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2014 Bc. Martin Koĺınek
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Študijný program: Informatika
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Abstrakt

V tejto práci sa venujeme oblastiam v mape, ktoré sú dosiahnutel’né z daného bodu v

danom časovom limite. Tejto téme sa venovalo niekol’ko autorov. Majú niekol’ko využit́ı

v navigácíı, plánovańı miest a podobne. Pracujeme s dvoma formami presunov. Jeden

z nich je obmedzený na pohyb po cestách. Druhý spôsob umožňuje pohyb kadekol’vek,

ale je pomaľśı.

Venujeme sa spôsobom, ktorými sa dá źıskat’ takáto dosiahnutel’ná oblast’. V posled-

nej dobe sa urobil vel’ký pokrok v oblasti plánovania trás v mapách. Ked’že problém

hl’adania oblasti dosiahnutel’nej v časovom limite je problému plánovania trás pŕıbuzný,

snažili sme sa využit’ techniky z algoritmov na plánovanie trás na hl’adanie dosiahnu-

tel’nej oblasti.

Kl’́učové slová: časová dosiahnutel’nost’, cestná siet’
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Abstract

Isochrones are parts of a map which can be reached from a given starting point within

given time limit. Several authors have studied them. They have som uses in urban

planning, or navigation. We study isochrones for two modes of transportation. One of

them is constrained to a road network. The other one is slower, but is not constrained.

In this thesis, we deal with the ways isochrones can be computed. There have been

recent advances in route planning algorithms. Because finding isochrones is a related

problem to route planning, we tried to find ways to speed up isochrone search using

the techniques from route planning algorithms.

Keywords: isochrone, road network, spatial network, reachability
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Introduction

Isochrones in maps are regions which can be reached within given time from given start-

ing point. They are useful in urban planning, navigation software, tourism information

etc.

There are algorithms for solving the problem of finding specific isochrones in maps.

However these algorithms are far from perfect. Problems include:

• High time complexity. This problem manifests itself when searching for larger

isochrones.

• Precision of the resulting isochrone.

Because in recent years many advancements were made in solving the problem of

finding shortest path between two points in a map, it may be possible to improve

existing solutions for the problem of finding isochrones.

In this thesis we will first formally describe an isochrone model which uses two modes

of transportation. One constrained to a road network, but faster, and the other one

unconstrained, but slower.

Then we will describe an approach to computing isochrones in our model. This ap-

proach takes into account both modes of transportation, which makes it more precise

than existing solutions.

After that we examine two of the approaches for finding shortest paths, and try to adapt

them to finding isochrones. Then we will describe the implementation of the techniques

and their adaptation to a real world map. Finally, we test the implementation on real

world data, and describe the results.
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Chapter 1

Related work

In this chapter we will describe the existing research concerning isochrones. We will

look at existing definitions of isochrones, and the approaches to finding them. Then

we will describe accomplishments in a related problem of route planning.

1.1 Spatial network

Spatial network can be defined as a weighted graph with each vertex having a position

in euclidean space. They have many applications in geo-spatial systems, navigation,

urban planning etc. The weight of the edges can represent distance, traversal time etc.

Spatial networks can be classified as continuous and discrete. In continuous spatial

networks, the points along edges of the graph can be accessed whereas in discrete

spatial networks only the nodes can be accessed [11].

In [11], multimodal spatial networks are defined. Multimodal spatial networks allow for

multiple modes of transportation through the network. Each mode of transportation

may have different properties and constraints.

For purposes of this thesis we do not need multimodal spatial network. We will deal

with single continuous spatial network - representing the road network and possible

movement by car. The weights of edges represent driving times. Additionally, we will

consider possible transportation, which is not constrained to the road network.

2



1.2 Isochrone

Isochrones in multimodal spatial networks are again defined in [11]. Informally, they

define isochrones as a sub-graph of the spatial network which contains all the nodes

and edges which can be reached from a given starting point in specified amount of time.

What this means is that the sum of weights of all edges on a shortest path between

the source node and any node or edge in the isochrone is smaller than the time limit.

1.2.1 Visualization of isochrones

When showing the isochrone, we also want consider the possibility of moving away

from the road network. For this reason we don’t want to display only the isochrone

sub-graph.

For this reason, [17] describes two approaches to visualizing them. These approaches

transform isochrone in form of a subgraph into an area which encloses the isochrone.

The usual methods for converting a set of points into an area are concave hull and

alpha shapes. Isochrone however, does not contain only points, it also contains edges.

The requirement for them to be within the resulting area is hard to incorporate into

alpha shapes or concave hulls [17].

Both of the approaches proposed in [17] work with buffers around objects in isochrone.

This buffer represents the area in vicinity of an object within isochrone. This tries to

simulate the possibility to be reachable from the source point not only for the object,

but also for immediate vicinity of the object. The size of this buffer is a parameter

to the method. What this means is that every object in the isochrone gets the same

buffer. This does not correspond to the reality because even the objects on the very

boundary of the isochrone get the same buffer. This may make the isochrone appear

larger than it really is. To compensate for this the proposed methods make the input

isochrone smaller by the size of the buffer.

The difference between the two methods is that the first one creates buffers around

all the edges in the isochrone. The other method first creates a minimal bounding

polygon and then creates a buffer around the polygon. It is claimed that for smaller

3



buffer sizes the second approach produces better results and, for larger buffer sizes

there is no significant difference.

The flaw in these approaches is that the constant sized buffer is not really precise. If

we want to simulate the possible movement by foot then the buffer has to be smaller

close to the boundary of the isochrone than at the source point.

Other possible problem is that to calculate just the boundary of the area within which

the isochrone is, the whole isochrone is calculated. If we could restrict the computation

to only look for the boundary we could potentially lower the computation time.

This thesis will try to combine computation of isochrone and transformation of isochrone

to an area. That might eliminate the need to compute the whole isochrone first, thus

computing only the parts required for creating the area. But first we will introduce

some methods to computing isochrones.

1.3 Algorithms for computing isochrones

Some algorithms for computing isochrones were introduced in recent years. In this

section we will give an overview of them.

1.3.1 MINE

This algorithm was introduced in [11]. It was designed for computing isochrones in

multimodal spatial networks where some edges are continuous and some are discrete. It

is based on Dijkstra’s algorithm for computing single source shortest paths. It works by

incrementally expanding the resulting isochrone by edges within the spatial network.

When traversing an edge would mean that the time would be higher than the threshold,

the expansion is stopped at that edge.

Similar algorithm is also mentioned in [3]. However, that paper focuses on public

transport and works with a modified spatial network where bus stops are on edges.

The memory complexity of the MINE algorithm is O(|V iso|), where V iso is the number

of nodes within the isochrone.
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1.3.2 MINEX

MINEX is introduced in [10]. This algorithm is based on the aforementioned MINE

algorithm. The improvement over the MINE algorithm is based on discarding elements

from the isochrone which are no longer needed to expand the isochrone further. This

leads to lowering of memory requirements of the algorithm if we are not required to

keep the whole isochrone in memory.

MINE algorithm, just as the expanding Dijkstra’s algorithm uses a set of closed nodes,

which is used to avoid cyclic expansion of already expanded nodes. As the expansion

progresses most of the nodes in the closed set are no longer needed [10].

To limit the size of the closed set, the MINEX algorithm introduces expired nodes.

These are nodes which have all their neighbors either expired or in the closed set. The

algorithm uses counters for each node to eagerly determine whether the node is expired.

It is also proven that the expired nodes no longer need to be present in the closed set

for the algorithm to be correct.

This reduces the memory requirements of the MINEX algorithm to O(
√
|V iso|) in grid

graphs, where V iso is the number of nodes in the resulting isochrone.

1.4 Shortest path

We have seen that the algorithms specifically designed for finding isochrones are based

on Dijkstra’s algorithm for single source shortest paths problem. For real world maps,

various approaches were developed to speed up finding of shortest routes. Most of these

approaches use some sort of preprocessing to speed up the searches. A rather long list

can be found in [6]. We will now go through some of these approaches, and we will try

to tell whether they might be useful for computing isochrones.

1.4.1 A*

This approach is based on Dijkstra’s algorithm and a heuristic which directs it towards

the destination. Since in isochrones there is no destination this approach is not useful.
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1.4.2 Bidirectional search

When looking for the shortest path between two points, using bidirectional search can

speed up the process by decreasing the number of inspected nodes in the road graph.

Thus bidirectional search is a standard technique used in many algorithms for shortest

path. In fact most of the algorithms mentioned in [6] use bidirectional search.

On the other hand, because bidirectional search requires both source and destination

points, algorithms for searching for isochrone will probably not benefit from it.

1.4.3 Highway hierarchies

Highway hierarchies is an approach for computing shortest paths which is described in

[24]. The approach is based on an idea used by many commercial navigation systems

– that when computing shortest path between two points, the less important roads are

used only near the start and the end of the route.

Highway hierarchies formalize the notion of important roads. The only parameter to

the method is the distance within which queries are considered local. Then individual

roads are checked whether they are used in non local queries. If they are, they are put

into a new layer. This layer is a new road network which consists only of the important

roads.

This process can be repeated to create multiple levels of detail. The algorithm for

finding the shortest paths then uses roads on different levels based on the distance

between the source and the destination. If the source and destination are close to

each other the algorithm is equivalent to Dijkstra’s algorithm. Otherwise, the search

is advanced to a higher level where the road graph is more sparse. This means that

the search in the higher level can traverse longer distances while examining less nodes.

The problem with this approach is the preprocessing phase where we need to efficiently

compute which roads are important. An solution to this problem is shown in [24] which

finds the important roads in linear time.

What this approach could bring to computing isochrones is that if only the important

roads are used for travelling longer distances, it may not be needed to examine all roads
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when searching for larger isochrones. It may be sufficient to use only the more sparse

levels of the hierarchy. However, because highway hierarchies use bidirectional search

to know when to descend to lower levels of the hierarchy, it will be hard to anticipate

that when searching for isochrones.

1.4.4 Subdivision

Subdividing the road graph into multiple regions was studied by multiple authors with

reasonable success.

The approach studied in [8] works by subdividing the road graph into connected sub-

graphs. The author examines how to create a subdivision which gives the best results.

It is noted that finding an optimal subdivision is a hard problem and some heuristic

algorithms are presented.

After the road graph is subdivided, each region is replaced by a simpler graph. This

graph keeps the border nodes of the region. These are connected in a way that preserves

costs of paths within the region.

That allows for a modified Dijkstra’s algorithm to search on a graph created by the

regions. This reduces the search space roughly by a factor equal to the size of the

regions. This can lead to considerable speedups [8].

Other way examined in [15] subdivides the graph into smaller graphs by removing

nodes. Using a heuristic algorithm from [13], the authors achieve subdivision into

regions of relatively same size with small amount of nodes removed.

The subdivided road graph is then used in a similair way than in the approach in [8].

The difference is that the border nodes are the removed nodes so there is no need to

keep any of the original edges as part of the reduced graph used by the final Dijkstra’s

algorithm.

The advantage of subdivision approaches is that they can be adapted for isochrone

searching. The regions created by the preprocessing step can be used in isochrone

searching just as they are used in shortest path searching. This should result in some

speedup when searching for larger isochrones.
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1.4.5 Edge flags

Flagging edges examined in [15] also provides speedup for shortest path searching

between two points. This approach is also based on subdivision. The road network is

divided into multiple regions and each edge is assigned a boolean flag for each region.

These flags are set to true for those regions which contain nodes towards which a

shortest path uses the edge. It is also set to true also for edges which lie in the region.

This then allows for faster searching for shortest route because only the edges with flag

for the region with the destination node set to true need to be looked at. According

to [15] this speedup is significant.

Since with isochrone it is impossible to determine the destination region, this approach

will not help much. However the idea of flags for nodes in the road graph may be

useful.

1.4.6 Transit nodes

Transit nodes [1] are based on the observation that for road graphs there exists a

relatively small set of nodes (call them transit nodes) with the property that every

shortest path between nodes which are far apart goes through at least one of these

transit nodes. Other property of these transit nodes is that the first transit node

encountered on a shortest path from specific node is one of a very small set (call these

entry nodes) [1].

Because the set of transit nodes is small, it is possible to precompute distance between

all pairs of transit nodes. It is also possible to precompute distances from each node to

each of its entry nodes. This then allows for answering distance queries in three table

lookups [1].

The only problem is identifying the transit nodes and the entry nodes for each node.

In [1] several ways are presented for identifying them. First approach is based on

grid decomposition of the road graph. Other two approaches pick transit nodes from

highway hierarchies.

From approaches examined in [6] the transit nodes achieve highest speedups. However
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the preprocessing time is rather long and the resulting data rather large.

The advantage of this approach is the sheer speed with which it can answer distance

queries. This can be useful for determining if a some points lie in the isochrone. This

can help to get the idea of how large the isochrone is.

1.4.7 Contraction hierarchies

Contraction hierarchies introduced in [12] is another approach for hastening shortest

path queries. Same as with highway hierarchies, the idea is to create a hierarchy of

more and more simplified road graphs and then searching for the shortest path on

multiple levels based on distance between the points.

The difference is that while highway hierarchies remove edges from the road graph

which will not be used in queries for shortest path between distant points, contraction

hierarchies remove nodes from the road graph. Nodes get an assigned ‘importance’.

Then each new level is created by removing non important nodes and by adding short-

cuts which ensure that the cost of shortest paths stays the same.

Assigning importance to nodes is not an easy task, but [12] proposes some approaches

to deal with it. The authors also present a way of determining which shortcuts are

really necessary, as they point out that not all are.

Usefulness of contraction hierarchies for isochrones is probably the same as for highway

hierarchies. The preprocessed data can probably be used for isochrones in a similar way

than for shortest paths. However, same as with highway hierarchies it will probably

be difficult to determine when to descend to levels with higher detail on the edge of

isochrone.

1.4.8 SHARC

The SHARC algorithm is introduced in [2]. It is a combination of several approaches.

It uses ideas from edge labels, contraction hierarchies and highway hierarchies.

The preprocessing is done by creating shortcuts in the same way as in contraction

hierarchies. When creating shortcuts, the bypassed edges get assigned labels in the
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same way as in edge labels method. These labels use a decomposition computed at the

beginning of the preprocessing step. The problem of determining the values of labels

is solved by using an approach inspired by highway hierarchies.

1.5 Nearest neighbors

The problem of k nearest neighbors is not directly related to computing isochrones

but it is a similar problem which got a little more attention. The approaches used in

solving this problem could help improve approaches for computing isochrones.

The problem of k nearest neighbors is to find k nearest road graph nodes from a given

set (the so called points of interest), which are closest to a starting point.

Same as with shortest paths there are approaches which do not use preprocessing and

approaches which use preprocessing. As expected, the approaches with preprocessing

are faster, but the preprocessing takes time and the result of preprocessing takes up

space.

In the end, we did not use any of these approaches to compute isochrones.

1.5.1 Incremental Euclidean Restriction

This approach introduced in [20] is one of those that does not use preprocessing. The

high level idea is described in listing 1.1

Listing 1.1: Incremental Euclidean Restriction

1 Input: s - starting point, I - points of interest,

2 R - road network

3 current = find_nearest_point(I, s)

4 I = I - current

5 while true:

6 net_dist = road_distance(R, s, current)

7 next = find_nearest_point(I)

8 next_dist = euclidean_distance(s, next)

9 if next_dist >= net_dist:

10 return current
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11 end

12 current = next

13 I = I - current

14 end

This is the algorithm for k = 1. Its extension to other values is rather straitforward

and is explained in [20].

According to [20] this approach is useful when there is a relatively small difference

between euclidean distance and network distance between any two road graph nodes.

1.5.2 Incremental Network Expansion

In case that the difference is larger, another algorithm is presented in [20]. It is based

on breadth first search of the network. The search space is limited by the euclidean

distance to the found points of interest.

This algorithm really resembles Dijkstra’s algorithm. The only difference is the restric-

tion of search space by the euclidean distance.

1.5.3 Voronoi based KNN

This approach described in [16] uses preprocessing to speed up k nearest neighbor

queries. This approach generates a Voronoi diagram with each point of interest in the

center of each cell. The distance used in Voronoi diagrams is the network distance.

After constructing the Voronoi diagram, finding the nearest neighbor is as simple as

determining in which cell the starting point is. However finding other nearest points is a

little harder. How this approach deals with it is that it precomputes network distances

between points on cell boundary. This helps in the same way as precomputation of

distances between boundary nodes in subdivision methods when searching for shortest

paths.
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Chapter 2

Our approach

In this chapter, we will introduce our approach to solving the problem of finding

isochrones. First we will describe the model we are using. Then we will describe

the computation of isochrones.

2.1 Model

Isochrones are defined in papers in different ways. These definitions are usually very

general. In this section we will formally specify the isochrones we are investigating.

We are trying to find isochrones in a map. We assume that the map is a directed

graph. Edges of the graph represent roads. Each node of the graph corresponds to a

point on the surface of the Earth. This is similar to embedding of the graph into the

surface of the earth. However, edges in a map can intersect (e.g. bridges or tunnels).

We consider two modes of transportation. First one (driving mode) is constrained to

edges of the map, the other (walking mode) allows movement over the whole surface.

We have an actor starting at a specific point. Each edge has a cost corresponding to

the time it takes to traverse this edge using the first mode (driving) of transportation.

The time of traveling between any two points using the second mode (walking) of

transportation is the distance between these two points. We also assume that the cost

of an edge is not larger than the distance between its endpoints.

12



This represents the possibility to travel using a car and going on foot. The car is

constrained to roads, but we can travel anywhere on foot. This assumption is a simpli-

fication, because there can be obstacles which prevent traversing on foot, e.g. fences,

buildings, or lakes.

The isochrone for given starting point and a time limit is the set of points which can

be reached by such actor from the starting point within the time limit.

In the investigated model, the mode of transportation can be switched as many times

as needed. This represents the option, that the actor has planned the route ahead and

has cars at specific places.

Another option is not to allow switching back to the first mode of transportation after

switching to the second. This corresponds to traveling by car, then getting out and

traveling on foot.

2.1.1 Formal definitions

We begin by a definition of a road network inspired by [25]. We define an efficient road

network for which the roads are at least as fast as going on foot.

First we need to define what we consider to be a map surface. For simplification we

consider only a few metric spaces to be a map surface.

Definition 1 (Map surface). Map surface is a tuple (M,dM), where M is a set, and

dM is a function, dM : M ×M → R+
0 , dM is a metric over M . M and dM are either:

1. M = (R × R, dM = d(α,β)), for some α, β ∈ R. The function d(α,β) is defined as

follows:

d(α,β)((x1, y1), (x2, y2)) =
√

((y2 − y1) · β)2 + ((x2 − x1) · α)2.

Note that d(α,β) is a metric over R × R which measures the distance as if the

plane was stretched by α horizontally, and by β vertically.

2. M = S, dM = dS, where S is a sphere and dS is the great-circle distance over

this sphere. The great-circle distance is the shortest distance between two points

over the surface of the sphere.
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3. M = R, and

dM(a, b) = |b− a|.

In this definition, dM is the cost function for the walking mode of transportation.

Definition 2 (Efficient road network). Let (M,dM) be a map surface. Let G be a

weighted directed graph with N(G) being the set of its nodes, E(G) the set of its edges,

and dG : E(G)→ R+ the cost function for edges of the graph. Let c : N(G)→M be a

function which for each node in G specifies its position in M . The tuple (G, c,M, dM)

is an efficient road network iff ∀e = (e1, e2) ∈ E(G) : dG(e) ≤ dM(c(e1), c(e2)). G is

sometimes called the road graph.

The dG function specifies the cost of traversing an edge using the driving mode of

transportation.

Next we define some utility objects. Edge space is the part of M which is covered by an

edge. Union of the edge spaces of all edges in E(G) is the road space. This represents

the part of M where there are roads. Given a point p ∈M we want to know the edges

which go through this point. This is given by the graph edges function eR. We also

need to define what intersection of edges mean.

Definition 3 (Edge space). Let R = (G, c,M, dM) be an efficient road network.

Edge space of an edge e = (e1, e2) ∈ E(G) is the set

Me = {p ∈M ; dM(c(e1), p) + dM(p, c(e2)) = dM(c(e1), c(e2))}.

Definition 4 (Road space). Let R = (G, c,M, dM) be an efficient road network.

Road space is the set

MR =
⋃

e∈E(G)

Me

Definition 5 (Graph edges). Let R = (G, c,M, dM) be an efficient road network.

For each point p in the road space MR we define its graph edges by means of function

eR

eR : MR → P(E(G)),

eR(p) = {e ∈ E(G); p ∈Me},

Where P is the power set.
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Definition 6 (Intersecting edges). Let R = (G, c,M, dM) be an efficient road network.

We say that edges e = (e1, e2) ∈ E(G), and f = (f1, f2) ∈ E(G) intersect iff {e1, e2} ∩

{f1, f2} = ∅ and Me ∩Mf 6= ∅.

Then we define the road distance between any two points of the road space. Between

points corresponding to nodes of the graph it is the cost of the shortest path between

the nodes. We also extend it to points which lie on edges.

Definition 7 (Road distance). Let (G, c,M, dM) be an efficient road network. Let

dG : N(G)×N(G)→ R+
0 be the shortest distance function over nodes of G.

We begin by defining road distance in edge space of an edge e = (e1, e2) as

de : Me ×Me → R+
0 ,

de(p, q) =
dM(p, q)

dM(e1, e2)
· dG(e1, e2).

Then we define it for arbitrary points in the road space. We start with a helper function:

d′0 : MR ×MR → R+
0 ,

d′0(p, q) = min
e=(e1,e2)∈eR(p)
f=(f1,f2)∈eR(q)

de(p, c(e2)) + dG(e2, f1) + df (c(e1), q).

And finally we define the road distance as

d0 : MR ×MR → R+
0 ,

d0(p, q) =


d′0(p, q), if eR(p) ∩ eR(q) = ∅

min(d′0(p, q), min
e∈eR(p)∩eR(q)

de(p, q))

Note that we need a special case for when p and q lie on the same edge.

Then we define the distance which allows for at most k switches between the modes of

transportation.

Definition 8 (k-switch distance). Let R = (G, c,M, dM) be an efficient road network.

The k-switch distance dk between two points p ∈MR and q ∈M is defined inductively

as

dk(p, q) = min
r∈MR

dk−1(p, r) + dM(r, q), k ≥ 1.

d0 is the road distance function from above. Note that dk−1 is used with both param-

eters from the road space. This allows us to use d0 as the basis.
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Definition 9 (Minimum distance). Let R = (G, c,M, dM) be an efficient road network.

The minimum distance d∞ between two points p ∈MR and q ∈M is defined as

d∞(p, q) = min
k∈N

dk(p, q).

Definition 10 (Isochrone). LetR = (G, c,M, dM) be an efficient road network. Let s ∈

MR be the starting point. Let l ∈ R be the time limit. Isochrone is the set

I(s, l) = {p ∈M ; d∞(s, p) ≤ l}.

The other possible definition uses 1-switch distance instead of minimum distance.

Definition 11 (Single switch isochrone). Let R = (G, c,M, dM) be an efficient road

network. Let s ∈MR be the starting point. Let l ∈ R be the time limit. Single switch

isochrone is the set

I1(s, l) = {p ∈M ; d1(s, p) ≤ l}.

2.2 Computing isochrones

Our approach to computing isochrones is based on dividing the isochrone computation

into two stages:

• The first stage tries to find nodes of the road graph which are reachable from the

specified starting point in specified time.

• The second phase then uses these nodes to find all points of the isochrone over

the whole surface of the Earth.

To achieve this, we need

∀p ∈MR, q ∈M : d1(p, q) = d∞(p, q).

We start by showing what problems in road networks can prevent this two step approach

from being used. Then we will try to show ways to amend the graph so that this

approach can be used.
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2.2.1 Disconnected components

First such problem is that the road graph may not be connected. This leads to problems

when finding distances between points corresponding to nodes in different components.

For example consider road network R = (G, c,R, dM) in figure 2.1, where

N(G) = {0, 1, 2},

E(G) = {(1, 2)},

dG(1, 2) = 0.1,

∀n ∈ N(G) : c(n) = n.

In this network

d∞(0, 2) = 1.1,

d1(0, 2) = 2.0

0 1 2
0.1

2.0

1.0

Figure 2.1: Example of a disconnected graph, curly lines show

distances computed as dM and the straight line represents the road

graph. Red arrow shows d1, blue arrows show d∞

When this graph is connected by adding the edge (0, 1) with cost 1.0 (see figure 2.2),

we achieve that

d1(0, 2) = d∞(0, 2) = 1.1

0 1 2
0.11.0

Figure 2.2: By connecting the graph from figure 2.1, we achieve the

same value for d1 and d∞.

To show how this situation can occur in real map, refer to figure 2.3. Another situation

when this can occur are incomplete data, where not all roads are identified in the map.
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Figure 2.3: Example of disconnected map at 48.068◦N, 17.249◦E, the

arrow points to a race track which is not connected to the road

network.

2.2.2 Intersections

Another problem are intersecting roads without a node in the intersection. For example

consider the road network R = (G, c,R× R, d(1,1)) (see figure 2.4), where

N(G) = {(0, 0), (2, 2), (0, 2), (2, 0)},

E(G) = {((0, 0), (2, 2)), ((0, 2), (2, 0))},

∀n ∈ N(G) : c(n) = n,

∀e = (e1, e2) ∈ E(G) : dG(e1, e2) = 0.1

In this network again

d∞((0, 0), (2, 0)) = 0.1,

d1((0, 0), (2, 0)) = 0.05 +
√

2.

Changing the network in this situation is a little more contrived. We need to insert

a node i at the intersection of the intersecting edges. Then we need to remove the

intersecting edges and for each such edge e = (e1, e2) we need to add new edges (e1, i)

with cost de(e1, i) and (i, e2) with cost de(i, e2) (see figure 2.5).
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(0,0) (2,0)

(2,2)(0,2)

0.1

0.05 0.05

0.05
√

2

Figure 2.4: An example of intersecting edges, curly lines show

distances computed as dM and straight lines represent distances

computed as dG. Red shows the d1 distance, blue shows the d∞

distance.

(0,0) (2,0)

(2,2)(0,2)

(1,1)

0.05

0.050.05

0.05

Figure 2.5: The road graph from figure 2.4 with intersection

removed by adding a node at the intersection (red colour). Now

d1((0, 0), (2, 0)) is equal to d∞((0, 0), (2, 0)) (blue colour).
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There are basically two reasons for occurrence of intersections in the road network.

One is wrong data. The map data being used may not have completely correct edges

and some may have wrong coordinates and intersect.

The other reason are bridges and tunnels. See figure 2.6 for an example. These pose

a question of whether these intersections should be handled by adding the node at

intersection point, because that would imply the ability to jump off a bridge or dig

out of a tunnel. There are situations where that may be possible and we may want to

incorporate that into our isochrone computations, but there are also situations where

this is not desired.

Figure 2.6: Example of intersections without node. There are

intersecting edges where one is a bridge and the other is a road

beneath the bridge. At 48.145N, 17.075E.
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This situation can be resolved by specifying which edges of the road graph are the so

called bridges. Each edge which cannot be left (e.g. a tunnel or a bridge from which it

is impossible to jump off) should be marked as bridge. Points within road space which

are only on these bridge edges cannot be used as a starting point for traveling on foot.

This leads to a different distance definition.

Definition 12 (k-switch distance with bridges). Let R = (G, c,M, dM) be an efficient

road network. Let B ⊆ E(G) be the set of bridge edges.

First, we define road space without bridges as

MB
R =

⋃
e∈E(G)\B

Me

The k-switch distance with bridges between two points p ∈ MR and q ∈ M is defined

recursively as

dk(p, q) = min
r∈MB

R

dk−1(p, r) + dM(r, q), k ≥ 1.

Based on this definition of k-switch distance, we can create an altered definition of

minimum distance and isochrone.

Since this is only a minor modification, which can be easily added to our approach, we

have not dealt with it further.

2.2.3 Amending graph

Even after removing the problems from the sections above, there are still situations

when there are points p, q ∈ MR for which d∞(p, q) 6= d0(p, q). We try to reduce the

number of such pairs by adding new edges to the graph. Each such edge e = (e1, e2)

has its cost equal to dM(e1, e2).

We tried two heuristic approaches to deal with this issue.

The first one was based on adding edges e = (e1, e2) for which

dM(c(e1), c(e2)) < dG(e1, e2) ≤ C

for some C ∈ R.
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This can be easily implemented by starting a Dijkstra search from each node and

stopping when reaching C. The constant C limits the search scope making this step

feasible. For each found node the dM distance is computed and if it is lower than the

Dijkstra distance obtained in the search, the edge is added. This leads to adding some

non required edges.

Another disadvantage of this approach is that the added edges may create intersections,

which lead to the problem with intersections. Removing this problem creates even more

edges and some nodes.

The other approach starts by removing the intersections, making the graph connected,

and considering the road graph embedded into the map surface. This allows for iden-

tifying faces in this embedding. Then we investigate each face and look at it as a

polygon.

Definition 13 (Road graph face). Let R = (G, c,M, dM) be an efficient road network,

where no edges intersect. Let C = (n0, n1, . . . , nk = n0) be a cycle in G. Let

EC = {e ∈ E(G) : ∃0 ≤ i < k : e = (ni, ni+1} (2.1)

MC =
⋃
e∈EC

Me (2.2)

An area F in M surrounded by MC is a road graph face iff

∀n ∈ N(G) \ C : c(n) 6∈ F

Area nodes of face F are

NF = {n0, n1, . . . , nk−1}

Area edges of face F are

EF = EC

We will denote by F (R) the set of all faces in the road network R. For each node we

denote

Fn = F ∈ F (R), n ∈ NF ,

i.e. the nodes which lie on the boundary of F .
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1 2

34

5

67

8

Figure 2.7: Example of a face in a road graph. Blue area is the road

graph face.

See figure 2.7 for an example.

The intersections need to be removed so that the faces of the graph form simple poly-

gons. Also, the graph needs to be connected to avoid having holes in the polygon.

These actions allow for simpler finding of the faces of the road graph.

Then we look at each face and try to add edges which make going between two boundary

nodes of the face faster. Finding these edges is a similar problem to finding a convex

decomposition of the face. There are known algorithms for convex decomposition, e.g.

Hertel-Mehlhorn algorithm [14]. This algorithm is based on finding a triangulation

of the polygon and then removing edges which do not break the convexity of the

resulting pieces. Even though it is not optimal, it gives a reasonable approximation of

the minimal convex decomposition.

For our requirements we used a similar approach. We start with a triangulation of the

polygon. Then we consider each diagonal edge added by triangulation and compute

the distance between its endpoints as if the diagonal was not present. If this distance

is smaller than the cost of the added edge, the edge is removed. See figure 2.8

The drawback of this approach is that depending on the structure of the input road

network, it may not add necessary edges. This may also happen for arbitrarily short

edges. This happens because the edges added must be local to the faces of the graph.

If they are not, they are not found by the triangulation. See figure 2.9 for an example.

The previous approach does not have this problem.

In chapter 6 we compare these two approaches.
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0.4

0.6

0.6

0.4

0.4

√
2

1.0

Figure 2.8: An example of the algorithm based on Hertel-Mehlhorn

algorithm for minimal convex decomposition. The black pentagon

represents the original graph face. The numbers denote the costs of

traversing each edge. Triangulation added the red and blue edges.

The blue edge is kept, because the shortest path between its

endpoints has a cost of 1.2. The red edge is removed, because the

cost of shortest path between its endpoints is 0.8

1.0 1.0

1.01.0

2.00.4

Figure 2.9: Example of an edge missed by face based adding of

edges. Even though the red edge should be added, it is not because

it spans two faces. Note that the missed edge could be arbitrarily

short.
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Chapter 3

Finding the isochrone

In this chapter we will describe our approach to finding the nodes of the road graph

within the isochrone. Then we describe a way to find the rest of the points within the

isochrones.

3.1 Simple search

Dijkstra algorithm [7] solves the single source shortest path problem. It works by

keeping information about the cost of the shortest path to each node in the graph.

The nodes are kept in a priority queue sorted by the cost of the shortest path to them

from the starting node. When a node n is taken from the priority queue with cost c(n),

all its neighbors n′ have their costs c(n′) in the priority queue updated as

c(n′) = min(c(n′), c(n) + dG(n, n′)),

where dG(n, n′) is the cost of the edge (n, n′).

This means that the nodes are taken from the priority queue in the order defined by

their distance from the starting point. This leads to a simple algorithm for finding all

nodes which lie within the isochrone I1(s, l). We do a Dijkstra search from s, and stop

it when a node with a cost larger than l is taken from the priority queue.

This algorithm returns all the nodes of the road graph that lie within the isochrone.

Additionally, for each such node n we have the remaining cost, that is rn = l− d1(s, n)
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3.2 Expanding from the road graph nodes

In this section, we will describe how we get from the road graph nodes within the

isochrone to the isochrone itself.

To do that we look at each node n and each edge e = (n, o) for which n is the starting

point. Edge e has cost ce where d1(s, n) ≤ l, and d1(s, o) > l. We also have the

remaining cost at n, rn = l − d1(s, o).

When walking from n and having rn time left, we can reach a circle of radius rn centered

at c(n). The other reachable points can be reached by traversing part of the edge (up

to time t) and then walking the rest of in time (rn − t). For each point p on e we can

compute the remaining cost for that point as

rp = rn −
dM(c(n), p)

dM(c(n), c(o))
· ce.

Then we can apply the same approach as with the c(n) point and use a circle of radius

rp.

The union of all these circles makes up a part of the isochrone reachable from n through

e. See figure 3.1 for an example.

2.0

e
n o

1.0
0.6

0.2

Figure 3.1: Points reachable from n in rn via edge e when rn < ce.

The colored circles show areas reachable from points marked by

crosses of corresponding colors. The brown lines enclose the union of

all such circles.

We will show another example which shows how this looks when we have an edge

e = (e1, e2) and re1 > re2 and re1 < re2 + ce, where ce is the cost of edge e, in figure 3.2.
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ee1 e2

3.0

1.75

1.75

1.0

2.5

0.5

Figure 3.2: Points reachable from e1 and e2 via edge e when

re1 > re2 and re1 < re2 + ce. Red lines show points reachable from e1,

blue ones show points reachable from e2.

3.3 Reducing the number of nodes

It turns out that not all the road graph nodes within the isochrone are needed to find

the isochrone itself. In this section we will describe the way this is possible.

We start by looking at the faces of the road graph, similarly to how we did when we

were trying to add edges to the graph in previous chapter. We have an isochrone I.

We examine the sets

PartiallyCovered =
⋃

F∈F (R)
F 6⊆I
F∩I 6=∅

F,

and

Covered =
⋃

F∈F (R)
F⊆I

F ′∈F (R)
F ′⊆PartiallyCovered

NF∩NF ′ 6=∅

F.

The Covered set forms a set of polygons. These polygons can have holes. There can

be two reasons for these holes. The first reason is that not all the points within the

hole lie within the isochrone. The other reason is, that the the faces within this hole

are not touching any node in PartiallyCovered, but still lie within the isochrone.

We also look at PartiallyCovered. If we make a union of all the faces in it, we also get

a set of polygons. We remove holes from all of these polygons. After that, of them will
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contain the starting node. If we ignore the polygon with the starting node in it, we

get the union of faces which lie within the union of Covered, and are not completely

covered by the isochrone. We will denote this set of points PartiallyCovered′.

Now when we look at Covered, remove all the holes, and subtract PartiallyCovered′,

we get the set of points we will call IsoInterior.

This way we partitioned the isochrone I into IsoInterior, and

IsoDetails = PartiallyCovered ∩ I = I \ IsoInterior.

Now we need to find a set of nodes, which allows us to find PartiallyCovered, Covered,

and PartiallyCovered ∩ I.

When given a face F and a node n from NF (nodes which form the face), we need to

find a limit function l(n, F ) such that

∀p ∈ F : d1(c(n), p) ≤ l(n, F ).

The problem is that l(n, F ) > rn does not imply, that F ⊆ PartiallyCovered. So

instead of finding Covered and PartiallyCovered, we will search for

PartiallyCovered2 =
⋃

F∈F (R)
n∈N(G)
c(n)∈I

l(n,F )>rn

F,

Covered2 =
⋃

F∈F (R)
F⊆I

F ′∈F (R)
F ′⊆PartiallyCovered2

NF∩NF ′ 6=∅

F.

Note that Covered2 is defined in terms of PartiallyCovered2 in the same way Covered

was defined in terms of PartiallyCovered. Also,

PartiallyCovered2 = PartiallyCovered

if l(n, F ) was minimal for each n ∈ N(G), F ∈ F (R). This means, that the construction

of isochrone from PartiallyCovered and Covered also works with PartiallyCovered2

and Covered2. This also allows us to define IsoDetails2, and PartiallyCovered′2 using
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PartiallyCovered2 similarly to how we defined IsoDetails, and PartiallyCovered′

from PartiallyCovered.

Using the limit function, we can find

NBorder = {n ∈ N(G) : ∃F ∈ F (R), l(n, F ) > rn},

where rn is the remaining time at n. It can be seen, that⋃
F∈F (R)

NF∩NBorder 6=∅

F = PartiallyCovered2.

It can be also seen, that when expanding from NBorder using the techniques from section

3.2, we get a superset of IsoDetails2.

What remains, is to find nodes, which allow us to find Covered2. To do that, we define

function l : N(G)→ R as

l0 : N(G)→ R,

l0(n) = max
F∈Fn

l(n, F ),

l(n) = max
F∈Fn
n′∈NF

l0(n
′) + l(n, F ).

Lemma 1.

n ∈ NBorder ⇒ l(n) > rn

Proof. Let n ∈ NBorder. Then ∃F ∈ F (R), such that l(n, F ) > rn. But then

l(n) ≥ l0(n) ≥ l(n, F ) > rn.

Now we look at all the nodes n, for which l(n) > rn. We denote these Nl.

Lemma 2.

Covered2 ⊆
⋃

F∈F (R)
n∈Nl

l(n,F )≤rn

F

Proof. Let p ∈ Covered2. Then ∃F ∈ F (R), such that p ∈ F , and there is FB ∈ F (R)

which borders with F . Also ∀nB ∈ NFB
: l(nB, FB) > rnB

.
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Let nB ∈ NFB
∩NF . Then rnB

< l(nB, FB). Also let n ∈ NF . It holds that

rn − d(n, nB) ≤ rnB
.

If it was not the case, then there would be a shorter path from the starting point to

nB via n. Also, from definition of l0

l0(nB) ≥ l(nB, FB) > rnB
.

But then

l0(nB) ≥ l(nB, FB) > rnB
≥ rn − d(n, nB).

Also, because d(n, nB) = d1(c(n), c(nB)) ≤ l(n, F ),

l(n) ≥ l0(nB) + l(n, F ) ≥ l0(nB) + d(n, nB) > rnB
+ d(n, nB) ≥ rn.

And because l(n) > rn, n ∈ Nl. This way we proved that ∀n ∈ NF : n ∈ Nl.

Now for F to be within Covered2, there must be a node n′ ∈ NF for which l(n′, F ) ≤ rn′ .

Otherwise there would be a point in F which does not lie within the isochrone. But

from above

n′ ∈ Nl,

and then

F ⊆
⋃

F ′∈F (R)
n′∈Nl

l(n′,F ′)≤rn′

F ′
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Figure 3.3: Isochrone example. s is the starting point, the nodes in NBorder have

yellow color, nodes n, for which l(n) > rn and n 6∈ NBorder are teal. Border of the

isochrone is colored blue. Covered2 has green color and PartiallyCovered2 has red

color. There are two holes in the Covered2 polygon. One of them should be left in

(the 36, 37, 38, 39 hole) and the other one should be removed. PartiallyCovered′2 is

the polygon between nodes 36, 37, 38 and 39. When we remove holes from the

Covered2 polygon and subtract PartiallyCovered′2, we get the interior of the

isochrone. All that remains then is to add the parts of the PartiallyCovered2 which

lie within the isochrone.
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Chapter 4

Optimization of graph based search

In this chapter, we will show two approaches we took to try to reduce the amount of

graph nodes searched during the process of finding an isochrone.

4.1 Partitioning

In the first chapter, we introduced a partitioning approach to route planning described

by [8]. We selected one of the approaches introduced in that thesis and tried to adapt

it to our problem. The approach was based on partitioning of the road graph.

4.1.1 Finding the partition

The authors of [8] examined two approaches to partitioning of the road graph – the

splitting algorithm (section 3.4.1 of [8]), and the merging algorithm (section 3.4.2. of

[8]). The merging algorithm gave better results for them, so we decided to use that

approach.

The main idea of partitioning is dividing the nodes of the road graph into subsets.

These subsets are called cells in [8]. Additionally, we want the graph induced by each

of these subsets to be connected.

The merging algorithm starts by assigning each node its own cell. The algorithm then

proceeds in steps. During each step, two candidate cells are selected and merged into
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one cell. The candidate cells need to have an edge between them. After the merging

occurs, a score is computed for the current partition. When it is no longer possible to

merge any two cells (that is, when the cells contain all the connected components of

the road graph), the partition with the best score is selected as the resulting partition.

The selection of candidate nodes is done by computing a merge priority for each two

cells which are connected by an edge. Then the pair of cells with the highest merge

priority is selected.

The merge priority function we used is the same as the function in [8].

p(C1, C2) =
mB(C1, C2) · (1 + b(C1) + b(C2) + b(C1 ∪ C2))

n(C1) · n(C2)
· random(1, 1.01)

This equation shows how the priority between cells C1 and C2 is computed. mB(C1, C2)

is the number of edges between cells C1 and C2, b(C) is the number of boundary nodes

of the cell C, and n(C) is the number of nodes in the cell C.

The partition score function we used is different from the function used in [8]. They use

the estimated number of evaluated edges when searching for the shortest path between

two random points (see section 3.2 and Appendix A of [8] for more details). One of

the features of this function is that it has no parameters to tweak.

However we wanted better control over the generated partition. Especially the size of

the cells. So we used a different function, which assigns the score based on the sizes of

the cells in the partition. For partition P and target size t we use

c(P ) =
∑
C∈P

(
n(C)2 + 1

n(C)− 2

)2

We came to this function by experimenting with different constants and forms of func-

tions. This function tries to achieve relatively small variance of sizes of the cells.

4.1.2 Higher level graph

We then construct the higher level graph using the simplest approach described in [8].

The first step in constructing this graph is selecting edges which connect different cells

in the partition.
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Then we process each cell individually. Within a cell we find the border nodes, that

is the nodes from which there is an edge leading outside of the cell. Then we create

a clique of the border nodes with the cost of each edge being the cost of the shortest

path between the two endpoints. See figure 4.1 for an example.

1 2

3

4

5

6

1

2

3
4

1 2

3

1
2

Figure 4.1: Example of creating the higher level graph. Original

graph’s edges are black. Cells are differentiated by background color

of nodes. Red edges are the edges between cells. Border nodes are

the squares. Blue edges are the shortcuts created by creating a

clique between border edges of each cell. The higher level graph is

made out of colored edges.

We will call the graph we got using this method the higher level graph G′.

4.1.3 Querying

In this section we will describe the algorithm for finding Nl using the higher level graph

constructed in previous section. Again we are inspired by the techniques shown in [8].

In their thesis, they are using such higher level graph for finding the shortest path

between two nodes of the road graph. For our need we need to alter this approach.

The approach to find Nl is very similar to the simple search approach from section 3.1.
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We start at the starting point and perform a Dijkstra search. This search is limited

only to a single cell. When the search in this cell is completed, the search is moved to

the higher level graph.

The search in higher level works the same way as the search on the original graph.

However we also need to descend back down to the original graph at some point.

Otherwise we would not find nodes n ∈ Nl \N(G′).

To determine when to descend to the original graph, we add another piece of informa-

tion to each cell. We compute cell diameter as

diam(C) = max
n∈B(C)
o∈B(C)
n 6=o

d′(n, o) + l(o),

where B(C) are the border nodes of cell C, d′ is the distance function in the higher

level graph, and l is the limit function from section 3.3.

We descend to the original graph when the remaining time rn at node n ∈ N(G′) is

lower than the diameter of C, n ∈ C.

Theorem 1. Query algorithm described in this section finds all nodes in Nl.

Proof. The only problem are nodes n ∈ Nl \N(G′). There is a cell C, such that n ∈ C.

Let us look at the shortest path between the starting point, and n. This shortest path

has to pass through some node n′ ∈ B(C). That means that rn′ = rn + d(n′, n). But

then

diam(C) ≥ d(n′, n) + l(n),

and because l(n) > rn,

diam(C) > d(n′, n) + rn = rn′ .

That means that the query algorithm descended into original graph, and so n is found.

4.2 Highway hierarchies

Another approach to finding shortest paths we tried to adapt, is highway hierarchies.

This approach was studied in [24] and in [26].
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Similarly to the partitioning approach it creates a higher level graph. The detailed

procedures of constructing this higher level graph and using it for finding shortest path

are described in [26]. In the next sections, we will briefly describe these procedures.

We will also describe how we adapted this approach to find Nl.

4.2.1 Construction

The input parameter for the construction method is NH . This parameter determines

how far two nodes need to be to be considered far enough.

We start by finding the neighborhood size of each node n. This is done by finding the

set Neigh′(n) of NH closest (in terms of graph distance) nodes. The neighborhood size

of n is

Nn = max
o∈Neigh′(n)

d(n, o),

where d(n, o) is the cost of the shortest path between n and o (the graph distance).

We then use this neighborhood size to find the neighborhood Neigh(n) of n as

Neigh(n) = {o ∈ N(G), d(n, o) ≤ Nn}

After this is done, there are two steps required to create the higher level graph. In the

first step, the important roads are identified. Important roads are those that lie on the

canonical (see [26], for simplicity, imagine there is only one) shortest path between two

nodes n1, n2, such that

n1 6∈ Neigh(n2) ∨ n2 6∈ Neigh(n1)

After we have the important roads, we look at the graph G′ induced by these road

edges. As the second step, we take the 2-core of G′. This removes nodes of degree 2

and less. However, we add shortcuts from these nodes to the nodes of the 2-core. We

also add shortcuts between nodes, which had a path between them made out of only

nodes with degree 2. The second type of shortcuts is added back to the 2-core to create

the higher level graph. See figure 4.2 for an example.

The cost of these shortcuts is always the cost of the shortest path between the two

endpoints.
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Figure 4.2: Example of creating the higher level graph from

important roads. The black edges are the important road edges.

Blue are the shortcuts from removed nodes. Red are the shortcuts

that get added to the 2-core.

This allows for construction of a higher level road net graph, which has fewer edges

than the original graph. This process is then iterated and a hierarchy of graphs is

created. Different iterations may have different values for the NH parameter.

However, as is noted in [26], the construction step takes a long time if there are edges

with high cost relatively to the the rest of the edges in the road graph. They encounter

such edges when dealing with ferries. In our case, the edges added in section 2.2.3 are

such edges.

The way this is solved in [26] is by changing the technique of identifying the important

edges. With this modification, it is no longer true that the highway hierarchies algo-

rithm finds the shortest paths. We also used this approach, which led to problems as

described in chapter 6.

4.2.2 Query

The query algorithm is based on the algorithm for shortest path queries in [26]. They

are using a bi-directional search from the starting node, and the target node. There are
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also cost-less edges added between two instances of the same node on different levels.

This way all the levels of the graph create one large graph. This graph is searched

by a Dijkstra search with some limitations. The Dijkstra search is limited to the

neighborhood of the last entrance node. Entrance nodes are either the starting nodes,

the nodes through which the search advanced to a higher level, or nodes which were

passed using a shortcut.

Because they are using bi-directional search, the authors of [26] don’t need to descend

back to lower levels of the hierarchy. However, when searching for an isochrone, we

cannot use bi-directional search. Because of this, we need some piece of information

about when to descend to the lower level.

For this purpose we introduce descend limits for each node. We use these in a similar

way we used cell diameters in the partitioning approach. When we reach a node during

the search where the remaining time is lower than the descend limit, we let the search

descend to a lower level. Also, since shortcuts can only be traversed in one direction in

the original search, we also define shortcut reverse limit. When we reach an endpoint

of a shortcut with less time left than its reverse limit, we can traverse this shortcut in

the opposite direction.

To find the descend limits for each node, we use the l function from section 3.3.

We need to simulate the backwards search through the road graph. We look at each

node n of the original graph G and do a Dijkstra search limited to its neighborhood.

For each encountered node n′, which is also a node of the higher level graph G′, we

track the maximum of the value l(n) + d(n, n′), where d(n, n′) is the Dijkstra distance

between n and n′. So the descend limit is defined as

Descend(n′) = max
n∈N(G)

n′∈Neigh(n)

l(n) + d(n′, n).

We also need the limits for reversing the shortcuts. These are computed using the

descend limits as

ShortcutRevLimit(n) = max
n′∈N(G′)
(n′,n)∈S

Descend(n′) + s(n′, n),
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where S is the set of shortcuts, and s(n, n′) is the cost of the (n′, n) shortcut.

Lemma 3. The query algorithm using two levels finds all reachable nodes n, for which

rn < l(n), when starting from s with a time limit l.

Proof. We use the assumption that the highway hierarchies query algorithm from [26]

finds the shortest paths.

Let n ∈ N(G) such that rn < l(n). Let us examine, what would the highway hierarchies

algorithm do when searching for the shortest path between s and n.

If the search never left the lower level of the graph, it is basically only a Dijkstra search.

If the forward search advanced to the higher level, our search algorithm would advance

to the higher level at the same node.

So the problem is the backward search. The only things that the backward search

does differently are using shortcuts, and going to the higher level. When simulating

the backward search with forward search, the shortcuts are taken in reverse. Also, the

level switching, which happened only in the direction to the higher level, needs to be

reversed (that is from higher level to lower level).

First we will show, that the backward search in respect to level switching is simulated

correctly. Assume that n′ is the node in which the backward search switched level.

Backward search is limited to the neighborhood of the n. That means, that

Descend(n′) ≥ l(n) + d(n′, n).

Because up to now, our algorithm behaves in the same way as the shortest path algo-

rithm, it is true that rn′ = rn + d(n′, n). And because rn < l(n),

Descend(n′) ≥ l(n) + d(n′, n) > rn + d(n′, n) = rn′

And because Descend(n′) > rn′ , we descend to the lower level in our algorithm.

Shortcuts work in a similar way. Assume the backward search took a shortcut s =

(n1, n2) with cost ds. Because shortcuts are edges that start in nodes which are not

the endpoint of any edge in the higher level graph, the only way the backward search

could have reached n1 is by switching level at n1. That means that Descend(n1) > rn1 .
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Also, because the shortest path algorithm finds the shortest path,

rn2 = rn1 + ds.

That means that

ShortcutRevLim(n2) ≥ Descend(n1) + ds > rn1 + ds = rn2 .

And from that follows, that our query algorithm will take the shortcut in the opposite

direction.

This lemma can be inductively applied to show that this query algorithm works for

multiple levels of the highway hierarchy. So it can be seen that the highway hierarchies

algorithm finds all nodes of Nl.
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Chapter 5

Implementation

In this chapter we will introduce some aspects of implementation of techniques de-

scribed in previous chapters.

5.1 Map representation

To store the map data, we used the PostgreSQL[23] database engine with PostGIS[22]

extension for storing geographical data. The data we used comes from OpenStreetMap

[18]. We used Osmosis [19] to get it into the PostgreSQL database.

We represent the map using a table which stores all the nodes of the road graph. Each

node has its position also saved in this table. Additionally there is a table which stores

the adjacency relation of the road graph nodes. Each edge of the road graph has its

cost, and the geometry that represents it, stored in this table.

Because the road graph may be too large to fit into memory, we use lazy loading of the

road graph. For this reason, the nodes are partitioned into non overlapping regions.

We used a least recently used cache of regions.

When asking for neighbors of a node, all nodes that are in the same region are loaded

from the database into memory. Also when loading new region, and the amount of

loaded regions exceeds a selected number, the least recently used region is removed

from this cache.
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Listing 5.1: The road_areas table

1 CREATE TABLE road_areas (

2 id bigint NOT NULL,

3 node_id bigint NOT NULL,

4 sequence_no integer NOT NULL,

5 cost_to_cover double precision NOT NULL

6 );

Because partition of the nodes from section 4.1 gives connected cells, these cells are

good candidates for use as these regions. The size of the cells determines how often

the database is queries.

Because we used the cells from the partitioning approach as regions in the lazy loading

of the graph, we also save the diameters of the cells.

Additionally we saved information about faces of the road network. Faces are repre-

sented by a table road_areas. Listing 5.1 shows its schema. The id column stores

the identification number of the face. The node_id column, and the sequence_no col-

umn determine the nodes which form the face. The cost_to_cover column stores the

l(n, F ) value where n is the node with identification number node_id, and F is the

face with identification number id.

5.2 Removing intersections

The reason for removing intersections was presented in section 2.2.2. Because the

geometries representing road edges are stored in the database using PostGIS, we can

use its geometry operations to find intersecting edges.

The PostGIS spatial indexes[4] allow for an efficient query plan, which uses these

indexes to find candidate edges in logarithmic time. This allows for fast finding of

intersecting edges.

The intersecting pairs of edges are processed one after another, and using the procedure

from section 2.2.2, new edges are created. These then replace the intersecting edges in
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the database.

5.3 Partitioning

The partitioning of the graph is important for us because we use it to determine which

parts of the graph to load. The merging algorithm for partitioning from [8] is global.

That is, it finds the candidate cells to merge globally for the whole road graph. In each

step, it also has to evaluate the cost of the partition. Each step of the partitioning

reduces the number of cells by one. Since computing the cost of the partition has at

least linear complexity in the number of cells, the overall complexity of partitioning is

at least quadratic in the number of nodes.

However, with the size of the road graph, this complexity is prohibitively expensive.

For this reason, we needed to improve the running time of partitioning.

Even though the partitioning looks at the graph globally, the results are actually local.

The algorithm does not gain much information by looking at the whole graph. Changes

in the road network that are distant won’t affect the local partitioning much.

This led to a different partitioning approach. First, we partition the road graph ge-

ographically into square pieces. Then we take each of these pieces, together with a

buffer of surrounding pieces, and use the merging partitioning algorithm from [8] on

the resulting part of the map. Then we look at the cells produced, and remove those

that are not within the center piece. We then save the remaining cells. Then we repeat

the same process with the next piece. However, this time we ignore the nodes which

already are in some cell. Figures 5.1, and 5.2 demonstrate this approach.

It can be seen, that the quality of the resulting partition depends on the sizes of the

resulting cells, and the size of the buffer. There is a trade-off between the performance

of this approach and the quality of the resulting partition.

If the buffer is too large, the partitioning work gets repeated, because each step only

keeps a small part of the partition. If the buffer is too small, the partition is not

determined by the road network, but rather by the partition into squares.

If the road network is fairly regular, then the size of the graph which has to be par-
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Figure 5.1: Our partitioning approach. The map is partitioned into

squares. Then one square is selected (blue), with a buffer around it

(green). This part of the map is partitioned. Cells that intersect the

blue square (the red ones) are kept. Others (brown ones) are

removed.

titioned in each step is bound. That means the work in each step can be bound

by a constant, which leads to linear time complexity of partitioning when using this

approach.

5.4 Connecting the graph

In section 2.2.1, we showed that having multiple connected components in the road

graph leads to problems when searching for isochrone. Additionally, it prevents easy

finding of faces of the road network (see section 5.5).

We use a simple approach to finding the connected components. Because the whole

graph may be too large to fit into memory, and the partitioning algorithm creates cells

which are connected, we use these cells for finding the connected components.

First we query the database for the cells obtained by partitioning the graph. Then we

find edges which connect two different cells. After that, we use the common approach
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Figure 5.2: Second step of our partitioning approach (first step in

figure 5.1). Next square with buffer is selected. This is then

partitioned, while ignoring the parts of the map which were

partitioned before (red is the new partition, black the partition from

previous step).

to finding disjoint sets described in [9]. This gives us the sets of cells which constitute

the connected components of the road graph.

When we have the connected components, we try to connect the one by one to the rest

of the graph. We start with the smallest connected component and find the closest

node which is not part of the component. To do this, we also use the spatial indexes

of PostGIS. We then add an edge connecting the component to the rest of the graph.

That may introduce some intersections (see figure 5.3). These can be removed using

the approach in section 5.2.

5.5 Finding faces of the road network

Finding faces would be easy if we had a connected graph, where all edges are bi-

directional. In section 5.4 we described a way to get a connected graph. Luckily

making all edges bi-directional is also not a problem, because we can add reverse edges

with cost equal to the time it takes to walk the edge in the opposite direction.
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Figure 5.3: Connecting the graph creates an intersection. The

closest node to d is node c. However, connecting d to c creates an

intersection. This could be avoided if we did not connect to the

closest node, but to closest edge.

This allows us to use a simple algorithm for finding the faces. We start at an arbitrary

node, and traverse the graph in counter-clockwise direction. This way we traverse the

border of a face. Because the graph is connected, there cannot be a hole in any face.

Figure 5.4 demonstrates this approach.

1 2

34

5

67

8

Figure 5.4: Face finding algorithm. Face is traversed

counter-clockwise (red arrows).

The only problem with this approach is again the fact that we cannot store the list

of processed nodes in memory because it may be too large. We again help ourselves

with the partition. We process each cell of the partition individually. When processing

a cell, each of its nodes is processed. While processing a cell, we remember a list of

traversed edges. This allows us to find all faces which intersect the cell.

We also remember a list of processed cells. When traversing a face and we encounter a

node from a processed cell, the search is aborted because the face was already found.

This approach also finds the outer unbounded area. Because this area causes problems

in some of the subsequent steps, we identify and remove it. Because this outer area was
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always much larger than any other area, it was easy to identify. A different approach

to identifying it, is that it is the only area which has its nodes in clockwise direction.

5.6 Amending the graph

In section 2.2.3 we presented the need to create additional edges in the road graph.

5.6.1 Face triangulation method

We used an poly2tri [21] for triangulation of the faces. This is a library for constrained

Delaunay triangulation. Constrained triangulation as a problem is studied in [5]. Ba-

sically it is a problem of finding a triangulation of a set of points, when some edges

have to be in the resulting triangulation.

Finding a triangulation of a face can be solved by an algorithm solving the constrained

Delaunaly triangulation. We used the poly2tri library to get a triangulation of the

face.

The implementation of the rest of this approach followed the description in section

2.2.3.

5.6.2 Adding edges which are shorter than some constant

This approach is trivial to implement. We use the lazy loaded graph for the Dijkstra

search. To compute dM we use the great-circle distance1.

The only problem is that the added edges may intersect. However, we already have an

approach to remove these intersections.

1We use the great-circle distance for all distances.
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5.7 Isochrone finding

In chapter 3, we divided the isochrone search into graph based search, and expanding

from the found nodes.

The graph based search is just a Dijkstra search from the starting node cut off at some

point. We implemented the Dijkstra’s search algorithm with the possibility to stop the

search prematurely.

The result of the isochrone algorithm is a polygon which represents the isochrone.

Ideally this would not be a polygon, but rather a union of circles. However, the usual

tools for spatial systems cannot really work well with unions of circles. For this reason

we approximated circles with polygons.

To implement the techniques from section 3.2, we need to be able to be able to find

a circle around a point with given radius. Because we are working with the surface of

the Earth as the map surface, we need to use a projection to obtain this circle. The

correct projection for this case is the equidistant azimuthal projection. This projection

has the property that it preserves distances from a single point. This means that when

we create a circle within the projection, it is still a circle in the map surface. This

allows us to easily create a polygon which approximates this circle.

Another thing we need is to find the union the circles from figure 3.1. To approximate

that, we used a convex hull. There are two cases. If the whole edge is covered, we

used the convex hull of the circles centered at the endpoints. Otherwise, we used the

convex hull of the circle from previous paragraph, and the farthest reachable point on

the edge. See figures 5.5, and 5.6 for an example.

5.8 Graph based search optimization

The implementation of techniques from chapter 4 is rather straightforward. The high-

way hierarchies were implemented based on [26]. The implementation of the partition-

ing approach is also straightforward.

Because the construction of the highway hierarchies took too long, we also implemented
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n1 n2

Figure 5.5: Convex hull used to approximate the union of circles

when the whole edge is covered. The output is the convex hull of the

two circles centered at n1 and n2.

n1 n2c

Figure 5.6: Convex hull used to approximate the union of circles

when only a part of the edge is covered. The output is the convex

hull of the circle centered at n1 and the point c.
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Figure 5.7: Covering of the face F by triangles from the node n.

Triangles have different colors, the whole face is covered by three

triangles: (n, 2, 3), (n, 3, 4), (n, 4, 5).

the speedup technique from [26]. This led to highway hierarchies not being completely

accurate.

The only thing remaining then is the l function from this chapter. In this section we

will describe the construction of this function. To recapitulate, we want a function

which when given a node n and a face F ∈ Fn gives us the time required to reach any

point within F from the node.

Let us look at nodes n1, n2 ∈ NF , which have an edge between them. If we can reach

every point in the triangle formed by n, n1, and n2 for each such pair of nodes, then

we can reach the points of the whole face (see figure 5.7).

So now we need to find the time required to reach the whole triangle. We do this by

looking at the edge between n1, and n2. We find the point on this edge with the longest

road distance from n. Let that point be p, and the distance d. Then if t is the time

required to reach the line between n and p, and dM(c(n), p) > d then

(t− d) + t = dM(c(n), p).

From that

t =
dM(c(n), p) + d

2
.

If dM(c(n), p) ≤ d, then

t = dM(c(n), p).
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Chapter 6

Results

In this chapter we will show the results of applying techniques described in previous

chapters on real world data. As mentioned before, the data we worked with comes

from OpenStreetMap. We tested on a map of Slovakia, or parts of it. We used the

speeds of 80km/h for traveling on roads, and 6km/h for travelling on foot.

Figure 6.1: Map of Slovakia we used for testing.

6.1 Amending the road graph

In this section we will compare the two approaches to amending the road graph. First,

figure 6.2 shows a part of the map before amending. Figure 6.3 shows the result of

amending the graph using the triangulation technique, and figure 6.4 shows the result

of adding edges shorter than 50 meters.
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The part of the graph we used for this demonstration had 12712 edges. After using the

triangulation technique, there were 14164 edges, and after using the other technique,

there were 19018 edges. However, this technique also creates intersecting edges. After

removing those using the technique from 2.2.2, there were 98202 edges.

Method Number of edges

Original graph 12712

Triangulation 14164

Short edges 19018

Short edges without intersections 98202

Table 6.1: Numbers of edges for different methods of amending the

graph.

We can see that the adding of short edges leads to a large number of added edges even

for really short edges. For this reason we used the triangulation approach, even though

the other approach can be better tuned to allow for more precise isochrones.

Figure 6.2: Part of the map before amending the road graph.
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Figure 6.3: Amended graph using the triangulation technique.

Brown edges were added.

Figure 6.4: Amended graph using the short edges technique. Brown

edges were added.
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6.2 Dijkstra isochrone searching

In this section we will present the results of the basic Dijkstra algorithm for isochrone

searching. Figure 6.5 shows the set of nodes within an isochrone, and figure 6.6 shows

the complete isochrone.

We also present a larger example in figure 6.7.

Figure 6.8 compares the running times for different sizes of the isochrones. Note that

this includes lazy loading of the graph from the database. We can see that the graph

based search is shorter than computing the parts of the isochrone not lying on roads.

This is because of time consuming geometric operations like convex hull computation,

or geometry union.

Figure 6.5: Nodes within the isochrone (blue circles) from starting

point marked by a star, and a time limit of 6 minutes.
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Figure 6.6: The isochrone (orange area) from starting point marked

by a star, and a time limit of 6 minutes.

6.3 Graph search optimization

In this section we will present the results of applying the techniques from chapter 4

to our testing map. The results of this optimization can be only seen on rather large

isochrones because average cost required to reach any point in a face from a node is

0.213 hours. This leads to the average value of the l function from chapter 4 being

0.576 hours.

For this reason we will present the results of the optimization on a 1 hour isochrone

from figure 6.7. Figure 6.9 shows the set of road graph nodes which lie within this

isochrone.

The set of nodes which are required to be in the output of an isochrone algorithm can

be seen in figure 6.10. We can see that even for an isochrone of one hour, most of the

nodes need to be processed.

Figure 6.11 shows the nodes within the isochrone computed by the partitioning ap-

proach from section 4.1. We can see that the nodes near the starting point are more
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Figure 6.7: A larger isochrone (orange area), starting point marked

by a star, one hour time limit.

56



sparse. This is the result of the partitioning approach skipping some nodes not required

to find the isochrone.

Figure 6.12 shows the nodes within the isochrone computed by the highway hierarchies

approach from section 4.2. Similarly to the partitioning approach, the nodes are more

sparse near the starting node. However, with this approach, some required nodes are

missed. This is because of the modification when constructing the highway hierarchy.

A more detailed view on the missed nodes is in figure 6.13.

Finally, the figure 6.14 and table 6.2 show the comparison of the three approaches in

terms of visited nodes for different sizes of the isochrone.

Time limit Dijkstra Partitioning Highway hierarchies

0.0 1 1 1

0.1 1616 1616 1099

0.2 9671 9671 6699

0.3 31290 31288 23981

0.4 61289 61158 45961

0.5 97696 96019 70007

0.6 137343 133370 92089

0.7 178590 165452 113564

0.8 224972 192024 133819

0.9 281653 228947 160689

1.0 346498 274498 194036

Table 6.2: Visited nodes for different time limits and different

methods.
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Figure 6.9: The nodes within the isochrone in figure 6.7.
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Figure 6.10: The nodes within isochrone from figure 6.7 for which

l(n) > rn.
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Figure 6.11: The nodes within isochrone found by the partitioning

algorithm.
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Figure 6.12: The nodes within isochrone found by the highway

hierarchies algorithm.
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Figure 6.13: The nodes missed by the highway hierarchies

algorithm. The higher level graph edges are purple. We can see that

there are no edges going to the part of the road graph where the

missing nodes are. This is because it is connected to the rest of the

road graph using the added edges, which have relatively high cost.
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Conclusion

In this thesis, we presented an approach to computing isochrones by separating the

graph based search from the search for the rest of the points. We have also tried to

reduce the amount of road graph nodes required to find the isochrone. Then we tried

to adapt two approaches for route planning for finding isochrones.

We can see that the large difference between traversal speed along roads, and away

from roads leads to only small reduction of the required nodes. This reduction may

prove useful for large isochrones.

The partitioning approach to route planning was successfully adapted to finding iso-

chrones. It allowed for lower number of nodes to be traversed to find the whole

isochrone, however this was not a large reduction.

The highway hierarchies approach had larger problems. The precise construction

of highway hierarchies is unfeasible because of edges added to allow for finding the

isochrone in two steps. For this reason a speedup technique had to be implemented.

However, this technique allows for the highway hierarchies route planning algorithm to

not find the shortest paths. This leads to wrong computation of the isochrone.

Future work

In this thesis we did not take obstacles into consideration. There are many obstacles

in real world maps (e.g. rivers, buildings, fences, etc.), and OpenStreetMap contains

some of them. It may be possible to incorporate them into the isochrone search, thus

making the isochrone a lot more precise.

Another thing we ignored are the different traversal speeds for different parts of the
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terrain. For example, a person moves a lot slower through a dense forest than through

a field. Some information about the type of terrain is also available from the Open-

StreetMap. This information could also be used to create a more precise isochrone.

Also, the speed of the isochrone search is not very good. It may be possible to improve

this by employing techniques from other route planning algorithms. However, for this

to work, it will probably be required to find a way to identify the isochrone from a

smaller amount of information.
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[15] Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. “Acceleration of shortest

path and constrained shortest path computation”. In: Proceedings of the 4th in-

ternational conference on Experimental and Efficient Algorithms. WEA’05. San-

torini Island, Greece: Springer-Verlag, 2005, pp. 126–138. isbn: 3-540-25920-1,

978-3-540-25920-6. doi: 10.1007/11427186_13. url: http://dx.doi.

org/10.1007/11427186_13.

[16] Mohammad Kolahdouzan and Cyrus Shahabi. “Voronoi-based K nearest neigh-

bor search for spatial network databases”. In: Proceedings of the Thirtieth inter-

national conference on Very large data bases - Volume 30. VLDB ’04. Toronto,

Canada: VLDB Endowment, 2004, pp. 840–851. isbn: 0-12-088469-0. url: http:

//dl.acm.org/citation.cfm?id=1316689.1316762.

[17] Sarunas Marciuska and Johann Gamper. “Determining objects within isochrones

in spatial network databases”. In: Proceedings of the 14th east European confer-

ence on Advances in databases and information systems. ADBIS’10. Novi Sad,

Serbia: Springer-Verlag, 2010, pp. 392–405. isbn: 3-642-15575-8, 978-3-642-15575-

8. url: http://dl.acm.org/citation.cfm?id=1885872.1885904.

[18] OpenStreetMap. url: www.openstreetmap.org/ (visited on 04/19/2014).

[19] Osmosis. url: http://wiki.openstreetmap.org/wiki/Osmosis (vis-

ited on 04/19/2014).

[20] Dimitris Papadias et al. “Query processing in spatial network databases”. In: Pro-

ceedings of the 29th international conference on Very large data bases - Volume

29. VLDB ’03. Berlin, Germany: VLDB Endowment, 2003, pp. 802–813. isbn:

0-12-722442-4. url: http://dl.acm.org/citation.cfm?id=1315451.

1315520.

69

http://dx.doi.org/10.1145/129712.129762
http://doi.acm.org/10.1145/129712.129762
http://dl.acm.org/citation.cfm?id=647891.739588
http://dl.acm.org/citation.cfm?id=647891.739588
http://dx.doi.org/10.1007/11427186_13
http://dx.doi.org/10.1007/11427186_13
http://dx.doi.org/10.1007/11427186_13
http://dl.acm.org/citation.cfm?id=1316689.1316762
http://dl.acm.org/citation.cfm?id=1316689.1316762
http://dl.acm.org/citation.cfm?id=1885872.1885904
www.openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Osmosis
http://dl.acm.org/citation.cfm?id=1315451.1315520
http://dl.acm.org/citation.cfm?id=1315451.1315520


[21] poly2tri - A 2D constrained Delaunay triangulation library. url: http://code.

google.com/p/poly2tri/ (visited on 04/20/2014).

[22] PostGIS. url: http://postgis.net/ (visited on 04/19/2014).

[23] PostgreSQL. url: http://www.postgresql.org/ (visited on 04/19/2014).

[24] Peter Sanders and Dominik Schultes. “Highway hierarchies hasten exact shortest

path queries”. In: Proceedings of the 13th annual European conference on Algo-

rithms. ESA’05. Palma de Mallorca, Spain: Springer-Verlag, 2005, pp. 568–579.

isbn: 3-540-29118-0, 978-3-540-29118-3. doi: 10.1007/11561071_51. url:

http://dx.doi.org/10.1007/11561071_51.

[25] Simon Scheider and Werner Kuhn. “Road Networks and Their Incomplete Repre-

sentation by Network Data Models”. In: Proceedings of the 5th International Con-

ference on Geographic Information Science. GIScience ’08. Park City, UT, USA:

Springer-Verlag, 2008, pp. 290–307. isbn: 978-3-540-87472-0. doi: 10.1007/

978-3-540-87473-7_19. url: http://dx.doi.org/10.1007/978-

3-540-87473-7_19.

[26] Dominik Schultes. “Fast and Exact Shortest Path Queries Using Highway Hier-

archies”. MA thesis. Universität des Saarlandes, 2005.

70

http://code.google.com/p/poly2tri/
http://code.google.com/p/poly2tri/
http://postgis.net/
http://www.postgresql.org/
http://dx.doi.org/10.1007/11561071_51
http://dx.doi.org/10.1007/11561071_51
http://dx.doi.org/10.1007/978-3-540-87473-7_19
http://dx.doi.org/10.1007/978-3-540-87473-7_19
http://dx.doi.org/10.1007/978-3-540-87473-7_19
http://dx.doi.org/10.1007/978-3-540-87473-7_19

	Introduction
	Related work
	Spatial network
	Isochrone
	Visualization of isochrones

	Algorithms for computing isochrones
	MINE
	MINEX

	Shortest path
	A*
	Bidirectional search
	Highway hierarchies
	Subdivision
	Edge flags
	Transit nodes
	Contraction hierarchies
	SHARC

	Nearest neighbors
	Incremental Euclidean Restriction
	Incremental Network Expansion
	Voronoi based KNN


	Our approach
	Model
	Formal definitions

	Computing isochrones
	Disconnected components
	Intersections
	Amending graph


	Finding the isochrone
	Simple search
	Expanding from the road graph nodes
	Reducing the number of nodes

	Optimization of graph based search
	Partitioning
	Finding the partition
	Higher level graph
	Querying

	Highway hierarchies
	Construction
	Query


	Implementation
	Map representation
	Removing intersections
	Partitioning
	Connecting the graph
	Finding faces of the road network
	Amending the graph
	Face triangulation method
	Adding edges which are shorter than some constant

	Isochrone finding
	Graph based search optimization

	Results
	Amending the road graph
	Dijkstra isochrone searching
	Graph search optimization

	Conclusion

