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Abstract

We consider an n-ary random Boolean function f such that |{α̃; f(α̃) =
1}| = m and every such Boolean function has the same probability. We study
its geometric model, the so called interval graph. The interval graph of a
random Boolean function was introduced by Sapozhenko and has been used
in constructions of schemes for realizing Boolean functions. Using this model,
we estimate the number of maximal intervals intersecting a given maximal
interval of a random Boolean function and proove that the asymptotic bound
of the number is n(1+φ(n)) log2 log1/p n, where p = m/2n and φ(n)→ 0 as n→∞.

We also study the equality of this model of random Boolean function with
another one, where Pr[f(α̃) = 1] = p, for α̃ ∈ {0, 1}n. We find the conditions
on m under which are these two probabilistic models equivalent, what means
that m/2n can be consider as a equivalent to p.

Finally, we started to study the "structure" of the neighbourhood of the
first order for the purposes of estimating the size of neighbourhood of second
(or higher) order. We also drop a hint how should be obtained results used
in next works on this field.

Keywords. random Boolean function, interval graph
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1 Introduction
Boolean function is a very important subclass of functions for many com-
puter science’s areas. The Boolean functions are often represent by their
disjunctive normal forms (d.n.f). Therefore it is important also to study
the minimization of d.n.f.. However this is very complex problem and it is
hard to find the general solution of it, which should be sufficiently fast. One
special way how to sufficiently fast minimize d.n.f can be done using local
algorithms.

Local algorithms presents an important subclass of algorithms for con-
structions of optimal schemes. The main idea of local algorithms is simple:
they introduce a metric on the "space" of all elements (building blocks of
schemes) and a "measure of quality" of elements. Then for every element
of the scheme under construction they analyze its neighbouring elements;
searching for better ones; if such elements exist, local algorithm chooses the
best of them and substitutes the original element. The whole procedure is
repeated until no replacement/improvement can be done.

Zhuravlev [3] studied the use of local algorithms in the minimization of
d.n.f.. He introduced the notion of a conjuction neighbourhood and proved
that the optimal d.n.f. cannot be constructed in general by means of local
algorithms based on finite (local) conjuction neighbourhoods. So it is impos-
sible to find an optimal solution by means of local algorithms. Anyway we
still can construct a sub-optimal d.n.f. by analyzing neighbourhood of the
first order.

The complexity of such local algorithms and the optimality of their re-
sults depends on a number of elements in the neighbourhood of the first
order. Therefore we use probabilistic methods to obtain the lower and upper
bound on this number, where the bounds are satisfied for almost all Boolean
functions.

One such probabilistic model was studied by Toman, Olejár and Stanek
in [2]. In this thesis we will introduce another probabilistic model and prove
the similar results for it.
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2 Preliminaries and Notation
We shall use the standard notation of Boolean function theory. The n-ary
Boolean function is function f : {0, 1}n → {0, 1}. Bn denotes the set of all
n-ary Boolean functions. Boolean variables and their negations are called
literals. The literal of a variable x will be denoted by xα, (α ∈ {0, 1}), where

xα =

{
x if α = 1
¬x if α = 0

A conjuction K = x
αi1
i1

. . . x
αir
ir

of literals of different variables is called an
elementary conjuction. The number of literals (r) in a conjuction K is called
the rank of K. A special case is the conjuction of rank 0; it is called empty
and its value is set to 1.

A formula D = K1 ∨ · · · ∨ Km, the disjunction of distinct elementary
conjuctions, is called a disjunctive normal form. The parameter m (the
number of elementary conjuctions in D) is called the length of D. The d.n.f.
with m = 0 is called empty and its value is 0. A d.n.f. D represents a
Boolean function f if the truth tables of f and D coincide. Let us consider
the class of all d.n.f.s representing an n-ary Boolean function f ; the d.n.f.
with the minimal number of literals in this class is called a minimal d.n.f. of
f and the d.n.f. with the minimal length (in this class) is called a shortest
d.n.f. of f.

We use a geometric representation of Boolean functions. The Boolean
n-cube Bn is a graph Bn with 2n vertices α̃ = (α1, . . . , αn);αi ∈ {0, 1},
where the edges are joining those pairs of vertices which differ in exactly
one coordinate. For an n-ary Boolean function f let Nf denote the subset
{α̃; f(α̃) = 1} of all vertices α̃. As can be easily seen, there is a one-to-one
correspondence between the sets Nf and Boolean functions f . The subgraph
of the Boolean n-cube induced by the set of Nf is called the graph of f .

The set of vertices NK ⊆ {0, 1}n corresponding to an elementary conjuc-
tion K of rank r is called interval of order r. Obviously, to every elementary
conjuction K = x

αi1
i1

. . . x
αir
ir

corresponds an interval of order r consisting of
all vertices (β1, . . . , βn) of Bn, such that βij = αij for j = 1, . . . , r (the vaules
of other vertex coordinates can be chosen arbitrarily). Consequently, every
vertex of Bn represents an interval of order n and the vertex set of Bn itself
corresponds to an interval of order 0. In the geometric model every interval
of order r represents (n− r)-dimensional subcube of Bn. An interval NK is
called amaximal interval of a Boolean function f ifNK ⊆ Nf and there exists
no interval NK′ ⊆ Nf such that NK ( NK′ . For every elementary conjuction
K from the d.n.f. D the neighbourhood of K of the first order (with respect
to the d.n.f. D) is defined as the set of all elementary conjuctions Kj from
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D such that (in algebraic notation) K ∧Kj 6≡ 0 or (in our geometric model)
NK ∩NKj

6= ∅. Since we study mainly the neighbourhood of the first order
in this thesis, the notion "neighbourhood" will denote the neighbourhood of
the first order. The interval graph Γ(f) is a graph associated with a Boolean
function f ; its vertices correspond to maximal intervals of f and the vertices
corresponding to intervals NKi

and NKj
are joined by an edge in Γ(f) if and

only if Ki ∧ Kj 6≡ ∅. We study the degree of a vertex in Γ(f); namely we
estimate the lower and the upper bounds of this parameter.

For an arbitrary Boolean function f and each of its d.n.f.s K1∨K2∨· · ·∨
Km we have that

Nf =
m⋃
j=1

NKj
.

In other words, every d.n.f. of a Boolean function f correspnods to a covering
of Nf by intervals NK1 , . . . , NKm such that NKi

⊆ Nf . Conversely, every
covering of Nf by intervals NK1 , . . . , NKm contained in Nf corresponds to
some d.n.f. of f . Using geometric interpretation of d.n.f.s, we can express
the "irreducibility" of d.n.f.: the d.n.f. D of a Boolean function f cannot be
simplified if and only if every interval NK of the covering (corresponding to
D) contains at least one vertex belonging to just one interval of the covering.

Let rj denote the order of an interval NKj
. Then the number of literals

in d.n.f. is r =
∑m

j=1 rj and the construction of the minimal d.n.f. can be
formulated in the geometric model as a problem of constructing a covering of
Nf by intervals NK ⊆ Nf with minimal r. On the other hand, the construc-
tion of the covering corresponding to a shortest d.n.f. requires to minmize
the number of intervals in a covering of Nf .

Various metrical parameters of "typical" Boolean functions have been
studied in the context of Boolean functions minimization in the class of
d.n.f.s. [5, 6, 7].

More general model of Boolean functions, a concept of random Boolean
function was studied by Škoviera and Toman, Olejár and Stanek in [1]
and [2] (different probabilistic models are studied also in [8]). They used
combinatorical-probabilistic methods, considering metric parameters of Boolean
functions as random variables, estimated the expectations and variances of
these variables and finally they estimated their values by means of Markov’s
and Chebysev’s inequalities. The same approach will be used in this the-
sis. More about using combinatorical-probabilistic methods can be found in
[9, 10, 11].

Let X be a random variable and let symbols E(X) and V ar(X) =
E(X − E(X))2 denote the expectations and variance of random variable
X, respectively. We only use nonnegative random variables in the present
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thesis.

Theorem 2.1 (Markov’s inequality). If ξ is a non-negative random variable
and ε > 0 is a positive real number, then:

P (ξ ≥ ε) ≤ E(ξ)

ε
.

Theorem 2.2 (Chebyshev’s inequality). For any random variable ξ and
ε > 0 the following inequality holds:

P (|ξ − E(ξ)| ≥ ε) ≤ V ar(ξ)

ε2
.

We also use following notations in this thesis:

Notation 2.1. ab (falling factorial) denotes

1. (∀a ∈ R, ∀b ∈ N+); ab = a · (a− 1) · · · · · (a− b+ 1)

2. If b = 0 and a 6= 0, then ab = 1

Notation 2.2. For functions f, g : R→ R we use these asymptotic notations:

• f ∼ g means that limx→∞
f(x)
g(x)

= 1

• f . g means that limx→∞
f(x)
g(x)
≤ 1

• f & g means that limx→∞
f(x)
g(x)
≥ 1

• f = o(g) means that limx→∞
f(x)
g(x)

= 0

• f = O(g) means that limx→∞
f(x)
g(x)

= C, where C is arbitrary non-
negative constant

• f = ω(g) means that limx→∞
f(x)
g(x)

=∞

• f = Ω(g) means that limx→∞
f(x)
g(x)

> 0
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3 Probabilistic models - Model A and Model B
Definition 3.1 (Model A). Random boolean function of n variables attains
the values 1 and 0 with probability p and 1− p, respectively, independently of
various points of Bn. The probability p may depend on n, so we label it pn.

(Bn, PA) is a discrete probability space, where PA is a probability measure
defined by follows:

1. (∀f ∈ Bn)PA(f) = p
|Nf |
n · (1− pn)(2n−|Nf |)

2. For an arbitrary S ⊂ Bn we set PA(S) =
∑

f∈S PA({f}).

Škoviera and Toman, Olejár and Stanek studied Model A in [1] and [2].
In this thesis we will proove similar results for different model - Model B (see
next definitions).

Definition 3.2. Bm,n is set of all n-ary Boolean functions containing m
vertices. Formally:

Bm,n = {f ∈ Bn; |Nf | = m}.

Remark 3.1.
|Bm,n| =

(
2n

m

)
Definition 3.3 (Model B). (Bm,n, PB) is discrete probability space, where
PB is probability measure defined by follows:

1. Every Boolean function f ∈ Bm,n has the same probability, thus

PB({f}) =
1(
2n

m

) .
2. For an arbitrary S ⊂ Bm,n we set PB(S) =

∑
f∈S PB({f}).

Definition 3.4. Let A be a certain property that a n-ary Boolean function
f may or may not have. If

lim
n→∞

Pr[f has the property A] = 1,

we say that a random Boolean function has the property A almost surely.
This definition is the same for both Models A and B ("Pr" can be PA or PB).
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Lemma 3.1. Let U, V ⊂ Bn and U ∩ V = ∅. Let F = {f ∈ Bm,n;U ⊂
Nf , V ⊂ Bn −Nf}. Then

PB(F ) =
m|U | · (2n −m)|V |

(2n)|U |+|V |
.

Special case if |V | = 0 then

PB(F ) =
m|U |

(2n)|U |
.

Proof.
∑

f∈F
1

(2n

m)
=

(2n−|U|−|V |
m−|U| )
(2n

m)
= (2n−|U |−|V |)!

2n!
· m!

(m−|U |)! ·
(2n−m)!

(2n−m−|V |)! =

1

(2n)|U |+|V |
·m|U | · (2n −m)|V |

Notation 3.1.
pm,n =

m

2n

Our first goal in next chapters will be to proove that pm,n in Model B is
equivalent to pn in Model A.
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4 Estimation of dimension of maximal interval
in Model B

In this chapter we will proove upper bound on the dimension of maximal
intervals of random boolean function in Model B. The upper bound from
Corollary 4.4 will be used in next chapter for prooving equality of Model A
and Model B. We will obtain the upper bound using Markov’s inequality.

Definition 4.1. Let im,n,k denote a random variable on Bm,n such that
im,n,k(f) is equal to the count of k-dimensional intervals of a function f ∈
Bm,n.

Lemma 4.1.

E(im,n,k) =

(
n

k

)
· 2n−k · m

2k

(2n)2k

Proof. For any k-dimensional subcube K of the cube Bn we introduce a
random variable ηK (called also an indicator) defined by follows:

ηK(f) =

{
1 if K ⊆ Nf

0 otherwise.

Clearly im,n,k(f) =
∑

K ηK(f) where the summation ranges over all k-
dimensional subcubes of Bn.

Using Lemma 3.1 we can compute that:

E(ηK) = PB(ηK = 1) = PB(K ⊆ Nf ) =
m2k

(2n)2k

There are
(
n
k

)
2n−k k-dimensional subcubes in Bn. Thus,

E(im,n,k) =
∑
K

E(ηK) =

(
n

k

)
2n−k

m2k

(2n)2k .

Lemma 4.2. If E(im,n,k)→ 0 as n→∞, then P (im,n,k = 0)→ 1 as n→∞.

Proof. Lemma is direct consequence of Markov’s inequality.

Lemma 4.3. Suppose o(n) = 1
1−pm,n

. Suppose k = Ω(lgm). Suppose n =

mo(1). Then E(im,n,k)→ 0 as n→∞.
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Proof.

E(im,n,k) ≤ 2k·(lgn−1)+n ·
(m

2n

)2k

= U

From supposition k = Ω(lgm) we have k ≥ c · lgm, where c is arbitrary
(little) positive constant. If im,n,k is 0 for some k, then it will be 0 for any
greater k, so we can take only minimal value k = c · lgm and proove that
im,n,k → 0. Then:

U = 2c·lgm·(lgn−1)+n ·
(m

2n

)mc

= 2c·lgm·(lgn−1)+n · 2mc·lg( m
2n )

Using simply facts lgm ≤ n and lg n < n we obtain:

U . 2c·n
2 · 2mc·lg( m

2n ).

Using supposition o(n) = 1
1−pm,n

, we can write that pm,n < 1− 1
n
. Thus:

U . 2c·n
2+mc·lg(1− 1

n
).

Using Taylor series for lg(1 − x) for x → 0+ we get lg(1 − 1
n
) ≤ − 1

n·ln 2
.

Thus:

U . 2c·n
2−mc· 1

n ln 2 .

Notice that U → 0 when c · n2 = o(mc · n−1 · ln 2). This is equivalent to
n3 = o(mc) (multiplying by any constant has no affect to o-notation). And
n3 = o(mc) is true, because of supposition n = mo(1) (if we use n < m

c
4 ).

Therefore U → 0.

Using Lemmas 4.2 and 4.3 we obtain the following corrolary.

Corollary 4.4. Suppose o(n) = 1
1−pm,n

. Supppose n = mo(1). Then with
probability tending to 1 it holds that a random Boolean function f ∈ Bm,n

contains only intervals of dimension k, where k = o(lgm).

For more overview about supposition n = mo(1) see following Lemma and
its Corollary.

Lemma 4.5. Ifm = o(
√

2n · n−1), then P [Every vertex from Nf is isolated]→
1 as n→∞.

Proof. Nf is a graph of boolean function with m vertices. Let P [1] denote
the probability that one fixed vertex is in Nf and it is isolated. Let P denote
the probability that every vertex from Nf is isolated.
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P [1] =

(
2n−1−n
m−1

)(
2n−1
m−1

)
P ≥

(
P [1]

)m
=

[(2n−1−n
m−1

)(
2n−1
m−1

) ]m =

[
(2n − 1− n)m−1

(2n − 1)m−1

]m
≥

[(2n − n−m+ 1

2n −m+ 1

)m−1
]m

=

(
1− n

2n −m+ 1

)m2−m

=

(
1− 1

2n−m+1
n

) 2n−m+1
n

·n·(m
2−m)

2n−m+1

Now we can compute above expression for m = o(
√

2n · n−1):

lim
n→∞

P ≥ lim
n→∞

(1

e

) o(2n)

2n−o

(√
2n·n−1

)
=
(1

e

)0

= 1

Because P ≤ 1 we prooved P → 1 as n→∞.

Corollary 4.6. If n = mΩ(1) then P [Every vertex from Nf is isolated] → 1
as n→∞.

It means that if we suppose n = mo(1), then we exclude only the cases
when Nf contains only isolated vertices. And these cases are not interesting.
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5 Comparison of Model A and Model B
In next calculates we will need to use the Corollary 5.2 of following lemma.

Lemma 5.1. Let k be a function of n. If k = o(
√
n), then nk ∼ nk.

Proof. Using Taylor series we get:

ln(1− x) = −
∞∑
m=1

xm

m

Using this result we can compute:

nk

nk
=
(
1− 1

n

)
·
(
1− 2

n

)
· · ·
(
1−k − 1

n

)
= e

Pk−1
i=1 ln(1−i·n−1) = e−

Pk−1
i=1

P∞
m=1

(i·n−1)m

m

Next we use formula for the sum of the integers:

k−1∑
i=1

i =
k · (k − 1)

2

and the fact that for m fixed:
k−1∑
i=1

im = O(km+1),

where the big-O term is with respect to k, and we find:

nk

nk
= e−

P∞
m=1

1
m·nm ·

Pk−1
i=1 i

m ∼ eo(1) ∼ 1 + o(1),

provided k = o(
√
n).

Corollary 5.2. Let k, b and a be functions of n. If k = o(
√
b) and k =

o(
√
a), then:

ak

bk
∼
(a
b

)k
If we look carefully at [1], we can notice that only differences between

Model A and Model B is in Škoviera’s Proposition 1 (see next theorem) and
Lemma 3.1 in this thesis. This is important if we want to proove same results
in Model B as Škoviera prooved in Model A. More exactly - Škoviera used
the Proposition 1 in his article only in special case |V | = 0 and |U | = 2k

or |U | = 2k+1. Here is this special case of Škoviera’s Proposition 1 when
|V | = 0:

15



Theorem 5.3 (Škoviera’s Proposition 1 ). Let U be a subset of Bn and F =
{f ∈ Bn;U ⊂ Nf}. Then

PA(F ) = p|U |n .

Remark 5.1. From Lemma 3.1 we know that

PB(F ) =
m|U |

(2n)|U |
.

Lemma 5.4. Let U be a subset of Bn and F = {f ∈ Bn;U ⊂ Nf}. Let
|U | ≤ 2k+C, where C arbitrary non-negative constant and k = o(lgm). Then

PB(F ) ∼ p|U |m,n.

Proof. Using k = o(lgm) we obtain k < lgm
1
3 . Thus

|U | ≤ 2k+C < 2lgm
1
3 +C = m

1
3 · 2C = o(m

1
2 ).

Using Lemma 5.2 with remark 5.1 we get desired result.

From Corollary 4.4 we know that almost all random Boolean functions in
Model B satisfy k = o(lgm). This means that we can consider pm,n in Model
B as equivalent to pn in Model A. Thus we get all the results for Model B,
which computed Škoviera for Model A in [1]. This give us the main result of
this chapter: the bounds on a dimension of a maximal interval of a Boolean
function from [1] formulated as follows.

Theorem 5.5. Let limn→∞ pm,n = p, where p ∈ (0, 1). Then with probability
tending to 1 as n→∞ it holds, that dimension k of a maximal interval of a
random Boolean function satisfies the following inequalites:

lg log1/p n− 1 ≤ k ≤ lg log1/p n+ lg lg log1/p n+ ε, (1)

where ε→ 0 as n→∞.

For another view on analogy between Model A and Model B see the rest
of this chapter. We will compare the number of vertices of a random Boolean
function in Model A with m in Model B.

Definition 5.1. Let M(f) denote a random variable on Bn such that M(f)
is equal to the count of vertices of graph of a function f ∈ Bn (in Model A).
Formally M(f) = |Nf |.

Next we will compute E(M), V ar(M) and use Chebyshev’s inequality to
show that M ∼ 2n · pn.
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Lemma 5.6.
E(M) = 2n · pn

Proof. For any vertex α̃ ∈ Bn we introduce a random variable ηα̃ (called also
an indicator) defined by follows:

ηα̃(f) =

{
1 if α̃ ∈ Nf

0 otherwise.

Clearly M(f) =
∑

α̃ ηα̃(f) where the summation ranges over all vertices
in Bn.

From definition of Model A we know E(ηα̃) = PA(ηα̃ = 1) = pn.
|Bn| = 2n, therefore

E(M) =
∑
α̃

E(ηα̃) = 2n · pn.

Lemma 5.7.

V ar(M) = 2n · pn · (1− pn) ≤ 2n · pn = E(M)

Proof. First recall that V ar(M) = E(M2) − E2(M). Because of M is ex-
pressed as a sum of indicators ηα̃, then we have

M2 =
(∑

α̃

ηα̃

)2

=
∑
(α̃,β̃)

ηα̃ · ηβ̃

where last sumamtion ranges over all ordered pair (α̃, β̃) of vertices of Bn.
Let’s consider two cases:

1. α̃ 6≡ β̃. The number of such pairs (α̃, β̃) is 2n · (2n−1) and E(ηα̃ ·ηβ̃) =
PA(ηα̃ · ηβ̃ = 1) = p2

n.

2. α̃ ≡ β̃. The number of such pairs (α̃, β̃) is 2n and E(ηα̃ · ηβ̃) = PA(ηα̃ ·
ηβ̃ = 1) = pn.

Using this two cases we obtain:

E(M2) =
∑
α̃,β̃

PA(ηα̃ · ηβ̃ = 1) =
∑
α̃ 6≡β̃

p2
n +

∑
α̃≡β̃

pn = 2n · (2n − 1) · p2
n + 2n · pn.

Therefore:

V ar(M) = E(M2)−E2(M) = (2n·pn)2−2n·p2
n+2n·pn−(2n·pn)2 = 2n·pn·(1−pn).
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Now we apply Chebyshev’s inequality to the random variable M putting
ε = φ(n)

√
2n · pn, where φ(n)−1 = o(1). Using Lemma 5.6 and Lemma 5.7

we obtain:

PA(|M − E(M)| ≥ ε) ≤ V ar(M)

ε2
≤ 1

φ(n)
→ 0.

Hence, limn→∞ PA(|M−E(M)| < ε) = 1. This gives us result formulated
as

Corollary 5.8. With probability tending to 1, as n→∞ for any f ∈ Bn, it
holds:

2n · pn − φ(n)
√

2n · pn < M < 2n · pn − φ(n)
√

2n · pn,

where φ(n) is an arbitrary function satisfying limn→∞φ(n) =∞.

Lemma 5.9 (Estimation of the count of vertices of graph of a random
boolean function in Model A). Suppose that pn = Ω( 1√

2n·n). Then

M ∼ E(M) = pn · 2n.

Proof. Using Corollary 5.8 we obtain:

lim
n→∞

M

E(M)
= lim

n→∞
1±

√
1

pn · 2n
· φ(n).

Now we use supposition pn ≥ c2 · 1√
2n·n , where c is arbitrary positive

constant, to show that

lim
n→∞

√
1

pn · 2n
· φ(n) < lim

n→∞
4

√
n

2n
· c · φ(n) = 0.

Suppositon pn = Ω( 1√
2n·n) means that random boolean function does not

contain only isolated vertices - this can be prooved in Model A analogically
to proof of Lemma 4.5.

So if we consider M in Model A as a equivalent to m in Model B, then
we get pn · 2n ∼ m, thus pn ∼ pm,n.
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6 The size of the neighbourhood of given max-
imal interval in Model B

By the symbol Θ(NK) we denote the neighbourhood of the first order of a
random maximal interval NK , that is the set of all maximal intervals of a
Boolean function f having a nonempty intersection with NK .

In this chapter we will proove the lower and upper bound on |Θ(NK)|.
First we will proove that for almost all Boolean functions it holds that all
vertices of a random Boolean function are good (for exact definition of good
vertices see Definition 6.5). Then using the inequalities from definition of
good vertices we will obtain desired upper and lower bound.

This chapter is written accordingly to [2]. We will need to use Theorem
5.5 and therefore we will suppose that

lim
n→∞

pm,n = p, where p ∈ (0, 1).

Definition 6.1. Bα̃
m,n is set of all n-ary Boolean functions containing a fixed

vertex α̃ and another m− 1 vertices. Formally:

Bα̃
m,n = {f ∈ Bn; |Nf | = m, α̃ ∈ Nf}.

Remark 6.1.
|Bα̃

m,n| =
(

2n − 1

m− 1

)
Definition 6.2 (α̃-fixed Model B). (Bα̃

m,n, P
α̃
B) is discrete probability space,

where P α̃
B is probability measure defined by follows:

1. Every Boolean function f ∈ Bα̃
m,n has the same probability, thus

P α̃
B({f}) =

1(
2n−1
m−1

) .
2. For an arbitrary S ⊂ Bα̃

m,n we set P α̃
B(S) =

∑
f∈S P

α̃
B({f}).

Lemma 6.1. Let α̃ ∈ Bn be a fixed vertex. Let U ⊂ Bn and α̃ ∈ U and
F = {f ∈ Bα̃

m,n;U ⊂ Nf}. Suppose |U | = mo(1). Then

P α̃
B(F ) ∼ p|U |−1.

Proof. Analogically to Lemma 3.1 we obtain:

P α̃
B(F ) =

(m− 1)|U |−1

(2n − 1)|U |−1
.
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Analogically to Lemma 5.4 (using |U | = mo(1)) we obatin:

P α̃
B(F ) ∼

(m− 1

2n − 1

)|U |−1

.

Now we can show, that this is asimptotically equivalent to p|U |−1:

lim
n→∞

(m−1
2n−1

)|U |−1

(m
2n )|U |−1

= lim
n→∞

( 1− 1
m

1− 1
2n

)|U |−1

= lim
n→∞

(1
e
)
|U|−1

m

(1
e
)
|U|−1

2n

= 1.

The last equation is satisfied with condition |U | = o(m), which can reader
clearly obtain from supposition |U | = mo(1).

Definition 6.3. Let X α̃
m,n,k denote a random variable on Bα̃

m,n such that
X α̃
m,n,k(f) is equal to the count of k-dimensional intervals of a function f ∈

Bα̃
m,n.

Lemma 6.2. Let k = no(1). Then

E(X α̃
m,n,k) ∼

(
n

k

)
· p2k−1.

Proof. For any k-dimensional subcube K of the cube Bn containing vertex
α̃ we introduce a random variable ηK (called also an indicator) defined by
follows:

ηK(f) =

{
1 if K ⊆ Nf

0 otherwise.

Clearly im,n,k(f) =
∑

K ηK(f) where the summation ranges over all k-
dimensional subcubes of Bn.

Using Lemma 6.1 we can compute that:

E(ηK) = P α̃
B(ηK = 1) = P α̃

B(K ⊆ Nf ) ∼ p2k−1

There are
(
n
k

)
k-dimensional subcubes in Bn containing a fixed vertex α̃.

Thus,

E(X α̃
m,n,k) =

∑
K

E(ηK) ∼
(
n

k

)
· p2k−1.

Lemma 6.3. Let k = no(1). Then

V ar(X α̃
m,n,k) .

(
n

k

)2

· p2k+1−1 ·
[
k3

n · p2
+

k

p2k ·
(
n
k

)].
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Proof. First recall that

V ar(X α̃
m,n,k) = E((X α̃

m,n,k)
2)− E2(X α̃

m,n,k).

Because of X α̃
m,n,k is expressed as a sum of indicators ηK , we have

(X α̃
m,n,k(f))2 =

(∑
K

ηK(f)
)2

=
∑
(K,L)

ηK(f) · ηL(f),

where last sumamtion ranges over all ordered pair (K,L) of k-dimensional
intervals containig fixed vertex α̃.

The intersection of K and L is nonempty, because they both contain
vertex α̃. So K ∩ L is j-dimensional interval with 0 ≤ j ≤ k and |K ∪ L| =
2k+1 − 2j. Thus using Lemma 6.1 we obtain

E(ηK · ηL) = P α̃
B(ηK · ηL = 1) ∼ p2k+1−2j−1.

The number of such pairs (K,L) with dimension K ∩ L = j is(
n

j

)(
n− j
k − j

)(
n− k
k − j

)
.

Thus

E((X α̃
m,n,k)

2) =
∑
K,L

P α̃
B(ηK · ηL = 1) ∼

k∑
j=0

(
n

j

)(
n− j
k − j

)(
n− k
k − j

)
p2k+1−2j−1.

Now we can estimate V ar(X α̃
m,n,k):

V ar(X α̃
m,n,k) ∼

k∑
j=0

(
n

j

)(
n− j
k − j

)(
n− k
k − j

)
p2k+1−2j−1 −

(
n

k

)2

p2k+1−2

=

(
n

k

)(
n− k
k

)
p2k+1−2 −

(
n

k

)2

p2k+1−2 +

+
k∑
j=1

(
n

j

)(
n− j
k − j

)(
n− k
k − j

)
p2k+1−2j−1

≤
k∑
j=1

(
n

j

)(
n− j
k − j

)(
n− k
k − j

)
p2k+1−2j−1

=

(
n

k

)
p2k+1−1

k∑
j=1

(
k

j

)(
n− k
k − j

)
p−2j
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We denote
(
k
j

)(
n−k
k−j

)
p−2j by bj and estimate the ratio

bj+1

bj
=

p−2j
(k − j)2

(j + 1)(n− 2k + j + 1)
= cj.

Let’s consider two cases:

• j < lg log1/p n
Using simply fact 0 < j < k we obtain:

cj <
p−2

lg log1/p n−1

· k2

2 · (n− 2k + 1)
=

√
n · k2

2 · (n− 2k + 1)
.

Using supposition k = no(1) we see that cj tends to 0 as n tends to ∞.

• j > lg log1/p n
Using j ≥ lg log1/p n+x, where x is arbitrary little constant, we obtain:

cj ≥
p−2j · 1

k · (n− k + 1)
≥ n2x

k · n
=
na

k
,

where a = 2x − 1 is a positive constant.
Using supposition k = no(1) we see that cj tends to∞ as n tends to∞.

So the sequence bj is decreasing till lg log1/p n and increasing after. There-
fore the maximal value of bj is b1 or bk. Thus

k∑
j=1

bj . k · (b1 + bk) = k ·
(
k

(
n− k
k − 1

)
p−2 + p−2k

)
.

Using simply fact
(
n−k
k−1

)
≤
(
n−1
k−1

)
=
(
n
k

)
· k
n
we obtain:

k∑
j=1

bj . k3

(
n

k

)
p−2 + kp−2k

,

and

V ar(X α̃
m,n,k) .

(
n

k

)2

· p2k+1−1 ·
[
k3

n · p2
+

k

p2k ·
(
n
k

)].
Corollary 6.4. Let k be an integer satisfying (1). Then

V ar(X α̃
m,n,k) . E(X α̃

m,n,k)
2 ·
c1 · log1/pn

n
,

where c1 is a positive constant.

22



Proof. First recall

V ar(X α̃
m,n,k) . E(X α̃

m,n,k)
2 · p ·

[
k3

n · p2
+

k

p2k ·
(
n
k

)].
From (1) we have inequality k . 3

√
log1/pn and using it we obtain

k3

n · p
.

log1/p n

n · p
. (2)

The reader can easily verify that for k satisfying (1) it holds that p2k ·
(
n
k

)
is decreasing for k < lg log1/p n and increasing after. Therefore, using k .
2 · lg log1/p n . n (it holds from (1)), we obtain

k · p
p2k ·

(
n
k

) .
n

p2
lg log1/p n+1

· n4
.

n
1
n2 · n4

.
1

n
,

so we have
k · p

p2k ·
(
n
k

) .
log1/p n

n
. (3)

Using (2) and (3) we get

V ar(X α̃
m,n,k) . E(X α̃

m,n,k)
2 ·

log1/p n

n
· (1/p+ 1).

Definition 6.4. Let Y α̃
m,n,k denote a random variable on Bα̃

m,n such that
Y α̃
m,n,k(f) is equal to the count of k-dimensional maximal intervals of a func-

tion f ∈ Bα̃
m,n.

Lemma 6.5. Let k = no(1). Then

E(Y α̃
m,n,k) ∼

(
n

k

)
· p2k−1 ·

(
1− p2k−1

)n−k
Proof. Let P (NK) denote the probability that a fixed maximal interval NK

containing a vertex α̃ belongs to the set Nf of a random Boolean function f .
Without detriment to generality we can assume that α̃ = (0, 0, · · · , 0) and
NK = {(γ1, γ2, · · · , γk, 0, 0, · · · , 0); γi ∈ {0, 1}, i = 1, 2, · · · , k}. To abbrevi-
ate the notation we will use ?-notation

NK = (?, · · · , ?︸ ︷︷ ︸
k

, 0, · · · , 0︸ ︷︷ ︸
n−k

)

NK,i = (?, · · · , ?︸ ︷︷ ︸
k

, 0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−k−i

),
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where NK,i is defined for i = 1, 2, · · · , n− k.
Obviously NK ∩NK,i = ∅ for each defined i and NK,i ∩NK,j = ∅ for each

defined i 6= j and

P (NK) = P α̃
B [NK ⊂ Nf ] ·

n−k∏
i=1

P α̃
B [NK,i * Nf ]

Using Lemma 6.1 we can compute that:

P (NK) ∼ p2k−1 ·
(

1− p2k−1
)n−k

.

There are
(
n
k

)
k-dimensional subcubes in Bn containing a fixed vertex α̃.

Therefore

E(Y α̃
m,n,k) =

∑
NK

P (NK) ∼
(
n

k

)
· p2k−1 ·

(
1− p2k−1

)n−k
.

Lemma 6.6. Let k be an integer satisfying (1). Then

V ar(Y α̃
m,n,k) .

1

nc2
· E2(X α̃

m,n,k),

where c2 is an arbitrary constant satisfying 0 < c2 < 1.

Proof. Using Lemma 6.5 and the same idea as in proof of Lemma 6.3 we
have

V ar(X α̃
m,n,k) = E((Y α̃

m,n,k)
2)− E2(Y α̃

m,n,k)

V ar(Y α̃
m,n,k) =

k∑
j=0

(
n

j

)(
n− j
k − j

)(
n− k
k − j

)
P ′j(NK , NL)

−

[(
n

k

)
· p2k−1 ·

(
1− p2k−1

)n−k]2

,

where P ′j(NK , NL) denotes the probability that a random Boolean function
contains k-dimensional maximal intervals NK and NL, both containg a fixed
vertex α̃ andNK∩NL is a j-dimensional interval. The probability P ′j(NK , NL)
can be estimated in the following way

P ′j(NK , NL) . Pj(NK , NL) = p2k+1−2j−1,
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where Pj(NK , NL) denotes the probability that a random Boolean function
contains k-dimensional intervals NK and NL (not maximal!), both containg
a fixed vertex α̃ and NK ∩NL is a j-dimensional interval. Thus we have

V ar(Y α̃
m,n,k) ≤

(
n

k

)(
n− k
k

)
P ′0(NK , NL)

+
k∑
j=1

(
n

j

)(
n− j
k − j

)(
n− k
k − j

)
Pj(NK , NL)

−

[(
n

k

)
· p2k−1 ·

(
1− p2k−1

)n−k]2

.

The expression
∑k

j=1

(
n
j

)(
n−j
k−j

)(
n−k
k−j

)
Pj(NK , NL) was already estimate in proof

of Lemma 6.3, so we have

V ar(Y α̃
m,n,k) .

(
n

k

)(
n− k
k

)
P ′0(NK , NL)−

[(
n

k

)
· p2k−1 ·

(
1− p2k−1

)n−k]2

+
c1 · log1/pn

n
· E(X α̃

m,n,k)
2.

Let’s denote

Z =

(
n

k

)(
n− k
k

)
P ′0(NK , NL)−

[(
n

k

)
· p2k−1 ·

(
1− p2k−1

)n−k]2

and estimate the expression Z. Using
(
n−k
k

)
≤
(
n
k

)
and next Lemma 6.7 we

have

Z .

(
n

k

)2

p2k+1−2 ·
(

1− 2p2k−1 + p2k+1−3
)n−2k

−

[(
n

k

)
· p2k−1 ·

(
1− p2k−1

)n−k]2

=
[(n
k

)
· p2k−1

]2

·

[(
1− 2p2k−1 + p2k+1−3

)n−2k

−
(

1− p2k−1
)2(n−k)

]

. E2(X α̃
m,n,k) ·

(
1− p2k−1

)2(n−k)

·

[
(1− 2p2k−1 + p2k+1−3)n−2k

(1− p2k−1)2(n−k)
− 1

]
Using well-known fact

lim
n→∞

(1− 1/n)n = e−1
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we obtain

Z . E2(X α̃
m,n,k) · exp

(
− p2k−1 · 2(n− k)

)
·

·

[
exp

(
(−2p2k−1 + p2k+1−3) · (n− 2k)

)
exp

(
− p2k−1 · 2(n− k)

) − 1

]
= E2(X α̃

m,n,k) · exp
(
− p2k−1 · 2(n− k)

)
·

·

[
exp

(
n · p2k+1 · p−3 + 2k · (p2k−1 − p2k+1−4)

)
− 1

]
.

Because k is satisfying (1) then we have k · p2k ∼ 0 and k · p2k+1 ∼ 0. Thus

Z . E2(X α̃
m,n,k) · exp

(
− 2p−1 · np2k) · [ exp

(
p−3 · np2k+1)− 1

]
.

We see that for the estimation of Z are important expressions np2k and
np2k+1 . Let’s consider two cases for an arbitrary little positive constant ε:

1. lg log1/p n− 1 ≤ k ≤ lg log1/p n− ε
Now we have

exp
(
−2p−1·np2k) ≤ exp

(
−2p−1·np2ε log1/p n

)
= e−2p−1·n·(1−1/2ε) = e−n·z1 ,

where z1 is an arbitrary little positive constant, and

exp
(
p−3 · np2k+1)− 1 ≤ exp

(
p−3 · nplog1/p n

)
− 1 = ep

−3 − 1 = z2,

where z2 is an positive constant. Thus

Z . E2(X α̃
m,n,k) · an, (4)

where a is a positive constant and a < 1.

2. lg log1/p n− ε < k
Now we have

exp
(
− 2p−1 · np2k) ≤ 1

And using simply fact that ex − 1 ∼ x when x→ 0 we obtain

exp
(
p−3·np2k+1)−1 < exp

(
p−3·np21−ε log1/p n

)
−1 = ep

−3·n1−21−ε

−1 .
1

nz3
,

where z3 is an arbitrary positive constant satisfying z3 < 1. Thus

Z . E2(X α̃
m,n,k) ·

1

nz3
. (5)
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From (4) and (5) we have

Z . E2(X α̃
m,n,k) ·

1

nz4
,

where z4 is an arbitrary positive constant satisfying z4 < 1. Therefore

V ar(Y α̃
m,n,k) ≤

1

nc2
· E2(X α̃

m,n,k).

Lemma 6.7. Let k be an integer satisfying (1) and P ′j(NK , NL) denotes the
probability that a random Boolean function contains k-dimensional maximal
intervals NK and NL, both containg a fixed vertex α̃ and NK ∩ NL is a j-
dimensional interval. Then

P ′0(NK , NL) ∼ p2k+1−2 · (1− 2 · p2k−1 + p2k+1−3)n−2k.

Proof. Without detriment to generality we can assume that α̃ = (0, 0, · · · , 0)
and

NK = (?, · · · , ?︸ ︷︷ ︸
k

, 0, · · · , 0︸ ︷︷ ︸
k

, 0, · · · , 0︸ ︷︷ ︸
n−2k

)

NL = (0, · · · , 0︸ ︷︷ ︸
k

, ?, · · · , ?︸ ︷︷ ︸
k

, 0, · · · , 0︸ ︷︷ ︸
n−2k

).

Next we will use the following notation

NK,r = (?, · · · , ?︸ ︷︷ ︸
k

, 0, · · · , 0︸ ︷︷ ︸
r−k−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−r

)

NL,s = (0, · · · , 0︸ ︷︷ ︸
s−1

, 1, 0, · · · , 0︸ ︷︷ ︸
k−s

, ?, · · · , ?︸ ︷︷ ︸
k

, 0, · · · , 0︸ ︷︷ ︸
n−2k

), or

NL,s = (0, · · · , 0︸ ︷︷ ︸
k

, ?, · · · , ?︸ ︷︷ ︸
k

, 0, · · · , 0︸ ︷︷ ︸
s−2k−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−s

)

α̃t = (0, · · · , 0︸ ︷︷ ︸
t−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−t

)

where NK,r is defined for r = k + 1, n and NL,s is defined for s = 1, k or
s = 2k + 1, n and α̃t is defined for t = 1, n. Obviously

P ′0(NK , NL) = P [NK ∪NL ⊂ Nf , (∀r)NK,r * Nf , (∀s)NL,s * Nf ].
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Using the probability theory about (in)dependent events we have

P ′0(NK , NL) = P [NK ∪NL ⊂ Nf ] · P [(∀r)NK,r * Nf ,

(∀s)NL,s * Nf |NK ∪NL ⊂ Nf ]

∼ p2k+1−2 · P [(∀r = k + 1, 2k)NK,r − {α̃r} * Nf ,

(∀r = 2k + 1, n)NK,r * Nf ,

(∀s = 1, k)NL,s − {α̃s} * Nf ,

(∀s = 2k + 1, n)NL,s * Nf ]

∼ p2k+1−2 · P [(∀r = k + 1, 2k)NK,r − {α̃r} * Nf ,

(∀s = 1, k)NL,s − {α̃s} * Nf ]

·P [(∀r = 2k + 1, n)NK,r * Nf ,

(∀s = 2k + 1, n)NL,s * Nf ].

Let’s estimate above probabilities separately:

1.

P [(∀r = 2k + 1, n)NK,r * Nf , (∀s = 2k + 1, n)NL,s * Nf ]

=
n∏

i=2k+1

P [NK,i * Nf , NL,i * Nf ]

=
n∏

i=2k+1

(
P [α̃i ∈ Nf ] · P [NK,i * Nf , NL,i * Nf |α̃i ∈ Nf ]

+P [α̃i /∈ Nf ] · P [NK,i * Nf , NL,i * Nf |α̃i /∈ Nf ]
)

=
n∏

i=2k+1

(
P [α̃i ∈ Nf ] · P [NK,i − {α̃i} * Nf ] · P [NL,i − {α̃i} * Nf ] +

+P [α̃i /∈ Nf ] · 1
)

∼
n∏

i=2k+1

(
p · (1− p2k−2)2 + 1− p

)
= (1− 2 · p2k−1 + p2k+1−3)n−2k

2. In following calculates we will use also (1).

P [(∀r = k + 1, 2k)NK,r − {α̃r} * Nf , (∀s = 1, k)NL,s − {α̃s} * Nf ]
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≥
( 2k∏
r=k+1

P [NK,r − {α̃r} * Nf ]
)
·
( k∏
s=1

P [NL,s − {α̃s} * Nf ]
)

= (1− p2k−2)2k

& (1− p2
lg log1/p n−1−2)4 lg log1/p n

=

(
1− 1

p2
√
n

)4 lg log1/p n

∼ e
−

4 lg log1/p n

p2√n ∼ e0 = 1

Probability of every event is ≤ 1, thus

P [(∀r = k + 1, 2k)NK,r−{α̃r} * Nf , (∀s = 1, k)NL,s−{α̃s} * Nf ] ∼ 1

Definition 6.5. A vertex α̃ ∈ Nf , satisfying the condition

|Y α̃
m,n,k − E(Y α̃

m,n,k)| ≥
1

log1/p n
· E(X α̃

m,n,k)

will be called bad vertex of a random Boolean function f , otherwise, the vertex
α̃ will be called good vertex of a random Boolean function f .

Lemma 6.8. Let k be an integer satisfying (1), and let Pn(α̃) be the proba-
bility that α̃ is a bad vertex of an n-ary random Boolean function. Then

Pn(α̃) .
log2

1/p n

nc2

Proof. From Chebyshev’s inequality and Lemma 6.6 we have

Pn(α̃) ≤
V ar(Y α̃

m,n,k) · log2
1/p n(

E(Y α̃
m,n,k)

)2 .
log2

1/p n

nc2

Now we estimate the number of bad vertices in a maximal interval of a
random Boolean function.

Lemma 6.9. Let k be an integer satisfying (1), and let NK denote a fixed
k-dimensional maximal interval of a random Boolean function f . Let bk(f)
be a random variable expressing the number of bad vertices in NK. Then
probability that

bk(f) = 0

tending to 1 as n→∞.
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Proof. The expectation of number of bad vertices in NK is

E(bk) = 2k · Pn(α̃) . 2k ·
log2

1/p n

nc2

and consequently (by Markov’s inequality)

P
[
bk(f) ≤ 2k · log3

1/p n

nc2

]
≥ 1− P

[
bk(f) ≥ 2k · log3

1/p n

nc2

]
≥ 1− E(bk)

2k·
log3

1/p
n

nc2

&

& 1− 1
log1/p n

,

what is tending to 1 as n→∞. Using (1) we have

2k ·
log3

1/p n

nc2
→ 0 as n→∞,

thus
P [bk(f)→ 0]→ 1 as n→∞.

Because bk(f) is non-negative integer we have

P [bk(f) = 0]→ 1 as n→∞..

It means that for almost all Boolean functions every maximal interval
NK contains no bad vertex, so we can suppose that NK contains only good
vertices. Using this supposition we obtain the upper and lower bound of
|Θ(NK)|.

Theorem 6.10. Let f be an n-ary random boolean function and let NK

induce a maximal interval of f . Then the following inequalities hold with
probability tending to 1 as n→∞:

n(1−εn) lg log1/p n . |Θ(NK)| . n(1+ε′n) lg log1/p n,

where εn,ε′n → 0 as n→∞.

Proof. We set k0 = lg log1/p n − 1 and k1 = lg log1/p n + lg lg log1/p n + 1 to
abbreviate the notation.

First recall that for almost all random Boolean function k satisfies (1),
thus

dk0e ≤ k ≤ bk1c
and NK contains only good vertices.
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Upper bound. Using supposition that all vertices in NK are good we have

|Θ(NK)| .
∑
α̃∈NK

bk1c∑
k=dk0e

[
E(Y α̃

m,n,k) +
E(X α̃

m,n,k)

log1/p n

]

.
∑
α̃∈NK

bk1c∑
k=dk0e

[
E(X α̃

m,n,k) + E(X α̃
m,n,k)

]

.
bk1c∑

k=dk0e

2k · 2 ·
(
n

k

)
p2k−1

≤ (k1 − k0 + 1) · 2k1+1 · nk1 · p2k0−1

≤ (2 · lg lg log1/p n) · (log1/p n · lg log1/p n · 4) · nk1 · p1/2 log1/p n−1

=
8

p
lg lg log1/p n · log1/p n · lg log1/p n · n−1/2 · nk1

. log3
1/p n · nlg log1/p n+lg lg log1/p n+1/2

. nlg log1/p n+2·lg lg log1/p n

= n

(
1+

2·lg lg log1/p n

lg log1/p n

)
·lg log1/p n

.

Lower bound. Using supposition that at least one vertex in NK is good we
have

|Θ(NK)| &
bk1c∑

k=dk0e

[
E(Y α̃

m,n,k)−
E(X α̃

m,n,k)

log1/p n

]

&
bk1c∑

k=dk0e

(
n

k

)
p2k−1

[(
1− p2k−1

)n−k − 1

log1/p n

]

≥
dk0+2e∑

k=dk0+2e

(
n

k

)
p2k−1

[(
1− p2k−1

)n−k − 1

log1/p n

]
≥

(
n

lg log1/p n+ 1

)
· p2

lg log1/p n+2−1 ·

·
[(

1− p2
lg log1/p n+1−1

)n−lg log1/p n−1 − 1

log1/p n

]
≥

( n

lg log1/p n+ 1

)lg log1/p n+1

· p−1n−4 ·
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·
[(

1− 1

pn2

)n−lg log1/p n−1 − 1

log1/p n

]
&

( n

lg log1/p n+ 1

)lg log1/p n+1

· p−1n−4 ·
[(1

e

)n−lg log1/p n−1

pn2 − 1

log1/p n

]
&

( n

lg log1/p n+ 1

)lg log1/p n+1

· p−1n−4 ·
[(

1− 1

log1/p n

]
&

( n

lg log1/p n+ 1

)lg log1/p n+1

· n−5

= nlg log1/p n−4 ·
(
lg log1/p n+ 1

)−(lg log1/p n+1)

= nlg log1/p n−4 · n− logn(lg log1/p n+1)·(lg log1/p n+1)

= nlg log1/p n−4 · n−
lg(lg log1/p n+1)

lg n
·(lg log1/p n+1)

& n

(
1−

lg(lg log1/p n+1)

lg log1/p n

)
·lg log1/p n

.
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7 The "structure" of neighbourhood
In previous chapters we have demonstrated that computing probabilities in
Model B is the same as in Model A (if we set pm,n = pn = p ∈ (0, 1), then we
get asymptotically the same results). Therefore, to abbreviate the notation,
we will use in this chapter Model A.

By the meaning of "structure" of neighbourhood we will study in this
chapter the following random variable.

Definition 7.1. Let NX be a fixed maximal interval with dimension x of a
random Boolean function f ∈ Bn. Let Zn,x,k,t denote a random variable on
Bn such that Zn,x,k,t is equal to the count of k-dimensional maximal intervals
of a function f , which intersect NX in a t-dimensional interval.

Notation 7.1. To abbreviate the notation we denote Zn,x,k,t as Zk,t (we will
study Zn,x,k,t as a function of parameters k and t).

In next calculates we will need to use the following more generally form
of Lemma 6.7.

Lemma 7.1. Let k, x be integers satisfying (1) and Pt(NX , NK) denotes the
probability that a random Boolean function contains x-dimensional maximal
interval NX and k-dimensional maximal interval NK and NX ∩ NK is a t-
dimensional interval. Then

Pt(NX , NK) ∼ p2x+2k−2t · (1− p2x − p2k

+ p2x+2k−2t

)n−x−k+t.

Proof. The proof is analogical to proof of Lemma 6.7.
Without detriment to generality we assume

NX = (?, · · · , ?︸ ︷︷ ︸
x

, 0, · · · , 0︸ ︷︷ ︸
n−x

)

NK = (0, · · · , 0︸ ︷︷ ︸
x−t

, ?, · · · , ?︸ ︷︷ ︸
k

, 0, · · · , 0︸ ︷︷ ︸
n−x−k+t

)

NT = (0, · · · , 0︸ ︷︷ ︸
x−t

, ?, · · · , ?︸ ︷︷ ︸
t

, 0, · · · , 0︸ ︷︷ ︸
n−x

).
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Next we will use the following notation

NX,i = (?, · · · , ?︸ ︷︷ ︸
x

, 0, · · · , 0︸ ︷︷ ︸
i−x−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

)

NK,i = (0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
x−t−i

, ?, · · · , ?︸ ︷︷ ︸
k

, 0, · · · , 0︸ ︷︷ ︸
n−x−k+t

), or

NK,i = (0, · · · , 0︸ ︷︷ ︸
x−t

, ?, · · · , ?︸ ︷︷ ︸
k

, 0, · · · , 0︸ ︷︷ ︸
i−x−k+t−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

)

α̃t = (0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

)

I = NX,i ∩NK,i

where NX,i is defined for i = x+ 1, n and NK,i is defined for i = 1, x− t or
s = x+ k − t+ 1, n and α̃i is defined for i = 1, n. Obviously

Pt(NX , NK) = P [NX ∪NK ⊂ Nf , (∀i)NX,i * Nf , (∀i)NK,i * Nf ].

Proof that

P [(∀i = x+ 1, x+ k − t)NX,i−{α̃i} * Nf , (∀i = 1, x− t)NK,i−{α̃i} * Nf ] ∼ 1

can be done entirely analogically as in proof of Lemma 6.7, so it is omitted.
Thus,

Pt(NX , NK) ∼ P [NX ∪NK ⊂ Nf ] · P [(∀i = x+ k − t+ 1, n)NX,i * Nf ,

(∀i = x+ k − t+ 1, n)NK,i * Nf ]

= p2x+2k−2t
n∏

i=x+k−t+1

P [NX,i * Nf , NK,i * Nf ]

= p2x+2k−2t
n∏

i=x+k−t+1

(
P [I ⊆ Nf ] · P [NX,i * Nf , NK,i * Nf |I ⊆ Nf ]

+P [I * Nf ] · P [NX,i * Nf , NK,i * Nf |I * Nf ]
)

= p2x+2k−2t
n∏

i=x+k−t+1

(
P [I ⊆ Nf ] · P [NX,i − I * Nf ] ·

·P [NK,i − I * Nf ] + P [I * Nf ] · 1
)

= p2x+2k−2t
n∏

i=x+k−t+1

(
p2t · (1− p2x−2t

) · (1− p2k−2t

) + 1− p2t
)

= p2x+2k−2t

(1− p2x − p2k

+ p2x+2k−2t

)n−x−k+t.
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Now we are ready to estimate the expectation of Zk,t.

Lemma 7.2. Let k, x be integers satisfying (1).

E(Zk,t) ∼


φ(n)→ 0 as n→∞ if k < lg log1/p n

p2k−2t ·
(
x
t

)
· nk−t · e−1 if k = lg log1/p n

p2k−2t ·
(
x
t

)
· nk−t if k > lg log1/p n

Proof. Some routine calculation steps used before are omitted. Here are only
the main points of the calculation.

E(Zk,t) =
∑

NK ,NT

P [NX and NK are maximal intervals of f ,

NX ∩NK = NT |NX is maximal interval of f ]

=

(
x
t

)
·
(
n−x
k−t

)
· p2x+2k−2t

(1− p2x − p2k
+ p2x+2k−2t

)n−x−k+t

p2x · (1− p2x)n−x

∼ p2k−2t ·
(
x

t

)
· nk−t · e−n·(p2

k−p2x+2k−2t
)

If we consider the value of e−n·(p2
k−p2x+2k−2t

) with k respect to the lg log1/p n,
then we get desired result.

Next, we will study E(Zk,t) in case that lg log1/p n is not an integer, so
k > lg log1/p n. The case k = lg log1/p n is very similar, so the reader can
easily obtain the same results for it.

Lemma 7.3. Let k, x be integers satisfying (1) and lg log1/p n is not an inte-
ger. Let Ek be a such function of k that Ek = E(Zk,t). Then Ek is decreasing
for k > lg log1/p n. Ek reach the maximal value for k = km = blg log1/p nc+1
and moreover

kmax∑
k=km

Ek ∼ Ekm ,

where kmax = blg log1/p n+ lg lg log1/p n+ εc.
Proof. Let’s compute the ratio Ek+1/Ek for k = lg log1/p n+ a, where a > 0

Ek+1

Ek
=

p2k+1−2t ·
(
x
t

)
· nk+1−t

p2k−2t ·
(
x
t

)
· nk−t

= n · p2k

= n · p2
lg log1/p n+a

= n ·
( 1

n

)2a

→ 0 as n→∞.
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Moreover
∑kmax

k=km
Ek ≥ Ekm and∑kmax

k=km
Ek

Ekm

= 1 +

∑kmax

k=km+1Ek

Ekm

≤ 1 +
(kmax − km) · Ekm+1

Ekm

= 1 + (kmax − km) · p2km · n
≤ 1 + (lg lg log1/p n+ 1) · p2km · n
∼ 1.

Lemma 7.4. Let k, x be integers satisfying (1) and lg log1/p n is not an inte-
ger. Let Et be a such function of t that Et = E(Zk,t). Then Et is decreasing
for t < lg log1/p n and increasing for t > lg log1/p n. Moreover

tmax∑
t=0

Et ∼ E0,

where tmax = blg log1/p nc.

Proof. Let’s compute the ratio Et+1/Et

Et+1

Et
=

p2k−2t+1 ·
(
x
t+1

)
· nk−t−1

p2k−2t ·
(
x
t

)
· nk−t

= p−2t · n−1 · x− t
t+ 1

.

Obviously for t < lg log1/p n the ratio Et+1/Et tends to 0 as n→∞ and for
t > lg log1/p n the ratio Et+1/Et tends to∞ as n→∞. Recall that lg log1/p n

is not an integer, so t 6= lg log1/p n. Moreover
∑tmax

t=0 Et ≥ E0 and∑tmax

t=0 Et
E0

= 1 +

∑tmax

t=1 Et
E0

≤ 1 +
tmax · E1

E0

= 1 + tmax · p−1 · x · n−1

≤ 1 + lg log1/p n · p−1 · x · n−1

∼ 1.
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Definition 7.2. Let NX be a fixed maximal interval with dimension x of a
random Boolean function f ∈ Bn. Let Zn,x denote a random variable on Bn

such that Zn,x is equal to the count of all maximal intervals of a function f ,
which have nonempty intersection with NX .

Notation 7.2. To abbreviate the notation we denote Zn,x as Z.

Remark 7.1.

Z =
x−1∑
t=0

kmax∑
k=x+1

Zk,t

Using Lemmas 7.3 and 7.4 we obtain following corollary.

Corollary 7.5. Let k, x be integers satisfying (1) and lg log1/p n is not an
integer, then

E(Z) ∼ 1

p
· nlg log1/p n+c,

where −1 < c < −0.9.

Proof. Frist recall that for all values of t and k it holds that t < x and
t < k. Recall that from Lemma 7.3 we have k = km = blg log1/p nc+ 1. Thus
t ≤ km − 1 = blg log1/p nc = tmax. So we have for km = lg log1/p n+ a, where
0 < a < 1,

E(Z) =
x−1∑
t=0

kmax∑
k=t+1

E(Zk,t)

∼ E(Zkm,0)

∼ p2
lg log1/p n+a−1 ·

(
x

0

)
· nlg log1/p n+a

=
1

p
· nlg log1/p n+a−2a

=
1

p
· nlg log1/p n+c,

where −1 < c < −0.9.

We see that from the point of view of expectations the neighbourhood
of given maximal interval NX has following "structure". Almost all maxi-
mal intervals NK from neighbourhood of NX have the dimension equal to
blg log1/p nc + 1 and almost all NK intersects with NX only in one vertex.
Moreover from the Corollary 7.5 and Markov’s inequality we can obtain fol-
lowing upper bound on Z. Recall that Z is the random variable for |Θ(NK)|
and following upper bound is little bit better than was proved in Theorem
6.10.
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Corollary 7.6. If lg log1/p n is not an integer, then for almost all random
Boolean function it holds that

Z < φ(n) · nlg log1/p n+c,

where −1 < c < −0.9 and φ(n) is an arbitrary function of n which satisfies
limn→∞ φ(n) =∞.

Proof. It is direct consequence of Corollary 7.5 and Markov’s inequality, so
the proof is omitted.

Next we should estimate V ar(Z). The best should be to show that
V ar(Zk,t) = o(E2(Zk,t)), because then we get from Chebyshev’s that Zk,t ∼
E(Zk,t) (what should be very useful result). Moreover we do not have to
estimate Zk,t for k < lg log1/p n because of following remark.

Remark 7.2. Using the Lemma 7.2 and Markov’s inequality, reader can
easily obtain that for almost all Boolean functions it holds that Zk,t = 0 if
k < lg log1/p n.

Thus, next goal is to estimate V ar(Zk,t) for k > lg log1/p n (and also
consider the special case k = lg log1/p n). However there is no space in this
thesis for this goal, so it is left for the next works on this field.
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8 Conclusion
We have computed the upper bound on maximal interval in Model B. This
result we used to show the equality of Model A and B from the point of view
of Škoviera’s work in [1]. So we proved for Model B the same as is proved for
Model A in [1], the bounds on dimension of a maximal interval of a random
Boolean function:

lg log1/p n− 1 ≤ k ≤ lg log1/p n+ lg lg log1/p n+ ε,

where ε→ 0 as n→∞.
We used the above result to find upper and lower bound on the num-

ber of maximal intervals intersecting a given maximal interval of a random
Boolean function. We proved that the asymptotic bound of the number is
n(1+φ(n)) log2 log1/p n, where φ(n)→ 0 as n→∞.

This result can be used to estimate complexity and the "quality" of out-
puts of the local algorithms for minimizing d.n.f. (as is shown for example
in [2]), which use only neighbourhood of the first order.

Moreover we started to looking for the way how to obtain bounds on the
size of the neighbourhood of the second (or higher) order of a given maximal
interval of a random Boolean function. Therefore we started to study the
"structure" of neighbourhood. Hopefully, that obtained results will be usefull
for next works on this field.
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Abstrakt

V tejto diplomovej práci uvažujeme o náhodnej Booleanovskej funkcii n pre-
menných, ktorá je splená práve pre m vstupov t.j. |{α̃; f(α̃) = 1}| = m,
pričom realizácia každej takejto náhodnej Booleanovskej funkcie je rovnako
pravdepodobná. Študujeme jej geometrický model, takzvaný intervalový
graf. Pojem intervalového grafu náhodnej Booleanovskej funkcie zadefinoval
Sapozhenko a bol využitý v konštrukciách schém realizujúcich Booleanovské
funkcie. Použitím tohto modelu odhadneme počet maximálnych intervalov,
ktoré majú nenulový prienik s daným maximálnym intervalom náhodnej
Booleanovskej funkcie, a dokážeme, že asymptotický odhad tohto čísla je
n(1+φ(n)) log2 log1/p n, kde p = m/2n a φ(n)→ 0 pre n→∞.

Popri tom sa zaoberáme aj ekvivalenciou tohto pravdepodobnostného
modelu náhodnej Booleanovskej funkcie s iným, už predtým študovaným,
modelom, kde Pr[f(α̃) = 1] = p, pre všetky α̃ ∈ {0, 1}n. Nájdeme pod-
mienky, ktoré musí spĺňať m na to, aby tieto dva modely boli ekvivalentné,
čo znamená, že m/2n v jednom modeli môže byť považované za ekvivalent
pre p v druhom modeli.

Nakoniec sa snažíme detailnejšie analyzovať "štruktúru" okolia prvého
rádu daného maximálneho intervalu náhodnej Booleanovskej funkcie. Naz-
načíme, ako by sa dali dosiahnuté výsledky využiť v ďalších prácach za-
oberajúcich sa odhadom veľkosti okolia druhého resp. n-tého rádu daného
maximálneho intervalu náhodnej Booleanovskej funkcie.

Kľúčové slová. náhodná Booleanovská funkcia, intervalový graf
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