
Department of Computer Science

Faculty of Mathematics, Physics and Informatics

Comenius University, Bratislava

Quantum Error
Correcting Codes

(Diploma thesis)

Peter Májek

Thesis advisor: doc. RNDr. Daniel Olejár, PhD. Bratislava, 2005

iii

I hereby declare that I worked on this diploma thesis alone

using only the referenced literature.

. .

ACKNOWLEDGEMENTS

At first place I would like to thank my advisor Daniel Olejár for his guidance and

many useful advices. I also would like to thank Michal Sedlák and Ján Bouda for

several stimulating conversations and their comments. A special thanks goes to Daniel

Gottesman and Andrew M. Steane, who have promptly reacted to my inquiries. I thank

also to my thesis opponent Peter Štelmachovič, who has contributed with many relevant

remarks. Last but not least, I thank to my whole family, which have always encouraged

and supported me during my university study especially during the time I have worked

on the thesis.

ABSTRACT

This thesis deals with quantum error correcting codes. In first two chapters necessary

introduction to quantum computation and classical error correction is presented. Pre-

vious results on construction of quantum error correcting codes are presented in the

third and fourth chapter. Mainly Calderbank-Steane-Shor (CSS) codes and stabilizer

codes are discussed together with the introduction to coding, decoding and recovery

circuits’ construction.

Second part of the thesis presents our own results. We have concentrated our effort

on the exploration of new CSS codes and examination of their usability. CSS codes

are presented as a wide class of quantum codes in literature, but conditions for their

practical construction are quite complicated. Well known CSS codes are Steane code

correcting errors on a single qubit and [[23,1,7]] code derived from Golay code (correcting

three errors). However, no CSS code encoding one logical qubit and correcting errors on

up to two qubits is established in the field of quantum error correction. Such code would

need to use at least seventeen encoding qubits. We present probabilistic algorithm

searching for CSS codes. We used this algorithm and found [[19,1,5]] CSS code. It

remains an open question whether 17 or 18 qubits will suffice to construct a CSS code

correcting two arbitrary errors.

In last two chapters of the thesis results of numerical and theoretical analysis of

found [[19,1,5]] code are shown. The concept of fault tolerant quantum computation

is used in the analysis. Found [[19,1,5]] code is compared to Steane code. It follows

that [[19,1,5]] CSS code provides better results than Steane code, if fault rate of used

quantum gates is below 2, 5.10−4. We have optimized fault tolerant error correction

schema for [[19,1,5]] code using the analysis and numerical simulations of several poten-

tial architectures. Probability that [[19,1,5]] code would fail to protect encoded qubit

is shown (theoretically and also experimentally) to be O(ξ3), where ξ is probability of

single gate failure. In the thesis also coding, decoding and recovery circuits for found

[[19,1,5]] code are designed.

ABSTRACT

Táto práca pojednáva o kvantových samoopravných kódoch. V prvých dvoch kapitolách

je prezentovaný základný úvod do problematiky kvantového poč́ıtania a klasických

samoopravných kódov. Výsledky predchádzajúcich prác a publikácii pojednávajúcich

o tvorbe kvantových samoopravných kódov sú zhrnuté v tretej a štvrtej kapitole. Po-

zornost’ je upriamená hlavne na Calderbank-Steane-Shor-ové kódy (CSS) a stabilizačné

kódy, vrátane konštrukcie im prisluchajúcich obvodov.

Druhá čast’ práce prezentuje naše vlastné výsledky. Naša práca bola postupne za-

meraná hlavne na hl’adanie nových CSS kódov a analýzu ich opravovaćıch schopnost́ı.

CSS kódy sú śıce v literatúre prezentované ako široká trieda kvantových kódov, no pod-

mienky na ich konštrukciu sú značne netriviálne. Pomerne známe CSS kódy sú Steanov

kód opravujúci l’ubovolne chyby na jednom qubite a [[23,1,7]] kód odvodený z Golay-

ovho kódu, opravujúci tri chyby. Avšak žiaden CSS kód opravujúci chyby na dvoch

qubitoch nie je udomácnený v oblasti kvantového kódovania. Dolný odhad na počet

kódujúcich qubitov potrebných na opravu dvoch chýb je sedemnást’ qubitov. V tretej

kapitole prezentujeme pravdepodobnostný algoritmus, ktorým sme sa pokúsili nájst’

CSS kód opravujúci dve chyby a použivajúci čo najmenej kodovaćıch qubitov. Pomo-

cou tohto algoritmu sa nám podarilo nájst’ [[19,1,5]] kód. Existencia kódu, ktorý by

použ́ıval sedemnást’ alebo osemnást’ kódujúcich qubitov ostáva otvoreným problémom.

V posledných dvoch kapitolách prezentujeme výsledky teoretických analýz a num-

erických simulácii nájdeného [[19,1,5]] kódu. Všetky analýzy sú vykonané za použitia

fault-tolerant schém pre kvantové poč́ıtanie. Nájdený [[19,1,5]] kód je porovnaný so

známym Steanovym kódom. Z prezentovaných analýz vyplýva, že nájdený kód ma

pravdepodobnost’ zlyhania O(ξ3), kde ξ je pravdepodobnost’ zlyhania jednotlivého

hradla v kvantovom obvode. Za použitia teoretických odhadov a numerických simulácii

sme zoptimalizovali fault-tolerant schému pre nájdený [[19,1,5]] kód. Ak je chybovost’

použitých hradiel menšia ako 2, 5.10−4, potom [[19,1,5]] kód preukazuje lepšie správanie

ako Steanov kód. V práci sú tiež prezentované kódovacie, dekódovacie a opravné kvan-

tové obvody navrhnuté pre nájdený [[19,1,5]] kód.

LIST OF TABLES

3.1 Probabilistic algorithm searching for [n,k,5] classical code. 35

3.2 Parity check matrix H1 of found [[19,1,5]] code. 37

3.3 Parity check matrix H⊥
2 of found [[19,1,5]] code. 37

4.1 The generator of Shor code stabilizer. 41

4.2 Stabilizer generators and operators on logical qubit for five qubit code. 47

4.3 Stabilizer generators and operators on logical qubit for five qubit code

in standard form. 48

4.4 Stabilizer generators and operators on logical qubit for [[19,1,5]] code. . 48

6.1 Results of numerical simulations of QC consisting of n = 100 qubits. . . 73

LIST OF FIGURES

1.1 Experiment a. 2

1.2 Experiment b. 3

1.3 Circuit representation for CNOT, X, Z,Y and Hadamard gate. 12

3.1 Coding circuit for encoding (3.6). 25

3.2 Circuit correcting X errors of qubit encoded in [[19,1,5]] code. 38

3.3 Circuit correcting Z errors of qubit encoded in [[19,1,5]] code. 39

4.1 Encoding circuit for [[19,1,5]] code. 52

5.1 Detection of the first syndrome bit of Steane code; a) Incorrect syndrome

detection destroying encoded state; b) correct fault tolerant syndrome bit

detection. 55

5.2 Fault tolerant syndrome bit detection for Steane code. 57

5.3 Preparation circuit with verification part for the ancilla consisting of five

qubits: The verification is more complex and ensures that three or more

X errors occur with probability O(ξ3). 58

6.1 Comparison of P(7,1) and P(19,2). 63

6.2 Steane Code: Function 9
14

pS(10
−3, nl) is compared with data obtained

by computer simulation for nl ∈ {1, . . . , 80}. 65

6.3 [[19,1,5]] code: Comparison of 8
15
p19(10

−4, nl) and data obtained from nu-

merical simulations for single syndrome detection and multiple syndrome

detection. 70

6.4 [[19,1,5]] code: Probability of code failure as a function of ξ. Comparison

of 8
15
p19(ξ, 15) and data obtained from numerical simulations for single

syndrome detection mode. 71

6.5 Probability of error on qubit protected with Steane code and [[19,1,5]]

code obtained with Monte Carlo simulations. 72

CONTENTS

1. Introduction to Quantum Computing . 1

1.1 Bits versus Qubits . 1

1.2 Feasibility of Quantum Computers . 3

1.3 The Potential and the Usage of Quantum Computers 4

1.4 Basic Operations . 5

1.5 Quantum Registers . 7

1.6 Hilbert Spaces . 9

1.6.1 Quantum Operators . 10

1.6.2 General Quantum Measurements 12

1.7 Density Operators . 13

2. Error Correcting Codes . 16

2.1 Preliminaries . 16

2.2 Linear Codes . 17

2.2.1 Coding and Decoding . 18

2.2.2 Properties of Linear Codes . 20

2.2.3 Codes in Systematic Form . 20

2.3 Hamming Codes . 21

3. Basics of Quantum Error Correction (QEC) 22

3.1 Quantum Noise and Quantum Operations 23

3.1.1 Operator Sum Representation 23

3.2 Quantum Codes . 24

3.2.1 The Shor Code . 26

3.2.2 Calderbank-Shor-Steane Codes 29

3.2.3 CSS Code Correcting One Error 32

3.3 New CSS Codes . 33

3.3.1 Searching for the Code . 34

3.4 Syndrome Measurement Circuits . 37

x Contents

4. Stabilizer codes . 40

4.1 The Formalism of Stabilizer Codes . 40

4.2 Generators of Stabilizer Codes . 42

4.2.1 Quantum Dynamics Using Stabilizer Formalism 43

4.3 Correcting Errors in Stabilizer Codes 45

4.4 Construction of Stabilizer Codes . 45

4.4.1 Standard Form of Stabilizer Codes 45

4.4.2 Logical Operators for Stabilizer Codes 46

4.4.3 Stabilizers for CSS Codes . 47

4.5 Encoding and Decoding Stabilizer Codes 50

5. Fault-Tolerant Quantum Computation . 53

5.1 The Rules of Fault-Tolerant Computation 54

5.2 Fault Tolerant Error Detection of CSS Codes 56

5.2.1 Fault Tolerant Syndrome Bit Detection 56

5.2.2 Preparation of cat State . 57

5.2.3 Ensuring Correct Syndrome Detection 58

6. Quantum Codes Analysis . 61

6.1 Noise Model . 61

6.2 Comparison of Quantum Codes - Error Free Correction Procedure . . . 62

6.3 Imperfect Error Detection, Coding and Decoding 63

6.3.1 Theoretical Analysis . 64

6.3.2 Model of Quantum Computer and Numerical Analysis 68

6.3.3 Comparison of Steane Code and [[19,1,5]] Code 70

6.4 Summary . 73

Appendix 75

A. Glossary . 77

B. Details from Quantum Computation . 79

B.1 Details from Linear Algebra . 79

B.2 Proofs . 79

1. INTRODUCTION TO QUANTUM COMPUTING

In this chapter we shortly present preliminaries of quantum computing (QC) necessary

to understand the issue of quantum error correcting codes. The effort is paid to depict

crucial differences between classical computing and QC. To fully understand details of

QC, readers are encouraged to read one of books [1, 2], which provide detailed overview

of wide range of QC topics. Readers familiar with QC may skip this preliminary

chapter.

1.1 Bits versus Qubits

Since the early ideas of Charles Babbage (1791-1871) [3] and eventual creation of the

first computer by German engineer Konrad Zuse in 1941, the basic concept of computers

was not changed. Surprisingly, the high-speed modern computers are fundamentally no

different from their 20-ton ancestors. Although computers have become much smaller

and considerably faster in performing their tasks, the tasks are still the same: to ma-

nipulate and interpret an encoding of binary bits into useful computational results.

A fundamental unit of information in classical computers is a bit. Bit can exist in two

distinct states either logical 0 or logical 1. The choice of binary bits naturally comes from

classical logic and the values 1 and 0 correspond to logical true and false respectively.

We know also more-valued logical systems as fuzzy logic, but the architecture of digital

systems is usually based on classical two-valued logic. Each classical bit in computer

is physically represented by a macroscopic physical system, such as the magnetization

on a hard disk or the charge on a capacitor in the memory. A document, for instance,

comprised of n-characters stored on the hard drive of a typical computer is accordingly

described by a sequence of 8n zeros and ones. In classical algorithm we can read any

part of the record without disturbing it. The data may be copied several times, without

disrupting the initial data. We can manipulate stored bits via arbitrary Boolean logic

gates. In other words, the classical bits are fully accessible to the computation.

Herein lie the key differences between classical computer and a quantum computer.

Where a classical computer obeys the well-understood laws of classical physics, a quan-

tum computer behaves according to phenomena of quantum mechanics. In a quantum

2 1. Introduction to Quantum Computing

computer, the fundamental unit of information is called a quantum bit or shortened

qubit. In parallel to classical bit, qubit can acquire two different states |0〉 and |1〉1.
These two values constitute a standard base for the qubit. Moreover, qubit can ac-

quire any complex superposition of these two basic states, namely α |0〉 + β |1〉, where

α and β are complex numbers. This qubit property arises as a direct consequence of

the laws of quantum mechanics which radically differ from the laws of classical physics.

Though mathematical theory allows arbitrary coefficients α, β, usually only normalized

combinations are considered, what means that

|α|2 + |β|2 = 1. (1.1)

The superposition phenomenon may seem counterintuitive because our every day

experiences are governed by classical physics, not quantum mechanics – which rules the

world at the atomic level. This strange concept can be explained through an experiment.

Consider an experiment on figure 1.1:

Fig. 1.1: Experiment a.

Here a light source emits a photon along a path towards a half-silvered mirror.

This mirror splits the light, reflecting half of it vertically toward a detector A and

transmitting other half toward a detector B. A photon, however, is a single quantum of

energy and cannot be split, so it is detected with equal probability at either detector A

or B. It can be shown that the photon does not split by verifying that if one detector

registers a signal, then second detector does not. It suggests that any given photon

travels either vertically or horizontally, randomly choosing between the two paths at

the beam splitter. However, quantum mechanics predicts that the photon actually

travels both paths simultaneously, collapsing into one path only after measurement in

detectors A and B! This is more clearly demonstrated by more elaborate experiment

shown on figure 1.2.

In this experiment, the photon first encounters a half-silvered mirror, then a fully

silvered mirror, and finally another half-silvered mirror before reaching a detector A or

1 Notation like ’| 〉’ is called the Dirac notation.

1.2. Feasibility of Quantum Computers 3

Fig. 1.2: Experiment b.

B. If we hypothesize a theory, that a photon randomly chooses a path after encountering

each beam splitter, then both detectors A and B should register signals 50% of time.

However, experiment shows that in reality the detector A always registers the photon,

and never the detector B! The only conceivable conclusion is that every particular

photon is somehow traveling both paths simultaneously, creating interference at the

point of intersection that destroyed the possibility of the signal reaching B. This is

known as quantum interference and results from the superposition of the possible photon

states (potential paths). The difference from classical wave inference is that the photon

is interfering with its own possible states and not with other photon. If, for example, we

would put an obstacle to one path of the photons, both detectors would register signal

in 50% of times. Consider that we would put some kind of device to the one path witch

would try to detect if the photon is traveling that way but let it pass through. Even

this slight dissimilarity cause that our measurement destroys photon superposition from

both ways and place it just to one of them which will result again that detector B would

register a photon 50% of times. This unique characteristic makes the current research

in QC not merely a continuation of previous ideas about a computer, but rather an

entirely new branch of thought.

1.2 Feasibility of Quantum Computers

The field of QC has made numerous promising advancements since its conception,

including the building of five-qubit quantum computer [4] capable of some simple arith-

metic. However, a few large obstacles still remain that prevent us from building a real

quantum computer. Among these difficulties, error correction, decoherence, and hard-

ware architecture are probably the most crucial issues. Decoherence is a tendency of

a quantum system (qubits) to decay from a given initial state into an incoherent state

as the system interacts with its surrounding environment. These interactions between

4 1. Introduction to Quantum Computing

the environment and qubits seem to be unavoidable, and induce the breakdown of in-

formation stored in the quantum computer, and thus introduce errors in computation.

Before any significant computation could be performed the principles of error correc-

tion have to be involved, unless the new decoherence-free quantum technology would

be invented. The theoretical backgrounds of error correcting codes in quantum systems

are currently quite sufficient. In 1998 [5], researches at Los Alamos National Labora-

tory and MIT led by Raymond Laflamme managed to spread a single bit of quantum

information (qubit) across three nuclear spins in each molecule of a liquid solution of

alanine or trichloroethylene molecules. They accomplished this using the techniques

of nuclear magnetic resonance (NMR). This milestone has provided argument against

skeptics, and hope for believers. More information about error correction techniques is

provided in chapter 3. Currently, research of quantum error correction continues mainly

in groups at Caltech, MIT and Los Alamos.

Current state of the theory of QC is much further than experimental realization of

quantum computation. QC hardware is, still in its infancy and a lot of theoretical re-

sults are waiting for real experiments. NMR has become the most popular component in

quantum hardware architecture, since it provides several significant experimental results

(i.e. [4]). Only within the past years, a group from Los Alamos National Laboratory

and MIT constructed the first experimental demonstrations of a quantum computer

using NMR technology. Physicists came also with some other possible representations

of qubit. For example:

• the ground and exited states of ions stored in ion trap [6, 7]

• polarizations of photons [8]

• nuclear spin states (as of hydrogen) [9]

Though these devices have mild success in performing experiments, the technologies

each have serious limitations. Ion trap computers are limited in speed by the vibration

frequency of the modes in the trap. NMR devices have an exponential attenuation

of signal to noise as the number of qubits in a system increases. Cavity Quantum

Electrodynamics (QED) [10] is slightly more promising; however, it still has only been

demonstrated with a few qubits. The future of quantum computer architecture will

probably be different from what we know today; however, the current research has

helped to provide insight to obstacles that must be broken in future devices.

1.3 The Potential and the Usage of Quantum Computers

The potential of QC is in possible high parallelism. Quantum parallelism is a funda-

mental feature of majority of quantum algorithms. Quantum parallelism would allow

1.4. Basic Operations 5

quantum computers to evaluate a function f(x) for many different values of x simulta-

neously. The actual computational power of quantum computers is still open problem.

There are three classes of quantum algorithms which provide speedup over best known

classical algorithms. The first class of algorithms is based on Quantum Fourier trans-

form (QFT). Shor’s polynomial2 algorithms for prime factoring and discrete logarithm

[11] are based on QFT. The second class of algorithms are quantum search algorithms,

which need O(
√
N) operations to find a specific element in the unsorted set of N el-

ements. The classical algorithms clearly need O(N) operations. The last known class

of algorithms, where significant speedup is provided is quantum simulation, whereby a

quantum computer is used to simulate quantum systems.

1.4 Basic Operations

Significant difference between classical and quantum computation is in performable

operations over single bit or qubit. On the single bit particular Boolean function f :

{0, 1} → {0, 1} can be performed. The case with qubit is more complicated. First of all,

the internal state of the qubit is not accessible to the algorithm absolutely as state of

bits are in the classical case. To get an information about the data stored in the qubit,

measurement of that qubit must be hold. The formal definition of a measurement will

be given later. There is no way to extract exact values of coefficients α and β from

equation (1.1) about single qubit. One of possible measurements that could be held on

single qubit is measurement in standard basis set, which outcome is either |0〉 or |1〉.
When the qubit |ψ〉 = α |0〉+ β |1〉 is measured in standard basis set, the measurement

outcome |0〉 occurs with the probability p(|0〉) = |α|2 and outcome |1〉 occurs with the

probability p(|1〉) = |β|2 . From equation (1.1) follows that p(|0〉) + p(|1〉) sums to one.

Moreover, after the measurement the initial state |ψ〉 collapses to the measured state

and initial superposition α |0〉+ β |1〉 is definitely lost.

One could think that it is possible to store arbitrary amount of information in single

qubit by encoding that information to the binary representation of α or β. However

it is true, this kind of information cannot be retrieved from the single qubit. Only

possible way how to get estimations of α and β in superposition formula for the qubit

is to design a source which produces sufficiently enough qubits in the same state. By

measuring sufficient amount of produced qubits we can get estimations of |α|2 and |β|2.
The measurement or even whole representation of computation can be carried also

in different basis sets than in already mentioned standard basis set. Very useful basis

2 The best known classical algorithms are exponential from the number of input’s bits.

6 1. Introduction to Quantum Computing

set is the dual base {|0′〉 , |1′〉}.

|0′〉 =
1√
2

(|0〉+ |1〉) |1′〉 =
1√
2

(|0〉 − |1〉) (1.2)

Example 1.1. Suppose we prepare a qubit in the state |ψ〉 = |1〉. Then we measure

this qubit in dual base. What are the probabilities of both possible outcomes |0′〉 and

|1′〉?

To find out probabilities of particular outcomes we need to express |ψ〉 in components

of dual basis set and find out the complex coefficients in the expression:

|ψ〉 = |1〉 =
1√
2

1√
2
(|0〉+ |1〉)− 1√

2

1√
2
(|0〉 − |1〉) =

1√
2
|0′〉 − 1√

2
|1′〉

That means, that both results |0′〉, |1′〉 occur with the same probability | ± 1√
2
|2 = 0.5.

Remark 1.2. Notice that successive measurements of single qubit in standard base

produce the same results3: Without lost of generality, suppose that first measurement

outcome was |0〉. So the qubit has collapsed to state |0〉 = 1 |0〉 + 0 |1〉. Additional

measurement will therefore result in state |0〉 with probability P (|0〉) = |1|2 = 1.

The other actions we can perform (beside the measurements) on quantum systems

(qubits) are application of operators. Application of operator U on qubit |ψ〉 changes

the state of the qubit to the state U(|ψ〉). The operators we are able to perform are

not arbitrary. For further discussion is useful column notation of a qubit. The qubit

|ψ〉 = α |0〉 + β |1〉 can be represented as a column vector

(
α

β

)
. It follows from the

principles of quantum mechanics that only linear operators describe evolutions of closed

quantum systems4. Consider an operator U which action on |0〉 and |1〉 is

U(|0〉) = |ψ0〉 , U(|1〉) = |ψ1〉 , (1.3)

then from linearity of U we obtain the formula

U(α |0〉+ β |1〉) = α |ψ0〉+ β |ψ1〉 . (1.4)

Therefore U can be represented by a 2×2 matrix with columns corresponding to column

notations of |ψ0〉 and |ψ1〉. The impact of operator U on qubit |ψ〉 can be expressed

by product of matrix representation of U and vector representation of the qubit |ψ〉.
3 We suppose that the second measurement is held immediately after the first one and thus the

qubit does not have a time to evolve spontaneously between the measurements.
4 Closed quantum system is a system, that does not interact with the surrounding environment. It

is not easy task to isolate a quantum system, there is lot of unwanted interactions which cause the

decoherence to the computation

1.5. Quantum Registers 7

But not every 2× 2 matrix corresponds to an operator from the real world. Necessary

and sufficient condition for each operator U , to be applicable on a qubit is: If qubit in

normalized state |ψ〉 = α |0〉 + β |1〉 enters the operator U , than the outcome U (|ψ〉)
has to be normalized too. Otherwise we would get to the states which probability

distribution does not sum to one. The notation U |ψ〉 is usually used in quantum

mechanics as a simplification of U (|ψ〉), and we will use this notation in the reminder

of the thesis.

Theorem 1.3. Linear operator acting on single qubit fulfill normalization preserving

condition if and only if U †U = I, where U † is adjoint of U (obtained by transposing

and then complex conjugating U), and I is the 2× 2 identity matrix.

Proof of theorem 1.3 is not so complicated, but rather technical. Interested readers

can found it in the appendix.

Matrices and corresponding operators which satisfy condition U †U = I are called

unitary. The only possible actions performable on a single qubit are measurements and

transformations performed by unitary operators. Some of the most important single

qubit operators are Pauli operators:

X ≡

[
0 1

1 0

]
; Y ≡

[
0 −i
i 0

]
; Z ≡

[
1 0

0 −1

]
. (1.5)

It can be easily shown that every single qubit operator U can be expressed as a super-

position of Pauli operators and identity operator:

U = uII + uxX + uyY + uZZ, uI , uX , uY , uZ ∈ C. (1.6)

As will be shown later, this property is crucial for correcting arbitrary errors on quan-

tum systems. Other single quantum gate, that will play important part in quantum

computations is Hadamard gate:

H ≡ 1√
2

[
1 1

1 −1

]
. (1.7)

Its effect may be seen as transformation from dual basis set to standard basis set and

wise versa.

1.5 Quantum Registers

Let us return back to the classical computation. For more convenient computations over

multiple bits computer scientists have introduced the concept of registers. An n−bit

8 1. Introduction to Quantum Computing

register is a sequence of n bits, which can be manipulated with more sophisticated

operations. Particular n-bit register can be represented by a binary vector of length n

or as n-bit number. Consequently, the register can be in 2n different states. In other

words, n−bit register can be represented by elements from n-dimensional vector space

over field Z2.

We shall use registers in QC, too. The basic concept is the same as in the classical

case. An n−qubit register is just a name for the sequence of n qubits. Such q-register

has 2n different base states. But again as in the case of single qubit, any normalized

linear superposition5 of these 2n base states can be in q-register.

Example 1.4. In general, 2−qubit register can be in state:

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 , αij ∈ C,

where normalization condition holds |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. The column

notation of two-qubit register is a column vector (α00, α01, α10,α01)
T .

The state of n−qubit register can be represented by 2n dimensional complex vector

space. These vector spaces with inner product are called Hilbert spaces. The significant

difference between classical registers and q-registers is in entanglement. In a classical

register are all its bits independent, we can read or manipulate each bit without any

inference to other bits. In q-registers the situation may be more complicated. Consider

a 3-qubit register in state

|ψ3〉 =
1√
2
(|001〉+ |111〉) =

1√
2
(|00〉+ |11〉)⊗ |1〉 . (1.8)

The operator ⊗ in (1.8) is called tensor product. The tensor product is a way of putting

vector spaces together to form larger vector spaces. The notation |111〉 is shorter form

of exact notation: |1〉 ⊗ |1〉 ⊗ |1〉. The formal definition of tensor product can be found

in appendix in (B.1)-(B.3).

We can see that the third qubit of |ψ3〉 is in state |1〉. Since |ψ3〉 cannot be rewritten

in the form 1√
2
|a1〉 ⊗ (|a2a3〉 + |b2b3〉), we cannot say in what state is the first qubit.

The first and second qubits are entangled and we cannot get the full description of one

of them without mentioning also the other. Partial description of such qubits could be

given by formalism of density operators (see section 1.7). More about entangled qubits

and entanglement can be found in [12].

5 With coefficients from complex numbers.

1.6. Hilbert Spaces 9

1.6 Hilbert Spaces

Hilbert spaces provide mathematical apparatus suitable for description and formalisa-

tion of QC operations.

Definition 1.5. The Hilbert space H is the vector space with complex inner product

such that each Cauchy sequence of vectors in H converges.

A function (·, ·) from H×H to C is an inner product if it satisfies the requirements

that:

1. (·, ·) is linear in the second argument,(
|v〉 ,

∑
i

λi |wi〉

)
=
∑
i

λi (|v〉 , |wi〉) . (1.9)

2. (|v〉 , |w〉) = (|w〉 , |v〉)∗

3. (|v〉 , |v〉) ≥ 0 with equality if and only if |v〉 = 0.

Let us return to the example 1.4 from previous section. To the 2−qubit register

corresponds Hilbert space H4 with vector space basis:

|u1〉 = |00〉 , |u2〉 = |01〉 , |u3〉 = |10〉 , |u4〉 = |11〉 . (1.10)

So every single vector from H4 can be written as |v〉 =
4∑
i=1

αi |ui〉 , αi ∈ C. The possible

way how to define inner product over H4 is(
4∑
i=1

αi |ui〉 ,
4∑
j=1

βj |uj〉

)
=

4∑
i=1

α∗iβi. (1.11)

Of course, this is not the only way how to define inner product. The inner product

express how are two vectors (states) in Hilbert space similar. Actually, vectors |v〉
and |w〉 are not perfectly recognizable by any measurement, unless (|v〉 , |w〉) = 0. The

Gram-Schmidt procedure tells us that there always exists orthonormal basis set for each

vector space. The elements of orthonormal basis set are therefore discernible. Usual

assumption is that 2n-dimensional Hilbert space H was chosen in such a way, that vec-

tors |0〉 , |1〉 , . . . , |2n − 1〉 are mutually orthogonal. The standard quantum mechanics

notation for inner product (|v〉 , |w〉) is 〈v|w〉. We will use this notation in the remainder

of the thesis.

Another concept of Hilbert space formalism used in quantum computation is the

outer product. It is useful to represent linear operators using concept of inner product.

10 1. Introduction to Quantum Computing

Suppose |v〉 and |w〉 are vectors in Hilbert space H. We define |v〉 〈w| to be the linear

operator on H. The action of operator |v〉 〈w| on particular vector |u〉 ∈ H is defined

as

(|w〉 〈v|) (|u〉) ≡ |w〉 〈v|u〉 = 〈v|u〉 |w〉 . (1.12)

1.6.1 Quantum Operators

The basic ideas about operations on single qubit were given in part 1.4. Now we propose

more formal and complex definitions for the case of more dimensional quantum systems

based on formalism of Hilbert spaces. For every closed quantum system there exists

a corresponding Hilbert space, which dimension is 2number of particles. States of the

system correspond to the normalized vectors from that Hilbert space.

Definition 1.6. Let H be a Hilbert space and A be an arbitrary linear operator on H.

If for operator B and all vectors |v〉, |w〉 ∈ H holds

(|v〉 , A |w〉) = (B |v〉 , |w〉), (1.13)

then operator B is called adjoint or Hermitian conjugate of the operator A.

Lemma 1.7. Let H be finite dimensional Hilbert space. There exists unique Hermitian

conjugate operator A† for every linear operator A on H.

Proof of lemma 1.7 is given in appendix.

Definition 1.8. Let U be an arbitrary operator on Hilbert space H. Then U is called

unitary, if U †U = I, where I denotes identity6 operator.

It follows from the same principle as in single qubit case, that only unitary operators

may be performed on closed quantum systems. Measurements have slightly different

character since they are not operations on closed system, but involve interactions with

system used for the measurements.

Definition 1.9. The operator A satisfying the identity A† = A is called Hermitian.

Definition 1.10. Let H be a Hilbert space, then the operator P : H → H is called

projection operator if it satisfies

P = P † (1.14)

P = P 2. (1.15)

6 I |v〉 = |v〉 for all |v〉 ∈ H

1.6. Hilbert Spaces 11

Definition 1.11. Let H be a Hilbert space, then the operator M : H → H is positive

if for all |ψ〉 ∈ H, 〈ψ|M |ψ〉 ≥ 0. The notation is M ≥ 0.

There is plenty of unitary and hermitian operators. One of the most useful unitary

operators in QC are controlled operators. The controlled operators have two different

inputs: control qubits and target qubits. The effect is following: If all control qubits

are |1〉, than desired operator is applied to target qubits. The prototypical controlled

operation is controlled-NOT (CNOT). If CNOT’s control qubit is |1〉 then X operator

is applied to its target qubit. Thus the action of CNOT in computational basis set is

given by |c〉 |t〉 CNOT→ |c〉 |t⊕ c〉7 and its matrix representation is


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (1.16)

Example 1.12. Application of CNOT to so known EPR pair 1√
2
(|00〉+ |11〉) will result

in disentangled state |0′〉 |0〉.

In order to have a quantum computer it is important to be able to perform all

unitary operators with arbitrary precision using some small basic set of physically im-

plementable unitary operators. In classical computers NAND itself comprise an gate

from which all other Boolean functions may be constructed. In quantum case the prob-

lem is more complicated. There are several known universal sets of quantum gates [13],

but figuring out how to get a given operator with the minimum number of basic gates

is still a hard problem of quantum algorithm design. For instance, CNOT gate together

with all single qubit gates comprise an universal set.

The algorithms of QC are often represented by quantum circuits. The semantics of

quantum circuit is similar to the semantics of classical circuits. Variables (or qubits)

correspond to particular wires. Wires may enter a gate (usually from the left side)

and the output of the gate is pushed to the output wires of the gate. Several gates

may be composed together and connected with wires to represent more complicated

computations. Gates often used in quantum circuits are shown on figure 1.3.

7 The operator ⊕ stays for addition modulo 2. Shortcuts c and t stand for control and target qubits

respectively.

12 1. Introduction to Quantum Computing

CNOT Hadamard gate

Control •
Target �������� H

X Y Z

X Y Z

Fig. 1.3: Circuit representation for CNOT, X, Z,Y and Hadamard gate.

1.6.2 General Quantum Measurements

Single qubit measurements were informally introduced in section 1.4. Formally, quan-

tum measurement is described by a collection {Mi} of measurement operators on system

being measured. The index i refers to the measurement outcome that may occur in the

measurement. If the state of the quantum system before the measurement is |ψ〉 then

the probability that the result i occurs is:

p(i) = 〈ψ|M †
iMi |ψ〉 (1.17)

and the state of the system after the measurement is

Mi |ψ〉√
〈ψ|M †

iMi |ψ〉
, (1.18)

where following conditions pi ∈ R, pi ≥ 0 and
∑
i

p(i) = 1 must hold. The first two

conditions are fulfilled if we require all Mi to be positive operators. The last condition

is equivalent to the completeness equation
∑
i

M †
iMi = I. As we have mentioned before

we require normalized quantum states (〈ψ|ψ〉 = 1). The factor
√
〈ψ|M †

iMi |ψ〉 occurs

in the formula (1.18) to maintain the state normalized after the measurement.

Example 1.13. Let V be a 2-qubit system and let V be in state |ψ〉 = |00〉. We

perform measurement in dual base. What are the possible measurement outcomes and

their probabilities?

Let’s analyze the example in the standard base. Formally the measurement in the

dual base has four measurement components, expressed in the form of outer product:

M1 = |0′0′〉 〈0′0′| M2 = |0′1′〉 〈0′1′|

M3 = |1′0′〉 〈1′0′| M4 = |1′1′〉 〈1′1′|

1.7. Density Operators 13

The matrix representation of these operators in the standard base turns to be

M1 =


1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

 M2 =


1
4
−1

4
1
4
−1

4

−1
4

1
4
−1

4
1
4

1
4
−1

4
1
4
−1

4

−1
4

1
4
−1

4
1
4



M3 =


1
4

1
4
−1

4
−1

4
1
4

1
4
−1

4
−1

4

−1
4
−1

4
1
4

1
4

−1
4
−1

4
1
4

1
4

 M4 =


1
4
−1

4
−1

4
1
4

−1
4

1
4

1
4
−1

4

−1
4

1
4

1
4
−1

4
1
4
−1

4
−1

4
1
4


To calculate probability of outcome i we need to calculate expression

〈
00|M †

iMi|00
〉
,

which is equivalent to 〈00|M2
i |00〉. It can be shown that M2

i = Mi for each i, so

we need to calculate p(i) = 〈00|Mi|00〉. To calculate Mi |00〉 one has to multiply

Mi

(
1 0 0 0

)T
. Namely:

M1


1

0

0

0

 = 1
4


1

1

1

1

 = 1
4
|0′0′〉 M2


1

0

0

0

 = 1
4


1

−1

1

−1

 = 1
4
|0′1′〉

M3


1

0

0

0

 = 1
4


1

1

−1

−1

 = 1
4
|1′0′〉 M4


1

0

0

0

 = 1
4


1

−1

−1

1

 = 1
4
|1′1′〉

It follows that possible outcomes are |0′0′〉,|0′1′〉,|1′0′〉and |1′1′〉, each with probability

of one forth.

Remark 1.14. The previous example would be calculated easier in dual base as matrices

M1 through M4 represented in dual base would have just one non-zero value and the

outcomes would be determined easily even without writing down the matrices. The

purpose of the example was not to solve the example, but to show how to work with

the measurements formalism.

1.7 Density Operators

The formalism of state vectors from Hilbert space, we have discussed, is one possible

representation of quantum systems. This formalism is quite understandable and usable

for isolated quantum systems. But when we start to work with systems where some

stochastic actions can occur or which are ensembles of bigger systems, which full de-

scription is not known than the formalism of density operators or density matrices is

14 1. Introduction to Quantum Computing

suitable. It is mathematically equivalent to state vectors approach, but in some scenar-

ios frequently occurring in quantum computation it offers more convenient language.

More about usage of density operators in quantum information processing can be found

in [14].

The density operator is a mean for a description of a quantum state, which is not

completely known. Let us to consider a quantum system which is in one of the states

|ψi〉, i ∈ {1..k}. Suppose that the system is in state |ψi〉 with probability pi. Then the

density operator of this system is defined as

ρ =
k∑
i=1

pi |ψi〉 〈ψi| . (1.19)

There is an easy way how to distinguish whether a given operator is a density

operator or not.

Theorem 1.15. An operator ρ is the density operator associated to some ensemble

{pi, |ψi〉} if and only if it satisfies the conditions: (1) (Trace condition) ρ has trace

equal to one (2) (Positivity condition) ρ is a positive operator.

Systems which are with probability 100% in some state |ψ〉 are called pure systems.

The system is called to be in a mixed state if the system is not fully known and it is

described by ensemble {pi, |ψi〉} or corespoding density operator. In the formulation of

density operator we can easily distinguish among pure and mixed states by counting

tr(ρ2). It can be shown that tr(ρ2) = 1 for pure states and that tr(ρ2) < 1 for mixed

states.

Unitary transformations: We know that evolutions of closed quantum system

are described by unitary operators. When the unitary operator U act upon the system

described by density operator ρ, then resulting density operator after operator U took

action is

ρ′ = UρU †. (1.20)

Previous definition is consistent with already defined action of U on pure states.

Measurements: Quantum measurements are described by a collection {Mk} of

measurement operators. These are positive operators acting on the state space of the

system being measured. The index m refers to the measurement outcomes that may

occur in the experiment. If the state of the quantum system is ρ immediately before

the measurement then the probability p(i) that result i occurs is given by

p(i) = tr(M †
iMiρ), (1.21)

1.7. Density Operators 15

and the state of the system after the measurement is described by the density operator

ρ′:

ρ′ =
MiρM

†
i

tr(M †
iMiρ)

(1.22)

The measurement operators must satisfy the completeness equation∑
m

M †
mMm = I. (1.23)

2. ERROR CORRECTING CODES

Error correcting codes (ECC) are tools for reliable information processing. Since we

do not have perfect hardware which is error free, we need to introduce a concepts of

error detection and if possible also their correction. In this chapter we summarize

the achievements of ECC s in classical computational theory. We present just results

concerning binary linear codes. For more information on classical ECC see textbooks

[15] and [16].

2.1 Preliminaries

Consider that we maintain our data in the blocks of n bits, so a single data block can

take on 2n different words from {0, 1}n. The principle of ECC s is that the set of words

from {0, 1}n that represent some meaningful information (=code words) is subset of

{0, 1}n. If all words from {0, 1}n would represent meaningful data, then just a single

error in data storage would alter the data and we would not be able to detect the error.

On the other hand if we use some smaller subset of {0, 1}n as code words, it is

probable that occurrence of an error on the code word will put the result block out of

coding subset and we would be able to detect that an error occurred. Even we would

be able to guess with high probability the initial code word.

Definition 2.1. An error correcting code is any subset of {0, 1}n

Definition 2.2. Hamming weight wt(u) of vector u ∈ {0, 1}n is:

wt(u) =
n∑
i=1

(ui = 1) (2.1)

Definition 2.3. Minimal distance of code C is:

d∗C = min
u,v∈C,u6=v

(wt(u⊕ v))1 (2.2)

If the code has minimal distance d∗C , than all its words differ at least on d∗C positions.

1 ⊕ stands for bitwise addition modulo 2 of vectors u and v.

2.2. Linear Codes 17

What kind of errors do we consider as possible to occur in our systems? We suppose

following types of errors:

• The environment cause modification of single transmitted symbol from {0, 1} to its

opposite.

• The probability of error occurrence on the particular bit does not depend on a position

in the data block and on the error occurrence on other bits. The errors are independent

of each other.

Usage of code C with minimal distance d∗ for information protection allows to detect

d∗ − 1 and correct d∗−1
2

errors in proposed error model.

2.2 Linear Codes

Linear codes are the most popular ECC s. Their advantage is in existence of convenient

mathematical formalism for codes’ manipulation. Recall that code words of binary

codes are from the set {0, 1}n. The set {0, 1}n may be seen as a vector space V over

field Z2 with operations for ∀u,v ∈ V, a ∈ Z2,u = (u1, . . . , un),v = (v1, . . . , vn) defined

as:

addition: u⊕ v = (u1 ⊕ v1, . . . , un ⊕ vn)

multiplication with scalar: a.u = (a · u1, . . . , a · un)
inner product: 〈u,v〉 =

n∑
i=1

uivi mod 2

The linear code is any sub-space of V . It follows from the Lagrange theorem that

any linear code C has 2k different elements and dimension k for some k ≤ n. The

notation [n, k, d] stands for linear code which encode vectors from k dimensional space

to n dimensional space2, with minimal distance d and thus corrects d−1
2

errors.

Let C be a linear code over V . It is easy to see that set C⊥, defined as

C⊥ = {u ∈ V | ∀v ∈ C 〈u,v〉 = 0} (2.3)

is also subspace of V and therefore forms so known dual code to code C. If dimension

of C is k then dimension of C⊥ is n− k.

Definition 2.4. [n, k, d] linear code C with d = 2t+ 1 is said to be perfect if for every

possible word w0 ∈ V , there is a unique code word w ∈ C,such that wt(w0 + w) ≤ t.

It is straightforward to show that C is perfect if
t∑
i=0

(
n

i

)
= 2n−k. (2.4)

2 [n, k, d] code has n-elements code words and each codeword encodes k information symbols.

18 2. Error Correcting Codes

Examples of perfect codes are Hamming codes (section 2.3) and the Golay code [17].

2.2.1 Coding and Decoding

Consider k-dimensional linear code C with basis set {u1, . . . ,uk}. Our purpose is to

find reasonably transformation of arbitrary k information bits to n bits of the code

C. To manage this, the basis set of C can be used. The generation matrix G of the

code C is a matrix which columns consists of vectors u1,. . .,uk. Now each arbitrary

information vector i consisting of k bits can be transformed to the n bits vector u from

C by formula

u = Gi. (2.5)

Both vectors u and vectors i are column vectors. Obviously all vectors u acquired

by formula (2.5) are from the code C since u is linear combination of the C basis

vectors. Moreover, if two different information vectors i1,i2 are transformed to C, the

corresponding code vectors u1, u2 are different too.

The coding procedure of b-bits message consists of two steps: the sequence of infor-

mation bits is divided into
⌈
b
k

⌉
k-bit groups (blocks), and every k-bit block is multi-

plied by generation matrix and a corresponding code word is computed. The remaining

question is: How can we decode original encoded information and how can we correct

potential errors? To answer this question most easily, we introduce an alternative (but

equivalent) definition of linear codes in terms of parity check matrices. In this alterna-

tive definition an [n, k] code is defined to be a set of all n−element column vectors u

over Z2 such that

Hu = 0, (2.6)

where H is an n − k × n binary matrix called parity check matrix of code C. Parity

check matrix H has linearly independent rows to maintain the dimension of C equal to

k.

To determine parity check matrix H from generation matrix G we pick n−k linearly

independent column vectors x1, . . . , xn−k orthogonal3 to all columns of G and set the

rows of H as xT1 , . . . , x
T
n−k.

Example 2.5. Consider linear code C1 = [4, 3, 2]. Every code word of code C1 contains

three information bits and the value of its fourth bit is the check sum of all information

bits. Code C1 has 8 code words

{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111} . (2.7)

3 By orthogonal is meant that scalar product is equal to 0.

2.2. Linear Codes 19

Basis set of this code may be chosen as {0011, 0101, 1100}. Then generation matrix G1

is

G1 =


0 0 1

0 1 1

1 0 0

1 1 0

 . (2.8)

Now we need to find n − k = 4 − 3 = 1 vector which is orthogonal to all vectors of

the basis set. Such vector is (1, 1, 1, 1)T and therefore the parity check matrix for C1 is

H1 = [1111].

Exactly the parity check matrix is used for the error detection procedure. Consider

that k-bit message v is encoded as u = Gv. During a transmission or just after some

time, error e4 occurs on u and corrupts it to state u′ = u⊕e. We get the error syndrome

by applying H on u′

Hu′ = H(u⊕ e) = Hu⊕He = He (2.9)

If e is 0, which means that no error occur, the error syndrome is also 0. In case

that e is not zero and u′ does not belong to the code, nontrivial error syndrome is

counted. Important is that the error syndrome is independent from the code word u, it

depends only on occurred error. Last part of the error correction scheme we need is a

pre-computed values of He′ for all possible errors e′. If we posses such table and error

syndrome He occurred we just need to look in the syndrome table to recognize the error

e. Once the error is recognized, the addition u′ ⊕ e will cancel the error. Of course,

different errors can have the same error syndrome. The error correction is based on the

fact that the all errors with weight wt(e′) ≤ d∗C−1

2
have different error syndromes. If an

error with wt(e′) >
d∗C−1

2
occur, than incorrect error may be detected and the encoded

information may get lost. Since we consider stochastic source of errors this happens

with probability O(p
d∗C+1

2), where p is probability of single error.

After error detection and recovery we would like to decode previous encoded message

v. This task can be the most easiest accomplished when basis set of G is orthonormal5,

then the i-th element of v is counted as

vi = 〈ui,u〉 , (2.10)

where ui is i-th vector of the C basis set (or equivalently i-th column of generation

matrix). The orthonormal basis set can be constructed from arbitrary basis set using

Gram-Schmidt procedure. Decoding of codes in systematic form (section 2.2.3) is also

simple.

4 A vector which has 1s on positions where error occurred and 0s elsewhere.
5 〈ui,uj〉 = δij , where δij is Kronecker’s delta

20 2. Error Correcting Codes

2.2.2 Properties of Linear Codes

Following properties are useful in hunting for new linear codes with specific character-

istics.

Lemma 2.6. Minimal distance of linear code C defined in (2.2) is equal to minimal

Hamming weight of all code words different from 0.

d∗C = min
u∈C,u6=0

wt(u) (2.11)

• There is a linkage between minimal distance of particular code and its parity check

matrix:

Theorem 2.7. Linear code contains non-zero code word with weight less or equal d if

and only if its parity check matrix H contains d linearly dependent columns.

Corollary 2.8. (Singleton bound) Linear code C with parity check matrix H has

minimal distance d∗ if and only if in matrix H arbitrary d∗ − 1 columns are linearly

independent and there exists d∗ linearly dependent columns of matrix H.

Since parity check matrix has n− k rows we get easily following inequality:

Theorem 2.9. Linear [n, k, d] code fulfills following inequality:

d ≤ 1 + n− k (2.12)

2.2.3 Codes in Systematic Form

Suppose a linear code C with basis set {u1, . . . ,uk}. From the linear algebra [18] we

know that if we change arbitrary ui by adding some linear combination of other basis

vectors:

u’i = ui +
∑
i6=j

ajuj, (2.13)

then basis set {u1, . . . ,ui − 1,u’i,ui+1, . . . ,uk} span the same vector space C. The

modification (2.13) corresponds to adding columns of generation matrix together. Also

exchange of generation matrix columns does not change code space C and its correcting

abilities. Exchanging rows of generation matrix neither change the correcting abilities

of the code. Using all these operations we can transform generation matrix to so known

code in systematic form [19, 20]. Code in systematic form has generation matrix in the

form

GS =

[
Ik
P

]
, (2.14)

2.3. Hamming Codes 21

where Ik stands for identity matrix [k × k] and matrix P is arbitrary with dimensions

[n− k × k]. The parity check matrix to matrix GS is computed very easily, namely:

HS = [P |In−k] . (2.15)

One can easily verified that HSGS = P + P = 0. If the code is in systematic form

its control bits follow after information bits. Decoding of these code is really simple6,

therefore are often used. The idea of systematic form may be used to lower the search

space, when one tries to find a ECC, since significant parts of generation and parity

check matrices are already set and only search through smaller search-space is needed.

Each code can be also transformed to the code with the same correcting abilities

and in the form G′
S = [P ′ |Ik]T , H ′

S = [In−k |P]. In this alternative form control bits

precede information bits.

2.3 Hamming Codes

Hamming codes are class of linear error correcting codes with parameters [2m−1, 2m−1, 3].

Columns of their parity check matrices are simply all non zero binary vectors of length

m. Hamming codes are perfect codes, since they satisfies equation 2.4.

Very useful in quantum error correcting codes is C = [7, 4, 3] Hamming code, which

gives base to quantum Steane Code. The parity check matrix of [7,4,3] code is

H =


1 0 0 0 1 1 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1

 . (2.16)

The valuable property of [7,4,3] Hamming code is that its dual code is weakly self-dual

code, what means that C⊥ ⊂ C. A code for which C⊥ = C is called self-dual. Weakly

self dual codes are the best material for constructing quantum codes as will be discussed

in section 3.2.2. Another popular code which dual code is weakly self-dual is [23,12,7]

Golay code [17].

6 One just extract first k bits throwing the rest away.

3. BASICS OF QUANTUM ERROR CORRECTION (QEC)

The error correction, both in classical computation (CC) and quantum computation (QC),

is essential for keeping the computation consistent. The need for error correction in QC

is even higher than in CC since much more complex errors can occur in quantum

systems.

Suppose we would like to protect arbitrary single qubit |ψ〉 = α |0〉 + β |1〉 against

error. Note the principal problems of error correction in QC :

1. As we already mentioned in section 1.4 we are not able to reliably recognize the

superposition coefficients α,β using just single qubit.

2. According to Non-Cloning theorem [21] we are not able to copy the state of a

qubit |ψ〉 to other qubits to obtain a redundancy required by classical error correction

procedures.

3. The problem with error detection: We could not just simple measure qubits to

detect an error as in classical error correction codes. The measurement of the qubit de-

stroys hidden superposition and system will collapse to a single measured state. There-

fore we need to manage error detection in such a way that we would not gain any

information about encoded data. We must ensure that the only information we obtain

from the error detection concerns the occurred error.

4. Much more complicated errors can occur in quantum systems. In classical digital

systems it is often sufficient to consider just bit-flip errors. Bit-flip error means that

a transformation 0 → 1 or 1 → 0 can possibly occur on some transmitted bits with

small probability. In classical coding theory we sometimes consider also errors of other

kinds, i.e. errors of synchronization, duplication or deletion some parts of transmitted

data. In the quantum world principally continuous range of errors changing qubit in

state |ψ〉 = α |0〉 + β |1〉 to erroneous state |ψe〉 = α′ |0〉 + β′ |1〉 can occur. Moreover,

the quantum system can get entangled with the environment. Entanglement may lead

to the errors later in the computation when the environment is measured and the

entanglement with the data qubit will cause a change of the qubit’s state. How can we

protect against such diverse kind of errors?

The very first insights were really pessimistic and rose the question whether the

error correction in quantum systems is even possible. Fortunately, as was proven later,

3.1. Quantum Noise and Quantum Operations 23

the opposite is true. The entanglement first looked as a obstacle in quantum processing,

now it is principal tool of reliable quantum information processing. Several quantum

codes were developed and some of them practically verified [22].We shall present the

main ideas on QEC in this chapter. In the first section we formally describe possible

kinds of errors which can occur in quantum systems (QS) and different formalisms for

description of such errors. In section 3.2 we introduce several QEC codes usable in QS.

New code searching technique is presented in this part. The last topic discussed in this

chapter is construction of coding and decoding circuits for some QEC codes.

3.1 Quantum Noise and Quantum Operations

We begin with the description of noise that can occur during transmission and process-

ing of data and then we introduce the necessary formalism. The quantum noise can

be described as any other quantum operations. In quantum systems can not occur

anything else than quantum operations. We already described two types of quantum

operations. The first are unitary operators and the second types of operations are

measurements. The evolution of closed system can be described by unitary operators.

The measurement introduces an outer interference (usually desired) with the principal

system. Unfortunately, there are also undesirable interactions between environment

and the principal system. Since the perfectly isolated system just does not exist, the

systems suffer from interactions with outer environment.

The mathematical formalism describing evolutions in open systems has been studied

for last 30 years. We will introduce the crucial notions and main results of QECC theory,

which are necessary for our further work. More information and summaries of quantum

operations formalism from the point of view of QEC can be found in [23] or [24].

3.1.1 Operator Sum Representation

A noisy quantum channel can be a regular communication channel suffering from some

inference with environment, or it can be the time period during which qubits does

not change the spatial position but can interact with environment and change their

state. It can also represent an imperfectly implemented quantum gate which introduce

some noise to qubits. All these cases can be modeled by so known Operator sum

representation. The effect of quantum channel can be described as

ρ′ = E(ρ), (3.1)

where E is a quantum operation transforming initial density operator ρ to density

operator ρ′. For unitary operator U and measurement which outcome is m are EU(ρ) =

24 3. Basics of Quantum Error Correction (QEC)

UρU † and Em(ρ) = MmρM
†
m, respectively. It turns out that any quantum operation

and consequently any noisy quantum channel can be described as

E(ρ) =
∑
i

EiρE
†
i , (3.2)

for some set of operators {Ei} which map the input Hilbert space to the output Hilbert

space, and
∑
i

E†
iEi ≤ I. Note that input and output Hilbert spaces need not be the

same. This formalism therefore allows us to describe all processes as coding, decoding

or error recovery in uniform way. Nevertheless, we will usually use different means for

description of these processes, to make the presentation more comprehensible.

There is a following physical interpretation of the operator sum representation. The

action of operation E with operation elements {Ei} is equivalent to random replacing

of the initial state ρ with the state EkρE
†
k/tr(EkρE

†
k) with probability tr(EkρE

†
k). We

require that the probability of possible outcomes must sum to one:

1 =
∑
i

tr(EiρE
†
i) = tr

(∑
i

EiρE
†
i

)
= tr

(∑
i

EiE
†
i ρ

)
. (3.3)

Equation (3.3) must hold for all density operators ρ which have trace equal to 1 and

therefore ∑
i

EiE
†
i = I. (3.4)

Quantum operations satisfying the equation (3.4) are called trace-preserving. We shall

use only trace-preserving operations1.

The output of quantum operations may differ significantly from its input state.

Complex mixed state may be a result of quantum operation applied on pure state.

How can we correct mixed state to the initial pure state?

The idea of error correction of mixed states is following: Mixed state can be consid-

ered as an ensemble of pure states with some probability distribution. If we are able to

correct each pure state of that ensemble to the initial pure state, we are able to return

the mixed state to its initial state and thus brake the entanglement of the system with

its outer environment.

3.2 Quantum Codes

We begin with design of a QEC code for simpler quantum channel. Let us suppose

that the quantum channel is transmitting encoded qubits according to following rules.

1 However, there are also not-trace preserving quantum operations. For further details see [25].

3.2. Quantum Codes 25

With probability 1− p it remains the qubit untouched and with probability p the qubit

|ψ〉 is subjected to operator X which has following effect on single qubit:

|ψ〉 = α |0〉+ β |1〉 X→ β |0〉+ α |1〉 (3.5)

This error is called bit-flip as it flips between |0〉 and |1〉. We suppose that no error can

occur during the qubits encoding, error detection or decoding.

Simple idea how to protect data against bit flip errors consists in encoding logical qubit

α |0〉+ β |1〉 as three entangled qubits

α |0〉+ β |1〉 Xcoding→ α |000〉+ β |111〉 . (3.6)

Since Non-Cloning theorem holds, we cannot perform the following encoding of

unknown qubit:

α |0〉+ β |1〉 coding→ (α |0〉+ β |1〉)⊗ (α |0〉+ β |1〉)⊗ (α |0〉+ β |1〉) (3.7)

The coding (3.6) can be performed using the circuit on figure 3.1.

α |0〉+ β |1〉 •
|0〉 �������� • α |000〉

+β |111〉|0〉 ��������

Fig. 3.1: Coding circuit for encoding (3.6).

During a transmission only bit-flip errors possibly occur on some qubits in our model

of noisy channel. For example if the bit flip would occur on second qubit of encoded

data, the state of three qubits would be |ψ2〉 = α |010〉 + β |101〉 The error correction

is based on two procedures, the first procedure (error detection) detects the error and

then the second procedure (recovery from error), using the information gained by error

detection recovers the initial state. Error detection procedure can be performed by

projective measurement, with four projection operators:

P0 = |000〉 〈000|+ |111〉 〈111| (no error) (3.8)

P1 = |100〉 〈100|+ |011〉 〈011| (bit flip on first qubit) (3.9)

P2 = |010〉 〈010|+ |101〉 〈101| (bit flip on second qubit) (3.10)

P3 = |001〉 〈001|+ |110〉 〈110| (bit flip on third qubit) (3.11)

If an error on i-th qubit occurs on the state (3.6) and transforms the three qubits

to the state |ψi〉 then 〈ψi|Pj |ψi〉 = δij what imply that the outcome of error detection

26 3. Basics of Quantum Error Correction (QEC)

on the state |ψi〉 is certainly i. Notice that this measurement never changes the state

of measured system, since Pi |ψi〉 = |ψi〉.
Recovery procedure is rather simple. If error on i-th qubit occurred, the measure-

ment gives us the output i. If no error occurred the outcome of the error measurement

is 0. The recovery action is following: if output of the error detection is 0 no action is

needed, otherwise if output i is obtained then we will flip i-th qubit back to its initial

encoded state.

Other important class of errors on qubits is so known phase flip (application of Z

operator) which can be formally described in following way:

|ψ〉 = α |0〉+ β |1〉 Z→ α |0〉 − β |1〉 (3.12)

The previous code does not protect against this kind of errors, but we can transform

problem of protecting against phase-flip errors to previous, already solved problem. The

main idea is that the phase-flip has the same effect on states |0′〉 and |1′〉 as bit-flip on

states |0〉, |1〉. Therefore we can use encoding

α |0〉+ β |1〉 Xcoding→ α |0′0′0′〉+ β |1′1′1′〉 . (3.13)

We also change 1 to 1′ and 0 to 0′ in defining error-detection measurement in formulas

(3.8)-(3.11) and instead of bit-flips in error-recovery we perform phase-flips to correct

encoded state. Both previous codes can protect against single bit flip or phase flip,

respectively. However none of them can correct both types of errors. This problem will

be solved in following section.

3.2.1 The Shor Code

The problem of QEC is more complicated if we want to protect data against arbitrary

error on single qubit. It turns out that a code which can correct both bit flip and

phase flip errors is able to correct an arbitrary error on single qubit [26, 27]. The first

solution of this problem provided Shor by introducing so known 9-qubits Shor code

which protects against arbitrary error on a single qubit [28]. The Shor code encodes

one logical qubit to nine qubits as:

|0〉 → |0L〉 ≡ (|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)
2
√

2
(3.14)

|1〉 → |1L〉 ≡ (|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)
2
√

2
(3.15)

α |0〉+ β |1〉 → α |0L〉+ β |1L〉 (3.16)

Let us shortly describe the idea underlying the correction of arbitrary single qubit

error. Suppose the noise has impact on a single qubit. We mentioned in section 3.1

3.2. Quantum Codes 27

that noise can be described by quantum operation E with operation elements Ei. The

state of encoded qubit is |ψ〉 = α |0L〉 + β |1L〉 to which correspond density operator

|ψ〉 〈ψ|. The effect of noisy channel can be expressed as:

E (|ψ〉 〈ψ|) =
∑
i

Ei |ψ〉 〈ψ|E†
i (3.17)

That means, that the initially pure state |ψ〉 transforms to the ensemble{
tr(Ei |ψ〉 〈ψ|E†

i), Ei |ψ〉 /
√
tr(Ei |ψ〉 〈ψ|E†

i)

}
. (3.18)

Now it is sufficient to show that our error correction procedure properly corrects each

ensemble state Ei |ψ〉 to the initial state |ψ〉. That would ensure that also the ensemble

(3.17) will be corrected properly. Consider that the state Ej |ψ〉 is result of the noise.

If Ej influences only the k-th qubit then it can be expanded as

Ej = ej0I + ej1Xk + ej2Zk − iej3Yk, (3.19)

for some complex numbers ejl (see equation (1.6)). Using the identity Yk = iXkZk

the equation (3.19) can be rewritten as

Ej = ej0I + ej1Xk + ej2Zk + ej3XkZk (3.20)

If only the k-th qubit is changed, the system of nine qubits resides in the state:

|ψe〉 =
1

c
(ej0 |ψ〉+ ej1Xk |ψ〉+ ej2Zk |ψ〉+ ej3XkZk |ψ〉), (3.21)

where c =

√
4∑
l=0

|ejl|2 is a normalization factor. As we can see, the state |ψe〉 is super-

position of states corresponding to following situations: no error, phase flip, bit flip or

both phase and bit flip on k-th qubit occurred. The error detection will project this

superposition to one of the subspaces where just one of these four cases occur. The

error-detection measurement for Shor code consists of four measurements. First three

measurements measure triples of qubits to detect bit flip errors in each triple. For the

next analysis, without loss of generality we suppose that k ∈ {1, 2, 3}. The first mea-

surement involves the first three qubits and has four measurement components defined

in (3.8)-(3.11). The outcome of this measurement is

0 with probability
|ej0|2+|ej2|2

c2
and state collapses to |ψe0〉 =

ej0|ψ〉+ej2Zk|ψ〉√
|ej0|2+|ej2|2

,

k with probability
|ej1|2+|ej3|2

c2
and state collapse to |ψek〉 =

ej1Xk|ψ〉+ej3XkZk|ψ〉√
|ej1|2+|ej3|2

.

28 3. Basics of Quantum Error Correction (QEC)

Results different from 0 and k are not possible in first measurement. If the outcome k

is obtained, then we perform operator Xk on |ψek〉 obtaining

|ψek〉 →
ej1 |ψ〉+ ej3Zk |ψ〉√

|ej1|2 + |ej3|2
, (3.22)

since X2
k = I. If the outcome of first measurement is 0 we do not need to do anything for

now. The measurements performed on qubits (4,5,6) or (7,8,9) respectively will certainly

end up with results 0 and they do not change the state of system being measured. So

after first three error-correction measurements the system is either in state |ψe0〉 or

|ψek〉 transformed according to (3.22), which are principally in the same form. Without

loss of generality we can suppose that result k occurred in first measurement and state

of nine qubits is |ψe〉 =
ej1|ψ〉+ej2Zk|ψ〉√

|ej1|2+|ej2|2
. That means that bit flip on |ψ〉 was corrected

properly, what remains uncorrected is possible phase flip on k-th qubit. To detect

phase flip, when we are sure that bit-flips were already corrected we perform final

measurement with the measurement components described in equations (3.23) - (3.26).

To make measurement description more understandable we label following states of

three successive qubits |000〉+ |111〉 as |03〉 and |000〉 − |111〉 as |13〉.

P0 = |030303〉 〈030303|+ |131313〉 〈131313| (3.23)

P1 = |130303〉 〈130303|+ |031313〉 〈031313| (3.24)

P2 = |031303〉 〈031303|+ |130313〉 〈130313| (3.25)

P3 = |030313〉 〈030313|+ |131303〉 〈131303| (3.26)

The outcome from this measurement in our case can be only 0 or 1 (we consider

k ∈ {1, 2, 3}). If k ∈ {4, 5, 6} (k ∈ {7, 8, 9}) the possible outcome would be {0, 2}
({0, 4}). The probabilities of measurements outcomes and final states of the system

after the measurements in our case are:

p(0) =
|ej1|2

|ej1|2 + |ej3|2
and the system collapse to the state |ψ〉

p(1) =
|ej3|2

|ej1|2 + |ej3|2
and the system collapse to the state Zk |ψ〉 (3.27)

When the outcome of final measurement is 0 no other recovery is needed, if the outcome

is 1 we perform one of the operations Z1, Z2 or Z3 on the state Zk |ψ〉 as they all take

the system to the state |ψ〉. So we accomplished the task of recovering from arbitrary

operation element Ei (acting on single qubit). In the same way we recover from whole

operation E . Shor code would work perfectly in environment where at most the single

qubit error can occur. The strong precondition of our analysis was that the operation

element of the noise E are acting on single qubit2.

2 All elements Ei must act on same qubit.

3.2. Quantum Codes 29

3.2.2 Calderbank-Shor-Steane Codes

The class of codes which construction is based on properties of classical linear codes are

so known Calderbank-Shor-Steane codes (CSS codes) [26, 27]. For the construction of

particular CSS code we need two classical linear codes C1, C2 with following properties.

Suppose C1 and C2 are [n,k1] and [n,k2] codes respectively. Moreover, let C2 ⊂ C1 and

both C1 and C⊥
2 correct t errors. Then we can construct [n,k1 − k2] quantum code

Cq = CSS(C1, C2) capable of correcting arbitrary error acting on up to t qubits. The

codewords of Cq correspond to cosets of C2 in C1. To particular codeword x from C1

corresponds following quantum codeword from Cq:

|x+ C2〉 ≡
1√
|C2|

∑
y∈C2

|x⊕ y〉 , (3.28)

where ⊕ (in x⊕y) means bitwise addition of binary vectors x and y. Suppose x, x′ ∈ C1,

such that x ⊕ x′ ∈ C2, what means that x, x′ belong to same coset of C2 in C1. Then

|x+ C2〉 and |x′ + C2〉 are same states since∑
y∈C2

|x⊕ y〉 =
∑
y∈C2

|x⊕ x′ ⊕ x′ ⊕ y〉 =
∑
y∈C2

|x′ ⊕ (x⊕ x′ ⊕ y)〉 =
∑
z∈C2

|x′ ⊕ z〉 . (3.29)

In addition if x⊕x′ /∈ C2 then inner product of |x+ C2〉 and |x′ + C2〉 is zero3. Therefore

Cq has exactly |C1|
|C2| different codewords and is [[n,k1 − k2]] quantum code4. We take

arbitrary 2k1−k2 different vectors {xi} xi ∈ C1, such that for all i 6= j xi and xj belong

to different cosets of C1/C2. We define coding function C : H 7→ Cq, where H is 2k1−k2

dimensional Hilbert space corresponding to k1 − k2 information qubits, as

C(|i〉) = |xi + C2〉 . (3.30)

More general, for any |ψ〉 ∈ H, |ψ〉 =
2k1−k2∑
i=0

ci |i〉 the coding is

C(|ψ〉) ≡ |ψq〉 =
2k1−k2∑
i=0

ci |xi + C2〉 . (3.31)

The error correction procedure using code Cq is based on properties of linear codes

C1, C2. We show how Cq protects against error which can be described by at most t

bit flips and t phase flips. Suppose that binary vector b describes positions5 where bit

flips occurred and binary vector p describes positions where phase flips occurred during

3 And thus the states |x + C2〉 and |x′ + C2〉 are recognizable by quantum measurement.
4 Notation [[n,k]] stands for a quantum code which uses n-physical qubits to encode k-logical qubits.
5 The vector b has 1s on the positions where bit flip occurred and 0s elsewhere.

30 3. Basics of Quantum Error Correction (QEC)

transmission. Suppose that initially we had encoded state |ψ〉 C→ |ψq〉 defined by (3.31).

After the error occurred the encoded state changed to

2k1−k2∑
i=0

ci√
|C2|

∑
y∈C2

(−1)(xi⊕y)p |xi ⊕ y ⊕ b〉 . (3.32)

At first we correct the bit flips. To perform this correction we need a circuit per-

forming operation |xi〉 |0〉 → |xi〉 |H1(xi)〉, where H1 is a parity check matrix of code

C1. Such circuit can be constructed straightforwardly from the given matrix H1. It

is shown in section 3.4. Note that for representing |H1(xi)〉 one needs n − k1 ancil-

lary qubits6. Using that H1 is parity check matrix for code C1 and xi ⊕ y ∈ C1 we

get H1(xi ⊕ y ⊕ b) = H1(xi ⊕ y) + H1(b) = H1(b). Therefore the application of given

procedure leads to

2k1−k2∑
i=0

ci√
|C2|

∑
y∈C2

(−1)(xi⊕y)p |xi ⊕ y ⊕ b〉 |H1(b)〉 =2k1−k2∑
i=0

ci√
|C2|

∑
y∈C2

(−1)(xi⊕y)p |xi ⊕ y ⊕ b〉

⊗ |H1(b)〉 . (3.33)

By measuring n − k1 ancilla qubits we get the result |H1(b)〉. If the vector b has

Hamming weight t or less we correctly determine b from measured syndrome H1(b).

Then we simply flip (by means of NOT gates) the corrupted bits back to the state

2k1−k2∑
i=0

ci√
|C2|

∑
y∈C2

(−1)(xi⊕y)p |xi ⊕ y〉 . (3.34)

After correcting bit-flips errors we apply Hadamard gate to each qubit, which allows

us to correct phase flips in similar way as the bit flips were corrected. The state (3.34)

after application of Hadamard gates changes to

2k1−k2∑
i=0

ci√
|C2|

∑
y∈C2

1√
2n

∑
z∈{0,1}n

(−1)(xi⊕y)p+(xi⊕y)z |z〉 . (3.35)

This state may be rewritten by substituting z′ ≡ z ⊕ p and then by changing the order

of summation to:

2k1−k2∑
i=0

ci√
|C2|2n

∑
z′∈{0,1}n

∑
y∈C2

(−1)(xi⊕y)z′ |z′ ⊕ p〉 . (3.36)

6 Ancillary qubit in the concept of quantum computing is often called ancilla.

3.2. Quantum Codes 31

It can be shown that for z′ ∈ C⊥
2 the

∑
y∈C2

(−1)yz
′

= |C2|, while if z′ /∈ C⊥
2 then∑

y∈C2

(−1)yz
′
= 0. For interested readers the proofs of these statements are presented in

the appendix as lemma B.1. Thus the state (3.36) may be rewritten as:

2k1−k2∑
i=0

ci√
2n/|C2|

∑
z′∈C⊥2

(−1)xiz
′ |z′ ⊕ p〉 . (3.37)

This notation has the same structure as the state (3.32)7. Therefore we act analogically:

We couple k2 ancilla to this state:2k1−k2∑
i=0

ci√
2n/|C2|

∑
z′∈C⊥2

(−1)xiz
′ |z′ ⊕ p〉

⊗ |H2(p)〉 . (3.38)

Again, measuring k2 ancilla qubits gives us information on which qubits phase flip

occurred (if we assume that at most t qubits were phase flipped). Applying bit flip on

detected positions we change the state to

2k1−k2∑
i=0

ci√
2n/|C2|

∑
z′∈C⊥2

(−1)xiz
′ |z′〉 =

2k1−k2∑
i=0

ci√
|C2|2n

∑
z∈{0,1}n

∑
y∈C2

(−1)(xi⊕y)z |z〉 . (3.39)

The process of error-correction is ended by re-applying Hadamard gates to each qubit.

Since the Hadamard gate is self inverse the operation results in the initial state (3.34)

without phase flip errors:

2k1−k2∑
i=0

ci
|C2|

∑
y∈C2

(−1)(xi⊕y) |xi ⊕ y〉 =
2k1−k2∑
i=0

ci |xi + C2〉 = |ψq〉 . (3.40)

We have shown that particular error described by at most t bit flip and t phase flip

errors can be corrected. In reality more complicated errors described by error operator

E can occur. We can correct errors which operator sum representation {Ei} contains

just operation elements Ei which can be written as combination of operators that acts

on up to t qubits. Formally, by usage of code Cq we can protect the system against

errors described by quantum operation E with operation elements

Ei =
∑
i

αiXai1
. . . Xaimi

Zbi1 . . . Zbini
, (3.41)

where there exist sets B,P : B,P ⊂ {1, . . . , n}, |B| ≤ t, |P | ≤ t and all aij ∈ B,

bij ∈ P . These types of errors are processed precisely in the same way as in the above

7 With the difference of used codes. In formula (3.32) we have used correcting properties of C1 and

now we use the code C⊥
2

32 3. Basics of Quantum Error Correction (QEC)

mentioned case. The only difference in analysis occurs in computing of syndromes

corresponding to matrices H1 and H2 in (3.33) and (3.38). In this more general case

the output of measurement of ancilla qubits is not deterministic and the output of

syndrome measurements will cause a collapse of occurred error to the one consistent

with it. After measuring of H1 only components from (3.41) which X operators leads to

syndrome measured by H1 will remain. Then after applying H2 in (3.38) the error will

collapse to the error described by terms from superposition (3.41) which are consistent

with measured syndromes (as shown in detail for Shor code). The error is corrected

exactly in the same way as shown in (3.39). It is really fascinating property of quantum

codes that despite of the fact that there is uncountable amount of possible errors, it is

sufficient to find a correction process just for bit flip and phase flip and all other errors

acting on limited number of qubits can be corrected.

3.2.3 CSS Code Correcting One Error

The most known example of CSS codes is Steane code. It is a [[7,1,3]] quantum code.

Its construction is based on CH=[7,4,3] classical Hamming code. Classical codes C1

and C2, in definition of CSS codes are chosen as C1 = CH and C2 = C⊥
H . We know that

both C1 and C⊥
2 correct one error. We need to check whether C2 ⊂ C1. The generator

matrix of CH is

G(CH) =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 1

1 0 1 1

1 1 0 1


(3.42)

One of possible generator matrix of C2 is

G(C⊥
H) =



0 1 1

1 0 1

1 1 0

1 1 1

1 0 0

0 1 0

0 0 1


, (3.43)

3.3. New CSS Codes 33

as the columns of G(C⊥
H) are linearly independent and orthogonal to the columns of

G(CH). One can check that

G(C⊥
H)1 = G(CH)2 +G(CH)3 +G(CH)4

G(C⊥
H)2 = G(CH)1 +G(CH)3 +G(CH)4, (3.44)

G(C⊥
H)3 = G(CH)1 +G(CH)2 +G(CH)4

where G(C⊥
H)i and G(CH)i stand for i-th column of matrix G(C⊥

H) and G(CH) respec-

tively. Therefore every vector from C⊥
H can be written as linear combination of vectors

from C, thus C⊥
H ⊂ CH .

Steane code has two different codewords. First of them is |0L〉 =
∣∣0000000 + C⊥

H

〉
.

Second codeword |1L〉 can be determined by finding an x such that x ∈ CH and x /∈ C⊥
H .

The vector (1,1,1,1,1,1,1) satisfies these conditions since it belongs to CH , because

G[CH](1, 1, 1, 1)T = (1, 1, 1, 1, 1, 1, 1) and it is not orthogonal to itself so does not belong

to C⊥
H . Therefore |1L〉 =

∣∣1111111 + C⊥
H

〉
. Writing |0L〉, |1L〉 explicitly yields:

|0L〉 =
1√
8

[|0000000〉+ |1010101〉+ |0110011〉+ |1100110〉

+ |0001111〉+ |1011010〉+ |0111100〉+ |1101001〉] (3.45)

|1L〉 =
1√
8

[|1111111〉+ |0101010〉+ |1001100〉+ |0011001〉

+ |1110000〉+ |0100101〉+ |1000011〉+ |0010110〉] (3.46)

3.3 New CSS Codes

Steane code is correcting arbitrary error which influences a single qubits. If we want

to protect our quantum information against two qubit errors, more encoding qubits

are needed. The construction using a CSS codes is not the most efficient, since there

exists codes which can protect against the same errors using fewer coding qubits. The

five qubit code which protects against single-qubit errors is presented in section 4.4.2.

However, CSS codes are much easier used in fault tolerant quantum computation. In

[29] is proved that the necessary and sufficient condition to implement CNOT operator

fault tolerantly is the usage of CSS codes. These are the reasons, why we have searched

for new CSS codes.

Steane code uses 7 qubits and protects against single-qubit errors. [[23,1,7]] CSS

code may be obtained from weakly self-dual Golay code. These are the examples of

small CSS codes, but none CSS code correcting two-qubits errors has been established

among scientists working in the area of QC yet. Therefore, we have tried to find new

CSS code correcting two errors. The detailed analysis of fault tolerant implementation

of found code is presented in the chapter 6.

34 3. Basics of Quantum Error Correction (QEC)

3.3.1 Searching for the Code

We aim our effort to find a code which encodes just one logical qubit since such codes are

more suitable [30] for fault tolerant computation, described in chapter 5. To construct

[[n,1,5]] CSS code correcting two errors we need to find [n,k] linear code C1 correcting

two errors and [n,k − 1] linear code C2 which is subset of C1. Moreover, C⊥
2 which is

[n, n− k + 1] code must also correct two errors.

An comprehensive overview on known upper and lower bounds on CSS Codes and

some searching methods were presented by Steane in [31]. We propose significantly

different approach to codes search. The code is most probable to be found when

kmax ≡max(k, n − k + 1) is minimal. The minimal kmax for fixed odd n is reached

at k = n+1
2

. From lower and upper bounds presented in [31] follows that the CSS code

correcting two errors needs to have at least 17 data qubits. In the same paper was

mentioned that [[19,1,5]] qubit should exists, but the code was not given. We have

developed probabilistic search algorithm, by which we have tried to find either 17, 18

or 19 data qubits code. The main idea of our algorithm is based on corollary 2.8.

The idea is following: To construct [[n,1,5]] code we need to find classical linear

codes C1, C2 with following parameters:

C1 = [n, k, 5] (3.47)

C⊥
2 = [n, n− k + 1, 5] (3.48)

such that C2 ⊂ C1. To find [n, k, 5] using the corollary 2.8 we need to find parity check

matrix H1 with dimensions n−k×n where all four elements subsets of matrix columns

are linearly independent. To satisfy condition (3.48) we need to construct k − 1 × n

parity check matrix H⊥
2 , where again no four columns of H⊥

2 are linearly dependent.

The more rows of particular matrix, the easier such matrix can be found. Therefore we

want to maximize min(n − k, k − 1). For odd n the maximum is reached at k = n+1
2

,

for even n the maximum is reached at either k1 = n/2 or k2 = (n+2)/2. We have used

following algorithm for these optimal values of k.

Basic Parity Check Matrix Search Algorithm

The algorithm starts with random matrix H1. Then all four element subsets of H1

columns are repeatedly checked for independence. If the linearly dependent subset

Sd is found, the algorithm tries to locate a column r among columns of Sd with the

following property. There exists a vector v′, which differ from vector of r just in few

positions and if v′ would substitute the column r, all subsets of four or less columns,

which contain column r are linearly independent. If such a column r and vector v′ are

3.3. New CSS Codes 35

Start with random H in systematic form

{

MatrixFound=true

For all column subsets S_i (|S_i|<=4)

{

if (S_i is linearly dependent)

{

MatrixFound=false

r,v = Find a column r of S_i, which alternation v won’t make

any other subset dependent and will broke dependence

of S_i; r must not be from identity part of H

if (r==null)

Change random column of S_i,

leaving H in systematic form

else

substitute v to r

}

}

}while(MatrixFound==false)

Tab. 3.1: Probabilistic algorithm searching for [n,k,5] classical code.

found the v′ is substituted to the column r. If such a column does not exists we simply

alternate one of Sd’s columns to break the linear dependence of Sd. Of course some

other dependence will occur in the second case, but we will deal with it in the next

repetition of dependency check. The algorithm is shown in table 3.1.

Systematic Form Improvement

The algorithm may be improved in such a way that we search for the code in the

systematic form. We know (see section 2.2.3) that each code is equivalent with some

systematic code and thus we do not lose any generality. But we significantly reduce the

search space of the algorithm, since first n− k columns of the matrix are fixed to form

an identity matrix. The previous algorithm was able to find several [19,10,5] codes, but

no single [17,9,5] code was found without this improvement. The improved algorithm

can find [17,9,5] in few hundreds of checking repetitions.

36 3. Basics of Quantum Error Correction (QEC)

Algorithms for finding C1 and C2

Algorithm 3.1 may be used to find separately matrices H1 and H⊥
2 , but we must comply

to the condition: C2 ⊂ C1. Two different approaches were tried:

Self Duality Method

At first we search just for H1 using algorithm 3.1 and then verify whether the obtained

code C1 complies the condition

C⊥
1 ⊂ C1. (3.49)

If this would be the true, we have done. We can pick C2 ≡ C⊥
1 . If the condition (3.49)

does not hold we start with other random check matrix H1. This approach has not

provided any result, since the condition (3.49) holds very rare.

Random Subsets Method

We have realized that there are plenty of [19,10,5] codes and in reasonably running time

such a code may be found simply by picking up a random parity check matrix. The

idea of constructing CSS code is thus following. At first, using algorithm 3.1 we find

code C1. Then we construct several (≈ 1000) random subsets of C1, with dimension

one less (9) than dimension of C1. To each random subset Cs
i we construct its dual

code Cs⊥
i and verify either Cs⊥

i does fulfill columns independence condition. If none of

Cs⊥
i fulfill the condition we start with a new random matrix H1.

We found [[19,1,5]] code using this approach to the code search. The algorithm ran

approximately 40 minutes on 550MHz CPU until the code has been found. There is

probably many more [[19,1,5]] codes, which may be found using this approach. However,

none of our algorithms was able to find smaller quantum code correcting two errors.

For n = 17, we can find enough [17,9,5] codes, but none of them comply with condition

(3.49), neither the method of random subsets have not been successful for them. The

reason why random subset method have not been successful for n = 17 is, that there is

much less [17,9,5] codes than [19,10,5] codes. Therefore it is quite improbable finding a

[17,9,5] code randomly as is required in second part of the method. Even none [17,9,5]

code have been found using the algorithm 3.1 without systematic form improvement.

For n = 18 the problem is opposite than for the case of n = 17. There is plenty of

[18,9,5] codes and it is possible to find such codes just by random guessing in reasonable

time. The problem for n = 18 is in the first part of the algorithm. Algorithm 3.1 even

with several minor improvements was not able to find any [18,10,5] code.

3.4. Syndrome Measurement Circuits 37

H1 =



1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0

0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1

0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0

0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1


Tab. 3.2: Parity check matrix H1 of found [[19,1,5]] code.

H⊥
2 =



1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1

0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1

0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1

0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0

0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1 0

0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0

0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1

0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1


Tab. 3.3: Parity check matrix H⊥

2 of found [[19,1,5]] code.

Summary

The proposed algorithm found [[19,1,5]] code and thus proved Steane’s claim in [31].

Parity check matrices of found code are shown in tables 3.2 and 3.3. The existence of

either 17 or 18 qubits CSS codes correcting two errors remains an open question.

3.4 Syndrome Measurement Circuits

In this section we will show how error-correcting quantum circuits may be constructed

directly from the parity check matrices H1 and H⊥
2 . The encoding and decoding circuits

are presented in section 4.5.

According to section 3.2.2 we need to compute syndromes H1 |c+ e〉 or respectively

syndrome H⊥
2 |c′ + e〉. To compute the desired syndrome we prepare special ancillary

qubits for each row of particular parity check matrix. To measure X error syndrome

38 3. Basics of Quantum Error Correction (QEC)

we apply CNOT gate on j-th ancilla qubit and i-th data qubit, for each H1[j, i] = 1.

Ancilla qubits act as targets of CNOT gates. After all CNOT gates are applied, each

ancilla qubit is measured in standard basis set to obtain syndrome bits. To obtain

syndrome bits of Z errors, at first Hadamard gate to each data qubit must be applied.

Then similarly, CNOTs on j-th ancilla bit and i-th data qubit are performed, for each

H⊥
2 [j, i] = 1 and ancilla bits are measured. At the end of Z errors correction procedure

Hadamard gates are re-applied to the data qubits. Circuits for found [[19,1,5]] code are

shown on figures 3.2 and 3.3.

•

Recovery

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

|0〉 �������� �������� �������� �������� ��������
NM

 S0

|0〉 �������� �������� �������� �������� �������� ��������
NM

 S1

|0〉 �������� �������� �������� �������� �������� �������� ��������
NM

 S2

|0〉 �������� �������� �������� �������� �������� �������� ��������
NM

 S3

|0〉 �������� �������� �������� �������� �������� �������� ��������
NM

 S4

|0〉 �������� �������� �������� �������� ��������
NM

 S5

|0〉 �������� �������� �������� �������� �������� ��������
NM

 S6

|0〉 �������� �������� �������� �������� �������� �������� ��������
NM

 S7

|0〉 �������� �������� �������� �������� �������� �������� �������� ��������
NM

 S8

Fig. 3.2: Circuit correcting X errors of qubit encoded in [[19,1,5]] code.

3.4. Syndrome Measurement Circuits 39

H • H

Recovery

H • H

H • H

H • H

H • H

H • H

H • H

H • H

H • H

H • H

H • H

H • H

H • H

H • H

H • H

H • H

H • H

H • H

H • H

|0〉 �������� �������� �������� �������� �������� �������� �������� ��������
NM

 D0

|0〉 �������� �������� �������� �������� �������� �������� ��������
NM

 D1

|0〉 �������� �������� �������� �������� �������� �������� �������� �������� ��������
NM

 D2

|0〉 �������� �������� �������� �������� �������� �������� ��������
NM

 D3

|0〉 �������� �������� �������� �������� �������� �������� ��������
NM

 D4

|0〉 �������� �������� �������� �������� �������� �������� ��������
NM

 D5

|0〉 �������� �������� �������� �������� ��������
NM

 D6

|0〉 �������� �������� �������� �������� �������� �������� ��������
NM

 D7

|0〉 �������� �������� �������� �������� ��������
NM

 D8

Fig. 3.3: Circuit correcting Z errors of qubit encoded in [[19,1,5]] code.

4. STABILIZER CODES

The important class of quantum codes are stabilizer codes. The stabilizer codes were

invented by Gottesman [32]. These codes are useful for building quantum fault tolerant

circuits. Many quantum codes, as Shor code or CSS codes can be described in Stabilizer

formalism. Moreover, the stabilizer formalism provides more compact description of the

codes than already presented enumeration of code words, especially for larger codes. To

properly understand stabilizer codes we first introduce stabilizer formalism. It provides

powerful method for understanding a wide class of operations in quantum computation.

It enables us to build compact coding and decoding circuits for [[19,1,5]] code. Methods

for implementation of quantum operations on the data encoded in ECC s are presented.

4.1 The Formalism of Stabilizer Codes

The fundamental element of stabilizer formalism is the Pauli group Gn on n qubits.

The Pauli group for one qubit is defined to consists of all Pauli matrices, together with

multiplicative factors ±1,±i:

G1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ} (4.1)

The set of matrices G1 forms a group under the operation of matrix multiplication. In

general, group Gn consists of all tensor products of Pauli matrices on n qubits again

with multiplicative factors ±1,±i.
The subgroups of Gn can define a stabilizer code. As an example consider the Shor

code. Both vectors |0L〉, |1L〉 and also their arbitrary superposition α |0L〉+ β |0L〉 are

stabilized by all operators M1 through M8 from table 4.1. The fact that an operator

Mi stabilizes a state |ψ〉 can be formally expressed as

Mi |ψ〉 = |ψ〉 . (4.2)

Operators M1 through M8 are not all operators that stabilize Shor code. For example

the operatorM = Z⊗I⊗Z⊗I⊗I⊗I⊗I⊗I⊗I = Z1Z3 also stabilizes all codewords from

Shor code. We can get the operator M from operators M1, . . . ,M8 as M = M1M3. All

operators that stabilize the Shor code constitute a subgroup S of Gn and the operators

4.1. The Formalism of Stabilizer Codes 41

M1 through M8 constitute a basis set of S. Moreover, it can be shown that codewords

of Shor code are the only vectors stabilized by subgroup 〈M1,M2, . . . ,M8〉. We now

define stabilizer codes more precisely:

Definition 4.1. Let S be a subgroup of Gn. Define VS to be the set of all n qubits

states stabilized by every element of S. The VS is the vector space stabilized by S and

the S is said to be the stabilizer of VS.

The VS corresponding to stabilizer S is a subspace of n-qubits state space1. To show

this, we need to verify that for all |ψ1〉 , |ψ2〉 ∈ VS and a1, a2 ∈ C holds a1 |ψ1〉+a2 |ψ2〉 ∈
C. This is true because for all s ∈ S

s(a1 |ψ1〉+ a2 |ψ2〉) = a1s(|ψ1〉) + a2s(|ψ2〉) = a1 |ψ1〉+ a2 |ψ2〉 . (4.3)

Moreover, VS is an intersection of subspaces fixed by particular operators from S. Not

every stabilizer S stabilizes non-trivial vector subspace of n-qubits vector space. Two

necessary conditions that must hold are

a) −I /∈ S
b) all operators of S commute

Consider that a converse of a) or b) would hold. If there would be −I ∈ S then for

each |ψ〉 ∈ VS must hold −I |ψ〉 = |ψ〉 what is true only if VS = ∅. Next suppose that

there would be anticommuting2 operators M,N in S, what means that MN = −NM .

Then for all |ψ〉 ∈ S we get

MN |ψ〉 = M |ψ〉 = |ψ〉 (4.4)

NM |ψ〉 = N |ψ〉 = |ψ〉 (4.5)

Since MN = −NM and on VS also MN = NM , the VS needs to be empty.

1 The alternative notation for stabilizer code corresponding to stabilizer S is C(S), C(S) ≡ VS
2 Arbitrary operators of Gn either commute or anticommute.

M1

M2

M3

M4

M5

M6

M7

M8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Z Z I I I I I I I

I Z Z I I I I I I

I I I Z Z I I I I

I I I I Z Z I I I

I I I I I I Z Z I

I I I I I I I Z Z

X X X X X X I I I

I I I X X X X X X

Tab. 4.1: The generator of Shor code stabilizer.

42 4. Stabilizer codes

4.2 Generators of Stabilizer Codes

To specify a stabilizer S of a code VS we do not need to enumerate all elements of S. It

is sufficient to name the independent set of generators for S, or its basis set. However,

determining either given set of generators is independent or not is time consuming

without more sophisticated approach.

The concept of generators check matrices gives us clever tool for stabilizers analysis.

Consider the stabilizer S = 〈g1, . . . , gl〉. The check matrix corresponding to S is a

l × 2n matrix whose rows correspond to the generators g1 through gl. The i-th row of

the check matrix is constructed as follows: If gi contains I on the j-th qubit then the

matrix contains 0 in j-th and n + j-th columns. If gi contains an X on the j-th qubit

then the element in j-th column is 1 and in n+j-th column is 0. If it contains Z on j-th

qubit then j-th column contains 0 and n+ j-th element contains 1. And in the last, if

gi contains operator Y on j-th qubit then both j-th and n+ j-th columns contain 1.

Example 4.2. The check matrix to the stabilizer generator from table 4.1 is:

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


(4.6)

Note that check matrix does not contain any information about overall multiplicative

factor of gi. We denote r(g) to represent a row representation of operator g from check

matrix, r(g) is 2n elements binary row vector. Denote following 2n× 2n matrix as Λ:

Λ =

[
0n×n In×n

In×n 0n×n

]
. (4.7)

Following two lemmas help us to determine either given set of generators is inde-

pendent and commuting.

Lemma 4.3. Let g, h be operators from Gn. The g and h commute if and only if

r(g)Λr(h)T = 0. Therefore the generators of stabilizer S =< g1, . . . , gl > with corre-

sponding check matrix M commute if and only if MΛMT = 0.

Lemma 4.4. Let S =< g1, . . . , gl > be such that −I is not an element of S. The

generators gi, i ∈ {1, . . . , l} are independent if and only if the rows of the corresponding

check matrix are linearly independent.

4.2. Generators of Stabilizer Codes 43

Previous lemmas give us useful mechanism for determining suitable generators of

a stabilizer. Following proposition looks simple, but is surprisingly useful in error-

correction procedure of stabilizer codes.

Proposition 4.5. Let S be a stabilizer generated by l independent generators {g1, . . . , gl}
and satisfies −I /∈ S. Fix i in the range 1, . . . , l. Then there exists g ∈ Gn such that

ggig
† = −gi and for all j 6= i ggjg

† = gj.

From lemma 4.4 following proposition can be inferred:

Proposition 4.6. Let S =< g1, . . . , gn−k > be a subgroup of Gn, such that −I /∈ S

and g1 through gn−k are independent commuting generators. Then VS is 2k dimensional

subspace of n-qubit state space.

This can be intuitively seen as each operator from Gn has two eigen values ±1. The

state vectors from the code are eigen vectors with eigen value +1. Moreover, a subspace

with dimension 2n−1 corresponds to each operator’s eigen value. Since the codewords

are +1 eigen vectors of all generators and generators are independent the each additional

generator shrinks the dimension of code by factor 1/2. Therefore the dimension is 2n−l.

The formal proofs of propositions 4.6 and 4.5 can be found in appendix.

4.2.1 Quantum Dynamics Using Stabilizer Formalism

Suppose that we have encoded data in the stabilizer code C(S) with stabilizer S. The

important question is how does the stabilizer evolve, if the codewords are subjected to

unitary operator UL. Suppose the logical quantum state |ψu〉 is encoded in the codeword

|ψc〉 from code C(S) and we would like to perform unitary operator UL on encoded state

|ψu〉. The one way how we can handle this task is to decode the codeword |ψc〉 back to

state |ψu〉, perform the operator |ψu〉 → UL |ψu〉 and encode the state UL |ψu〉 back to

the code C(S):

UL |ψu〉
code→ |ψ′c〉 (4.8)

The alternative solution of this problem would be applying the operator UL on encoded

data. Suppose that there would be an operator U acting on codewords of C(S) such

that

U |ψc〉 = |ψ′c〉 , (4.9)

for all |ψc〉 ∈ C(S). Obviously the alternative method is theoretically3 simpler and also

it protects the data in encoded form for the whole time of computation. In the first

3 It does not need to be straightforward to obtain U from UL.

44 4. Stabilizer codes

approach the data became unprotected for a while and a possible error during that time

would be uncorrectable.

What is the stabilizer of the code after the unitary operator U acted on the code

word? Let |ψ〉 be any element of VS. Then for any element g ∈ S,

U |ψ〉 = Ug |ψ〉 = UgU †U |ψ〉 , (4.10)

thus the state U |ψ〉 is stabilized by operator UgU †. The following proposition follows

from this analysis:

Proposition 4.7. Let S be the stabilizer corresponding to state space VS. Then the vec-

tor space UVS ≡ {U |ψ〉 | |ψ〉 ∈ VS} is stabilized by the stabilizer USU † ≡
{
UgU †|g ∈ S

}
.

Moreover, if the S has the generators {g1, . . . , gl}, then the generators of USU † are{
Ug1U

†, . . . , UglU
†}.

Example 4.8. Suppose we have a stabilizer for Steane code and that the Hadamard

gate is applied to first qubit of codeword. Since

H1I1H
†
1 = I1; H1X1H

†
1 = Z1; H1Y1H

†
1 = −Y1; H1Z1H

†
1 = X1, (4.11)

the resulting state will be stabilized by the stabilizer which is obtained from the initial

stabilizer by altering operators X1, Y1, Z1 to operators Z1,−Y1, X1 respectively.

Unfortunately, not all unitary operators U map elements of Gn to itself under con-

jugation. Important example of such gate is π/8 gate. The π/8 gate T is defined

as:

T =

[
1 0

0 e
iπ
4

]
= e

iπ
8

[
e−

iπ
8 0

0 e
iπ
8

]
(4.12)

We can easily calculate the effect of π/8 gate on Pauli matrices:

TZT † = Z; TXT † =
X + Y√

2
, (4.13)

and therefore π/8 gates cannot be easily used with stabilizer codes. Denote by N(Gn)

the set of unitary matrices U , such that UGnU = Gn. It was shown in [29, 1] that all

matrices from N(Gn) can be generated from Hadamard gate, phase4 gate and CNOT

gate.

4 Phase gate is defined by matrix

[
1 0

0 i

]
.

4.3. Correcting Errors in Stabilizer Codes 45

4.3 Correcting Errors in Stabilizer Codes

Suppose C(S) is a stabilizer code with stabilizer S. We denote N(S) a subset of Gn,

which is defined to consists of all elements E ∈ Gn such that EgE† ∈ S for all g ∈ S.

Following theorem specifies the correction power of C(S).

Theorem 4.9. Let S be the stabilizer for a stabilizer code C(S). Suppose {Ej} is a

set of operators in Gn such that E†
jEk /∈ N(S) − S for all j and k. Then {Ej} is a

correctable set of errors for the code C(S).

Proof of theorem 4.9 can be found in [1] (Theorem 10.8). The error correction

procedure of [[n, k]] stabilizer code with stabilizer generators g1, . . . , gn−k is following:

Each generator g1 through gn−k is measured to obtain error syndromes β1, . . . , βn−k,

βi ∈ {+1,−1}. If no error have occurred, then all βi = +1. On the other hand, if some

βj is equal to −1 we need to change encoded state in such a way that it remains in

the same eigen space of all βi, i 6= j and the eigen space of gj is changed to +1 eigen

space. This can be easily done using the result of proposition 4.5. In chapter 3 we have

shown different error-correction procedure for CSS codes and thus this schema is new

correction alternative for CSS codes.

4.4 Construction of Stabilizer Codes

In this section we show how the stabilizer formalism can be used for construction of

quantum codes. The stabilizers for CSS codes will be presented. Also stabilizer for

5-qubit code will be shown. It is the smallest possible code correcting arbitrary errors

on single qubit.

4.4.1 Standard Form of Stabilizer Codes

There are more possible ways how to choose generators of stabilizer S. So called stan-

dard form of a stabilizer code is an useful tool for further analysis. It can be shown

that check matrix of stabilizer code C(S) can be chosen in the form

r{
n− k − r{

[r︷︸︸︷
I

0

n−k−r︷︸︸︷
A1

0

k︷︸︸︷
A2

0

∣∣∣∣∣
r︷︸︸︷
B

D

n−k−r︷︸︸︷
0

I

k︷︸︸︷
C

E

]
, (4.14)

where r is a rank of the X part of the check matrix. More details about standard

stabilizer form may be found in [29, 1].

46 4. Stabilizer codes

4.4.2 Logical Operators for Stabilizer Codes

Suppose we have a stabilizer S such that −I /∈ S and S has n − k independent and

commuting generators g1, . . . , gn−k. The vector space VS consists of 2k different vectors.

We would like to pick up the k elements basis sets for logical encoded qubits. The

one possible way how to do it is following: we choose operators Z̄1, . . . , Z̄k ∈ Gn such

that g1, . . . , gn−k, Z̄1, . . . , Z̄k forms independent and commuting set. The Z̄j operator

plays the role of a logical Pauli Z operator on j-th logical qubit. Recall that the state

|0〉 is eigenvector of Z with eigenvalue +1 and the state |1〉 is eigenvector of −Z also

with eigenvalue +1. Therefore Z stabilizes state |0〉 and −Z stabilizes state |1〉. So

the logical computational basis state |x1, . . . , xk〉L is therefore defined as the state with

stabilizer 〈
g1, . . . , gn−k, (−1)x1Z̄1, . . . , (−1)xkZ̄k

〉
. (4.15)

If the operators g1, . . . , gn−k are given in standard form (4.14),then the check matrix

corresponding to the k encoded Z̄ operators can be defined as

Gz = [

r︷︸︸︷
0

n−k−r︷︸︸︷
0

k︷︸︸︷
0 |

r︷︸︸︷
AT2

n−k−r︷︸︸︷
0

k︷︸︸︷
I]. (4.16)

It is clear that these Z̄ operators commute with each other since they consist only

from Z operators. The commutativity of Z̄ operators with generators (4.14) can be

checked using the slight modification of lemma 4.3. The commutativity follows from

the equation:

I.(AT2)T + A2.I = A2 + A2 = 0 (4.17)

Since no X operators appear in Z̄, the independence of Z̄ from first r generators of

stabilizer (4.14) is obvious. The independence from the set of remaining n − k − r

generators follows from the appearing of identity matrix in the check matrix for those

n− k− r operators and the lack of any corresponding elements in the check matrix Gz.

How are X̄j operators defined? Suppose we have a logical state

|x1, . . . , xk〉L (4.18)

and we wish to apply X̄j on it and transform it to

|x1, . . . , xj−1, xj ⊕ 1, xj+1, . . . , xk〉L . (4.19)

The state (4.18) is defined to be stabilized by the stabilizer

Sj1 =
〈
g1, . . . , gn−k, (−1)x1Z̄1, . . . , (−1)xkZ̄k

〉
. (4.20)

4.4. Construction of Stabilizer Codes 47

g1

g2

g3

g4

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

X Z Z X I

I X Z Z X

X I X Z Z

Z X I X Z

Z̄

X̄

�
�
�
�
�
�
�
�

Z Z Z Z Z

X X X X X

Tab. 4.2: Stabilizer generators and operators on logical qubit for five qubit code.

We want to change this stabilizer to stabilize the state (4.19) and thus transform it to

the form

Sj2 =
〈
g1, . . . , gn−k, (−1)x1Z̄1, . . . , (−1)xj+1Z̄j, . . . (−1)xkZ̄k

〉
. (4.21)

In section 4.2.1 we showed that after action of unitary operator U on the state stabilized

by operator S, stabilizer S changes to USU †. Therefore the operator X̄j should be

defined as operator on n qubits that comply the equation

X̄jSj1X̄
†
j = Sj2. (4.22)

Moreover, X̄j should commute with all gi, i ∈ {1, . . . , n− k} and Z̄i, (i 6= j) and anti-

commute with Z̄j.

Again if we suppose that generators of stabilizer are in the form (4.14),then the

check matrix corresponding to the k encoded X̄ operators is

Gx = [

r︷︸︸︷
0

n−k−r︷︸︸︷
ET

k︷︸︸︷
I |

r︷︸︸︷
CT

n−k−r︷︸︸︷
0

k︷︸︸︷
0]. (4.23)

It can be shown (similarly as for Z̄ operators) that operators X̄ defined in (4.23) fulfill

all independence, commuting and (4.22) conditions.

Note that the form of generators and Z̄, X̄ operators is not necessary the most

convenient. Consider the five qubit code which generators and Z̄, X̄ operators are given

in table 4.2. The generators and logical operators obtained by standard constructions

are in table 4.3. We can see that first table is more synoptic, since Z̄ = Z1Z2Z3Z4Z5,

X̄ = X1X2X3X4X5 and g2 through g4 can be obtain by cyclic shift of g1. Of course the

terms given in table 4.3 are equivalent to the former.

4.4.3 Stabilizers for CSS Codes

Now we will show that CSS codes are also stabilizer codes. The check matrix corre-

sponding to the generator of stabilizer of CSS code defined by classical codes C1, C2 is

48 4. Stabilizer codes

g1

g2

g3

g4

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Y Z I Z Y

I X Z Z X

Z Z X I X

Z I Z Y Y

Z̄

X̄

�
�
�
�
�
�
�
�

Z Z Z Z Z

Z I I Z X

Tab. 4.3: Stabilizer generators and operators on logical qubit for five qubit code in standard

form.

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

g12

g13

g14

g15

g16

g17

g18

Z̄

X̄

∣∣

X I I I I I I I I I I X X X X X I X X

I X I I I I I I I X I I X X I I X X X

I I X I I I I I I X X X X I I X X X X

I I I X I I I I I X I I X X X X I X I

I I I I X I I I I I X I I X X X X X I

I I I I I X I I I X I X I X I X X X I

I I I I I I X I I I I X I I X I I X X

I I I I I I I X I I X X X X I I X X I

I I I I I I I I X I X I I I I X I X X

Z I I I I I I I I I Z Z Z I I I I Z I

I Z I I I I I I I I Z Z Z Z I I I I Z

I I Z I I I I I I Z I Z I Z I Z Z Z I

I I I Z I I I I I I Z I Z Z Z I Z I Z

I I I I Z I I I I Z I Z Z Z Z I Z I I

I I I I I Z I I I Z I I I I I I Z Z Z

I I I I I I Z I I I I I Z Z I Z Z Z I

I I I I I I I Z I Z Z Z I Z Z Z I I I

I I I I I I I I Z I I Z Z I Z Z Z Z Z

Z Z Z I I I Z I Z I I I I I I I I I Z

I I I I I I I I I X I I X X I I X X X

Tab. 4.4: Stabilizer generators and operators on logical qubit for [[19,1,5]] code.

4.4. Construction of Stabilizer Codes 49

following:

M =

[
H(C⊥

2)

0

∣∣∣∣∣ 0

H(C1)

]
. (4.24)

To show that M defines a stabilizer we must first verify whether its generators commute

with each other. Using the lemma 4.3 we must show that MΛMT = 0. But we know

that

MΛMT = H(C⊥
2)H(C1)

T = G(C2)
TH(C1)

T = (H(C1)G(C2))T = 0, (4.25)

where the last equality holds since C2 ⊂ C1. Now we will show that arbitrary generator

of this stabilizer stabilizes states of CSS(C1, C2). We show this for each codeword

|ψq〉 ∈ CSS(C1, C2)

|ψq〉 =
2k1−k2∑
i=0

ci |xi + C2〉 ,

2k1−k2∑
i=0

|ci|2 = 1

 . (4.26)

At first suppose that a generator gi corresponding to the row of H(C⊥
2) from M acts

on |ψq〉.

gi |ψq〉 =
2k1−k2∑
i=0

ci√
|C2|

∑
y∈C2

|xi ⊕ y ⊕ rx(gi)〉 , (4.27)

where rx(gi) denotes n-elements binary vector consisting of first n components of r(gi)
5.

It follows that rx(gi) ∈ C2, because rx(gi) is a row from matrix H(C⊥
2). Therefore

{y + rx(gi)|y ∈ C2} ≡ C2 and it follows that

gi |x+ C2〉 = |x+ C2〉 . (4.28)

Now consider a stabilizer generator gi corresponding to the row of H(C1) from M .

We denote rz(gi) an n-elements binary vector consisting of last n components of r(gi).

Using the ideas from section 3.2.2, we can rewrite codeword |ψq〉 as

|ψq〉 = H

2k1−k2∑
i=0

ci√
2n/|C2|

∑
z′∈C⊥2

(−1)xiz
′ |z′〉

 . (4.29)

Application of gi on the state |ψq〉 changes it to the state

H

2k1−k2∑
i=0

ci√
2n/|C2|

∑
z′∈C⊥2

(−1)xiz
′ |z′ + rz(gi)〉

 , (4.30)

5 r(gi) is defined in section 4.2.

50 4. Stabilizer codes

because Hadamard gate changes Z operators from gi to act as X operators. It follows

that rz(gi) ∈ C⊥
1 , because rz(gi) is a row from matrix H(C1). Since C⊥

1 ⊂ C⊥
2 , we have

rz(gi) ∈ C⊥
2 . Again we use the argument that

{z′ + rz(gi)|z′ ∈ C⊥
2 } ≡ C⊥

2 (4.31)

to show that formulas in (4.29) and (4.30) are identical and thus gi |ψq〉 = |ψq〉.
We have shown that stabilizer defined by check matrix M (4.24) stabilizes all code-

words from CSS(C1, C2). From proposition 4.6 we know that VS is a 2n−l subspace of

n-qubit state space. In our case the following holds:

l = #rows(H(C1)) + #rows(H(C⊥
2)) = n− k1 + k2, (4.32)

and thus VS should be a 2k1−k2 dimensional subspace of n-qubit state space. The

CSS(C1, C2) has exactly 2k1−k2 dimensions and therefore the given stabilizer stabilizes

just CSS(C1, C2) and nothing else. Stabilizer of [[19,1,5]] code with its logical operators

are shown in table 4.4. It can be also shown that the correction procedure for stabilizer

codes (from section 4.3) corrects exactly the same errors as proposed by correction

procedure in section 3.2.2.

4.5 Encoding and Decoding Stabilizer Codes

If the stabilizer of the code is known, then construction of encoding circuit is straight-

forward. The process of encoding may be written as

|c1 . . . ck〉 →

(∑
M∈S

M

)
X̄c1

1 · · · X̄ck
k |0 . . . 0〉 (4.33)

= (I +M1) · · · (I +Mn−k)X̄
c1
1 · · · X̄ck

k |0 . . . 0〉 , (4.34)

where M1 through Mn−k are generators of stabilizer S and X̄1 through X̄k are encoded

X operators for k logical qubits. To encode k qubit state to stabilizer code we only need

to care about encoding of basis states |c1 . . . ck〉. At first we need to encode operators

X̄i. Since the standard form of X̄’s ensures that each X̄i operates on a single one of last

k qubits, we can substitute |ci〉 for the (n−k+i)th input qubit and apply X̄i conditioned

on it6. This produce the state X̄c1
1 · · · X̄ck

k |0 . . . 0〉. We can see that X̄ operators act as

Z operators on first r qubits and as X operators on the next n− k− r qubits. Since Z

operator acts trivially on |0〉, we can ignore Z parts of each X̄i, leaving just the CNOTs

in this part of the encoder. The first r qubits remain automatically in the state |0〉 after

6 Application of X̄i is controlled by (n− k + i)th qubit.

4.5. Encoding and Decoding Stabilizer Codes 51

this step of encoding. Now we must to encode operators (I +Mi). Note that we must

just encode the operator (I+Mi), only if Mi contains some X or Y operators. Suppose

that Mi contains just Z operators. Since Mi commutes with all other generators and

every X̄j we can commute application of operator (I +Mi) to act directly on the state

|0 . . . 0〉. Since Z operators of Mi act trivially on |0〉, we can ignore any Mi in encoding,

which is just tensor product of Z operators. We need to care about first r stabilizers

which contain X operators. The standard form of the first r generators of stabilizer

applies single bit flip at first r qubits. Therefore after the application of (I +Mi); the

first r qubits will be in state |0〉+ |1〉. Therefore we apply the Hadamard transform to

the first r qubits. Then we simply apply Mi, omitting Xi, (for i = 0 . . . r) conditioned

on i-th qubit. We must specially handle with the case when Mi contains operator Zi.

Zi introduces minus sign if i-th qubit is |1〉 and acts trivially on |0〉. Therefore we can

simply apply Z gate after Hadamard gate for all Mi that contain operator Zi. The

encoding circuit for [[19,1,5]] code is shown on figure 4.1. It is based on stabilizer from

the table 4.4. The generators of stabilizer from the table 4.4 which contain just X

operators are in the standard form. Also X̄ and Z̄ operators are in standard form and

therefore the encoding circuit can be obtained using the previous rules, since operators

which contain just Z operators are not involved in the encoding procedure. We can

decode an encoded qubit by performing the encoding circuit in reverse. More details

on stabilizer codes encoding/decoding can be found in [29] in fourth chapter.

52 4. Stabilizer codes

|0〉 H •
|0〉 H •
|0〉 H •
|0〉 H •
|0〉 H •
|0〉 H •
|0〉 H •
|0〉 H •
|0〉 H • |φ〉L
|0〉 �������� �������� �������� �������� ��������
|0〉 �������� �������� �������� ��������
|0〉 �������� �������� �������� �������� ��������
|0〉 �������� �������� �������� �������� ��������
|0〉 �������� �������� �������� �������� �������� �������� ��������
|0〉 �������� �������� �������� �������� ��������
|0〉 �������� �������� �������� �������� �������� �������� ��������
|0〉 �������� �������� �������� �������� �������� ��������
|0〉 �������� �������� �������� �������� �������� �������� �������� �������� ��������
|φ〉 • �������� �������� �������� �������� ��������

Fig. 4.1: Encoding circuit for [[19,1,5]] code.

5. FAULT-TOLERANT QUANTUM COMPUTATION

We have shown how to encode qubits in data blocks to protect them from errors oc-

curring in transition media. A concept for performing quantum operations on the data

was presented in section 4.2.1. We will be interested in the operators U , which do not

modify the stabilizer of the code (USU † = S). For instance, logical operators X̄, Z̄ of

stabilizer codes satisfy this condition. Also many other operators do not change stabi-

lizer of the code. Moreover, we require that operator U is implemented fault-tolerantly.

We define the fault-tolerance of a quantum circuit to be the property that if only k

components in the procedure (circuit) fails then the failure causes error at most on k

qubits in each encoded block of output from the procedure. By component we mean

any of the elementary operations used in the circuit: noisy gates, noisy measurements,

noisy quantum wires and noisy quantum state preparation.

Example 5.1. Application of CNOT gate on two qubits from the same data block is

not a fault tolerant operation. Suppose that X error occurred on the control qubit just

before the application of CNOT. If the unitary operator for CNOT gate is denoted by

UC , then the effective action of the circuit is UCX1 = UCX1UCU
†
C = X1X2UC . It looks

like the UC was applied correctly on error-free input and then X error occurred on both

target and control bits. Initially single error in input results in two correlated errors in

output from the gate.

If the CNOT would be applied on the qubits from two different data blocks the

implementation would be fault-tolerant since the output would have just single error in

each data block.

Useful observation is that the quantum operation is automatically fault-tolerant if

it can be implemented in bitwise manner. The property, that an encoded gate can be

implemented in bitwise manner is called transversality. For example recall Steane code

and its logical operators X̄, Z̄,

X̄ = X1 ⊗X2 ⊗X3 ⊗X4 ⊗X5 ⊗X6 ⊗X7

Z̄ = Z1 ⊗ Z2 ⊗ Z3 ⊗ Z4 ⊗ Z5 ⊗ Z6 ⊗ Z7. (5.1)

Therefore both X̄ and Z̄ can be implemented transversally and so fault-tolerantly.

Moreover, also transversal application of Hadamard gate to each qubit implements

54 5. Fault-Tolerant Quantum Computation

Hadamard gate on encoded qubit. This observation comes from the fact, that Hadamard

gate can be defined as a gate which exchanges X and Z operators under conjugation:

HXH† = Z HZH† = X (5.2)

Since H̄ defined as H̄ = H1H2H3H4H5H6H7 satisfies conditions (5.2) for X̄,Z̄,H̄ it acts

as Hadamard gate on encoded qubit.

5.1 The Rules of Fault-Tolerant Computation

To perform fault-tolerant computation (FTC) we need to ensure several rules to avoid

error accumulation in the data. These laws are described in more details in [33, 34, 35].

The first rule: Do not use the same qubit twice. A peculiarly quantum me-

chanical feature is that, while even a classical CNOT gate propagate bit flip errors

from source to target, for quantum gates we must also worry about phase errors, which

propagate in opposite direction, from the target to the source. Therefore in quantum

computation we need to be especially careful about propagation of errors. Example of

this rule may be shown on circuit correcting X errors of [[19,1,5]] code (figure 3.2). This

circuit does not comply to the first rule of FTC, since each ancilla qubit is used several

times with different encoded qubits and a single phase error in ancilla qubit would prop-

agate to encoded qubits and cause multiple correlated errors in encoded data. The bit

flip detection of [[19,1,5]] code should be made fault tolerantly as described in section

5.2.

The second rule: During the error detection copy the error, not the data.

This rule is crucial and we cannot perform consistent computation without fulfillment

of the second law. Suppose a circuit design for measuring first syndrome bit for Steane

code on figure 5.1 a). In order to fulfill the first rule of FTC we use four ancilla

qubits, each initially in the state |0〉 and CNOT gates on particular data qubits and

ancilla qubits are applied as shown on the figure. Then each ancilla qubit would be

measured separately in computational basis and according to the parity of these four

measurements’ outcomes would be decided whether an error occurred. The problem

is that from such measurements we would have learnt not just the parity but also the

values of all four data qubits, which acted in CNOT gates. Suppose that the encoded

qubits were in the state α |0L〉 + β |1L〉 and the outcome of measurement of ancilla

qubits would be |1010〉. The initial state after the measurements therefore collapse to

the state

α |1011010〉+ β |0101010〉 , (5.3)

5.1. The Rules of Fault-Tolerant Computation 55

α |0〉

+ •
•

β |1〉 •
•

|0〉 �������� NM

|0〉 ��������
NM

|0〉 ��������
NM

|0〉 ��������
NM

α |0〉

+ •
•

β |1〉 •
•

|0〉 ��������
{M0,M1}

|0〉 ��������
|0〉 ��������
|0〉 ��������

a) b)

Fig. 5.1: Detection of the first syndrome bit of Steane code; a) Incorrect syndrome detection

destroying encoded state; b) correct fault tolerant syndrome bit detection.

what definitely destroys initial encoding in Steane’s code. The better approach would

be to make a quantum measurement of all four ancilla qubits with measurement com-

ponents:

M0 =
∑

vi∈{0,1}4,wt(vi)≡0 mod 2

|vi〉 〈vi| (5.4)

M1 =
∑

vi∈{0,1}4,wt(vi)≡1 mod 2

|vi〉 〈vi| , (5.5)

as shown on figure 5.1 b). This measurement really detects just the error (the parity)

and does not corrupt encoded data. The measurement described with components

(5.4)-(5.5) is quite complicated as it involves measuring four qubits simultaneously.

The single qubits measurements are easier performed experimentally. The complexity

of final measurement using more ancilla qubits can be transformed to the complexity of

preparation ancilla qubits in special initial state. This concept is described in section

5.2.1.

The third rule: Verify when you encode a known quantum state. The error

during preparation of known state is critical to subsequent computation. Therefore

every time the preparation of known state is done verification measurement should

follow, to ensure the correctness of the encoding.

The fourth rule: Repeat the operations. This rule should be fulfilled with all op-

erations, but most important application of this rule is to the measurement of the error

syndrome. An error during syndrome detection can both damage data and result in

56 5. Fault-Tolerant Quantum Computation

erroneous state after the recovery. If we mistakenly accept the measured syndrome and

act accordingly, we will cause further damage instead of correcting the error. Therefore,

the high confidence about detected syndrome is very important. To achieve sufficient

confidence, we can repeat the syndrome detection several times, as fourth rule says.

The fifth rule: Use the right code. The choice of particular code has to be

considered carefully. Different codes are more or less effective against particular type

of errors. We should ensure that quantum gates could be applied on the data encoded

in a code efficiently adhering to previous rules of FTC.

It turns out that arbitrary long reliable quantum computation can be achieved

even with faulty quantum gates, provided that the error probability per gate is below a

certain constant threshold (≈ 10−4). The methods which enable arbitrary long quantum

computation use several levels of encoding of so known concatenate codes [36]. These

methods give us promising results but their scale up is much higher than of some simpler

codes. To practically use concatenate codes we would need to have quantum computers

consisting of many (exponential from # of encoding levels) physical qubits.

5.2 Fault Tolerant Error Detection of CSS Codes

The syndrome detection for CSS codes consists of application of CNOT gates with

control qubits corresponding to 1’s in parity check matrices of C1 and C⊥
2 . But the

basic concept as presented in section 3.4 is not fault tolerant. It violates the third rule

of FTC. The fault of a single gate may cause an error on all data qubits which access

the same ancilla qubits.

5.2.1 Fault Tolerant Syndrome Bit Detection

Shor [33] proposed fault tolerant detection of each syndrome bit. For each syndrome

bit we need so known cat state

|cat〉 =
1√
2
(|0...0〉+ |1...1〉), (5.6)

which after the application of Hadamard gate transforms to the state, which is an equal

superposition of all even weighted states:

H⊗k |cat〉 = 2
1−k
2

∑
even|x〉

|x〉 (5.7)

Instead of multiple CNOTs acting on one ancilla qubit, in this scope each CNOT is

targeted to different ancilla qubit. After application of CNOT gates, each ancilla qubit

is measured in standard basis. Fault tolerant circuit is shown on figure 5.2

5.2. Fault Tolerant Error Detection of CSS Codes 57

7 0 4 5 6encoded

qubit
/ • • • •

H ��������
NM

 A1

H ��������
NM

 A2

|cat〉 H ��������
NM

 A3

H ��������
NM

 A4

(5.8)

Fig. 5.2: Fault tolerant syndrome bit detection for Steane code.

If all CNOT gates acted faultlessly the ancilla qubits rest in the state which is equal

superposition of all even weighted or odd weighted states, depends on the parity of

qubits being the control qubits for CNOT gates. Therefore after the measurement of

each ancilla qubit we do not get any information about qubits being measured. Only

information we get is a parity of particular data qubits acted in CNOT gates. If k of

the gates in syndrome detection would fail, then the error just to k data qubits would

be introduced. The xor of measured values Ai forms desired syndrome bit.

syndrome bit = A1 ⊕ A2 ⊕ A3 ⊕ A4 (5.9)

5.2.2 Preparation of cat State

The cat state must be also prepared precisely, since errors in cat state may propagate to

the data and destroy it as mentioned in the third rule of FTC. To fulfill fault tolerance of

cat state we introduce several verification qubits, which will detect X errors in prepared

cat state. The amount of verification qubits depends on the measure of credibility we

require from the cat state. In Steane code we need to ensure that two or more errors in

the cat state occur with the probability O(ξ2), where ξ is a probability of gate failure.

To ensure this, one verification qubit is sufficient. We perform two CNOT operations

taking verification bit as a target and first and last qubit of cat state as control qubits.

The last step of verification is a measurement of verification qubit in standard base.

If the measurement results as |1〉 we repeat the preparation procedure. In the case of

[[19,1,5]] code, we need to ensure that three or more X errors occur with probability

O(ξ3). The rows of H1 and H⊥
2 do not have same amount of one’s as Steane code

parity check matrices therefore cat state will have different amount of qubits for each

syndrome bit. The preparation of cat state will depend on the syndrome bit we want to

detect. For simplicity we can always prepare the biggest cat state needed and then use

just as much qubits as are needed for particular syndrome detection. To ensure that k

qubits cat state has three or more X errors with the probability O(ξ3) we introduce k

verification qubits. To each verification qubit we apply CNOT of two neighbor qubits

58 5. Fault-Tolerant Quantum Computation

from cat state. After the application of all CNOT gates, all verification qubits are

measured in standard base. If any of verification measurements would results with |1〉,
whole preparation will be repeated. By slightly complex analysis one can verify that

any pair of failures in the preparation or verification part of the circuit, which result

in X errors of cat state will be detected. Five qubit cat state preparation is shown on

figure 5.3.

|0〉 H • •
|0〉 �������� • •
|0〉 �������� • •

|00000〉
+ |11111〉

|0〉 �������� • •
|0〉 �������� •

|0〉 �������� ��������
NM

 C0

|0〉 �������� ��������
NM

 C1

|0〉 �������� ��������
NM

 C2

|0〉 �������� ��������
NM

 C3

|0〉 �������� ��������
NM

 C4

_ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _
Verification Circuit

Fig. 5.3: Preparation circuit with verification part for the ancilla consisting of five qubits:

The verification is more complex and ensures that three or more X errors occur

with probability O(ξ3).

However, several Z errors can occur in the cat state prepared in this way. But the

Z errors do not pass through CNOT gates from target qubits to control qubits and

thus these errors could not propagate to the qubits of encoded data. Of course these Z

errors may cause that incorrect syndrome bit will be obtained. The probability that the

Z error from cat preparation will modify particular syndrome bit is approximately mξ

where m is sum of state preparations,Hadamard gates and CNOT gates in preparation

circuit, for the case shown on previous figure m = 25.

5.2.3 Ensuring Correct Syndrome Detection

The potential danger of introducing more errors to the data qubits resides in the pos-

sibility of incorrect syndrome detection due to failure of several measuring gates. After

incorrect syndrome detection we would try to correct wrong data qubits and thus would

introduce additional errors. To diminish the probability of getting wrong syndrome bit

to O(ξ2) we may detect each syndrome bit independently several times and as a result

we take a majority of these detections. Approach of multiple detections inquire prob-

5.2. Fault Tolerant Error Detection of CSS Codes 59

ability of O(ξ2), but the disadvantage is that it provides more places where errors to

the data qubits may be introduced. One must take care also about possible errors in-

troduced to the data in the middle of syndrome detection procedure. This error would

not be detected in syndrome bits obtained before the error occurred and thus incorrect

syndrome would be determined.

The solution to this problem is with additional usage of classical code [29, 37]. We

can encode n − k syndrome bits using a classical [m,n − k, d′] linear code CS with

generator matrix GS and parity check matrix HS. To determine which data qubits we

need to measure to obtain encoded syndrome bits we use a matrices GSH1 and GSH
⊥
2

instead of matrices H1 and H⊥
2 . The code CS is used just for the error detection, the

automatic error correction of obtained syndrome bits would be dangerous. If error

is detected in obtained syndrome bits, all syndrome bits detections are repeated. If

no error is detected in obtained syndrome bits, initial syndrome bits corresponding to

matrices H1 and H⊥
2 are decoded.

For Steane code the sufficient code CS is such linear code, which can detect single

error, therefore simple parity check code with GS =


100

010

001

111

 is sufficient. Obtained

syndrome bits are checked against parity check matrix HS. If an error is detected in

these four bits, whole syndrome detection is repeated. The probability that a wrong

syndrome would be determined using this schema is of order O(ξ2)1

For [[19,1,5]] we require credibility of determined syndrome of O(ξ3), therefore we

need a code GS which detects any two errors in syndrome bits. Classical error correction

code with minimal distance d = 3 is sufficient to detect any two errors. We use [nc, 9, 3]

code. The smallest possible nc according to the corollary 2.8 is nmin = 13. We have

used following [13,9,3] ECC CS in standard form, with generation matrix

GS =


1000001011011

0100010101101

0010100110110

0001111000111

 . (5.10)

The parity check matrix HS can be obtained easily according to the rule (2.15). The

mechanism is similar to the previous. We detect 13 syndrome bits and we check them

1 The only possible way, how a wrong syndrome would be determined with probability O(ξ) is that

detections of first two syndrome bits return 0 and during the third syndrome bit detection a fault

would occur introducing an error to the data qubit. Then other two syndromes may return 1 and

wrong syndrome would be decoded. This case must be handled separately.

60 5. Fault-Tolerant Quantum Computation

against parity check matrix HS. If error is detected all 13 syndrome bits detections

are repeated. If no error is detected, initial 9-bit syndrome is decoded from obtained

13 bits. Since CS is in standard form we simply take first nine bits as original error

syndrome.

6. QUANTUM CODES ANALYSIS

In previous chapters we have presented several quantum error correcting codes. In this

chapter we will compare and analyze found [[19,1,5]] code and Steane Code. Present

work is based on previous analysis of Zalka [37], Steane [38] and partially on [35]. We

have not considered concatenated codes [36] in our analysis, since concatenate coding

is known to be inefficient in both space (number of physical qubits) and time (number

of elementary operations), compared with non-concatenated codes. We have developed

theoretical estimates of the codes ability to protect encoded states using fault tolerant

circuits. Theoretical estimates have been verified by numerical Monte Carlo simulations.

6.1 Noise Model

At first we present our noise model. ’Noise’ in the context of QEC means any process

which causes the state of the physical qubits to be different from what it should ideally

be [39, 30]. It is difficult to discover quantum error-correcting codes (ECC) for general

types of interactions. In classical theory of error-correction, it is often assumed that

errors occur independently at each bit. This assumption seems physically reasonable in

many situations. In cases where it is not strictly true it can still lead to a systematic

approach for finding good ECC. In some systems, there may be errors that move the

system outside of the computational space. For instance, if the data is stored in a po-

larization of photon, the photon might escape. This sort of error is called leakage error.

In practice, simple mechanism may be introduce to detect leakage error and convert it

to the located error. In the case of photon, if the photon escapes, we just introduce new

photon with the random polarization. In our analysis we therefore consider just errors

where particular qubits may change its states in computational basis. An error on par-

ticular qubit occurs randomly with some probability during each time step (memory

errors). The second source of errors are failures of gates, the qubits are subjected to.

In our model we suppose that memory errors rate may be ignored compare to the rates

of gates’ failures. We simply assume that the majority of errors on physical qubits

is caused by the interactions in quantum gates. Moreover, we assume that particular

gates fail stochastically, independent on each other with some fixed probability ξ. The

62 6. Quantum Codes Analysis

failure of a gate introduce an error to the qubits it acts on. In particular physical

systems various types of errors can be more or less probable. In this chapter we will

consider that error on single qubit is equally likely (with probability ξ/3) to be a X,

Z or XZ error. In real systems, the assumption that errors are equally likely to be

bit-flip, phase flip or both of them is a poor one. In practice, some linear combinations

of X, Z and XZ are going to be more likely than others. For instance, when the qubits

are ground or excited states of an ion, a likely source of errors is spontaneous emission.

Therefore an error altering the excited state to the ground state is more probable then

the opposite. Already known codes are able to correct arbitrary single qubit errors but

some codes may be more efficient in particular physical representations than others.

Understanding the physical likely sources of errors will certainly be an important part

of engineering quantum computers.

6.2 Comparison of Quantum Codes - Error Free Correction Procedure

We have introduced the probability of error on a single qubit. Suppose now that we are

using an error correcting code which uses n qubits and is capable of correcting up to

t errors on n qubits block. Suppose that procedures of coding and decoding are error

free. Using such code, the probability of the successful survival of a single encoded

qubit subjected to logical gate is1

P(n,t) =
t∑
i=0

pi =
t∑
i=0

(
n

i

)
ξi(1− ξ)n−i, (6.1)

where pi stands for the probability that i errors occur in the code word.

The natural question is, which codes are better for given fault rate of a single gate ξ.

The graph on figure 6.1 shows dependence P(n,t) on ξ for Steane code, [[19,1,5]] code and

qubit not protected by error correction. We can read from the graph that if ξ < 0.027

then the best choice from these possibilities is to use [[19,1,5]] code. If the estimated

error rate is in interval < 0.027, 0.057 > we should use Steane code and if the error

rate ξ > 0.057 we should not use neither [[19,1,5]] nor Steane code as both have less

probability P(n,t) than 1− ξ. Exact threshold values (0.027, 0.057) were computed from

the equations

P(7,1) = P(19,2) (6.2)

1− ξ = P(7,1) (6.3)

1 We suppose that logical gates act in bitwise manner on encoded qubits.

6.3. Imperfect Error Detection, Coding and Decoding 63

Fig. 6.1: Comparison of P(7,1) and P(19,2).

6.3 Imperfect Error Detection, Coding and Decoding

Results of previous paragraph have used very strong assumption, namely that procedure

of syndrome detection and error correction are error free. This assumption is realistic in

classical computers where the error rate in correcting hardware is insignificant compared

with the error rate in the transmission media. However the environment of quantum

systems has still significant error rates and its effect is crucial to the successfulness

of error correction protocol. More complex analysis is needed. The error correction

mechanism has to be build in fault tolerant way. The concept of fault tolerance was

explained in details in the chapter 5.

Reducing the number of Hadamard transforms

The effort is always paid to decrease the number of operations executed on the data

qubits as each gate may introduce error to the data. Till now we have been using

following schema for detecting particular Z-errors syndrome bit:

7 0 4 5 6encoded

qubit
/ H • • • • H

H ��������
NM

 A1

H ��������
NM

 A2

|cat〉 H ��������
NM

 A3

H ��������
NM

 A4

(6.4)

Using the identity (6.5), the detection of Z-errors syndrome bit

64 6. Quantum Codes Analysis

H • H

H ��������
= ��������

• H

(6.5)

can be simplified to the schema (6.6), where Hadamard gates are not applied to the data

qubit. This simplification saves 2n application of Hadamard gates to data qubits and

thus the probability that encoded state would get unrecoverable damaged is lowered.

The simplification was shown for detecting first syndrome bit of Steane code, but in

the same manner the Z-errors syndrome detection may be simplified for any CSS code.

7 0 4 5 6encoded

qubit
/ �������� �������� �������� ��������

• H NM

 A1

• H NM

 A2

|cat〉 • H NM

 A3

• H NM

 A4

(6.6)

6.3.1 Theoretical Analysis

The probability that the single encoded quantum qubit remains error free is much less

than the estimate given in the equation (6.1). For the simplification, suppose now that

the probability of gate crash ξ is small enough and therefore we often approximate

term (1 − nlξ) ≈ 1. We want to estimate the probability that the encoded state will

be unrecoverable damaged by the noise using the fault tolerant implementations of

Steane or [[19,1,5]] code. We consider following model of qubit protection. The qubit

is subjected to nl logical single qubit gates2 and then error correction is applied.

The Estimate of Failure Probability for Steane Code

The encoded qubit may become unrecoverable damaged in three different ways:

- Two errors occur during computing nl logical gates: This is with probability

p1 ≈
(

7

2

)
(nlξ)

2 ≈ 1

2
(7nlξ)

2.

- Two errors occur during syndrome detection: with probability

p2 ≈
(
k

2

)
ξ2 ≈ 1

2
(kξ)2,

where k is number of places where an error to the data qubits may be introduced.

- One error occurs during nl logical operations and one error occurs during error

detection, this happens with probability p3 ≈ (7nlξ)(kξ).

2 We consider just single qubit gates in our analysis, since it makes the analysis feasible.

6.3. Imperfect Error Detection, Coding and Decoding 65

Adding these probabilities together give us that the probability, that an encoded

qubit will crash (counted relatively to the number of performed operations) is:

pS(ξ, nl) =
7

9

p1 + p2 + p3

nl
=

7

18

(7nl + k)2

nl
ξ2 (6.7)

This theoretical estimate is not precise as we have ignored factors of (1− nlξ) and

other simplification is that we were not considering X and Z errors separately. We just

introduce additional factor of 7/9 because 2/9 of errors pairs are correctable with the

Steane code (XiZj error pairs are correctable). Methods for estimating k from equation

(6.7) are described below.

Optimal number of logical operations between two correction steps is computed from

equation:

∂pS(ξ, nl)

∂nl
= 0 (6.8)

14(7n∗l + k)n∗l − (7n∗l + k)2 = 0 (6.9)

n∗l =
k

7
(6.10)

Fig. 6.2: Steane Code: Function 9
14pS(10−3, nl) is compared with data obtained by computer

simulation for nl ∈ {1, . . . , 80}.

The Estimate of Failure Probability for [[19,1,5]] Code

Theoretical estimate of failure probability for [[19,1,5]] code is constructed in similar

way as for Steane code. The qubit protected by [[19,1,5]] code will become unrecoverable

damaged if three or more errors occur on its 19 encoding qubits. This may happen as:

- Three errors occur during computing nl logical gates: This happens with proba-

bility

p′1 ≈
(

19

3

)
(nlξ)

3 ≈ 1

6
(19nlξ)

3

66 6. Quantum Codes Analysis

- Three errors occur during syndrome detection: with probability

p′2 ≈
(
k

3

)
ξ3 ≈ 1

6
(kξ)3,

where k is number of places where error to data qubits may be introduced

- One error occurs during nl logical operations and two errors occur during error

detection, this happens with probability

p′3 ≈ (19nlξ)

(
k

2

)
ξ2 ≈ 1

2
19nlk

2ξ3.

- Two error occur during nl logical operations and one error occurs during error

detection, this happens with probability

p′4 ≈
(

19

2

)
(nlξ)

2(kξ) ≈ 1

2
(19nl)

2kξ3.

Again the estimation is not precise, just 5/9 of error triples are not correctable. We

also neglected factors of (1− (nlξ)) and all occurrences of four and more failures. The

estimated crash probability therefore is:

p19(ξ, nl) =
5

9

p′1 + p′2 + p′3 + p′4
nl

=
5

54

(19nl + k)3

nl
ξ3 (6.11)

Optimal number of logical operations between two correction steps is computed from

equation:

∂p19(ξ, nl)

∂nl
= 0 (6.12)

3.19n∗l (19n∗l + k)2 − (19n∗l + k)3 = 0 (6.13)

n∗l =
k

38
(6.14)

Estimation of k in Equations (6.7) and (6.11)

To make equations (6.7) and (6.11) useful, we must provide values of k in these formulas.

Let’s analyze whole syndrome detection circuit. Note that if the syndrome detection

works properly, no additional error to the qubit would be introduced in the error correc-

tion part of the protocol, because the recovery mechanism acts only on erroneous qubits

and thus cannot cause more errors than already were there. Let us mark the number

of ones in matrix GSH1
3 as nx and number of ones in matrix GSH

⊥
2 as nz. In the

syndrome detection there are three parts where possible failure may introduce an error

to the data. Most obvious part are CNOTs between the data qubits and ancilla qubits.

3 Matrix GS was introduced in section 5.2.3

6.3. Imperfect Error Detection, Coding and Decoding 67

Number of these are nx + nz. Second place, where the failure may cause the error is

failure of Hadamard gates applied to cat state before CNOTs take action. According to

the idea of section 6.3 Hadamard gates are applied just in X error detection part and

thus nx times. The last place where the single failure may introduce an error to the

data qubits are X failures of last gates applied to cat state in the cat state preparation.

Since the failure occur in the last gate it cannot be detected, unless it introduce an X

error also to the verification qubit. In our noise model the X error is not introduced to

particular qubit in 1/3 of times. Therefore the expected value of k in equations (6.7)

and (6.11), without considering syndrome detection repetition is

knr = 2
1

3
nx + 1

1

3
nz. (6.15)

Value of k is actually even higher because the whole syndrome detection may be

repeated several (r) times due to wrong syndromes are detected4. At ξ = 10−3 the

expected amount of syndrome detection repetitions for Steane code obtained from sim-

ulations is r = 1.31 so therefore more accurate k is

k = r.knr = 1, 3

(
2
1

3
nx + 1

1

3
nz

)
= 1, 3.57 ≈ 75. (6.16)

Therefore in the case of ξ around 10−3, the expected failure probability of Steane code

is

pS(nl, ξ) ≈
7

18

(7nl + 75)2

nl
ξ2, (6.17)

and optimal value of nl is

n∗l =
k

7
≈ 11. (6.18)

Improvement of [[19,1,5]] Code

We have considered additional improvement of syndrome detection for [[19,1,5]] code,

according to fourth rule of FTC. The Z errors from cat state preparation are not

detected and propagate to the syndrome detection procedure and may cause that wrong

syndrome is determined. The probability of wrong syndrome detection may be lowered

by multiple detections of each syndrome bit. Of course, each detection must use its own

cat and verification qubits and thus this introduces the need of more auxiliary qubits.

The disadvantage is that more operations with data qubits are performed and thus more

errors may be introduced during extraction of one syndrome qubit. The advantage is

that the probability that the Z errors from cat state preparation cause wrong syndrome

to be extracted is reduced from O(ξ) to O(ξ2). Therefore much less repetitions of all

4 Matrix HS is used to detect errors in obtained syndrome bits.

68 6. Quantum Codes Analysis

syndrome bits extractions is needed. We tried to detect each syndrome bit three times

and then we take the majority of outcomes. The minor improvement of this is: If first

two detections of particular bit end with the same results the third detection is not

performed. It is not clear if this method introduces an improvement, since it has both

positive and negative influence. Numerical simulations of error detection with single

syndrome bit extraction and multiple syndrome bit extractions were done at failure

rate ξ = 10−4.The actual values of nx and nz for matrix GS used with [[19,1,5]] code are

nx = 93 and nz = 105, so knr = 350. The detection of all syndrome bits may be repeated

several times because of error detected by code CS. Therefore actual k = knr.r, where r

is expected amount of syndrome bits detection cycles. From the numerical simulations

we obtained repetition constants for single syndrome bit detection (r1 = 1.65) and

multiple detections (r2 = 1.01). Therefore total number of k for both methods are

approximately

k1 = knr.r1 ≈ 580, (6.19)

k2 = 2knr.r2 ≈ 700, (6.20)

which conclude that the single syndrome bit detection provides better results at ξ =

10−4 fault rate.

6.3.2 Model of Quantum Computer and Numerical Analysis

The effectiveness of quantum error correction codes can be evaluated using a numerical

simulations on a classical computer. We have argued several times that I,X, Z,XZ

error basis is sufficient for noise analysis. Therefore it is sufficient to maintain two bits

of classical information denoting the occurrence of X and Z errors for each physical

qubit in simulated quantum computer. Of course, more complicated noise may occur,

but after the error syndrome is measured each particular noise collapse to the one of

base errors. We do not need to maintain complete information about the noise when

it occurs, we just maintain the noise subspace it will collapse later, during the ancillas

measurements.

Simulated Architecture

The architecture of simulated quantum computer (QC) is following. QC consists of n

logical qubits, which are engaged directly in the computation. Each of these n qubits

is encoded in CSS code. Two codes were tested: Steane Code and [[19,1,5]] code.

Since qubits are encoded in CSS code we suppose that required quantum gates may

be applied fault tolerantly. We know that one qubit gates and CNOT gate form an

6.3. Imperfect Error Detection, Coding and Decoding 69

universal set of gates [13]. Therefore we decided to simulate this set of gates. We

suppose that each quantum algorithm is first rewritten to the CNOTs and single qubit

gates. We know that for the CSS codes CNOT, X,Y,Z gates may be applied in bitwise

manner. We have used little stronger assumption in the simulation, namely that also

all single qubit gates may be applied in bitwise manner. This assumption makes the

numerical simulation much easier and the outcome it brings should be not far from the

reality. The crucial question is how often should be the error correction applied. This

parameter was obtained both theoretically (n∗l) and from numerical simulations. So

the architecture is following: The computation evolve nl steps on all logical qubits and

then on each qubit error syndrome is measured and corrected.

Modeling gates

Only two-qubit gate in the computer simulation is CNOT. If CNOT is applied, one

must remember that X error evolve from control qubit to target qubit and Z error

evolve in the different orientation. Each gate may fail with probability ξ. The failure

of a gate introduce one of X,Z or XZ errors to the qubit(s) it is applied to.

Error Correction Simulation

Each of n logical qubits is corrected after nl computational steps. To perform error

correction, the QC has extra qubits for each logical qubit. The error correction proce-

dure includes cat state preparation, cat state verification, application of CNOTs among

cat state and encoded qubits, ancilla qubits measurement and final recovery from the

error. Each of the components may fail. If a failure is detected the particular part of the

correction protocol must be repeated. Qubit preparation and also qubit measurements

are simulated in the same manner as quantum gates, and thus may introduce errors.

Other special gate used is Hadamard gate. The Hadamard gate exchanges X and Z

errors on the qubit it is applied on.

Data from simulations were obtained in following way: Computation evolve in fol-

lowing cycle: nl logical operations are performed on QC qubits followed by error cor-

rection of each qubit. The simulator program checks whether the errors on QC qubits

are correctable with given code, after the error correction part of each cycle. If the sim-

ulator finds that the state of QC qubits is not correctable, then all qubits are initialized

to the state without error and simulator increases its crash-counter. This is repeated

until the crash-counter reaches some given limit. Probability of system crash is counted

from the reached limit and total number of logical operations successfully performed on

qubits during the simulation. Particular value of limit differs for different simulations

70 6. Quantum Codes Analysis

but always chosen from interval 〈50, 500〉, it depends on the failure rate ξ and amount

of qubits n in simulated QC. The lower ξ and higher amount of qubits in QC, the more

CPU time is needed for the simulation. Results for QC consisting of n = 100 qubits

shown in table 6.1 were obtained after 30 hours of CPU time on 2500MHz processor.

Typically simulations of single qubit lasted less than few hours, but the required time

increases significantly for lower failure rates ξ. Therefore we do not report simulation

results for ξ < 1.10−5.

Results of Numerical Simulations Compared with the Theory

The simulated architecture was verified against the theory in the most simple case. We

have considered only single qubit in the computer with nl single qubit gates applied

between the error corrections. The data obtained from numerical simulations confirm

that the theoretical analysis provides enough accuracy. The functions p(nl, ξ) were

just scaled by overall multiplicative factor to best fit the data obtained numerically.

The reason for this factor comes from the neglecting factors (1 − nlξ) in theoretical

estimations. The multiplicative factor for Steane Code is 9/14 and 8/15 for [[19,1,5]]

code. Results are shown on figures 6.2,6.3 and 6.4.

Fig. 6.3: [[19,1,5]] code: Comparison of 8
15p19(10−4, nl) and data obtained from numerical

simulations for single syndrome detection and multiple syndrome detection.

6.3.3 Comparison of Steane Code and [[19,1,5]] Code

We have seen in section 6.2 that there is a threshold, of gate failure probability for which

[[19,1,5]] code provides better protection of single qubit than Steane code. The threshold

6.3. Imperfect Error Detection, Coding and Decoding 71

Fig. 6.4: [[19,1,5]] code: Probability of code failure as a function of ξ. Comparison of
8
15p19(ξ, 15) and data obtained from numerical simulations for single syndrome de-

tection mode.

may be obtained from simulations and inferred theoretically also in this realistic model

of error correction. The theoretical thresholds may be obtained from identities:

pS(ξ1, 11) = ξ1 (6.21)

p19(ξ2, 11) = ξ2 (6.22)

pS(ξ3, 11) = p19(ξ3, 15), (6.23)

where ξ1 and ξ2 are gates fault rates at which usage of Steane code and [[19,1,5]]code

respectively starts to be useful. At fault rate lower than ξ3 the [[19,1,5]] code becomes

more effective than Steane code. Numerical roots of equations (6.21) - (6.23) are

ξ1
.
= 2.10−3 (6.24)

ξ2
.
= 7.10−4 (6.25)

ξ3
.
= 2, 5.10−4 (6.26)

Theoretical threshold ξ1 comply with the results reported by Zalka in [37]. The

dependence of pS and p19 on ξ is shown on figure 6.5, where may be seen that the

thresholds ξ1, ξ2 and ξ3 obtained from simulations are approximately the same with the

theoretical thresholds. For the failure rate ξ = 10−5 we obtained from numerical simula-

tions pS(10−5, 11) = 5, 7.10−8, p19(10
−5, 15) = 5, 6.10−9 what confirms the observation:

The lower failure rate ξ, the better to use [[19,1,5]] code for the data protection.

We have also tried to compare the usage of these codes in more complex compu-

tations. Current research in universal quantum gates reports that if random unitary

72 6. Quantum Codes Analysis

Fig. 6.5: Probability of error on qubit protected with Steane code and [[19,1,5]] code obtained

with Monte Carlo simulations.

operator is rewritten to CNOTs and single qubit gates, then approximately 50% of

gates are CNOTs. Therefore we simulate the computation of QC in following way: In

each computational step a gate is applied on each logical qubit. In 50% of cases the

gate is a single qubit gate and in 50% of cases CNOT gate with other logical qubit is

applied. After nl computational steps all logical qubits are corrected from errors. The

application of CNOT gates among logical qubits propagate errors among them and

thus make the computation more fragile. The results of Monte Carlo simulations of

QC consisting of n = 100 qubits and different failure rates are shown in the table 6.1.

From the table we can see that for smaller ξ the usage of [[19,1,5]] code provides sig-

nificant improvement over the Steane code. The optimal number of logical operations

nl between two successive error corrections was obtained by binary search through the

interval of reasonable values. The value of nl is 2 or 3 for Steane code and considered

6.4. Summary 73

Tab. 6.1: Results of numerical simulations of QC consisting of n = 100 qubits.

model of QC. For [[19,1,5]] code the optimal number of logical operations between two

successive error corrections is in interval 〈4, 6〉, it depends on particular value of ξ.

6.4 Summary

The concept of quantum error correction using CSS codes have been introduced in

section 3.2.2. Our effort through the remainder of the thesis was paid to the exploration

of CSS codes correcting errors on up to two qubits. We have learnt from the work of

Steane that such a code would need from 17 to 19 encoding qubits. In section 3.3.1 we

proposed a probabilistic algorithm searching for new CSS codes. Using this algorithm

we have found CSS code using 19 encoding qubits with minimal distance 5. We have

derived theoretical estimates of successfulness of given code using fault tolerant error

detection. The theoretical estimates predict that the encoded state would crash with

probability of O(ξ3), where ξ is a probability of single gate failure. We have verified this

result by numerical simulations of quantum computations. Moreover, in chapters 3,4,5

we have developed encoding, decoding and recovery circuits for the new code. We have

also examined several improvements of new code: either by using multiple syndrome

detections, usage of classical code for encoding syndrome bits or reducing number of

gates applied to the data qubits. Theoretical estimations and numerical simulations

used in this chapter can be used also to verify the successfulness of other quantum

codes.

The existence of smaller CSS code correcting two errors remains an open question.

The proposed algorithm seems to be week to find any smaller code. We have not tried

to prove higher lower bound than the bound given by Steane (17). The future work

can be invested in improvement of our model of quantum computer. More complex

simulations of quantum computer may be achieved by considering also memory errors,

which we have neglected in our simulations. We have also considered just uniform failure

rates for quantum states preparations, quantum gates and measurements; this may be

extended by introducing separate fault rate for each of previous actions. Considering

memory errors, one should also consider that the measurements will probably take more

time than quantum gates. However, the theoretical estimations of more complex model

would be more complicated, if feasible at all.

74 6. Quantum Codes Analysis

APPENDIX

A. GLOSSARY

α∗ Complex conjugate of α

AT transpose of the matrix A

A† Adjoint matrix to matrix A. Matrix A† is obtained by transposing matrix A

and then complex conjugating elements of AT

I Identity matrix or identity operator

〈φ|ψ〉 - Inner product of vectors |φ〉,|ψ〉

ancilla qubit An qubit prepared in special known state to act as an auxiliary qubit

in quantum computation. Ancilla qubit is often measured at the and of its usage to

extract an information about the data in the computation process.

cat state The n-qubit state 1/
√

2(|0 . . . 0〉+ |1 . . . 1〉). Cat states are often used in

fault tolerant quantum operations as ancillary qubits.

CSS code Shortcut for Calderbank-Shor-Steane code.A CSS code is formed from

two classical error-correcting codes. CSS codes can easily take advantage of results from

the theory of classical error-correcting codes and are also well-suited for fault-tolerant

quantum computation.

decoherence The process whereby a quantum system interacts with its environ-

ment, which acts to change the system. Decoherence is a major cause of errors in

quantum computers.

error syndrome A number (or a binary vector), which identifies the error that has

78 A. Glossary

occurred.

fault-tolerance The property of quantum circuits that errors on up to k physical

qubits or gates can only result in up to k errors in any given block of an error-correcting

code.

leakage error An error in which a qubit leaves the allowed computational space.

A leakage error is typically not considered in error correction protocols, but they may

be easily detected and converted to located errors.

linear code A classical error correction code whose codewords form a vector space

under bitwise addition.

located error A located error is an error which acts on a known (located) qubit in

an unknown way.

NMR Nuclear magnetic resonance, method which helps to realize qubits experi-

mentally

quantum error correction code Abbreviated as QECC.A QECC is a set of quan-

tum states that can be restored to their original state after some number of errors occur.

qubit A single two-state quantum system that serves as the fundamental unit of a

quantum computer. The word qubit is shorter name for quantum bit.

stabilizer The set of tensor products of Pauli matrices that fix every state in the

coding space. The stabilizer is an subgroup of the group Gn defined in section 4.1. The

stabilizer contains all of the vital information about a code.

stabilizer code A quantum code that can be described by giving its stabilizer.

transversal operation An operation applied in parallel to the various qubits in a

block of a quantum error correcting code. Qubits from one block can only interact with

corresponding qubits from another block or with an corresponding ancilla qubits. Any

transversal operation is automatically fault-tolerant.

B. DETAILS FROM QUANTUM COMPUTATION

B.1 Details from Linear Algebra

Tensor Product Formal Definition

Suppose V andW are Hilbert spaces of dimensionm and n respectively. Then V ⊗W
is an mn dimensional vector space. The elements of V ⊗W are linear combinations of

tensor products |v〉⊗|w〉 of elements |v〉 ∈ V and |w〉 ∈W . Moreover, if {|i〉} and {|j〉}
are orthonormal bases for the spaces V and W then {|i〉 ⊗ |j〉} forms a orthonormal

basis for V ⊗W . Instead of tensor product |v〉 ⊗ |w〉 we often use shorter notations

|v〉 |w〉, |v, w〉 or |vw〉.
By definition the tensor product satisfies the following properties:

(1) For an arbitrary scalar a and elements |v〉 ∈ V and |w〉 ∈W :

a(|v〉 ⊗ |w〉) = (a |v〉)⊗ |w〉 = |v〉 ⊗ (a |w〉). (B.1)

(2) For arbitrary |v1〉 , |v2〉 ∈ V and |w〉 ∈W :

(|v1〉+ |v2〉)⊗ |w〉 = |v1〉 ⊗ |w〉+ |v2〉 ⊗ |w〉 . (B.2)

(3) For arbitrary |v〉 ∈ V and |w1〉 , |w2〉 ∈W :

|v〉 ⊗ (|w1〉+ |w2〉) = |v〉 ⊗ |w1〉+ |v〉 ⊗ |w2〉 . (B.3)

B.2 Proofs

Proof of theorem 1.3 :

Operator acting on single qubit fulfill normalization preserving condition if and only if

U †U = I, where U † is adjoint of U (obtained by transposing and then complex conju-

gating U), and I is the 2× 2 identity matrix.

80 B. Details from Quantum Computation

Proof. The definition of performable operator U is that for the particular normalized

|ψ〉 =

(
α

β

)
also U

(
α

β

)
has to be normalized. Let the matrix representation of U

be

(
u11 u12

u21 u22

)
. After applying U on |ψ〉 we obtain

U |ψ〉 =

(
u11 u12

u21 u22

)(
α

β

)
=

(
αu11 + βu22

αu21 + βu22

)
. (B.4)

Normalization condition for U |ψ〉 holds:

1 = (αu11 + βu12)(αu11 + βu12) + (αu21 + βu22)(αu21 + βu22) = (B.5)

= |α|2(|u11|2 + |u21|2) + |β|2(|u12|2 + |u22|2) + αβ(u11u12 + u21u22) + αβ(u11u12 + u21u22)

The (B.5) has to hold for all α, β that satisfy |α|2 + |β|2 = 1. By setting

(
α

β

)
=(

1

0

)
to (B.5) we obtain:

|u11|2 + |u21|2 = 1 (B.6)

Similarly by setting

(
α

β

)
=

(
0

1

)
in (B.5) we obtain:

|u12|2 + |u22|2 = 1 (B.7)

Adding (B.5), (B.6) and (B.7) all together we obtain the condition

αβ(u11u12 + u21u22) + αβ(u11u12 + u21u22) = 0

Previous equation can hold for all complex numbers α, β only if

u11u12 + u21u22 = 0 (B.8)

One can easily see that equations (B.6), (B.7) and (B.8) are equivalent with matrix

equation U⊥U = I. The converse implication is straightforward.

Proof of lemma 1.7:

Let H be final dimensional Hilbert space. There exists unique Hermitian conjugate

operator A† for every linear operator A on H.

Proof. Let |ui〉 be orthonormal basis set for H. Let Aij be element from i-th row and

j-th column of matrix representation of operator A. We will show that operator of A†

B.2. Proofs 81

defined by matrix representation A†
ij = A∗

ji fulfills the equality from the definition. Let

|v〉 =
∑
i

αi |ui〉 and |w〉 =
∑
i

βi |ui〉 be arbitrary vectors from H. It follows that:

(|v〉 , A |w〉) =

(∑
i

αi |ui〉 ,
∑
i

βiA |ui〉

)
=

(∑
i

αi |ui〉 ,
∑
i

βi
∑
j

Aji |uj〉

)
=

=

(∑
i

αi |ui〉 ,
∑
j

∑
i

βiAji |uj〉

)
=
∑
i

α∗i
∑
k

βkAik = (B.9)

=

(∑
i

αi
∑
k

A∗
ik |uk〉 ,

∑
k

βk |uk〉

)
=

(∑
i

αiA
† |ui〉 , |w〉

)
=
(
A† |v〉 , |w〉

)
.

We have shown that the operator A† is Hermitian conjugate to the operator A.

To show uniqueness, suppose that two different operators B,C are Hermitian conju-

gate to the operator A. Then from the definition: (|ui〉 , A |uk〉) = (B |ui〉 , |uk〉) =

(C |ui〉 , |uk〉). It can be true only if Bik = Cik = A∗
ki, what can be easily shown as in

existence part of the proof. By altering this equality over all possible couples of i, k we

get that B ≡ C.

Proofs of propositions 4.5 and 4.6 are taken from [1] chapter 10.

Proof of proposition 4.5:

Let S be a stabilizer generated by l independent generators {g1, . . . , gl} and satisfies

−I /∈ S. Fix i in the range 1, . . . , l. Then there exists g ∈ Gn such that ggig
† = −gi

and for all j 6= i ggjg
† = gj.

Proof. Let G be the check matrix associated to g1, . . . , gl. The rows of G are linearly

independent by lemma 4.4, so there exists a 2n-dimensional vector x such that GΛx =

ei, where ei is l-dimensional vector with a 1 in the ith position and 0s elsewhere. Let g

be such that r(g) = xT . Then by definition of x we have r(gj)Λr(g)
T = 0 for j 6= i and

r(gi)Λr(g)
T = 1, and thus ggig

† = −gi and ggjg
† = gj for all j 6= i.

Proof of proposition 4.6 :

Let S =< g1, . . . , gn−k > be a subgroup of Gn, such that −I /∈ S and g1 through gn−k

are independent commuting generators. Then VS is 2k dimensional subspace of n-qubit

state space.

Proof. Let x = (x1, . . . , xn−k) be a vector of n− k elements of Z2. Define

P x
S ≡

n−k∏
j=1

(I + (−1)xjgj)

2n−k
(B.10)

82 B. Details from Quantum Computation

Because (I + gj)/2 is the projector onto +1 eigenspace of gj, it is easy to see that

P
(0,...,0)
S must be the projector onto VS. By Proposition 4.5 for each x there exists gx in

Gn such that gxP
(0,...,0)
S (gx)

† = P x
S , and therefore the dimension of P x

S is the same as the

dimension of VS. Furthermore, for distinct x the P x
S are easily seen to be orthogonal.

The proof is concluded with the algebraic observation that

I =
∑
x

P x
S (B.11)

The left hand side is a projector onto 2n-dimensional space, while the right hand side

is a sum over 2n−k orthogonal projectors of the same dimension as VS, and thus the

dimension of VS must be 2k.

Lemma B.1. Let C be a linear code. Then if x ∈ C⊥, then∑
y∈C

(−1)x.y = |C|, (B.12)

while if x /∈ C⊥, then ∑
y∈C

(−1)x.y = 0. (B.13)

Proof. First, suppose that x ∈ C⊥, then from the definition we get ∀y ∈ C, x.y = 0,

and thus (B.12) is true. Otherwise, if x /∈ C⊥ then from the definition of C⊥ there

exists z ∈ C, such that x.z = 1. Moreover we use the identity {z + y|y ∈ C} ≡ C.

Then we count right side of equation (B.12) as

∑
y∈C

(−1)x.y =
1

2

(∑
y∈C

(−1)x.y +
∑
y∈C

(−1)x.y

)
(B.14)

=
1

2

(∑
y∈C

(−1)x.y +
∑
y∈C

(−1)x.(y+z)

)
(B.15)

=
1

2

∑
y∈C

(
(−1)x.y + (−1)x.y+1)

)
(B.16)

=
1

2

∑
y∈C

0 = 0. (B.17)

BIBLIOGRAPHY

[1] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum

Information. Cambridge University Press, The Edingburg Building, Cambridge

CB2 2RU, UK, 2000.

[2] Jozef Gruska. Quantum Computing. McGraw-Hill, London, UK, 1999.

[3] A. Hyman. Charles Babbage : pioneer of the computer. Oxford, 1982.

[4] R. Marx, A. F. Fahmy, J. M. Myers, and S. J. Glaser W. Bermel. Realization

of a 5-bit nmr quantum computer using a new molecular architecture. 1999.

quant-ph/9905087.

[5] D. G. Cory, W. Mass, M. Price, E. Knill, R. Laflamme, W. H. Zurek, T. F.

Havel, and S. S. Somaroo. Experimental quantum error correction. 1998.

quant-ph/9802018.

[6] J.I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Phys.

Rev. Lett., 74:4091–4094, 1995.

[7] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland. Demon-

staration of a fundamental quantum logic gate. Phys. Rev. Lett., 75:4714–4717,

1995. http://www.boulder.nist.gov/timefreq/general/pdf/140.pdf.

[8] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble. Measure-

ment of conditional phase shifts for quantum logic. Phys Rev. Lett., 75:4710–4713,

1995. quant-ph/9511008.

[9] N. Gershenfeld and I Chuang. Bulk spin resonance

quantum computation. Science, 275:350–356, 1997.

http://www.media.mit.edu/physics/publications/papers/97.01.science.pdf.

[10] Christopher Gerry and Peter Knight. Introductory Quantum Optics. Cambridge

University Press, 1982.

84 Bibliography

[11] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM J.Sci.Statist.Comput., 26:1484, 1997.

quant-ph/9508027.

[12] Martin B. Plenio and Vlatko Vedral. Entanglement in quantum information theory.

1998. quant-ph/9804075.

[13] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,

T. Sleator, J. Smolin, and H. Weinfurter. Elementary gates for quantum compu-

tation. Phys. Rev. A., 52:3457, 1995. quant-ph/9503016.

[14] Jan Bouda. Mixed states in quantum information processing. PhD thesis, FMFI

UK, Bratislava, Slovakia, 2003.

[15] J. H. Van Lint. Introduction to Coding Theory. Springer verlag, New York, 3rd

edition edition, 1998.

[16] W. W. Peterson and E. J. Weldon. Error Correction Codes. MIT Press, Cambridge,

2nd edition edition, 1972.

[17] J. H. van Lint. An Introduction to Coding Theory, 2nd ed. Springer-Verlag, New

York, 1992.

[18] T. Katrinak, J. Smital, M. Gavalec, and E. Gedeonova. Algebra and Theoretical

Arithmetic I. Alfa, Bratislava, 1985.

[19] J. Adamek. Foundation of Coding. John Wiley, Chichester, 1991.

[20] R. E. Blahut. Theory and practice of error control codes. Addison Wesley, Moscow,

1986.

[21] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature,

299:802–803, October 1982.

[22] E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne. Implementation of the

five qubit error correction benchmark. 2001. quant-ph/0101034.

[23] Benjamin Schumacher. Sending entanglement through noisy

quantum channels. Phys. Rev. A., 54:2614–2628, 1996.

http://citeseer.ist.psu.edu/schumacher96sending.html.

[24] Carlton M. Caves. Quantum error correction and reversible operations. Journal

of Superconductivity, 12:707–718, 1999. quant-ph/9811082.

Bibliography 85

[25] Pablo Arrighi and Christophe Patricot. The conal representation of quantum

states and non trace-preserving quantum operations. Phys. Rev. A., 68, 2003.

quant-ph/0212062.

[26] A. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes exist.

Phys. Rev. A, 54:1098–1105, 1996. quant-ph/9512032.

[27] Andrew M. Steane. Multiple particle inference and quantum error correction. Proc.

Roy. Soc. A., 452:2551, May 1996. quant-ph/9601029.

[28] Peter W. Shor. Scheme for reducing decoherence

in quantum memory. Phys Rev. A., 52:2493, 1995.

http://www.theory.caltech.edu/people/preskill/ph229/shor error.ps.

[29] Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. PhD thesis,

California Institute of Technology, Pasadena,CA, May 1997. quant-ph/9705052.

[30] Andrew M. Steane. Efficient fault-tolerant quantum computing. Nature, pages

124–126, May 1999. quant-ph/9809054.

[31] Andrew M. Steane. Simple error correcting codes. Phys. Rev. A, 54:47414751,

December 1996. quant-ph/9605021.

[32] Daniel Gottesman. Class of quantum error-correcting codes saturating the quan-

tum hamming bound. Phys. Rev. A, 54:1862, 1996. quant-ph/9604038.

[33] Fault-tolerant quantum computation. In Synopsium on the Foundations of Com-

puter Science, Los Alamitos, CA, 1996. IEEE Press. quant-ph/9605011.

[34] John Preskill. Reliable quantum computers. Proc. Roy. Soc. Lond. A, 454:385–410,

1998. quant-ph/9705031.

[35] Adriano Bareco, Todd A. Brun, Rüdiger Schack, and Timothy P. Spiller. Effects

of noise on quantum error correction algorithms. 1996. quant-ph/9612047.

[36] Emanuel Knill and Raymond Laflamme. Concatenated quantum codes. 1996.

quant-ph/9608012.

[37] Christof Zalka. Threshold estimate for fault tolerant quantum computing. 1997.

quant-ph/9612028.

[38] A. M. Steane. Space, time, parallelism and noise requirements for reliable quantum

computing. Fortsch. Phys., 46:443–458, 1998. quant-ph/9708021.

86 Bibliography

[39] Andrew M. Steane. Quantum computing and error correction. Decoherence and

its implications in quantum computation and information transfer, pages 284–298,

2001. quant-ph/0304016.

	Introduction to Quantum Computing
	Bits versus Qubits
	Feasibility of Quantum Computers
	The Potential and the Usage of Quantum Computers
	Basic Operations
	Quantum Registers
	Hilbert Spaces
	Quantum Operators
	General Quantum Measurements

	Density Operators

	Error Correcting Codes
	Preliminaries
	Linear Codes
	Coding and Decoding
	Properties of Linear Codes
	Codes in Systematic Form

	Hamming Codes

	Basics of Quantum Error Correction (QEC)
	Quantum Noise and Quantum Operations
	Operator Sum Representation

	Quantum Codes
	The Shor Code
	Calderbank-Shor-Steane Codes
	CSS Code Correcting One Error

	New CSS Codes
	 Searching for the Code

	Syndrome Measurement Circuits

	Stabilizer codes
	The Formalism of Stabilizer Codes
	Generators of Stabilizer Codes
	Quantum Dynamics Using Stabilizer Formalism

	Correcting Errors in Stabilizer Codes
	Construction of Stabilizer Codes
	Standard Form of Stabilizer Codes
	Logical Operators for Stabilizer Codes
	Stabilizers for CSS Codes

	Encoding and Decoding Stabilizer Codes

	Fault-Tolerant Quantum Computation
	The Rules of Fault-Tolerant Computation
	Fault Tolerant Error Detection of CSS Codes
	Fault Tolerant Syndrome Bit Detection
	Preparation of cat State
	Ensuring Correct Syndrome Detection

	Quantum Codes Analysis
	Noise Model
	Comparison of Quantum Codes - Error Free Correction Procedure
	Imperfect Error Detection, Coding and Decoding
	Theoretical Analysis
	Model of Quantum Computer and Numerical Analysis
	Comparison of Steane Code and [[19,1,5]] Code

	Summary
	Appendix
	Glossary
	Details from Quantum Computation
	Details from Linear Algebra
	Proofs

