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ABSTRACT

We have studied the possibilities of parallel decomposition of a deter-
ministic finite automaton into a pair of automata such that they are both
simpler then the original one, but the results of their independent compu-
tations on any input word can determine the result of computation of the
original automaton. We have used the results describing the decompositions
of sequential machines, and also defined several new kinds of decomposition.
Then we have proved some conditions for existence of such decompositions
and inspected relationships between them. We have also studied the classes
of undecomposable and perfectly decomposable languages and we have shown
that there exist automata for most degrees of decomposability from the in-
terval given by these two boundaries.

Keywords. deterministic finite automaton, parallel decomposition, de-
composition of state behavior
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1 Introduction

Deterministic finite automaton is a simple computational model with a wide
range of practical applications, including hardware design, natural language
processing, model checking and many others.

The notion of finite state automaton was first introduced by McCulloch
and Pitts [1] to model processes in neural cells. Since then, many formal-
izations were developed and studied. They can be divided into two major
groups: transducers and acceptors.

The most widespread models of a transducer are the Mealy type sequen-
tial machines and their special case, the Moore type sequential machines.
These were first formalized by E. F. Moore in [2]|, and according to Moore’s
formulation, the output of a machine was dependent only on its state. This
concept was generalized by G. H. Mealy in [3], the output of his machines
was dependent also on the last input symbol. In general, all transducers read
a sequence of input symbols and generate an output sequence depending also
on their internal state, which is modified during the computation.

On the other hand, acceptors do not produce any output sequence. They
just read an input sequence (a word) and modify their internal state accord-
ingly. After reading the whole input, an acceptor either accepts or rejects the
word, depending on the state in which his computation had finished. Thus
each acceptor defines a language as the set of all words it accepts. One of the
most comprehensive resources on acceptors and the class of languages they
can recognize is a book by J. E. Hopcroft and J. D. Ullman [4|. The model
that is in the center of scope of this thesis, deterministic finite automaton, is
the simplest type of acceptor studied.

For the first type of finite state machines — the transducers — there were
studied many ways of composition of simpler machines into more complex
ones. Some of the results can be found in books [5] and [6]. However,
most of these compositions involve some communication between the parts
of the composed machine during the computation. Also, since these are
compositions of transducers, they do not take acceptance into account.

For a deterministic finite automaton, it is an interesting question to ask
whether it can be decomposed into a pair of automata such that they are
both simpler then the original one, but the results of their independent com-
putations on any input word can determine the result of the computation of
the original automaton. If we take accepting or rejecting of the input word as
a result, we see that this could be solved by decomposing an automaton into
two simpler automata such that the intersection of the languages they accept
is the language accepted by the original automaton. This question is equiv-
alent to the question of existence of a simpler advisor language such that if



we knew that all input words are from this language, then the language of
the original automaton could be recognized by some simpler automaton.

Definition 1.1. Let Ly be a language, let A = (K, X, 0, qo, F) be a determin-
istic finite automaton. Language accepted by the automaton A with advisor
L is the language

L(A, L) = {w € Li|(qo,w) F% (¢,€) Nq € F}.

An intuitive measure of the simplicity of a deterministic finite automaton
we shall use is the number of its states. This notion of advisor is the basic
motivation behind our effort.

In this thesis, we shall inspect the conditions for existence and properties
of various kinds of parallel decomposition of deterministic finite automata.

In Section 2, we shall recall some well-known facts and introduce the
notation used later.

Section 3 explores the properties of behavior decompositions of DFA,
which come out of the concept of parallel decomposition of state behavior
defined for sequential machines in |7]. We prove a necessary and sufficient
condition for existence of these decompositions, relate it to the concept of
advisors and then outline some reasons that can prevent the existence of such
decomposition.

In Section 4, we define new types of decomposition by posing requirements
that such decomposition should satisfy — these requirements describe what
we should be able to determine about the result of the computation of the
original automaton, knowing the results of computation of both automata in
its decomposition. We also derive some conditions for existence of these new
decompositions and inspect relationships between these new decompositions
and the behavior ones.

We define the classes of all regular languages whose minimal automata
are undecomposable for each type of decomposition, and study the properties
of these classes in Section 5. We show that the undecomposability of the
minimal automaton may depend on the input alphabet of this automaton,
then we exhibit some undecomposable languages and use them to inspect the
closure properties of the classes defined.

In the last section we study the degree to which certain automata are
decomposable. From the previous sections we know that there are undecom-
posable and well-decomposable automata, but now we also exhibit automata
that can be decomposed, but each automaton in the decomposition has to
have only one state less than the original automaton. Then we show that
for some types of decomposition most of the values in the interval between
undecomposable and well-decomposable automata can be achieved.



2 Preliminaries and Notation

In order to unify the notation and recall the concepts used throughout the
thesis, we shall introduce a few definitions and state some well-known results.

By letter X, we shall usually denote an alphabet, i.e. a finite set of symbols.
Finite sequences of symbols from ¥ are called words over alphabet > and we
shall usually denote them by letters u, v, w, ... The length of such sequence
w is denoted |w| and called length of word w, the word with length 0 is
represented by the symbol €. The number of occurrences of a given letter a
in a word w is denoted by #,(w). The set of all words over alphabet ¥ is
denoted by >*.

A language is any set of words over ¥ and is usually denoted by L,
ie., L C ¥*. Since any language L can be considered over many different
alphabets, by ¥; we shall denote the minimal alphabet such that L C 7.
More on these basic concepts can be found in [4].

Now let us define deterministic finite automaton, a simple computational
model that will be in the center of our interest.

Definition 2.1. A deterministic finite automaton (DFA) is a quintuple
(K,%,0,q0, F), such that K is a finite set of states, ¥ is a finite input al-
phabet, qo € K is an initial state, ' C K s a set of accepting states and
0: K x ¥ — K 1is a transition function.

Notation 2.1. Let §: K x ©* — K denote the ex_tension of the Eransition
function 9 onto the set of all input words, such that §(q,e) = ¢ and 6(q, au) =

0(6(q,a),u) for all g € K, a € ¥ and u € ¥*.

Definition 2.2. A configuration of a DFA A = (K,%,0,qo, F) is a pair
(q,w) € K x ¥*, where q is the current state and w is the unprocessed part
of the input word.

Definition 2.3. A computation step of a DFA A = (K,%.0,q0, F) is a
binary relation F4 on the set of all configurations of A defined as follows:
(p,au) F4 (g, u) < d(p,a) = q. We shall often write - instead of -4 when A
18 understood.

Definition 2.4. A language accepted by a DFA A = (K, 3,0, qo, F) is the
set L(A) = {w € ¥*|(qo,w) F* (¢,€) N q € F'}, where F* is the reflezive and
transition closure of k.

The transition function of a DFA is often described by a transition dia-
gram, which is an oriented graph such that each vertex corresponds to one
state of the DFA and each edge represents a transition. More precisely, an
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edge from vertex p to vertex ¢ labeled a represents the equality d(p,a) = q.
To keep the diagrams as simple as possible, we shall not depict transitions
that start and end in the same state. Since the transition function §(p, a) is
defined for all states p and all letters a, if the diagram does not contain an
edge beginning in the vertex p and labeled a, it means that §(p,a) = p.

Notation 2.2. By A; we shall denote the set of all deterministic finite
automata having at most k states. The set of all languages that can be
accepted by an automaton from A shall be denoted by R;.

The class of all languages accepted by deterministic finite automata is the
well-known class of reqular languages. These languages have many interesting
properties, one of the most characteristic and useful from the automaton
point of view is known as the Myhill-Nerode Theorem.

Theorem 2.1 (Myhill-Nerode). Let L. C ¥* be a language. The following
statements are equivalent:

1. L is a regular language.

2. L is a union of some equivalence classes of some right-invariant equiv-
alence relation with finite index.

3. Relation Ry defined by uRv < (Vx € ¥55ur € L < vr € L) is an
equivalence relation with finite indez.

Proof of this theorem can be found for example in [4].

Corollary 2.2. If L is a reqular language, then there exists a unique DFA
A= (K,%,0,q, F) accepting this language and having the minimum possible
number of states. Moreover, if A" = (K',3,8,q), F') is a DFA such that
L(A") = L, then there exists a mapping f: K' — K such that it holds (Vw €

5% (3 (g w)) = 3(qo, w).

So for every regular language there exists a unique minimal automaton.
There is also a well-known efficient algorithm for minimization of a given
DFA working in O(n?) time. Its improvement working in O(n log n) time is
due to Hopcroft and can be found in [8]. An incremental modification of the
minimization algorithm can be found in [9].

Another concept that we shall occasionally use in this thesis is the alge-
braic structure called lattice. We now give a brief definition of a lattice using
the well-known terms of order theory, further details and definitions of the
prerequisite terms can be found in [10].



Definition 2.5. Let (L, <) be a partially ordered set. If there erists a least
upper bound (join, denoted by x\V'y) and a greatest lower bound (meet, denoted
by x Ay) for all pairs of elements x,y € L, then we call (L, =) a lattice.

A special case of a lattice is a distributive lattice, defined as follows.

Definition 2.6. Let (L,=) be a lattice with the least upper bound V and
the greatest lower bound A. L is distributive, if the following (equivalent)
tdentities hold:

for all elements x,y, z € L.
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3 Behavior Decompositions of DFA

Let us take a closer look at the problem of decomposing a given determin-
istic finite automaton into two “simpler” automata, such that they are in
some sense able to substitute the original automaton. As we have already
mentioned, our only measure of simplicity of a DFA will be the number of
its states.

Our first approach to this decomposition problem is inspired by the the-
ory of sequential machines. Moore and Mealy type sequential machines are
abstract computational models similar to deterministic finite automata. The
important difference is that sequential machines do not have any specified
initial states nor final states, only a transition function that determines the
changes of the state of a sequential machine based on some input. Compared
to deterministic finite automata, sequential machines also have an output
function. As we only want to exploit the ideas behind the decompositions
of sequential machines, we do not need to introduce the formal definition of
this model.

The possibilities of decomposition of sequential machines were intensively
studied and the results can be found for example in [5], [6] and [7]. We shall
use the concept of a parallel decomposition of state behavior of sequential
machines, which is mentioned in [7]. We shall modify this decomposition to
fit the formalism and purpose of deterministic finite automata (i.e., to accept
formal languages) without loosing the connection with the strongly related
and useful concept of S.P.partitions.

Let us begin by formally defining this decomposition modified for finite
automata, and then show some of its properties.

Definition 3.1. A DFA A" = (K',%,¢,q,, F') is said to realize the state
behavior of a DFA A = (K, X%,0,qo, F) if there exists an injective mapping
a: K — K’ such that

(i) (Va € X)(Vq € K); ' (a(q), a) = a(d(q, a)).
(i) a(qo) = qq

Moreover, A’ is said to realize the state and acceptance behavior of A, if in
addition the following property holds:

(1) (Vg € K);a(q) € F' < q€e F.

Definition 3.2. The parallel connection of two DFA A, = (K1,%,01,q1, F1)
and Ay = (K27 275276]2,172) is the DFA A = A1HA2 = (Kl X Ky, %, 0, (Ch,(h),
Fy x Fy) such that §((p1,p2),a) = (61(p1, a), d2(p2, a)).
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Definition 3.3. A pair of deterministic finite automata (Aq, As) is a state
behavior (SB-) decomposition of a DFA A if Ay||As realizes the state be-
havior of A. The pair (A;, As) is an acceptance and state behavior (ASB-)
decomposition of A if A;||As realizes the state and acceptance behavior of A.
The decomposition is nontrivial if both A; and Ay have fewer states than A.

The following theorem shows that existence of a nontrivial ASB-decompo-
sition of some automaton implies the existence of a nontrivial advisor for this
problem.

Theorem 3.1. Let A be a DFA, let n denote the number of states of A. If
there exists a nontrivial ASB-decomposition of A, then there exists an advisor
Ly € R.—1 and an automaton Ay € A, _1 such that L(A) = L(As, Ly).

Proof. Let (A;, A2) be a nontrivial ASB-decomposition of A. The decom-
position (Aj, Ay) is nontrivial, so both statements L; = L(A4;) € R, and
Ay € A, 1 hold. Tt remains to prove that L(A) = L(As, Ly).

“C” Consider w € L(A). The computation of A on the word w is accepting
and so is the computation of A;||A; on the word w, because A || A, real-
izes the state behavior of A. From the definition of parallel connection
it follows that the accepting computation of A;||As on w determines
accepting computations of both A; and A, on w. Hence w € L; and
w € L(Aj), which implies w € L(As, Ly).

“2” The proof of the reverse containment is similar. O

The reverse implication does not hold, as we shall be able to show later.

Now we derive a necessary and sufficient condition for the existence of a
nontrivial SB-decomposition and a nontrivial ASB-decomposition of a given
DFA. At first, we need some definitions:

Definition 3.4. A partition m on a finite set M is a set {My, Mo, ..., My}
of nonempty mutually disjoint subsets of M such that M = Ule M;.

Note that each partition on a set M defines an equivalence relation on M
and vice versa. We shall call the sets M; blocks or equivalence classes.

Definition 3.5. A partition m on a set of states of a deterministic finite
automaton A = (K, X, 0, qo, F) has substitution property (S.P.), if

Vp,q € K; p=rq= (VYa€X;i(p,a)=,0(q,a))

Definition 3.6. Let 71, my be partitions on a given set M, then
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(i) m - my is a partition on M such that a =,.., b a =, bAa =, b,

(i) m 4o is a partition on M such that a =, 1, b if and only if there exists
a sequence a = agp, a1, g, . .., 0, = b, such that a; =, a;11V a; =x, Qi1

foralli e {0,...,n—1},
(#i) m = mo if it holds Vx,y € M); =4 y =2 =5, Y.

It is obvious that the relation defined in the previous definition is a partial
order.

Partitions on a set of states of some DFA form an interesting structure,
as stated by the following theorem (its proof can be found in [7]).

Theorem 3.2. The set of all partitions on a given set (accompanied with
the partial order <, join realized by + and meet realized by .) forms a lattice.
The set of all S.P. partitions on the set of states of a given deterministic
finite automaton forms a sublattice of the lattice of all partitions on this set.

Notation 3.1. We shall denote the trivial partitions {{qo}, {¢1},. .., {an}}
and {{qo,q1,--.,¢,}} by symbols 0 and 1, respectively. Let |7| denote the
number of blocks (equivalence classes) of a partition 7.

Notation 3.2. Let 7 be a partition on a set S, let x be an element of S.
The symbol [z], shall denote the equivalence class of 7 containing z, i.e.,

[z]x = {y € Sly =x x}.

The original result from [7] handles the decomposition of state behavior
of sequential machines (which have no final states). Since we are interested
in decompositions of deterministic finite automata, we also have to take the
final states into consideration. In our model of advisor, a word is accepted
if and only if it belongs to the advisor and the advised automaton accepts
it. In case the advisor language is also recognized by a DFA (as in this
case), the advised automaton does not know in which of its final states the
computation of the advisor has ended, it only “knows” that the word has
been accepted. So any combination of a final state on the advisor and on the
advised automaton lead to the acceptance of the word, therefore we introduce
the following additional property that has to be verified when trying to find
a decomposition.

Definition 3.7. The partitions m1 = {Ry,..., Ry} and mo = {S1,...,S;} on
a set of states of a DFA A = (K,%,0,qo, F) are said to separate the final
states of A if there exist indices iv,...,1, and j1,...,7Js such that it holds
(Riy U...UR;)N(S;, U...US,,)=F.

13



Now we can prove the necessary and sufficient conditions for the existence
of both defined types of decomposition. The first part of the proof is based
on the proof of the analogous property for sequential machines in [7].

Theorem 3.3. A deterministic finite automaton A = (K,%,9,qo, F) has
a nontrivial SB-decomposition if and only if there exist two nontrivial S.P.
partitions m and my on the set of states of A such that 7y - w9 = 0. This de-

composition is an ASB-decomposition if and only if these partitions separate
the final states of A.

Proof. “=": Let Aj||Ay = (K1 x Ko, 5,8, (q1,q2), F1 X Fy), let (Ay, As) be
a nontrivial SB-decomposition of a given DFA A, with « being the
corresponding mapping. We shall define the partitions 71, m on the
set of states of A as follows:

pzﬂ'lq = D1 = q1
P=rq <= D2=0Q

where «a(p) = (p1,p2) and a(q) = (¢1, ¢2).

Let p and ¢ be states of A such that p =, ¢ and let a € X. Then
a(p) = (p1,p2) and a(q) = (p1,q2). As Aj]|As is a parallel behavior
decomposition, we have

where ¢; denotes the transition function of A;. As we can see, the first
components are equal again, thus d(p, a) =, d(q, a), which proves that
7 is an S.P. partition. An analogous proof holds for 7.

Let p and g be states of A such that p =,, ¢ and p =,, ¢. This means
that a(p) = (p1,p2) = «a(q) and (since « is injective) p = ¢. Hence
7y -y = 0.

As A;|| Az is a nontrivial decomposition, it holds that |K;| < |K|, and
therefore |m;| < |K]|, i € {1,2}. But m - m = 0, hence |m;| > 1, which
together means that 7m; and 7y are both nontrivial.

To complete the proof of this implication, it remains to prove that if
(A1, Ag) is an ASB-decomposition, then m; and m separate the final

states of A. From each partition, we shall take exactly those blocks that
contain at least one final state of A. By union of all such blocks in each

14



of the partitions we obtain two sets, and then we prove that the inter-
section of these sets is exactly the set F', as required by Definition 3.7.
Formally, we want to prove that

(U[Q]m> N (U[Q]m> =F

The first set contains all states that are equivalent to some final state
modulo 7y, therefore the first component of their a-image is some final
state in A;. For the same reason, the second set contains all states
such that the second component of their a-image is some final state
in A;. Hence after performing the intersection, there remain exactly
the states ¢ that satisfy the condition a(q) € F; x F,, and these are
(according to (iii) of Definition 3.1) exactly the final states of A.

: Let m; and m, be the given nontrivial S.P. partitions on the set of

states of A such that 7 - m3 = 0. We shall construct two automata
A; and A, having states corresponding to blocks of these partitions
and show that (A;, As) is a nontrivial SB-decomposition of A. Let
A; = (14, 2,04, [qo)mi, {[d)m]q € F'}) be a DFA with ¢; function defined
by 0:([q]x;,a) = [0(q,a)]x;, © € {1,2} (this definition does not depend
on the choice of ¢ since m; is an S.P. partition). To show that A;||Ay
is a realization of A, we define the mapping a: K — K; x K; by
a(q) = ([q]xy, [q]x,)- Since m - m = 0, « is injective. It remains to
prove that the two conditions (i) and (ii) from Definition 3.1 hold.

(i) This can be verified by a simple computation:

'(a(q),a) = 8'(([gm: [d)r), @) = (01([g]m, @), 62([a] s, @) =
= ([5((]7 a)]ﬂl? [6(QJ a)]m) = 04(5((], a))

The first equality comes from the definition of the mapping «,
the second from the definition of a parallel connection of two au-
tomata, the third from the definition of §; and the last one from
the definition of « again.

(ii) This comes directly from the definitions of A;, A, and «.

To complete the proof, we have to show that if 71 and m, separate
the final states of A, then also the property (iii) from Definition 3.1 is
satisfied.

15



(iii) If ¢ € F, then a(q) = ([q]x,, [q]x,), Which by the definition of A,
and As is an element of F} x F;3. This, by the definition of the
parallel connection, implies that a(q) € F’. On the other hand, if
a(q) € F', by the definition of the parallel connection it implies
that a(q) € Fy x F;. That means that ¢ is equivalent to some final
state of A modulo m; and also to some (possibly different) final
state of A modulo my. Therefore ¢ appears in both sets intersected
in Definition 3.7 which implies that it is a member of F', since m
and 7y separate the final states of A.

O

If a DFA has only one accepting state then the condition of separating
final states is trivially met, hence we can formulate the following corollary.

Corollary 3.4. A deterministic finite automaton A = (K, %, 0, qo,{qr}) has
a nontrivial ASB-decomposition if and only if there exist two nontrivial S.P.
partitions m and wo on the set of states of A such that m - w5 = 0.

Since [7]| describes an easy way to generate all S.P. partitions of a given
sequential machine (and this can be directly applied to finite automata), we
can easily find all SB- (and ASB-) decompositions of a given automaton.

Now we are able to show by a simple example that the converse of The-
orem 3.1 does not hold.

Example 3.1. Consider the language L = {a**"|a > 0,0 > 1}. The
minimal automaton accepting this language is

A= ({a07 ai, az, as, b07 b17 b27 b37 R}7 {CL, b}? 67 ao, {b0}>
with the transition function defined by the following transition diagram:

as
\
a
a9 b R
/
a a
aq a a a h
a
@) —"> by —> by —> by —
\3/
(recall that we shall always assume that all the transitions not depicted in
the transition diagram start and end in the same state).

bo
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The idea behind this automaton is simple, the purpose of the a; states
is to count the a symbols (modulo 4), the b; states count the b symbols
(again modulo 4) and R is a reject state. This automaton does not have a
nontrivial SB-decomposition (which implies no ASB-decompositions) as can
be easily verified using Theorem 3.3 by listing all S.P. partitions. But if we
use Ly = {a*b'|k > 0,1 > 1} € R as an advisor, we can accept L with
a DFA having only 4 states and accepting language {w|#(w) = 4,1 > 0},
hence there exists a nontrivial advisor for L.

The reason why the automaton from the previous example has no nontri-
vial SB-decomposition is that any S.P. partition on the set of its states that
would have all a; states in the same block (the corresponding automaton
would not count the symbols a), would also have to contain all the b; and R
states in the same block and thus would not be able to count the b symbols,
either. This is caused by the "terminal" character of the state R and it is in
general stated by the following lemma. At first, we need a few definitions:

Definition 3.8. Let A = (K,X,0,q0, F') be a DFA, let ¢ € K, a € ¥. We
shall call the set {p € K|3n € NU{0};d(q,a*) = p} the a-tail of the state ¢
and denote it by (q),. By tail of the state q, we shall mean the union of all

a-tails, a € 3, i.e., (¢) = U ex(@)a-

Definition 3.9. Let K be the set of states of some DFA A and let a be in
Y. We shall call a state ¢ € K a-terminal if (q), = {q}. We shall call a state
q € K terminal if (¢) = {q}-

Lemma 3.5. Let m be an S.P.-partition on the set of states of a given DFA
A= (K% 6q,F), let pge K, p=,q, let a € ¥. If q is a-terminal, then
Vp' € (p)aip =x ¢

Proof. Let p' € (p),, then there exists the minimal n € N U {0} such that
0(p,a™) = p’. We shall prove the lemma by induction on n. For n = 0,
p’ = p and the equation p =, ¢ holds. Now suppose n > 0, then by the
induction hypothesis 6(p,a" ') =, ¢, and 7 has substitution property, thus

d(p,a™) =, 0(q,a) = q, which completes the proof. O

Corollary 3.6. Let m be an S.P.-partition on the set of states of a given
DFA A = (K,%,6,q0, F), let p,q € K, p=, q and a € ¥. If q is terminal,
then Vp' € (p);p' =x q.

17



4 Other Types of Decomposition

Now we shall try a different approach to the problem of DFA decomposition.
We shall define exactly what it means that the smaller automata forming the
decomposition can substitute the original automaton. It is obvious that if the
decomposition is to be useful, the results of computations of the automata
forming such a decomposition have to indicate what would be the result of
the computation of the original automaton. We can be interested in knowing
in which state the computation of the original automaton would end, or
knowing just whether the original automaton would accept the word or not.
We could also have access to the information in which states the smaller
automata have finished their computations, or maybe we only know whether
they have both accepted the word. Depending on these factors, we obtain
different ways of decomposing a DFA.

The first possibility is that we want to decompose a DFA into two simpler
automata in such a way that after performing the computations of both of
these automata on any given input word, we can identify the state of the
original automaton in which it would end its computation from the states in
which these computations have ended. This decomposition is formalized by
the following definition.

Definition 4.1. A pair of deterministic finite automata (A;, As), where
Ay = (K1,%,01,q1, F1) and Ay = (Ko, X, 09, g2, F3), forms a state-identifying
decomposition (SI-decomposition) of a DFA A = (K,%,0,qo, F), if there
exists a mapping 3: K1 X Ky — K, such that it holds

(Vw € 2); B(d1(q1, w), 02(g, w)) = d(qo, w)
If |Ky| < |K| and |K;| < | K|, this decomposition is nontrivial.

Another possible requirement on the decomposition could be that we want
any input word to be accepted by both smaller automata if and only if it
would be accepted also by the original automaton. This way, we could per-
form the computation of both smaller automata on any given input word and
then decide whether this word would be accepted by the original automaton
based only on the information whether it was accepted or rejected by the
decomposition automata. This decomposition is formalized as follows.

Definition 4.2. A pair of deterministic finite automata (A;, As), where
Ay = (K1,5,01,q1, F1) and Ay = (K3, %, 02, q2, F3), forms an acceptance-
identifying decomposition (AI-decomposition) of a DFA A = (K, %, 0, qo, F),
if it holds L(A) = L(Ay) N L(As). If |Ky| < |K| and |Ks| < |K|, this
decomposition is nontrivial.
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It is easy to see that the notion of a nontrivial Al-decomposition is equiv-
alent to the concept of a nontrivial advisor we are interested in. Therefore
Theorem 3.1 and Example 3.1 from the previous section also apply to Al-
decomposition.

The third — and the weakest — requirement we could pose on a decomposi-
tion of a DFA is to require that there must exist a way to determine whether
the original automaton would accept some given input word based on know-

ing the states in which the computations of both decomposition automata
have finished.

Definition 4.3. A pair of deterministic finite automata (Ay, As), where A; =
(K1,%,01,q1, F1) and Ay = (K3, %, 02, q0, Fy), forms a weak acceptance-
identifying decomposition (wAI-decomposition) of a DFA A = (K, %, 0, qo, F),
if there exists a relation R C K; X Ky such that it holds

(V’UJ € 2*), R(gl(ql,w),gg(q%w)) =W E L(A)
If |K\| < |K| and |Ks| < | K|, this decomposition is nontrivial.
There exists a simple relationship between these types of decomposition.

Lemma 4.1. If (A1, Ay) is an SI-decomposition of a DFA A, then it is also
a wAI-decomposition of A. If (A, Ag) is an Al-decomposition of a DFA A,
then it is also a wAI-decomposition of A.

Proof. This is a direct consequence of the definitions. O

For minimal automata, a relationship between AI- and SI-decompositions
can be obtained.

Theorem 4.2. Let A = (K,X,0,qo, F') be a minimal deterministic finite
automaton, let (A1, Ay) be its Al-decomposition. Then (Aj, A) is also an
SI-decomposition of A.

Proof. Since (A;, As) is an Al-decomposition of A, by definition it holds that
L(A) = L(A;)NL(As). Therefore if we use the well-known Cartesian product
construction, we obtain the automaton A;|| Ay such that L(A;||A2) = L(A).
Since A is the minimal automaton accepting the language L(A), there exists
a mapping 3: K’ — K such that it holds

(Vw € 2); B (gh,w)) = 6(B(qh), w)

where ¢’ is the transition function of A;||A,, K’ is its set of states and ¢} is
its initial state. Since A;||As is a parallel connection (i.e., K’ = K; X Kj, ¢},
is the pair of initial states of A; and A,), it is easy to see that [ is in fact
exactly the mapping required by the definition of the SI-decomposition. [
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For the other decompositions, we can derive the following sufficient con-
ditions that exploit the concept of S.P. partitions.

Theorem 4.3. Let A = (K,X,0,q, F') be a deterministic finite automaton,
let 1 and wy be nontrivial S.P. partitions on the set of states of A, such that
they separate the final states of A. Then A has a nontrivial AI-decomposition.

Proof. Let m and 7y be the given nontrivial S.P. partitions on the set of
states of A such that they separate the final states of A. Let By,..., DBy
and C4,...,C; be the blocks of the partitions m; and 7y respectively, such
that (ByU...UBg) N (CLU...UC;) = F (the existence of such blocks is
guaranteed since m; and 7, separate the final states of A). We shall construct
two automata A; and A, having states corresponding to blocks of these
partitions and show that (A;, Ay) is a nontrivial Al-decomposition of A. Let

A = (77'1727517[QO]ma{Blw”aBk})
Ay = (7T2727627[qo]ﬂ'27{017“‘70l}>

be DFAs with the transition functions §; defined by 6;([¢]~,,a) = [6(q, a)]x,,
i € {1,2} (this definition does not depend on the choice of ¢ since 7; is an
S.P. partition). We now need to prove that L(A) = L(A;) N L(As).

“C” Let w € L(A). Suppose that the computation of A on the word w ends
in some accepting state ¢; € F'. Then, from the construction of A; and
Aj it follows that the computation of A; on the word w ends in the state
corresponding to the block [¢f],, of the partition m;. Since ¢y € F, it
must hold [¢f]r, € {Bi,..., Bk} and [¢f]~, € {C4,...,Ci}, hence from
the construction of A;, these blocks correspond to the accepting states
in the respective automata. Thus w € L(A4;) for i € {1,2}, therefore
L(A) C L(Ay) N L(Ay).

“2”: Now suppose w € L(A;)NL(As), Thus the computation of A; on w ends
in one of the states By, ..., By, which means that the computation of A
on w would end in a state from the union of blocks By U. ..U By. Using
the same argument for A,, we get that the computation of A on w would
end in a state from C1U...UC,;. Since (B1U...UB,)N(C1U...UC)) = F
we obtain that the computation of A ends in an accepting state, hence
w € L(A) and L(A;) N L(Ay) C L(A).

Since both partitions are nontrivial, so is the AI-decomposition obtained. [

Theorem 4.4. Let A = (K,X,0,q, F) be a deterministic finite automaton,
let m1 and wo be nontrivial S.P. partitions on the set of states of A, such that
m - me 2 {F,K — F}. Then A has a nontrivial wAI-decomposition.
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Proof. We shall construct A; and A, corresponding to the partitions 7
and 7y as follows: A; = (m;, %, di, [qo)x;, D), where 0;([q]r,, a) = [0(g,a)]., and
i € {1,2}. The definition of the transition function J; does not depend on
the choice of ¢ as a consequence of the S.P. property of m;. To show that
(A1, A) is a wAI-decomposition of A, we define the relation R C 7 X w3 by
the equivalence R(Bi, By) < (B; N By C F),where B; is some block of the
partition ;.
Now we need to prove that

(Vw € £%); w € L(A) & R(61([qo)m,, w), 02([qo] my» )

Suppose that the computation of A on w ends in some state p € K. From
the definition of the transition functions ¢; it follows that the computation
of A; on the word w ends in the state corresponding to the block [p],, hence

R((Sl([qo]m ) w)> 52([qo]7r27 w)) g R([p]mv [p]m)

and by the definition of R, we get

R(dl([qo]ﬂpw)v 52([(]0]7@,21])) g [p]ﬂ'l N [p]ﬂz CF

Obviously p € [plr N [Plry. Also [plz, N [p]x, is a block of the partition 7 - 7o
and since 7y - mp < {F, K — F'}. it must hold that either [p|., N [p]., C F or
[Plz; N [plr, € K — F. Therefore

R(él([qo]m’ ’LU), 52([q0]7r2’ ’LU)) < pE F

and the proof is complete. O

The ASB-decomposition is a combination of the SB-decomposition and
the Al-decomposition, as the next theorem shows.

Theorem 4.5. Let A be a DFA without unreachable states. (A1, As) is an
ASB-decomposition of A if and only if (A1, As) is both an SB-decomposition
and an Al-decomposition of A.

Proof. “=" The statement about SB-decomposition comes directly from
the definitions and the statement about Al-decompositions is a con-
sequence of Theorem 3.3 and Theorem 4.3. This implication holds
without the assumption of reachability of all states of A.

“<” Let (A1, Ay) be an SB- and Al-decomposition of A = (K, X, 0, qo, F).
Let o be the mapping given by the definition of SB-decomposition. We
need to prove that for all states ¢ of A, ¢ € F' < a(q) € F} x Fy, where
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F; is the set of accepting states of A;, i € {1,2}. Let ¢ € K and let w
be a word such that §(qy, w) = ¢q. Then

e Feswe L(A) e we L(A)NL(A) < a(q) € Fi x F;

where the first equivalence is implied by the choice of w, the second
holds because (Aj, As) is an Al-decomposition and the third is a con-
sequence of the properties of o guaranteed by the definition of the
SB-decomposition.

O

There is also a relationship between SB- and SI-decompositions, in fact
SB- is a stronger version of a state-identifying decomposition, as the following
two propositions show.

Definition 4.4. Let A; = (K1,%,01,p1, F1) and Ay = (K3, X, 02, pe, F3) be
DFAs. We shall call a pair of states (q,7) € K1 x K5 reachable, if there exists
a word w € ¥.* such that 01(p1,w) = q and d3(pa, w) = 7.

Theorem 4.6. Let A = (K,%,0,q0, F) be a DFA and let (A, As) be its
SB-decomposition. Then (Ay, As) also forms an SI-decomposition of A.

Proof. Let A; = (K;,%,0;,q:, F;), i € {1,2}. Since (A;, Ay) is an SB-
decomposition of A, there exists an injective mapping a: K — K; X Ky
such that it holds a(qo) = (¢1, ¢2) and

(Va € X)(Vp € K); a(d(p,a)) = (01(p1,a), d2(pa, a)) (1)

where a(p) = (p1,p2). Let us define a new mapping 3: K; x Ky — K by

{p ifIpeK, ap) = (p,p)
ﬂ(p17p2> - { Qo otherwise (2)

Since « is injective, there exists at most one such p and this definition is cor-
rect. We now need to prove that [ satisfies the condition from the definition
of SI-decomposition, i.e., that

(Vw € 5%); B(01(q1, w), 02(q2, w)) = 0(qo, w)

This can be proved by a trivial induction using a(qy) = (q1, g2) for the first
step and (1) and (2) for the inductive step, having in mind that all the pairs
of states we encounter in the computation of A;||As are thus reachable and
therefore we always apply the first possibility in (2). O
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Lemma 4.7. Let A be a DFA without unreachable states and let (Aq, As) be
its SI-decomposition, with 3 being the corresponding mapping. Then (Ay, As)
is an SP-decomposition of A if and only if 5 is injective on all reachable pairs
of states.

Proof. “=" 1f (A1, As) is an SP-decomposition of A, then (3 obviously has to
be constructed in such a way, that it behaves on all reachable pairs of
states as the 3 mapping in the equation (2) in the proof of Theorem 4.6,
otherwise it would not fulfill the condition posed on the mapping by the
definition of the SI-decomposition. Since the mapping « is a bijection
between the set of states of A and the set of all reachable pairs of states
of A; and A,, § defined as its inverse on the set of reachable pairs of
states will be injective on this set.

“<” Let (Ag, Ag) be an SI-decomposition of A and let 3 be injective on the
set of reachable pairs of states, let 3, denote the mapping [ restricted
onto the set of all reachable pairs of states of A;, A. Since A has
no unreachable states, 3, is also surjective, thus we can define a new
mapping a: K — K x K, by the equation a(q) = 5,'(q). Since 5 maps
the initial state onto the initial state, so does «, and since (3 satisfies the
condition from the definition of the SI-decomposition, it implies that
also « satisfies the condition (i) from the definition of realization of
state behavior. Therefore (A;, As) is an SB-decomposition of A, with
the corresponding mapping o.

U

The converse of Theorem 4.6 does not hold, because Example 3.1 presents
a minimal automaton that has an AI-decomposition but no SB-decomposition
and according to Theorem 4.2, this Al-decomposition is also state-identifying.

The relationship between SB- and ASB-decomposition is obvious directly
from their definitions. Later (in the proof of Theorem 5.8) an example of
an automaton which has a nontrivial SB-decomposition but does not have a
nontrivial ASB-decomposition is exhibited.

It is also easy to see that for any non-minimal automaton A without
unreachable states, there exists a nontrivial AI- and wAl-decomposition
(Ay, As) such that A; is the minimal automaton equivalent to A and A,
has only one state. This decomposition is obviously not state-identifying.

Figure 1 summarizes all the relationships among the decomposition types
that we have shown so far.

Now we show that for the case of so-called perfect decompositions, some
of the types of decomposition mentioned coincide.
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Description:

A—— B every A-decomposition is also a
B-decomposition

A x> Bt not every A-decomposition is also
a B-decomposition

A—x—= B: there exists a DFA that has a
. nontrivial A-decomposition but does not
wAI have a nontrivial B-decomposition

Figure 1: Relationships between decomposition types of DFA

Definition 4.5. Let t be a type of decomposition, t € {ASB,SB, Al, SI,
wAIl}. Let A be a DFA having n states, let Ay and Ay be DFAs having k and
[ states, respectively. We shall call the pair (A;, As2) a perfect t-decomposition
of A, if it forms a t-decomposition of A and n =k - 1.

Theorem 4.8. Let A be a DFA with no unreachable states and let (Ay, As)
be a pair of DFA. Then (A1, Ag) forms a perfect SI-decomposition of A if and
only if (A1, As) forms a perfect SB-decomposition of A.

Proof. One of the implications is a consequence of Theorem 4.5. As to the
second one, since (Aj, Ay) forms a perfect SI-decomposition of A, each of the
pairs of states of A; and A, are reachable and each pair has to correspond
to a different state of A in the mapping [, therefore [ is bijective and the
theorem follows from Lemma 4.7. O

Corollary 4.9. Let A be a minimal DFA and let (Aq, As) be a pair of DFA.
Then (A1, Ay) forms a perfect Al-decomposition of A if and only if (A1, As)
forms a perfect ASB-decomposition of A.

Proof. The proof directly follows from Theorem 4.5, Theorem 4.2 and The-
orem 4.8. 0

As a consequence of these facts, we can use the necessary and sufficient
conditions stated in Theorem 3.3 to look for perfect AI- and SI-decomposi-
tions.

Now, let us inspect the relationship between decompositions of an au-
tomaton and the decompositions of the corresponding minimal automaton.

Theorem 4.10. Let A = (K,%,0,q0, F) be a DFA and let A,.;,, be a min-
imal DFA such that L(A) = L(Anm). Let (A1, Ay) be an SI-decomposition
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(AI-decomposition, wAI-decomposition) of A, then (Aq, As) also forms a de-
composition of A, of the same type.

Proof. First, note that this theorem does not state that any of the decom-
positions is nontrivial.

To prove the statement for SI-decompositions, suppose that (A;, As) is
an Sl-decomposition of A, thus there exists a mapping a: K1 x Ky — K
such that it holds

(Vw € X); a(d1(q1, w), 02(g2, w)) = 6(go, w) (3)

where §; and ¢; are the transition function and the initial state of the au-
tomaton A;. Since A,,;, is the minimal automaton corresponding to A, there
exists some mapping 3: K — K,,;, such that

(Vw € ¥°); B(0(qo, w)) = Spmin(B(q0), w) (4)

where 6,,;, is the transition function of A,,;,, and K, is the set of states
of A,in. By the composition of these mappings we obtain the mapping
foa: Ky x Ky — K. Using (3) and (4) we obtain

(Vw € 5%); (80 a)(01(ar, w), 02(qz, w)) = B(d(go, w)) = Smin(B(q0), w)

and since § maps the initial state of A onto the initial state of A,,;,, this
equation shows that $o« is the mapping that combines A; and A, into A,,;,
in the way that the definition of SI-decomposition requires.

This statement is trivial for the AI-decomposition, since L(A;)NL(A2) =
L(A) = L(Apin), where the first equation comes from the definition of Al-
decomposition and the second equation is one of our assumptions.

The situation is similar for wAI-decomposition. Since (A;, As) is a wAI-
decomposition of A, there exists a relation R C K; x K, such that it holds

(Vw € ¥); R(61(q1,w), 62(q2, w)) & w € L(A) & w € L(Ain)

where ¢; is the initial state of A;. Therefore (A;, As) is also a wAI-decomposi-

tion of A,in.
O

Based on the above theorem it thus suffices to inspect the SI- (Al-, wAI-)
decomposability of the minimal automaton accepting a given language, and if
we show its undecomposability, we know that the recognition of this language
cannot be parallelized in the respective way.

However, this does not hold for SB- and ASB-decompositions, as exhib-
ited by the following example.
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Example 4.1. Let us consider the language L = {a®*b*|k > 0,1 > 1}. The
minimal automaton A,,;,, = (K, X, 0, ag, {ag, bo}) has its transition function
defined by the following transition diagram:

al—b>R

N

o ——=by ____bo
b
We can easily show that this automaton does not have any nontrivial SB-
(and thus neither ASB-) decomposition by enumerating its S.P. partitions.
Now let us examine the automaton A’ = (K’,X.,0", ag,{ao,bo}) with the
transition function ¢’ defined by the following diagram:

b
b ——
a) —— Rl RO

() o T

ao——=0by ___ " by
b

Clearly, L(A") = L(Auin), but by inspecting the lattice of S.P. partitions of
A’ we can the find the partitions m = {{ao}, {a1}, {bo, b1}, {Ro, R1}} and
o = {{ap,a1,bo, Ro}, {b1, R1}} such that m; - m = 0 and they separate the
final states of A’. By Theorem 3.3 we can use these partitions to construct
a nontrivial ASB-decomposition of A’ formed by the automata A; and A,
having their transition functions defined by the transition diagrams

{a'l}—b>{R07Rl} and {a07a'1ab07R0}

), o )
{ao} ——{bo, b1} {01, R1}

This is an ASB-decomposition and therefore also an SB-decomposition. Note
that both 4; and A, have less states than A,,;,.

In the following theorem (inspired by a similar theorem in [7]) we state
a condition under which the SB-decomposability of the minimal automaton
tells us something about the SB-decomposability of all the other automata
accepting the same language. More precisely, if this condition is satisfied and
the minimal automaton does not have a nontrivial SB-decomposition, then
none of the other automata can be decomposed into two simpler machines,
both having less states than the minimal one, i.e., the unpleasant situation
from the previous example cannot occur.
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Theorem 4.11. Let A = (K,%,0,qo, F) be a deterministic finite automa-
ton and let Apmin = (Kmin, 2, Omin, Gmin, Fmin) be the minimal DFA such that
L(A) = L(Anin). Let (A1, A2) be a nontrivial SB-decomposition of A con-
sisting of automata having k and | states. If the lattice of S.P. partitions of
A is distributive, then there exists a an SB-decomposition of A, consisting
of automata having k' and ' states, such that k' < k and ' <.

Proof. Since Ay, is the minimal DFA such that L(A) = L(A.n), by Corol-
lary 2.2 there exists a mapping f: K — K,,;, such that it holds

(Vw € =); £(3(q0, w)) = min(Gmin, w) (5)

Using the mapping f, let us define a partition p on the set of states of A by
the equation p =, ¢ & f(p) = f(¢). As a consequence of (5), p is an S.P.
partition.

Since (Aj, A2) is a nontrivial SB-decomposition of A, we can use it to
obtain S.P. partitions m; and 75 on the set of states of A such that m; -7 = 0.
Let us define new partitions 7} and 7/, on the set of states of A,,;, by the
equation f(p) =x f(q) & p =, ¢ Since it holds that p + m; = p, this
definition does not depend on the choice of the states p and ¢. It holds that
|| = |p+ m| < |mi|, therefore if we prove that 7} and 7} are S.P. partitions
and 7} -, = 0, we can use them to construct the desired decomposition.

The fact that 7} is an S.P. partition on the set of states of A,,;, is a trivial
consequence of the fact that p + m; is an S.P. partition on the set of states
of A. We need to prove that 7] - 7, = 0. Let us assume that p’ and ¢’ are
states of A, such that p’ = ¢ and p, ¢ are some states of A such that
f(p) =p" and f(q) = ¢'. Then p' =1 ¢’ and p' =4, ¢/, and by definition of
m; we get p =, ¢ and p =,4r, ¢, which is equivalent to p =(,r,).(p4m) ¢-
Since the lattice of all S.P. partitions of A is distributive, we have

(pt+m) (p+m)=p+(m -m)=p+0=p

therefore p =, ¢, which by definition of p implies that f(p) = f(¢), in other
words p' = ¢'. Hence 7} - 7, = 0. O
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5 Undecomposable Languages

We shall now turn our attention to the languages that cannot be nontrivially
decomposed for some of the decomposition types defined.

Definition 5.1. Let t be a type of decomposition, t € {ASB, SB, Al, SI,
wAIl}. We shall call a DFA t-undecomposable, if it has no nontrivial t-
decomposition. We shall call a language L € R t-undecomposable, if the
minimal DFA for L with the input alphabet ¥ is t-undecomposable. We
shall denote U, the class of all t-undecomposable reqular languages.

Example 5.1. Consider the language L = {w € {a, b, c}*|#,(w) > 1}. Ob-
viously, the minimal automaton accepting this language consists of 2 states,
thus any nontrivial {-decomposition would have to consist of automata with
only one state and it can be easily seen that such a ¢t-decomposition does not
exist. Hence, this automaton is t-undecomposable for t € {ASB, SB, Al,
SI, ’LUAI} Thus L € Uasp NUsp NUs NUAr N Uy a7

When deciding about decomposability of languages based on minimal
automata accepting these languages, we have to take into account the input
alphabet of this minimal automaton, as it was done in Definition 5.1. The
reason for this is that a modification of the input alphabet can make the
minimal automaton decomposable, as shown by the following theorem.

Theorem 5.1. Let L be an Al-undecomposable reqular language, with A
being the minimal automaton with the input alphabet Y5, accepting L. Let c
be a letter such that ¢ & X1, and let A" be the minimal automaton accepting L
with input alphabet ¥’ = X U{c}. Then A’ has a nontrivial AI-decomposition
if and only if A does not contain a rejecting terminal state.

Proof. Let us suppose that A = (K,Xy, §, qo, F') does not contain a rejecting
terminal state. Since A is minimal, this implies that A contains no state g
such that for its tail (g) it holds (¢) N F' = (). Indeed, if such ¢ existed but was
non-terminal, we could substitute one rejecting terminal state for the whole
tail (¢), thus lowering the number of states, which contradicts the minimality
of A. But A" = (K',3,¢,q), F') has to contain a rejecting terminal state
qr, because in A’ it has to hold (Vg € K');0'(¢q,c) = qr where g has to
satisfy (gr) N F’ = ) (since all words containing ¢ have to be rejected) and
non-terminality of gz would again contradict the minimality of A’.

Now we can prove that A’ can be obtained from A by only adding the
rejecting terminal state qr and the transitions from all states to this one on
the input letter c. Such automaton would obviously accept the language L(A)
and work over the alphabet ¥’ = ¥, U {c}. It would be also minimal, since
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no pair of original states can be equivalent, because they were not equivalent
in A, and no original state could be equivalent to ¢g, because none of them
satisfies (¢) N F' = (). Therefore, we really obtain the automaton A’ in this
way.

Now that we know how A’ works, we can show that it is AI-decomposable.
We shall decompose A’ into two automata, one doing the work of A and the
other filtering out all the words that contain the letter c. Formally, let
Ay = (K,¥,61,q0, F) be a DFA such that d,(q,a) = 6(q,a) for all a € ¥
and d1(q,c) = q. Then let Ay = ({po,p1}, %, 02, po, {Po}) be a DFA with the
transition function d, defined by the following transition diagram

Po ——=P1

For any w € ¥* it holds that w € L(Ay) and w € L(A;) < w € L(A). For
any word w containing c¢ it holds w ¢ L(As) and thus w ¢ L(A;) N L(Ag).
Therefore (A1, As) forms a nontrivial Al-decomposition of A.

To prove the converse, let us assume that A contains a rejecting terminal
state gz. Then the minimal automaton A’ accepting L and having the input
alphabet Y’ has the same number of states, in fact we can derive it from A
by adding new c-transitions from each state into qr. Now let (A;, As) be
a nontrivial Al-decomposition of this automaton. Then we could obtain an
Al-decomposition of A from (A;, As) by just removing all the c-transitions
from both automata. Since A and A’ have the same number of states, this
decomposition would be nontrivial, which contradicts the undecomposability
of A. Therefore A’ must be undecomposable, too. O

Before inspecting the closure properties of the classes of undecomposable
languages, we need to prove undecomposability of two types of languages.
This is done by the following lemmas.

Lemma 5.2. For each n € N,n > 2 the minimal DFA accepting the one-
word language L™ = {a"~2} does not have a nontrivial wAI-decomposition.

Proof. It can be easily seen that the minimal DFA A accepting L™ (and
having the one-letter input alphabet ¥ = {a}) has n states and the transition
function 0 defined by the following transition diagram:

a

90 — q1 —2- q2 . qn—3 = qn—2 dn—1

with ¢,_o being the only accepting state. Let us suppose that there exists a
nontrivial wAI-decomposition of A, say (A;, A3), with R C K; x K, being
the corresponding relation from Definition 4.3. Then both A; and A, must
have at most n — 1 states. Since the input alphabet now contains only one
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letter, we can easily describe the structure of these automata. Let m denote
the number of states of A;. Without loss of generality we can assume that
all of them are reachable. We can label the states of A; as qo, q1,...,¢m_1 S0
that for all i € {0,1,...,m — 2} it holds d1(g;, a) = gi+1 and 01(gm—1,a) = g;
for some j € {0,1,...,m — 1}. This implies that the computation of A; on
the word a"~2 ends in state ¢, for some r € {j,7+1,...,m—1}. But so does
the computation of A; on the words a”~2**("=J) for all k € N. By repeating
the same argument for A, (let us denote m’ the number of states of A, and ¢;
the state of Ay such that d2(g—1,a) = ¢;7) we show that the computations
of A, on the words a™ 2, a®~2tk(™'=7') for all k € N end in the same state, say
¢~ Since a"? € L(A), it must hold (¢,,q.) € R. But since the computation
of A; on the word ¢ 2t(m=7)(m'=i") ends in ¢, and the computation of A, on
the same word ends in ¢, this would imply that " 2+(m=9)0"'=i) ¢ [(A),
which is a contradiction, since (m — j)(m' — j') > 0. O

Lemma 5.3. For eachn € N the minimal DFA accepting the language L™ =
{a*|k > n — 1} does not have a nontrivial wAI-decomposition.

Proof The minimal automaton A accepting L™ is easy to construct, it
consists of n states. Let us suppose that there exists a nontrivial wAI-
decomposition of A, say (A, Ay), with R C K; x K, being the corre-
sponding relation from Definition 4.3. Then both A; and A; must have
at most n — 1 states. Again the input alphabet contains only one let-
ter, so the structure of these automata can be easily described. Let m
denote the number of states of A;. Without loss of generality we can as-
sume that all of them are reachable. We can denote the states of A; by
9015 - - -, Gm—1 so that for all ¢« € {0,1,...,m — 2} it holds d(¢;,a) = g1
and 0(¢m—1,a) = ¢g; for some j € {0,1,...,m — 1} (the automaton consists
of an initial sequence and a loop, possibly a trivial one). We can do the
same for A,, let m' denote the number of its states and let us label them
D0, P1s -« - Prv—1 in such a way that for all ¢ € {0,1,...,m — 2} it holds
d(pi,a) = pir1 and 6(pyy_1,a) = pj for some j' € {0,1,...,m' —1}. Now
let » and " be the indices such that the computations of A; and A, on
the word "' end in states ¢. and p,,, respectively. Since m < n — 1 and
m' < n—1,it holds that j < r < m —1and j/ < < m' —1, ie., the
computation on a" ! ends in the loop for both automata. We know that
a"~t € L(A), therefore (q,,p,) € R, but also a"*** € L(A) for all k € N, so
(@it (r—jtk mod (m—g))s Dj'+('—j'+k mod (m'—j7y)) € R for all k € N. Let s (and t)
denote the states that occur in the loop of A; (and A;) immediately before
the state ¢.(and ¢,/). If we instantiate (m — j)(m' — j') — 1 for k, we obtain
that (s,t) € R, too. It is easy to see that also the computation of A; (and A,)
on the word a"~2 ends in the state s (and t), since these computations have
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to end in the loops of the respective automata, because the initial sequence
can be at most n — 2 states long. Thus a computation on a word of length
n — 2 must lead past this sequence of states. Therefore (s,t) € R implies
a2 € L(A), which is a contradiction. O

Theorem 5.4. The classes Upsg, Usg, Usr, Uar and Uy, ar are not closed
under intersection.

Proof. Consider the languages

Ly = {w < {a7b7 C}*|#a(w) > 1}
Ly = {w < {a7b7 C}*|#b(w) > 1}

According to Example 5.1, these languages are not t-decomposable for any
t € {ASB, SB, AI, SI, wAI}. Obviously

Ll N L2 = {w € {(Z,b, C}*|#a(w) Z A #b(w) Z 1}

Using the well-known method of finding minimal automaton for a given lan-
guage, we can see that the minimal DFA accepting the language L; N Lo is
A = ({po, p1, P2, p3}, 2, 9, po, {ps}), with the § function given by the following
transition diagram

Po —2=D1
"
P2 —2>Dp3

This automaton is obviously decomposable into two finite automata A; =

({qo, 1}, %, 61,90, {cn}) and Ay = ({ro,7m1}, %, 0,70,{r1}) with transition
functions given by these transition diagrams, respectively:

o —2=q 7“0—b>7“1

Now it is easy to see that (Aj, As) is a nontrivial ASB-decomposition of A,
given by the mapping a(p;) = (¢; mod 2,7 div 2)- Thus A is ASB-decomposable
and so is the language L, N Ly. Using the results from the previous section
it follows that this is also a decomposition of all other defined types, which
completes the proof. O

Since the family of regular languages R is closed under intersection, we
have the following corollary.

Corollary 5.5. U; TR, t € {ASB,SB,SI, AI,wAI}.

Theorem 5.6. The classes Usp, Usr and Uy, a1 are closed under complement.
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Proof. If ¥;, = ¥;c¢ (i.e., the minimal alphabet of the language does not
change by complementing the language), the theorem is easy to prove. Let
A = (K,%,0,q, F) be the minimal automaton accepting L. Then clearly
the automaton A’ = (K,X,6,qy, K — F) is a DFA such that L(A") = L©.
Moreover, it must be minimal, because if it had any equivalent states, these
states would also be equivalent in A. But that means that minimal automata
for L and L' operate in the same way. Thus if « (or 3, or R) is a mapping
(or a relation) proving that (A;, A2) is a nontrivial SB- (or SI-, or wAI-)
decomposition of A’, then « (or 3, or =R) proves that (A;, As) is also a
nontrivial decomposition of the same type of the original automaton A, which
would contradict its undecomposability. Therefore A’ is t—undecomposable
for all types t mentioned.

Let us consider the case when the minimal alphabet changes by comple-
menting L. Since LC is defined by {w € Xi|lw € L}, ¥c C ¥ and it
is a proper subset if and only if L contains all words from X7} that contain
some given letter. Let us suppose that ¥, — ;¢ = {c}. (This can be easily
extended to more letters.) Let A’ be the minimal automaton accepting LY
with input alphabet ;¢ and let A” be the minimal automaton accepting L¢
with input alphabet ¥;. Using the arguments from the previous paragraph,
A” and A can be obtained from each other by only complementing the set of
accepting states. Now there are two possibilities worth distinguishing: either
A’ contains or does not contain a rejecting terminal state gr. If it contains
such a state, then A” can be obtained from A’ by just adding c-transitions
from each state into the state ¢r, therefore A, A’ and A” have the same num-
ber of states. If A’ contains no rejecting terminal state it has to be added,
along with the respective transitions, when transforming A’ into A” since
A” has to reject all words containing c¢. Therefore in this case, A and A”
have one more state then A’, and this state is terminal. The minimality of
all constructed automata can be proved using the same arguments as in the
previous paragraph. Now that we know the relationship between A, A’ and
A’ let us conclude the proof.

Assume that A’ has a nontrivial wAI-decomposition formed by (A;, As)
and a relation R. We shall construct a nontrivial wAI-decomposition of A,
thus obtaining a contradiction. If A’ does not contain ¢z, then A has one
more state then A’, therefore we can extend A; (i € {1,2}) by one state and
it will still have less states then A. Therefore we add a terminal rejecting
state to both automata and add c-transitions from all states into these new
ones. Thus we obtain two automata with input alphabet ¥;c¢ and they form
a wAI-decomposition of A” with the relation R. Therefore it is also a wAI-
decomposition of A, now with the relation =R. On the other hand, if A’
does contain a rejecting terminal state qr, then there must also exist a pair
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of states (p1,pa) € K1 x Ky such that (Vw € X1¢); (01(p1, w), d2(p2, w)) € R.
Therefore, if we modify A; by adding c-transitions from all states into state
Pi, We again obtain two automata that form a nontrivial wAIl-decomposition
of A” and A (with the relations R and —R, respectively).

The proof for Sl-decompositions is similar, since if (A, A;) is an SI-
decomposition of A” defined by a mapping (3, then it is also an SI-decompo-
sition of A defined by the same mapping (3, and all the other arguments are
the same as before.

To prove the theorem for SB-decompositions, we shall use Theorem 3.3.
If A" has a nontrivial SB-decomposition, then there exist S.P. partitions m;
and 7y on the set of states of A’ such that 7 - my = 0. Now if A’ contains
gr then 7 and 7y also determine a nontrivial SB-decomposition of A” (and
thus also of A). This is true because the only transitions that have been
added when modifying A’ to A” were the c-transitions from all states to qr
and these cannot violate the S.P. property since they all point to the same
state. On the other hand, if A" does not contain gr, A’ has again less states
then A. Hence we can add a new block containing only qr into both 7; and
7o, thus obtaining two S.P.partitions on the set of states of A” (or A) that
are still not trivial and satisfy m; - mo = 0, i.e., they determine a nontrivial
SB-decomposition of both A” and A. O

Theorem 5.7. The class Ussp 1s not closed under complement.

Proof. Consider the language L = {b,c}* U {a,c}*. Minimal DFA accept-
ing this language is A = ({qo, ¢1, 42,43}, 2, 9, g0, {90, 1, G2 }) with 0 function
defined again as follows:

do —>¢1

P,k

g2 —>q3

ASB-undecomposability of this automaton can be easily proved using The-
orem 3.3, as this automaton has only two nontrivial S.P. partitions, but
they do not separate the final states of A. However, it can be seen that
LY = {w € {a,b, c}*|#a(w) > 1 A #,(w) > 1} and this language can be de-
composed, because the two S.P. partitions mentioned above now do separate
the final states of the automaton (the resulting decomposition was already
shown in the proof of Theorem 5.4). Thus Uusp is not closed under comple-
ment. 0

Theorem 5.8. The classes Uasp, Uar, Usr and U, 41 are not closed under
UnIon.
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Proof. To prove the statement about U,sp, let us consider the languages

Ly = {we{abc}#,
U {w € {a,b,c}"|#.
Ly = {we{abc}#,
U {w € {a,b,c}"|#.

w) mod 3 =0A #,(w) mod 5 =0} U
w) mod 3 =2 A #,(w) mod 5 =4}
w) mod 3 =0A #,(w) mod 5 =4} U
w) mod 3 =2 A #,(w) mod 5 = 0}

o~ o~ o~

It is easy to see that minimal automata for both L; and L, have 15 states
and they only differ in the definition of the accepting states (each automaton
has two accepting states). Their ASB-undecomposability can again be easily
verified using Theorem 3.3: each automaton has only two nontrivial S.P.
partitions (one represents counting of symbols @ modulo 3, the other counting
of symbols b modulo 5), we shall denote them 7; and . It holds 71 - m5 = 0
but they do not separate the final states of any of the automata.

The minimal automaton for the union L; U L, has again 15 states with
the same transition function, but it has four accepting states. The partitions
m and 7y still satisfy the condition m; - m = 0, but they now also separate
the final states of the automaton in the sense of Definition 3.7. Hence, using
Theorem 3.3, the language L; U L, has an ASB-decomposition.

To prove the same statement about /47, Us; and U, 47, we shall consider
the languages Ly = {a'|i > k} and L, = {b’|i > k} for some given constant
k > 1. According to Lemma 5.3, minimal automata for both languages
have k + 1 states and are wAl-undecomposable (and hence also Al- and
SI-undecomposable). For L; U Ly we have the minimal automaton A having
2k +2 states with the transition function ¢ defined by the following transition
diagram

D1 _a P e a. Di—1 e o Dk

/\\l/
\//T\

1_>q2 ........... >qk 1—>pk

with accepting states p, and ¢;. However, this automaton can be Al-decom-
posed into A; and A, consisting of k+1 and 4 states, having the corresponding
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transition functions defined by the transition diagrams

a,b a,b a,b a,b / \
o —=q1 ——= Q2 - > k-1 — Gk

with accepting states g, ¢, and ¢,. Now, L(A;) = {w € {a,b}*| |w| > k}
and L(As) = {a}* U {b}*, thus it holds L(A;) N L(Ay) = L1 U Ly. There-
fore, (A1, Ay) is an Al-decomposition (and also a wAI-decomposition and by
Theorem 4.2 also an SI-decomposition) of A. O

Theorem 5.9. The classes Uy, Usr, Uy ar are not closed under concatena-
tion.

Proof. To prove the statement, we shall consider the one-word languages
Ly = {a*} and L, = {b'} for some given constants k,! > 1. According to
Lemma 5.2, minimal automata for both languages are wAI-undecomposable
(and hence also AI- and SI-undecomposable). For L; - Ly = {a*b'} we have
the minimal automaton A having k+ [+ 2 states with the transition function
defined by the following transition diagram

b b
qO $q1 a> Qk—>qk+l .......... > Qk-i—l

\b\ l
a
a,b
4R
with accepting state gr.;. However, this automaton can be Al-decomposed

into A; and A, consisting of [+ 2 and k + 2 states, having the corresponding
transition functions defined by the transition diagrams

Qo _b. qq b Q-1 _b q Po—2spp ot Pr_1 L Pr
a b b
\ la ab \ lb /
dr Pr
with accepting states ¢, and p;. Now L( 1) = {a}* - {V'} and L(A,) =
{a*} - {b}*, thus it holds L(A;) N L(As) = Ly - Ly. Therefore, (A, Ay) is an
Al-decomposition (and thus also a wAI- and SI-decomposition) of A, which
proves the theorem. O

Theorem 5.10. The classes Uasp, Usp, Usr, Uar and Uy, a1 are not closed
under iteration.
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Proof. 1t suffices to consider the one-word language L = {a®}, which is ac-
cording to Lemma 5.2 t-undecomposable for all the mentioned types ¢. The
minimal DFA for language L* = {a% |k > 0} can be easily decomposed into
two automata, one counting symbols a modulo 2 and the other modulo 3,
therefore L* is decomposable. Moreover, this is a decomposition of all men-
tioned types. O

Theorem 5.11. The classes Uasp, Usp, Usr, Uar and Uy, are not closed
under non-erasing homomorphism.

Proof. Consider the language L = {a}*. It is obvious that the minimal
automaton accepting L has 2 states and therefore cannot be t-decomposed
for any type t. However, if we apply to L the non-erasing homomorphism
h: {a}* — {a}* defined by h(a) = aa, we obtain h(L) = {a*|k > 1}.
We shall show that this language is decomposable. Indeed, the minimal

automaton accepting h(L) is A = ({qo, Godd; Geven }, {0}, 5, G0, {qeven}) With
the transition function defined by the transition diagram

o —2> Godd

qeven

and can be decomposed into two automata consisting of 2 states each, one
of them accepting the language L; = {a}' and the other accepting the
language Lo = {a?*|k > 0}. This is a decomposition of all desired types,
thus the theorem holds. O

Corollary 5.12. The classes Upsp, Usp, Usr, Uar and U, a7 are not closed
under homomorphism.

Theorem 5.13. The classes Uy, Usr and Uy, 41 are not closed under inverse
homomorphism.

Proof. To prove this, we shall consider the one-word language L = {a**~1}

for some fixed £ > 2. By Lemma 5.2, L is wAl-undecomposable. Now let
us consider a homomorphism h: {a,b}* — {a}* defined by the equations
h(a) = a* and h(b) = a®***!. Consider h~'(L). By the definition of inverse
homomorphism, h ™' (L) = {w € {a,b}*|h(w) € L} = {w € {a,b}*|h(w) =
a**~1}. Obviously such word w cannot consist of letters a only, because
h(a) = a? and 4k — 1 is odd. Also, w cannot contain more than one letter
b, because h(b) = a***™! and 2.(2k + 1) > 4k — 1. Now it is easy to see
that h™'(L) = {w € {a,b}*|#s(w) = 1 A |w| = k}. The minimal automaton
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accepting h~'(L) and working over ¥,-1(; consists of 2k + 1 states, with the
transition function defined by the transition diagram

s S

Po ——=P1 ——=Pg > Prk—1 a

A

qr

with p,_; being the only accepting state. But this automaton can be Al-
decomposed into two automata A; and As, having k£ 4+ 1 and 3 states, with
the transition functions defined by the following transition diagrams

Qo —2> @ —2qo > @1~ G po—2=p1 —2 > po

with accepting states g,_1 and p;. Now L(A;) = {w € {a,b}*|#.(w) = k—1}
and L(Ay) = {w € {a,b}*|#s(w) = 1}, therefore it holds L(A;) N L(Ay) =
{w € {a,b}*|#p(w) = 1 A Jw| = k} = h™(L), so the minimal DFA ac-
cepting h~'(L) has a nontrivial Al-decomposition (and also wAI- and SI-
decomposition). Hence the theorem holds. O

All known closure properties of the classes of undecomposable languages
are summarized in Table 1.

nNjful -] *|h|h!
ASB-undecomposable | no | no | no no | no
SB-undecomposable | no yes no | no
Al-undecomposable | no | no no | no | no | no
SI-undecomposable | no | no | yes | no | no | no | no
wAI-undecomposable | no | no | yes | no | no | no | no

Table 1: Closure properties of the classes of undecomposable languages
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6 Degrees of Decomposability

From our previous proofs we know that there exist undecomposable regu-
lar languages. But it is interesting to ask, whether there exist “nearly un-
decomposable” languages, that means languages, that do have a nontrivial
decomposition, but it does not help us much, regarding the number of states.
This question is for some types of decomposition answered by the following
theorem.

Theorem 6.1. For eachn € N,n > 3 there exists a minimal DFA A having n
states, such that A is ASB-decomposable, but if (A1, As) is a nontrivial ASB-
decomposition (nontrivial SB-decomposition, nontrivial Al-decomposition) of
A, then both Ay and As have n — 1 states.

Proof. Let us consider the language

L, =A{w € {a,b}"|#(w) =n — 4} . {b} {w € {a, b} |#.(w) = 2k, k > 1}

As can be easily shown, the minimal DFA accepting this language is A =
(K, %,6,q0,{¢even }), having n states, with the transition functions defined by
the following transition diagram:

b b b b
o ——=q1 ——=q2 " > Qn—4 ——> (n—3 ——> Qodd

qeven

We shall prove that this DFA has the desired property.

To find out something about possible SB-decompositions of A, we should
inspect its S.P. partitions. Let us assume that 7 is an S.P. partition on
the set of states of A such that ¢; and ¢; are in the same block of ;
i,7€{0,1,...,n—3}. As a consequence of the S.P. property, if i, j <n — 3
then also ¢;+1 and g;41 are in the same block of 7, because 0(¢;, b) = g;4+1 and
9(gj,b) = gj+1. By applying this argument a finite number of times, we can
show that there exists some k € {0,1,...,n — 4} such that g =, ¢,_3. But
since d(qx, @) = qx, it also holds that qx =r ¢n_3 =r Godd =x Jeven- Lhus any
partition that makes ¢; and g; equal (i,5 € {0,1,...,n — 3}) cannot distin-
guish between the states ¢,_3, Godq and Geyen-

Now let us suppose that 7 is an S.P. partition on the set of states of A
such that for some i € {0,1,...,n —4}, ¢i =x Godd OT ¢ =x (even- Then it
also holds that ¢; =, ¢;41, because 6(¢;,b) = ¢;41 and (¢, b) = ¢, where
q € {4odd; Geven y- However, we have already shown that ¢; =, ¢;;; implies
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Gn—3 =r Godd =nr even, thus this S.P. partition cannot distinguish between the
states qn_3, Godd and Geven, either.

From these observations it follows that if 7 is any S.P. partition on the
set of states of A such that ¢,_3, ¢ogq and @eyen are not all equivalent modulo
7, then 7 must also contain n — 3 blocks, each of which contains only one
state ¢;,i € {0,1,...,n —4}.

To form an SB-decomposition, there must exist two nontrivial S.P. par-
titions 71 and 7y on the set of states of A, such that m; - 1y = 0. Hence
at least one of these partitions has to distinguish between the states g¢,_s,
Godd aNd Qepen- If one of these partitions handled this (if it had each of this
three states in a different block), from what was said comes that it would
need to have a separate block for any other state too, thus it would be the
trivial partition 0. Therefore, both m and ms have to separate some pair
of states from the set {¢n—3, Godd, Geven }, and that means that among other
blocks they both have n — 3 blocks, each of which contains exactly one of the
states qo,q1,---,qn_4. Now it is easy to see that the only pair of nontrivial
S.P. partitions m; and 7y such that 7 - 7o = 0 is

™ = {{QO}a {Ch}a ) {Qn—4}a {Qn—3}= {%dd, Qeven}}
T = {Hao}. {a}, - {dn-4}, {0n—3: Godd}: {Geven} }

which corresponds to an SB-decomposition into two automata, each of them
having n — 1 states.

The DFA A has only one final state, hence this decomposition is also a
nontrivial ASB-decomposition of A (see Corollary 3.4). Since nontrivial ASB-
decomposition is also a nontrivial AI-decomposition, A is Al-decomposable.
It remains to prove that all automata that could form a nontrivial Al-
decomposition of A must have n — 1 states. This requires a different ap-
proach.

First, let us consider the word u = 0" 3ab"3a®. Since u ¢ L(A), at
least one of the automata forming an Al-decomposition of A has to re-
ject this word. We show that such automaton has to distinguish between
the words {e,b,0% ...,0" 3 0" 3a}, i.e., its computations on any two of
them must end in different states. Indeed, suppose that u ¢ L(A;), but
01(qo,b") = 61(qo, V), where 0 < i < j < n — 3 and ¢, is the transi-
tion function of A;. Then, since A; is deterministic, it also hold that
01(qo, B.0" 3 Tab"3a?) = 61(qo, ¥ .b" 2 Tab"2a?) because we have added
the same suffix to both words. Keeping in mind that u = b 3ab"3a?,
we obtain d1(qo,u) = 01(qo, "> ab"3a?) € F, because since i < j,
pyn3=tigbhn =302 € L(A), thus 0" 37+ ab"3a? has to belong to L(A;), too.
Therefore u € L(A;), a contradiction. Similarly, let us now suppose that
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01(qo,b") = 61(qo,b"3a). Then, using the same argument as before, also
01(qo, b°.0"3a?) = 0,(qo, b"3.0"3a?) € F, because b"2.b"3a? has to belong
to L(A;). But that again implies that also u € L(A;), which is again a contra-
diction. So in order to filter out the word u, the nontrivial AI-decomposition
has to contain at least one automaton having n — 1 states corresponding to
words {e,b,b%, ..., 0" 3 b"3a}, each to exactly one of them.

Now, let us consider the word v = b" *a?b in a similar way. Again,
v & L(A), so at least one of the automata forming the Al-decomposition
has to reject it, say v € As. We show that this automaton has to dis-
tinguish between the words {e,b,0?, ..., 0" 4 b""1a?b, 0" *a*ba*}, using the
same method as before.

o If 65(qo, b') = d2(qo, V) for some 0 < i < j < n—4, then also d5(qo, v) =
d2(qo, b".0" 1 1a?b) = da(qo, V0" a?b) € F. But A, cannot accept v,
thus has to distinguish between b° and b’.

. lfgg(qo, b') = da(qo, b"~*ab) for some 0 < i < n—4, then also d2(qo,v) =
da2(qo, b".0"1a?b) = da(qo, " *a?b.b""*"a?b) € F. But A, cannot
accept v, thus has to distinguish between b° and b"*a?b.

o If 05(go, b") = 02(qo, 0" *a®ba?) for some 0 < i < n — 4, then also
da2(qo, v) = 02(qo, B*.0""4"2a?b) = 05(qo, b *a?ba’.b"*"'a?b) € F. But
A, cannot accept v, thus has to distinguish between b and " *a?ba?.

o If 95(qgo, " *a®b) = 02(qo, b" *aba?), then d5(qo, " *a’ba®) € F implies
d2(qo, " *a®b) € F, again a contradiction. Thus A, has to distinguish
between b"*a?b and " *a?ba’.

So in order to filter out the word v, the nontrivial Al-decomposition has
to contain at least one automaton having n — 1 states corresponding to the
words {e,b,b%, ..., 6" 0" 1ab, b"*a’ba’}, each to exactly one of them.

Thus if each of the words u, v is filtered out by a different automaton,
then they both have n — 1 states. All we have to prove now is that u and v
cannot both be filtered out by the same automaton.

Let us assume the opposite, that both v and v are filtered out by A;.
Then, according to our first reasoning concerning u, the automaton A,
has to have n — 1 states, each one of them corresponding to exactly one
of the words {e,b,0% ...,b" 3, 0" 3a} (a state corresponds to a word w if
the computation of A; on w ends in this state). But from our reason-
ing concerning v, these n — 1 states also have to correspond to the words
{e,b,0%, ..., b4 " *a?b, b *a?ba?}. So the first n — 3 states correspond
to the words ¢,b,b%,...,b" %, let’s call them qg,qi,...,¢._a respectively.

40



Each of the remaining two states corresponds to exactly one of the states
from each of the sets {0" 73, 6" 3a} and {b" 1a?b, 0" *a?ba’}. Let r de-
note the state that corresponds to b”~® and s the one that corresponds to
b"~3a. Suppose that s corresponds to b" “a?b and r corresponds to b" *a2ba’.
That implies that &,(s,a?) = r. But since s also corresponds to b" *a,
r would have to correspond to " 3a® (and also b"3). But that would
mean that 0,(qo,u) = 61(qo, 0" >.ab"3a?) = §1(qo, " 3a’.ab"3a?) € F, so
such automaton would not be able to filter out u. Thus r corresponds to
the words {v"3,0""*a?b} and s corresponds to {0" 3a,b"*a’ba®}. Since
b"*a’ba® € L,, s has to be an accepting state. Moreover, from the as-
signment of the words b"~2 and b" 3a to the states r and s it follows that
81(r,a) = s and (since then " *a%ba corresponds to s) also d;(s,a) = s.
To finish the proof, we show that there is no possible value for d;(s,b).

e Suppose that d; (s, b) = qo, then gy corresponds to both & and b"~*a*ba®b,
thus 01(qo,v) = 01(qo, e.b"%a?b) = d2(qo, b" *a?ba®b.b"*a?b) € F, a
contradiction.

e Suppose that d,(s,b) = ¢;, 1 <7 < n —4, then the state ¢; corresponds
to both the words b and b"~ab, thus 61 (qgo, u) = d1(qo, b"*ab.b"*a*) =
d2(qo, b'.0"*a?) € F, again a contradiction.

e The same argument (for ¢ := n — 3) holds for the case d;(s,b) = r.

e The last case to consider is that d;(s,b) = s. However, this would
imply that 0(qo, u) = d(qo, 0" 2ab™3a®) = 6(s, 0" 3a®) = s which is an
accepting state as we have already proved, thus A; again cannot filter
out u.

This completes the proof that the words u and v cannot be both filtered
out by the same automaton. Therefore each of the automata forming any
nontrivial Al-decomposition of A has to filter one of them, thus they both
have n — 1 states. O

According to the following theorems, there exists also a lower bound for
the number states of the automata in any decomposition, and there exist
automata where this lower bound is achieved.

Theorem 6.2. Let (A, As) be an SB-decomposition (ASB-decomposition)
of an n-state DFA A, consisting of automata having r and s states. Then
.8 > n.
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Proof. 1f (A1, As) is the given SB-decomposition (ASB-decomposition) of A,
then according to Theorem 3.3, there exist S.P. partitions 7m; and 75 on the
set of states of A, such that m - my = 0, m; has r blocks and 75 has s blocks.
Thus 71 - mo can have at most 7.s blocks and since 7 - m3 = 0, A can have at
most r.s states. ]

Definition 6.1. Let A be a DFA, let (A1, Ay) be its nontrivial SB- (ASB-)
decomposition with the corresponding S.P. partitions m and my. We shall
call this decomposition redundant, if there exist S.P. partitions 7 > m and
Ty = o such that at least one of these inequalities is strict, but it still holds
7y - my =0 (and 7] and 7 separate the final states of A).

Theorem 6.3. For each r,s € N, r;s > 2, there exists a DFA A consisting
of r.s states and having only one nontrivial nonredundant SB-decomposition
(ASB-decomposition) up to the order of automata, consisting of automata
having r and s states.

Proof. Let us study the the automaton A, = (K,X,0,qo0, F’) defined by

K = {qz7]|2 € {0, e, T = 1},] € {0, Lo, 8 — 1}}, F = {QT—I,S—l} and the
transition function 0 defined by the equations

5gij,a) = @iy forie{0,...;,r—2},j€{0,...,s—1}
gr—14,a) = @1, forje{0,...,s—1}

8(gij,b) = @qijqforie{0,....,r—1},j€{0,...,s =2}
0(Gis—1,0) = @is—1forie{0,...,r—1}

To inspect the SB-decompositions of A, s, let us study the S.P. partitions
on the set of its states. From the method for generating all S.P. partitions
of an automaton that is described in [7], we know that each nontrivial S.P.
partition can be obtained as a sum of some partitions 7", where 7, denotes
the minimal S.P. partition such that it does not distinguish between states p
and ¢, i.e., they belong into the same block. Let us determine 7", for various
states p and ¢ of A, ;.

First, let us consider the case of ", such that p = ¢; ;, t = ¢ 5 and both
inequalities i < i’ and j < j" hold. Since g;; =5 qir.jr, 0(qij,a’ ~H" 7)) = qur
and 0(qyjr,a” V') = qop_ioj; (if 20 —i <7 and 2j' —j < s), as a
consequence of the substitution property of 7, we obtain ¢; ; == qoir—i2j—;-
By applying this argument a finite number of times (keeping in mind the
construction of A, ), we obtain ¢; ; = ¢,—15-1. Now let k € {¢,...,r — 1}
and let [ € {i,...,s — 1}. Then §(g;;,a*b'7) = g, and d(qyr jr, A"~ 7) =
Qk+i—ig+j—; (if such states exist), therefore qp; = Qrri—ii+j—;. Again, we
can use the same argument to show that ¢;; = ¢-—1s—1. Therefore for the
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type of m =7},
and j < [,lI' < s.

Now let us consider the case of 7", such that p = ¢; j, t = g j and it holds

we have ¢, =, qp for all k, 1, k', I’ such that i < k, k' <r

1> 17 andj < j,. Since 4 =rx Qi i, g(qi’j,ar_l_ibs_l_jl) = Gr—1,5—1—(5'—%)
and 6(qy jr,a” 7 1") = ¢,y _(;_i1).s_1, as a consequence of the substitu-
tion property of m, we have ¢,_1 s 1_(j'—j) =x ¢—1—(i—i"),s—1- By exploiting
the substitution property again on this equivalence, using the words %!,
v’ =7~ and V77, we obtain ¢, o2 1 =x ¢r_1.5-1 =r Gr_2.s_2. Therefore in this
case, no such 7', partition can distinguish between states ¢, 251, ¢r—1,5-1
and Gr—2,5—2-

The last case to consider is the case of 7", such that p = ¢; j, ¢ = gy j» and
it holds i = ¢’ (the case j = j’ is analogous). Without loss of generality we
can assume that j < j’. Now, using the same arguments as in the first case,
we can show that ¢;; =, ¢ for all [’ such that j < [,I’ < s. Therefore
for each given k such that i <k < r, it holds that ¢;; =; ¢, and all of the
states not mentioned in this equivalence form separate blocks of 7",

It is easy to verify that one nontrivial ASB-decomposition of A, ; is given
by the S.P. partitions

T = {{610,07 S QO,s—1}, {Q1,0, .- 7611,3—1}, S {%«-1,0, .- 7%«—1,5—1}}
Ty = {{Q0,0> se. aqr—LO}a {q0,17 se. aqr—Ll}a LRI {q0,5—17 se. aQT—Ls—l}}

Now we show that any other SB-decomposition of A, ; is given by S.P. parti-
tions preceding to 7m; and 75 in the partial order < and therefore is redundant.

Indeed, notice that none of the 7, partitions of the first and the second
discussed type can distinguish between any of the states ¢,_2 51, ¢,—1,5—1 and
gr—2,s—2, therefore no sum of them can, either. For the partitions of the third
type, it holds either ¢,_2s_1 =¢ ¢r—1,5-1 OF @r—1,5-1 =r ¢r—2,s—2, therefore it
will take two partitions to distinguish between these three states. Hence any
nontrivial SB-decomposition is determined by two S.P. partitions, both of
which must be of the third type. But it is easy to see that for any partition
7 of this type it holds either 7 < m; or m < 5. O

Now that we know that both the lower and the upper bound for the
number of states of the decomposition can be reached by some automaton, it
is natural to ask, whether also all the values in this interval can be achieved.
This is partly answered by the following result.

Definition 6.2. Let A = (K, X, 0, qo, F') be a deterministic finite automaton,
let KN {po,p1,.--,pr_1} = 0 and let ¢ be a new symbol not included in X.
We shall define a k-extension A’ of the automaton A by the following con-
struction: A" = (KU{po, p1, ..., pr-1}, 2U{c}, 0", po, F'), where the transition
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function &' is defined as follows:

Vge K) (VaeX); 4(qa)
(Vg€ K);  d'(g.c)
(Vp € {po,p1,---sok-1}) VaeX), &(pa) = p
(Vie {0,1,....k—=2});  &(ps,c)
)

Lemma 6.4. Let A be a DFA consisting of n states, all of which are reach-
able. Let A’ be its k-extension. Then A has a nontrivial SB-decomposition
(nontrivial ASB-decomposition) consisting of automata having r and s states
if and only if A" has a nontrivial decomposition of the same type, consisting
of automata having k +r and k + s states.

Proof. Similarly to the proof of Theorem 6.1, we will try to inspect S.P.
partitions on the set of states of A’. Let us assume that 7 is an S.P. partition
on the set of states of A such that p; and p; are in the same block of T;
i,7€{0,1,...,k —1}. As a consequence of the S.P. property, if i,j <k —1
then also p;11 and p;4; are in the same block of 7, because 0'(p;, ¢) = pir1
and ¢'(p;, ¢) = pj4+1. By applying this argument a finite number of times, we
can show that there exists some [ € {0,1,...,k — 2} such that p, =, px_1,
and using the argument once more, we obtain p;,; =, qo- However, it holds
8 (pi,a) = p; for all a € X, hence p; =, Sl(qo, w) for all w € ¥*. Since all of
the states of A are reachable, we have p; =, ¢ for all ¢ € K. Thus such a
partition cannot distinguish between the states of automaton A.

Now let us suppose that 7 is an S.P. partition on the set of states of A
such that for some i € {0,1,...,k — 1}, p; =, ¢ for some ¢ in K. Then it
also holds that p; =, pii1, because §(p;, ¢) = pir1 and 0(q,c) = gq. But we
have already shown that ¢; =, ¢;.1 implies that all of the states in K are
equivalent modulo 7, thus this S.P. partition cannot distinguish between the
states of A, either.

From these observations it follows that if 7 is any S.P. partition on the
set of states of A such that the states of A are not all equivalent modulo 7,
then 7 must also contain k£ blocks, each of which contains only one state p;,
where ¢ € {0,1,...,k —1}.

Now we can prove the equivalence stated in the theorem.

“=" Let A have an SB-decomposition consisting of r and s states. Then
there exist S.P. partitions m; and 75 on the set of states of A such that
m - e = 0. Let us now construct new partitions 7] and 7, on the set
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of states of A’ by the following definition:

m = mU{{po},{m},. - {pe-1}}
my = mU{{po}, {p}. ., {pe-1}}

Obviously 7] and 7, are partitions on the set of states of A’. They also
have substitution property, because for the states in /K this property
is inherited from 7 and 7y, and the new states pg, p1,...,pr_1 cannot
violate this property either, because each of these states belongs to a
separate block in 7] and 7}, making the substitution property hold triv-
ially. Obviously, neither do the new c-moves defined on the states from
K violate the substitution property. Finally, it holds that 7} - 7, = 0.
To see this, note that for a state ¢ € K, it holds [q]z/ », =[x, x, = {4},
since 7, - my = 0. For a state ¢ € K' — K, [q], = {q} for i € {1,2} thus
[q]xr.7y, = {q}, too. Hence each state of A’ belongs to a separate block
of 7} - w}, which implies 7} - 7, = 0. Therefore 7] and 7% induce an
SB-decomposition of A’. It is also easy to see that if m; and 75 separate
the final states of A, then also 7] and 7, separate the final states of A’,
making the induced decomposition an ASB-decomposition.

: Now let us assume that A’ has an SB-decomposition and 7} and )

are the S.P. partitions on K’ that induce this decomposition, thus
71 - my = 0. From the observations made in the beginning of this proof,
we know that any S.P. partition that can distinguish between the states
in K in any way, must contain each of the states pg, p1...pr_1 in a sep-
arate block containing only this state. As 7} -7, =0, for all ¢, ¢ € K,
at least one of these partitions must distinguish between these states,
ie., [q1]r, # [qo]r- If ome of the partitions distinguished between all
such pairs, it would imply that this partition must contain a separate
block for each one of the states in K’ thus becoming a trivial partition
0, resulting in a trivial decomposition. Therefore both 7} and 7} have
to distinguish between some pair of states from K, which implies that
they both contain a separate block for each of the states pg,p1...pr_1
containing no other state. By removing these k blocks from 7 and 7,
we obtain new partitions on the set K:

T = 7T1_{{po}a{pl}v"'v{pk—l}}
g = ﬂ-é_{{pO}v{pl}v"'u{pk—l}}

These partitions preserve the substitution property, since (Va € X)(Vq €
K): 6(q,a) € K and m and my were S.P. partitions. It also holds
m - me = 0, as for all q1,q2 € K, ¢1 =¢,.5, g2 implies q1 =/ .1 ¢2 and
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that implies ¢; = ¢2. So 7 and 7y induce an SB-decomposition of A.
As 7} and 7} were nontrivial, so are m and 7wy and the obtained de-
composition. It is again easy to see that if 7] and 7} separate the final
states of A, then also m; and m, must separate the final states of A.

U
We can combine these facts into the following corollary.

Corollary 6.5. Letn € N be such thatn = k+r.s, wherer,s,k € N, r; s > 2.
Then there exists a DFA A consisting of n states, such that it has only one
nontrivial nonredundant SB-decomposition (ASB-decomposition) up to the
order of the automata in the decomposition, and this decomposition consists
of automata with k 4+ r and k + s states.

Proof. For the given r and s, by Theorem 6.3 there exists a DFA having
r.s states and only one nontrivial nonredundant SB-decomposition (ASB-
decomposition), consisting of automata having r and s states. We can con-
struct k-extension of this automaton, which will have k£ + r.s states and by
Lemma 6.4, this extension will have only one nontrivial nonredundant SB-
decomposition (ASB-decomposition), consisting of automata having k + r
and k + s states (it is easy to see from the proof of Lemma 6.4 that this de-
composition will be nonredundant if and only if the original decomposition
of the automaton from Theorem 6.3 is nonredundant). O

46



7 Conclusion

In this thesis, we have studied the possibilities of parallel decomposition of
deterministic finite automata. We have defined two types of decomposition
similar to the previously studied state behavior decompositions of sequential
machines, and derived necessary and sufficient conditions for the existence
of these decompositions. Since the decompositions of sequential machines
were different from the concept of the advisor introduced in the beginning as
our motivation, we have defined three new types of parallel decomposition
of deterministic finite automata and established various conditions for the
existence of these types of decomposition and relationships between them.
We have also inspected the relationships between the decomposition of any
deterministic finite automaton and the decomposition of the corresponding
minimal automaton. We have introduced perfect decompositions and showed
that for these decompositions, some of the decomposition classes coincide.
Furthermore, we have studied the classes of undecomposable languages. We
have exhibited some examples of undecomposable languages and then stud-
ied the closure properties of these classes of languages. We have concluded
the thesis by showing that there exist automata for most degrees of decom-
posability from the interval given by the two mentioned boundaries — the
undecomposable and the perfectly decomposable ones.

There are many directions in which this work can be extended. The
results presented in this thesis directly imply some questions that have re-
mained open. For example, it would be very useful to find necessary and
sufficient conditions for the existence of the decompositions defined in Sec-
tion 4 that would be easy to verify. It could also be interesting to explore
deeper the perfectly decomposable languages, including the closure proper-
ties of the corresponding language classes. Another interesting challenge is
to prove a statement similar to Corollary 6.5 for all the other types of parallel
decomposition.

From a more general point of view, another challenging task is to ex-
plore the possibilities for parallel decompositions of nondeterministic finite
automata and of all the more powerful computational models, up to the Tur-
ing machines, with respect to different complexity measures. One related
question that could be worth studying is the generalization of the advisor
concept presented in this thesis in the context of more powerful computa-
tional models.
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Abstrakt

Deterministicky kone¢ny automat je jednoduchy abstraktny vypoc¢tovy model
s mnohymi praktickymi aplikdciami napriklad v oblasti ndvrhu hardwaru,
spracovania prirodzeného jazyka a grafickych dat, model checkingu a mno-
hych dalgich.

Tato diplomovéa praca sa zaoberd moznostami rozkladu deteministického
konec¢ného automatu na dva jednoduchsSie automaty takym spdsobom, aby
z vysledkov vypoctov oboch tychto automatov bolo mozné urc¢it aky by bol
vysledok vypoc¢tu pévodného automatu na tomto vstupnom slove. Za mieru
zlozitosti deterministického kone¢ného automatu sme v celej praci povazo-
vali pocet jeho stavov. Do tvahy prichadza viacero moznosti ¢o povazovat
za vysledok vypoctu automatu — napriklad stav v ktorom automat skoncil
alebo jeho rozhodnutie akceptovat alebo zamietnut vstupné slovo. V zavis-
losti od toho ktortu z tychto moZnosti sme uprednostnili, ziskali sme rézne
definicie rozkladov koneénych automatov. Pre takto definované rozklady sme
nasledne studovali podmienky ich existencie a vzajomné vztahy medzi nimi.

V praci sme sa taktieZz venovali vztahu medzi rozlozitelnostou daného
kone¢ného automatu a rozloziteInostou prislusného miniméalneho automatu,
ktory je s nim ekvivalentny. Ukézali sme niekol'ko tvrdeni a prikladov ktoré
tento vztah objashuju pre kazdy z uvedenych typov rozkladu.

Dalsim predmetom nasho zaujmu boli dokonale rozloziteIné automaty
(t.j. automaty ktoré je mozné rozlozit do najvyssej teoreticky moznej miery)
a ich protipél — nerozloZiteIné automaty. Ukézali sme, Ze ak sa zaujimame
iba o dokonalé rozklady automatov, niektoré zo skor definovanych typov
rozkladov st totozné, ¢o ndm umozni lepsie charakterizovat podmienky ex-
istencie tychto rozkladov. Pre triedy jazykov ktorych minimélny automat
je nerozloziteIny uréitym typom rozkladu sme sktimali ich uzaverové vlast-
nosti vzhladom na zékladné operécie na jazykoch. Pracu uzatvarame doka-
zom tvrdenia, Ze v istom zmysle pre kazdu z hodnoét v intervale uréenom
spominanymi dvoma extrémami nerozloZitelnych a dokonale rozloZiteInych
automatov existuje deterministicky konecny automat s touto mierou ro-
zloZiteInosti.

Kliiéové slovd. deterministicky koneény automat, paralelny rozklad, rozk-
lad stavového spravania
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