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Abstrakt

SPISIAK, Jozef: Local construction of dominating set [Diplomové praca]
Univerzita Komenského v Bratislave.
Fakulta matematiky, fyziky a informatiky.
Veduci: RNDr. Stefan Dobrev, PhD. Bratislava : UK, 2011, 48 s.

Tato préaca sa venuje problematike lokalnej konstrukcie mnoziny nazy-
vanej dominantna. Jej jadro tvori lokdlny algoritmus na najdenie tejto
mnoziny na grafe (sieti). Préca analyzuje tento algoritmus vzhladom na
jeho vstupné parametre. Statisticky vyhodnocuje efektivitu algoritmu a
porovnava jeho jednotlivé varianty (modifikacie). V siedmej kapitole ukazuje
optimalizaciu ipravou algoritmu generujicu este mensiu dominantnii mnozinu.
Vizualizuje dany algoritmus a poskytuje citatelovi v ramci priloh zdrojové
kédy programov, vytvorenych pre tucely tejto prace. Taktiez obsahuje ukazky
v programovacom jazyku C++. Porovnava pouzitie algoritmov pre rézne
hustoty siete.

Kltcové slova: dominantnd mnozina, bezdrétové siete, grafy, NP-tuplny
problém, lokédlny algoritmus



Abstract

SPISTAK, Jozef: Local construction of dominating set [Master thesis]
Komenius university in Bratislava.
Faculty of mathematics, physics and informatics.
Supervisor: RNDr. Stefan Dobrev, PhD. Bratislava : UK, 2011, 48 p.

This thesis handles the local construction of dominating set problem.
It’s core is being constructed on local algorithm for finding this set on graph
(network), analyzing the algorithm input parameters. Statistical research de-
termines effectiveness of algorithm and its variants (modifications). Chapter
7 shows the improvement for this algorithm generating smaller dominating
set. It visualizes this algorithm and also provides reader with helpful source
codes made for this work. It also contains examples written in programming
language C++. It shows which algorithms are best for using on networks,
depending on the density of network.

Keywords: dominating set, graph theory, NP-complete problem, local
algorithm, wireless networks
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Introduction

This diploma thesis handles the problem known as Local construction of
dominating set. It is recommended to know basics of graph theory. The first
chapter formulates basic definitions and defines the working area around
the problem. It also discusses my motivation in this topic. The second
chapter is mainly about the topic of computational complexity of known
solutions. Starting with chapter, the thesis describes my work in this field.
It begins with finding the optimal parameters for presented algorithm. First
parameter is class permutation. The next chapter presents graphical program
for visualizing. The 6th chapter is about choosing the right dominator inside
small area (cluster). Various methods are being shown, but in the following
chapter, a new improvement for this algorithm is given. Chapter 8 handles
documentation for included DVD and code snippets. Chapter 9 summarizes
results for dominating on graphs the last chapter is global summary.
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Chapter 1

Introduction to topic

First of all, what is dominating set? “Consider a graph G(V,E) with
vertex set V and edge set E. A subset S of V is called dominating set if
every vertex of G is either in S or adjacent to a vertex in S.” [CDF*08] The
domination number v(G) is the number of vertices in a smallest dominating
set for G. On every set can be found at least one dominating set, because the
set of all vertices is dominating according the definition. The problem is to
find the smallest dominating set, or in other words, for given K and graph G
answer, whether the inequality v(G) <= K is true or not. Some examples of
minimal dominating sets (the blue vertices are members of dominating set):

Figure 1.1: Dominating set example
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Figure 1.2: Dominating set example (minimal)

1.1 Formulation of problem

Because the problem of minimal domination of set is NP-hard to solve
(will be discussed in chapter /refchap:complexity), this thesis will be analyz-
ing only a sub problem, oriented on special class of graphs, called unit disk
graphs (UDG). A UDG in graph theory is defined by vertices V and radius r.
Edge is defined as intersection of two circles with radius r between vertices
in the middle of these circles containing these vertices. On these graphs,
the problem is easier to solve, because we know the minimal and maximal
distances between adjacent vertices depending on shortest way. However still
“The MDS problem is NP-hard, even on unit disk graphs when a geometric
representation is given.” [NH04] //

Therefore formulation of problem is: For given graph G € UDG with
location aware vertices, find the best approximation of minimal dominating
set using local algorithm.

1.2 Known facts

Global approach to this problem brings following boundaries. Approx-
imable within 1+ log |V/| since the problem is a special instance of Minimum
set cover. [Joh73]. Not approximable within ¢log |V, for some ¢ > 0. [RS97]
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Figure 1.3: Unit disc graph example (transmission ranges shown as blue

circles)

1.3 Motivation

The domination problem is known from the 1950s onward, but the re-
search on it really begun in mid-1970s. UDG graph models ad-hoc wireless
communication networks (if you have same ranged access points (AP) or take
R = minimal range on access point/2). “Wireless ad hoc networks can be
flexibly and quickly deployed for many applications such as automated battle-
field operations, search and rescue, and disaster relief. Unlike wired networks
or cellular networks, no physical backbone infrastructure is installed in wire-
less ad hoc networks. A communication session is achieved either through a
single-hop radio transmission if the communication parties are close enough,
or through relaying by intermediate nodes otherwise.” [AjWF02] In these
networks one of efficient ways of broadcasting and retrieving information is
finding the minimal dominating set and using it as a backbone for com-
munication. It is especially useful in networks with high density. Those
can be found in high urbanized areas or special industries. For example in
army where intelligent weapons and robots need to communicate with each
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other. Another example can be found in nanotechnologies, where you need
to gather pieces of information from multiple robots on small area. Therefore
it is useful to push forward and gain new possibilities in this area.



Chapter 2

Computational complexity of

known solutions

In this chapter will be presented the computational complexity of given
problem and known solutions.

2.1 Finding minimal dominating set in graph

This problem belongs to class of NP-complete problems. It can be shown,
that it can be transformed in minimum set cover problem. From dominating
set problem to set covering problem: For graph G=(V,E) with |V| = n, we
need to construct set cover instance (S,U). Let a universe U = V and family
of subsets S = {51, S, ..., S, } be made, where S, consists of vertex v and all
vertices adjacent to v in G. Now for given solution of minimal set covering
problem S, all the vertices will also be the members of minimal dominating
set in graph G, because of construction of set S. In set S are all vertices and
each member of set S has at least one vertex in dominating set.

From set covering problem to dominating set problem: Beginning with cov-
ering problem instance (S,U), where U is universe and S = {S;,i € I}, there
will be constructed graph G=(V,E), where V = U U and edges are between
each pair of members I and {i,u} where i € I and v € S;. The graph G
becomes a split graph: I is clique and U is independent set. Now for given

7
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minimal cover set C, the dominating set is represented on I vertices of this
graph, with indexes of our cover set solution C.

2.2 Finding minimal dominating set in UDG

In UDG class the problem is still NP-hard. But in this case, there is a lo-
cal approximation algorithm (polynomial time approximation scheme), which
outputs in polynomial time dominating set, that has at most k times more
vertexes as minimal. The word local means that each vertex has one instance
of this algorithm running and does not know the whole network topology.
It only operates within its small area. “Therefore, the local approach is the
most desirable to support scalable design through localized maintenance in a
dynamic environment (also called locality).” [WDYO08] This algorithm then
gives information, whether the vertex is part of dominating set or is not. One
of these algorithms is described below.

The idea behind this algorithm is that we can divide the whole plane into
small areas (clusters) and compute dominating sets on them without losing
too much efficiency, when we join them into one dominating set. “By clus-
tering the entire network, one can decrease the size of the problem into small
sized clusters.” [CEDO6] For this, the vertexes need to know their coordi-
nates on plane, so they can decide to which area they belong to. Here is also
used the fact, that in UDG are edges have maximum length 2R, therefore
the minimal dominating set in sub graph is relatively good approximation
for part of global minimal dominating set.
The tiling of plane should be regular and should divide it into right sized
areas. Therefore this algorithm is using 12-hexagon tiling of plane with the
one hexagon side of length R, as shown on figure 2.1.

The numbers in the hexagons represents classes of hexagon. They are im-
portant in next lemma.

Lemma 2.2.1 In the tilling of the plane given before any two verteres on
the plane, that are of the same class, but belong to two different hexagons,
are at Buclidean distance greater than 2. Moreover, given the coordinates of
a vertex P in the plane, one can determine the class number of P using a

calculation of constant cost.
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Figure 2.1: one piece of 12-hexagon plane tiling

Proof Take a look at these two figures above (2.2 & 2.3). Without loss of
generality pick hexagons with classes 1. The shortest distance between two
of these hexagons goes through two sides and one diagonal of the hexagon.
That makes according to figure 3 distance of 4R, which is in speaking of
maximal edge distance 2R from definition, Euclidean distance 2. Due to
the symmetry of the tiling used, the distance requirements just proved for
class 1 hexagons apply to any other class number. Given the coordinates to
the vertex, the class number can be calculated without any interaction with
other vertexes, therefore consider this calculation as constant costing. |

Remark If all vertexes are aware of tiling being used, each of them can cal-
culate its own class number that it belongs to. In following, this information
is used as given to the vertexes.

In each hexagon, all vertexes can be dominated by one vertex (they are
all in range), so the local algorithm needs to find it. The algorithm makes
following steps:

1. Find all neighbours and determine their coordinates and classes.

2. If you have class 1, the nearest vertex to the center of your hexagon
belongs to dominating set. Continue to step 5.
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Figure 2.2: Tiling shown on more pieces

3. If there is a vertex in your hexagon that has not neighbours with lower
classes, then the nearest to the center of these vertices is designed
dominator. Continue to step 5.

4. If you have a lower class neighbours, wait until you get messages from
them about finishing choosing dominator and find if you are already
dominated. Get this information from all vertices in your hexagon.
The nearest vertex to the center from those, who are not dominated,
is designed dominator, if exists.

5. Inform all your neighbours about dominator in your hexagon.

6. Finished.
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Figure 2.3: One hexagon

Next two lemmas are discussing domination and independence of output
from this algorithm.

Lemma 2.2.2 Fach vertex of G after running algorithm dominated or dom-

inator. Therefore set of dominators is dominating set.

Proof Let X not be a member of D. If it has class 1, then it was dominated
in step 2 of algorithm, because distance to the nearest vertex to center is less
than r. Also if it has no neighbours with lower classes, it has been dominated
in step 3. Since the hexagon has diameter r, it must have been dominated in
step 4, if it had neighbours, that did not dominate him. Therefore this proof
is complete. |

Lemma 2.2.3 D is independent set. In other words, the Fuclidean distance

between two members of D is greater than 1.

Proof To have Euclidean distance 1 means they are adjancent. In step 2,
there are not any 2 adjacent vertices designed as dominators. Also in step 3,
there cannot be any added, because these vertices are dominated only by the
one closest to the center. In step 4, if the vertex is dominated, it is not added
as designed dominator and if it is not, it becomes dominator or dominated
by the dominator closest to middle. [

Theorem 2.2.4 Let G be unit disk graph and let D be the set of dominators,
computed by algorithm. D is independent and dominating set of graph G. Let



12CHAPTER 2. COMPUTATIONAL COMPLEXITY OF KNOWN SOLUTIONS

D* be a minimum dominating set. Competitive ratio of this algorithm is 5
or in other words |D|/|D* < 5.

Proof According to lemmas 2.2.2 and 2.2.3, D is both, dominating and
independent. Now let’s take vertex X as a vertex of D*, that does not belong
to D. If does not exist, than D = D*, because D* is minimal. This vertex
X must be covered by vertex from D, because D is dominating. Take two
vertices X; and X, that are dominating X. The angle /X; X X, must be
greater than 7/2, otherwise it is in contradiction with lemma 2.2.3, because
Euclidean distance between X; and X5 would be 1. Therefore X can be
dominated by maximum 5 vertices of set D. This implies that |[D|/|D*| <

5. 1

“If the vertices of degree 5 are placed in hexagons of high class number,
the dominating set D computed by the algorithm includes only the vertices
of degree 1 and 2 while the optimum one consists of the vertices of degree 5.”

7]

Figure 2.4: example of a set of vertexes, where the ratio between the minimal

D* and D is greater than 4
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2.3 Questions discussed

The main question is how effective is local algorithm presented in next
chapter. The worst case shown is showing the dominating set can be 5 times
larger than minimal, but what about average case? Does it depend on class
permutation or density of network? How to choose dominator inside the
class?
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Chapter 3

What to measure? How to

make a good statistics

Following work is computer-based statistical data analysis. Therefore it
is important to know which the key factors for measurement of algorithm
efficiency. The main factor is naturally size of dominating set, but we can
also include others.

3.1 Size of dominating set

First of all measure the size of dominating set. For statistical purposes
is this work using mean from more measurements, to assure better accuracy.
n
> D
Mean is defined as sum of values divided by count of values: = On . Standard
deviation defined as dispersion from mean is also measured. It shows how

Z (D; — Mean)

=0

much are results different from mean. Formal definition: —

15
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3.2 Area of coverage

Another factor of efficiency is area of coverage. It is being calculated
from dominating set nodes by dividing sum of area the nodes have covered
by area (M) on which the dominating set is being computed. The final
number is being shown as percentage of the whole area. Following code
executes this functionality. The idea behind these lines of code is: The area
covered by one dominator is PI * transmission range squared. Therefore it
uses cardinality of dominating set and multiplies it by area covered by one
dominator. However, it must subtract the area, that is being covered outside
of M and area, which is being covered by more than one dominator. This is
represented by segments, that are computed in for cycle. Approximation is
used, where the computation of overlapping 3 and more coverage circles is
being ignored, as the set is being built independent. For more documentation
to the variables and constants, see documentation section. 77

segments = 0;
for (i=0; i<N; i++)
{
if (sur[i][3] == STATE LEADER)
{
for (j = i+1; j<N; j++)
{
distanc = sqrt(
pow (sur [1][0] —sur[j][0],2)+
I;ow(sur[i][l]—sur[j][l],2)
if (sur[j][3] — STATE LEADER && distanc <4%A)

segments += 8xAxAxacos(distanc /(4%A))
distanc
*
sqrt (
4xAx(—distanc /2 + 2xA)—
pow((—distanc /2 + 2xA),2)

);




3.2. AREA OF COVERAGE

}

distanc = 0;

if (sur[i][0] < 2%A) distanc = sur[i][0] =x

1f (sur[i][0] > MAX-2%A) distanc = (MAX-sur
f (sur[i][1] < 2%A) distanc = sur[i][1] =*

1f (sur[i][1] > MAX—2%A) distanc = (MAX-sur

if (distanc > 0)
segments += 2xAxAxacos(distanc /(4%A))
distanc /2
*
sqrt (
dxAx(—distanc /2 + 2xA)—
pow((—distanc/2 + 2xA),2)

)
}
}
area += (1%3.1415926535897932384626433832795x
4xpow (A,2) — segments)/pow (MAX,2);

2;
1][0])*2;
2
1

[
i

17

JI1T) *2;
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Chapter 4

Permutations of classes

Algorithm presented in chapter 2 uses only one permutation of classes
within 12 hexagon area and does not answer the question whether this per-
mutation is the best. This chapter resolves question whether the size of
dominating set is different when using other permutations of classes used in
algorithm or not. If there are differences, then the natural question is: Which
permutation gives us in most cases smallest dominating set?

The most cases is used because of following lemma:

Lemma 4.0.1 For every two permutations exists a graph G, which cardinal-
ity of its dominating set using first permutation is lower than cardinality of

its dominating set created using second permutation.

Proof For construction of this graph only 3 nodes are needed. Find a low-
est (by number of first) cluster difference between permutations. Place into
lowest cluster one node, other two place inside higher classes in first permu-
tation, so there the two placed nodes would have no edge between selves, but
still will be connected to first node. Dominating graph given by algorithm
has in fist case cardinality 1 and in second 2, therefore we constructed this

graph G.&

19
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4.1 Differences between permutations

First of all, the algorithm phasel described in chapter 8 was written,
to generate random input sets. Using this program, the input set of input
groups was generated. These were on square area with side 10000, using
transmission range 1000 and number of nodes ascending from 300 to 2900
by 100. Each group had 2000 random generated files for statistical purposes.
Using algorithm phase2b, the local construction of dominating set is being
simulated and mean is being calculated for groups. Following graph shows
results of this experiment. The values are clearly smaller for some permuta-

80

55

50
ABC216347985 657BAC984132 B96A273C1485 1C95236B87A4 213456789ABC
45B8A61C3729 147A258B369C B3625C49187A 13579B2468AC 123456789ABC

=300 =400 500 =600 700 ==800 ==900 ==1000 ==1100 ==1200 ~~ 1300 ~ 1400 ==1500 ==1600
1700 ==1800 ™=1900 ~~2000 ™=2100 ==2200 ™=2300 ™=2400 ™=2500 ™=2600 ==2700 2800 ~ 2900

Figure 4.1: Dependency of average size of dominating set on used permuta-

tion in algorithm

tions than for the others, therefore the hypothesis is:

Hypothesis 4.1.1 For uniform random distributed input some permuta-

tions of classes are better than others.

To support this hypothesis, following graph is showing standard deviation.
The difference in mean size of dominating set between class permutations is
bigger than deviation in some cases: e.g. 1234566789ABC and B3625C49187A.
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ABC216347985 657BAC984132 B96A273C1485 1C95236B87A4 213456789ABC
45B8A61C3729 147A258B369C B3625C49187A 13579B2468AC 123456789ABC

==300 =400 500 ==600 ==700 800 ==900 1000 ==1100 1200 ==1300 ==1400 ==1500 ==1600
1700 ==1800 ==1900 2000 ==2100 2200 ==2300 2400 ==2500 ==2600 ==2700 ==2800 2900

Figure 4.2: Dependency of standard deviation size of dominating set on used

permutation in algorithm

4.2 Best permutation

To prove the hypothesis the best permutation should be found, in meaning
of lowest mean of dominating set.

Definition Transposition is a permutation which exchanges two classes and
keeps all others fixed.

Definition Two permutations of classes are isomorphic, if an infinite area
divided into clusters with classes using first is equal to area divided into
clusters with classes of second permutation.

Therefore to support the search table showing in figure 4.3 was created with
algorithm Generatel. This algorithm generates all possible permutations us-
ing classic backtrack algorithm, for searching all the options that are not
isomorphic. To do so, it allows only transpositions of adjacent clusters, ex-
cluding first cluster with class 1. Finally it writes out permutations ascend-
ing, ignoring lower permutations than last outputted. The output around
16000 permutations is a good set of permutations to test, what are the best
permutations. Using algorithm phase2be the results were found on group
of inputs. The following figure is only a part of original table, sorted as-
cending by mean. The top 8 permutations have the same position of clus-
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Permutation lean Dispersion
1638597B2CA4 | 709.900024 | 7.712976
153897A426CB | 709.950012 | T7.813290
153897A426BC | 710.049988 | 7.761927
1638597B2AC4 | 710.150024 | 7.805607
15389AT426CB | 710.299988 | T7.868290
1534697B2A8C | 710.400024 | 8.645230
1534697B2CAS8 | 710.450012 | 8.834450
15389A7T426BC | 710.450012 | 7.806888

Figure 4.3: Top part of table with permutations sorted ascending by mean

ters with classes 1, 2 and 3. Other top permutations have only minimal
variation. Next picture is visualizing this result. The set of best permu-
tations is isomorphic with permutation 1.X73X9X3X,X5X52X7XgXg, where
X £ Xo#£ X3 # Xy # Xs # Xo # X7 # Xsg # Xo € {4,5,6,7,8,9,A,B,C}.
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Figure 4.4: Clusters with classes 1, 2 and 3. Those have best permutations
in common. Blue dashed circles are show transmission range from middle of

cluster.
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Chapter 5

Algorithm visualization

To help understand, how does the algorithm works, an application for
visualization of this algorithm has been made in C#. When user launches
Viewer, he can choose to load input or hide edges. Hiding edges is available
also when input is loaded. Algorithms without batch processing to generate
input for single set visualization (documented in chapter 8). Window can be
resized to any size, the canvas for drawing is resized in next redraw.

After the input file is loaded, the visualization begins. Red nodes are
dominators and gray are being dominated. Actual step in domination is being
shown with full circles. Animation can be paused with clicking anywhere on
visualization canvas. Visualization for one class is slowed down to dominating
one node per second, to ensure enough time for user to track changes. In
real application, the nodes in one class are being dominated in random order
in random times.

In the end all nodes are dominated or dominators. It is possible to search
for non-optimal sections of dominating set and improvements in algorithm.

25
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o5 Dominating set algorithm viewer -

Show edges
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Figure 5.1: Loading input for Viewer
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o' Dominating set algorithm viewer
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Figure 5.3: Visualization ended



Chapter 6

Choosing the dominator

Choosing the dominator within cluster with class is also an important
factor on size of dominating set. There are several ways of doing this. First
and fastest option is choosing it at random.

6.1 Random dominator

This can be implemented easily. Every unassigned node (is not domina-
tor or being dominated by one), when searching for dominator in its class,
generates random number and broadcasts it to its neighbours sharing class
with it. The node with the highest number is the dominator and broadcasts
this information. Simulating this behavior on area 20 000 x 20 000 containing
500-4500 nodes with transmission range 500, following graph showing mean
and standard deviation of 2000 input files for each density was made.

6.2 Most neighbours

This option considers number of potential dominators. Each unassigned
node broadcasts its neighbours count to nodes sharing its class number. The
node with highest count is being set as dominator. This way it dominates
most edges, therefore gaining potentially smaller dominating set. Simulating
on the same input files as previous case following graph was created.
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Permutation 45B8A61C3729
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Figure 6.1: Graph for random dominator within class

6.3 Most unassigned neighbours

Previous option has one bad case, when there was big density within range
of some node, the algorithm set as dominators nodes near each other. To
avoid this, only unassigned neighbours count. Each node asks its neighbour,
if it is being dominated or not (it cannot be dominator, because then the
node asking is being dominated). Then it counts unassigned neighbours and
broadcasts the number to see if it is being dominator of this cluster.

6.4 Closest to center

When modelling on high density networks, the best permutation covers
with dominators from first 3 classes the whole area, if they are in the middle
of cluster. Thus graph with mean and standard deviation was made on higher
density set of nodes from 5000 to 40000. Also one of the best permutations
was used. In next chapter 7 it will be compared with others.



6.4. CLOSEST TO CENTER

Mean size of dominating set

Mean size of dominating set

Permutation 45B8A61C3729
900 10
85
80D .
& 3
£
85 2
700 £
o
8 o
k)
&
800 5 B
5
c
T8
@
500 =
65 o
e
& ©
400 g
o]
55
300 5
500 1000 1500 2000 2500 3000 3500 4000 4500
Number of points in area
Figure 6.2: Graph for most neighbours dominator
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Figure 6.3: Graph for most non-assigned neighbours dominator
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Permutation 45B8A61C3729
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Figure 6.4: Graph for centered in cluster dominator



Chapter 7

Improving the algorithm

Algorithm has worst case presented in chapter 2 where the 5 time larger
than minimal dominating set is being computed. This is direct result of
dividing area into hexagons with diameter of transmission range. It is class
permutation independent. Therefore the new approach must be involved, to
improve this worst case.

7.1 Looking behind the borderline

When selecting the dominator inside cluster with class, the surrounding
clusters can be searched for dominating the non-assigned nodes inside this
class. This eliminates the worst case completely, giving minimal dominat-
ing set for this solution. However, to be able to select dominator parallel
across all clusters with the same class, the number of classes must be raised
to 19. Otherwise there could be 2 dominators selected in one step, which
could see each other inside its transmission range. That would result to algo-
rithm, which is not deterministic and would not likely produce best solutions.
Based on the knowledge of constructing the best permutation for 12 classes,
the best permutation for 19 classes is being constructed below.

Following graph shows values in statistical testing of this new implemen-
tation.
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Figure 7.1: Figure representing dividing area into clustered numbered with

19 classes - best permutation shown

It seems to be pretty good and also all values are better than previous
variations. However it can be also improved as shown in the next section.

7.2 Improvement 2

The previous algorithm had worst case presented on figures 7.3 and 7.4.
The minimal dominating set is smaller in this case 1 node smaller as shown,
therefore the algorithm could generate dominating set 4/3 greater. This could
be improved by looking for dominator only from one node. First unassigned
node from cluster is being selected (e.g. lowest ID) and it is looking for best
dominator. Therefore, there is a chance for finding more optimal dominating
set. As a matter of fact, the statistical results prove it to be better.

However the worst case, the improved modifications are solving is avail-
able only in low density networks, therefore there will be comparison in
Results section, comparing these variations of algorithm.

Other improvements were tried out, but the resulting dominating sets were
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Permutation 123456789 ABCDEFGHIJ
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Figure 7.2: Graph for Improvement 1

much larger in comparison to these.
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Figure 7.3: Dominating with Improvement 1

Figure 7.4: Minimal dominating set
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Figure 7.5: Graph for Improvement 2
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Chapter 8

Documentation

In this chapter is presented the documentation for the programs and other
files on DVD.

8.1 Contents of DVD

First folder includes compiled C++ programs for Windows (Win7) and
Linux (x86 Debian). For usage see README.txt included, or the next sec-
tion. Descriptions for algorithms are listed in readme file. It also includes
Viewer.exe, program compiled for Windows described in chapter 77.

Next folder is examples including few working examples just by copy onto
writable drive and run. Input sets includes generated inputs used for statis-
tical area. It is divided by algorithm and range. Copy and paste top level
folders into /input/ to use them with algorithm.

Literature contains most articles listed in bibliography. Permutations in-
cludes permutations used in statistical data. It also includes large set of
permutation, which contains only few that are isomorphic. It was generated
using PHP script included in folder source codes. It was used to find good
candidates for best permutation. Source codes folder also includes all source
codes for programs compiled in examples. Presentations folder contains pre-
sentations demonstrating dominating and algorithms.

The last folder spreadsheets contains documents in open document format
and office format, where are results from program runs and graphs being
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stored. Most of the graphs are shown in this thesis.

8.2 Variables and constants documentation

Simulation program takes input from folder ‘Input/Folder/File‘, where
‘Folder* represents group of input files. Group of input files has input square
area, number of access points and transmission range in common. All points
are listed as their coordinates and the corresponding class. The program also
loads permutations available in directory ‘Permutations/‘ Result is being
outputted into folder ‘Output/‘ Following constants and variables are being
used:

// Not assigned default state of access point
const int STATE SEARCHING = O0;

// Is dominator, member of dominating set
const int STATE LEADER = 1;

// Is being dominated by dominator

const int STATE FOLLOWER = 2;

// Number of test — must be greater than number
// of files in input group

const int NUM OF TESTS = 500;

// Maximum number of input points in one file
const int MAX RELATIVES = 40000;

// Maximum number of points in range of one point

const int MAX RELATIVES2 = 2000;

// files for input file and input permutation
FILE % fh, % fh2;

int A; // Half of transmission range from input file
int N; // Number of points in input file
int MAX; // One side of input area square

int i,j,k,l,mn,o,actual ,last; // integer variables
int result sum ,leader ,leader max; // other variables




8.2. VARIABLES AND CONSTANTS DOCUMENTATION

// variables for statistical measurements
float mean, deviation;

time t timestamp; // timestamp
char name[50]; // input name 1
char input[50]; // input name 2
char inputdir [50], inputdir2[50]; // input paths

DIR *dp, xdpp, *dppp; // input directories
// input directory listings

struct dirent xep, xepp, *xeppp;

char perm[20]; // permutation

// char for transforming permutation

// (A=10, B =11, ...)

char c;

// for coverage measurements
float area,segments,distanc ,seq;

// collecting results about DS
int result2 [MAX RELATIVES];

for (k=0; k < MAX RELATIVES: ki+)
{

}

// collecting results about DS
int result [NUM_OF TESTS];

result2 [k]=0; // inicialization

// Relatives — array that represents,

// which 2 access poinst can

// communicate between each other.

// Index 0 is keeping count of relatives
// other fields are being populated

// with indexes from table sur.

int*x rel = new intx[MAX RELATIVES+1];

for (int i =0 ; i < MAX RELATIVES+1 ; i++)

rel [i] = new int [MAX RELATIVES2+1];
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// array with coordinates

// for each point, there are stored:
// 0 — x coordinate, 1 — y coordinate ,
// 2 — class, 3 — state

int sur[N][4];




Chapter 9

Results

After this various techniques for choosing the dominator inside the cluster
were examined. With study of worst case, the algorithm modification was
presented to increase its effectiveness by denying the worst case possibility.
This improvement led to even better effectiveness, as figure 9.1 shows.

The worst case discussed was however on relatively small density networks
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= center =Most Edges Most U Edges =Random ==Im provement2 Improvem enti

Figure 9.1: Graph showing size of dominating set for small density networks

using different strategies
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(average vertex degree 2-6). Therefore it is right to question, how effective
are our algorithms for higher density networks. Following figure was created
for higher density networks (average vertex degree 7-48).

With increasing density best algorithm is being switched from Improved 2 to

1050
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6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000 36000 38000 40000
5000 7000 9000 11000 13000 15000 17000 19000 21000 23000 25000 27000 29000 31000 33000 35000 37000 39000

—Random — M ax Relatives Max U. Relatives —19<class improve!l — 19class improve2 Most middle

Figure 9.2: Graph showing size of dominating set for high density networks

using differnet strategies

Most unassigned neighbours. It is logical, because in high density networks,
there is not the same worst case, which Improved 2 algorithm is trying to
solve. Finally in the end, for highest density networks the algorithm Most in
center is covering most efficiently the area, therefore being best for highest
density networks. This result was also confirmed by simulating with 100 000
nodes in area, where the mean size of dominating set using Most in center
was 843,140015 compared to Most unassigned neighbours with 940,419983.



Summary

First of all, the best permutations have been found for this algorithm.
Using these permutations the dominating set is approximately up to 12%
smaller compared to using other permutations. Therefore always use best
permutation, covering with first steps most of the working area. If you know
your network density, you can choose most effective algorithm variant for
dominating. For average vertex degree 11 and below choose algorithm Im-
proved 2. If average vertex degree is between 11 and 41 then the best variant
for dominating is Most unassigned neighbours. For higher density networks,
use Most in center. Using these algorithms will get you very good approxima-
tion of minimal dominating set and also “time complexity and approximation
bounds are completely independent on the size of the network.” [CDF*08]
Similar algorithm working on 3 dimensional Euclidean space is presented in
[AFO]. It would be interesting to know, if these variants and improvements
can be also applied to this algorithm.
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