v))2

LMSE(θ,GT ) =
1

|GT |
∑
G∈GT

1

|VG|
∑
v∈VG

lMSE(θ, v)

The square loss function focuses on minimizing the worst errors and penalizes smaller
errors less than absolute L1 loss |fθ (v)− ω (v)|.

3.2.1 Output Layer and Target Transformations

We consider the simplest and most straightforward variant of the network with linear
output layer and ω(v) targets as our first variant, which we will refer to as absolute.

Since it might be hard to train neural networks to produce estimates of unbounded
clique sizes ω(v) ∈ N, we considered one more variant which maps the targets to [0, 1]

interval before training. In relative-to-degree variant we transform the output of MLP
with logistic sigmoid σ(x) = 1/ (1 + e−x) and we modify training targets to values
relative to vertex degrees:

ωdeg(v) =
ω(v)

|N(v)|+ 1



CHAPTER 3. EMPIRICAL EVALUATION OF NETWORK VARIANTS 29

To compare the effects of ω and ωdeg targets and also to achieve easier interpretabil-
ity of loss function values, even if we train the network using relative targets, we convert
its predictions to absolute targets ω(v) to compute the validation and testing mean
square error (MSE).

While these targets achieve that the expected outputs of the network are bounded
within [0, 1] interval, and so the network should be easier to train and maybe even
generalize better, they can also affect additional aspects of training and inference.

One such effect is that ωdeg penalizes prediction errors on vertices of lower degree
more than errors on vertices of higher degrees. In detail, absolute prediction error of 1

for a vertex of degree 4 (resulting in loss (1/(4 + 1))2 = 1/25), will be penalized with
four times greater loss than than the same error made for a vertex of degree 9 (with
loss of (1/(9 + 1))2 = 1/100). This effect might decrease the ability of the network to
distinguish cliques of similar sizes in vertices of relatively high degree.

In addition to ω and ωdeg, we considered one more output variant, in which the
targets are transformed to values relative to ω(G), but due to theoretical reasons we
decided not to study it in greater detail. We provide the definition, analysis and limited
evaluation results for this variant in Appendix C – Target Transform ωmc.

3.2.2 Model Training, Tuning and Initial Evaluation

To evaluate the performance of absolute and relative-to-degree variants of S2V and
ChebNet networks, we generated 80 training, 20 validation and 100 testing 20-vertex
graphs of each graph type mentioned in Section 3.1.3.

Using a grid search we trained multiple architectures of each of four variants with
3-5 graph convolutional layers and 2-4 MLP layers. The dimensions of the vertex
embeddings and of the hidden layers were set to 64 and starting learning rates of
10−2, 10−3, 10−4 and batch sizes of 8, 16, and 32 graphs were used.

We present the testing mean square error achieved by our models and baselines in
Figure 3.1 and in the first row of Table 3.1. Our models outperform baseline models,
while S2V performs better with absolute targets and ChebNet achieves the globally
best results with bounded targets.

Best Values of Hyper-Parameters and Stability of Training A subset of mul-
tiple models with similar hyper-parameters achieved similar results for each variant of
GNN and target transformation. Therefore, we can use the results from the tuning
process not only to find the best combinations of hyper-parameters, but also to explore
the stability of the training process without the need to repeat the training multiple
times.
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Figure 3.1: MSE for predictions of ω(v) achieved with two baseline models (mean,
mean-per-degree) and two GNN-based models (S2V, ChebNet) trained with two vari-
ants of targets (absolute, relative-to-degree). Note that the mean baseline model
achieves MSE of 16 when trained on absolute targets.

Variants of S2V model with 5 iterations of message passing showed much higher
variance in MSE than variants with 3 or 4 iterations. This unstable behaviour might
be a result of iterated multiplication of the weight matrix, which is shared across S2V
layers. When S2V models were trained with batch sizes smaller than 32 and learning
rate lower than 0.01, they achieve MSE of 2-3.5 on absolute targets and of 3-4 on
relative targets, and thus consistently outperform baseline models.

The fact that all but two of the trained variants of ChebNet on absolute targets
performed worse than mean-per-degree baseline suggests that ChebNet does not seem
to train well on these targets.

In contrast with S2V model, as each of ChebNet layers uses a separate set of
parameters, increasing number of convolutional layers improves the performance of
ChebNet and variants of ChebNet with 5 convolutional layers trained on relative targets
with learning rate 0.001 achieve mean square errors of 1-2. Furthermore, these errors
can be systematically decreased using smaller batch sizes.

Overall, the training results seem to be more stable for ChebNet models.

3.2.3 Performance of Model Variants on Graph Families

To gain insight into what our models learned, we selected the trained instance that
achieved the lowest validation mean square error for each combination of GNN and
target transformation and we evaluated these models separately on graphs from each
graph family. We trained new baseline models using exclusively graphs from particular
graph families (but different from testing graphs) for this evaluation. We present the
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results of this evaluation in Table 3.1.

Table 3.1: MSE evaluated on all graphs and separately on 5 graph types (rows) using 4
models with 2 target transform variants (columns). Note that while GNN models (S2V,
ChebNet) were trained on the whole dataset, baseline models (mean, mean-per-degree)
were trained on specific graph types, except for baselines whose results are reported
in the first row. The average MSE of 5 mean-per-degree models trained on separate
graphs is 2.54.

absolute relative-to-degree
mean deg s2v cheb mean deg s2v cheb

all 16.34 4.12 1.80 2.55 6.36 4.12 2.60 1.06
C.20.5 0.58 0.37 0.46 1.32 0.67 0.37 0.52 0.60
C.20.9 1.67 1.35 1.20 1.84 1.43 1.35 1.86 1.43
brock20 26.70 6.55 5.29 5.07 7.63 6.55 7.34 1.80
dsjc20 10.51 4.26 1.42 3.67 5.07 4.26 2.16 1.09
rb5-4 0.22 0.17 0.64 0.84 0.55 0.17 1.13 0.40

Description of Results S2V+absolute model performs comparably to mean-per-
degree baseline on most graph types, with the most significant improvement achieved
on dsjc graphs and a smaller improvement on brock graphs. This model fails to
predict the clique sizes for rb graphs (mostly of sizes 4 and 5), which results in worse
performance than mean baseline on these graphs.

ChebNet+absolute model achieves worse results than mean baseline on most graphs
with exception of brock and dsjc graphs where it can outperform the degree baseline.

S2V+relative-to-degree model performs comparably to baselines on most graph
types while it produces better predictions for dsjc graphs and worse predictions for rb
graphs than baseline models. Notice, that this model achieves worse performance than
S2V+absolute model on all graph families, so the target modification does not seem
to help S2V model. Also note that while the mean baseline model is still parametrized
with a single parameter, its predictions scale linearly with the degree, since it is
trained on relative labels and its predictions are reverse-transformed into ω(v) for-
mat as fθ(v) · (|N(v)|+ 1). Thus the mean+relative-to-degree baseline model achieves
results comparable to mean-per-degree baseline.

ChebNet+relative-to-degree significantly outperforms baseline and previous models
on brock and dsjc graphs and achieves results comparable to baseline models on other
graph families.



CHAPTER 3. EMPIRICAL EVALUATION OF NETWORK VARIANTS 32

Effects of Graph Family Specifics on Model Performance To interpret the
results achieved on specific graph families, we provide selected statistical information
about graph families in figures 3.2 and 3.3.

Figure 3.2: Distribution of ω(v) values for all vertices of 100 random 20-vertex graphs
(2000 vertices per plot) for each graph family.

Figure 3.3: Distribution of ω(v) values for all vertices of 100 random 20-vertex graphs
conditioned on vertex degree each graph family. In each boxplot, box at degree d
represents a distribution of {ω(v) | |N(v)| = d}.

As the distribution of clique sizes in random graphs C.20.5 and C.20.9 has rela-
tively low variance and minimal variance in rb5-4 graphs (see Figure 3.2), the clique
sizes are well predicted by mean baseline. Furthermore, as clique distributions condi-
tioned on degree (see Figure 3.3) have also low variances, these errors are reduced by
the mean-per-degree baseline.

On the other hand, clique sizes in brock20 and dsjc20 graphs are distributed
more uniformly, thus the mean baseline does not perform well on these graphs. Clique
sizes are correlated with vertex degrees in theses graphs, so the errors are significantly
reduced by mean-per-degree baseline, but since the clique size distributions conditioned
on degrees have relatively large variances, the error of mean-per-degree baseline on these
graphs is still much higher than on C.20 and rb graphs.

Even though our models were trained on a mixed dataset containing all graph types,
our best models show performance comparable to baselines trained on specific graph
families on C.20 and rb graphs. This might tell us that our models either learn to
distinguish graph families and learn the mean value (or possibly a set of parameters)
for each of these families, or they are able to exploit more general structural features
than just vertex degrees.
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Furthermore, the difference in performance between baseline models and GNN mod-
els on brock and dsjc graphs shows that our models are able to base their predictions
on more complex structural patterns than vertex degrees in these graphs.

3.2.4 Comparison of Performances of S2V and ChebNet

From the previous observations we can conclude, that ωdeg target transformation im-
proves the performance of ChebNet models and hinders the performance of S2V models.
Furthermore, ChebNet models generally do not train well on absolute targets but can
achieve the globally best results for brock20 and dsjc20 graphs and can learn the
behaviour similar to baselines on other graph families.

We can explain these phenomena by analyzing convolutional layers of our networks.
S2V layers directly sum the embeddings in their neighbourhood, so their predic-

tions can scale well with increasing degrees, which explains relatively good ability to
predict absolute clique sizes that are correlated with degrees. On the other hand, worse
performance on relative targets might show that the accumulation effect is relatively
hard to suppress in S2V architecture.

Vertices in ChebNet layers normalize the embeddings of their neighbour vertices
before summing them together, which might result in its inability to accumulate large
enough output values and to predict absolute clique sizes. Prediction of relative clique
sizes in [0, 1] interval seems to be a simpler task for ChebNet, as it does not require
the model to produce large values.

The superiority of ChebNet over S2V can be a product of multiple differences
in architectures. Since S2V layers share a single set of parameters, this model has
potentially lower capacity than ChebNet and the repeated matrix multiplication might
lead to a chaotic behaviour and to the problem of exploding gradients known from
recurrent networks [17, Chapter 8]. Furthermore, S2V does not use previous local
embedding h(i−1)v in computation of h(i)v and thus the information accumulated in S2V
might be limited to the node degree after the first iteration, the sum of degrees of
neighbouring vertices in second iteration and so on. S2V architecture might be thus
very limiting and Dai. et al. [11] could have probably achieved much better results
with use of more advanced GNN.

3.2.5 Conclusions and Limitations of the Experiment

With the first set of experiments we gained more insight into graph families we use, in-
formation about performance of baseline and GNN-based models and about differences
between S2V and ChebNet models.

While clique sizes in C.20.5, C.20.9 and rb5-4 graphs are well predicted by base-
line models and more sophisticated models do not outperform these simple models,
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clique sizes in brock20 and dsjc20 graphs are harder to predict even if the baseline
models are aware of vertex degrees. Our models were able to use more complex struc-
tural patterns to predict clique sizes much more precisely than baseline models in these
graphs.

We achieved the best results with ChebNet model trained on transformed targets
and we explained its superiority over S2V model.

While we observed a relatively good performance of our models on brock20 and
dsjc20 graphs, we still do not know which graph patterns are exploited by GNNs and
a more detailed analysis of these results might be interesting.

Although we have seen that our models trained on mixed dataset do not outperform
baselines on random and rb graphs, it might be also interesting to find out whether
they can outperform these baselines if separate models are trained on graphs of each
type.

Keep in mind that finding cliques in 20-vertex graphs might be easy not only because
of the sizes of the instances, but these graphs might only contain a limited variety of
substructures and correlations between patterns, e.g. between degrees and clique sizes
might be much stronger and carry more information than in larger graphs.

For graphs with cliques of similar sizes, e.g. for rb graphs, it might be easy to
roughly guess the clique size based on vertex degree, but this does not necessarily mean
that B&B algorithm can easily find the maximum clique in these graphs. In contexts
of exact B&B and non-exact heuristics, the ranking task may be more important and
more practically useful than the regression task, since a good branching model can lead
to fast discovery of large cliques.

We address these issues with experiments described in sections 3.3 and 3.4.

3.3 Learning to Rank

In ranking task, our goal is to predict scores fθ(v) for vertices of G = (V,E)

v1, v2, . . . , v|V | ∈ V, ω(v1) ≥ ω(v2) ≥ · · · ≥ ω(v|V |)

so that
fθ(v1) ≥ fθ(v2) ≥ · · · ≥ fθ(v|V |)

In order to evaluate the performance of our models on the ranking task, we first
define an easily interpretable ranking metric and then we evaluate this metric for
regression models from the previous section and we also train new variants of models
using ranking margin loss.



CHAPTER 3. EMPIRICAL EVALUATION OF NETWORK VARIANTS 35

3.3.1 Ranking Metrics

The most important ability of branching rule in B&B is distinguishing larger cliques
from smaller cliques. Moreover, as long as all vertices of small cliques are assigned
sufficiently low ranking scores, even if ranking scores in smaller cliques are imprecise,
it has negligible impact on the task of finding large cliques.

Following this reasoning and also for the sake of simplicity, we distinguish only
two types of vertices. We partition vertices into those that are contained in maximum
cliques and those that are only contained in smaller cliques. Formally, we will call the
vertices of v ∈ V where ω(v) = ω(G) relevant, and the vertices where ω(v) < ω(G)

irrelevant.
If we denote as r(G) the number of all relevant vertices of a graph, r(G) = |{v ∈

V | ω(v) = ω(G)}|, we defined the fraction-of-max-clique (FMC) metric as the fraction
of relevant vertices in first r(G) highest ranked vertices. This metric is easily inter-
pretable and accounts for the fact that different graphs contain different amounts of
relevant vertices – to improve this metric by 10%, a model has to assign sufficiently
higher scores to 10% vertices in maximum cliques.

We also considered common ranking metrics precision@k and average precision [48].
Precision@k, which stands for the fraction of relevant elements in the first k highest

ranked predictions, is easily interpretable and focuses on the highest ranked vertices –
those that will be selected first in B&B and in heuristics.

Average precision, which focuses on general ordering ability of models and is thus
harder to interpret, is defined as

∑|V |
k=1(precision@k · rel(k))/r(G), where rel(k) is 1 if

the vertex with predicted rank k is relevant and 0 otherwise. This metric corresponds
to area under precision-recall curve used in classification tasks.

3.3.2 Ranking Loss Function

Specifically for the ranking task we trained new, ranking variants of GNN-based models
with linear output layers and with use of a variant of margin ranking loss. The ranking
loss for a pair of vertices in a graph, resp. for the whole dataset G can be defined as

lRANK (θ, vi, vj) = [ω (vi) > ω (vj)] ·max (0, fθ(vj)− fθ(vi) + margin (vi, vj))

LRANK (θ,G) =
1

|G|
∑
G∈G

∑
vi,vj∈VG×VG

lRANK (θ, vi, vj)

With zero margin, this loss function is only in effect for vertices where both ω (vi) >

ω (vj) and fθ (vi) < fθ (vj) hold for a pair of vertices vi, vj. Since this loss can be easily
minimized by outputting a constant value fθ(v), a small non-negative margin is added
to push the desired ranking scores for vertices with ω(vi) 6= ω(vj) apart. To give
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more training information to our networks, we used margins based on difference of
ω(vi)− ω(vj):

margin(vi, vj) = 0.1 · (ω(vi)− ω(vj))

Training and Tuning Ranking Models We trained and tuned hyper-parameters
of rank variants of S2V and ChebNet models with the identical procedure and the
dataset we used to train regression models in Section 3.2.2.

Similarly as in the regression task, lower number of convolutional layers improves
the performance of S2V models and the models with 3 convolutional layers and initial
learning rate 0.001 achieve relatively stable values of validation FMC 0.91-0.92. Cheb-
Net models with 5 convolutional and 3 hidden MLP layers and initial learning rate
0.01 achieve validation FMC 0.92-0.93.

3.3.3 Evaluation of Ranking Abilities of Models

In this section we evaluate the best models trained with LMSE (S2V+absolute, S2V+relative-
to-degree, ChebNet+absolute and ChebNet+relative-to-degree with the lowest valida-
tion MSE) and the best models trained with the LRANK (S2V+rank and ChebNet+rank
with the highest validation FMC) on the ranking task using FMC metric. We evaluate
this metric on 100 20-vertex testing graphs of each graph type.

We present the overall comparison of these models in Figure 3.4. Most promi-
nent improvements over the baseline models are achieved by ranking variants of our
models. While the less successful regression model S2V+absolute outperforms the
rank-by-degree baseline, ChebNet+relative-to-degree model slightly outperforms rank-
by-degree-and-density baseline. This suggests that even models trained for regression
task might be relatively good at ranking vertices.

Performance on Graph Families Similarly as in the regression experiment, we
also provide the FMC values evaluated separately for each graph type for each model.
These results can be found in Table 3.2.

From regression models trained on absolute targets, the more successful model,
S2V+absolute, achieves better ranking scores than ChebNet+absolute and achieves re-
sults similar to rank-by-degree-and-density baseline on all graph types. ChebNet+absolute
achieves results closer to rank-by-degree baseline.

S2V+relative-to-degree model performs similarly to rank-by-degree baseline, but
ChebNet+relative-to-degree model consistently outperforms baseline models on all
graph types by 1-4% of FMC except for C.20.9 graphs. The largest improvement
over baseline models is achieved on C.20.5 graphs. This model did not only achieve
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Figure 3.4: FMC achieved by 3 baseline models and 2 GNN-based models in three
variants (absolute, relative-to-degree and rank). Notice that since ranking baselines
only order vertices according to their degrees, resp. according to their degrees and
local edge densities, they achieve the same FMC in all variants.

Table 3.2: FMC achieved by baseline models and variants of GNN-based models on all
graphs (first row) and separately on graphs from each graph family. We highlighted
the results of models that outperformed baselines and achieved FMC higher than the
other GNN-based model of the same variant.

baselines abs rel_deg rank
mean deg deg_den s2v cheb s2v cheb s2v cheb

all .664 .850 .867 .871 .855 .853 .885 .899 .906
C.20.5 .497 .732 .754 .748 .734 .728 .792 .821 .827
C.20.9 .793 .913 .931 .934 .941 .913 .930 .947 .953
brock20 .703 .895 .912 .914 .900 .891 .921 .923 .932
dsjc20 .603 .876 .901 .912 .877 .894 .930 .949 .946
rb5-4 .724 .833 .838 .844 .824 .837 .851 .858 .873

the best regression results, but also achieves best ranking results among regression
models.

Finally, models trained with rank margin loss consistently outperform baselines and
regression models on all graph types with notable improvements of 7% and 4.5% of
FMC on C.20.5, resp. dsjc20 graphs. Furthermore, ChebNet+rank model achieves
slightly better results than S2V+rank on almost all graph types.

Additional Ranking Metrics We observed both, precision@5 and average precision
metrics, to show similar relative differences between evaluated models as FMC. The
only significant disparity was caused by precision@5 metric evaluated on random graphs
with 0.9 edge density, which reported equal scores close to 1 for all models (except for
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mean baseline that orders vertices randomly, which achieved score of 0.8). This might
be explained by observing that in C.20.9 graphs, a few vertices with exceptionally
high degrees are contained in almost all cliques and thus also in largest cliques in these
graphs. Therefore, a small number of vertices of maximum clique can be easily found
by ordering vertices according to their degrees.

Explanation of Observed Results Since the mean baseline model produces a con-
stant value for each vertex, its behaviour is equivalent to ordering vertices randomly
in the context of the ranking task. Therefore the FMC scores of mean baseline models
are well explained by the fraction of relevant vertices R(G)/|V | in each graph family,
as shown in in Table 3.3.

Table 3.3: FMC achieved by mean baseline model compared to fraction of relevant
vertices in each graph family.

graph type C.20.5 C.20.9 brock20 dsjc20 rb5-4
testing FMC .497 .793 .703 .603 .724
average R(G)/|VG| .511 .799 .688 .586 .727

Furthermore, clique sizes are correlated with degrees in our graphs, as was shown
with boxplots in Figure 3.3 in Section 3.2.3. Therefore, ranking baselines, which order
vertices according to their degrees, achieve improvements of 10-30% FMC over random
vertex orderings produced by mean baselines.

Our ranking models achieved best improvements over degree-based baseline models
in C.20.5 and dsjc20 graphs.

As these graphs contained the lowest fractions of relevant vertices, we considered
it as the explaining factor in our first hypothesis. To test it, we created graphs with
lower R(G)/|VG| ≈ 0.3, but although mean baselines showed worse performance, FMC
achieved by GNN-based models on these graphs was still close to FMC achieved by
degree baselines.

We still do not know the exact reason, why our models perform better on C.20.5

and dsjc20 graphs, but since we are interested mostly in differences between degree
baselines and GNN-models, the cause of this phenomenon should be related to the re-
lationship between degrees and clique sizes. Most probably, most vertices of maximum
cliques in these graphs do not have extreme degrees and so other patterns, which are
closely related to MCP, have to be used to order these vertices.
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3.3.4 Conclusions

With our ranking experiments we shown that models that successfully solve the re-
gression task can be also used for ranking and that special ranking loss function can
improve the ability of GNN-models to rank vertices of graphs according to their clique
numbers ω(v).

The improvements over baseline models achieved by GNN-based models are rel-
atively small, but consistent over all graph families. This suggests that our models
might not outperform classical B&B branching heuristics on the tested graph families,
but also that our models are capable of learning structural patterns and using degree
information more efficiently than simple ranking baselines.

The main drawback of our experiment is the size of our graphs and the selection
of testing graph types, as large clique vertices can be found by their large degrees
relatively easily in all graph types. In the future it might be interesting to train or
evaluate our models on graphs where the vertex degrees are not correlated with clique
sizes.

A recurring theme of our experiments is that some instances are easy to solve with
simple approaches and thus the overall improvement of metrics seems less significant.
In the future work, a good practice might be to split the testing instances into those
that are well solved by simple heuristics and into harder ones.

3.4 Generalization Experiments

In our last set of experiments, described in this section, we observe the abilities of our
models to generalize on larger graphs and on graph types not seen during training.

3.4.1 Generalization on Size

To observe the generalization ability of our models, we generated 100 50-vertex graph
of each graph type and we present the values of MSE and FMC achieved by baseline
and GNN-based models in tables 3.4 and 3.5. Note that while we reuse GNN-based
models trained on 20-vertex graphs in this evaluation, regression baseline models (mean
and degree baseline model) were trained separately for each graph type using 50-vertex
graphs different from testing graphs.

Regression Task The complete failure of S2V models to generalize on larger graphs
in regression task is most probably a result of unnormalized summation of embeddings
of neighbour vertices. ChebNet+absolute model manages to keep relatively small MSE
on C.50.5 and rb9-6 graphs and MSE comparable to mean baseline on brock50 and
dsjc50 graphs. Finally, ChebNet+relative-to-degree fails completely on graphs with
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Table 3.4: MSE evaluated on all graphs and separately on 5 graph types (rows) using 2
baseline models and 2 GNN-based models with 2 target transform variants (columns).

absolute relative-to-degree
mean deg s2v cheb mean deg s2v cheb

all 94.25 35.55 26641.12 76.18 54.92 35.55 445.98 99.05
C.50.5 0.42 0.34 1563.62 2.31 0.72 0.34 356.37 46.74
C.50.9 1.89 1.59 66231.35 64.55 1.77 1.59 585.17 197.08
brock50 192.90 50.62 42653.29 217.06 74.27 50.62 246.26 82.57
dsjc50 77.79 19.35 5652.08 98.99 39.29 19.35 234.86 23.08
rb9-6 0.28 0.24 17811.62 3.80 0.79 0.24 780.47 142.34

low clique size variance as its predictions are reverse transformed to ω(v) format as
fθ(v) · (|N(v)|+ 1), but maintains performance similar to dergee baseline on brock50

and dsjc50, whose clique sizes are more correlated with degrees.
As regression tasks are usually very sensitive to the magnitude of inputs, these

results are not unexpected. A better generalization ability could have been achieved,
if we trained our models on graphs of various sizes, but since our models are probably
not able to fully grasp the definition of cliques, this generalization would eventually
fail at some point.

To conclude, the models we trained are not very useful for regression task on larger
graphs as they produce large absolute errors on these graphs. The observed generaliza-
tion abilities of ChebNet models are possibly more influenced by rough architectural
features of its GNN and by target transformations than by the learned weights.

Table 3.5: FMC achieved by baseline models and variants of GNN-based models on
all graphs (first row) and separately on graphs from each graph family. Again, we
highlighted the results of models that outperformed baselines and achieved the FMC
higher than the other GNN-based model of the same variant.

baselines abs rel_deg rank
mean deg deg_den s2v cheb s2v cheb s2v cheb

all 0.551 0.766 0.775 0.782 0.732 0.769 0.744 0.787 0.803
C.50.5 0.431 0.608 0.613 0.627 0.552 0.616 0.623 0.641 0.665
C.50.9 0.648 0.801 0.819 0.820 0.808 0.801 0.697 0.820 0.830
brock50 0.569 0.830 0.838 0.837 0.767 0.829 0.797 0.845 0.857
dsjc50 0.536 0.904 0.912 0.930 0.865 0.912 0.929 0.936 0.963
rb9-6 0.569 0.685 0.691 0.694 0.670 0.686 0.677 0.693 0.702
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Ranking Task The ranking results show that our models maintain their advan-
tages over baseline models when evaluated on 50-vertex graphs. Regression models
achieve results comparable to baseline models with slight improvements in case of
S2V+absolute models. ChebNet model trained with ranking loss outperforms base-
lines on all graph types with largest improvements of 5% of FMC on C.50.5 and
dsjc50 graphs.

Since only the relative order of vertices is important in ranking task, it is less
sensitive to magnitudes of ω(v) and fθ(v). From this experiment we learned that even
though our regression models fail to predict clique sizes in larger graphs, since they
assign higher scores to vertices of higher degrees, they perform comparably to ranking
baselines in the ranking task. These results also support our previous observation that
ChebNet+rank model consistently outperforms baseline models and that our models
exploit patterns in C.50.5 and dsjc50 more effectively than in other graph types for
the ranking task.

It is quite interesting that even though S2V+absolute model completely fails in
the regression task, it still achieves better performance than ranking baselines in the
ranking task. This phenomenon might be possibly explained with an analogy to random
walk processes: since cliques are the densest structures in graphs, a random walker that
starts in a clique will have relatively high probability to stay within the clique after few
steps. Therefore, ranking scores of S2V+absolute model, and possibly also scores of
other models, can be results of exponentiation of adjacency matrix A, analogically to
probabilities resulting from exponentiation of transition matrix in Markov processes.
An interesting future baseline model could use values of A ·~1, A2 ·~1, . . . , An ·~1 or similar
values produced with laplacian matrix L as input features for a simple ML model.

3.4.2 Generalization on Structure

We performed the following experiment to observe the ability of our models to gener-
alize on graph types unseen in training and also their ability to over-fit to a specific
graph type.

First, we generated 500 20-vertex graphs of each type, a total of 2500 graphs and we
split graphs of each type into 400 training graphs and 100 validation/testing graphs. If
we consider graphs of each type as a separate dataset and all graphs in total as another
dataset, we prepared 6 datasets C.20.5, C.20.9, brock20, dsjc20, rb5-4 and All for
this experiment.

In the second step, we trained a regression model ChebNet+relative-to-degree and
a ranking model ChebNet+rank on each dataset, creating 6 trained instances of each
model.

Finally, we evaluated MSE for each of 6 instances of the regression model on each
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of 6 datasets (using 100 testing graphs per graph type), and analogically we evaluated
FMC for the instances of the ranking model.

In figures 3.5 and 3.6 we present the observed values of MSE, resp. FMC metrics in
a form of heatmaps. We also present generalization errors that are caused by evaluating
models using datasets different from training ones.

Figure 3.5: Left: MSE for 6 instances of ChebNet+relative-to-degree model (rows)
achieved on 6 testing datasets (columns). Right: generalization error produced from
the left heatmap by substracting diagonal values from each row, red values denote
deterioration while blue values denote improvement.

Table 3.6: MSE achieved by degree baseline model on each dataset.

graph type All C.20.5 C.20.9 brock20 dsjc20 rb5-4
MSE of degree baseline 4.12 0.37 1.35 6.55 4.26 0.17

Regression Task The regression model trained on all graphs achieves similar perfor-
mance as models trained on separate datasets. It seems that for C.20.9 and brock20

graphs, training on graphs of all types slightly improves the performance, while the best
performance on C.20.5, dsjc20 and rb5-4 graphs is achieved by specialized models.

This phenomenon might be explained with an observation that a common property
of C.20.9 and brock20 graphs is that they contain more cliques of larger sizes than
other graph types, so the model trained on all graphs might overestimate the clique
sizes in C.20.5, dsjc20 and rb5-4 graphs.

Since clique sizes are very limited in rb5-4 graphs, model trained on rb5-4 dataset
can finally achieve the performance of the degree baseline (see Table 3.6).
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Relatively good generalization ability of the model trained on brock20 graphs might
be explained by the fact that brock graphs contain graphs of various densities and clique
sizes. This fact also explains, why other trained instances fail on brock dataset.

Our final observation is that C.20.5 and rb5-4 graphs are well predicted by C.20.5,
rb5-4 and dsjc20 models, as all these graphs contain cliques of similar sizes (3-6).
Also notice that C.20.5 and rb5-4 models fail to predict clique sizes in more complex
dsjc20 dataset, as it also contains larger cliques.

Figure 3.6: Left: FMC for 6 instances of ChebNet+rank model (rows) achieved on 6
testing datasets (columns). Right: generalization error produced from the left heatmap
by substracting each row from the diagonal, red values denote deterioration while blue
values denote improvement.

Table 3.7: FMC achieved by rank-by-degree-and-density baseline model on each
dataset.

graph type All C.20.5 C.20.9 brock20 dsjc20 rb5-4
FMC of deg-den baseline .867 .754 .931 .912 .901 .838

Ranking Task The fact that FMC values in the left heatmap in Figure 3.6 depend
mostly on the evaluation dataset (specifically, on the fraction of vertices in largest
cliques) might suggest that our ranking models use similar graph properties when they
are trained on different graph types. Furthermore, as almost all instances of the rank-
ing models outperform the rank-by-degree-and-density-baseline (see Table 3.7), their
superiority over the baseline model is possibly an effect of a very simple mechanism,
e.g. of ordering vertices according to a fitting definition of local density.
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The model trained on C.20.5 graphs seems to generalize well on all but C.20.9

graphs and conversely, most of other models fail to generalize on C.20.5 dataset. This
is in line with our observation from Section 3.3 that vertices in C.20.5 graphs are
relatively hard to rank and thus model trained on this dataset learns the knowledge
useful for the ranking task and other models fail on this dataset.

The relationship between C.20.5, rb5-4 and dsjc20 is also interesting in the case
of ranking task, since the first two models seem to achieve the best performance on
dsjc20 graphs. C.20.5 and rb5-4 graphs only contain cliques of sizes 3-6 and therefore
the improvements in ranking of dsjc20 vertices happen most probably in graphs with
relatively small maximum cliques.

3.4.3 Conclusion

The training of regression models in Section 3.2 brought us understanding of ChebNet
and S2V GNN models and the ranking experiment in Section 3.3 showed us that
training models using ranking loss can improve the ability of models to distinguish
clique sizes.

Experiments on larger graphs mostly contained negative results and they lead us
to a following question: “To what extent are the (ranking) abilities of GNNs simple
consequences of their architectures and how significant is the effect of the training
process?”

With experiments on structural generalization, we gained new insights into relation-
ships between graph families. We showed that the graph families where our models
achieved the best improvements over baseline models (brock20 in regression task and
C.20.5 in ranking task), also seem to produce the models with the best generalization
abilities and are hard to solve for models trained on other graph families. This obser-
vation outlines a possibly promising methodology for selection of families of training
instances.



Chapter 4

Enhancing Branch and Bound

In this chapter we finally use our neural models as branching rules in B&B and we
compare their performance to standard heuristic functions. We first describe simpler
common branching and bounding rules in detail and then we present the results of the
experimental comparison of these heuristic functions to our neural heuristics.

We described the computation of the branch and bound algorithm in the first
chapter of our work. Feel free to read about its specifics in Section 1.1.3.

4.1 Heuristic Functions for B&B

The efficiency of B&B algorithm depends mainly on the quality of branching and
bounding heuristic functions hbr, hbo. The branching rule should order the vertices of
the candidate set P from those contained in larger cliques to those contained in smaller
cliques and the bounding rule should provide an upper bound on ω(v) in the subgraph
induced by P . We will denote the size of the maximum clique in the subgraph induced
by {v} ∪N(v) in GP as ωP (v).

4.1.1 Degree-based Heuristics

The simplest way of bounding ωP (v) is using the vertex degree, since in each graph
|N(v)| + 1 ≥ ω(v) ≥ ωP (v). These bounds can be tightened by only considering
neighbours of v within P . We will denote the degree of v in GP as degP (v).

The vertex degree or degP can be also used as a branching heuristic and may work
well in graphs where clique sizes are correlated with degrees. In addition to the selection
of the next vertex v to add to the clique, the branching rule also defines, which vertices
will remain in P in the next recursion call, since P ′ := P ∩ N(v). Therefore, visiting
high-degree vertices first might also result in increased amount of overall work.

45
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4.1.2 Coloring-based Heuristics

In the vertex coloring problem we search for the smallest k ∈ Z+ such that the vertices
of graph G can be partitioned to k color classes where adjacent vertices belong to
different color classes. We will denote the smallest such k, the chromatic number of G,
as χ(G).

Since all clique vertices have to be assigned different colors, it is easy to see that
χ(G) ≥ ω(G) and thus vertex coloring can be used in bounding heuristics. Currently,
there are many approaches based on the idea of vertex coloring, but due to its simplicity,
we selected the heuristic rule developed by Tomita et al. [42] as the representant of
more advanced heuristics.

In their approach, a simple heuristic algorithm is used to assign color classes to
vertices of P . These vertices are processed sequentially and each vertex is assigned
the lowest color which maintains the feasibility of coloring: the lowest color that is not
present among its neighbours. We use positive integers to represent color classes and
we denote the class assigned to vertex v as xP (v) ∈ Z+.

Notice that this heuristic does not ensure that ∀v ∈ P : xP (v) ≥ ωP (v), but it
guarantees that at least one vertex of the largest clique will be assigned sufficiently
high color so that the largest clique is not pruned away. Formally, this approach
guarantees that ∃v ∈ P, ωP (v) = ω(GP ) : xP (v) ≥ ωP (v). The ingenuity of this idea is
that it ensures that B&B finds the optimal solution, but since it assigns lower values
to most vertices in largest cliques, a large part of the search tree can be pruned away.

The authors used color classes both for bounding and for branching, hbo(v) =

hbr(v) = xP (v), but note that the coloring bounding rule can be combined with any
branching rule. Contrary to what one may think, when a vertex v does not seem
promising (hbo(v) + |C| ≤ |C∗|), it is not immediately removed from the candidate
set P by B&B, but the bounding rule only decides that this vertex is not immediately
added to the partial clique. As a result, all vertices of the largest clique can be retained
in the new candidate set P ′.

In our implementation, we use a slightly modified version of the coloring heuristic
algorithm: we order the vertices in non-ascending order according to degP (v) before
we assign their colors. This approach was mentioned by Konc et al. [28] to provide
even tighter bounds. It was not directly used in their approach, as it requires the
computation of GP , however.

4.1.3 Optimal B&B Rules

As we mentioned in Section 1.1.3, with hbo(v) = hbr(v) = ωP (v), only ω(G) recur-
sion calls are necessary to discover the maximum clique of G. Furthermore, all other
branches of the search tree are pruned away using these rules and so no other calls need
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to be executed. This approach thus achieves the theoretical minimum for the number
of B&B recursive calls.

To compare our results with this theoretical minimum, we implemented these rules
by solving the MCP for each subgraph induced by P ∩ ({v} ∪N(v)).

4.2 Neural Heuristic Function

The predictions of our neural networks can be directly used in B&B framework as
the branching rule hbr(v) = fθ(v) when absolute and ranking variants of models are
used. When relative-to-degree variant is used, the predictions of the model are reverse
transformed to correspond with absolute clique sizes, hbr(v) = fθ(v) · (degP (v) + 1).

Implementation Notes The predictions for GP are recomputed in each recursive
call. In our current implementation, GP is first stored in the filesystem, then the
predictions fθ(v) are computed by our model using the Python interpreter and finally,
the predictions are passed to the B&B algorithm using another temporary file.

Since we focused on the proof of concept in our work, our implementation of B&B is
mainly focused on code modularity and on gathering metrics, and we did not optimize it
further. Python-C++ interface or C++ models might be used to improve the efficiency
of the neural heuristic, however.

Complexity The computational complexity of neural inference on graph GP =

(VP , EP ) is O(|VGP
| + |EGP

|), if we consider the the number of layers and the em-
bedding dimension as constants.

In our implementation, however, the computation of neural heuristic function re-
quires approximately 100-times more computation time than computation of simpler
coloring heuristic when compared on 50-vertex graphs. Moreover, the effect of commu-
nication via filesystem becomes prevalent for smaller graphs and subgraphs GP .

While the computation of the coloring, resp. of neural heuristic for 50-vertex graph
requires 10−4s, resp. 10−2s, the overhead caused by the filesystem and the Python
interpreter is 0.3× 10−2s.

Although it might be impractical to use these models for smaller instances, GPU
parallelization might help these models to match or outperform classical algorithms in
terms of computation time on large instances.

A more delicate approach might be also explored in the future, where we the costly
neural predictions are not computed in all recursive calls of the B&B algorithm. The
network could be either used only once, before the start of the B&B, or in particular
recursive calls, e.g. when the candidate set is reduced to less than one tenth of its
original size.
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4.3 Evaluation of Heuristic Effectiveness

To compare the performance of heuristic functions, we generated 50 50-vertex graphs
of each of six graph types (C.50.5, C.50.9, dsjc50, brock50, hamm6, rb9-6), a
total of 300 graphs, and 100 100-vertex graphs of C.100.5, dsjc100, brock100,

rb13-8 types, a total of 400 graphs.
In our experiments, we use coloring and optimal rules described in sections 4.1.2

and 4.1.3 for bounding. We also tried using degree-based heuristics for bounding, but
the number of recursion calls required by B&B with these heuristics was much larger
than when coloring and optimal functions were used for bounding.

In combination with these bounding functions, we evaluate the performance of three
baseline branching heuristic functions: degree branching heuristic based on degP (v),
coloring heuristic based on xP (v), and optimal rule, which predicts ωP (v) for each
vertex.

Finally, we also evaluate two variants of neural branching functions, which use
the predictions of ChebNet+relative-to-degree regression model and ChebNet+rank
ranking model. We described the architecture and the training and tuning of these
models in Chapter 3 and these models were trained on 20-vertex graphs of all types,
with exception of regular hamming graphs.

Since the computation times of coloring, neural and optimal rules are currently
incomparable, our first idea was to observe the number of recursion calls performed
by variants of B&B. Using the assumption that the computational complexity of one
recursion call is usually O(|EGP

|), we present the amount of work executed by variants
of B&B instead, although we arrived to similar conclusions even when we observed
the number of calls. If we denote as Ph the collection of candidate sets produced by
recursion calls of B&B executed on graph G with heuristic h, the number of calls is
simply |Ph| and we define work(h,G) as

∑
P∈Ph

|EGP
|.

4.3.1 Experimental Results

We present the results of the experimental evaluation for 50-vertex and 100-vertex
graphs in figures 4.1 and 4.2.

Space for Branching Improvement In most graph types, the quality of the bound-
ing rule seems much more important than the quality of the branching rule. In 50-vertex
graphs, the ratio of work needed with coloring heuristic compared to work needed with
optimal bounding rule achieves the order of 2, and in 100-vertex graphs this ratio is
close to 10. Although the quality of the bounding rule is generally more important,
there are some graphs where the improvement in branching rule can still improve the
performance of B&B.
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Figure 4.1: The total amount of work needed to find maximum cliques in 50 50-vertex
graphs of 6 types (subplots). Each subplot contains two groups of results produced
with coloring, resp. optimal bounding rule.

Figure 4.2: The total amount of work needed to find maximum cliques in 100 100-vertex
graphs of 4 types (columns). Each column contains results produced with coloring
(top), resp. optimal (bottom) bounding rule.

The most significant gap between the degree branching rule and the optimal branch-
ing rule is observed for C.50.9 and brock graphs. In these graphs, regression ChebNet
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heuristic outperforms the degree heuristic, but fails to outperform the coloring heuris-
tic. ChebNet+rank model achieves the performance comparable to degree heuristic in
these graphs.

There is also a space for improvement of degree branching heuristic in rb graphs,
but our models fail to outperform the degree baseline on these graphs.

In other graphs, C.X.5, dsjcX, hammX, the differences between degree and optimal
branching rules are negligible.

Comparison of Regression and Ranking Model The fact that ChebNet+rank
model does not achieve better performance than the regression model, might tell us that
although our ranking metrics all reported similar results, they might not be relevant
for the final task of branching in B&B. Possibly, a better approach than separating
the training and evaluation process from the model’s usage, would be to train models
with a more direct contact with the algorithm. With B&B for example, models could
be trained on graphs induced by candidate sets GP gathered in the run of B&B and
their performance could be evaluated using the final metrics, such as number of calls,
the work performed or even the computation time of B&B.

Easily Colorable Graphs Since hamming graphs are regular graphs where all
cliques are of the same size, no branching rule can improve the performance of B&B and
its efficiency depends solely on the bounding rule. Furthermore, the coloring bounding
rule achieves almost optimal performance on these graphs.

Another graph type, where the coloring heuristic provides almost optimal bounds
are dsjc graphs. This is not unexpected, since these graphs were described by their
authors as easily colorable with small number of color classes [22]. Notice that the
coloring branching heuristic preforms less work than our implementation of optimal
branching rule. This is caused the fact that vertices are ordered according to their
degrees before colors are assigned, so the vertices with highest degrees are assigned the
lowest colors and are thus less likely to be visited by B&B. This reveals that in order
to achieve the minimum amount of work, the branching rule should order the vertices
primarily based on ωP (v) in descending order, but secondarily based on degP (v) in
ascending order.

Limitations of the Coloring Bounding Rule We observed that even when neural
or degree hbr led to faster discovery of larger clique than the coloring hbr, since it
visited vertices with lower xP (v) first, the candidate vertices with higher colors that
were considered later were not pruned away. On the other hand, the coloring branching
heuristic always visits vertices with higher xP (v) first, so if larger clique is discovered,
other candidate vertices with lower xP (v) are successfully pruned away.
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This suggests that the coloring approach relies heavily on the coloring branching
order and that neural or degree branching rules might possibly achieve better results
if they are used in combination with bounding rule that is less tight, but does not
demand a specific branching order.

Other possible solutions, how to avoid the problems that come with bounding rule,
include using bounding rule which does not guarantee the optimality of the solution
(e.g. also provided by a neural network) and using neural branching functions in
heuristic algorithms other than B&B.

4.3.2 Conclusions

Across graph types, our models either provide branching rules comparable to or better
than the degree baseline, but they still do not outperform simple but effective coloring
heuristic.

The most notable improvement is achieved by regression ChebNet model on C.50.9

and brock graphs. While we observed its ability to learn to predict clique sizes in brock

in Section 3.2, the improvement on C.50.9 graphs is unexpected. The achievements
of our models in regression and ranking task on dsjc graphs are not applicable for the
B&B algorithm, since MCP can be solved almost optimally using coloring heuristic.

The ranking model achieves worse performance than regression model on most
graph types, which tells us that either the differences we observed when training ranking
models are not significant enough to improve the B&B or the ranking metrics and
graphs used in evaluation might not be relevant for the task of branching. Perhaps,
better results can be achieved if the models are trained and evaluated in the context
of the final task.

One last point to take home from these experiments is that to improve an algorithm
using ML, one should select instances where there is at least theoretical space for
improvement. Even if our results might seem negatively, deep learning approaches and
GNNs might prove more effective in improving heuristic approaches.
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In our work we investigated whether GNNs can be used to detect cliques and whether
they can can be used as an effective branching heuristic of B&B algorithm.

Our results show that even relatively simple GNNs Structure2Vec and ChebNet can
learn to exploit structural patterns more complex than vertex degrees and local densi-
ties to predict ω(v) and rank vertices according to ω(v). Concretely, ChebNet models,
which use Chebyshev graph convolutional layers, significantly outperform mean-per-
degree baseline on brock20 and dsjc20 graphs with various clique sizes and achieve
performance comparable to mean baseline on graphs with low clique size variance.
ChebNet+rank model achieves consistently better results than rank-by-degree-and-
density baseline with the largest improvement on C.20.5 graphs, where large-clique
vertices cannot be easily found using only degree information. Furthermore, models
trained on graphs where they showed the best improvement over baseline models seem
to show the best generalization abilities in both tasks.

On the other hand, our size-generalization experiments suggest that these models
are not complex enough to grasp the underlying concepts of cliques and that their
architectural differences have a large effect on their performance and generalization
abilities. We showed that our models fail to generalize on larger, 50-vertex, graphs
in the regression task, but they can maintain their ranking abilities, which might be
more a result of their architectural features (weigh matrix exponentiation, ωdeg targets)
then the result of their learned weights. Since we found 20-vertex graphs very limiting
in the context of MCP (with clique of size 10, a random ordering baseline would
select a vertex of the maximum clique with probability 0.5), possibly, much better
improvements might be achieved with more complex GNNs trained and evaluated on
larger graphs selected from specific graph families where clique sizes are not correlated
with vertex degrees or other simple local graph features.

While B&B using ChebNet+relative-to-degree model as its branching heuristic
needs to perform less work than B&B guided with a simple degree heuristic, it does not
outperform a more advanced coloring heuristic. Furthermore, since we found out that
the quality of bounding function is probably much more important than the quality
of branching function in B&B for MCP, the goal of improving the branching function
can be pursued only if graphs with at least theoretical potential for improvement of
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branching rules are discovered.
While exact approaches to MCP have to review all possible cliques, heuristic ap-

proaches achieve their fast computation times by limiting themselves to only the most
promising areas of the graph. In the future it might be interesting to utilize neu-
ral networks for fast discovery of sub-optimal solutions, for example by searching the
tree not with a depth-first-search (employed by branch-and-bound), but with a more
exploratory search strategy.

In addition to attending to our main objectives, we also produced multiple other
assets and observations which we consider to be a valuable part of our contribution.

In the beginning of our work we reviewed literature on topics of MCP and B&B,
machine learning for combinatorial optimization, methods for graph embeddings and
GNNs. We consider the discovery of three independent formulations of GNNs we de-
scribed in Section 1.3.3 as the most fascinating part of our review, since they connect
GNNs to various research areas (random walks, graphical models, convolutional net-
works and spectral graph theory) which might inspire future research topics.

To make our work possible, we also had to implement the experimental infrastruc-
ture for graph generation and labelling, training and evaluation of models, visualization
of results, and for using neural networks in B&B. We paid special attention to keep
our code clean, modular and to make our research reproducible. The implementation
of our infrastructure and experiments can be found by following the link in Appendix
B – Implementation.

In our experiments, we considered multiple variants of models with different ar-
chitectures (S2V, ChebNet), loss functions (LMSE, LRANK) and target transformations
(ω, ωdeg) and also multiple aspects of the evaluation process: various metrics, baseline
models, graph families and we evaluated our models using B&B as well; and each of
these degrees of freedom brought us more knowledge about others.

In one such example from Section 3.2.4, we found out that ChebNet model is much
more stable than S2V, but it also has problems with accumulating larger values for
larger cliques. Since ω(v) does not have to be correlated with vertex degree, however,
a model that can accumulate embeddings only from selected neighbours, such as graph
attention network [44], might be a right choice for solving the MCP in the future.

With this approach, we came up with many more ideas for possible future improve-
ments that can be found in conclusion sections in chapters 3 and 4.

Although we showed that GNNs can exploit structural properties of graphs to detect
cliques, it is still unclear, what can GNNs actually learn about the nature of cliques
and which concrete patterns do trained networks observe in graphs.

A recent line of work showed that capabilities of GNNs are strongly related to
Weisfeiler-Lehman algorithm for graph isomorphism [52, 32] and in the future work, an
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analysis using the perspective of Weisfeiler-Lehman algorithm might lead to theoretical
bounds on capabilities of GNNs to detect cliques.

The desire to develop models that can fully grasp the concept of cliques can lead
to the design of new models that can capture more structural information. One such
idea comes from our observation of the network’s inability to process regular graphs
which is caused by the symmetry of the initial vertex tags h(0)v . This symmetry might
be broken by assigning different, e.g. random, initial values of h(0)v to different vertices.

The interpretability of neural networks was successfully tackled in the field of image
processing, where techniques such as feature visualization and attribution [33] were
developed. Future development of similar methods for GNNs is required to achieve a
clear understanding of their practical capabilities.



Appendix A – Spectral GNNs

In this appendix we provide a short review of the paper by Bronstein et al. [7], where
the development of neural networks based on spectral analysis eventually led to graph
neural networks.

The authors first focused on signal processing on graphs, where a function f : V →
R (a scalar field) describes an input signal on graph vertices and the task is to process
or filter this signal to obtain the desired output signal, e.g. class labels for vertices.

The main problem with extension of convolution operation on graphs is that no
shift operator x − x′ exists in graphs and so the convolution of signal f with filter g
cannot be directly extended from its original definition in euclidean spaces:

(f ? g)(x) =

∫
f(x− x′) ∗ g(x′)dx′

.
To overcome this problem, the authors used a property of convolution described

by the convolution theorem, which states that convolution in spatial domain can be
expressed by a scalar product in spectral domain. This concept can be understood by
an analogy with the Fourier transform. To filter a specified frequency defined by g

from a signal f in spatial domain, one has to compute the correlation across the whole
domain as described by the equation above. In a spectral approach, however, one first
computes the spectral representation of the filter and of the signal – the amplitudes of
selected frequencies in both the filter and the signal – and then the scalar product of
these spectra describes the correlation of signal the with the filter.

In a graph setting, the signal f on vertices has to be first decomposed into a sum
of elementary functions from an orthogonal basis. While in Fourier transform, these
functions are simple sin or cos functions, one way how to obtain an orthogonal basis
for graph signal is to compute a spectral decomposition of the graph’s laplacian L =

D−
1
2AD−

1
2 where A is the adjacency matrix of the graph and D is a diagonal matrix

of vertex degrees. See Figure 4.3 to gain an intuitive understanding of orthogonal
functions on graphs.

If we denote the spectral decomposition of laplacian as L = ΦΛΦ> where Φ is
an orthogonal matrix and Λ is a diagonal matrix consisting of eigenvalues, and if we
denote the spectrum (coordinates in orthogonal bases) of filter g as g′ = (g′1, . . . , g

′
n),
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Figure 4.3: Laplacian eigenfunctions φ0, . . . , φ3 on 1D euclidean domain, 2D manifold
and on a Minnesota road graph. Reprinted from the original paper [7].

a convolution of signal f with g can be computed as f ? g = Φg′Φ>f where f is first
transformed to spectral domain with Φ>, then multiplied with the filter g′ and finally
transformed back to spatial domain with Φ.

Similarly as convolution filters in images can detect patterns, such as objects in the
image, the graph convolution can detect substructures in graphs. The orthogonality
of the basis however leads to periodic base functions and thus the filters might not
be localized. To create filters that are focused to a smaller area of the graph, the
spectral representation g′ has to be smooth and so parametrization of g′ with splines
was proposed.

Finally to achieve the computational efficiency, when g′ is defined using the values
of a polynomial expansion in the points of eigenvalues (λ1, . . . , λn): g′i = g′(λi) =∑n

j=0 αjλ
j
i , the term Φg′Φ> can be rewritten as

Φg′(Λ)Φ> =
n∑
j=0

αj(ΦΛΦ>)j =
n∑
j=0

αjL
j

and so no eigenvectors and eigenvalues have to be computed [12].
Additionally, the computation of a layer, h(i) =

∑n
j=0 αjL

jh(i−1), can be described in
a message-passing framework where the polynomial expansion is executed by multiple
graph convolutional layers.



Appendix B – Implementation

All code necessary to reproduce the results described in this work can be found at
https://github.com/maaario/mcp-gnns.

In this repository, we provide the following components of our framework:

• generator - A generator of random graphs which serve as training and testing
examples for GNNs and are also used for evaluation of B&B.

• maxclique - Implementation of branch and bound algorithm. This implementa-
tion is used both for for labelling graphs with targets ω(v) and also for evaluating
heuristic functions based on neural networks.

• clique_finding_models - Implementation of graph neural networks and the
infrastructure used for their training and evaluation.

• experiments - Scripts and interactive Python notebooks which produce and
visualize the experimental results.

In this appendix we provide a few implementation details and references to libraries
we used. More detailed documentation, which contains the installation and usage
instructions as well as main architectural features of our components, can be found in
README files in our repository.

Graph Generator Simple graph-generating procedures are implemented directly in
our generator, mostly using NetworkX Python library [18].

To generate smaller instances of DIMACS graphs [21] we used the scripts from
the webpage http://iridia.ulb.ac.be/~fmascia/maximum_clique/ and to gener-
ate RB graphs from the BHOSLIB dataset [51] we used a Python script downloaded
from https://github.com/notbad/RB. These scripts can be automatically down-
loaded using script generator/download_third_party_generators.sh.

B&B We implemented the first version of our branch and bound algorithm according
to descriptions in the paper by Tomita et al. [42] and we then generalized this imple-
mentation so that various branching and bounding strategies can be used, recursion call
metrics can be stored for each run and ω(v) can be computed for the neighbourhood
of each vertex.
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In addition to C++ standard libraries, we also used cxxopts library from https:

//github.com/jarro2783/cxxopts to parse the commandline arguments.

Neural Networks, Training and Evaluation Framework Our models were im-
plemented using PyTorch [35] and PyTorch Geometric [15] libraries. We used the
implementation of Chebyshev convolutional layer from PyTorch Geometric library and
we implemented Structure2Vec network using the general messages passing layer using
the same library.

To implement the training and evaluation infrastructure, in addition to PyTorch,
we mainly used the package PyTorch Ignite (https://pytorch.org/ignite/). We
are also grateful for the SACRED library [27] which we used to collect and store all
the results produced during the training and evaluation of our models.

https://github.com/jarro2783/cxxopts
https://github.com/jarro2783/cxxopts
https://pytorch.org/ignite/


Appendix C – Target Transform ωmc

Apart from predicting directly ω(v) or the relative value ωdeg(v) in the regression task,
we first considered a transformation of targets, which uses the size of the maximum
clique of the graph ω(G):

ωmc(v) =
ω(v)

ω(G)

This transformation not only maps the targets to [0, 1] interval, but it also uses the
whole interval of values, unlike ωdeg. Moreover, when experimenting with these targets,
our networks achieved unprecedented precision. We illustrate these results with Figure
4.4 and Table 4.1.

Figure 4.4: Comparison of validation mean square errors for two models (S2V, Cheb-
Net) and two baselines (mean baseline and mean-per-degree baseline) combined with
three variants of target transformations (ω, ωdeg, ωmc), evaluated on testing dataset
consisting 100 20-vertex graphs of each type.

A closer look at results revealed that even baseline models perform much better
with this transformation and so the success of this method might be mostly caused
by transforming the values of ω(v) for the largest cliques to 1. Since in our graphs,
the sizes of most cliques are relatively close to ω(G), predicting a constant value of
approximately 0.95 is quite successful with ωmc targets.
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Table 4.1: Performance of ωmc models in regression and ranking tasks evaluated on
separate graph types in addition to evaluation on the whole dataset (all).

MSE FMC
mean deg s2v cheb mean deg_den s2v cheb

all 2.50 1.09 0.48 0.32 .664 .867 .871 .896
C.20.5 0.50 0.33 0.32 0.28 .497 .754 .763 .816
C.20.9 0.28 0.16 0.17 0.15 .793 .931 .930 .946
brock20 6.88 1.87 0.93 0.57 .703 .912 .912 .924
dsjc20 3.68 1.54 0.78 0.42 .603 .901 .908 .937
rb5-4 0.22 0.17 0.20 0.18 .724 .838 .841 .858

A more serious issue with ωmc is that to predict the absolute ω(v), we would have
to know the value of ω(G) of the graph, which renders ωmc as impractical for the
regression task and thus not useful as a bounding heuristic in B&B. It might still seem
useful for the ranking task, however.

The last nail in the coffin for this approach was the observation that with these
targets, the network is expected to produce different outputs for the vertices u ∈
V, v ∈ V ′ with equal ω(u) = ω(v) if they are contained in graphs G,G′ with different
clique numbers ω(G) 6= ω(G′).

Therefore, to predict values of ωmc correctly, apart from ω(v), each vertex has to
be aware of the largest clique of the graph. Since in our architectures all vertices
only receive information from vertices in distance at most t, where t is the number
of convolutional layers, there is no global information flow in larger or sparser graphs
in the network, and so this requirement makes the task practically impossible for our
networks. Providing the network with the global information flow (e.g. in a form
of central node) just because of this reason seems as a very complicated solution in
comparison to changing the definition of targets.

Although ωmc might be usable for smaller or dense graphs where the value of ω(G)

can be expected beforehand (e.g. in random graphs with a fixed edge probability), we
decided not to study this variant further.
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