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Abstract

Unlike localized communication failures that occur on a fixed (although

a priori unknown) set of links, dynamic faults can occur on any link.

Known also as mobile or ubiquitous faults, their presence makes many

tasks difficult if not impossible to solve even in synchronous systems.

Analysis of broadcasting in model with dynamic faults is considered in

shouting communication mode in which any node of network can inform

all its neighbors in one time step. During each time step number of faulty

links can be less then edge-connectivity of network. The problem is to find

an upper and lower bound on number of time steps necessary to complete

broadcasting.

We prove that for k-ary butterfly network of dimension n lower bound

is 3n and upper bound 3n + O(logk n).

We also prove that k-ary wrapped butterfly network of dimension n

has lower bound 3
2
n + 1 and upper bound 3

2
n + O(logk n).
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1 Introduction

Broadcasting is problem of dissemination of message in entire network of com-
puters or processors. Broadcasting is fulfilled, if all nodes in network are in-
formed. Broadcasting might be one-message only or with simultaneous mes-
sages, where sending one message forbids sending other message. Problem of
broadcasting multiple messages in network is standalone problem, even without
any fault.

There are many views on how broadcasting is accomplished. The message
can be sent simultaneously too many neighbors or just to one neighbor at a
time. Broadcasting message to one neighbor at a time is another standalone
problem, though some results for broadcasting with faults exists.

In this work all communication is synchronous. In each time step any node
of network can broadcast message to all its neighbors. This is also known as
shouting model or gossiping. Without any error in communication, message is
broadcasted to every node in network in time equal to diameter diam(G) of
network G. Thus we make this value our referential value when considering
faults.

As fault we denote impossibility to transfer message between two adjoint
nodes. If faults are static, message can be broadcasted also in case of many
faults. So many that just Hamiltonian path is non-faulty. But when faults can
change in time, we have to be more restrictive on number of faults that occur
in one time step. And we state condition there must not be more faults than
edge-connectivity of graph. This condition is also noted as fault-tolerance.

One of longterm aim in research of broadcasting is to find topology that will
be maximaly fault tolerant, with minimal broadcast time and lowest number
of edges for defined number of vertices. First comprehensive research in borad-
casting with dynamic faults ws done on hypercubes by De Marco and Vaccaro,
who proved that message is broadcasted in worst case in more than diam(n)+2
an less than diam(n) + 7 time steps.[DV98]. For this they mainly used hy-
percube’s recursive character, where each n-dimensional hypercube consists of
non-interleaving k-dimensional hypercubes. Later on Dobrev and Vrt’o refined
this result for hypercubes proved that the worst case is exactly diam(n)+2 time
steps, using very tight estimation of isometric number.[DV99]

Hypercubes are graphs not considered optimal, mostly when we look at
graph degree or diameter. As seen in tables Table 1. and Table 2. some bound
degree graphs have better characteristics. In later work Dobrev and Vrt’o proved
that even on Even Tori, which is bound degree graph, the limit for broadcasting
message is diam(n) + 2.[DV00]

The question this work tries to answer is: ”How are Butterfly networks
fault-tolerant?” and ”What time is needed to broadcast message in butterfly
network?”
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Wrapped Hyper- de
deg Butterfly cube Bruijn
2 31 - 20
3 20 - 13
4 16 - 10
10 10 - 6
20 8 20 5
50 7 - 4
100 5 - 3

Wrapped Hyper- de
deg Butterfly cube Bruijn
2 22.4 - 17.9
3 14.7 - 11.7
4 11.8 - 9.4
10 7.3 - 5.8
20 5.7 10 4.5
50 4.3 - 3.5
100 3.65 - 2.98

Table 1:Graph diameter for |V | =
106. (Cells with a dash indicate that
the graph does not support the cor-
responding degree)

Table 2:The average distance in each
graph for |V | = 106.

[LKRG03]

2 Butterfly network

Butterfly network is bound degree network topology. This topology was used
in ATM switches. Butterfly network is also known as Banyan network, or with
some modification it become Benes network.

Definition 2.1 (Butterfly network)
The k-ary Butterfly network BF(k,n) of dimension n is a graph of vertex-set

V = {0, 1, . . . , n} × {0, 1, . . . , k − 1}n, where {0, 1, . . . , k − 1}n denotes the set
of ”length n k-ary strings”. For each vertex v = 〈i, α〉 ∈ V , i ∈ {0, 1, . . . , n},
α ∈ {0, 1, . . . , k − 1}n, we call i the level and α = α0, α1, . . . , αn−1 position
within level string of v. Each vertex v = 〈i, α〉 ∈ V for i < n and any α is
connected with vertex v′ = 〈i′, α′〉, where i′ = i + 1, α′

i ∈ {0, 1, . . . , k − 1},
αj = α′

j ∀j 6= i

There are some basic properties of Butterfly network we keep using. First of
all complete k-ary tree can be embedded into k-ary Butterfly network [KMPS92].

Definition 2.2
By Tn〈0,0〉 we understand complete k-ary tree with root vertex 〈0,0〉 which

has ki vertices at each level i.

Next important properties of butterfly networks is their recursive nature. If
you chose any number of levels we can find sub-butterfly of dimension equal to
chosen number. There is not just one particular sub-butterfly, but there are
sub-butterflies that partition these levels into vertex disjoint sub-butterflies.
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Picture 1: Leftmost picture shows standard picture of BF(2,3). On the right
side up there is BF(2,3) drawn such that levels 0, 1, 2 form BF(2,2) and levels 2, 3
form BF(2,1). Picture on right down shows partitioning of BF(2,3) to BF(2,1)’s.

If we partition butterfly into sub-butterflies with levels less than i, and also
sub-butterflies with all levels more or equal to i, we will found out that there
is only one vertex any of these ”concurrent” sub-butterflies can connect. We
will also come to knowledge that this one vertex is present for any ”concurrent”
sub-butterflies. This is very powerful knowledge and like in proof for hypercubes
[DV98] we will use this knowledge extensively.

Definition 2.3 (Sub-butterfly)
Let 〈i, α〉 be vertex of BF(k,n). Let us denote by BF〈i,α〉(k,m), where i+m ≤

n subgraph of graph BF(k,n) with vertices 〈j, β〉 ∈ BF (k, n) where i− 1 < j <

i + m and β = α0 . . . αi−1{0, 1, . . . , k − 1}jαi+j+1 . . . αn

BF〈i,α〉(k,m) is isomorphic to BF(k,j). Isomorphism h(〈l, β〉) = βi, . . . , βi+j

(Need to rewrite) Any BF〈0,α〉(k, m) ⊆ BF(k,n) partition() level j (j ≤ n) of
BF(k,n) into 2m distinct sub-butterflies of type BF〈m,α′〉(k,n-m).

� Tu je potrebne vlozit obrazok ako moze vyzerat BF, kde je vidno ten bod
Picture 1. �
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2.1 Lower Bound

In this section we re going to show that only one dynamic fault is sufficient to
slow broadcasting of message from vertex 〈0,0〉 by 50%. First of all we construct
path which is marked as ”faulty”. This ”faultiness” can be assured by leaving
each edge faulty, since one of its vertex is informed, until both of its vertices
are informed. We simultaneously prove, there is only one edge in ”faulty” path
that has exactly one informed vertex.

Definition 2.4 By P0 we understand a path in BF(k,n) such that

P0 = 〈0,0〉〈1,0〉 . . . 〈n,0〉

Lemma 2.1 For any BF(k,n) there exists path of length 3n edge-disjoint to P0

completely inside BF(k,n).

Construction
Path 〈0,0〉, . . . , 〈n + 1,1〉, . . . , 〈0,1〉, . . . , 〈0,0〉 is such path.

The next lemma proves that if part of the constructed ”faulty” path is com-
pletely inside a certain sub-butterfly, the broadcasting of the message to the ver-
tices of this part of path can be influenced only by the considered sub-butterfly.
That is, there is no ”miraculous” shortcut using the rest of the butterfly that
would speed-up the broadcasting.

Lemma 2.2 Shortest path from 〈first,0〉 to 〈last,0〉 edge-disjoint to P0 is
wholly inside BF〈first,0〉(last− first,0).

Proof Let be path P = P0, . . . , Pmin the shortest path from 〈first,0〉 to
〈last,0〉 edge-disjoint to P0. By contradiction let us assume, there exists vertex
within P which is outside of BF〈first,0〉(last−first,0). Let be vi such that vi ∈
BF〈first,0〉(last−first,0) and vi+1 /∈ BF〈first,0〉(last−first,0). Let be vj such
that j = mink{k > i, vk ∈ BF〈first,0〉(last− first,0), vk−1 /∈ BF〈first,0〉(last−
first,0)}. Subpath vi+1, . . . , vj−1 is wholly outside BF〈first,0〉(last−first,0)}.
By Induction on number of vertices K = |vk| (where i < k < j and first ≤
level(vk) ≤ last) we prove that there exists shorter path from vi to vj .

1. K = 0. There is no vertex vk such that first ≤ level(vk) ≤ last.
Let us assume that level(vi) = last (for level(vi) = first proof is similar)
thus ∀k, i ≤ k ≤ j, level(vk) > last. We know that there is no edge 〈level −
1, α〉, 〈level, α′〉 ∈ vi, . . . , vj , for level ≤ last. Thus vi and vj are equal on first
last places. From vi, vj ∈ BF〈first,0〉(last − first,0) we know that vi, vj are
equal on places last, . . . , n. So vi = vj is the shorter path.

2. K > 0. For any K ′ < K we know that there is shorter path for vi to vj

if there is K ′ vertices vk where first < level(vk) < last.
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For this case we will use different definition of path P = e0, ..., en. In this
definition path ~E(v0) is described by starting position v0 and sequence of direc-
tions ~E = ~e1, ..., ~en. Direction ~ei = (~li, ~αi) is normalized edge ei = (vi−1, vi) =
(〈αi−1, li−1〉, 〈αi, li〉) in a way that it describes change in level ~li = li − li−1

and change in position within level ~αi where (αi)L ⊕k ~αi = (αi−1)L where
L = min{li−1, li}. 1

For any vertex 〈β, l〉 we can obtain next vertex 〈β′, l′〉 by applying ~ei from which
~ei(〈β, l〉) = 〈β′, l′〉, where l′ = l+~li, (β)L = (β)′L⊕k ~αi and ∀j 6= L, (β)j = (β)′j ,
L = min{li−1, li}.
This definition allow us to easily exchange starting vertex of path without chang-
ing directions of path. This change can be done in case that directions don’t
lead us outside of BF(k, n). Changing position within level never leads to leav-
ing BF(k, n). Changing level could, in case any i within path

∑
i
~li + level (level

of new starting vertex) is bigger than n or less than 0.Using alternative starting
vertex with level equal to the original vertex is enough to assure that the new
path is inside BF(k, n).
Now we apply the new definition on subpath vi, . . . , vj . Let be vk vertex such
that level(vk−1)− 1 = level(vk) = level(vk+1) + 1 in subpath vi, . . . , vj . Let be
~E1(vi), ~E2(vk) path vi, . . . , vj in our new definition.
We change order of the directions of two identified subpaths. ~E2(vi), ~E1(v′k) =
v′i, . . . , v

′
n we know that the vertex v′i+1 ∈BF〈first,0〉(last − first,0)}. And if

we prove that v′n = vn we constructed path with less than K vertices outside
BF〈first,0〉(last−first,0)} within vi, . . . , vj and fulfilled induction assumption.
Level of vj is equal to level of vi plus sum of all changes in level within subpath
vi, . . . , vj level(vj) = level(vi) +

∑
i
~l1i +

∑
i
~l2i.

Level of v′j is equal to level of v′i = vi plus sum of all changes in level within
subpath v′i, . . . , v

′
j . level(v′j) = level(vi) +

∑
i
~l2i +

∑
i
~l1i.

From commutativity of ”+” we know that level(vn) = level(v′n) Proving that
position within level is equal is shown equally, by summing all the partial changes
(directions) in path. vertices vi, vk and vn are in the same level. v′l is also in
the same level. Thus we sum the same direction in the same level for vi, . . . , vn

and v′i, . . . , v
′
n.

./

By next lemma we prove that transmitting information along path that is
edge-disjoint to ”faulty” one, needs to be least 3n time steps long. This proves
that it is not much better to broadcast message far away from ”faulty” path than
to wait for broadcasting message from one vertex of ”faulty” path to another
by circles of length 4 that are present in BF(k, 1).

1x⊕k y = x + y (modulo k)
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Picture 2: Potentially shortest
path that from 〈first,0〉 to 〈last,0〉

Picture 3: Path with less vertices
outside sub-butterfly.

In last lemma of this section all these informations are put together to prove
that message need not to be broadcasted from 〈0,0〉 to 〈n,0〉 in less than 3n

time steps.

Lemma 2.3 Shortest path P = 〈first,0〉, . . . , 〈last,0〉 edge disjoint to P0 has
length 3(last− first).

Proof From Lemma 2.2 we know that no part of path P is in levels bigger than
last and lower than first. So we count number of edges of P between levels i

and i+ 1 for first ≤ i < last. We show that there are at least three edges from
level i to level i + 1 in P thus length of path P is at least 3(last− first).

In all levels from first to last − 1 there is at least one edge in P to higher
level. This is mandatory for path P to get from level first to level last. The
only edge from level i to level i + 1 cannot be path not changing bit. If so it
had to be from 〈i,0〉 to 〈i+1,0〉 to get from 〈first,0〉 to 〈last,0〉 which is part
of P0 thus violating definition of P . In case the edge from level i to level i + 1
is changing i-th bit there is another edge to redo this change. If there are just
two edges for level i it means that path begins and ends in a level less than level
i thus there is at least third edge.

We know that for ∀i, first ≤ i < last there are at least 3 edges. This shows
us the length of P is at least 3(last − first). From Lemar 2.1 we know there
exists lemma of length 3(last− first).

./

Lemma 2.4 Broadcasting on BF(k,n), with one dynamic fault, cannot be al-
ways completed in less than 3n time steps.

Proof Let be 〈0,0〉 initiator of broadcasting in time step 0. Let be edge
〈
⌊

i
3

⌋
,0〉,〈

⌊
i
3

⌋
+ 1,0〉 faulty in time step i. We prove that vertex 〈n,0〉 won’t be

informed in time step less than 3n.
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We prove by induction that in time step, less then 3i, vertex 〈i,0〉 won’t be
informed.
i = 1: BF(k,1) is equal to Kk,k. In Kk,k all cycles have length 4. In time steps 1
and 2 edge 〈0,0〉, 〈1,0〉 is faulty the only way to inform 〈1,0〉 is by going around
by some of length 4. Thus leaving 〈1,0〉 uninformed for time steps 1, 2.
i → i + 1: For any 0 < j ≤ i informing vertex 〈j,0〉 cannot be done in less
than 3j time steps (IA). Informing vertex 〈i + 1,0〉 from 〈j,0〉 cannot be done
in less than 3(i − j + 1) if the faulty edge is 〈

⌊
j′

3

⌋
+ j,0〉,〈

⌊
j′

3

⌋
+ j + 1,0〉

Faulty edge in time steps 3j + j′ is 〈
⌊

j′+3j
3

⌋
+ j,0〉,〈

⌊
j′+3j

3

⌋
+ 1,0〉 which is the

same as the needed one. So vertex 〈i + 1,0〉 cannot be informed in less than
3j + 3(i− j + 1) = 3(i + 1) time steps through path P passing through vertex
〈j,0〉.
So we have only one another possibility to be faster than 3(i + 1) its by path
P vertex disjoint to path P0. But length of this path is by Lemma 2.3 at least
3(i + 1). Leaving no other choice.

./

2.2 Upper bound

To begin we prove some basic lemmas. First lemma tell us that if there is
informed level within butterfly there are no obstacles in broadcasting message
throughout whole butterfly.
Second one proves that broadcasting within smallest butterfly is done in less
than 4 time steps.

Lemma 2.5 If there is i-th level of BF(k,n) completely informed in time step
T . Whole BF(k,n) is informed in time step T + max{n− i, i− 1}

Proof By induction we prove that in time step T + j, levels {i− j, . . . , i + j}
are informed. For each vertex v = 〈i + j, α〉 (〈i − j, α〉) there exists k distinct
neighbor vertices in level i − (j − 1) (i + (j − 1)), by induction assumption
informed in time step j − 1. There are at most k − 1 faults. So there it is at
least one correct channel for each v to informed vertex in time step T + j.
From this statement lemma holds.

./

Lemma 2.6 The number of steps needed for broadcasting in BF(k,1) is 4.

Proof BF(k,1) is equal to Kk,k thus we can assume without loss of generality
that initiator is 〈0,0〉.
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In time step 1 there it is at least another informed vertex within level 1.
Now there are 2(k − 1) distinct vertices neighbor to informed ones.

In time step 2 we have k + 1 = 2 + (2(k − 1) − (k − 1)) informed vertices.
Further we can assume that, no level is fully informed. Cause the opposite
means full knowledge in time step 3 by Lemma 2.5.

In time step 3 there is one fully informed level. By contradiction. Let us
assume that there are non informed vertices v0 = 〈0, α〉 and v1 = 〈1, β〉. This
means that number of vertices informed in time step 2 neighbor to v0 or v1

is less or equal to k − 1 (number of possible faults). Together vo and v1 have
connection to any vertex in BF(k,n). So there are k+1 > k−1 informed vertices
in time step 2 neighbor to v0 and v1. which contradicts to our assumption.

By Lemma 2.5 we know that BF(k,1) is wholly informed in 4 steps.

./

These two lemmas are sufficient to prove upper bound for butterfly net-
work. Next lemma shows us what is the needed time if we use only these two
knowledges.

Lemma 2.7 Broadcasting in BF(k, n) is completed in 5n− 1 time steps.

Proof Our first step is to prove this Lemma in special case only, where initiator
of broadcasting lies within level 0 or n. These two cases are similar for proving,
we just need to change each level for its opposite level i → n− i.
We can assume that initiator is 〈0,0〉. We know that in time step 4 there is
informed BF〈0,0〉(k, 1) (Lemma 2.6). Let us assume, that all vertices in levels
i − 1 and i (i < n) are informed in BF〈0,0〉(k, i) in time step 4(i + 1). Each
vertices in level i + 1 in BF〈0,0〉(k, i + 1) are adjacent to a vertex which lies
within level i in BF〈0,0〉(k, i). And vertices in level i are adjacent to vertices in
level i+1 within BF〈0,0〉(k, i+1). Adjoining vertices within level i and i+1 lies
in the same BF〈α,i〉(k, 1) where 〈α, i〉 ∈ BF〈0,0〉(k, i). By reusing Lemma 2.6 we
know that all vertices in these sub-butterflies BF〈α,i〉(k, 1) are informed in time
step 4(i + 1) + 4. Thus all vertices in level i and i + 1 within BF〈0,0〉(k, i + 1)
are informed in time step 4((i + 1) + 1).
Now we know that in time step 4n there are all vertices inside levels n and
n− 1 informed in BF(k, n). By Lemma 2.5 we obtain that in n− 1 more time
steps there are all vertices informed in BF(k, n). Thus BF(k, n) is informed in
4n + n− 1 = 5n− 1 time steps. To complete this Lemma we need to prove that
for any initiator 〈i, α〉 butterfly BF(k, n) is informed in 5n− 1 time steps.
From Butterfly properties we know that there are butterflies BF〈0,α〉(k, i) and
BF〈i,α〉(k, n − i) for which initiator 〈i, α〉 is in first (or last) level. For these
Butterflies we already know that they are informed in 5i− 1 respectively 5(n−

12



i)− 1 time steps.
Last vertices in BF〈0,α〉(k, i) are first vertices for all BF〈i,α′〉(k, n − i). First
vertices in BF〈i,α〉(k, n − i) are last vertices in BF〈0,α′〉(k, i). Information in
BF〈i,α′〉(k, n− i) is broadcasted in 5(n− i)− 1 time steps from broadcasting in
BF〈0,α〉(k, i) which is in 5i− 1 time steps. Thus all butterflies BF〈i,α′〉(k, n− i)
are informed in 5(n − i) + 5i − 1 − 1 < 5n − 1 time steps. For butterflies
BF〈0,α′〉(k, i) this is proved equally.

./

This Lemma is solution rather non-optimal. It proves that information in
faulty Butterfly is broadcasted in less than 2.5diam(n)− 1 time stamps. So we
had to find better solution. The solution we follow uses embedded k-ary tree.
In next lemma we find out how the message is disseminated within k-ary tree
with k − 1 dynamic faults.

Lemma 2.8 Let be 〈0,0〉 initiator of broadcasting. In time step t ≤ n there is
at least

S(t) = 1 +
t−1∑
j=0

kj

informed vertices in Tn〈0,0〉

Proof This we prove by counting number of vertices that can be informed in
time step j +1 but not informed in time step j. Let us denote this by S′(j) Let
S′(j) = kj + k − 1.
S′(0) = k0 + k − 1 = k, which is degree of 〈0,0〉. Number of vertices newly
informed in time step j is S′(j − 1) − (k − 1) this is number of vertices that
could be informed in time step j without maximal number of possible faults.
For each vertex newly informed in time step j there are k new vertices that
could be informed in time step j + 1. So S′(j + 1) = k(S′(j) − k + 1) and the
k − 1 vertices that were cut of by faults.

Without loss of generality we can assume exactly k−1 active faults. If there
is less then k − 1 channels down, there would be k new vertices instead of each
correct channel.

So S′(j+1) = k(S′(j)−k+1)+k−1 = k(kj−1+k−1−k+1)+k−1 = kj+k−1.
S(t) can be counted as sum of S′(0) − (k − 1), . . . , S′(t − 1) − (k − 1) plus

initiator.

./

Now we know how many vertices are informed within embedded tree. Though
this knowledge doesn’t help us much. Thus we prove also how many vertices
are informed in last but one level within this tree.

13



Lemma 2.9 Let be 〈0,0〉 initiator of broadcasting. In time step t ≤ n there is
at least kt−1

k+1 informed vertices at level t− 1

Proof This we prove by contradiction. Let us consider there exists kt−1− kt−1

k+1 +
1 uninformed vertices in Tt〈0,0〉. For each uninformed vertex v = 〈t−1, α〉 there
are k vertices, not informed within level t cause the only way how to reach these
vertices in time t is through uninformed vertex v. So we have in Tt〈0,0〉

(k + 1)(kt−1 − kt−1

k + 1
+ 1) = kt + kt−1 − kt−1 + k + 1 = kt + k + 1

uninformed vertices. From Lemma 2.8 we have there exists S(t) informed ver-
tices in Tt〈0,0〉. There should be S(t) + kt + k + 1 =

∑t
j=0 kj + k + 2 vertices

in k-ary tree Tt〈0,0〉 with depth t. But full k-ary tree of depth t has
∑t

j=0 kj

vertices.

./

After proving that we know of kt−1

k+1 informed vertices in one level we can
have a look at sub-butterflies BF(k, s) that are attached to these vertices. If
there is more sub-butterflies BF(k, s) than number of faults that can occur, in
next s time steps, we know that at least one sub-butterfly will be informed.
After next s steps whole BF(k, s) is informed. From this informed sub-butterfly
we can easily inform complete butterfly.
Next lemma shows what is the s and details of broadcasting message to fully
informed BF(k, n).

Lemma 2.10 Any vertex on level 0 can broadcast message within BF(k,n) in
time 3n + 3 log n + 5

Proof Without loss of generality we can assume that initiator is 〈0,0〉.
By Lemma 2.9 we know that in time step dlog ne+3 ≤ n there is kdlog ne+2

k+1 > nk2

k+1

informed vertices. In Time steps dlog ne + 4, . . . , n + 1 there is possible to
encourage (n−dlog ne−3)(k−1) faults. Number of informed vertices is greater
then number of possible faults.

nk2

k + 1
> (n− dlog ne − 3)(k − 1)

nk2 > (n− dlog ne − 3)(k2 − 1)

Cause

n > n− dlog ne − 3

k2 > k2 − 1

14



Thus whole level n − dlog ne + 2 in BF〈dlog ne+2,α〉(k, n − dlog ne + 2) for some
α is informed in time step n + 1
By Lemma 2.5 we have in time step n + 1 + n− (dlog ne+ 2) = 2n−dlog ne− 1
fully informed BF〈dlog ne+2〉(k, n− dlog ne+ 2, α)
So in time step 2n − dlog ne − 1 there is at least one informed vertex for
BF〈dlogn+2e,α〉(k, dlog n + 2e) for any α.
In time step 2n−dlog ne−1+4(dlog ne+1) there is wholly informed BF〈0,β〉(k, 1)
for any β. By Lemma 2.6 there is at most 4 time steps needed for broadcasting
the message in whole BF(1,k). This means k informed vertices in 1st and 2nd
level and in next 4 time steps k2 informed vertices in 2nd and 3rd level. . . .

Thus in time step 2n + 3 dlog ne+ 3 we have fully informed level 0 and 1. And
by lemma 2.5 in time step 2n+3 dlog ne+3+(n− 1) = 3n+3 dlog ne+2 whole
BF(k,n) is informed.

./

To finalize upper bound we need to know number of time steps needed to
broadcast message from any vertex. From any vertex v we see two sub-butterflies
one containing level 0 the other level n which have v on their marginal level.
Broadcasting in these sub-butterflies can be completed by previous lemma.
After informing these two sub-butterflies we know that all other sub-butterflies
within same levels as these two are sharing vertex with informed sub-butterflies.
Thus using previous lemma once more is sufficient to broadcast message to all
vertices within BF(k, n)
Next lemma count number of time steps needed to broadcast message from any
vertex to all vertices performed by this procedure.

Lemma 2.11 Broadcasting on BF(k,n) is completed in 3n + 6 log(n
2 ) + 4

Proof Let be 〈i, α〉 initiator of broadcasting. 〈i, α〉 is marginal vertex for
sub-butterflies BF〈0,α〉(k,i) and BF〈i,α〉(k,n-i).

By Lemma 2.10 information is broadcasted in BF〈i,α〉(k,n-i) in 3(n − i) +
2 log (n− i) + 2 time steps.
From Butterfly properties we have that for any BF〈0,β〉(k,i) there is one informed
vertex. By Lemma 2.10 information is broadcasted in BF〈0,β〉(k,i) in 3i+3 log i+
2 time steps. In time step 3(n − i) + 3 log (n− i) + 2 + 3i + 3 log i + 2 =
3n + 3(log (n− i) + log i) + 4 ≤ 3n + 6 log n

2 + 4.
For BF〈0,α〉(k, i) it is the same situation as above. Using BF〈i,β′〉(k,n-i).

./
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3 Wrapped Butterfly Network

Wrapped Butterfly network is bound degree network topology. The k-ary wrap-
ped butterffly network of dimension n can be obtained from k-ary Butterfly
Network of dimension n + 1 by merging vertices 〈0, α〉 and 〈n, α〉. Thus wrap-
ped butterfly network maintains the same properties as Butterfly Networks do.

Complete k-ary Tree can be embedded into Wrapped Butterfly Network.
Unlike in Butterfly network where embedding Tree of depth n is possible only
with root in level 0 and n, complete k-ary Tree of depth n can be embedded in
wrapped butterfly network with root in any vertex.
There is also possibility to embed cube connecet cycle network into wrapped
butterfly[FU92]

Merged vertices 〈0, α〉 have 2k neighbors and as such all vertices have degree
2k. Butterfly network has Cayley Graph topology. Binary Wrapped Butterfly
has been resolved as ’New Family Cayley graph’ [CL97].

There was research in broadcasting on Butterfly topology where each vertex
can be transmit a message to exactly one vertex to which it is adjacent during
one time step, and each vertex can either transmit or receive the message per
time step. where

Though wrapped butterfly network is Cayley graph, for some proof we need
to distinguish opposite directions. One direction we denote as up and the op-
posite down. New terms uplink, up-tree, up sub-butterfly and downlink, down-
tree, down sub-butterfly we can use to easily distinguish direction. Up-tree T+

s

is complete k-ary tree consisting of uplinks. Up sub-butterfly BF+
〈i,α〉(k, m) is

sub-butterfly that consists of uplinks. The down-tree and down sub-butterfly
are defined similarly for downlinks.
Up sub-butterfly BF+

〈i,α〉(k,m) is the same sub-butterfly as BF−
〈i⊕m,α〉(k,m). In

few lemmas we will be using both up-tree T+
m(v) and down-tree T−

m(v) rooted
in the same vertex v. We willtherefore define two-tree T±

m(v) as a conjunction
of up-tree T+

m(v) and down-tree T−
m(v)
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3.1 Lower bound

We prove that information is not broadcasted in θ(n) =
⌊

3
2n
⌋

time steps. In
other words Broadcast is not completed in less than

⌊
3
2n
⌋

+ 1 time steps. We
prove this by showing, that in any path of length

⌊
3
2n
⌋

from initiator v0 to v

whose distance is
⌊

3
2n
⌋

there is fault.
Let be v1 the only informed vertex adjoint to v0 in time step 1. All other vertices
are cut off by fault. In next time step let be all faults on edges leading from v1

but to v0. This cuts off any path from v0 to v leading through v1. All the other
paths were cut off in time step 1. Thus leaving no possibility to have path

⌊
3
2n
⌋

long.
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3.2 Upper bound

In [DV99] there was used idea of isoperimetric number to prove upper bound for
hypercubes. It might be tempting to use this idea even on this Cayley graph.
However there is one problem. Even if we use 2k as our isoperimetric number,
which is degree of k-ary wrapped butterfly, in time diam(G)

2 = 3n
2 we have only

(2k)
3n
4 informed vertices. To complete idea next equation needs to be valid.

(2k)
3n
4 >

n

2
kn

2
3n
4 >

n

2
kn

k
3n
4

2
3n
4 >

n

2
k

n
4

But for k = 8
2

3n
4 <

n

2
8

n
4

2
3n
4 <

n

2
2

3n
4

Though we may use another idea used in this paper. If we know that W vertices
are be informed in w time steps. We also know that if there is W uninformed
vertices, in next time w time steps information is be broadcasted to all vertices.

To find upper bound of message broadcasting within non-wrapped butterfly
network we used embedded tree and counted number of informed vertices within
last but one level (lemma 2.8). For wrapped butterfly network we run into some
problems why we cannot do it this way.
We cannot chose one tree that we will be studying in time step 0, cause root
has only k adjoint vertices within this tree and 2k− 1 faults will ensure that all
are faulty. The same problem is if we say we try to choose the tree in time step
1. In this time step we can ensure only 2 vertices being informed and these two
vertices have in any tree 2k − 1 faults.
Choosing tree in time step 2 is one solution. Though by choosing tree in second
time step we ignore some vertices and with combination with 2k − 1 faults, it
will lead to badly interpretable and non-optimal results.

Thus for proving upper bound in this paper we are watching all four k-ary
Trees rooted in two vertices informed in time step 1. These vertices we denote
as v0 = 〈0,0〉 initiator of broadcast and v1 vertex that is informed in time step
1 by initiator.

First lemma starts process of broadcasting within all four trees. And counts
number of vertices informed in a time step as well as vertices newly informed in
the time step.
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Lemma 3.1 In time step t, 1 < t ≤ bn/2c there is at least kt−1 +
∑t−1

i ki

informed vertices. And a subset of at least (2k − 1)kt−2 vertices was newly
informed in time step t

Proof In time step t = 2 informed vertices v0, v1 have potential to inform 2k−1
neighbors each. There is maximally 2k − 1 faults leaving us there is at least
2k−1 = (2k−1)k2−2 newly informed vertices. And at least 2+2k−1 = k1+k1+1
informed vertices totally. All these vertices are in k-ary Tree rooted in v0 or v1

respectively, cause all are adjoint to one of v0, v1.
In time step t + 1. We can inform k new vertices from all newly informed

vertices in time step t and vertices which was not informed in time step t because
of fault. Thus in time step t + 1 there is (2k − 1)kt−2k + (2k − 1) − (2k − 1)
newly informed vertices.
In time step t there are kt−1 +

∑t
i ki. Adding newly informed vertices in t + 1

we have kt−1 +
∑t−1

i ki + 2kt − kt−1 = kt +
∑t

i ki

./

First lemma started process of dissemination of message within four trees,
but there is problem after bn/2c time steps. The problem that after this time
step, the vertices informed by uplinks and by downlinks might get mixed. How
we treat and count these vertices is shown in next lemma.
Lemma 3.3 uses this knowledge and counts the number of informed vertices
within time steps after bn/2c.

Lemma 3.2 Let be T be set of vertices informed in time step t. Let be P+
i set

of vertices which can be informed in t + i time steps by uplinks only. Let be S+
i

vertices informed in t + i time steps by uplinks only. Let be P−
i and S−

i defined
equally for downlinks.
In time step t+ i there will be at least |S+

i |+ |S
−
i |−|P

+
i ∩P−

i | informed vertices.

Proof If fault in uplink is also fault in downlink, both vertices of the faulty
edge are informed, nilling effect of this fault at all. Thus we know there cannot
be any fault affecting more vertices than in case of uplink or downlink only. If
we know number of vertices informed by uplink without considering downlink
|S+

i | and number of vertices informed by downlink without considering uplink
|S−

i | we know, there will be at least |S+
i ∪S−

i | = |S+
i |+|S

−
i |−|S

+
i ∩S−

i | informed
vertices total. Set of vertices S+

i ∩S−
i is subset of intersection P+

i ∩P−
i . Cause

we can evaluate |P+
i ∩ P−

i | for any possible combination of faults. We use
|S+

i |+ |S−
i | − |P

+
i ∩P−

i | ≤ |S+
i ∪S−

i | as the estimation of all informed vertices.

./
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Lemma 3.3 In time step t+1, where t < n there is at least kt−1+
∑t−1

i ki−kn

informed vertices.

Proof By Lemma 3.2 we know that we can count number of informed vertices
in BF (k, n) by the same algorithm used in in Lemma 3.1 with subtracting the
possible intersection. vertices potentially informed in time step t by uplink are
subset of all vertices potentially informed by uplink in time step n, P+

n−1 =
T+

n−1(v0) ∪ T+
n−1(v1). For downlink equally P−

n−1 = T−
n−1(v0) ∪ T−

n−1(v1).
For describing intersection we will look at each level i separately. We will use
K = {0, . . . , k − 1} and v1 = 〈1,v10n−1〉.
For i > 1:
T+

n−1(v0) ∩ T−
n−1(v0) = {〈i,Ki0n−i〉} ∩ {〈i, 00i−1Kn−i〉} = 〈i, 0n〉

T+
n−1(v0) ∩ T−

n−1(v1) = 〈i,Ki0n−i〉 ∩ 〈i,K0i−1Kn−i〉 = 〈i,K0n−1〉
T+

n−1(v1) ∩ T−
n−1(v0) = 〈i,v1Ki−10n−i〉 ∩ 〈i, 00i−1Kn−i〉 = ∅

T+
n−1(v1) ∩ T−

n−1(v1) = 〈i,v1Ki−10n−i〉 ∩ 〈i,K0i−1Kn−i〉 = 〈i,v10n−1〉
We also know that P+

n−1(P
−
n−1) has only k vertices in level 1 (0). Thus in all

levels there is at most k vertices within intersection, this means |P+
i ∩P−

i | = kn.
Using Lemma 3.2 we have in time step t ≤ n there is at least kt−1+

∑t−1
i ki−kn

informed vertices.

./

We proved that we can continue with the process of message dissemination
described in Lemma 3.1 for i larger than bn/2c. But there emerge another
problem in this process, for small wrapped butterflies (butterflies with small n).
By Lemma 3.2 we know that the intersection of up-trees and down-trees needed
to be subtracted from number of informed vertices. Within butterfly with small
n, this intersection becomes to high portion of informed vertices. Thus at first
we will prove that we can broadcast message in less optimal time 4n− 2 for any
combination of n’s and k’s.

Lemma 3.4 In 4n− 2 time steps whole BF(k,n) will be informed.

Proof In time step i < n there is informed path of length i+1 within butterfly,
with one vertex per level. In time step i+1 there are at most (2k−1) faults but
there are 2k vertices adjoint to outermost vertices of the path that can lengthen
it. Thus in any time step i < n there is informed path of length i + 1. In time
step n− 1 there is informed vertex within each level.
Now we will watch progress of information in all trees Tn rooted in these n

vertices. Particularly we watch leafs of these trees. Leafs compose whole wrap-
ped butterfly and each vertex might be informed by up-Tree or down-Tree. By
Lemma 3.2 we know that we can ignore any interference from opposite direc-
tions if we don’t forget final intersection.
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In time step n − 1 + i there might be 2k − 1 faults. Each fault will pre-
vent kn−i vertices from being informed. In n time steps cumulatively it is∑n

i=1(2k − 1)kn−i > kn +
∑n

i=0 ki

In time step n − 1 + n the message is broadcasted to 2nkn − kn −
∑n

i=0 ki

non distinct leaf vertices. Each leaf vertex might be informed by up-link or by
down-link, thus there is at least 1

2

(
2nkn − kn −

∑n
i=0 ki

)
informed vertices.

1
2

(
2nkn − kn −

n∑
i=0

ki

)
>

n

2
kn

2nkn − kn −
n∑

i=0

ki > nkn

2nkn − kn − kn − nkn >
n−1∑
i=0

ki

(n− 2)kn >
kn − 1
k − 1

(n− 2)kn > kn − 1 (k ≥ 2)

n− 2 >
kn − 1

kn

n > 2 +
kn − 1

kn

n ≥ 3

By definition of wrapped butterfly network we know that n ≥ 3 thus in 2n− 1
time steps there are more than |V |

2 vertices informed.
In the beginning of this section we noted that time to inform last |V |

2 is the
same as informing first |V |

2 vertices. Thus the information within remaining |V |
2

vertices will be broadcasted in at least 2n − 1 time steps. Leaving 4n − 2 as
total broadcast time.

./

We can split the process of broadcasting message within wrapped Butterfly
into two distinct parts. First part is broadcasting the message to Θ(kn) vertices
in one level and second part broadcasting message by level by level to all vertices.
For the intermediate state we now chose state where all sub-butterflies BF+

〈0,α〉(k, s)
(and BF−

〈0,α〉(k, s)) have informed level. This position can be achieved by in-
forming all vertices in level 0 within some sub-butterfly BF+

〈s,β〉(k, n− s).
Next lemma searches for preconditions that need to be met for finding such a
sub-butterfly.

21



Lemma 3.5 Let us denote s = blogk nc+ 3. If s < n and there is Ts〈0,0〉 in-
formed in time step t all sub-butterflies BF〈0,α〉(k, s) are going to have informed
vertex in time step t + n− s.

Proof There exists ks vertex-disjoint paths between any BF〈0,α〉 and BF〈0,0〉.
End vertices of these paths within BF〈0,0〉 are leaf vertices of Tree Ts〈0,0〉 We
know that there exists ks vertex-disjoint paths between each BF〈0,α〉(k, s) and
informed leaf within Ts.
We also know that there are at most (n − s)(2k − 1) faults within time steps
t+1, . . . , t+n−s. And (n−s)(2k−1) < n.2.k < klogk n.k2 < kblogk nc+3 = ks thus
there is more paths between informed vertex and BF〈0,α〉(k, s) for any 〈0, α〉.
Thus in time step t + n− s there is informed vertex within each BF〈0,α〉(k, s).

./

In last lemma we proved that for finding sub-butterfly with informed vertices
in its last level we need to find completely informed tree Ts. z
Next lemma will tell us what is the time needed to find such Trees.

Lemma 3.6 For s, where s + 3
2 logk s + 2 < n

2 and blogk 2sc < n
2 , there exists

fully informed tree T2s〈i, α〉 in time step 2s + blogk 2sc+ 2.
In time step 2s + blogk 2sc+ 2 there exist fully informed trees T+

s 〈i + s, α〉 and
T−

s 〈i + s, α〉.

Proof Let be S = blogk 2sc + 2 By Lemma 3.1 we know that in time step S

there is at least (2k − 1)kS−1 newly informed vertices. We also know that in
next 2s time steps there will be at most (2k − 1)2s faults.

(2k − 1)2s < (2k − 1)kblogk 2sc+1 = (2k − 1)kS−1

From this follows, there are more informed vertices in time step S than possible
faults in next 2s time steps. Thus in time steps S, . . . , S + 2s, there exists
vertex v = 〈i, α〉 such that all information dissemination behind level S by this
vertex v, is fault-safe in time steps S, . . . , S + 2s. From which directly follows
that in time step S + 2s, vertex v is root of completely informed tree T2s(v).
Without loss of generality we will assume that vertex v is informed by uplinks
and T2s(v) = T+

2s(v)
For vertex v′ = 〈i + s, α〉 we know that it is informed in time step S + s and
Tree T+

s (v′) ⊂ T+
2s(v) is in fail-safe area of vertex v in time steps S+s, . . . , S+2s.

But also Tree T−
s (v′) is in fail-safe area of vertex v in time steps S+s, . . . , S+2s,

cause whole down-Tree T−
s (v′) is in levels greater or equal to S.

There exists fully informed BF〈i,α〉(k, s), but we won’t be using this knowledge.
By Lemma 3.2 uplinks and downlinks behind levels S and −S won’t interfere,
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leaving condition 2S + 2s < n for T2s(v). blogk 2sc+ 2 + s < n
2

By Lemma 3.2 uplinks and downlinks behind levels S and −S can interfere for
T±

s (v′). But behind levels S + s or −(S + s) all is safe again, leaving condition
2S + 3s < n for T±

s (v′). blogk 2sc+ 2 + 3
2s < n

2

./

Further we will use two-tree T±(s) to broadcast message to all BF+(k, s)
and BF−(k, s) beginning in the same level as v. We had to at first compute s.
This we can manage with knowledge that in (n− s) time steps there will be at
most (2k − 1)(n− s) faults in (n− s) time steps. and in we have 2ks informed
vertices.k

Lemma 3.7 Let us denote s = blogk nc+ 3. If s+ 3
2 logk s+2 then in time step

n+blogk nc+logk2s+5 there is informed vertex within level 0 in each BF+
〈0,α〉(k, s)

and BF−
〈0,α〉(k, s).

Proof From Lemma 3.6 we know that in time 2s + logk 2s + 2 there exist
vertex 〈i, α〉 such that T+

s (〈i, α〉) and T−
s (〈i, α〉) are informed. Without loss of

generality we will denote 〈i, α〉 as 〈0,0〉.
By Lemma 3.2 we know that we can broadcast information simultaneously by
uplinks and downlinks without interference. Thus by using Lemma 3.5 for up-
Tree an down-Tree separately we get informed vertex in each BF+

〈0,α〉(k, s) and
BF−

〈0,α〉(k, s) in time step 2s + logk 2s + 2 + n− s = n + s + logk 2s + 2

Lemma 3.8 In
⌊

3
2n
⌋

+ O(logk n) =
⌊

3
2n
⌋

+ 10 logk n + 20 time steps whole
Butterfly BF(k, n) is informed.

Proof Let s = blogk nc+ 3 By Lemma 3.7 we know there is informed vertex in
each BF〈0,α〉(k, s) in both directions in time step T = n + blogk nc+ logk2s + 5.
In process of broadcasting we will cut Butterfly into smaller parts first part
are BF〈0,α〉(k, s) which have informed vertex. We count next part as smallest
butterflies that have at least one informed vertex.
Let s0 = s. Let si+1 be defined as si+1 = blogk sic+3. Each BF(k, si+1) is con-
nected with ksi+1 BF(k, si)’s through exactly one vertex. We know that there
will be at most (2k − 1)si faults while broadcasting throughout BF(k, si). But
(2k − 1)si ≤ k2klogk si ≤ ksi+1 thus there is more paths between informed level
in time step T +

∑i−1
i=0 si and BF(k, si+1)’s than possible faults in time steps

T + (
∑i−1

j=0 sj) + 1, . . . , T + (
∑i

j=0 sj).
Sequence of si’s has fix point value for every k let us denote this value as
s(k). Let be n′ such that

∑n′

j=0 sj ≤ n <
∑n′+1

j=0 sj . For any n we prove that
sn′ ≤ s(k) + 3 and sn′+1 = s(k) + 1.
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If n′ = 0 (contradiction) Let us assume s0 = s(k) + q where q > 3 and count
smallest possible n. From s(k) = blogk s(k) + 3c we know ks(k) = kblogk s(k)c+3 ≥
klogk n+2 = s(k).k2. Let us have a look at what need to n in case s0 = s(k) + q

n ≥ kblogk nc ≥ ks0−3 = ks(k)+q−3 ≥ s(k)kq+2−3 = s(k)kq−1

From this we know that s0 = s(k) + q there needs to be n at least s(k)kq−1.
For q > 3 it is at least s(k)k3

s(k)kq−1 ≤ n

s(k)kq−2 ≤ n

k

(s(k)kq−3)k ≤ n

2

(s(k) + q)k ≤ n

2

2s0 ≤
n

2
But if 2s0 ≤ n

2 there is s1 = blogk s0c + 3 ≤ s0 and s0 + s1 ≤
⌊

n
2

⌋
which

contradicts to assumption that n′ = 0.
If n′ > 0 the process is equal but error will be revealed in sn′−1 and escalated
to n.
If sn′ ≤ s(k) + 3 then sn′+1 = blogk sn′c+ 3 ≤ blogk(s(k) + 3)c+ 3 ≤ s(k) + 1

Thus for any n satisfying our initial assumption, If
∑n′+1

i=0 si >
⌊

n
2

⌋
and∑n′

i=0 si ≤
⌊

n
2

⌋
than sn′ ≤ s(k) + 1

In T+
⌊

n
2

⌋
+s(k)+1 time steps we have message broadcasted through half of But-

terfly with Partitioning to BF(k, si)’s. Also In opposite direction information
was broadcasted in half of Butterfly, thus we have whole Butterfly partitioned
to Butterflies BF(k, si). This partition butterflies had informed vertex at the
start of transmitting message through it. For each BF(k, si) there was also si

time steps from obtaining first informed vertex. After these additional si time
steps there will be informed at least kn − (2k − 1)

∑i
j=0 kj vertices inside level∑i

j=0 sj .
From si ≥ si + 1 we know that in next s0 time steps all of these informed
vertices will can broadcast its message to level

∑i−1
j=0 sj . Thus in time step

T +
⌊

n
2

⌋
+ s(k) + 1 + s0 the number of informed vertices will be:

2
n′∑

i=0

si(kn − (2k − 1)
si∑

j=0

kj)− (2k − 1)s0

We know 2
∑n′

i=0 si ≤ n, n
s(k) > n′ and si ≤ s0 = s. Thus the number of

informed vertices will be at least:

nkn −
n′∑

i=0

(s(2k − 1)
s∑

j=0

kj)− (2k − 1)s
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nkn −

n
s(k)∑
i=0

(s(2k − 1)
s∑

j=0

kj)− (2k − 1)s

≥ nkn − n

s(k)
(s(2k − 1)sks)− (2k − 1)s

≥ nkn − (2k − 1)
(

ns2

s(k)
ks + s

)
≥ nkn − k2ks

(
ns2

s(k)
+ o(1)

)
≥ nkn − k2ks(n3)

≥ nkn − ks+2+3blogk(n)c+3

≥ nkn − k4s−4

We know that whole butterfly BF(k, n) is informed in time equal to time needed
to broadcast message across k4s−4 vertices. By Lemma 3.6 we know that in
4s − 3 time steps, where 4s − 3 < n, there are k4s−3 − kn ≥ k4s−4 + (k −
1)k4s−4−ks−3 ≥ k4s−4 vertices informed. Thus whole BF(k, n) will be informed
in time step T +

⌊
n
2

⌋
+ s(k) + 1 + s + 4s − 3 =

⌊
3
2n
⌋

+ 6s + logk 2s + s(k) =⌊
3
2n
⌋

+ 6 blogk nc+ logk(2 blogknc) + s(k) + 18.
For butterflies where 4s − 3 ≥ n we can use Lemma 3.4 and for 4n − 2 =

3
2n + 5

2n− 2 ≤ 3
2n + 10s− 9.5

Finally we know that message will be broadcasted in at least 3
2n + 10s or

3
2n + 10 log n + 20

./

Lemma 3.9 2 Broadcast is completed in 3
2n+ s+ logk 2s+O(s(k)) time steps.

Where s(k) = O(1) and s = blogk n + 3c.

Proof We will continue with process from previous lemma in point where we
defined sequence s0, . . . , sn′ . Let us denote n′′ lowest index such that sn′′ = s(k).
For beginning we will assume that

∑n′′

i=0 ≤
n
4 .

Thus we have in time step n + blogk nc + logk2s + O(1) + n
4 informed sub-

butterflies BF(k, s(k)) for levels around level n
4 . In O(s(k)) time steps all but

two sub-butterflies have to be informed. Now in next n
4 + O(1) time steps all

vertices will be informed. For idea on proving time constrains of level-by-level
broadcasting see attached Lemma 6.1
In case that

∑n′′

i=0 > n
4 . We know that n = O(s(k)). (Exactly n < 17s(k) which

is needed for worst combination n = 80, k = 2 where s0+s1+s2 = 9+6+5 = 20).
4n− 2 time steps from lemma 3.4 can be rewritten into 3

2n + O(s(k)).

./

2Results of this lemma does not improve diam(G) + O(logk n) but is usefull for showing

other idea. That is reason why it is not proved exactly.
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4 Conclusion

In the introduction of this thesis we stated questions. Now we have knowledge
to give an answers. Is butterfly network topology good fault tolerant network
when dealing with dynamic faults in broadcasting? In particular butterfly net-
works are not good for faulty network, cause even one dynamic fault can blow
up broadcasting time by 50%. This problem can be circumvented by wrapping
butterfly. Butterfly networks do not have this particular problem, cause infor-
mation can be disseminated in two directions. Also by wrapping butterfly we
doubled number of faults that network can resist. This also means that there
is more interference by more faults. We proved (Lema 3.8) that the interfer-
ence causes not more than logarithmic (to n) slowdown. (Or twice logarithmed
number of vertices in network).

In comparison to known results 4 we see that Butterfly network is worse than
hypercubes even when comparing these not so optimal results of lower bound.
In case of wrapped Butterfly networks situation is not so straightforward. Lower
bound is 50% better and upper boud 50% worse than that of hypercube.

Let us hypothesize about final results that might be proved for wrapped
butterflies. For upper bound there is space to improve whole first part, in-
forming all sub-butterflies. Probably in a way that finding one sub-butterfly
in which no fault can occur we won’t search by using trees. This might save
us s + logk 2s time steps pending in all our results. In such case we will have
diam(BF (k, n)) + O(s(k)) time steps if we just add second part of this proof.
Proving thus that diam(BF (k, n)) + O(1)) time steps are sufficient. Another
problem with optimizing results there is that for lower n and k broadcast can be
slowed more than for higher ones. Thus resolving a descening function is needed.
In this example we used s(k) which will never be lower than 3 thus for big n pre-
sented procedure cannot lead to upper bound better than diam(BF (k, n)) + 3.
After resolving this apropriate descending function there will be space to im-
prove lower bound also.

26



Wrapped Hyper-
deg Butterfly cube Butterfly

(lower) (upper) (lower) (upper)
2 25 62 - 48 70
3 17 42 - 33 46
4 14 34 - 27 37
10 10 22 - 18 24
20 8 18 12 15 20
50 7 14 - 12 17
100 5 10 - 9 13

Table 3: Graph broadcast time for |V | = 106.
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6 Appendix

This lemma was developed while researching possible broadcast procedures. It
proof consists of too many cases for little overall gain, thus it was removed from
main prcedure.

Lemma 6.1 Let the level l in wBF(k,n) where k > 2 be completely informed
in time step t. In time at least t +

⌊
n
2

⌋
there will be at most three uninformed

vertices in at most two levels of wBF(k,n).

Proof Now we have to notify that there are only three different cases three
uninformed vertices could be arranged, in time step i.
Case 1:

At most two vertices in levels l±i1 and l±i2, where i−i1 ≤ 1 and i−i2 ≤ 1)
Case 2:

k = 4,k = 5 Three vertices in the same level l ± i and all three vertices are
in the same sub-butterfly BF〈i−1,α〉(k, 1) for some α.

k = 3 two of three vertices are in the same level l ± i. and in the same
sub-butterfly BF〈i−1,α〉(k, 1) for some α.
Case 3:

One vertex at level l + i− 2 (l − i + 2)
First of all we prove that in time step t + 1 we will have one of this cases. In
time step t + 1 vertex in levels l − 1, l + 1 is not informed in case that there
are k faulty channels from level l to this edge. In one time step there is at most
2k − 1 faulty channel. Thus in time step t + 1 there is only one uninformed
vertex in levels l − 1, l + 1. Case 1.
In time step t + i.
Case 1.

For this case we have three subcases
a. i1 = i2 = i−1 Both uninformed vertices have 2k informed neighbour vertices
thus will be informed in time step t + i + 1. We now have informed levels t + i

and t− i. The same situation as in time step t and level l. Case 1.
b. i1 + 1 = i2 = i We now have two uninformed vertices one on level l + i − 1
with at least 2k − 1 adjoint informed vertices. One on level l + i with k − 1
adjoint informed vertices.
If the uninformed vertex in level l + i − 1 will stay uninformed in time step
t+ i+1 there will be no other uninformed vertices in levels l− i−1, . . . , l+ i+1.
cause there is only 2k − 1 possible faults, which are needed for isolating this
vertex. Case 1.
If all vertices will be informed in level l + i− 1 in time step t + i + 1 there are
only vertices with k−1 or k informed neighbours in levels l+ i,l+ i−1. Thus in
time step t + i + 1 there will be at most two uninformed vertices in levels t + i,
t + i + 1. Case 1.
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c. i1 = i2 = i

Let us consider this two uninformed vertices are not in BF〈i,α〉(k, 1). for any α.
All vertices will have at least k− 1 informed adjoint vertices. Thus two vertices
might be uninformed. Case 1.
Now let us consider both of these vertices are in one BF〈i,α〉(k, 1). Then there
exists k vertices in level l + i + 1 adjoint only to k − 2 informed vertices.

k = 3 Vertices in BF〈i,α〉(k, 1) If there are three uninformed vertices in time
step t+i+1 there had to be two of them within BF〈i,α〉(k, 1) (2(k−2)+k ≤ 2k−1
but 2k − 1 < k − 2 + 2k). The third vertex could be any uninformed vertex
(2(k − 2) = 2k − 4 = k − 1 with 2k − 1 = k − 1 + k faults, there would be k

spare faults). Case 1,2.
k = 4 or k = 5 If there are three uninformed vertices in time step t + i + 1

they had to be within BF〈i,α〉(k, 1) (3(k − 2) ≤ 2k − 1 < 2(k − 2) + k) and all
have to be within level l + i + 1. Cases 1,2.

k > 5 There cannot be three uninformed vertices at time step bigger than
t. Even in situation where three vertices have k− 2 uninformed adjoint vertices
there are not enough faults for al of tem (3(k−2) = (2k−1)+(k−5) > 2k−1).
Case 2.

k > 3 All uninformed vertices in time step t + i are on the same level. We
know that there are k informed adjoint vertices for each uninformed vertex.
From information all vertices are in the same sub-butterfly BF〈i−1,α〉(k, 1) we
know that no two vertices are in the same sub-butterfly BF〈i,α′〉(k,1). Thus no
vertex within levels l− 1, l + 1 has two adjoint vertices uninformed in time step
t + i.So we know that vertices on levels l − i − 1, . . . , l + i + 1 are adjoint to
either k or k − 1 informed vertices. From that we have that only two vertices
from them will be uninformed in time step t + i + 1. Which is case 1.

k = 3
Case 3.

Uninformed vertex has 2k different informed neighbours, thus will be in-
formed in time t + i + 1. We now have informed levels t + i and t− i the same
as time step t and level l. Case 2.

./
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Abstrakt

Na rozdiel od lokalizovaných zlyhańı komunikácie, ktoré sa vysky-

tujú na vopred určenej (a teda známej) množine liniek, dynamické zly-

hania sa môžu vyskytovat’ na l’ubovolnej linke. Takéto zlyhania sú tak-

tiež známe pod názvami mobilné alebo všadepŕıtomné. Ich pŕıtomnost’

st’ažuje niekedy aj znemožňuje riešenie problémov i v synchrónnych sys-

témoch. Preto budeme analyzovat’ rozposielanie správ s dynamickými

zlyhaniami v synchrónnom komunikačnom móde známom ako shouting

mode. V shouting mode môže každý vrchol v sieti informovat’ všetkých

svojich susedov v jednom časovom kroku. V každom kroku sa môže vysky-

tovat’ nanajvýš tol’ko zlyhańı kol’ko je hranová súvislost’ siete. Problémom

je nájst’ horné i dolné ohraničenie počtu časvoých krokov, ktoré sú potrebné

na ukončenie rozposielania správy.

Dokážeme, že pre k-árny butterfly network dimenzie n je spodným

ohraničeńım 3n a horným ohraničeńım 3n + O(logk n).

Taktiež dokážeme, že pre k-árny wrapped butterfly network dimenzie

n je spodným ohraničeńım 3
2
n+1 a horným ohraničeńım 3

2
n+O(logk n).
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