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Abstract

Phylogenetics is a scientific discipline that focuses on the evolution of organisms.
Evolutionary histories can be represented as phylogenetic trees. A typical kind
of phylogenetic tree, called species trees, represent the history of set of species.
However, there is also another type of phylogenetic trees, called gene trees, where
the subject of interest is evolution of a specific gene within a set of species.

Because species are formed by their genes, gene trees and species trees are
closely related. Combing a gene tree with the corresponding species tree in a
process called gene tree reconciliation, allows us to determine the functions of
internal nodes in the gene tree.

In our work we describe often used approaches of gene tree reconciliation, and
we especially focus on a gene tree reconciliation algorithm developed by Ma et al.
(PNAS 2008), where we found some inconsistencies and even some simple inputs,
on which their algorithm does not work. Therefore we propose a new algorithm

that solves the same problem, with its proof of correctness.

Keywords: reconciliation, phylogenetics, gene tree, species tree, speciation, du-

plication
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Abstrakt

Fylogenetika je vedecka disciplina, ktora sa zaoberé evoltciou organizmov. Historia
evolucie moze byt reprezentovana ako fylogeneticky strom. Typicky druh fyloge-
netického stromu volajuici sa druhovy strom, reprezentuje histériu danej mnoziny
druhov. Avsak existuje taktiez aj iny druh fylogenetického stromu volajuci sa
génovy strom, kde predmetom skiimania je Specificky gén z danej mnoziny druhov.

Pretoze druhy st formované pomocou ich génov, génové stromy a druhové
stromy su si velmi blizke. Prepojenie génového stromu spolu s prislichajicim
druhovym stromom je proces, ktory sa vola génova rekoncilidcia a umoziuje ndm
priradit funkcie vnitornym vrcholom génového stromu.

V nasej praci opisujeme casto pouzivané metody génovej rekonciliaciie a Specidlne
sa zameriame na algoritmus génovej rekonciliacie, ktory bol vyvinuty Ma a kol.
(PNAS 2008), kde sme objavili isté nezrovnalosti a aj jednoduché vstupy, na
ktorych algoritmus nefunguje. Preto sme navrhli novy algoritmus, ktory riesi

rovnaky problém s dokazom jeho korektnosti.

'icové slova: rekonciliacia, fylogenetika, génovy strom, druhovy strom, specia-

cia, duplikacia
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Chapter 1

Introduction

In bioinformatics, evolutionary histories are typically represented as phylogenetic
trees. In this thesis, we will discuss two kinds of these trees: species trees, which
represent a history of a set off species and gene trees which represent a history of
a specific gene. In particular, we will study the gene tree reconciliation problem,
where the goal is to map vertices of a gene trees to points on the species tree,
which correspond to the same points in the evolutionary history.

In the past, many researches designed and implemented reconciliation algo-
rithms for different version of the problem. Moreover, over the time, they im-
proved their time and space complexity or simplified them. In general, these
algorithms can be divided into two groups. Depending on whether the input
gene and species trees are rooted or not. Another division could be based on
whether the input trees have weighted edges, where the weights correspond to
evolutionary distances. We will provide a brief survey of various reconciliation
approaches in Chapter 3.

In 2008 a group of researches leaded by David Haussler presented a polynomial-
time algorithm for recovering the evolutionary history of a set of genomes under
the infinite sites model | |. One part of their complex algorithm is a gene tree
reconciliation algorithm for trees with weighted edges. However after studying
details of their work, we have found some inconsistencies or even inputs where the
algorithm does not work correctly. In this thesis, particularly in Chapter 4, we

describe these problems and provide a new algorithm and prove its correctness.
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Chapter 2

Background and terminology

In this section we introduce the necessary background information and terminol-

ogy and describe the reconciliation problem in more details.

2.1 Background

Phylogenetics studies the relationship between organisms from the perspective
of their evolution. Because we suppose that all organisms are evolved from a
common ancestor, we can use appropriate graph structures to presents their evo-
lution. Specifically, the appropriate structure is usually a tree, and in biology
and bioinformatics area it is called a phylogenetic tree. A phylogenetic tree can
describe not only a topology, but by adding the lengths to the edges, we can
describe also the palaeontological time scale of evolution.

One type of a phylogenetic tree is a species tree, and it depicts how species
are related to each other. It is sometimes also called a ‘Tree of life’. In a species
tree, the leaves represent present-day species, and the internal nodes represent
speciation events. A speciation is an event in the evolution, where two subpop-
ulations of a species diverge apart and in the course of evolution they form two
individual species.

In order to continue, we provide some details about molecular basis of evolu-
tion. Each organism contains genetic material encoded in a genome. A genome
consists of DNA (deoxyribonucleic acid). DNA is composed of four bases: ade-
nine, thymine, guanine and cytosine, and the order of these bases encodes the
genetic information. Usually a DNA is in the form of a two strands DNA also

called a double helix. It is a structure, where each DNA strand is connected
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with its complementary strand based of the pairing rules, where adenine base is
paired with thymine base and guanine base is paired with cytosine base. DNA
is packed into structures called chromosomes stored in a cell structure called a

nucleus. Parts of DNA encoding the proteins are called genes.

When a cell divides, each daughter cell receives a complete copy of the parental
genome created by DNA replication. During this process, two complementary
DNA strands are unwounded at some locations and then new complementary
strands are added to each original strand. However during this process some bases
of DNA can be connected incorrectly, or some other errors can be introduced.

This causes mutations in DNA, and as mutations accumulate, new species evolve.

Sometimes during DNA replication, a gene may be duplicated, which means,
that instead of one copy of the gene, there are two copies of the same gene in
a daughter cell. When this happens, the copies continue to evolve individually.
In the contrast to gene duplication, during the DNA replication some genes can

disappear from the daughter cell. This event is called a gene loss.

Each species has its own set of genes which differ from genes in different
species. However, a gene from one species is related to a gene from another
species, if they have been evolved from the same gene in the genome of some
common ancestor, and then we call those genes homologues. Homologues are
divided into two groups: orthologues and paralogues. Orthologues are genes that
diverged by a speciation event. In contrast, paralogues are genes that diverged

by a duplication event. A gene can have a paralougue even in the same genome.

The view of species as a set of genes allows us to create a different phylogenetic
tree called a gene tree. A gene tree represents the evolution of one gene and its
homologous within a set of species. In a gene tree, the leaves represent present-

day genes and internal nodes represent speciation or duplication events.

Reconciliation connects a gene tree and a species tree together via a mapping
of vertices from a gene tree onto a species tree. The mapping can be from vertices
to vertices (preserving speciation) or from vertices to some points of the branches
(creating duplication vertices in the reconciled tree) or even to a newly added root
of the species tree. The result, a reconciled tree, gives us the information which
vertices in the gene trees are duplications and which speciations, and therefore it

helps with closer studying of the gene evolution.

Figure 2.1 is an example how an reconciliation helps to distinguish between



2.1. BACKGROUND )

a speciation and a duplication event in a gene tree. Figure 2.1 a) is a rooted
gene tree with the root rz and with one internal node z. Without any additional
information, one does not know which events both internal nodes represent. One
possible evolutionary history would be that both, rp and x, represent speciation
events. Then Figure 2.1 b) would represent a species tree for this evolutionary
history. However, if we allow gene losses, then we can form another evolutionary
history for the same gene tree. On Figure 2.1 c¢) we added gene losses that
are marked by a dashed lines, and that were lost during evolution. If rg is a
duplication event and x is a speciation event, then Figure 2.1 d) would represent

the species tree for this evolutionary history.

a) b) r
I
X
a b C 3 b c
c) d) r

a C b

Figure 2.1: Example how an reconciliation helps to distinguish between a spe-
ciation and a duplication event in a gene tree a) The input gene tree B b) The
species tree for the hypothesis, that both rz and x in the gene tree are speciations
c) The same input gene tree extended by gene loss vertices marked by dashed
lines d) The species tree for the hypothesis, that 5 is a duplication event and x
in a speciation event

The motivation of gene trees reconciliation is not only in revival of evolution-

ary histories, but it can be various. One of it is an automation of analysing of
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protein sequences, where the there is a need to studying orthologues sequences

rather than paralougues sequences | |.

2.2 Terminology

In this section, we define basic terms that are widely used in our work.
Definition 1. Tree is a connected graph without any cycles.

Definition 2. Rooted tree is a tree with specification of one node - root. It

determines the orientation of the tree.
Definition 3. Unrooted tree is a tree without root.

Definition 4. Mapping ¢ between two trees B and T is a linear transformation
¢ : B — T in which each node X; € B is mapped to the point Y; € T'. Notation
Y; = ¢(X;) means that the node X; from B is mapped to the point Y; from T in

mapping ¢.



Chapter 3

Different approached to
reconciliation

In this chapter, we describe different approaches to tree reconciliation. The prob-
lem of gene tree reconciliation is well studied, and various reviews articles have
been already written | |. However all of them assume that a reader has a cer-
tain level of the knowledge about molecular biology. Our aim here is to provide
an overview readable also for readers without this knowledge.

Gene tree reconciliation requires a gene tree and a species tree on input. In
Section 3.1 we briefly describe how these trees are built and then the remainder
of the chapter describes known reconciliation algorithms categorized according

to the problem they solve.

3.1 Phylogenetic tree reconstruction

In order to understand differences between individual reconciliation methods,
one has to firstly understand the evolution model that a specific method works
with. The main problem is, that we can only assume how the real evolutionary
history looks like, because we know exactly only present-day species and present-
day genes. Nonetheless, we can create an evolutionary model with some set of
allowed evolutionary operations (evolutionary events). For example in Chapter
2 we introduced three basic evolution events: speciation, gene duplication and
gene loss. However besides them, there are more types of evolutionary events for
example: gene conversion, horizontal gene transfer, hybridization, linage sorting

[ |. For example, horizontal gene transfer is a evolution process where a gene

7



8 CHAPTER 3. DIFFERENT APPROACHED TO RECONCILIATION

is copied from one genome to a genome of unrelated species, i.e. it was not

acquired in the usual way from the parental cells.

Gene tree reconciliation needs to take into account the way how gene and
species trees were built. A gene tree is build from DNA sequences of its genes
and similarly, a species tree is build from sequences of selected genes from the
considered species. Therefore, we need tools, that transform output sequences
into a phylogenetic tree. | | provides a useful overview of various methods
used for building trees. In general there are three approaches: distance methods,

parsimony and probabilistic methods.

The principle of the distance methods is that distances are estimated be-
tween all pairs of considered sequences. There are various algorithms for esti-
mating a tree from a distance matrix. Two most famous are a clustering method
called UPGMA and the neighbour-joining method. UPGMA method produces
a rooted output tree whereas in order to root output tree from the neighbour-
joining method, an additional step is needed. This additional step most often
consists of adding so called outgroup into the input set of sequences and thus
also to the output tree. Outgroup is a species, that is known to belong to a

different branch of evolution than all other species in the set.

The second approach is called parsimony, which a well known principle. Most
reconciliation algorithms use the parsimony principle as well, as we will see in
this chapter. After applying it to building trees, the resulting tree is a the one
that requires the smallest number of evolutionary events. One can imagine it as
a construction of all possible trees from the set of sequences (where the leaves
are sequences and the internal vertices are ancestral sequences in the way that
they minimize number of changes) and as the solution is selected the one with the
fewest changes. Although this is a NP-hard problem, there are effective heuristics

for finding the minimum tree.

The last approach is a probability evolution model. In this model, evolution-
ary events have added probability that they occur. Two often used method were

developed: a maximum likelihood method and Bayesian method.
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3.2 Gene tree reconciliation with duplication and
loss

The classical approach to gene tree reconciliation uses the parsimony evolution
model that minimizes the number of duplication and gene losses. It works with a
rooted gene tree and a rooted species tree, which are given on the input, and as the
result of the reconciliation we except a reconciled tree that minimizes the number
of duplications and gene looses. Although linear-time algorithms are known for
this problem | I, | | focused on simplifying the algorithm. The algorithm
recursively traverses all internal nodes in a gene tree in post-order (because this
gene tree is rooted, it is possible) and it checks whether each currently processed
internal node represents a duplication event or a speciation event. They also
implemented an already known algorithm with the time complexity O(n) and
run both of them at the same input. Even if their algorithm has complexity
O(n?), it reached better empirical results than the one with the time complexity
O(n). The facts, that the second algorithm is much more complex than their
algorithm, and that their algorithm achieves the worst time running only for
unbalanced species trees, were given as reasons for this. Because the optimal
algorithm that runs in linear time has been found and proved, some researchers
focused on analysis of the influence of the quality of data that are given on the
input. For example | | emphasized the fact that in reconciliation algorithms
there is a need to have correct data, otherwise the result can be biased. Following
this, | | developed a polynomial-time heuristic, that removes vertices from

the gene tree that can be incorrect.

3.3 Unrooted gene tree reconciliation algorithms

As we mentioned above, building gene trees from sequences does not detect the
root directly, instead it needs to be added using outgroup. Although, so far
mentioned reconciliation approaches required rooted gene trees on input, indeed,
a gene tree can be rooted during the process of reconciliation in a way that
this root minimizes the number of given evolutionary operations. [til3] is an
example of a such approach, and moreover they provide an unified framework
for reconciliation where a set of unrooted binary gene trees and a rooted binary

species tree are given as input. By unified, authors mean, that algorithm gets on
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the input also the information in which evolution operations are allowed. The

algorithm works in linear time.

3.4 Non-binary gene trees reconciliation algorithms

Next category of gene trees reconciliation algorithms works with non-binary gene
trees. | | pointed out some situations, where the reconciliation of non-binary
gene trees are needed, for example some currently used phylogenetic programs
produce non-binary gene trees as an output. Their another motivation was, that
non-binary gene trees allow to construct better heuristic programs for specific
reconciliation, because some programs suppose that gene trees are non-binary.
They consider the parsimony model with the minimum number of duplication
and loss events and they design a linear time algorithm for reconciliation. Before
them, within the same evolutionary model | | found an algorithm with

quadratic time algorithm.

3.5 Non-binary unrooted gene tree reconciliation
where species tree is non-binary and rooted

In this category we assume to reconcile an arbitrary gene tree (thus not necessary
rooted and binary) with a corresponding species tree that does not have to be
binary, but has to be rooted. | | studied the model and they presented a

polynomial-time algorithm that found reconciliation and roots gene trees.

3.6 Arbitrary gene and species trees reconcilia-
tion

Previous category naturally required an extension to an unrooted species tree.
Thus in this category, a gene tree and a species tree can be arbitrary trees (not
necessary rooted and not necessary binary). The motivation for using non-binary
gene trees is the same as in the previous category. The motivation for using non-
binary species tree is that not all species diverging order is known | | and
therefore also species trees can be non-binary. | | studied this category and

they proved that this problem is NP — hard even for a parsimony model that



3.6. ARBITRARY GENE AND SPECIES TREES RECONCILIATION 11

reduced duplication cost, by a reduction to a problem of constructing a species
tree from a set of gene trees. However, they proposed a heuristic that solves
it. The heuristic firstly processed non-binary species tree in the maximum cubic

time, but then it reconciles a gene tree in linear time.
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Chapter 4

Isometric reconciliation

This chapter is devoted to reconciliation algorithms that get an unrooted gene
tree with exact branch lengths and a species tree also with exact branch lengths
on the input. The goal is to find a reconciliation that preserves those distances.
We start by defining this problem, which was first studied by Ma at al | |
in 2008, more formally. Then we describe their original algorithm. However, we
show that it does not always work correctly. Finally, we introduce our algorithm
for solving the same problem with the proof of its correctness and the analysis
of the time complexity. In order to avoid any confusion, please note that Ma at
al. | | use the term ‘atom trees‘ to refer to ‘gene trees‘. The authors decided
to use this terminology because it better corresponds to the infinite sites model
they introduced. Nevertheless, we use in our work the traditional name ‘gene
tree‘. Also we often refer to the distance between two vertices in a gene tree or
in a species tree. Ma at al. | | used the upper-case letter D for distances in a
gene tree and the lower-case letter d for distances in species tree. However we use
only the upper-case letter, and thus the symbol D(u,v) represents the distance
between the vertices u and v in their respective tree. By 7™ we mark the result

of reconciliation - a reconciled tree.

4.1 Problem definition

Although we devoted the whole chapter to different approaches of reconciliation,
we have not explained the specific reconciliation problem that was introduced
by Ma at al.| |]. They do reconciliation of a rooted species tree and a set of

unrooted gene trees where the exact branch lengths of all trees are known. This

13



14 CHAPTER 4. ISOMETRIC RECONCILIATION

kind of reconciliation had not been studied before, and therefore there was a
need to name it differently - they decided for the name ‘isometric reconciliation’.
Informally, an isometric reconciliation is a mapping from a gene tree B to a
species tree T that preserves evolution distances (respectively branch lengths)

and roots the gene tree. They formally defined it as Definition 5.

Definition 5. [La08] Any mapping ¢ from an atom tree B to a species tree T

that roots the atom tree is an isometric reconciliation if
1. Fvery leaf of B maps to the leaf of the designated species in T.

2. Fach internal node of B maps to a speciation node in T or a point on a

branch in T.

3. The new root r of B maps to a point ¢(r) on a branch in T such that any
other node x in B maps to ¢(z) below ¢(r) and D(p(x), p(r)) = D(x,r).

However this definition is not strong enough, because it does not enforce
preservation of evolution distances between all relevant pairs of nodes, and thus
allows to form a reconciliation that does not correspond to any evolution history.
Example of this is in Figure 4.1. Although all conditions from Definition 5 are
satisfied, this gene tree (Figure 4.1,a)) cannot occur in the evolution history of
the species tree (Figure 4.1,b)). One of the reasons why it could not happen
is that in the reconciled tree T* (Figure 4.1, d) we can see that the distance
between the leaf node g and the internal node ¢(z) equals 1, however in the gene
tree B (Figure 4.1, a) the distance between the leaf go and the node z equals
3. Another problem is that leaves f; and g; are descendants of node z in the
rooted gene tree (Figure 4.1, ¢)). Therefore also species f, g in the reconciled
tree should have been in the sub-tree of ¢(z), but as we can see the species f
is not there (Figure 4.1,d)). Moreover Definition 5 does not allow to map the
newly found root rp to a point ¢(rg) in T that is above the root of 7', which is
necessary when the oldest duplication precedes the oldest speciation as in Figure
4.2.

Therefore we modified the original definition of the isometric reconciliation
by addressing these problems. Our definition is Definition 6. We added the
fourth condition that allows to map vertices only to the correct sub-trees and we

modified the third condition to allow mapping of the newly found root rg of B
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Figure 4.1: Example of an input that satisfies Definition 5 but it does not corre-
spond to any evolution history a) The input unrooted gene tree B b) The input
rooted species tree T' ¢) The output rooted gene tree B, d) The output reconciled
tree T

to a point ¢(rpg) that is above the root of T. Moreover, we forbid to put the new
root rg of B into an existing vertex of B. Otherwise we would obtain a rooted

gene tree in which the root has three children and thus it would not be binary.

Definition 6. Any mapping ¢ from a gene tree B to a species tree T that roots

the atom tree is an isometric reconciliation if
1. Every leaf of B maps to the leaf of the designated species in T

2. Each internal node of B maps to a speciation node in T or to a point on a

branch in T
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d)

Figure 4.2: Example of an input which Algorithm 4.2 does not process a) The
input unrooted gene tree B b) The input rooted species tree T' ¢) The correct
output rooted tree B, d) The correct output reconciled tree T*; the new vertex
¢(rp) represents a new root of T

3. The found root rg of B lies between two vertices in B and it is mapped to
a speciation node in T, or to a point on a branch in T or to a point above
the root of T on a newly added branch in T that is connected with the root
of T

4. For all nodes u,v in the rooted gene tree B: if v is a descendant of u, then
o(v) is a descendant of ¢(u) in T and D(u,v) = D(p(u), p(v))

4.2 The original reconciliation algorithm

In this section we describe the original algorithm for isometric reconciliation
[ |. It solves this problem: For a given set of unrooted genes trees 11, ..., T},
and a rooted species tree T construct an isometric reconciliation or detect that
such an isometric reconciliation does not exists, if all evolution distances are

given and are exact. The solution of this was stated in theorem Theorem 1 in the
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supplementary material | | and was given in the form of a polynomial-time

algorithm and a proof of its correctness.

Theorem 1. / | Given a set Ty, ...., T of unrooted atom trees with designated
leaf species and a species tree T, the isometric reconciliation of T, ..., Ty with T
15 unique and there is an efficient procedure to either construct it or detect that

no such isometric reconciliation erists.

Algorithm 1 and Algorithm 4.2 below represent the original algorithm | |
with slight modifications. The original version uses the same variables for differ-
ent purposes, which can be confusing; therefore we use indexes for those duplicate
variables (for example d and d,, A and \,). We also use the abbreviation LC' A
to stand for ’last common ancestor’ and we use only the upper-case D for denot-
ing the distance between two vertices. The rest of algorithm stays unchanged.
Algorithm 1 processes all gene trees from the input sequentially. For each gene
tree B, it first maps all its leaf nodes to a correct place on the species tree T'.
Then it iteratively takes an unmapped node x that is connected with at least 2
nodes u and v that have been already processed and calls Algorithm 4.2. The
task of Algorithm 4.2 is to map = onto species tree T' and to root the processed
gene tree B. If x is connected also with the third node z, that has been already
processed as well, it means that z is the last unmapped node in B.

In Algorithm 4.2, node = represents an unmapped internal node of the atom
tree B with branches to nodes u, v and z. We suppose that nodes u and v have

been already processed and mapped to ¢(u) and ¢(v) in the species tree T

Algorithm 4.2, MapAtomTreeNode(x):

(0) Let dy = D(z,u), do = D(z,v), A = LCA(¢(u), ¢(v)) in T (if ¢(u) == ¢(v)
then A = 6(u) = 6(v)), d; = D(6(u), N), dy = D(6(v), ).

(1) If dy + dy < d} + dj, reject and exit.
(2) Let €:d1—|—d2—d/1 —d/2

(3) Ifdy == dy+¢€/2 (and dy == d}+¢/2) then map x to a point ¢(x) at distance
€/2 above A in the species tree T.

(4) Else if ¢ == 0 then map x to a point ¢(z) at distance d; from ¢(u) and dy
from ¢(v) on the path connecting ¢(u) and ¢(v) in the species tree 7.
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IS}

1: for all gene trees T; such that 1 <7 < N do

2 M«

3: for all leaf nodes £ in T; do

4: o(k) < g, where g is the genome to which k belongs.

5: add k to M and set t;, = {k} (mapped subtree for k € M).

6: end for

7. while M has more than two tree nodes do

8: if u,v € M and u,v and z are connected to an unmapped node z in T;

then

9: MapAtomTreeNode(x)
10: remove u, v and (if necessary) z from M
11: if M is empty then
12: set M to the set consisting of just the root node r and set t, = B
13: else
14: add = to M and set t, =t, Ut, U {z}
15: end if
16: end if
17 end while
18: end for

(5) Else (i.e. if € > 0 and dy # d} + €/2) if the atom tree B is already rooted

then reject and exit.
(6) Else

(a) Place the root r of B at distance dj + ¢/2 from u and d + ¢/2 from v
on the path that connects v and v in B and map r to a point ¢(r) at
distance €/2 above A

(b) If d; < d} + €¢/2 map z to ¢(z) at distance d; from ¢(u), else (i.e. if
dy < dy+ €/2) map z to the point ¢(x) at distance dy above ¢(v)
(7) If z has been already mapped to the node ¢(z) in 7', then
(a) If the tree is already rooted, reject and exit unless ¢(z) lies below ¢(x)
in T or vice-versa and D(¢(x), ¢(z)) = D(z, z).
(b) Else
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ii. If €, < 0, reject and exit.
iii. If €, =0 and ¢(z) = A, reject and exit.
iv. Place the root r of B at distance d},, + ¢/2 from x and d}, + €,/2

from z on the path that connects z and z in B, and map r to ¢(r)

at distance €,/2 above A,

4.2.1 A counter-example for the original reconciliation al-
gorithm

Although the task of reconciliation with the given exact branch lengths does not
sound complicated, there are some trivial inputs on which the algorithm returns

wrong answers. Figure 4.3 is an example of such an input.

Figure 4.3: Example of an input on which Algorithm 4.2 does not work correctly
a) The input unrooted gene tree B b) The input rooted species tree T' ¢) The
correct output rooted tree B, d) The correct output reconciled tree T*; the new
vertex ¢(x) represents a duplication

If we run Algorithm 1 on this input, it firstly maps the leaves and then calls

Algorithm 4.2 to map the last unmapped vertex x. Let us assume that node a
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has label v, b; has label u and by has label z. The following simulation shows

working of Algorithm 4.2 in this situation.

) =2
) = 1 - some initializations

(1) If 3 < 3, reject and exit - this step is skipped

(2) e=0.

(3) If 1 == 2 (and 2 == 1) then map x to a point ¢(x) at distance €/2 above A
in the species tree T' this step is skipped

(4) Else if 0 == 0 then map x to a point ¢(z) at distance 1 from ¢(u) and
2 from ¢(v) on the path connecting ¢(u) and ¢(v) in the species tree T
this step happens and x is correctly mapped

(5) Else ... this step is skipped

(6) Else ... this step is skipped

(7) If z has been already mapped to the node ¢(z) in T, then

(a) If the tree is already rooted, reject and exit unless ¢(z) lies below ¢(x)
in T or vice-versa and d(¢(z), ¢(2)) = D(x, z) - this step is skipped

(b) Else

i. d,=D(z,2) =1
A = LOA(8(2), 6(2)) = 6(x) in T
dy,, = d(§(x), An) =0
&y = d(B(2), M) = 1

€n = d,, — dy,, — d,, = 0 - another initializations

ii. If 0 < 0, reject and exit - this step is skipped

iii. If 0 = 0 and ¢(z) = A, reject and exit - the algorithm rejects the input at this step
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Although there exists an reconciliation for this input, the Algorithm 4.2 re-
jected it. We can notice that the algorithm failed to root the tree of the branch
between x and v. Another example is in Figure 4.2, which depicts a gene tree B
with only two leaves. Algorithm 1 maps them correctly, but the Algorithm 4.2 is
never called, and therefore B stayed unrooted, even if the root exists.

These two examples show that although Algorithm 4.2 is introduced with the
proof of the correctness in | |, it does not always work correctly. After closer
examination, we found out that the finding the root in gene trees causes the
problems. In Algorithm 4.2 a gene tree can be rooted only at two places - (6)(a)
and (7)(b)(iv). However these places do not cover all possibilities that can occur,

as our example demonstrates.

4.3 Our reconciliation algorithm

Based on the observation above, we have modified Algorithm 4.2 to work cor-
rectly according to our modified stronger definition of the isometric reconciliation

Definition 6. Our reconciliation algorithm consists of three steps:

e Mapping vertices from the gene tree into the species tree
e Rooting the gene tree

e Checking if the output represents a correct isometric reconciliation

Note that we have decoupled the mapping and rooting steps so that the

algorithm need to consider fewer special cases.

4.3.1 Modified algorithm

Algorithm 2 represents the modified algorithm Algorithm 1, and Algorithm 3
represents the modified algorithm Algorithm 4.2. The Algorithm 2 calls three
other algorithms Algorithm 3, Algorithm 4 and Algorithm 5 during processing
of one gene tree B. Algorithm 3 is called for each unmapped vertex x, and its
task is to map it correctly to the species tree. Once all vertices are mapped,
Algorithm 4 finds the root of B and maps it to the correct point in the species
trees. Finally, Algorithm 5 checks if the output fulfils the definition of an isometric

reconciliation.
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IS}

1: for all gene trees T; such that 1 <7 < N do

2 M«

3:  for all leaf nodes k in T; do

4: map k to a leaf ¢(k), such that ¢(k) is the genome to which & belongs
5: add k to M

6: end for

7:  while M has at least three tree nodes do

8: if u,v € M and u,v are connected to an unmapped node x in T; then
9: MapAtomTreeNode(x,u,v)

10: add x to M

11: remove u, v from M

12: end if

13:  end while

14:  RootGeneTree(B)

15:  CheckTheResults(T™,T;)

16: end for

Algorithm 3 MapGeneTreeNode(x, u, v)

Require: mapping of ¢(u) and ¢(v) have already been determined
: dy = D(x,u)
dy = D(z,v)
A= LCA(p(u),p(v)) in T
&, = d(¢(u), \)
&y = d(6(v). \
€:d1+d2—d/1—d/2
if d, > dy then
map z to ¢(z) at distance dy above ¢(v)
else
map z to ¢(z) at distance d; above ¢(u)
: end if

— =
—= O
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Algorithm 4 RootGeneTree(B)

for all edges(u,v) do

d = D(u,v)

A= LCA(¢(u), (v))
D(¢(v), A)

e=d—d|, —d,

1:

2

3

4:

o: d’2 =

6

7. if e<O0ord| +¢€/2>dthen

8 reject and exit

9:  elseif d>d|+d, or (\# ¢(u) and (A # ¢(v) )) then

10: place the root of B to a point rp at distance d} + €/2 from u at the
edge(u,v) and map it to a point ¢(rg) at distance €/2 above A

11:  end if

12: end for

13: if zero or multiple roots found or if root is placed to a node then

14:  reject and exit

15: end if

Algorithm 5 CheckTheResults(7*, B*)
1: for all edges(u,v) € B do

2:  check if the edge(u,v) satisfies the condition of isometric reconciliation
3:if (D(u,v) # D(p(u),d(v)) then
4: reject and exit

5. end if

6: = LCA(u,v)

T A= LOA(6(u), ¢(v))

8 if u ==~ then

9: if ¢(u) # A then
10: reject and exit
11: end if
12:  else if v == then
13: if ¢(v) # A then
14: reject and exit
15: end if
16:  end if

17: end for
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4.3.2 Algorithm proof

For the sake of simplicity, we consider that on the input we have only one unrooted
gene tree B and a species tree T (with exact branch lengths). In case of more
gene trees on the input, Algorithm 2 processes them sequentially one by one,
and therefore this simplification does not influence the correctness of the proof.
In order to show that our modified algorithm works correctly, we need to prove
two things. Firstly, if an isometric reconciliation exists for this input, then the
algorithm finds it. Secondly, if the algorithm finishes without rejection and roots

the gene tree, the result fulfils the definition of isometric reconciliation.

Claim 1. If an isometric reconciliation for the gene tree B and the species tree
T exists, then the first part of Algorithm 2 and Algorithm 3 correctly map all

vertices of B.
Proof 1.

Claim 1 assumes that the isometric reconciliation between the gene tree B and
the species tree T exits. Algorithm 2 starts with processing all leaves from B and
mapping them into correct place on 7. This step is correct, because all nodes
are mapped to genomes they belong to. Also these already processed vertices
are added to the set M. M represents mapped vertices that are connected to
candidate vertices for the next mapping. If the initial size of M equals 1, it means
that the B is a tree with one vertex and if the initial size of M equals 2, it means
that the B has only two vertices, both leaves. However, in both cases there is
no unmapped vertex. If the size of M is at least 3, then Algorithm 3 is called
repeatedly until the number of vertices in M reaches 2. Inside this loop, the
algorithm selects vertices u a v from M that are connected with an unmapped
vertex x. After Algorithm 3 maps x, x is added into M and u,v are removed
from M, because they are not connected with any unmapped vertex anymore. If
the size of M reaches 2, it means that the remaining two vertices in M have to be
connected each other and therefore there no other unmapped vertex in B and the
loop terminates. Now we focus on calling Algorithm 3. We prove by induction the
invariant that after ¢ calls of Algorithm 3, all already mapped vertices have been
mapped correctly and so far unmapped vertices form connected sub-graph of B.
As the basis for this induction, we use the 0th step, thus ¢ = 0, the algorithm

mapped all its leaves correctly as we showed above. Because B is a tree structure,
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after processing its leaves, all unprocessed nodes are all internal nodes of B and
therefore are connected each other and form a sub-graph of B. Therefore the
invariant holds for the basis. Now we want to prove that if the variant holds
after k — 1 calls of Algorithm 3, it holds also after k calls. In order to prove it,
we firstly need to show that if u and v have been already mapped correctly to
¢(u) and ¢(v), and = is an unmapped vertex that is connected to u and v, then
Algorithm 3 maps it correctly. We prove it by the consideration of all possibilities
where the true root rp is in B and then where x maps to 7' in the true isometric
reconciliation. In the total , there are 5 possibilities, where the root rg of B can

be:

e rp is in already processed sub-tree of u (Figure 4.4 a), b)):

In such a case, ¢(u) has to be an ancestor of ¢(x), and ¢(x) has to be an
ancestor of ¢(v). Therefore the A = LCA(¢p(u), p(v)) = ¢(u), and ¢(z) has
to be mapped somewhere on the path between ¢(u) and ¢(v). Because the
distances has to be preserved, we know that D(¢(v), ¢(x)) has to be equal
to D(v,x). Therefore we can certainly map ¢(x) at the distance D(v,z)
above ¢(v). Algorithm 3 will have d), = D(¢(v),A) = D(¢(v),p(u)) =
D(u,v) = dy +dy, thus d, > dy and therefore it will map z correctly in line
8.

e rp is in already processed sub-tree of v (Figure 4.4 c), d)):
It is a symmetric case to the case above, ¢(v) has to be an ancestor
of ¢(x), and ¢(x) has to be an ancestor of ¢(u). Therefore the A =
LCA(é(u), p(v)) = ¢(v), and ¢(z) has to be mapped somewhere on the
path between ¢(u) and ¢(v). Because the distances has to be preserved,
we know that D(¢(u), ¢(x)) has to be equal to D(u,z). Therefore we can
certainly map ¢(z) at the distance D(u,z) above ¢(u). Algorithm 3 will
have d, = D(¢(v),\) = D(¢(v), ¢p(v)) = 0, thus d;, < dy and therefore it

will map z correctly in line 10.

e rp is on edge between u and x (Figure 4.5 a)):
It means that ¢(z) is an ancestor of ¢(v), and we know the position of
LCA(¢(u),p(v)) = A. Then ¢(z) has to be mapped at one out of two

places:

a) on the path from ¢(v) to A including endpoints (Figure 4.5 b))
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b) on the path from A to ¢(r) including endpoints (Figure 4.5 c))

In both cases, ¢(x) has to be on the path between ¢(v) and ¢(rg) and also
the distances have to be preserved, i.e. we know that D(¢(v), ¢(x)) has
to be equal to D(v,z). Therefore we can again certainly map ¢(z) at the
distance D(v,x) above ¢(v). If case a) happens, Algorithm ?7algll) will
have d, = D(¢(v),\) > D(¢(v), ¢(x)) = D(x,v) = dy and therefore, d, >
dy, thus it will map z correctly in line 8. If case b) happens, Algorithm 3
will have d), = D(¢(v),\) < D(¢(v),d(x)) = D(x,v) = dy and therefore,

dy < dy and thus it will map x correctly in line 10.

rp is on edge between v and = (Figure 4.6 a)):
It is a symmetric case to the case above, it means that ¢(z) is an ancestor
of ¢(u), and we know the position of LC'A(¢p(u), ¢(v)) = A. Then ¢(x) has

to be mapped at one out of two places:

a) on the path from ¢(u) to A including endpoints (Figure 4.6 b))

b) on the path from A to ¢(r) including endpoints (Figure 4.6 ¢))

In both cases, ¢(z) has to be on the path between ¢(u) and ¢(rg) and also
the distances have to be preserved, i.e. we know that D(¢(u), ¢(x)) has to
be equal to D(u, x). Therefore we can again certainly map ¢(z) at the dis-
tance D(u,x) above ¢(u). Moreover D(¢(v), ¢(z)) > D(¢(v), \), therefore
in both cases, Algorithm 3 will have d, = D(¢(v),\) < D(o(v),p(x)) =

D(z,v) = dy and therefore, d, < dy, thus it will map x correctly in line 8.

rp is in somewhere else(Figure 4.7 a), b)):

It means that ¢(z) is an ancestor of both ¢(u) and ¢(v) and because the
distances has to be preserved, ¢(z) has to be mapped at the distance D(z, u)
above ¢(u) and also at the distance D(z,v) above ¢(v). In both cases
the results is the same. Because D(¢(v), ¢(z)) > D(¢(v),N), Algorithm 3
will have d} = D(¢(v), ) < D(¢(v),d(x)) = D(z,v) = dy and therefore,

dy < dy, thus it will map x correctly in line 8.

Because we covered all branches where the root rg of B can be, we can claim

that ¢(z) is mapped or at the distance D(u,z) above ¢(u) or at the distance
D(v,x) above ¢(v).
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a) | b) |
| ®0(K)
e @ ¢(u)
J ./.\/.\V /‘/\(p(x)\
o oo
c) ; d) |
|  Jol(9)
. o o(V)
u /.\'v 090"
// \\ // \|:|r /’SP(U) N\
// \\ // \\B // \\

Figure 4.4: Example where root rp of B can be a) The input gene tree B and rp
is sub-tree of u b) The input rooted species tree T' ¢) The input gene tree B and
rp is sub-tree of v d) The input rooted species tree T

By this, we have just proved that the x is mapped correctly. The second part
of the invariant, that after mapping x, the rest of unmapped vertices form the
connected sub-graph of B is easy to prove. Because B is a binary tree, x has to be
connected with 3 another vertices - with u,v and z. Because u,v have been already
processed, there are only two possibilities a) z has been processed as well or b)
z is still unmapped. If z has been processed, then thanks to induction we know
that x was the last unmapped vertex and therefore there are not any another
unmapped vertex, thus the invariant holds. If z has not been processed yet, it
has to be connected with other two vertices and because (thanks to induction)
before processing x, all unmapped vertices form connected sub-graph of B, after
mapping x this condition is still valid (because x was connected only with one
unmapped vertex. Thus we proved Claim 1.

Next part that is needed to prove is that we root an gene tree correctly. It is

stayed as Claim 2.

Claim 2. If an isometric reconciliation exists, Algorithm 4 roots the gene tree
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Figure 4.5: Example where root rg of B can be a) The input unrooted gene tree
B b) The input rooted species tree T' ¢) The input rooted species tree T'
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Figure 4.6: Example where root 7 of B can be a) The input unrooted gene tree
B b) The input rooted species tree T ¢) The input rooted species tree T

correctly.

Proof 2.
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Figure 4.7: Example where root rg of B can be a) The input unrooted gene tree
B b) The input rooted species tree T

The Algorithm 4 iterates over all edges in a unrooted gene tree B. Because
we assume that the isometric reconciliation exists, we can assume without loss
of generality, that the roof rp lies on edge with endpoints e and f. Let us
investigate an edge with endpoints m and n which does not contain the root.
In the correctly rooted version of B, either m is an ancestor of n or n is an
ancestor of m. Thanks to the isometric reconciliation, this relationship is sat-
isfied also after their mapping to the species tree T and ¢(m) is an ancestor of
¢(n) or ¢(m) is an ancestor of ¢(n). However then A\ = LCA(p(m), p(n)) is
¢(m) itself or ¢(n) itself. Moreover we have to preserve distances and there-
fore D(m,n) = D(¢(m),p(n)) = D(¢(m),A) + D(p(n), A) and therefore ¢ =
D(m,n) — D(¢(m), ) — D(¢(n), A) = 0. Thus Algorithm 4 will not root the tree
at this edge (because condition at line 9 is not satisfied), which is correct.

Now we investigate the edge (e, f) which contains the root rp. Let us mark
dy = D(e,rp) and dy = D(f,rp), thus d = dy + dy. Because root rp lies between
e and f, they are both descendants of rg. But again thanks to the isometric recon-
ciliation, ¢(e), ¢(f) and ¢(rp) have to satisfy this relationship as well. Therefore
¢(rp) has to be mapped above ¢(e) and above ¢(f) as well. However, that means
that it has to be mapped at ¢(rp) above A = LC' A(¢(e), ¢(f)), because otherwise
¢(e) or ¢(f) would not be the descendant of ¢(rp). Let us mark this distance as
D(¢(rp), A). Based on this and a fact, that distances have to be preserved, we can
derive that d| = D(phi(e), \) < D(phi(e),p(rp)) = D(e,) = di, thus d} < d;.
Similarly, dy = D(phi(f),\) < D(phi(f),¢(rg)) = D(f,rp) = da, thus djy < ds.
Therefore we have d = dy +dy > d} +dy. From e = d—d| —d, = d— (d} + dj) we
have d — ¢ = d} + d, < d and finally € > 0. Moreover from the fact, that ¢(rg)

is above A\ and the fact that distances have to be preserved, we have d; + dy =
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D(e,rp) + D(f,r5) = D(¢(e), A) + DA, ¢(rp)) + D(¢(f), A) + D(A, ¢(rp)) and
e=d—d|—dy, = (di +ds) — (d} +dj). If we combine those equations, we get ¢ =
D(é(e), )+ DA, o(rp)) + D(6(f), A)+ DA, (rp) = (D(6(e), A) + D(@(f), A) =
2% D(p(f), N = €. Thus D(¢(f),\) = €/2. Therefore algorithm correctly roots

the tree at this edge (because condition at line 9 is satisfied) which is correct.

Claim 3. If the algorithm finishes without rejection and roots the gene tree, the

result reconciled tree T™ fulfils the definition of isometric reconciliation.
Proof 3.

Because the last step of Algorithm 2 is running of Algorithm 5 that checks if
the conditions of the isometric reconciliation are fulfilled, there cannot occur a
situation where the algorithm finishes without rejection, roots the gene tree and

the output does not fulfil the definition of the isometric reconciliation.

Claim 4. The time complexity of this algorithm is T = O((n +m)?), where n is
the number of vertices in a processed gene tree and m is the number of vertices

m a species tree.
Proof 4.

It is known that the finding the last common ancestor in a tree with n vertices
can be done in T'= O(1) if the tree was preprocessed before. This preprocessing
takes T' = O(n) [co00]. Although each vertex is mapped only once, in order to
find the correct place for mapping, we need to traversal the species tree. Therefore
the upper-bound complexity is T = O((n+m)* (n+m)) = O((m+n)?), where n
is the number of vertices in a processed gene tree and m is the number of vertices
in a species tree. Nevertheless we assume that by using the appropriate data

structures, there is a space for improving this complexity.



Chapter 5

Conclusion

Our work consist of two parts. In the first part we explained what a reconciliation
of gene trees is and how it works. Then we described the different approaches to
reconciliation, starting with processing rooted binary gene and species trees and
ended up with reconciliation of arbitrary gene and species trees. We considered
only basic evolutionary events: speciation, gene duplication and gene loss. More
complicated models taking into account other evolutionary events as horizon-
tal gene transfer, lineage sorting or deep coalescence were skipped due to their
complexity.

In the second part, we focused on reconciliation algorithm used in the work
of Ma at al. | |. Firstly, we showed that their definition of an isometric
reconciliation is not strong enough and we proposed stronger definition. Secondly,
we showed that their reconciliation algorithm does not work correctly. Therefore
we proposed our reconciliation algorithm, that solves the same problem, with
the proof of its correctness. Our algorithm has polynomial-time complexity, but

there is an open space for its further improvements.
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