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Abstract

We consider a network represented by a simple connected undirected graph with N vertices.
The nodes of the graph do not have any special unique identifiers, the only requirement
is that each incident edge of a vertex v of degree dv has assigned a locally-unique label
(portname) between 1 and dv, inclusive. This is called a local orientation.

Our main goal is to have an agent visit all vertices of the graph, with the focus on
the simplicity of the agent in terms of memory usage. We show that after a suitable pre-
processing phase in which we alter the local orientations, the graph can be traversed using
the simplest possible agent – an right-hand-rule using agent (RH-agent). Formally, this
is an extremely simple finite automaton that always obeys the following rule: “Start by
taking the edge with the label 1. Then, whenever you enter a node, continue by taking the
successor edge (in local orientation) to the edge you arrived through.”.

For the above mentioned pre-processing phase we design an algorithm for an agent that
performs the precomputation. The agent will be able to alter the network by modifying
the local orientations using a simple operation of exchanging two local labels in one step.
The goal of this precomputation is to change the local orientations in such a way that the
RH-agent’s algorithm will cause the RH-agent to visit all the nodes. We show a polynomial-
time algorithm for this precomputation that needs only one pebble and O(logN) memory
in the agent. Furthermore, we also show a modification of this algorithm that needs one
pebble and only constant memory for the precomputing agent. In the second case, the
termination detection is not solved yet, so one extra bit of information in the initial vertex
is needed for terminating the precomputation.

As an example of the use of our algorithm, we introduce the problem of building a
spanning tree of the graph. More precisely, we present an algorithm for an agent that
will construct a rooted spanning tree. This spanning tree will be constructed by altering
the local orientations: in any non-root vertex the edge with local label 1 will lead to the
parent of this vertex in the spanning tree. Our algorithm only needs to use one pebble and
O(log N) memory in the agent that performs the computation.

Keywords: Mobile computing, distributed algorithms, changing of labeling
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Chapter 1

Introduction

Robots and their behaviour in various conditions were subject to a thorough study in
previous decades. The most widely used environment settings were the geometric setting
and the graph setting, in which the environment is modeled as a graph with moves restricted
to its edges.

Many fields, such as networking and artificial intelligence are concerned with mobile
computation in a different way and approach it in a different manner. On one side of the
spectrum, mobile computation is interested in the processes of physical robots – mobile
devices with an interface for communicating with the environment and other robots. On the
opposite side of the spectrum, mobile communication works with agents, virtual processes
in a network that can migrate from one machine to another in order to satisfy requests
made by their clients. In the middle between these two, there is the theoretical level of
the subject which models concrete situations for physical robots and/or agents and tries
to solve some common problems.

The focus of this master thesis is this theoretical approach. A model of the environment
and of objects working in it will be introduced. Then, a few concrete problems will be
defined and a solution will be found to each, such that it will be applicable in the physical
environment or in the environment of operation system.

1.1 The Model

There are several different models of distributed information processing used to study
distributed algorithms. The choice of a particular model depends on the type of algorithm
present.

There are many different computer systems and thus the model needs to be designed
in such a way that it is applicable to a class of related systems sharing the basic properties
that make them distributed. The model must describe precisely and concisely the relevant
aspects of the class.

At the abstract level, a distributed mobile environment can be described as a collection
of autonomous mobile entities located in the space. The entities have computing capa-
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4 CHAPTER 1. INTRODUCTION

bilities and use identical programs, thus they behave identically and appear to be same.
Depending on the context, the entities are called robots at one time and agents at other.
In this text, the terms robot and agent will be used interchangeably.

Mobile computing is concerned with determining what tasks can be performed by these
entities, under what conditions and what are the minimal costs for obtaining the results.

1.1.1 Motivation

The field of cooperative autonomous mobile robotics is a quite new topic. Some principal
topic areas that have generated significant interests of study are summarized according to
Parker [Par00].

1. Biological inspirations: The introduction of robotics paradigm of behaviour-based
control [Ark90, Bro90] has had a strong influence in cooperative mobile robotics
research. By the biological inspirations, the results of examination of social char-
acteristics of insects and animals was applied to the design of multi-robot systems.
The common way of application of the knowledge of animal behaviour is to introduce
simple local control rules inspired by biological societies (e.g., ants, bees, birds, . . . )
in order to develop similar behaviour. Work in this manner has demonstrated the
ability for multi-robot teams to flock, disperse, aggregate, . . .

2. Communication: Researchers have studied the effect of communication on the per-
formance in a variety of tasks for a multi-robot system. They concluded that com-
munication provides certain benefit for particular types of tasks and found that in
many cases, communication of even a small amount of information can lead to a
great advantage. Additionally, the work was extended to achieve fault tolerance in
communication, such as setting up and maintaining distributed communication net-
works and ensuring reliability of the nodes of the network. Currently, the multi-robot
teams operations in a faulty communication environments are investigated.

3. Task planning, control and architectures: This research area addresses topics like ac-
tion selection, delegation of authority and control, achieving local actions, resolution
of conflicts, etc. The general question in this topic is whether specialized architectures
for each type of robot team and application domain are needed or whether a more
general architecture can be developed that easily fits a wider range of multi-robot
systems.

4. Localization, exploration and mapping: This topic was extensively researched for
single autonomous robot. Large number of algorithms for a multi-robot team was
developed from an existing solution for a single robot and extended to multiple robots.
These problems are studied in two models of terrains – plane and graphs. In the plane
model, the multi-robot teams use landmarks, scan-matching or some range or vision
sensors for communication. In the graph model, the communication is usually done
by whiteboards – the space in nodes of the network where the information can be
written and subsequently read or modified.
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5. Object transport and manipulation: This topic deals with multiple robot cooperation
in carrying, pushing and manipulating object. Numerous variations of this task have
been studied, including constrained and unconstrained motions. As the extension of
this problem, manipulation with object by extra items such as ropes, etc. was studied.
Most of the cooperative movement is done in a flat surface an the challenging issue
is this area of cooperative transport over outdoor terrains.

6. Motion coordination: The research themes in this domain that have been studied
include multi-robot path planning, traffic control, formation generation and keeping.
These works have been aimed at 2D and 3D environments. One of the most limiting
characteristics in this topic is the computational complexity of the approaches. There
is a limiting factor of applicability of some approaches in dynamic, real-time robot
teams.

7. Learning: Many robot researchers believe in big potential for the development of
cooperative control mechanisms in autonomous learning. Challenging domains in
this learning are cooperative tasks where certain actions of one robot depend on the
current actions of another one. These tasks can not be decomposed into independent
subtasks that can be solved by distributed robot team. The success of the team is
measured by the combined actions of team members rather than the individual robot
actions.

8. Software mobility: In this topic, the agents are virtual entities such as processes that
are able to migrate in the system to satisfy the requests made by their clients. One
idea is to execute a mobile agent in a machine and when the required resources are not
provided, the mobile agent is able to save its state, transfer to a machine containing
the necessary resources and resume the work. Mobile agents have been developed as
an extension to the client-server model. The limitation of the client-server model is
that the client is limited to the operations provided by the server. Thus client must
find a server that satisfies the request by sending out messages to all servers, which
is clearly inefficient and limits network scalability because of managing and updating
issues.

1.1.2 The model of agent and environment

It is very common to represent the agents in the theoretical field by finite automata. Such
an agent has a finite number of states that can be used as its constant memory. Likewise,
the environment is described by a finite number of states which characterize it completely.
Then, using the current state of the agent and the knowledge of the state of environment,
the next state and an action possibly taking place is obtained.

When the agent needs to remember more than a constant amount of information, the
memory can be extended. The agent is then able to perform computations in its memory,
change its state and/or move in the environment accordingly.
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There are two approaches to modeling the environment: the geometric, where the
environment is modeled as a plane and the graph-based one, in which the graph consists
of locations interconnected with lines representing the only possible ways how to move
between the locations.

In our case, the environment is modeled as a network – a graph with a number of nodes.
If the agent is able to traverse directly from node p to a node q, the channel or link1 is said
to exist between them. This channel can be bidirectional – the agent can traverse in both
directions – or unidirectional – the agent can traverse only in one direction.

In many algorithms, some extra memory is required in the environment. This assump-
tion is stronger, as it can store data related to the location. Storing information in the
graph can be realized by “whiteboards” – a space in nodes that can be used for writing,
reading and modifying. Another very popular method of information holding is a pebble.
We can imagine it to be a device that the robot places in a vertex of the graph, removes
it and carries it around while it works. It represents one bit of information that can be
stored in an arbitrary node of the graph. It is often used to identify a particular vertex
and distinguish it from the others. As will be shown later on, there are some problems
that are unsolvable without a pebble.

Using a pebble in the algorithm allows for lower memory complexity than using a white-
board. The whiteboard is a storing place in a vertex where at least one bit of information
can be written. Unlike the pebble, the whiteboards allow each vertex to hold its own bits
of information simultaneously, whereas the pebble can be stored only in one node at the
same time.

Network topology

Since the network topology has a major influence on the nonexistence of algorithm in the
particular conditions, a brief overview of the commonly used topological models follows
(see Figure 1.1.2).

Ring – A network of nodes that are connected into one cycle

Tree – A network of nodes that are connected without forming any cycles

Star – A network with a central node (later called center of the star) that is connected to
all the other nodes, with no other connection present

Clique – A network in which every two nodes have a direct connection

Hypercube – A network representing an n-dimensional cube. An n-dimensional hyper-
cube is a graph (V, E) with 2n vertices, where V = {(b0, b1, . . . , bn−1) : bi ∈ {0, 1}}
and there is an edge between two vertices b and c if and only if the bit strings b and
c differ in exactly one bit.

The topology can be static or dynamic. Static topology remains fixed during the whole
computation. In dynamic topology, channels (sometimes also nodes) can be added or
removed during the computation in process.

1In this text, we will use these terms interchangeably.
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Figure 1.1: Examples of different network topologies

Link, node and agent properties

Some commonly made assumptions about the link, node and agent properties are:

• Reliability. A link is said to be reliable if an agent traversing via it is not lost and
appears in the destination in a finite time. A node is reliable if the agent is not lost
or damaged there.

• The FIFO property. The channel is said to be FIFO if it respects the order of
the agents traversing via it. When FIFO channels are used a possibility of another
communication failure – reordering of agents in a channel – arises. The FIFO property
can be added to channels by adding an extra sequence number to the agent while
traversing via the particular channels.

• Channel capacity. The channel capacity is the number of agents that can be in the
channel transit at the same time. The agent can enter the channel only as long as it
is not full.

Agent’s prior knowledge

In some cases initial information is needed in algorithms. An example of such knowledge
includes following information:
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1. Topological information: This includes information about the number of nodes in
the network, the number of links in the network, the number of the agents, network
diameter, etc.

2. Agent identity: The assignment of a unique name to each agent might be required.
This is used in the leader election problem described in section 1.1.4.

3. Node identity: A unique name for each node in the network is required in many
algorithms.

4. Neighbor identities: If nodes are distinguished by a unique name, it is possible to
assume that each node knows initially the names of its neighbors. This is useful for
addressing. If a set of unique, distinguishable names was not assessed to the nodes,
a demand might still arise for a distinction between channels incident with the same
node. In this case, the unique names are assigned ad hoc to the particular channel as
if from the “viewpoint” of the node. This is called local orientation and is discussed
in the next sections.

The manner of communication between agents

Communication between the agents is usually achieved through writing of signs on the
whiteboards, i.e. local storages the agents are capable of manipulating with. There is
one whiteboard per node and the access to it is usually done on the principle of mutual
exclusion

1.1.3 Timing in models

One of the most fundamental aspects of distributed systems and mobile computing is the
distinction between the asynchronous and the synchronous formal models:

1. Synchronous model. This is the simplest model. We assume that the agents’ moves
are done simultaneously in synchronous rounds. More precisely, there is a prior
knowledge of the upper and the lower bounds for the time which is needed for the
execution of the steps and also for one traverse via the link in such a model. From
these upper limits, the length of one synchronous round can be determined. In
systems where the synchronization is not natural, a clock has to be used. This
can lead to a problem of maintaining the correct time in all agents of the system.
In spite of this complication, it is sometimes possible to “simulate” a synchronous
system using an asynchronous one.

The important property of a synchronous model that needs to be mentioned is that
if a problem cannot be solved in the synchronous model it cannot be carried over to
a weaker model.

2. Asynchronous model. In the asynchronous model, all communication steps can re-
quire arbitrary amount of time. Since the asynchronous model is not concerned with
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time to the extent of synchronous model, algorithms designed for the asynchronous
models are more general and portable. As such, the asynchronous model is more
general and all proofs of its properties also apply to the synchronous model but not
vice versa. On the other hand, the asynchronous model might not provide enough
power to solve problems efficiently, or even to solve them at all.

1.1.4 Main algorithmic problems

There are several primitive problems that the algorithmic mobile computing deals with.
Some of them are interrelated and thus solving one of the problems simplifies solving the
related ones. The basic problems studied are:

1. Leader election is a process when a group of autonomous mobile entities agrees on
the selection of one of them as the leader.

2. Exploration and mapping: The task is to explore the environment – the graph or the
plane – and eventually map it. This topic is investigated in next section.

3. Termination detection: This problem is related to terminating the algorithm for an
agent and the manner of broadcasting this information to other agents in the network.

4. Rendezvous refers to arranging a meeting of two mobile agents situated in different
nodes in same node of the graph.

5. Gathering: The objective is similar to the Rendezvous problem, the only difference
being that more than two agents meet in the same node.

6. Symmetry breaking: As agents usually run similar programs and neither the envi-
ronment nor the agents have to have unique identifiers, more agents can appear in
the same situation and, as a result, a method for breaking the symmetry needs to be
applied.

1.2 Overview of graph explorations

The task of visiting all nodes of a network is a fundamental part of many algorithms (e.g.
searching for data stored in unknown nodes of network). At the same time, traversing all
edges might be crucial for network maintenance and checking for defective components.

If the edges do not have any labels, the problem of deterministic exploration is unsolv-
able even for a 3-node triangle graph. This is so, because after visiting the second node the
robot cannot distinguish the edge leading to the node not visited yet. Therefore, names
need to be assigned to all edges. This is often called local orientation and it is formally
defined in Section 2.1. The names of the edges are often called port labels or port names
and it is necessary that they are unique from the perspective of the corresponding vertex
(they do not have to be unique in the context of the whole graph).
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The exploration of graph with nodes having unique labels can be easily performed by
a depth-first search. However, in some cases such a unique labeling may not be available
in unknown environment. Hence, the ability to explore anonymous graphs, i.e. graphs
without the labeling of nodes or edges, is most wanted.

The restrictions placed on the graph are very important – if they are too weak, some
problems might become unsolvable. For example, if we consider an anonymous graph with
local orientation and forbid marking of the nodes, it is impossible to explore even a cycle
of unknown length or to stop in it. Hence, some marking of nodes (e.g. by dropping and
removing pebble) must be available in order to make the problem solvable.

A different approach to the problem requires it to be solved only in a class of graphs
with specific properties, such as graphs without cycle. A similar exploration problem was
solved for a tree graph with no marking, proving it is indeed possible for anonymous graphs
[DFKP02].

The graph exploration was studied further on while taking various factors into con-
sideration. Betke et al. [BRS94] and Awerbuch et al. [ABRS99] studied the problem of
exploring an undirected graph with the additional requirement of the robot returning to
its starting position every so often. This approach models the situation of refueling.

Bender and Slonin [BS94] showed how two cooperating robots can map a directed graph
with indistinguishable nodes, in which each node has the same number of outgoing edges.

Theoretical studies of exploration and navigation problem in an unknown environment
were first studied by Papadimitriou and Yannakakis [PY91]. They considered the problem
of finding the shortest path from the point s to the point t in unknown environment and
came up with many geometric and graph-based variants of it.

S. Alberts and M. R. Henzinger [AH97] considered exploration problems in which the
robot has to construct a complete map of an unknown, directed, strongly connected graph.
The goal of the robot was to visit all nodes and edges of the graph using the minimum
number of edge traversals R. Koutsoupias [Kou] gave a lower bound Θ(d2m) on R and
Deng and Papadimitriou [DP90] showed an upper bound dO(d)m, where m is the number
of edges in the graph and d is deficiency – the minimum number of edges which have to
be added to make the graph Eulerian. They offered the first sub-exponential algorithm for
such an exploration problem with the upper bound of dO(log d)m .

Yet different approach to graph exploration was shown by Stephen Kwek[Kwe97]. The
space here is represented by a strongly connected directed multi-graph G in which the robot
has to explore vertices and edges by traversing them. The robot knows all the traversed
edges and visited nodes and can recognize them when he enters them again. However,
the robot does not know the number of vertices and edges in the graph, where the unseen
edge leads to, nor the origin point of any unseen edge of a visited node. The algorithm
presented in the paper is a depth-first search strategy for exploring graph G with m edges
and n vertices by traversing min(mn, dn2 + m) edges at most, where d is the deficiency of
the graph G.

Bender et al.[BFR+98] came up with some interesting results. Authors model the
environment as an unknown, strongly connected directed graph G and consider the problem
of the robot exploration of G. They do not assume that vertices are labeled and thus the
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robot cannot distinguish them. For this reason, robot is provided with a “pebble” – a
device it places in a vertex and uses it to identify the vertex later on. Two deterministic
algorithms are designed in the paper with following conclusion:

1. when the robot knows the upper bound on the number of vertices, it can explore
graph efficiently with one pebble,

2. when the robot does not know the upper bound on the number of vertices n then
Θ(log log n) pebbles are both necessary and sufficient.

The exploration with the team of non-cooperative robots was studied by Fraigniaud et
al. in [FIRT05]. The paper is interested in memory requirements of a team of robots for the
graph exploration. First, they show that for any set of q non-cooperative K-state robots,
there exists a graph of size O(qK) that no robot of this set can explore (no robot can
visit each vertex and traverse each edge at least once). Then, they deal with exploration
with one robot stopping at its end. For this task, the robot is provided with a pebble.
They prove that the exploration with a stop requires Ω(log n) bits for an n-node graph.
At the same time, they prove that there exists an exploration with a stop-algorithm using
a robot with O(D log ∆) bits of memory to explore all graphs of diameter at most D and
the maximal degree at most ∆.

Cohen et al. [CFI+05] investigates labeling of vertices. It presupposes that the designer
of the system is allowed to add short labels to the graph nodes in a pre-processing stage.
These labels are then used to guide the robot in an exploration. They give an exploring
algorithm, which placing 2-bit labels into vertices, allows the robot to explore the whole
graph. Furthermore, they describe a suitable labeling algorithm for generating the labels
required in a linear time. They show how to modify the labeling scheme for the graphs
of a bounded degree using 1-bit labels so that robot is still able to explore it completely.
Finally, they bring a proof of a negative result of a graph exploration by a robot with no
internal memory (i.e. a single state automaton).

Another investigation of labeling is done in Dobrev et al., Ilcinkas, Ga̧sieniec et al.
[DJSS05, Ilc06, GKM+07]. In all three papers, the changes in edge-labeling are done as a
pre-computation in order to obtain a graph with certain good properties, such that a simple
traverse algorithm for visiting all nodes can be designed. By Dobrev et al. [DJSS05] the
problem of perpetual traversal (assuming that the robot visits every node infinitely many
times in a periodic manner) by a single agent in an anonymous undirected graph G = (V, E)
is approached. The following traversal algorithm is fixed: “Start by taking the edge with the
smallest label. Afterwards, whenever you come to a node, continue by taking the successor
edge (in the local orientation) to the edge via which you have arrived” and poses a question
whether it is possible to assign the local orientation providing that the agent visits every
node in O(|V |) moves employing the resulting perpetual traverse. In [Ilc06] the author
continues in the study of the problem, changing the approach. The change includes the
traversal algorithm and the number of moves in perpetual traversal required for visiting
every node being lowered by a constant factor. The most recent publication, [GKM+07],
studies the problem of periodic exploration of all nodes in an undirected graph using a
finite state automaton (robot) with a decreased upper bound of the solution.
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Our goal is derived from the research in [DJSS05, Ilc06, GKM+07]. We are investigating
in what way additional information can be stored in the graphs by using local orientation.
In Chapter 3 we show the algorithm for constructing a special cycle, in which very simple
finite automaton is able to traverse all nodes. In Chapter 4 the algorithm for building
a spanning tree is presented. The local orientation is used for marking the edges in a
spanning tree. The modification of the algorithm from Chapter 3 to decrease the memory
requirements is described in Chapter 5. On one hand, the memory complexity is minimized
but on the other hand, the termination detection using so little memory remains an open
problem. However, an extra bits of information stored in the graph can be used to terminate
this algorithm. All algorithms are handled with a local approach – they are designed for
an agent which has to make changes in local orientation of vertices at minimal memory
requirements.



Chapter 2

Notation and preliminaries

2.1 Definitions

In this section we shall provide formal definitions used in the rest of the thesis. We use
a terminology similar to that from [DJSS05]. We also expect the reader to have basic
knowledge of graph theory (for details see [Die00]).

We model the network in which the agents travel by an undirected connected graph.
Vertices correspond to nodes of the network and edges to the links between pairs of nodes
in the network. To be able to distinguish between directed and undirected links, we will
call the directed links arcs and undirected links edges. In the further text, we will denote
the degree of a vertex v by dv, the number of vertices of the graph by N = |V | and the
number of its edges by M = |E|.

Definition 2.1.1 Let G be a simple connected undirected graph. Consider a vertex v with
degree dv. Let us denote by πv a function that assigns to each edge e incident to v a unique
label πv(e) ∈ {1, 2, . . . , dv}. Function πv is called a local orientation in v.

Note that the existence of local orientation in every vertex is a very natural requirement.
Indeed, in order to traverse the graph, agents have to distinguish between incident edges.
The labels of the incident edges in a vertex v define a natural cyclic ordering, where

succv(e) = πv(e) mod dv + 1

is the successor function and the corresponding predecessor function predv(e) is defined
similarly.

Definition 2.1.2 Let G be a simple connected directed graph. We say that a vertex v of
graph G is RH-traversable (right-hand-traversable) if there exists a local orientation πv in
v such that for each arc e of G incoming to v there exists an outgoing arc e′ in G such that
e′ = succv(e). We call such local orientation a witness ordering for v.

13
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Definition 2.1.3 (Right-hand rule) Let v be an RH-traversable vertex of a graph G.
The rule: “ if the vertex v is entered by the edge e, leave it using an edge with label
succv(e)” is called the right-hand rule.

Definition 2.1.4 Let us consider a graph with a witness ordering in every vertex v. An
agent that obeys the following rules in such a graph is called an RH-agent:

1. in the initial vertex v start the traversal by following the edge labeled 1

2. at each vertex continue the traversal by using the right-hand rule

The traversal according to these rules is called an RH-traversal.

Informally, the right-hand rule is very similar to the imagination of right-hand rule in
a maze. We can imagine vertex v with incident edges as a crossroad where all tunnels are
meeting. Then, we can order edges according to their labels from 1 to dv into a circle.
Suppose that the RH-agent entered vertex v via edge with label a, then the edge via it
will leave, is the one that is the next on the right in the circle and the corresponding edge
label is succv(a) = a mod dv + 1. This is the same idea as choosing the first tunnel on the
right-hand side upon arrival to a crossroad.

We say that vertex is RH-traversable when such movement is possible. RH-traversal is
always possible in maze, but in directed graph this does not have to hold.

Careful reader may note that in mazes, choosing arbitrary tunnel and obeying the
right-hand rule leads to finding the exit or to returning back to the origin. Very similar
property holds in graphs with witness orderings in vertices. This will be later shown as
Theorem 2.2.4.

The notion of RH-traversable vertex is defined for easier description of the fact that
the right-hand rule can be used in the vertex. Graph where right-hand rule can be applied
in each vertex is defined as RH-traversable. Agent that is traversing in RH-traversable
graph starting by edge with label 1 and using the right-hand rule is called RH-agent. This
agent can be represented as a simple finite automaton (obviously, it cannot terminate the
traversal process) and thus it is the simplest structure of agent that exists. Later, we will
talk about RH-traversal that is simply the traversal done by an RH-agent.

Definition 2.1.5 A graph G is called RH-traversable if and only if all vertices are RH-
traversable.

Definition 2.1.6 (Pebble) Let G = (V, E) be a graph. Pebble is a global variable p ∈
V ∪ {⊥} such that p = ⊥ in the beginning. Only an agent located in vertex v ∈ V can
manipulate with p and only the following operations are permitted:

• if p = ⊥ then set p = v

• if p = v then set p = ⊥

• test whether p = ⊥

• test whether p = v
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Informally, the pebble is a device that can be held by the agent and carried while walk.
Whenever the agent is carrying pebble and enters a node, agent can put this pebble to
the node. Whenever agent comes to a node where pebble is stored, agent can take it and
carry it while walking in graph. The pebble is used to distinguish a specific vertex from
the others. It is kind of a mark of the vertex that is often used in graph exploration. As we
already note in Section 1.1, it is the simplest model that leaves an information in graph.
The wide range of studies about using the pebble in graph algorithms was done. The
fundamental result was proved in [BFR+98] – even directed strongly connected graph can
be traversed by agent with pebble. On the other hand traversal even with higher number
of agents, modeled as finite automata, without a pebble, leads to an unsolvable problem
([FIRT05]).

2.2 Basic statements

In this section, we will demonstrate a few basic properties of the presented model.

Lemma 2.2.1 Let G be a graph and v ∈ V vertex with witness ordering πv. Let Ev =
{e ∈ E | e is incident with vertex v}. Let succv(e) = πv(e) mod dv + 1, e ∈ Ev be the
successor function for witness ordering πv. Then function succv is a bijection.

Proof: Straightforward from the definition of function succv. �

Lemma 2.2.2 [DJSS05]: Let G = (V, E) be a simple directed graph. Let v ∈ V . Let iv
be the number of incoming edges to v and ov be the number of the outgoing edges from v.
Then v is RH-traversable if and only if iv = ov.

Proof: The if direction: Take all undirected incident edges of v and then alternate outgoing
incident edges with incoming incident edges of v. Label these edges by 1, . . . , dv – see Figure
2.1. The result is RH-traversable vertex v.

The only if direction: As v is RH-traversable and by Lemma 2.2.1, the number of
incoming and outgoing edges incident with v equals. Moreover the undirected edges are
both incoming and outgoing and thus iv = ov. �

Corollary 2.2.3 Let G = (V, E) be a simple undirected graph. Denote Ev = {e ∈ E | e
is incident with vertex v}. Let σv be an arbitrary ordering of edges incident to vertex v.
Formally, let σv be a bijection from Ev to {1, . . . , dv}. Then σv is a witness ordering.

Note that by the Corollary 2.2.3 an arbitrary labeling of edges from 1 to dv (the degree
of vertex v) in a simple undirected graph is witness ordering of graph and furthermore, the
graph is RH-traversable. This is a statement similar to the one about using the right-hand
rule in mazes discussed in the paragraph in the previous section.
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. . .

d

1 2

3

d− 3
d− 2

d− 1

Figure 2.1: Ordering of two bidirectional, two incoming and two outgoing edges.

Theorem 2.2.4 Let G = (V, E) be a graph with witness ordering πv for each vertex v ∈ V .
Consider the following infinite traversal τ : Start in an arbitrary vertex v ∈ V and leave v
via an arbitrary incident edge e. Then, continue using the right-hand rule forever. The set
of vertices from τ then forms a cycle that enters v via the edge with the label predv(e).

Proof: Consider the traversal τ starting from the vertex v via the edge e. Note that at
any moment during the traversal, the rest of the traversal is uniquely determined by the
last edge we traversed. As the traversal is infinite, sooner or later we have to traverse some
edge for the second time. From this point on the traversal will be periodic and thus denote
the cycle created this way as P . We claim that P enters vertex v via the edge with the
label predv(e).

1 Suppose, for the sake of contradiction, that it is not the case. Then, the
arc e (outgoing from v) is not a part of P , since it is not traversed infinitely many times.
Consider the maximal prefix τ ′ of τ that is not part of P . Let e3, leading to some vertex
w, be the last arc of τ ′. Note that it may be the case that w = v. Then P leaves w along
the arc e2 = succw(e3). Consider the arcs along which P enters and leaves w – see Figure
2.2. As P is a cycle, the edge e1 = π−1

w (predw(e2)) (π−1
w (succw(e1)) = e2) belonging to the

cycle P must exists. By the Lemma 2.2.1 about the bijectivity of function succw and from
succw(e3) = πw(e2) = succw(e1) we obtain e3 = e1 and that is the contradiction with the
maximality of prefix τ ′ of τ . �

Since the local orientations can be rotated arbitrarily, we can assume that the arc with
label 1 can be used in the outgoing direction at every vertex.

Definition 2.2.5 From Theorem 2.2.4 it follows that by starting at an arbitrary vertex v

1Note that P may enter v many times.
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e1
e3

e2

τ ′

e

Figure 2.2: The configuration under examination in proof of Theorem 2.2.4.

of graph G = (V, E) with a witness ordering πu for each vertex u ∈ V and leaving via the
arc with label 1, the cycle will be RH-traversed. We will call this cycle a witness cycle.

Theorem 2.2.6 Let C1 and C2 be two witness cycles of graph G = (V, E). Let directed
edge e ∈ E be contained in C1 and C2, then C1 = C2.

Proof: Straightforward from definition of witness cycle and Lemma 2.2.1. �

Lemma 2.2.7 Let v be a vertex of a simple connected undirected graph G = (V, E) with
witness ordering πu, u ∈ V . Then degree of vertex v is k if and only if there exist k
different arcs e1, e2, . . . ek oriented toward v and k different arcs e′1, e

′

2, . . . , e
′

k oriented from
v such that the undirected edges ei and e′i are the same (1 ≤ i ≤ k) and succv(e1) = πv(e

′

2),
succv(e2) = πv(e

′

3), . . . , succv(ek) = πv(e
′

1).

Proof: We will prove the statement by mathematical induction on k, the degree of vertex
v:

• the base of induction k = 1: The statement holds by the definition of the function
succv as a cyclical ordering of labels of edges and Lemma 2.2.1.

• the inductive step: Let the statement hold for the degrees d, d < k. Let undirected
edge e be incident to the vertex v and let ei and e′i be the corresponding arcs (1 ≤
i ≤ k). Let a = predv(e

′

i) and b = succv(ei). Remove the edge e from graph G and
modify succv(π

−1
v (a)) = b and predv(π

−1
v (b)) = a as shown in Figure 2.3. Then by

the induction hypothesis the statement holds. Then the edge e can be added to the
vertex v between edges with labels k − 1 and 1 and the statement will hold again.

�
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v

ei

e′
i

e′
i−1

ei+1

ei+2
e′
i+2

. . .

ei−1 = a

e′
i+1 = b

Figure 2.3: Removing edge in vertex v of degree k.



Chapter 3

Algorithm MergeCycles

In this chapter we will discuss the algorithm for constructing a witness cycle that passes
through all vertices of a graph. Our goal is to apply the ideas from [DJSS05] in a local
manner and to minimize memory requirements.

We will consider the input to be a network modeled as an undirected simple connected
graph G = (V, E), along with the labeling of its edges. We suppose that the labels of edges
incident to vertex v ∈ V are 1, 2, . . . dv, where dv is the degree of vertex v.

The desired output of this algorithm is a new labeling of the edges in graph G such
that if an RH-agent starts the traversal at any vertex, after a finite number of transits via
the links it will traverse all the nodes in the network and return to the starting point of
its traversal.

The change of the labels is done by exchanging labels of two edges incident to a par-
ticular vertex. This is done in the precomputation phase by a different, more powerful
agent. An extra requirement of the algorithm is to do the precomputation of labeling
while minimizing the memory requirements. In the further text, we will use two terms

• RH-agent will denote an agent using the output of our algorithm and traversing all
the vertices of the graph according to the right-hand rule.

• agent will denote a more powerful agent which will perform the precomputation
according to our algorithm.

Note that, as shown in [BFR+98], at least one pebble is required for graph exploration.
Thus a pebble will be necessary in the following algorithm.

3.1 Main idea

Since the input graph is undirected and its ordering is given, by Corollary 2.2.3 the assigned
labels of edges form a witness ordering. Then by Theorem 2.2.4 the input graph consists of
a several witness cycles. The basic idea of our algorithm is to find a way to merge multiple
witness cycles into a single one (we will call such witness cycle kernel witness cycle or kernel

19
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cycle in short). This is done by applying rules Merge3 and EatSmall that are explained in
the next two sections. Pick an arbitrary vertex v. By the Theorem 2.2.4 the RH-traversal
starting in a vertex v and continuing through arbitrary edge (e.g. edge with label 1) is
a witness cycle. This is going to be the initial kernel witness cycle that will be enlarged
by applying rules Merge3 and EatSmall to its vertices. More precisely, as this cycle is
a witness cycle, the agent can simulate the walk of the RH-agent (RH-traverse). While
walking along the kernel cycle, our agent will try to apply rules Merge3 and EatSmall in
each visited vertex.

If any of the rules given above is applied, the kernel witness cycle that is being built is
enlarged. If none of the rules can be applied in a given vertex, the algorithm continues in
the RH-traversal to the next vertex, trying to apply one of the rules there.

The algorithm terminates when an agent RH-traverses the whole kernel cycle and nei-
ther Merge3 nor EatSmall can be applied in any vertex. This is checked easily by counting
the number of visited vertices in a row, in which neither of the rules could be applied. This
can be further compared with the length of the kernel cycle.

Finally, the kernel cycle is RH-traversed for the last time and in each visited vertex the
label 1 is assigned to some outgoing arc that belongs to the kernel cycle.

3.2 Rule Merge3

Rule Merge3: [DJSS05] Let v be a node incident to at least three different witness cycles
C1, C2 and C3. Let x1, x2 and x3 be edges incident to v containing incoming arcs for witness
cycles C1, C2 and C3, respectively. Consider the ordering of the edges in v, which makes
the successor of x2 become the successor of x1, the successor of x3 become the successor of
x2, successor of x1 become successor of x3, and the relative order of the remaining edges
remains the same (see Figure 3.1). This new ordering connects the witness cycles C1,
C2 and C3 into one witness cycle, while remaining a witness ordering for v (because the
original ordering was).

Now we show the algorithm for finding three different witness cycles that are incident
to vertex v in a local manner. The agent remembers the labels of three arcs leaving vertex
v, e.g. e1, e2, e3. By Theorem 2.2.6, an arc is a representative of a witness cycle and
therefore e1, e2, e3 represent three possibly different witness cycles C1, C2 and C3. For a
special purpose, there is a need to remember one extra arc a initialized as a = succv(e3).

The implementation of the rule Merge3 in local manner follows: First of all, our agent
marks the vertex v by inserting a pebble (this pebble serves to mark the vertex where the
merge of witness cycles is going to be made). The agent sets the initial values of e1, e2

and e3 to edges with labels 1, 2 and 3 respectively. Then it RH-traverses the whole witness
cycle C1 starting via the edge e1. The end of the traversal can be found in vertex v, where
the successive edge of incoming edge to v is e1. During this RH-traversal, the agent checks
whether arcs e2 and e3 are present in the cycle C1. After the RH-traversal, it is known
whether the cycle C1 is different from the cycles C2 and C3. Similar check can also be
made for the cycle C2 and cycle C3. Whenever two witness cycles Ci and Cj are the same
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Figure 3.1: Applying rule Merge3

(i < j), the agent sets ej = π−1
v (a) and a = succv(π

−1
v (a)). If πv(ej) 6= 1 the algorithm

starts new check for difference of cycles C1, C2 and C3 represented by arcs e1, e2 and e3.
This algorithm terminates in the following two cases:

• Three different witness cycles are found. Edges predv(e1), predv(e2) and predv(e3)
correspond to edges x1, x2 and x3. Then the Merge3 rule can be applied as described
in the first paragraph and a single witness cycle is made.

• If we get to the situation where ej (1 ≤ j ≤ 3) is assigned the value 1 again, we have
tried all incident edges of v as the edges of the witness cycle and we have not found
three different cycles and thus this rule cannot be applied here.

Finally, the pebble needs to be removed from vertex v.

Lemma 3.2.1 Rule Merge3 can be applied on any three different witness cycles incident
to a vertex.

Proof: Straightforward from the construction, since there are no constraints. �

Lemma 3.2.2 The rule Merge3 can only be applied finitely many times. After an appli-
cation of the rule Merge3 the number of cycles in the graph decreases by two.

Proof: By the application of rule Merge3 three witness cycles are merged together and no
cycle is separated. Thus the number of witness cycles decreases by two. As the number of
the witness cycles is finite the statement holds. �

Lemma 3.2.3 Let v be a vertex of a simple undirected connected graph G. Let there be
at least three different witness cycles passing through the vertex v. Then, these cycles are
detected and the rule Merge3 is applied.
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Proof: It is straightforward from the Lemma 3.2.1 and the fact that the value of a variable
ei, i ∈ {1, 2, 3} is changed when it represents the same witness cycle as the variable ej,
j ∈ {1, 2, 3}, i > j. �

Lemma 3.2.4 The time complexity of one application of the rule Merge3 in a simple
undirected connected graph G = (V, E) is O(M∆), where ∆ is the maximal degree of a
vertex in the graph and |E| = M .

Proof: The length of one cycle that needs to be traversed is O(M). We need to try O(∆)
edges incident to a particular chosen vertex during the search for three different witness
cycles. Thus the total time complexity of one usage of the rule Merge3 is O(M∆). �

3.3 Rule EatSmall

Rule EatSmall: [DJSS05] Define a non-simple witness cycle as a witness cycle where
a vertex is passed at least twice. Let C1 be a non-simple witness cycle in this ordering
and let v be a vertex appearing in C1 at least twice. Suppose that v is also incident to
a different witness cycle C2. Let x and y be arbitrary edges containing incoming arc of
C1 and C2 in v, respectively; let z be the edge containing the incoming arc by which C1

returns to v after leaving via the successor of x. If z is successor of y, choose a different
x. Modify the ordering of the edges in v as follows: (1) the successor of x becomes the
new successor of y, (2) the old successor of y becomes the new successor of z, (3) the old
successor of z becomes the new successor of x and (4) the order of the remaining edges
does not change – see Figure 3.2.
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Figure 3.2: Applying rule EatSmall

The local version of using rule EatSmall in a vertex v is similar to the Merge3 rule.
The agent chooses two different witness cycles C1 and C2. Edges x, y and z can be easily
found and checked while finding cycles C1 and C2.
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Note that blindly applying the rule EatSmall may lead to deadlocks when a part of a
cycle will be transfered back and forth between two cycles. To prevent the deadlocks, we
will always use our kernel cycle as the cycle C2 in our algorithm.

Lemma 3.3.1 [DJSS05] Applying the rule EatSmall results in a transfer of a loop of
the edges from witness cycle C1 to a different witness cycle C2, while maintaining RH-
traversability.

Proof: Straightforward from the construction. �

Lemma 3.3.2 Let Γ(C) be the length of the witness cycle C. Suppose that we are only
allowed to apply the rule EatSmall if Γ(C1) ≤ Γ(C2). Then the rule EatSmall can only be
applied finitely many times.

Proof: By the definition of the ordering Γ, in each application of the rule EatSmall the
shorter witness cycle is shortened and the longer cycle is extended. When two witness
cycles are equal in ordering (they have the same length), by applying rule EatSmall, one of
these cycles is shortened and one extended. Therefore by application of the rule EatSmall
the sum of squares of cycle lengths is increased. M 2 is a trivial upper bound on the sum
of squares of cycle lengths. Thus there can only be finitely many rule applications. �

Lemma 3.3.3 Let v be a vertex of a simple undirected connected graph G. Let two different
witness cycles C1 and C2 pass through vertex v in G. Let the cycle C1 pass through vertex
v at least twice. Then, the rule EatSmall can be applied in vertex v, using cycles C1 and
C2.

Proof: Denote by y the incoming arc incident with vertex v that is in the cycle C2. Denote
by x the incoming arc incident with vertex v that is in the cycle C1 and by z the incoming
arc incident with vertex v that is the next incoming arc after z to the vertex v in the cycle
C1 (notation is similar as shown in Figure 3.2). The rule EatSmall cannot be applied only
if z is a successor of y. In such case we simply take z as the new value of x and then we
find the new value of z as the next incoming arc after the arc x that is incident to the
vertex v in the cycle C1. As the cycle C1 passes through vertex v at least twice, such arcs
exists and are different. By the Lemma 2.2.1 and the fact that in this case x is successor
of y, z cannot be successor of y and therefore the rule EatSmall can be applied. �

Lemma 3.3.4 The time complexity of one application of the rule EatSmall in a simple
undirected connected graph G = (V, E) is O(M∆), where ∆ is the maximal degree of a
vertex in V and |E| = M .

Proof: For a chosen vertex there are O(∆) incident edges. Each witness cycle has O(M)
edges and thus finding two different witness cycles has time complexity O(M∆). After-
wards, the change of the labels in the chosen vertex, can be performed in O(1) and therefore
the total time complexity of the rule EatSmall is O(M∆). �
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3.4 Algorithm MergeCycles

Definition 3.4.1 Pick an arbitrary vertex v. The witness cycle determined by v and the
outgoing edge with label 1 will be called the kernel cycle. Our algorithm will extend this
cycle by applying local rules that alter the graph. At any moment there will be exactly one
kernel cycle.

Definition 3.4.2 Rule Merge3KC: The rule Merge3 is applied on three cycles, one of them
being the kernel cycle. After the rule is applied, the new combined cycle is the current kernel
cycle.

Definition 3.4.3 Rule EatSmallKC: The rule EatSmall is applied on two cycles C1, C2,
with C2 being the kernel cycle. After the rule is applied, the extended cycle C2 is the current
kernel cycle.

The pseudocode and the detailed explanation of the MergeCycles algorithm follows. By
succ v(e) and pred v(e) we will denote the operations succv(e) and predv(e).

function beginRHtraversal from vertex v via edge e

1: step = 0;

2: while rule Merge3KC can be applied in v do

3: apply Merge3KC;

4: od

5: apply rule EatSmallKC in vertex v if possible;

6: if rule EatSmallKC or Merge3KC was applied

7: goto 2;

8: else

9: length = getLength(v,e);

10: tryToApplyRules via edge e;

function getLength from vertex v via edge e

11: put pebble to vertex v;

12: count = 0;

13: RH-traverse via edge e,

increase count for each edge traversed,

stop in v when incoming edge is pred_v(e);

14: take pebble from v;

15: return count;

function tryToApplyRules in vertex v via edge e //e is incoming edge to v

16: step = step + 1;

17: if (step == length) // kernel cycle passes all vertices

18: RH-traverse the kernel cycle via edge succ_v(e),

rotate the local orientation in each visited vertex, such that
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the outgoing edge will have label 1;

19: exit;

20: else

21: while rule Merge3KC can be applied in vertex v do

22: apply Merge3KC;

23: od

24: apply EatSmallKC if it is possible;

25: if rule EatSmallKC or Merge3KC was applied

26: beginRHtraversal via edge succ_v(e);

27: else

28: tryToApplyRules via edge succ_v(e);

function start in vertex v

29: beginRHtraversal via edge with label 1

Now we will discuss the pseudocode in more detail. The idea of the code is that during
the RH-traversal of the witness cycle, which is defined by the starting vertex v and edge
with label 1, the rules Merge3KC and EatSmallKC are applied. The application of rules
Merge3KC and EatSmallKC causes that the starting cycle (called kernel cycle) is extended.
After the extension, by the resuming of the RH-traversal, the newly connected vertices
are visited and the rules Merge3KC and EatSmallKC are applied there. The algorithm
terminates once whole kernel cycle is RH-traversed and no rule is applied. To confirm this,
the length of the kernel cycle length is computed (the length is recomputed each time
after a few applications) and the number of visited vertices step in a row, where no rule
has been applied, is also calculated.

Before the termination of the algorithm, the resulting kernel cycle is RH-traversed for
the last time and the local orientation of each visited vertex is rotated so that the edge
with label 1 is one of the outgoing edges of the kernel witness cycle in that vertex. Note
that during the RH-traversal only the relative ordering of edges is needed. The particular
values of labels are never used except for the initial step of the RH-traversal where the
edge with label 1 needs to be present. Therefore, by rotating the local orientation, the
ordering of the edges will stay unchanged and the RH-traversal will not be affected.

The starting point of the algorithm MergeCycles is the function start.
In function beginRHtraversal, the RH-traversal of the kernel cycle is launched. In

lines 2-7, rules Merge3KC and EatSmallKC are applied. When no rule can be applied
(line 8), the length of the current kernel cycle is recomputed and then the next vertex is
tested for application of rules Merge3KC and EatSmallKC (lines 9-10).

In function tryToApplyRules, the test of a vertex for the possibility of application of
rules Merge3KC and EatSmallKC is done. In the beginning, the number of tested vertices
is increased, then the check whether the algorithm terminates, is made. For the positive
answer (lines 17-18), the resulting kernel cycle is RH-traversed for the last time and in
each visited vertex v the local orientation is rotated, so that the current outgoing edge of
the traversal has label 1. Note that after this RH-traversal finishes, in each vertex the edge
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with label 1 will lie on the kernel cycle. Therefore, our RH-agent starting its traversal from
any vertex by using the edge with label 1 will visit all vertices of the graph.

If the answer is negative, an attempt is made to apply rules Merge3KC and EatSmallKC.
When the rule Merge3KC or EatSmallKC is applied, the length of the new kernel cycle
is changed and thus a new RH-traversal begins. If no rule is applied, the RH-traversal
continues via the successive edge to test the next vertex (line 28).

Note that when rule Merge3KC or EatSmallKC is applied in a vertex v, the incoming
edge of kernel cycle to the vertex is known and thus the original rules Merge3 and EatSmall
can be easily altered so that we know one outgoing edge of the kernel cycle after the rule
is applied.

It needs to be noted that the pseudocode for algorithm MergeCycles is simplified. For-
mally, the agent has a O(log N) possible number of states that need to change while
performing algorithm MergeCycles.

3.5 Proofs of correctness and complexity

Lemma 3.5.1 During the execution of the above algorithm the agent traverses the kernel
cycle.

Proof: It is straightforward from the pseudocode and its description. �

Lemma 3.5.2 The rules Merge3KC and EatSmallKC can be applied only finitely many
times in a simple undirected connected graph G, regardless of the order of application.

Proof: By the statements and definitions from Sections 3.2, 3.3 and 3.4 each application
of the rule Merge3KC or EatSmallKC increases the length of the kernel cycle. As the length
of the kernel cycle is finite, the application of the rules is finite and therefore the statement
holds. �

Lemma 3.5.3 Whenever the original rule Merge3 can be applied during the execution of
the algorithm MergeCycles, the rule Merge3KC can be applied too.

Proof: By the Lemma 3.5.1 the agent comes into vertex v by the kernel cycle. Thus the
kernel cycle passes through vertex v. As the rule Merge3 can be applied, at least three
different cycles pass through vertex v. Thus we can apply Merge3 on the kernel cycle and
any two other cycles. �

Lemma 3.5.4 Whenever the rule EatSmall can be applied during the execution of the
algorithm MergeCycles and C1 is not the kernel cycle, the new rule EatSmallKC can be
applied too.
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Proof: By the Lemma 3.5.1 the agent comes into vertex v by the kernel cycle. Thus the
kernel cycle passes through vertex v. Suppose that the rule EatSmall is applied on two
cycles different from the kernel cycle (if not, the statement holds). Then let C be the cycle
that passes vertex v at least twice. Denote by z1 and z2 two incoming arcs of the cycle C
entering vertex v. Let y be the incoming arc of the kernel cycle entering vertex v. By the
Lemma 2.2.1 succv(y) 6= z1 or succv(y) 6= z2. Without lost of generality, let succv(y) 6= z1.
Since the arc z1 is the arc of cycle C, there exists arc x that is preceding arc z1 and it is
incoming arc to vertex v in cycle C. Then the rule EatSmallKC can be applied using edges
x, y and z1. �

Theorem 3.5.5 Algorithm MergeCycles applied to a simple undirected connected graph
G = (V, E) always terminates and in the final labeling the labels 1 are assigned to the
outgoing arcs in the kernel cycle.

Proof: By Lemma 3.5.2 the number of application of rules Merge3KC and EatSmallKC is
finite. After each application of the rules, the length of the new kernel cycle is recomputed.
This recomputation is finite as it is done by RH-traversal on a finite kernel cycle. The
algorithm terminates after no rule can be applied anymore, and after a finite number of
edge traversals that is identical to the length of the kernel cycle. As the rules Merge3KC
and EatSmallKC can be applied only for a limited amount of times, the length extension
is limited and at some point the algorithm terminates.

Second statement trivially holds by line 18. �

Lemma 3.5.6 Let algorithm MergeCycles terminate in a connected undirected simple graph
G = (V, E) resulting in the kernel witness cycle W . Then neither rule Merge3KC nor rule
EatSmallKC can be applied in a vertex v ∈ V such that v ∈ W .

Proof: Whenever rule Merge3KC or EatSmallKC is applied in the algorithm MergeCycles,
the length of the kernel cycle is recomputed and the calculation of the number of vertices in
a row where neither rule Merge3KC nor EatSmallKC can be applied starts. The algorithm
terminates when the number of vertices in a row where none of rules can be applied is
same as the length of the kernel cycle and therefore the statement holds. �

Lemma 3.5.7 Let G = (V, E) be a simple undirected connected graph. Let v ∈ V and
x ∈ V be two neighbouring vertices such that the kernel cycle (denoted by W ) passes
through v but not through x. Then, either the rule Merge3KC or EatSmallKC can be
applied in vertex v.

Proof: Denote by u and w the neighbouring vertices of vertex v that are before and after
the vertex v on the kernel cycle W and by πz the local orientation for the vertex z ∈ V .

Formally, the arcs
−−−→
(u, v) and

−−−→
(v, w) belong to kernel cycle and succv((u, v)) = πv((v, w)).

By the assumption, x 6= u and x 6= w. As (x, v) ∈ E, x /∈ W and the Theorem 2.2.4, the

arcs
−−−→
(x, u) and arc

−−−→
(u, x) are included in the witness cycles C1 and C2 (C1 6= W , C2 6= W ).
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If C1 and C2 are different, then at least three different witness cycles pass through the
vertex v (W , C1 and C2) and therefore by Lemma 3.2.1 and by Lemma 3.5.3 the rule
Merge3KC can be applied in the vertex v.

Let C1 = C2 = C. We will show that in this case, the cycle C passes through vertex
v at least twice and therefore by the Lemma 3.3.3 and Lemma 3.5.4 the rule EatSmallKC
can be applied.

For a proof by contradiction, let C pass through the vertex v once in each direction.

Then, the arcs
−−−→
(x, v) and

−−−→
(v, x) are the two arcs that come in and come out of the vertex

v. As these edges are the only ones that are passing through vertex v in the cycle C, then,

by the definition of the witness ordering, arc
−−−→
(x, v) must be followed by the arc

−−−→
(v, x). By

the definition of succv function, succv((x, v)) = πv((v, x)) and by Lemma 2.2.7 the degree
of vertex v is 1, which contradicts the assumptions. �

Lemma 3.5.8 Execute the algorithm MergeCycles on a simple connected undirected graph
G and denote the resulting kernel witness cycle by W . Then, if C is any witness cycle in
the resulting graph, there exists a vertex w such that w ∈ C and w ∈ W .

Proof: Suppose that C is a witness cycle which has no vertex in common with cycle W .
As the graph G is connected, there exists a path P between a vertex u ∈ C and a vertex
w ∈ W whose inner part contains vertices from neither C nor W (u /∈ W and w /∈ C from
the assumption). Let e be the edge that is incident with w and is in path P (let the other
vertex of e be v ∈ V ) as we show in Figure 3.3.

By the definition of witness ordering and Theorem 2.2.4, there exists a witness cycle C1

passing through arc
−−−→
(v, w) and a witness cycle C2 passing through arc

←−−−
(v, w). By Theorem

2.2.6 and the fact that e is the edge of the path P that is not contained in W , C1 6= W
and C2 6= W .

Then, by the Lemma 3.5.7, one of the rules can be applied on w as there are two witness
cycles C1 6= W and C2 6= W . This contradicts the Lemma 3.5.6, because w belongs to W
and the algorithm MergeCycles already terminated. �

W

C1

C

C2

e P

v uw

Figure 3.3: Two disjoint witness cycles W and C connected by the path P
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Theorem 3.5.9 Let G = (V, E) be a simple undirected connected graph, let algorithm
MergeCycles terminate in G. Then in any vertex of the entire graph G neither rule
Merge3KC nor rule EatSmallKC can be applied.

Proof: Note that this is a stronger claim than Lemma 3.5.6. Denote by W the resulting
kernel witness cycle produced by our algorithm MergeCycles and denote by πu the witness
ordering in a vertex u ∈ V . For the sake of contradiction, let u ∈ V be a vertex, where
one of the rules Merge3KC or EatSmallKC can be applied.

By Lemma 3.5.6 we know that w /∈ W . By Lemma 2.2.4, there exists a witness cycle
C 6= W such that u ∈ C. By Lemma 3.5.8 there exists a vertex w such that w ∈ C
and w ∈ W . If more than two witness cycles are passing through the vertex w, the rule
Merge3KC can be applied, which contradicts Lemma 3.5.6. Thus only cycles W and C are
passing through the vertex w.

Let w0 = w, and let w1 be an arbitrary vertex such that the arc
−−−−−→
(w0, w1) belongs to C.

We may now construct an infinite sequence {wi} using the following relation:

succwi+1
((wi, wi+1)) = πwi+1

((wi+1, wi+2)), ∀i ∈ N.

Note that ∀i ∈ N,
−−−−−−→
(wi, wi+1) ∈ C. From the facts that w0 ∈ W , u ∈ C and u /∈ W we get

that ∃n ∈ N, wn+1 /∈ W ∧ (∀i ≤ n, wi ∈ W ).

By the Theorem 2.2.4 the arcs
−−−−−−−→
(wn, wn+1) and

←−−−−−−−
(wn, wn+1) determine witness cycles C ′,

C ′′. As wn+1 /∈ W , clearly C ′ 6= W and C ′′ 6= W . If C ′ 6= C ′′, we may apply the rule
Merge3KC in wn, otherwise we may apply the rule EatSmallKC. Either way, we get a
contradiction with Lemma 3.5.6. �

Lemma 3.5.10 During our algorithm MergeCycles in each vertex v of a simple connected
undirected graph G = (V, E) we only apply the rules Merge3KC and EatSmallKC once
as a batch of local changes. In other words, once we discover that none of the rules can
be applied in a particular vertex v, this vertex is final – no rule applications in v will be
possible in the future.

Proof: For a proof by contradiction, let v be a vertex on the kernel cycle where neither
the rule Merge3KC nor EatSmallKC can be applied at some moment during the execution
of the algorithm MergeCycles, but it will become possible to apply one of the rules later.
We start by observing that there can be at most two witness cycles passing through v,
otherwise the rule Merge3KC would be applicable. One of these cycles is the kernel cycle
and we will denote it W . The other witness cycle (if it exists at all) will be called C. As
the rule EatSmallKC can not be applied at this moment, we know that C, if it exists, only
passes through v once.

Applying the rule Merge3KC in some other vertex w either leaves the cycle C untouched,
or it connects it to the kernel cycle. Similarly, application of the rule EatSmallKC in w will
either leave C untouched, or it transfers a part of C to the kernel cycle. In either case the
vertex v will never contain more than two witness cycles, and the cycle C will never pass
through it more than once. Thus none of the rules will be applicable in v in the future. �
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Theorem 3.5.11 Let G be a simple connected undirected graph. Suppose that the algo-
rithm MergeCycles already terminated on G. Let W be the kernel witness cycle constructed
by the algorithm. Then W contains all the vertices in G.

Proof: The statement can be proved in the same way as in Theorem 3.5.9. By contra-
diction, let u ∈ V be a vertex such that u /∈ W . Using the same reasoning as in Theorem
3.5.9, we will find n ∈ N and two vertices wn and wn+1 such that wn ∈ W , wn ∈ C and

wn+1 /∈ W , wn+1 ∈ C. By the same consideration, neither of the arcs
−−−−−−−→
(wn, wn+1) and

←−−−−−−−
(wn, wn+1) can belong to the kernel cycle W . Thus, one of the rules Merge3KC or EatS-
mallKC can be applied in wn (according to Lemma 3.5.7) and this is a contradiction, with
the termination of the algorithm �

Theorem 3.5.12 The time complexity of the algorithm MergeCycles applied to a simple
undirected connected graph G = (V, E) is O(M 2∆), where ∆ is the maximal degree of a
vertex in V and |E| = M .

Proof: By Theorem 3.5.5 the algorithm MergeCycles terminates. The length of the kernel
witness cycle increases with every use of the rules Merge3KC and EatSmallKC. The max-
imal length of the kernel cycle is 2M when all edges are used in both directions. Thus the
rules can only be applied O(M) times. By Lemma 3.2.4 and Lemma 3.3.4, one application
of the rule can be done in O(M∆). In the worst case, the rule is applied only once during
each whole traversal of the kernel cycle. The length of the kernel cycle is O(M) and thus
the total time complexity is O(M 2∆). �

Theorem 3.5.13 The memory needed for the algorithm MergeCycles applied to a simple
undirected connected graph G = (V, E) is one pebble and O(log N) memory for the agent
that executes the algorithm.

Proof: The pebble is needed while applying the rule Merge3KC, rule EatSmallKC and
while calculating the length of the kernel witness cycle being built. Applying these rules
and calculating length is done sequentially and thus only one pebble is needed at any
moment.

In the algorithm MergeCycles while processing a single vertex v the agent needs to keep
a finite number of edge labels. A label of an edge is a number from 1 to dv and dv ≤ N .
Therefore a single edge label can be stored in O(log N) memory. In addition to the edge
labels, our agent needs two more variables – counters for the length of kernel cycle and
the number of vertices in a row, where neither rule could be applied. At any time, these
variables contain numbers of size O(N 2), and those can be stored in O(log N) memory.
Therefore the statement is true. �



Chapter 4

Algorithm for spanning tree

In this chapter we will discuss the algorithm for constructing a (rooted) spanning tree. As
the input, we will consider a network modeled as a simple undirected connected graph with
a local orientation. Note that the input is a simple undirected connected graph along with
the labelings of its edges and therefore by Lemma 2.2.2 the witness ordering is given. We
assume that the labels of the edges incident to a vertex v are 1, 2, . . . , dv, where dv is the
degree of vertex v.

The algorithm will make changes to labeling, so that when it finishes, the edge with
label 1 will be the link to the vertex’s father in the spanning tree (for the root of the
spanning tree, the edge with the label 1 will lead to one of its direct siblings).

The changes in the labeling need to be done by an agent able to exchange two labels
in a node. The vertex where the algorithm starts will be the root of the spanning tree.
The extra requirement for the algorithm is to do all the precomputations with minimal
memory requirements.

4.1 Main idea

The basic idea of our approach is to first use the algorithm from Chapter 3 and create
a kernel witness cycle and then identify the edges of the kernel cycle that belong to the
spanning tree. The root of the built spanning tree becomes the vertex where the algorithm
begins and thus the vertex where the algorithm MergeCycles from Chapter 3 starts and
terminates. When a vertex is discovered for the first time by the agent in an RH-traversal
on the kernel cycle, it is added to the spanning tree by “rotating” the labels, such that the
label 1 is the label of the discovering edge. Rotations of local orientations in the vertices
do not harm the kernel witness cycle as the RH-traversal (except the first step) relies only
on the ordering of the edges and not on the particular labels.

The decision whether the vertex v was discovered for the first time using the edge e as
the incoming edge is done as follows: First, the vertex v is marked by the pebble. Then a
“backward” RH-traversal (RH-traversal that is using the predecessor function) is started,
using the incoming, possibly discovering edge e. The backward RH-traversal will terminate

31
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in one of these cases:

1. During the RH-traversal, the agent enters the root vertex of the spanning tree by the
edge with label 1 (it is the beginning of the previous RH-traversal). In other words,
the agent returns to the beginning of the RH-traversal that is adding vertices to the
spanning tree. Therefore, the vertex v is new and the edge e is the discovering edge
that needs to be added to the spanning tree. Below we describe how to detect this
situation.

2. The agent enters a vertex with the pebble. Then, the tested vertex is on the way to
the root and thus it was discovered before.

In both cases, the result is clear and the agent RH-traverses back to vertex v via edge
e. If the edge e was the discovering edge, the local orientation is rotated. In both cases,
the RH-traversal continues by checking the next vertex.

The only remaining question is how to decide which vertex is the root vertex of the
spanning tree. Our approach is to use O(log N) memory in the agent, where N is the
number of vertices in the graph. As the agent is traversing the unchanged path defined by
the kernel cycle forwards (by using succ() function) and backwards (using pred()), the RH-
traversal distance from the beginning can be maintained. The length of the kernel cycle can
be calculated beforehands (it does not change during the execution of our algorithm) and
the termination condition of the algorithm becomes a simple comparison of two numbers
– the actual distance and the length of kernel cycle. Thus, testing if the agent is in the
root vertex of the spanning tree can be done easily during the backward RH-traverse.

An alternate approach would be using a second pebble (different from the first one) to
mark the root vertex.

4.2 Algorithm CreateSpanningTree

This section contains a detailed discussion of the algorithm for constructing the spanning
tree and its pseudocode. The agent will have five states: Search, ToRoot, ToOldVertex,
ToNewVertex and Precompute. Figure 4.1 shows the possible transitions between these
five states. The description of the states follows:

Precompute: This is the initial state of the agent where the length of kernel witness cycle
is computed.

Search: This state is used during the search for the next vertex to be added to the spanning
tree.

ToRoot: In this state, the agent traverses to the root of the spanning tree while checking
whether it passes the marked vertex.

ToOldVertex: The state is used for RH-traversing back to the tested vertex, that is already
in the spanning tree.

ToNewVertex: In this state the agent RH-traverses to the tested newly discovered vertex.



4.2. ALGORITHM CREATESPANNINGTREE 33

ToRoot

ToOldVertex ToNewVertex

SeachPrecompute

Figure 4.1: The changes of states of the agent.

The variable state is used for saving the state of the agent. The current distance from
the starting point of the RH-travel is stored in variable dist and the total length of the
kernel cycle is held in variable maxLength.

In the further text, we will assume that the input graph for the CreateSpanningTree
algorithm is the output of the algorithm from Chapter 3. Therefore, the kernel witness
cycle containing all arcs with the label 1 will be available.

The pseudocode follows: (succ v(e) and pred v(e) denote the operations succv(e)
and predv(e) respectively)

1: on arrival to v via e

2: if (state is Search)

3: if (dist is maxLength)

4: exit; // the spanning tree is done

5: else

6: put pebble to v;

7: state = ToRoot;

8: dist = dist - 1;

9: go via e;

10: elseif (state is ToRoot)

11: if (is in vertex v pebble)

12: state = ToOldVertex;

13: dist = dist + 1;

14: go via e;

15: else

16: if (dist is 0) // root

17: state = ToNewVertex;

18: dist = dist + 1;

19: go via e;

20: else
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21: dist = dist - 1;

22: go via pred_v(e);

23: elseif (state is ToOldVertex)

24: if (is in vertex v pebble)

25: take pebble from vertex v;

26: state = Search;

27: dist = dist + 1;

28: go via succ_v(e);

29: else

30: dist = dist + 1;

31: go via succ_v(e);

32: elseif (state is ToNewVertex)

33: if (is in vertex v pebble)

34: rotate the labeling such that label of edge e is 1;

35: take pebble from vertex v;

36: state = Search;

37: dist = dist + 1;

38: go via succ_v(e);

39: else

40: dist = dist + 1;

41: go via succ_v(e);

42: elseif (state = Precompute)

43: if (pebble is in vertex v and succ(e)_v is 1)

// end of precomputations

44: state = Search;

45: dist = 1;

46: take pebble from v;

47: go via 1;

48: else

49: maxLength = maxLength + 1;

50: go via succ_v(e);

CreateSpanningTree in vertex v

51: state = Precompute;

52: put pebble to vertex v;

53: maxLength = 0;

54: if (vertex degree > 0)

55: maxLength = maxLength + 1;

56: go via 1;

57: else

58: exit; //spanning tree is done
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4.3 Proofs of correctness and complexity

Definition 4.3.1 We say that vertex v is discovered when the agent enters the vertex v
for the first time during an RH-traversal.

Definition 4.3.2 Let w be the vertex where the RH-traversal begins (via the edge with
label 1). The RH-distance of some vertex v and incident edge e is the number of edges that
are traversed in RH-traversal starting in the vertex w via the edge with label 1 and ending
in the vertex v by incoming edge e. For the arcs that are not part of the kernel cycle, this
distance is infinite and will never be used.

Lemma 4.3.3 Let G = (V, E) be a simple undirected connected graph which will be used
as the input for the CreateSpanningTree algorithm. Let v ∈ V be a vertex where the agent
starts performing the algorithm. Then, after constructing the kernel cycle by using the
MergeCycles algorithm, the agent will be located in vertex v and it will be holding the
pebble used in the algorithm.

Proof: It is straightforward from the description of the algorithm MergeCycles from Chap-
ter 3. �

Lemma 4.3.4 Let G = (V, E) be a simple undirected connected graph on which the al-
gorithm CreateSpanningTree will be applied. Let v ∈ V be the vertex where the algorithm
CreateSpanningTree starts. After leaving the state Precompute, the agent is located in the
vertex v, its new state is Search and the variable maxLength contains the number of edges
in the kernel witness cycle.

Proof: The algorithm CreateSpanningTree starts in vertex v so, according to Lemma 4.3.3,
the agent is in vertex v in state Precompute when the algorithm MergeCycles terminates.
If the degree of the vertex v is zero, the algorithm terminates immediately as the vertex
itself is a spanning tree.

When the degree is higher, the vertex v is marked by the pebble. Then, the variable
maxLength is increased to 1 and the RH-traversal begins via edge with label 1. Whenever
the agent in the state Precompute enters a vertex which does not contain the pebble, the
variable maxLength is increased and agent continues in RH-traversal by successive edge of
incoming one. When the agent enters the vertex with pebble and the successive edge does
not have label 1, the RH-traversal is not terminating and thus the variable maxLength

is increased by one and the agent continues in the RH-traversal by successor edge of the
incoming one. If the agent enters the vertex v (the one marked with pebble) and the
successive edge of the incoming one has label 1, the RH-traversal came to the starting
point and thus the state of agent is changed.

The variable maxLength is increased by 1 each time we traverse an edge and thus after
the RH-traversal of the whole kernel cycle, the variable maxLength contains the length of
the kernel cycle. Note that the variable maxLength is modified only in the state Precompute
and as soon as the agent leaves this state, it cannot return to it at any later point. Thus
the statement holds. �
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Lemma 4.3.5 Throughout the algorithm CreateSpanningTree, the agent can only change
its state as follows: state Precompute to state Search, state Search to state ToRoot, state
ToRoot to state ToNewVertex or ToOldVertex and states ToNewVertex and ToOldVertex

to state Search

Proof: The transition of the states is shown in the Figure 4.1. After the application of the
MergeCycles part of the algorithm, the agent is in state Precompute. By Lemma 4.3.4, it
changes its state to Search. The only transition from the state Search leads to the state
ToRoot. Similarly, the only transitions from the state ToRoot lead to ToNewVertex and
ToOldVertex states. Finally, the only transitions from ToNewVertex and ToOldVertex

states lead to the Search state. As there are no other transitions possible, the statement
holds. �

Lemma 4.3.6 Let w be the vertex of a simple undirected connected graph G = (V, E) in
which the algorithm CreateSpanningTree starts its execution. During the execution, let v
be some vertex which the agent enter using the incoming edge e. Then at this moment the
value of the variable dist is the RH-distance of vertex w and vertex v using the edge e.

Proof: We will prove the statement by structural induction on the states.

• Base: By Lemma 4.3.3, after the execution of MergeCycles, the agent will be located
in the vertex w and its state will be Precompute. Afterwards, the length of the whole
kernel cycle is calculated. The variable dist is not used in this part. The first time
it is used is when the algorithm reaches the line 45, where it is set to 1. The state of
the agent is set to Search and the RH-traversal starts via the edge with the label 1.
At this moment the statement holds.

• Inductive step: We will analyze possible states:

– Search: The previous state of our agent was either ToNewVertex or ToOldVertex.
In both cases, the agent RH-traversed to the next vertex by successive edge and
the variable dist was increased by 1. The statement then holds by inductive
hypothesis.

– ToRoot: The previous state of the agent was either ToRoot or Search. In case
of the state Search, the agent traversed back via the incoming edge and the
variable dist was decreased by 1 and thus by the inductive hypothesis, the
statement holds. In case of the state ToRoot the variable dist is decreased and
the agent traverses back via the predecessing edge and the statement holds by
the inductive hypothesis.

– ToNewVertex: The previous state of the agent was either ToNewVertex or
ToRoot. In case of the transition from ToNewVertex to ToNewVertex, the vari-
able dist is increased by one and the traversal continues via successive edge and
thus by inductive hypothesis the statement holds. In case of the change of state
from ToRoot to ToNewVertex, and by the inductive hypothesis, the distance of
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the agent from vertex w was 0, meaning the agent was in vertex w. Then, the
variable dist is increased by 1 and the agent traverses back by the incoming
edge (this is the edge with label 1). Therefore, the statement holds.

– ToOldVertex: The previous state of agent was either ToOldVertex or ToRoot.
In the case of the transition from ToOldVertex to ToOldVertex, the variable
dist is increased by one and the traversal continues via successive edge and
thus by inductive hypothesis the statement holds. In the case of the change of
state from ToRoot to ToOldVertex, the traversal carries on by returning via the
incoming edge and thus the RH-distance increases by one, just like the variable
dist. Thus, by the the inductive hypothesis, the statement holds.

– Precompute: The agent cannot enter this state, so it is irrelevant for this anal-
ysis.

�

Lemma 4.3.7 Let G = (V, E) be a simple undirected connected graph where the algorithm
CreateSpanningTree is executed. Let w ∈ V be the vertex where the execution starts.
Suppose that at some moment during the execution of the algorithm CreateSpanningTree
the agent was in a vertex v ∈ V , the incoming edge was e and the state of the agent just
changed from Search to ToRoot. Then, the agent will RH-traverse backwards on the kernel
cycle, terminating in one of the following cases:

1. the agent enters vertex v again, then the state is changed to ToOldVertex

2. the agent enters vertex w via an edge with the label 1, then the state is changed to
ToNewVertex

Proof: When the state Search is changed to state ToRoot in vertex v (line 7), the vertex v
is marked by a pebble and the traversal starts via the incoming edge. Whenever the agent
is in the state ToRoot and the current vertex is neither v (it is not marked by pebble) nor
the variable dist is zero, by the algorithm CreateSpanningTree the traversal is continued
via predecessing edge of the incoming one. Thus, the backward RH-traversal is done.

There are two cases when the state ToRoot can be changed. In the first case, the vertex
on the way of backward RH-traversal contains a pebble. Then this vertex has to be the
vertex v and the new state is ToOldVertex and our statement holds. The second case
occurs when the variable dist decreases to zero. According to Lemma 4.3.6, this occurs
only if the RH-distance of the current vertex and current incoming edge is zero. Therefore,
the only vertex where this case can arise is the initial vertex w and the incoming edge has
label 1. Then, the new state is ToNewVertex and thus the statement holds. �

Lemma 4.3.8 During the execution of the algorithm CreateSpanningTree, the variable
dist is non-negative.

Proof: During the execution of the algorithm, there are two situations where the variable
dist is decreased.
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First situation occurs during the backward RH-traversal in the state ToRoot. By
Lemma 4.3.7, the agent RH-traverses backwards in the state ToRoot until the change
of the state occurs. State ToRoot is changed when dist ≥ 0 to the state ToNewVertex or
ToOldVertex. Then, in both cases, in the next step, dist is increased and thus in this
case the statement holds.

The second situation when the variable dist is decreased by 1 is the state Search. The
agent can come to this state from the state Precompute or from the states ToOldVertex or
ToNewVertex. The first case occurs after the calculation of the length of the kernel cycle.
The dist is set to 0 and subsequently to 1 (at line 45) so the variable dist will remain
non-negative even when it is decreased by one later and the statement holds. In the second
case when the state is changed from ToOldVertex or ToNewVertex to the state Search, the
variable dist is first increased by one, the state is changed and then it is decreased by one.
The new state becomes state ToRoot where the statement from the previous paragraph
holds. �

Lemma 4.3.9 Let w be the vertex of a simple undirected connected graph G = (V, E),
where the algorithm CreateSpanningTree starts. Let v ∈ V , e1 and e2 be two edges incident
to the vertex v such that e2 is the successor of edge e1. Let e1 = (u1, v) and e2 = (v, u2),
u1, u2 ∈ V (see in Figure 4.2). Let the agent, during the execution of the algorithm Cre-
ateSpanningTree (after the execution of MergeCycles algorithm), enter the vertex v via edge
u1 and change its state to Search. Let RH-distance of vertex u2 and edge e2 be smaller
than the length of the whole kernel cycle. Then, the agent enters the state Search for the
next time in vertex u2 with the incoming edge e2.

Proof: The transition of state to the state Search can happened from states Precompute,
ToNewVertex or ToOldVertex. In case of the state Precompute, it must have traversed
via the edge with label 1, in other cases, it traversed via the successive edge. By the
assumption, the successive edge is e2 and thus by the algorithm CreateSpanningTree (lines
2-9), the agent enters the vertex u2 via the edge e2 in the state Search. As the RH-
distance of u2 via edge e2 is less than maxLength, the pebble is put to the vertex u2 (the
incoming edge is e2), state is changed to ToRoot and the agent returns to root via edge
e2. Now, by Lemma 4.3.7, let r be the vertex which the agent enters via the incoming
edge e3 and subsequently changes its state from ToRoot. Then, the state is changed to
either ToNewVertex or ToOldVertex and the traversal continues via edge e3. While no
pebble is passed by agent, the agent continues the RH-traversal in the states ToNewVertex
or ToOldVertex. The state is changed when the agent enters the vertex with the pebble
– that is, u2 via the incoming edge e2. Then, the state is changed back to Search, thus
proving the statement. �

Corollary 4.3.10 Let G = (V, E) be a simple undirected connected graph. Suppose that at
some moment our agent is in the state Search. Then during the entire run of the algorithm
so far the value of the variable dist was never larger than it is now.
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vu1 u2

e1 e2

Figure 4.2: The vertex v with incoming edge e1, successive edge e2 and appropriate vertices
u1 and u2

Corollary 4.3.11 The vertices of a simple connected undirected graph G are discovered
in the CreateSpanningTree algorithm in the order corresponding to increasing RH-distance
from the initial vertex and its incident edge with label 1.

Lemma 4.3.12 A vertex can be discovered by the agent only while it is in the Search

state.

Proof: The proof is obvious from the previous statements and the pseudocode. �

Theorem 4.3.13 Let G = (V, E) be a simple connected undirected graph. The execution
of the algorithm CreateSpanningTree terminates on G.

Proof: Let the algorithm start the execution in a vertex v ∈ V . By Lemma 3.5.5 and
Lemma 4.3.4, the agent enters the state Search in the vertex v (if it did not terminate
before, that could happen when the degree of the vertex v was zero). By Lemma 4.3.5,
the states are changed according to the Figure 4.1. By Lemma 4.3.6, the variable dist is
the RH-distance of the current vertex and an the current incoming edge in the algorithm.
This distance is non-negative by Lemma 4.3.8 and by the Corollary 4.3.10 the value of
dist is increased by one in each cyclical transition of the states, starting and ending in
state Search. Therefore, by Lemma 4.3.5 the agent will eventually reach the state Search

and dist will be equal to the length of the whole kernel cycle. Then, by Lemma 4.3.4,
dist = maxLength and thus the algorithm terminates in the line 4. �

Lemma 4.3.14 Let G = (V, E) be a simple connected undirected graph. Let w ∈ V be a
vertex where the CreateSpanningTree algorithm starts. Let the agent be located in a vertex
u ∈ V , change its state to Search, RH-traverse to the vertex v via the edge e in state
Search (e = (u, v)) and discover the vertex v via the edge e. Then, the state is changed
to ToRoot, the agent RH-traverses backwards to vertex w and finally, changes its state to
ToNewVertex.

Proof: Since the agent discovers vertex v via edge e while in state Search, it follows that
dist = maxLenght (line 3) cannot hold. Thus the vertex v is marked with the pebble, the
state is changed to ToRoot and by Lemma 4.3.7 the agent RH-traverses backward via link
e. As the vertex v was discovered in the previous step, it cannot be passed in the way back
from the vertex v to the vertex w and thus no pebble is found. Then by Lemma 4.3.7 the
agent enters vertex w by the edge with label 1 and the state is changed to ToNewVertex.
�
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Definition 4.3.15 Let G = (V, E) be a simple connected undirected graph, let πv be the
witness ordering for the vertex v ∈ V . Let E∗ = {e ∈ E | e = (u, v), u, v ∈ V, u, v
be discovered, πu((u, v)) = 1 ∨ πv((u, v)) = 1}. Let V ∗ = {v ∈ V | ∃u ∈ V, e =
(u, v) ∈ E∗}. Then, the graph G∗ = (V ∗, E∗), which is changing during the execution
of the algorithm MergeCycles according to the set of discovered vertices and the rotations
of the local orientation in these vertices, will be called the kernel graph for the witness
orderings πv, v ∈ V .

Theorem 4.3.16 Let G = (V, E) be a simple connected undirected graph. Then, whenever
the agent is taking the pebble (lines 46, 25 and 35) during the execution of the CreateSpan-
ningTree algorithm, the kernel graph G∗ = (V ∗, E∗) defined by the actual witness ordering
πv, v ∈ V is connected.

Proof: Let w ∈ V be the vertex where algorithm begins. Then by Lemma 4.3.3 the
algorithm will continue after the MergeCycles part in the vertex w.

We will prove the statement by induction on the number of visited vertices in G during
the execution of the algorithm CreateSpanningTree:

• Base: At the beginning, the vertex w is discovered, E∗ is empty and thus G∗ is
connected. If the degree of w is greater than zero, by Lemma 4.3.4 the agent continues
in the vertex w and in the state Search. The change of states from Precompute to
Search is done at line 44. No other vertex is discovered in the meantime, so when
the pebble is taken from the vertex at line 46, the statement holds.

After this transition of the states, the agent continues in the state Search and tra-
verses via edge with label 1 By Lemma 4.3.12 the new vertex u is discovered by the
edge e and it is marked with pebble. Then, by Lemma 4.3.14 the agent returns to
vertex w and changes the state to ToNewVertex. As the change of the states was
done from ToRoot to ToNewVertex, by Lemma 4.3.5 the agent RH-traverse back to
vertex u via edge e where the pebble is stored. When the agent is situated in vertex
u in the state ToNewVertex, the line 34 is executed. The labeling in the vertex u is
rotated so that the incoming (discovering) edge e has label 1. As the rotation of the
ordering is done only on labels, no changes are made in the ordering for RH-traversal
as here only the ordering of vertices is used. As the discovering edge has label 1 and
the vertex is discovered, the kernel graph G∗ is connected and consists of two vertices
– the root w and the discovered vertex v, connected by an edge.

• Inductive step: According to Lemma 4.3.12, during the execution of the algorithm
CreateSpanningTree where the transition from the state Precompute to state Search
was done, the only state where a vertex can be discovered and the kernel graph
G∗ changed, is the state Search. In other state them Search the vertex cannot be
discovered and therefore kernel graft G∗ is unchanged and the statement holds.

When the agent is in the state Search and enters the vertex u that was already
discovered, the vertex u is marked by the pebble and state of the agent is changed
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to ToRoot. By the Lemma 4.3.7 and the fact that the vertex x is already discovered,
it is found in the backwards RH-traversal. Thus the next state of the agent is
ToOldVertex. According the Lemma 4.3.5 the agent eventually transits from the
state ToOldVertex to the state Search and such a transition can occur only on the
line 26. During this cyclical transition of the states, no new vertices were discovered,
so the G∗ is unchanged and the statement holds.

Suppose that the agent in the state Search discovers the vertex u. Then dist =
maxLenght cannot hold (elsewhere the vertex u would not be a newly discovered
one). Then the pebble is inserted to the vertex u, agent’s state is changed to ToRoot

and the agent traverses back via discovering edge e. By Lemma 4.3.14 the agent
changes the state in w to ToNewVertex, then it starts RH-traversal from w by edge
with label 1 and is RH-traversing in this state until the vertex with pebble is found.
This happens in the vertex u via discovering edge e. Then by the line 34 of the
algorithm CreateSpanningTree the labeling of discovered vertex u is rotated so that
the discovering edge e has label 1. The rotations of local orientation in a vertex do
not harm the RH-traversability.

Let e = (u, v) ∈ E and let e′ be the predecessing edge of e in vertex u. Then RH-
distance of vertex v and edge e′ is smaller than RH-distance of vertex u and edge
e and thus by the Corollary 4.3.11 the vertex v was discovered before the vertex
u. Therefore v ∈ V ∗. After the change of labeling, the label of edge e in vertex
u is changed to 1 and thus e and u becomes members of the kernel graph. By the
induction hypothesis the rest of the kernel graph was connected and by adding vertex
u to the kernel graph, the new kernel graph is connected.

�

Theorem 4.3.17 Let G = (V, E) be a simple connected undirected graph. Then dur-
ing the execution of algorithm CreateSpanningTree (after the realization of the algorithm
MergeCycles) every vertex will be discovered.

Proof: It is straightforward, as by Theorem 3.5.11 all vertices are on the kernel cycle and
all traverses are done by RH-traversal of the kernel cycle. �

Lemma 4.3.18 Let v be the vertex of a simple undirected connected graph G = (V, E),
in which the algorithm CreateSpanningTree it executed. Let e ∈ E be an edge such that
e = (u, v), u, v ∈ V and πv(e) = 1 after the MergeCycles algorithm was executed. Then
πu(e) = 1.

Proof: The proof is straightforward. By Lemma 4.3.3 the initial vertex after the execution
of the MergeCycles algorithm is v and the algorithm starts in it in the Precompute state.
Then, it changes its state to Search in vertex v and begins the traversal via edge e with
label 1. The vertex u is discovered and therefore by Lemma 4.3.14 the agent RH-traverses
backwards in the state ToRoot to the vertex v, changes the state to ToNewVertex and enters



42 CHAPTER 4. ALGORITHM FOR SPANNING TREE

vertex u via edge e. As the vertex u was discovered, the line 34 of the algorithm is executed
and the local orientation in vertex u is rotated, so that the label of the discovering edge e
is set to 1. Then in the later steps of the algorithm CreateSpanningTree, the vertex u is
already discovered and therefore the rotation of local orientation in the vertex u according
the line 34 is never done and the statement holds. �

Theorem 4.3.19 Let G = (V, E) be a simple connected undirected graph and let algorithm
CreateSpanningTree terminate its execution on G. Then, the kernel graph G∗ is a spanning
tree of graph G.

Proof: By Theorem 4.3.16 and Theorem 4.3.17, the graph G∗ is connected and consists of
all vertices of G. As the vertices of G∗ are connected by edges with label 1 and the labels
are unique in each vertex, each vertex is connected in G∗ by only one edge. In particular,
this holds also for the root vertex according the Lemma 4.3.18. Therefore, G∗ is connected
and consists of N − 1 edges, thus it is a spanning tree. �

Theorem 4.3.20 The time complexity of the algorithm CreateSpanningTree (without the
algorithm MergeCycles) applied in a simple undirected connected graph G = (V, E) is
O(M2).

Proof: The computation of maxLength in state Precompute is done by traversing the
kernel cycle, which takes O(M) edge traversals. For each vertex that is being tested
whether it was discovered (in state Search), the agent traverses at most to the root (in
state ToRoot). During this return the agent makes O(M) steps. Then, the state is changed
to ToNewVertex or ToOldVertex and the agent RH-traverses on the kernel cycle back to
the vertex that is being tested. Obviously, this step amounts to O(M) edge traverses as
well. If the vertex was newly discovered (denoted by the state ToNewVertex), it is added
to the kernel graph in time O(∆) (where ∆ is the maximal degree of a vertex in V ), the
state is changed to Search and in the time O(1) the next vertex is entered and the test of
the newly discovered vertex begins again. Whenever the agent enters a vertex during the
traversal of the kernel cycle (in the state Search), that vertex is being tested whether it is
a newly discovered one. One test takes O(M) steps and the kernel cycle has O(M) edges.
The rotation of the local orientation is done N times as each vertex is this way added to
the spanning tree. Thus the total time complexity is O(N∆ + M 2) that can be estimate
to O(M2). �

Theorem 4.3.21 The total time complexity of the algorithms MergeCycles and subse-
quently CreateSpanningTree applied on a simple connected undirected graph G = (V, E) is
O(M2∆), where ∆ is the maximal degree of vertex in G.

Proof: By Theorem 3.5.12, the time complexity of the algorithm MergeCycles is O(M 2∆),
where ∆ is the maximal degree of the vertex in G. By Theorem 4.3.20, the time complex-
ity of the algorithm CreateSpanningTree is O(M 2) and thus the total time complexity is
O(M2∆). �
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Theorem 4.3.22 The total memory complexity of the algorithm CreateSpanningTree ap-
plied on the simple undirected connected graph G = (V, E) is one pebble and O(log N) bits
of memory for the agent.

Proof: During the execution of the algorithm, the agent uses two variables: dist and
maxLength. By Lemma 4.3.4, the value of maxLength is the length of the kernel cycle, which
is O(M). Obviously, M ≤ N 2, so the variable maxLength requires O(log(M 2)) = O(log N)
bits of memory. By Lemma 4.3.6, Lemma 4.3.8, Corollary 4.3.10 and the fact that the
algorithm terminates, the value of dist is at most equal maxLength, thus it also needs
O(log N) bits of memory. As the memory needed for algorithm MergeCycles is, according
to Theorem 3.5.13, equal to one pebble and O(log N) bits of memory in the agent, the total
memory requirements of the CreateSpanningTree algorithm are one pebble and O(log N)
bits of the agent’s memory. �
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Chapter 5

Algorithm MergeCycles+ using
constant memory

In this chapter we will show how to adjust the algorithm MergeCycles from Chapter 3
to decrease memory requirements to constant memory in the agent and one pebble for
marking vertices. The question whether the agent can terminate the algorithm using O(1)
memory and one pebble will remain open. However by increasing the amount of used
memory, the termination can be solved easily.

5.1 Main idea

The main idea of the approach described in this chapter is to modify the algorithm Merge-
Cycles from Chapter 3 so that the agent executing the algorithm will need just O(1)
memory. The modifications will be done in a few steps that are discussed in more detail
in following sections.

First, we will identify the parts of the algorithm MergeCycles from Chapter 3 which
force the agent to use Ω(log N) memory and try to find a way to decrease that requirement.
The following fragments of the algorithm raise the memory requirements to Ω(log N):

1. Traversing via the edges. Obviously, the number of the incoming edge must be stored,
as this information can only be obtained from the local orientation. The agent
would not be able to navigate without it and the problem would become unsolvable.
Therefore, this information is absolutely necessary and it is not included in the total
memory calculation.

2. Finding a witness cycle for application of the rules Merge3KC and EatSmallKC. We
will describe a method for reducing the memory usage of this activity in the following
sections.

3. Computation of the length of the kernel cycle. Knowing the length of the kernel cycle
and being able to count the number of vertices visited in a row in which neither

45
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the rule Merge3KC nor EatSmallKC can be applied is necessary for the termination
detection. The price for getting rid of these computations is a loss of termination
detection – the RH-traversal of the kernel cycle will be infinite, once neither the rule
Merge3KC nor EatSmallKC can be applied, the agent will not be able to detect this
fact and it will travel along the kernel cycle, trying to apply the rules indefinitely.

4. Relabeling of the edges. This will be discussed in a separate paragraph later.

Since our goal for the agent’s memory is O(1), the model chosen for our algorithm and
for the exchanges of the labels is crucial. In our model the agent will be able to request each
of the three following operations. We do not include the necessary memory requirements
in the total memory complexity.

• apply rule Merge3KC

• apply rule EatSmallKC

• rotate local orientation

Our model will contain six variables for performing rules Merge3KC and EatSmallKC.
These variables are not stored in the agent, and the agent can only access them in a single
way – when it is traversing an edge, it may decide to store it in one of the variables. This
is necessary for the agent to be able to mark the edges for one of the rules, while using
constant memory.

We use the notation from Sections 3.2 and 3.3, so the variables x1, x2 and x3 will be
used for storing the edges for rule Merge3 as referred in Section 3.2 and x, y and z will hold
the edges for rule EatSmall as referred in Section 3.3. Rotation of the local orientation
in a vertex is important only for setting the incoming edge’s label to 1 or 2. This can
be implemented by using two variables, just like the rules Merge3 and EatSmall discussed
above but it is only a minor technical issue which we will not examine further.

We do not care about the way the operations are performed, from the agent’s point
of view they are atomic operations that happen instantly at the moment when they are
requested. We only assume that the incoming edge stored by the agent is the same before
and after the execution of each of the operations.

Note, as it was discussed before, that the particular numerical labels of the edges are
not necessary for the RH-traversal. It is only their ordering that matters, so as long as we
can keep the ordering intact, the RH-traversal will proceed as expected. For the sake of
simplicity, we will assume that the agent is able to rotate the local orientation so that the
ordering will be preserved and the label of the incoming edge will be 1 or 2 (if possible).

Now we will talk about the operations the agent is able to perform. Let v be a vertex of
the network, which the agent A computing the kernel cycle is located in and let dv denote
its degree. We demand the model to provide the following operations:

• A can test whether the incoming edge e has label 1 or 2

• A can test whether the vertex v contains a pebble, it can drop and take the pebble
to/from vertex v
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• A can perform operations that set variables x, y, z, x1, x2 and x3 as it was described
in previous paragraphs

• A can rotate the local orientation so that the incoming edge will have label 1 or 2

Definition 5.1.1 Let G = (V, E) be a simple undirected connected graph. Let u, v ∈ V be
such that e = (u, v) ∈ E, let πu, πv be ordering in u, v respectively. We will call label πu(e)
the inner label of the edge e in vertex u and the label πv(e) the outer label of the edge e in
vertex v.

5.1.1 Storing bits of information in a graph

We will consider an undirected simple connected graph G = (V, E). Let v ∈ V be a vertex
of degree d. We will describe a few different approaches for storing information related to
vertex v in the graph G. We will denote incident edges of vertex v by e1, . . . , ed, such that
ei = (v, ui), ui ∈ V . Let πu be the local orientation for the vertex u ∈ V .

Since the local orientation can be rotated, it is possible to set the outer label of any
incident edge of vertex v to 1. Formally, set πui

(ei) = 1, i ∈ {1, . . . , d}. Moreover, in most
cases, it is possible to set the outer labels of an incident edges of the vertex v to a different
value e.g. 2. Naturally, this is not always possible, as some vertices might be of degree
1, but we will show how to deal with such cases later. For now, let us suppose that each
vertex in the graph has degree at least two. Note that we can test whether the outer label
of some edge e is 1 or not – the agent can simply traverse via the examined edge to the
neighbouring vertex, use its state to remember whether the incoming edge’s label is 1 or
not and return back via the incoming edge.

Another important observation is that rotations of the local orientation in vertex v do
not have any influence on the RH-traversal itself. Thus, we can use the label 1 to mark
the edge we are currently processing.

Finally, by changing the outer labels of edges e1, . . . , ed according to the method de-
scribed in this section, we are able to split the edges into two groups by setting their outer
labels to 1 and 2 respectively. Let P be the set of edges with outer label 2. We will bound
the number of elements in P by a fixed constant. As the local orientation πv is an ordering
of the edges e1, . . . , ed, we can use the position of the agent with respect to the incoming
edge to store extra information about the edges in the set P .

5.2 Changing the rule Merge3KC

In this section we describe how to transform the rule Merge3KC into the equivalent rule
Merge3+ with memory complexity O(1).

In order to use the rule Merge3KC in our model, we have to set three variables described
above to three arcs on which the rule will be applied according to Section 3.2. We will
use the same notation as in Section 3.2. In the whole section, we will assume that all
neighbouring vertices of the vertex v have degree at least 2 and thus the labels 1 and 2 are
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available. The case when this assumption is not satisfied is covered in Section 5.4. The
general idea is to set all outer labels of the incident edges to 1 and then find and mark
representative arcs of the cycles C1, C2 and C3 by outer label 2 (the arc will be the edge
incoming to v).

The algorithm for application of rule Merge3+ follows: First, the outer labels of all
incident edges of the vertex v will be set to 1. Inner label 1 will be used to mark the
processed edge, we will move it between edges by local rotations. The processed edge
will be tested whether the incoming arc defines a witness cycle different from the cycles
defined by incoming arcs with outer label 2. If the outcome of this test is positive, the
edge is assigned outer label 2. Then, the local orientation is rotated and the next edge
is processed. When three arcs are marked with outer label 2, three different cycles were
found and the rule Merge3 can be applied. When the result is negative three different
cycles do not exist and therefore rule cannot be applied. During the startup, when this
rule is going to be applied, the incoming edge to the vertex v is an arc belonging to the
kernel cycle. Therefore, after setting the outer labels of all edges incident with vertex v to
1, the incoming edge that was used to enter the vertex v is marked by outer label 2. This
will be the first cycle C1, which is also the kernel cycle.

The pseudocode for the rule Merge3+ and the detailed explanation follows. By succ v(e)

and pred v(e) we will denote the operations succv(e) and predv(e). By pi v(e) we denote
the label πv(e).

function Merge3+ for agent in vertex v incoming edge e

1: put pebble to vertex v;

2: rotate the ordering so that pi_v(e) = 1;

3: set the outer label of edge e to 1;

4: set e = succ_v(e);

5: if (pi_v(e) is not 1)

6: goto 3;

7: set the outer label of edge e to 2;

8: remember in the state that we have one marked edge;

// now all outer labels of edges except for the one that was the our

// incoming to v are 1

9: set e = succ_v(e);

10: rotate the ordering so that pi_v(e) = 1;

11: if (outer label of succ_v(e) is 2)

12: set e = succ_v(e);

13: take pebble from v;

14: exit "NO"; //three different cycles were not found

15: RH-traverse the witness cycle via edge succ_v(e),

during the RH-traversal check whether some incoming edge to vertex v has

outer label 2,

finish when incoming edge to vertex v has inner label 1;

// now the incoming edge e has inner label 1
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16: if (no outer label of the edge was 2 during RH-traversal of an incident

edge of vertex v)

17: set the outer label of edge e to 2;

18: increase by 1 the number of remembered edges of disjoint cycles that

is remembered in state;

19: if (the number of remembered edges is 3)

20: set e = succ_v(e);

21: if (outer label of edge e is not 2)

22: goto 20;

23: set x_1 = e; using the cycle 20-22 find the next two marked edges

with outer label 2 and set x_2 = e and x_3 = e respectively;

24: set e = succ_v(e);

25: if (outer label of edge e is not 2)

26: goto 24;

27: take pebble from vertex v;

28: exit "YES"; //the rule merge3 is applied

29: goto 9;

In the function above the only edge that is remembered is the incoming edge. Now we
will discuss each step of the function to explain its functionality and implementation.

Lines 3, 7, 17: This can be done by traversing via the incoming edge e, changing the local
orientation in the neighbouring vertex and traversing back to the vertex v (the incoming
edge to vertex v will be e).
Lines 4, 9, 12, 20, 24: This can be done by traversing via succv(e) to neighbouring
vertex and returning back to v.

Lines 8, 18: We use a constant (3) number of edges with outer label 2. Once this number
is reached, the marking of edges stops, so the counter can be kept in the agent’s state.
Lines 11-14: The incident edges of vertex v are tested in order given by the local orienta-
tion, starting with the incoming edge e which is marked by outer label 2. If the successive
edge of the currently processed edge has outer label 2, this means that the the successive
edge is the one where the processing started and thus all incident edges were processed
and three disjoint cycles were not found. Therefore algorithm terminates.
Line15: The RH-traversal done in this line is the check for disjoint witness cycles. The
tested cycle is represented by the arc denoted by incoming edge with label 1. The cycles
that have to be disjoint with our tested cycle, are represented by arcs that have outer label
2. During this RH-traversal as the pebble is in the vertex v the check for inner and outer
labels can be done. In the state the agent stores the information whether some incident
edge of vertex v has outer label 2 (in this case the witness cycles are not disjoint). Note
that RH-traversal terminates when incoming edge has inner label 1.

Lines 16-23: When the processed edge is the representative of a witness cycle, that is
disjoint with the other cycles represented by the incoming arcs to vertex v marked by
outer label 2, the counter in the state is increased and processed edge is marked by outer
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label 2. Once three edges are marked, three different cycles were found and thus the rule
Merge3 can be applied by the model.
Lines 24-26: These lines restore the original state of the incoming edge, in order to satisfy
the requirement that the incoming edge must be the same before and after the execution
of the rule Merge3+.

The first edge with outer label 2 was the incoming edge in the beginning of Merge3+.
Note that the edges are being processed in the order defined by the local orientation. There
are two cases when the Merge3+ terminates and in both cases is the incoming edge before
and after application Merge3+ is set to the same edge:

• When there are no three disjoint cycles, the agent processes edges in a sequence and
stops when an edge with outer label 2 is found. As three disjoint cycles were not
found, the first edge with the outer label 2 is the one that was the incoming one
before the application of Merge3+.

• When lines 23-26 of the algorithm Merge3+ are executed the incoming edge is set
to the one that was marked with outer label 2 first – which is precisely the incoming
edge at the beginning of Merge3+.

As the algorithm MergeCycles RH-traverses the kernel cycle while trying to apply rules
Merge3 and EatSmall, the incoming edge to Merge3+ is the edge of kernel cycle and thus
by using Merge3+, the other two cycles are connected to kernel cycle. By the previous
paragraph, the incoming edge to vertex v before and after the application of function
Merge3+ is the same and thus it is the edge of kernel cycle where the RH-traversal can
continue. Therefore, we have designed a modification of rule Merge3KC requiring only
O(1) memory. Note that the new rule Merge3+ is designed only for such vertices where all
neighbouring vertices have degree at least two. As such, the algorithm MergeCycles with
the rule Merge3+ is very similar to the original one which used the rule Merge3KC and
thus most of the statements from Chapter 3 apply to it as well.

Lemma 5.2.1 Let G = (V, E) be a simple connected undirected graph. Let v ∈ V be a
vertex such that the degree of each neighbouring vertex of v is at least two. Then, the rule
Merge3 can be applied in v if and only if the rule Merge3+ can be applied in v and the
result of both rules is equal.

Proof: It is straightforward from the pseudocode and the detailed explanation. �

Lemma 5.2.2 Let G = (V, E) be a simple connected undirected graph. Let v ∈ V be a
vertex such that the degree of each neighbouring vertex of v is at least two and the rule
Merge3 can be applied here. Let e ∈ E be an incident edge of vertex v. Let the agent enter
the vertex v via the incoming edge e, then the incoming edge after the application of the
rule Merge3+ is e.

Proof: It is straightforward from the pseudocode and the detailed discussion in Section
5.2. �
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Corollary 5.2.3 If the incoming edge e to a vertex where the rule Merge3+ is applied
belongs to the kernel cycle, the results of the rule Merge3KC and the rule Merge3+ are
equal.

Theorem 5.2.4 The time complexity of Merge3+ applied in a simple connected undirected
graph G = (V, E) is O(E∆ + d∆), where ∆ is the maximal degree of the vertices in G and
O(d) is the time complexity of rotation of the local orientation in a vertex v ∈ V such that
the incoming edge’s label is 1 or 2.

Proof: Lines 1, 4-5, 8-9, 11-14, 16, 18-20, 27, 28 are performed in constant time.
Lines 2, 3, 7, 10, 17 take O(d) time and cycles 20-22, 23 and 24-26 are done in time
O(∆). In cycle 3-6 the outer label of each incident edge of the vertex v is set to 1 and
therefore the time is O(d∆). The traversal done in the line 15 is O(E) steps. In the cycle
9-29 that is done O(∆) times, the rotation in line 10 and the RH-traversal from line 15

have the greatest influence on the time complexity. The time complexity of the part 1-8

is O(d∆) and the contribution of the cycle 9-29 is O(E∆ + d∆). Therefore the total time
complexity is O(E∆ + d∆). �

5.3 Changing the rule EatSmallKC

In this section, approach similar to that of Section 5.2 will be used to modify the rule
EatSmallKC. We will adopt the notation from Section 3.3. For easier explanation, denote
the initial incoming edge to vertex v as e∗ (this is the incoming edge before the algorithm
for rule EatSmallKC starts and thus an arc of the kernel cycle). In the whole section, we
will assume that all neighbouring vertices of vertex v have degree at least 2 and thus the
labels 1 and 2 are available. The case when this is not satisfied is discussed in Section 5.4.
The idea is to split edges into two partitions – those that are used in the rule EatSmallKC
(with outer label 2) and the rest (with outer label 1).

The algorithm for the application of the altered variant EatSmall+ of the rule EatSmal-
lKC follows: At first, the outer labels of all incident edges of vertex v will be set to 1 (after
this operation, the incoming edge will be e∗). Next, the incoming edge e∗ will be marked
by outer label 2 and it will become the representative of the cycle C2 (the kernel cycle).
Starting with succv(e), by rotating the local orientation in vertex v, the inner label 1 will
mark the processed edge. The processed edge will be tested whether it defines a witness
cycle different from C2 and whether it passes through vertex v at least twice. Such an edge
is a good candidate for the representative of the cycle C1. Then, this candidate is marked
by outer label 2, the next incoming edge to the vertex v in the cycle C1 is determined and
the check for the specific case (when z is successor of y) in the rule EatSmall is done. If the
rule EatSmall can be applied, the next edge incoming to the vertex v is marked by outer
label 2.

Note that only a constant number of edges needs to be marked for application rule
EatSmall. To distinguish edges x, y, z from each other, we can use the local orientation
in the vertex v and store it in the state. As the local orientation is an ordering of incident
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edges, the agent is able to find which edge is the representative of cycle C2 and which
represents the cycle C1 – see Figure 5.1.
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Figure 5.1: The figure is referring to the state in the middle of the execution of the rule
EatSmall+. Cycle C2 was marked by outer label 2 and then the edge a was discovered as
the potential arc of the witness cycle (C1) that is different from C2 and was marked by the
outer label 2. Then the cycle C1 is tested whether the special case when the rule EatSmall
cannot be applied occurs. In our figure the special case does not occur. After entering the
vertex v via the edge b and marking the edge b with outer label 2, the incoming edge to
the vertex v is set to b. Then, the agent can perform the following operation: traverse via
succv(b) and return back to set the incoming edge to succv(b). By continuing such traversal
until the incoming edge has outer label 2, the edge e or a can be found. The distinction
can be done according to the inner label – a has inner label 1. Similar operations can
be done with predv. Using these operations, the agent can establish its relative position
with respect to b and the two marked edges (a and e). In addition to this, the agent can
distinguish between the two marked edges, so it knows which one of them belongs to C1.

The pseudocode for the rule EatSmall+ and the detailed explanation follows. By
succ v(e) and pred v(e) we will denote the operations succv(e) and predv(e). By pi v(e)

we denote the label πv(e).

function EatSmall+ for agent in vertex v incoming via e

1: put pebble to vertex v;

2: rotate the ordering pi_v so that pi_v(e) = 1;

3: set the outer label of edge e to 1;

4: set e = succ_v(e);

5: if (pi_v(e) is not 1)
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6: goto 3;

7: set the outer label of edge e to 2;

8: remember in the state that one representative edge of cycle is marked;

9: set e = succ_v(e);

10: rotate the ordering pi_v so that pi_v(e) = 1;

11: if (the outer label of succ_v(e) is 2)

12: set e = succ_v(e);

13: take pebble from v;

14: exit "NO" // two cycles needed in EatSmall were not found

15: RH-traverse the witness cycle via the edge succ_v(e),

during the RH-traversal, check whether some incoming edge to vertex v

has outer label 2 and whether the agent visits vertex v at least

twice. Terminate the RH-traversal when the edge with inner label 1

is incoming to v;

16: if (no outer label of incident edge of vertex v has value 2 and

agent has visited vertex v during the RH-traversal at least twice)

17: set the outer label of edge e to 2;

18: RH-traverse via edge succ_v(e) until agent again enters vertex v

19: set e = pred_v(e);

20: if (the outer label of e is 2 and the inner label is not 1)

// this occurs when succ_v(y) = z and EatSmall cannot be applied

21: set e = succ_v(e);

22: RH-traverse backwards (using pred function) via edge e,

terminate the RH-traversal when incoming edge to v has

the outer label 2;

23: set the outer label of edge e to 1;

24: goto 9;

25: set e = succ_v(e);

26: set z = e;

27: set e = succ_v(e);

28: if (the outer label of the edge e is not 2)

29: goto 27;

30: if (the inner label of the edge e is 1)

31: set x = e;

32: else

33: set y = e;

34: set e = succ_v(e);

35: if (the outer label of the edge e is not 2)

36: goto 34;

37: if (the inner label of the edge e is 1)

38: set x = e;

39: else

40: set y = e;
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41: if (the inner label of the edge e is 1)

42: set e = pred_v(e);

43: if (the outer label of the edge is not 2)

44: goto 42;

45: apply rule EatSmall on x,y,z;

46: take pebble from v;

47: exit "YES";

48: else

49: goto 9;

Note that the function above works only with the incoming edge e. We will now discuss
and illustrate the functionality of each line of the function EatSmall+.

Lines 2,5,10,30,37,41: (command rotate the ordering pi v that pi v(e) = 1 and
test pi v(e) =/!= 1) The first command can be performed in the time O(d) by means of
the model, where O(d) is the time the model requires for the rotation of the ordering. The
second condition can be easily tested in the time O(1).
Lines 3,7,11,16,17,20,23,28,35,43: (command set the outer label of the edge

e to x or if (the outer label of the edge is x)) The first command can be per-
formed by traversing via the edge e to the neighbour, rotating the local orientation and
traversing back. The time required for this operation is O(d) by means of the model. The
test whether the outer label of an edge e has value x is done by traversing via edge e,
checking the label of the incoming edge on the other side and returning back. All that can
be performed in time O(1).
Lines 4,9,12,19,21,25,27: (command set e = succ v(e) or set e = pred v(e)) These
commands are executed in the time O(1) by traversing via succv(e) and returning directly
back to v.
Lines 8,16: The necessary information can be stored in the state of the agent.
Line 15: RH-traversal done in this line corresponds to the test whether the incoming
edge e is a representative of cycle C1, disjoint from the one represented by the other edge
with outer label 2. Also, the check whether cycle C1 enters vertex v at least twice is
done here. After the check, the only case when rule EatSmall cannot be applied is when
succv(y) = πv(z), which will be checked later.
Lines 18,22: The first traversal in line 18 is the search for the next edge via which the
cycle C2 enters the vertex v. The second traversal in line 22 is the opposite to the one
in line 18. When the cycle C2 is not a good candidate for the rule EatSmall, by this
RH-traversal agent returns back and unmark the edge representing the cycle C2 as on this
cycle the rule EatSmall is not applicable.
Lines 2-7: These lines set the outer labels of the edges incident to v to 1 and the outer
label of edge e∗ to 2.
Lines 9-10: In this line, the next edge is being processed.
Lines 11-14: These lines deal with the case when all edges have been processed and rule
EatSmall was not applied.
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Lines 16-19: Once the candidate for the cycle C1 is found, the incoming edge is set to the
candidate to be edge y and the check whether succv(y) = πv(z) is performed.
Lines 20-24: If the outcome of the check succv(y) = πv(z) is positive, the rule EatSmall
cannot be applied and thus the agent traverses backwards and unmarks the canditate edge.

Now that we have described all parts of the algorithm, we are ready to summarize
the results of this section. We designed the modification of the rule EatSmallKC that is
applicable on vertices with neighbouring vertices of degree at least two. The results of
the modified rule EatSmall+ and the original rule EatSmallKC are the same, while the
memory consumption had been decreased to a constant.

Lemma 5.3.1 Let G = (V, E) be a simple connected undirected graph. Let v ∈ V be a
vertex such that the degree of each neighbouring vertex of v is at least two and the rule
EatSmall+ can be applied in it. Let e ∈ E be an edge incident with vertex v. If the agent
enters the vertex v via the incoming edge e, the incoming edge after the application of the
rule EatSmall+ is e.

Proof: It is straightforward from the pseudocode and the detailed explanation. �

Corollary 5.3.2 If the incoming edge e to a vertex where the rule EatSmall+ is applied
is an arc belonging to the kernel cycle, the results of the rule EatSmallKC and the rule
EatSmall+ are equal.

Theorem 5.3.3 The time complexity of EatSmall+ applied in a simple connected undi-
rected graph G = (V, E) is O(E∆ + d∆), where ∆ is the maximal degree of the vertices in
G and O(d) is the time complexity of rotation of the local orientation in a vertex v ∈ V so
that the incoming edge’s label becomes 1 or 2.

Proof: Lines 1, 4, 8-9, 11-14, 16, 19-21, 25-27, 30-35, 37-43, 45-48 are per-
formed in constant time. The time complexity of the lines 2-3, 7, 10, 17, 23 is O(d)
and the cycles 27-29, 34-36 and 42-44 execute in O(∆). The cycle 3-6 takes O(d∆) steps.
The most time consuming lines in cycles 9-24 and 9-49 that can repeat at most O(∆)
times are lines 15, 18 and 22, all taking O(E) steps and lines 10, 17, 23 that take O(d)
steps. Therefore the total time complexity is O(E∆ + d∆). �

5.4 Dealing with special cases

A careful reader must have noticed that in the functions Merge3+ and EatSmall+ we
assumed that the outer label 2 is available for each edge of the graph. This is not necessarily
true as there can be a vertex of degree 1, in which the label 2 does not exists. In this
section, we will discuss the special cases that are not treated by the functions Merge3+
and EatSmall+. Subsequently, the rules Merge3+ and EatSmall+ can be modified to
handle these special cases.
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We will introduce the notation for this section. Let G = (V, E) be a simple undirected
connected graph. Let v ∈ V be a vertex which the agent entered via the edge e and in
which the operations Merge3 or EatSmall will be performed (by the means of the Merge3+
or EatSmall+). Let w ∈ V be such that e = (v, w) ∈ E. Let u ∈ V be a neighbouring
vertex of v of degree 1. As the algorithm is based on traversing the kernel cycle and using
rules to prolong it, in the further text we assume that the incoming edge e to the vertex v
is an arc of the kernel cycle.

We consider two types of vertices u where the special case can occur:

1. u 6= w:
Vertex u must eventually be in the kernel cycle. As the degree of u is 1, both arcs
−−−→
(u, v) and

←−−−
(u, v) must be eventually arcs of the kernel cycle. When the arc (v, u) in

either direction is in the kernel cycle, the vertex u is in the kernel cycle and therefore
it is not interesting for us because it cannot be used in the rule Merge3 or EatSmall.
Thus, we can jump over it and continue in processing the edges. Our goal will be to
identify such vertices and determine whether they are in the kernel cycle. If such a
vertex is not in the kernel cycle, applying the rule EatSmall merges it to the kernel
cycle, according to Lemma 3.5.4,

The identification of a neighbouring vertex u of vertex v of degree 1 can be done
by traversing the neighbouring vertex by local orientation and checking its degree.
Determining whether the vertex u is in the kernel cycle is more complicated.

We will assume that the vertex w has degree at least two. The pebble is put into
the vertex v. Then, the outer label of each edge incident to vertex v can be set to 1.

The arc of the kernel cycle (
−−−→
(u, w)) can be distinguished by outer label 2. Then, the

edge (u, v) can be marked by the inner label 1. The RH-traversal via the edge (u, v)
(in arbitrary direction) can start and the check whether during the RH-traversal the
edge with the outer label 2 incident to v is traversed can be done.

If the vertex u is not in the kernel cycle, then at least two different witness cycles pass
through vertex v. The witness cycle where the vertex u is located passes through
vertex v at least twice and therefore by Lemma 3.3.3 rule EatSmall can be applied
(there are two pairs for edge x a z and thus in one pair the rule EatSmall is applicable).
The pseudocode (function addDegreeOneNeighboursToKernelCycle) can be found at
the end of this section.

In this case, all neighbours of vertex v (except for the vertex w) with degree one are
added by using the rule EatSmall to the kernel cycle. Therefore, whenever the agent
enters the vertex v via edge e = (v, w) to use rules Merge3KC and EatSmallKC in
the algorithm MergeCycles, we can start by using the function addDegreeOneNeigh-
boursToKernelCycle which will guarantee that all neighbouring vertices of vertex v
with degree 1 (except for vertex w) will be in the kernel cycle and therefore they can
be skipped while processing active edges in rules Merge3+ and EatSmall+. Using the
combination of rules Merge3+ and EatSmall+ in this manner will keep the modified
algorithm MergeCycles to be very similar to the original one. The only difference
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will be in the order of the application of the rules Merge3KC and EatSmallKC or
Merge3+ and EatSmall+ respectively.

Note that the order of applications of the original rules Merge3KC and EatSmallKC
in a vertex in the algorithm MergeCycles is not important. The original algorithm
MergeCycles will work correctly for any order of applications of the rules and will
always find a final witness cycle that pass through all vertices. Therefore, most of
the proofs of statements from Section 3 can be adapted to this modified variant.

2. u = w:
This case is the most important one as all the other cases rely on it. Unfortunately,
it cannot be solved in a way similar to the case u 6= w as the vertex w is in the kernel
cycle and both functions Merge3+ and EatSmall+ need it to be marked by inner
label 2.

We can make the following observation according to the number of vertices that were
processed during the MergeCycles algorithm (the same observation holds for the
modification using the functions addDegreeOneNeighboursToKernelCycle, Merge3+
and EatSmall+)

• If two or more vertices were already processed by the MergeCycles algorithm,
the fact that the vertex w (e = (v, w) is the incoming edge to v and thus it is an
edge of the kernel cycle) has degree 1 implies that the vertex v was processed
before. According to Lemma 3.5.10, neither of the rules Merge3 and EatSmall
can be applied in vertex v, so we can simply continue the RH-traversal of the
kernel cycle to the next vertex by the edge with label succv(e).

The same reasoning can be performed for the modified algorithm MergeCycles
where functions addDegreeOneNeighboursToKernelCycle, Merge3+ and EatS-
mall+ are used, as discussed in previous sections.

• If only one vertex was processed before, it was the vertex w. As the degree of
vertex w is 1, the previous vertex in the kernel cycle is vertex v and the following

part of the kernel cycle is interesting: predv(e), v,
−−−→
(v, w), w,

−−−→
(w, v), succv(e).

Thus we can safely apply the algorithm by starting in vertex v by incoming edge
with label predv(e). When the agent enters the vertex w via the edge e the next
time, more than two vertices would be processed and this case is already solved.

If the neighbouring vertex p of vertex v such that predv(e) = πv((p, v)) has
degree 1, we can RH-traverse back in the same manner to find some neighbouring
vertex with degree of at least 2. The case when such vertex does not exist is
discussed later.

• If no vertices were proceeded before, we RH-traverse back in the same manner
as in the previous paragraph and find a neighbouring vertex of degree at least
2 that is in the kernel cycle.
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The only remaining problem in this treatment is the case when there are no neigh-
bouring vertices of degree at least 2. In such a case, the backwards traversal searching
for neighbours of vertex v of degree at least 2 lying on the kernel cycle would fail.

Then, the topology of the graph is a star (see Figure 1.1.2) and this can be easily
detected at the beginning of the modified algorithm MergeCycles. The pseudocode
that deals with the star topology is shown at the end of this section (function isStar).

Now, we will summarize the modification of the algorithm MergeCycles. First of all,
the agent checks whether the input graph does not have the topology of a star. The
star topology of graph with arbitrary witness ordering forms one witness cycle that
is also our kernel cycle and therefore no modifications have to be done. When the
topology of the graph is not a star, the agent can count in its state whether zero,
one or more vertices were processed. When the agent enters a vertex v via edge
e = (v, w), it checks the degree of the other vertex (w) incident with the incoming
edge e. If the degree of this vertex is one and the number of processed vertices is less
than two, the agent sets the incoming edge to predv(e) and continues checking. As
the graph does not have the star topology, the agent checking the predecessing edges
will eventually find one incident with a vertex of degree at least two.

If the degree of w is one but the number of processed vertices is at least two, the
vertex v was already processed and neither the rule Merge3 nor EatSmall can be
applied here and thus the algorithm simply continues via the edge succv(e). In the
case when the degree of w is at least two, the neighbouring vertices of v that have
degree one and are not in the kernel cycle yet are merged into the kernel cycle by
function addDegreeOneNeighboursToKernelCycle and then, by the same manner as
in the original MergeCycles algorithm, rules Merge3+ and EatSmall+ are applied
(the neighbouring vertices with the degree 1 are skipped during the processing of
edges).

The following pseudocode deals with the one degree neighbouring vertices different from
the vertex w. (succ v(e) and pred v(e) denote the operations succv(e) and predv(e))

function addDegreeOneNeighboursToKernelCycle in vertex v via edge e

1: put pebble to vertex v;

2: set all outer labels to 1;

3: set the outer label of the edge e to 2;

4: set e = succ_v(e);

5: rotate local orientation so that the inner label of e is 1;

6: if (outer label of e is 2)

7: take pebble from vertex v;

8: exit;

9: check the degree of vertex u, e=(u,v)

10: if (degree of u > 1)

11: goto 4;
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12: RH-traverse via e,

during the RH-traversal check if the outer label for

incoming edge to vertex v is 2,

terminate the RH-traversal in the vertex v if the inner

label of the incoming edge is 1;

13: if (during the RH-traversal no incoming edge to vertex v had outer

label 2)

// the neighbouring vertex of vertex v is not in the kernel cycle

// and has degree 1

14: apply rule EatSmall in the vertex v, (x = pred_v(e), z = e, or

x = e, z = succ_v(e)),

x = the edge with the outer label 2

// the incoming was not changed and thus the inner label is 1

15: goto 4;

The following pseudocode deals with the network of star topology: (succ v(e) denotes
the operation succv(e), pi v(e) denotes πv(e))

function ifStar in vertex v via edge e

1: rotate the local orientation so that pi_v(e) = 1;

2: check the degree of the neighbouring vertex u, e = (v,e);

3: if (the degree of vertex u > 1)

4: if (pi_v(e) = 1)

5: exit "NO";

6: else

7: e = succ_v(e);

8: goto 4;

9: e = succ_v(e);

10: if (pi_v(e) = 1)

11: exit "YES";

12: goto 2;

When all degree 1 neighbouring vertices are in the kernel cycle, we can simply ig-
nore them while processing the edges in functions Merge3+ and EatSmall+ by adding the
following code before the line 10 in both functions:

9.1: traverse via edge e to vertex u

9.2: check whether the degree of u is at least 2 and remember the answer in the

state

9.3: traverse back to v via incoming edge to u

9.4: if (degree of vertex u is 1)

9.5: goto 9;
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Lemma 5.4.1 Let G = (V, E) be a simple connected undirected graph. Let v ∈ V be a
vertex with degree dv, let e be the incoming edge through which the agent RH-traversed
into v. Let u1, . . . , un ∈ V be the vertices of degree 1 that are not in the kernel cycle.
Let e1, . . . , en ∈ E be the edges ei = (v, ui), i ∈ {1, . . . , n}, n < dv. Then, the function
addDegreeOneNeighboursToKernelCycle connects the vertices u1, . . . , un to the kernel cycle
and the agent terminates the execution of this function in the vertex v with the incoming
edge e.

Proof: Straightforward from the pseudocode and the detailed discussion above. �

Lemma 5.4.2 Let G = (V, E) be a simple undirected connected graph, denote N = |V |.
Let v ∈ V be a vertex. Let the time complexity of one application of rule EatSmall be O(d).
Then, the time complexity of the function addDegreeOneNeighboursToKernelCycle applied
in the vertex v is O(N 3d).

Proof: For each neighbouring vertex of degree 1 the check whether it is in the kernel cycle
is performed. The check for the membership in the kernel cycle takes O(N 2) steps as that
is the maximal length of the kernel cycle. The vertex has at most O(N) incident edges
and thus at most O(N) neighbouring edges can have degree 1. The entire check for all
neighbouring vertices takes at most O(N 3) steps. In each case the rule EatSmall will be
applied and thus the lemma holds. �

Lemma 5.4.3 Let G = (V, E) be a simple connected undirected graph. Let v ∈ V and
let e ∈ E be an edge incident to the vertex v. Let the function isStar be performed by the
agent in the vertex v and with the incoming edge e. Then the function terminates in vertex
v and incoming edge e with the positive result when the graph G has star topology and the
vertex v is the center of this star and with negative result otherwise.

Proof: It is obvious from the pseudocode. �

Lemma 5.4.4 Let G = (V, E) be a simple undirected connected graph, let N = |V |. The
time complexity of the function isStar applied in vertex v ∈ V is O(N).

Proof: Straightforward from the pseudocode. �

5.5 Putting pieces together

In this section we will summarize the modifications of the algorithm MergeCycles to the
algorithm with constant memory for the agent – MergeCycle+. The only remaining part in
which the modified algorithm MergeCycles discussed in Section 5.4 oversteps the constant
memory is the detection of the termination.

The algorithm computes the length of the kernel cycle and the number of vertices in
which neither the rule Merge3KC nor EatSmallKC can be applied. If neither rule can be
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applied in any vertex of the kernel cycle, the algorithm terminates. The length of the
kernel cycle is O(N 2) (N is the number of vertices in the graph) and thus the counter for
the length requires O(log N) memory. We can get rid of this counter and then no lengths
will be computed.

On one hand, this will solve our problem with O(log N) memory, but on the other hand
the termination detection will not be possible.

At this point we have two possibilities:

1. The termination of algorithm will not be considered. Then, it follows from the
description of the modified algorithm MergeCycle+ the agent can pass through the
initial vertex backwards only once. The observer in the initial vertex can notice this
situation and afterward the agent starts the standard RH-traversal by means of the
MergeCycles algorithm, the RH-agent can be inserted to the initial vertex and start
the RH-traverse the same edge as the precomputation was started. Then, the RH-
agent can traverse in the graph, following the agent that does the precomputations.
In such a case, the RH-agent must not overrun the precomputing agent (this can
be handled by checking the position of the pebble and by the assuming that the
channels used in the network are FIFOs). By Lemma 3.5.10, the rules are applied
once in every a processed vertex and therefore the RH-agent can traverse beyond the
precomputing agent.

The case when the agent performing the precomputation does not traverse backwards
at all can be easily adapted to the above idea.

2. The second approach is to allow some additional memory in the graph for the termi-
nation detection. Obviously, by Lemma 3.5.10 marking an edge in the kernel cycle
(e.g. the initial edge that was used in the beginning of the RH-traversal) solves the
problem of the termination detection. Marking of the edge in the kernel cycle can
be replaced by two pebbles/bits in two consecutive vertices of the kernel cycle with
same result.

3. An observer able to see the global situation can be present in the network. He can
then terminated the algorithm when he sees that the final kernel cycle has been
created and it passes through all the vertices.

Let G = (V, E) be a simple connected undirected graph where the algorithm will be
executed. Let v ∈ V be a vertex in which the algorithm starts and let dv be its degree.

The description of the algorithm MergeCycle+ using constant memory follows:

1. check whether the vertex v is the center of the star (in other words, run function
isStar in v). If so, terminate – any local orientation forms the kernel cycle. If not,
the incoming edge is set to the one with label 1.

2. if dv = 1, traverse via the only incident edge and check whether the neighbour is the
center of the star (in other words, run the function isStar). If so, terminate – any
local orientation forms a kernel cycle. If not, return back to v via the incoming edge.



62 CHAPTER 5. ALGORITHM MERGECYCLES+ USING CONSTANT MEMORY

3. Now we have confirmed that the graph does not have the star topology. The agent
is located in vertex v and the incoming edge is set to the one with label 1. Now, the
altered variant MergeCycle+ of the original algorithm MergeCycles can be executed
(pseudocode of the algorithm MergeCycle+ follows).

4. Before the agent starts checking whether the rules Merge3+ or EatSmall+ can be
applied in the vertex, the pseudocode addDegreeOneNeighboursToKernelCycle has to
be performed. Therefore, the degree 1 neighbours of the processed vertex are added
to the kernel cycle and then the functions Merge3+ and EatSmall+ can be executed
safely.

5. The algorithm continues the same way as the algorithm MergeCycles by applying
rules Merge3+ and EatSmall+ and then moves to the successive vertex.

The pseudocode of the algorithm MergeCycle+ follows. (succ v(e) and pred v(e)

denote the operations succv(e) and predv(e) respectively)

function RHtraverse from vertex v via edge e

1: if (degree of v is 1 and the number of processed vertices < 2)

2: set e = pred_v(e);

3: RHtraverse from v via edge e;

4: else

5: addDegreeOneNeighboursToKernelCycle;

6: while rule Merge3+ can be applied in v do

7: apply Merge3;

8: od

9: apply rule EatSmall+ in vertex v if possible;

10: if (rule EatSmall+ or Merge3+ was applied)

11: goto 6;

12: else

13: increase the number of processed vertices which

is remembered in the state of the agent,

if this number is greater than two, set it to two;

14: RHtraverse via edge succ_v(e);

function start in vertex v

15: if (the answer of isStar(vertex v, edge with label 1) is "YES")

16: exit;

17: traverse via edge with label 1 to some vertex u (incoming via edge e);

18: if (the answer of isStar(vertex u, edge e) is "YES")

19: exit;

20: traverse via edge e back to vertex v;

21: set in the state that zero vertices were processed;

22: RHtraverse via edge with label 1;
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As the agent cannot stop the traversal and executes the algorithm MergeCycle+ forever,
edges with label 1 cannot be rotated so that they will all be arcs of the kernel cycle.
Whenever the agent makes an attend to use rule Merge3+ or EatSmall+, it makes some
rotations of local orientations and destroys the setting where edges with label 1 are arcs
of the kernel cycle. Therefore it does not have to hold that an RH-agent can start an
RH-traversal by using the edge with the label 1.

The question of termination detection in constant memory is still open and we are able
to solve it only by increasing the amount of memory available to the algorithm as it is
discussed above.

5.6 Proofs of correctness and complexity

Theorem 5.6.1 The algorithm MergeCycle+ creates the witness cycle that is passing
through all vertices of a simple connected undirected graph.

Proof: It is obvious from the descriptions in Sections 5.2, 5.3, 5.4 and 5.5. �

Note that most of the statements from Chapter 3 can be re-stated in a very similar
way for the algorithm MergeCycle+.

Theorem 5.6.2 The memory complexity of the algorithm MergeCycle+ is one pebble and
O(1) for the agent.

Proof: The agent uses one incoming edge and one pebble during the execution of the
algorithm MergeCycle+. The incoming edge is not included in the total memory complexity
as it is necessary, as the problem would be unsolvable without it. In addition to that
we use six global variables x, y, z, x1, x2, x3 that are only used for the application of
the rules Merge3+ and EatSmall+. The agent does not use these variables for temporary
calculation and it is only able to write the label of the traversed edge to the chosen variable
(in constant memory). Therefore this is not counted as the agent’s memory complexity.
The termination detection is not solved yet and therefore the only memory the agent uses
is a finite number of states and a pebble. �
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Chapter 6

Conclusion

In this thesis we have studied the question of using the local orientation of edges in vertices
of a simple connected undirected graph for storing information.

First, we designed an algorithm for precomputing the edge labelings in order to obtain
a very special ordering which allows the traversal of the graph to be performed by a finite
automaton with a few states, which does not use any additional memory, nor does it store
any informations in the graph itself. This finite automaton (RH-agent) obeys the following
rule “Start by taking the edge with the label 1. Then, whenever you enter a node, continue
by taking the successor edge (in local orientation) to the edge you arrived through.”

In order to minimize the memory requirements, the precomputations are performed by
an agent that traverses the graph and is able to change labeling of the edges in vertices
it visits. In Chapter 3 we show a polynomial algorithm for this precomputation that
requires one pebble for marking the vertices and O(log N) additional memory (N denotes
the number of vertices in the graph, M denotes the number of edges in the graph).

The modification done in Chapter 5 tries to decrease this memory complexity down
to a constant. This is achieved by changing the labelings in a specific way. As a result,
we obtained a very memory efficient algorithm for all the precomputations. The only
disadvantage is that this algorithm is not able to terminate without using an extra bits of
memory.

The aim of the algorithm that is presented in Chapter 4 is to find a spanning tree of
the graph by setting the edges with label 1 in local orientation to be the links to the parent
in the spanning tree (the label 1 of the edge incident to the root vertex leads to one of its
direct children in the spanning tree).

This goal is investigated in a local manner by creating an algorithm for the agent that
is able to exchange labels of two incident edges of a vertex. The designed algorithm is an
extension of the algorithm presented in Chapter 3. The resulting polynomial algorithm for
finding the spanning tree needs one pebble and O(log N) memory for the agent.

There are many directions in which this work can be extended. The problem of ter-
mination of the algorithm from Chapter 5 without using any extra memory is still open.
Solving this problem could help us decrease the memory used by the agent in the algorithm
for finding the spanning tree. Then, it would not be difficult to modify this algorithm to
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decrease the memory complexity for the agent to a constant.
A question that is very often open for algorithms like this one is the time efficiency. All

algorithms designed in this thesis are polynomial-time (their complexity is O(N 5)). The
question is whether this bound can be improved upon and what (if any) would be the price
we would have to pay.

In the algorithms from Chapters 3 and Chapter 5 we try to use as little memory as
possible, but then the resulting (kernel) cycle where the RH-agent will traverse can be
unnecessarily long. The length of such cycle can be O(M), which is, for dense graphs,
equal to O(N 2). It is open whether this length can be decreased and what would be the
increase in time and memory complexity. It is obvious that for obtaining a cycle of length
O(N), only a very small subset of the edges from the graph can be used and one needs to
find the criterion for selecting this subset.

A completely different view and maybe also the solution can be obtained by considering
dynamic changes of the topology. Then, it is an open problem whether it is possible to
react on the topology changes in such a model and what is the best approach.

From a more general point of view, another challenging task is to explore the problem
in a model where more agents are available. Then, many different questions arise: What is
the balance between the number of the agents used for precomputation and the efficiency
of the algorithm? Can this problem be solved better with more agents? What is the best
way of the communication they can use?
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Abstrakt

Uvažujme sieť reprezentovanú ako jednoduchý, súvislý, neorientovaný graf s N vrcholmi.
Vrcholom grafu nie sú priradené žiadne identifikátory (a teda vrcholy nie sú rozlíšiteľné z
pohľadu vnútra grafu), no požadujeme, aby hrany incidentné s vrcholom v mali priradené
z pohľadu vrcholu jednoznačné identifikátory z intervalu 1 a dv (vrátane). Toto priradenie
nazývame lokálna orientácia.
Naším hlavným cieľom je, aby agent s čo najmenším množstvom pamäte bol schopný

prejsť cez všetky vrcholy takéhoto grafu. Ukazujeme, že pri vhodnom predpočítaní a
zmenách v lokálnej orientácii je túto úlohu schopný splniť aj veľmi jednoduchý agent
používajúci iba pravidlo pravej ruky, tzv. RH-agent. RH-agent je konečný automat s veľmi
malým počtom stavov, ktorý sa riadi nasledujúcim pravidlom: „Začni použitím hrany s
číslom 1. Ďalej pokračuj vždy hranou nasledujúcou (v zmysle lokálnej orientácie) po hrane,
ktorou si prišiel do vrcholu.ÿ
Na zmenu lokálnych orientácií v predpočítavacej fáze sme navrhli algoritmus pre agenta,

ktorý toto predpočítavanie vykoná. Tento agent vykonáva zmeny v lokálnej orientácii vý-
menou označení dvoch susedných hrán v danom vrchole. Cieľom predpočítavania je upraviť
lokálne orientácie tak, aby algoritmus RH-agenta zabezpečil, že sa ten dostane do všetkých
vrcholov. Ukazujeme polynomiálny algoritmus, v ktorom je potrebné na predpočítavanie
použiť jeden pebble a O(log N) pamäte pre agenta. Taktiež ukazujeme modifikáciu tohto
algoritmu, v ktorom je pre veľmi podobnú predpočítavaciu fázu potrebný jeden pebble a
iba konštantná pamäť pre agenta. V tomto prípade však zatiaľ nie je vyriešený problém
zastavenia, a preto predpočítavateľ nevie svoj výpočet ukončiť bez ďalšej pamäte.
Ako jeden z príkladov použitia nášho algoritmu sme definovali problém nájdenia zako-

renenej kostry v grafe. Náš algoritmus určený pre agenta-predpočítavateľa vytvára kostru
grafu zmenami v lokálnej orientácii tak, že hrana s číslom 1 ukazuje k otcovi v kostre (hrana
s číslom 1 v koreni kostry ukazuje na priameho potomka koreňa). Navrhnutý algoritmus
je polynomiálny a potrebuje jeden pebble a O(log N) pamäte pre agenta.
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