
Department of Computer Science
Faculty of Mathematics, Physics and

Informatics
Comenius University in Bratislava

Broadcasting in radio networks
(Master’s thesis)

Lukáš Poláček

Advisor: Doc. RNDr. Rastislav Královič, PhD. Bratislava, 2009

iii

Čestne prehlasujem, že som túto diplomovú prácu
vypracoval samostatne s použit́ım citovaných zdro-
jov.

. .

iv

Acknowledgment

I would like to thank my advisor Rastislav Královič for proposing this inter-
esting theme and Michal Kolesár for language corrections. I would also like
to thank my friends and family for everything.

v

Abstract

We consider deterministic broadcasting in radio networks, where nodes
can transmit information. A signal from a node can reach other nodes, but
this relation does not have to be symmetric – if node u can reach v, node v
does not have to be able to reach u. Communication is synchronous and if
two or more neighbours of a node transmit to the node in one round, collision
occurs and the node hears nothing.

Finding optimal broadcasting time for a network is known to be NP-hard.
We introduce three algorithms with different complexities that find optimal
broadcasting time for a network. The second part of the thesis focuses on
approximation algorithms in geometric radio networks. We present a global
algorithm and a distributed broadcasting algorithm where nodes have knowl-
edge of all nodes within a certain distance.

Keywords: Broadcasting, radio networks, distributed algorithms, ap-
proximation algorithms

Contents

1 Introduction 1
1.1 Terminology and model description 1
1.2 Previous work and our results 2
1.3 Useful definitions . 4

2 Exact Algorithms 5
2.1 Exponential algorithm . 6

2.1.1 C++ implementation 7
2.2 Backtracking algorithm . 9
2.3 Algorithm with cache . 11

3 Approximation algorithms in GRN 19
3.1 Global polynomial approximation algorithm 23
3.2 Large-knowledge algorithm . 26

4 Summary 29

vi

List of Figures

1.1 Geometric radio network . 2

3.1 Four squares in the mesh that have just one common point
with a circle. 20

3.2 Two examples of an intersection of circle and square. 20
3.3 Circle intersects with both vertical and horizontal lines. 21
3.4 The set of points which are at most r units away from a unit

square. 22
3.5 Partition of the plane with numbering of the tiles 24

vii

Chapter 1

Introduction

Broadcasting is one of the most important network communication primi-
tives. One node of the network, called the source, has to transmit a message
to all other nodes. Remote nodes are informed via intermediate nodes, along
directed paths in the network. One of the basic performance measures of a
broadcasting scheme is the total time, i.e., the number of rounds it uses to
inform all the nodes of the network. The aim of this thesis is to develop al-
gorithms that find optimal broadcast scheme and approximation algorithms
that find a broadcast scheme with bounded broadcasting time.

1.1 Terminology and model description

In the entire thesis we will use the model that was used e.g. in [DP07], [IKP08]
and we will also use some definitions from [SW06]. In [DP07] and [IKP08],
authors fixed a set of ranges {r1, . . . , rρ} in the model of a geometric radio
network. We consider the ranges of a network to be a property of a radio
network, instead of the model.

Throughout the thesis, if a node u is within a node v’s transmission range,
we say that u is reachable from v. We say that v is an in-neighbour of u and
u is an out-neighbour of v. These relations can be modelled by a directed
graph, where nodes are vertices. There is an edge (u, v) if v is reachable
from u. The network modelled by a general directed graph is called a radio
network.

In the case of an approximately flat region without large obstacles, nodes
that can be reached from u are those within a circle of radius r centered at
u, and the positive real r, called the range of u, depends on the power of the
transmitter located at u. These networks are called geometric radio networks
(GRN). An example of such a network can be seen on figure 1.1.

1

CHAPTER 1. INTRODUCTION 2

v0

v1

v2

v3

v4

Figure 1.1: Geometric radio network

Nodes send messages in synchronous rounds. All clocks in nodes show
the same time at any given time. In every round every node acts either as a
transmitter or as a receiver. A node gets a message in a given round, if and
only if, it acts as a receiver and exactly one of its neighbours transmits in this
round. The message received in this case is the one that was transmitted. If
at least two neighbours of a receiving node u transmit simultaneously in a
given round, none of the messages is received by u in this round. In this case
we say that a collision occurred at u.

An algorithm that can operate on the entire network is called global. On
the other hand, in a distributed algorithm, every node runs its own algorithm.
For a fixed real s ≥ 0, called the knowledge radius, we assume that each node
in GRN knows the part of the network within the circle of radius s centered
at it, i.e., it knows the positions, labels and ranges of all nodes at distance
at most s.

1.2 Previous work and our results

It was already proved in [SH97] that establishing optimal broadcasting time is
NP-hard problem even in geometric radio networks. Obvious lower bound for
broadcasting time is the maximum distance of a node from the source, which
is called the eccentricity of the source. In the entire thesis the eccentricity
will be denoted by number D. In [ABNLP91] authors proved that there

CHAPTER 1. INTRODUCTION 3

exist a family of N -node networks of radius 2, such that any deterministic
broadcasting algorithm requires time Ω(log2N). It follows that the lower
bound for broadcasting time is Ω(D + log2N). For symmetric networks,
deterministic algorithm to produce broadcasting scheme with broadcasting
time O(D + log2N) was published in [KDPA07].

Various other scenarios have been studied. In [BDP97, CGG+02, DP07]
authors studied the impact of the zero knowledge on the broadcast time,
i.e. they studied the situation where nodes know only their own label and
in case the network is GRN, also its absolute position. Graphs that require
broadcasting time Ω(N logN) have been showed in [BDP97, CGG+02], but
these graphs are not GRN. Algorithm with broadcasting time O(N(rmax

rmin
)4)

for GRN has been published in [DP07].
Another interesting topic is the recently introduced framework of network

algorithms with advice. The first paper which studied this framework in radio
networks was [IKP08]. For arbitrary radio networks they showed a trade-off
between the size of advice and the time of deterministic broadcasting, by
presenting a broadcasting algorithm whose time is inversely proportional to
the size of advice. More precisely, for any q ∈ O(N) they showed an oracle
which gives advice of size q to the nodes of a network, and an algorithm using
this advice, which performs broadcasting in time O(ND

q
log3N).

This thesis is the first work that studies exact broadcasting algorithms.
In the second chapter we introduce three algorithms. The first one works in
O(M3N) time and O(N2N) space, where M is the number of edges in the
graph of the network. The second algorithm works in 2N

2/2+O(N) time and
O(N2) space. Finally, the third algorithm works in time 2N

2/2K+O(N) and
O(NK) space for a constant K ≥ 2. This algorithm is an extension of the
second algorithm parametrized by a constant K.

The third chapter examines approximation algorithms in GRN. Broad-
casting in GRN was considered, e.g., in [RS94, SH97, DP07]. In [SH97] the
authors proved that scheduling optimal broadcasting is NP-hard even when
restricted to such graphs, and gave an O(N logN) algorithm to schedule an
optimal broadcast when nodes are situated on a line. In [RS94] broadcasting
was considered with nodes randomly placed on a line. Our work is based
mainly on the broadcasting algorithm published in [DP07], whose broadcast-
ing time is O(D(rmax

rmin
)4) where D is the eccentricity of the source node, rmax

is the maximal range and rmin is the minimal range of the nodes. Authors fix
numbers rmax and rmin in the model of GRN, thus they treat these numbers
as constants. They claim that the broadcasting time is O(D), but if rmax
and rmin are not constants, the broadcasting time is O(D(rmax

rmin
)4).

We present a global algorithm, which finds broadcast scheme with broad-
casting time O(D(rmax

rmin
)3). The second algorithm is a distributed algorithm,

CHAPTER 1. INTRODUCTION 4

where knowledge radius is rmax + rmin, i.e. nodes know the labels, positions
and ranges of all nodes within range rmin + rmax. The broadcasting time of
this algorithm is 8 times longer than the broadcasting time of the previous
algorithm, which is also O(D(rmax

rmin
)3).

1.3 Useful definitions

Let a1, . . . , aN and b1, . . . , bN be two integer sequences. We say that a1, . . . , aN
is lexicographically smaller than b1, . . . , bN if there exists j such that aj < bj
and ai = bi for all i < j.

Let A = {a1, . . . , aN} be a finite set, where a1 < a2 < · · · < aN and let
X = {x1, . . . , xk} ⊆ A;x1 < · · · < xk and Y = {y1, . . . , yl} ⊆ A; y1 < · · · < yl
be subsets of A. Let s1, . . . , sN and t1, . . . , tN be integer sequences such that
si = [ai ∈ X] and ti = [ai ∈ Y]. Here [P] is Iverson’s bracket that was
used e.g. in [GKP94]. If P is true then [P] = 1 and [P] = 0 otherwise.
We say that X is lexicographically smaller than Y if sequence s1, . . . , sN is
lexicographically smaller than t1, . . . , tN .

Chapter 2

Exact Algorithms

In this chapter we will discuss algorithms that find optimal broadcasting
scheme for a network. It was already proved in [SH97] that finding optimal
broadcasting scheme is NP-hard even for geometric radio networks. We will
present three algorithms with different complexities. All three work for ar-
bitrary radio networks. The first one finds optimal broadcasting scheme in
O(M3N) time and O(N2N) space, where N is the number of nodes and M is
the number of edges. The second one finds optimal broadcasting scheme in
2N

2/2+O(N) time and O(N2) space. Both algorithms work similarly, but the
main difference is that the second one caches values. The third algorithm is a
mix of both ideas. It caches the most time consuming procedure calls, which
results in time complexity 2N

2/2K+O(N) and memory complexity O(NK) for
a fixed constant K ≥ 2. We see that the performance is scalable—the more
values we cache the faster is the algorithm.

In this chapter we will use the following notation. Denote by G =
(V,E), |V | = N, |E| = M the graph of the radio network and denote by
s the source node. Since we assume that all nodes can eventually hear the
message, the graph should be connected, hence the number of edges is at
least N − 1, thus N = O(M) and O(M + N) = O(M). Denote by GT the
set of nodes in V \ T that have exactly one neighbour in T .

Lemma 2.1. There exists an algorithm with time complexity O(M) and with
memory complexity O(N) that finds the set GX for a given graph G and set
X (the size of the input is not included in the memory complexity).

Proof. For every node in V \X we need to calculate the number of neighbours
in X. At the beginning we set the number of neighbours for every node to
0. We iterate through the set of edges and when we encounter an edge (u, v)
such that u ∈ X, v ∈ V \X we increase the number of neighbours of v. At
the end of the algorithm we select all nodes that have only one neighbour.

5

CHAPTER 2. EXACT ALGORITHMS 6

The slowest part is the iteration through the set of edges, which takes
O(M) operations. We need to store the number of the neighbour for each
node, hence the memory complexity is O(N).

2.1 Exponential algorithm

This algorithm uses dynamic programming technique. Let V, |V | = N is the
set of nodes of the network and s is the source. For each S ⊆ V we will
compute the time of the optimal broadcasting scheme. Denote this number
by p(S). Then

p({s}) = 0

p(S) = min({ p(Y) + 1 | X ⊆ Y ⊂ S ∧GX ∪ Y = S } ∪ { ∞ }) (2.1)

The second equation describes one step of the broadcasting scheme. Sup-
pose that all nodes in Y know the source message. We choose some nodes
from the set Y and these nodes transmit a message. Denote the set of these
nodes by X. The set GX contains all nodes in V that have exactly one neigh-
bour in X, i.e. these are the nodes that will hear the message when all nodes
in X transmit at once. Therefore in the next step nodes Y ∪GX will all be
informed and the optimal broadcast time for Y ∪GX is at most p(Y) + 1.

Straightforward implementation of equations (2.1) can lead to an algo-
rithm with time complexity O(M4N). Let P(V) be the power set of V and
let A1, A2, . . . , A2N be lexicographical ordering of the set P(V). Algorithm
2.1.1 is an implementation with time complexity O(M3N).

Algorithm 2.1.1 Exponential algorithm

Require: G = (V,E), s ∈ V
Ensure: (∀S ⊆ V)r(S) = p(S)
1: for all Y ∈ P(V) do
2: r(Y)←∞
3: end for
4: r({s})← 0
5: r(∅)← 0
6: for i← 1 to 2N do
7: for all X ∈ P(Ai) do
8: r(Ai ∪GX)← min{r(Ai ∪GX), r(Ai) + 1}
9: end for

10: end for
11: return r(V)

CHAPTER 2. EXACT ALGORITHMS 7

Theorem 2.1. Algorithm 2.1.1 is correct.

Proof. We will prove by induction that when i is equal to j, r(Al) = p(Al) for
all l ≤ j. For i = 1 the statement holds, because p(∅) =∞ and r(∞) will also
be equal to∞. Suppose that the statement holds for every number that is at
most j. Let the optimal broadcasting scheme for Aj+1 be the sequence {s} =
B1, B2, . . . , Bk, where Bl denotes the set of nodes that transmit in the l-th
step. By the (k−1)-th step, nodes C = {s}∪

⋃k−1
l=1 GBl

are informed, thus the
optimal broadcast time for Aj+1 is p(C) + 1 and Aj+1 = C ∪GBk

. Since C is
a subset of Aj+1, it is lexicographically smaller than Aj+1. Therefore C = Ac
for c ≤ j. By the induction hypothesis, r(C) was equal to p(C) when i = c,
hence we performed the operation r(C ∪GBk

)← min{r(C ∪GBk
), r(C) + 1}

before i reached j + 1. Therefore r(Aj+1) = p(Aj+1).

Theorem 2.2. Time complexity of algorithm 2.1.1 is O(M3N) and memory
complexity is O(N2N).

Proof. Since every subset of V can be encoded as a bit sequence of length
N , we assume that access to array p is in time N . The first 3 lines perform
O(N2N) operations. Line 6 iterates through every subset and then line 7
iterates through every subset of this subset. Set of size k has 2k subsets.
There are

(
N
k

)
subsets of V of size k, hence the number of executions of

line 8 is
N∑
k=0

(
N

k

)
2k = (1 + 2)N = 3N

In line 8 we need to compute the set GX , which can be done according
to lemma 2.1 in O(M) time. Hence the time complexity of this line is O(M)
and overall complexity is O(M3N). We need to store the whole array p in
the memory and we need N bits to store each set, therefore the memory
complexity is O(N2N).

2.1.1 C++ implementation

Implementation of line 7 can be very easy in real programming languages.
As we mentioned earlier, we will store every subset T of V = {v1, . . . , vN} as
a bit sequence such that i-th bit is 1 if and only if vi ∈ T . Thus we need N
bits to store every subset. In this C++ implementation we use unsigned 32-
bit numbers to store sets, which limits the usage of the program to N ≤ 32.
Let t be a bit sequence corresponding to set T . Then this for-cycle iterates
through all subsets of T :

for (unsigned j = t; j > 0; j = (j - 1) & t)

CHAPTER 2. EXACT ALGORITHMS 8

The cycle starts with the set T represented by bit sequence t. The set
following after set j is determined by the operation (j - 1) & t. Let J =
{vu1 , . . . , vuk

} is the set represented by bit sequence j. Sequence j contains
ones only at positions u1, u2, . . . , uk. The positions are listed from the least
significant bit to the most significant one. What does (j - 1) & t do? The
bit sequence j - 1 has ones at positions 1, 2, . . . , u1 − 1, u2, u3, . . . , uk, i.e.
the least significant one at position u1 was changed to zero and all lower
bits were set to one. This bit sequence corresponds to the lexicographically
smaller subset of V nearest to J . Operation & is the same as an intersection of
two sets, hence the set represented by (j - 1) & t is the lexicographically
smaller subset of T nearest to J . Thus the for-cycle iterates through all
subsets of T in lexicographical order from the biggest to the smallest.

Full C++ implementation of algorithm 2.1.1 follows:

#include <iostream>
#include <bitset>
#include <vector>
using namespace std;

const int size = 32;
void decrease(int &a, int b)
{

a = min(a, b);
}
int main()
{

int n, m, s;
cin >> n >> m >> s;
bitset<size> g[size];
for (int i = 0; i < m; i++)
{

int a, b;
cin >> a >> b;
a--; b--;
g[a][b] = true;

}

unsigned count = (1u << n) - 1;
vector<int> p(count, n + 1);
p[1 << (s - 1)] = 0;
for (unsigned k = 0; k <= count; k++) if (p[k] < n + 1)

for (unsigned j = k; j > 0; j = (j - 1) & k)
{

CHAPTER 2. EXACT ALGORITHMS 9

bitset<size> b(j), q;
for (int i = 0; i < n; i++)
{

int num = 0;
for (int l = 0; l < n && num < 2; l++)

if (b[l] && g[l][i])
num++;

if (num == 1)
q[i] = true;

}
decrease(p[q.to_ulong() | k], p[k] + 1);

}
cout << p[count] << endl;

}

2.2 Backtracking algorithm

We will use backtracking to calculate the result with minimum memory used.
Let Y ⊆ V be a set of nodes that have already heard the source message and
q(Y) be the shortest time to inform the rest of the network V \Y . Procedure
2.2.1 calculates value q(Y) for a set Y and algorithm 2.2.2 calculates optimal
broadcast time for a radio network.

Procedure 2.2.1 OptimalT ime(Y)

Require: G = (V,E), Y ⊆ V
Ensure: v = q(Y)
1: if Y = V then
2: v ← 0
3: else
4: v ←∞
5: for all X ⊆ Y do
6: if GX 6= ∅ then {to avoid infinite loop}
7: v ← min{v,OptimalT ime(Y ∪GX) + 1}
8: end if
9: end for

10: end if
11: return v

Theorem 2.3. Algorithm 2.2.2 calculates the optimal broadcast time for a
radio network.

CHAPTER 2. EXACT ALGORITHMS 10

Algorithm 2.2.2

Require: G = (V,E), s ∈ V
Ensure: Return value is q({s})
1: return OptimalT ime({s})

Proof. We will start by proving that the procedure 2.2.1 is correct. If Y = V ,
all nodes are informed, thus the time required to inform the rest of the net-
work is zero. Otherwise we will calculate the result by trying every possible
transmission. If all nodes in X transmit, nodes in GX will get the message,
because all other nodes have either zero or at least two neighbours in X,
i.e. they either hear nothing or collision occurs. Hence the value q(Y) is the
minimum of all values q(Y ∪ GX) + 1 for all X ⊆ Y and the procedure is
correct.

The algorithm for optimal broadcast time just calls this procedure with
argument {s}, since initially only the source is informed. Since the procedure
returns q({s}), the algorithm is correct.

Theorem 2.4. Time complexity of algorithm 2.2.2 is 2N
2/2+O(N) and mem-

ory complexity is O(N2).

Proof. Recursive computation can be modelled as a tree where nodes are
sets. The root is the set {s}, because we start the algorithm by calling
OptimalT ime({s}). Children of a node have always greater size than their
parent, because in the algorithm we check for condition GX 6= ∅. Let f(i) be
the maximum number of operations needed to compute OptimalT ime(Y)
where |Y | = i. Since sets of smaller size are parents of the sets of bigger
size, we have f(i) ≥ f(i + 1) for 0 ≤ i < N . Since there are 2|Y | subsets
of Y , we will call OptimalT ime(Y ∪ GX) at most 2|Y | = 2i times during
the computation of OptimalT ime(Y). Before each procedure call we need
to calculate GX in time O(M), thus in the worst case we have

f(i) = 2i(f(i+ 1) + cM) (2.2)

for some positive constant c.
The number of operations performed while computing OptimalT ime(V)

is N , therefore we have f(N) = N . This implies

f(1) =21(22(23(. . . (N2N−1 + cM) + . . .) + cM) + cM)

=cM
N−2∑
j=0

2
Pj

i=1 i +N2N(N−1)/2

CHAPTER 2. EXACT ALGORITHMS 11

Since
N−2∑
j=0

2
Pj

i=1 i ≤
(N−1)(N−2)/2∑

i=1

2i = 2(N−1)(N−2)/2+1 − 2

we can bound f(i) by

f(i) ≤cM21+(N−1)(N−2)/2 +N2N(N−1)/2

=2(N−1)(N−2)/2(2cM +N2N)
(2.3)

Since 2cM ≤ 2cN2 = O(2N), the time complexity of the algorithm is
O(N2(N−2)(N−1)/22N) = O(2N(N−1)/2+log2N) = 2N

2/2+O(N). In each call of the
procedure we use O(N) memory to calculate the set GX and the depth of the
recursion is at most N , thus the overall memory complexity is O(N2).

2.3 Algorithm with cache

We have introduced two algorithms for optimal broadcasting scheme in this
chapter. The first one has time complexity O(M3N) and memory complex-
ity O(N2N). The second one has time complexity 2N

2/2+O(N) and memory
complexity O(N2). The main difference between these algorithms is that the
second one does not cache any results, while the first caches all results. In
this section we will introduce a modification of the second algorithm that
will cache some results, which will lead to better time complexity but worse
memory complexity. A big advantage of this algorithm is that the complexity
is scalable.

We will modify procedure 2.2.1, such that it will remember, which sets
GX it already used in the procedure call OptimalT ime(Y ∪ GX). As we
mentioned in the discussion about complexity of algorithm 2.2.2, the time
needed to compute value OptimalT ime(S) in the worst case for a small set is
greater than the time needed for a bigger set. Therefore we will remember the
smallest sets GX . The number of the remembered sets will be determined by
a fixed constant K ≥ 2. More precisely, we will remember that we already
computed value OptimalT ime(Y ∪ GX), if and only if |GX | < K. Since
GX ⊆ V \ Y and |V | = N , the size of the cache will be

S(N − |Y |, K) =
K−1∑
i=1

(
N − |Y |

i

)
Since S(N − |Y |, K) = Θ(2N−|Y |) for K > (N − |Y |)/2, it is better to use
algorithm 2.1.1 in the case when K > N/2.

CHAPTER 2. EXACT ALGORITHMS 12

For small Y the size of the cache can be larger than 2|Y | and it can happen
that the cached values will not be used, thus the performance will be worse
than the performance without the cache. Hence we will not use the cache if
S(N − |Y |, K − 1) is bigger than 2|Y |.

Procedure 2.3.1 OptimalT ime(Y)

Require: G = (V,E), Y ⊆ V
Ensure: v = q(Y)
1: if Y = V then
2: v ← 0
3: else
4: v ←∞
5: c← [

∑K−1
i=1

(
N−|Y |

i

)
≤ 2|Y |]

6: for all X ⊆ Y do
7: if GX 6= ∅ then {to avoid infinite loop}
8: if c ∧ |GX | < K then
9: if GX is not in the cache then

10: v ← min{v,OptimalT ime(Y ∪GX) + 1}
11: insert GX into the cache
12: end if
13: else
14: v ← min{v,OptimalT ime(Y ∪GX) + 1}
15: end if
16: end if
17: end for
18: end if
19: return v

Algorithm 2.3.2

Require: G = (V,E), s ∈ V
Ensure: Return value is q({s})
1: return OptimalT ime({s})

Theorem 2.5. Procedure 2.3.1 returns value q(Y).

Proof. Since this procedure differs from procedure 2.2.1 only in the use of
the cache, we need to show that after this change the procedure remains
correct. During the procedure call OptimalT ime(Y) we will do the operation
v ← min{v,OptimalT ime(Y ∪GX) + 1} only if GX is not yet in the cache.

CHAPTER 2. EXACT ALGORITHMS 13

The repeated use of the value OptimalT ime(Y ∪ GX) + 1 has no effect on
v, therefore we only need to do this operation once. Hence the procedure is
correct.

Corollary 2.1. Algorithm 2.3.2 is correct.

Lemma 2.2. Let A be a set {a1, . . . , aN} where a1 < a2 < · · · < aN . Let
B be a lexicographical ordering of all subsets of A of size at most L. Then
there is an algorithm with time complexity O(L2) that for a given subset of
A of size at most L calculates the position in the ordering B.

Proof. Let C = {ai1 , . . . , aik} be a subset of A. Let c1, . . . , cN be a bit
sequence corresponding to set C, i.e. cm ⇔ am ∈ C or, using Iverson’s
bracket, cm = [am ∈ C]. By the definition of lexicographical ordering of
sets, to calculate the position of C in the ordering B we need to calculate
the number of bit sequences of length N that contain at most L ones and
are lexicographically smaller than c1, . . . , cN . A bit sequence d1, . . . , dN is
smaller than c1, . . . , cN if there is j such that dj < cj and dm = cm for all m
less than j. If cj = 0 then there is no dj such that dj < cj, therefore the only
interesting case is when cj = 1 and dj = 0. Let us count the number of such
sequences d1, . . . , dN . Since the first j − 1 values are the same as sequence
c1, . . . , cj−1 and dj = 0, the only values that are not fixed are at positions
beyond position j.

By the definition of C = {ai1 , . . . , aik}, the number j is equal to some il.
Thus we can place at most L − l ones at positions j + 1, j + 2, . . . , N . The
number of ways how this can be done is

L−l∑
m=0

(
N − il
m

)
To count the final result we should sum the above result through all l ∈
{1, . . . , k}, thus we get

k∑
l=1

L−l∑
m=0

(
N − il
m

)
We assume that binomial coefficients are already computed and stored in
a two-dimensional array. Hence the time complexity to compute the above
sum is k ·L ≤ L2 = O(L2), thus the time complexity of the whole algorithm
is O(L2).

Theorem 2.6. The time complexity of algorithm 2.3.2 is 2N
2/2K+O(N) and

the memory complexity is O(NK).

CHAPTER 2. EXACT ALGORITHMS 14

Proof. According to [GKP94] there is no closed form for the partial sum of
a row of a Pascal’s triangle. But we can bound the size of the cache by using
the simple inequality (

N − |Y |
j

)
≤ (N − |Y |)j ≤ N j

and we get

S(N − |Y |, K) =
K−1∑
i=1

(
N − |Y |

j

)
≤

K−1∑
i=1

N j = O(NK−1)

We will store the cache as a boolean array of length S(N − |Y |, K), where
the i-th bit determines if the i-th set is in the cache. The number of the
set is the position of the set in the lexicographical ordering of all subsets of
V \ Y of size at most K − 1. The depth of the recursion is at most N , hence
the overall memory complexity is O(NK).

Let f(i) be the worst case time complexity of OptimalT ime(Y) where
|Y | = i. We will use the cache only if

∑K−1
j=1

(
N−i
j

)
≤ 2i and according to

lemma 2.2 the time required to calculate the position of a set GX in the cache
is O(K2) = O(1), therefore the performance of this algorithm will be in the
worst case slower than the algorithm 2.2.2 only by a constant factor. Hence
we can use equation (2.2) to bound the time complexity for all i:

f(i) ≤ 2i(f(i+ 1) + cM)

Let T (N,K) be the first time when we use the cache, i.e. T (N,K) is
equal to the smallest h such that

∑K−1
j=1

(
N−i
j

)
≤ 2h. For all i ≥ T (N,K)

we can bound f(i) with another inequality. Since we use the cache and
f(j) ≥ f(j + 1), the worst case for |Y | = i looks as follows. Every value in
the cache will be used exactly once and the remaining procedure calls will
be OptimalT ime(Y ∪GX) where |GX | = K. This implies

f(i) =
K−1∑
j=1

(
N − i
j

)
f(i+ j) +

(
2i −

K−1∑
j=1

(
N − i
j

))
f(i+K) + 2icM

=
K−1∑
j=1

(
N − i
j

)
(f(i+ j)− f(i+K)) + 2if(i+K) + 2icM (2.4)

The first part of the equation corresponds to the cached values. We cache
all GX such that |GX | < K, therefore the number of operations is at most∑K−1

j=1

(
N−i
j

)
f(i+ j). The remaining part of the 2i procedure calls will in the

CHAPTER 2. EXACT ALGORITHMS 15

worst case be for GX of size K, which is at most (2i−
∑K−1

j=1

(
N−i
j

)
)f(i+K)

operations. Finally, before each of the 2i procedure calls we have to find the
set GX , which takes at most O(M) operations.

Since in most cases
∑K−1

j=1

(
N−i
j

)
� 2i, we will try to simplify f(i):

f̂(i) =

{
2if̂(i+K), i ≤ N − 1

1, i ≥ N

This simple recurrence leads to f̂(i) = 2
Pb(N−i)/Kc

j=0 i+jK . The sum
∑b(N−i)/Kc

j=0 i+
jK is a sum of an arithmetic progression. Let a1, a2, . . . , ab be an arithmetic
progression. Then the sum of this progression is b·(a1+ab)/2, i.e. the product
of the length and the average of the first and the last number. The length
of progression i, i+K, . . . , i+ b(N − i)/KcK can be bounded by N−i+K

K
and

the average of the first and last number can be bounded by (N + i)/2. Hence

b(N−i)/Kc∑
j=0

i+ jK ≤ (N + i)(N − i+K)/2K

whence we get
f̂(i) ≤ 2(N+i)(N−i+K)/2K

We will use this result and write f(i) as a product of two functions

f(i) = 2(N+i)(N−i+K)/2Kg(i)

and try to estimate g(i). Since f(i) = 0 for i > N and f(N) = N , we have
g(i) = 0 for i > N and g(N) = N2−N . By (2.4) we have

2(N+i)(N−i+K)/2Kg(i) =

K−1∑
j=1

(
N − i
j

)(
g(i+ j)2(N+i+j)(N−i−j+K)/2K − g(i+K)2(N+i+K)(N−i)/2K)

+ 2i+(N+i+K)(N−i)/2Kg(i+K) + 2icM (2.5)

for 1 ≤ i ≤ N −1. Dividing both sides of the equation with 2(N+i)(N−i+K)/2K

yields

g(i) =
K−1∑
j=1

(
N − i
j

)(
g(i+ j)

2j(j+2i−K)/2K
− g(i+K)

2i

)
+ g(i+K) + cM2−(N+i+K)(N−i)/2K (2.6)

CHAPTER 2. EXACT ALGORITHMS 16

We will now prove that for i ≥ K2 logN the cache will be used. Since

2i ≥ 2K
2 logN = NK2

> NK ≥ S(N,K)

the cache will be used. Hence for i ≥ K2 logN we can use equations (2.4)
and (2.5).

We will prove by induction that g(i) ≤ 22N−i for K2 logN ≤ i ≤ N and
sufficiently large N . We have g(N) = 2−N ≤ 2N , hence the basis of the
induction holds. Now assume that this statement holds for every number
that is at least i+ 1. By (2.6), it follows that

g(i) ≤
K−1∑
j=1

(
N − i
j

)
22N−i−j

2j(j+2i−K)/2K
+ 22N−i−K + cM2−(N+i+K)(N−i)/2K

=22N−i

(
K−1∑
j=1

(
N − i
j

)
1

2j(j+2i+K)/2K
+

1

2K
+

cM

2(N+i+K)(N−i)/2K+2N−i

)
(2.7)

Since 1 ≤ j and
(
N−i
j

)
≤ N j, we get

K−1∑
j=1

(
N − i
j

)
1

2j(j+2i+K)/2K
≤ 1

2(2i+K)/2K

K−1∑
j=1

N j

2j/2K

=
1

2(2i+K)/2K

K−1∑
j=1

(
N

21/2K

)j
≤ 1

2(2i+K)/2K

(
N

21/2K

)K
=

NK

2(2i+2K)/2K

Since i ≥ K2 log2N , it follows that

NK

2(2i+2K)/2K
≤ NK

2K log2N+1
=

NK

2NK
=

1

2

which implies
K−1∑
j=1

(
N − i
j

)
1

2j(j+2i+K)/2K
≤ 1

2
(2.8)

CHAPTER 2. EXACT ALGORITHMS 17

Finally, we will bound the last part of the equation (2.7). We have

cM

2(N+i+K)(N−i)/2K+2N−i ≤
N2

2(N+i+K)(N−i)/2K+2N−i

=
2d+2 log2N

2(N2+5KN−i2−3iK)/2K

=
1

2(N2+5KN−i2−3iK−4K log2N−2dK)/2K

(2.9)

Since

N2 + 5KN − i2 − 3iK − 4K log2N − 2dK

= N(N + 5K)− i(i+ 3K)− 4K log2N − 2dK

= N(N + 3K)− i(i+ 3K) + 2KN − 4K log2N − 2dK

and i < N , we have

N(N+3K)−i(i+3K)+2KN−4K log2N−2dK > 2KN−4K log2N−2dK

K is a constant, hence

(2KN − 4K log2N − 2dK)/2K ≥ 2

for sufficiently large N . Thus

cM

2(N+i+K)(N−i)/2K+2N−i ≤
1

2(N2+5KN−i2−3iK−4K log2N−2dK)/2K
≤ 1

22
(2.10)

Finally, by (2.7), (2.8), (2.10) and K ≤ 2, we get

g(i) ≤ 22N−i
(

1

2
+

1

2K
+

1

4

)
≤ 22N−i

Now we can also bound f(i) for K2 log2N ≤ i ≤ N and sufficiently
large N :

f(i) = g(i)2(N+i)(N−i+K)/2K

≤ 2(N+i)(N−i+K)/2K+2N−i = 2(N2+5KN−i2−iK)/2K

For i < K2 log2N we can use bounds from 2.2.1, because the performance
of the algorithm using cache will not be worse than the performance of the
algorithm that does not use the cache. Let L = K2 log2N . By (2.2), we have

f(i) = 2i(2i+1(. . . (f(L) + cM) + . . .) + cM)

= cM

L∑
j=i

2
Pj

k=i k + f(L)2
PL

k=i k

CHAPTER 2. EXACT ALGORITHMS 18

The complexity of the whole algorithm is bounded by f(1), because we
start the search with the set {s}:

f(1) =cM
L∑
j=1

2j(j−1)/2 + f(L)2(L)(L−1)/2

=(cM + f(L))2L(L−1)/2+1

Since cM = O(f(L)), we get

f(1) =O(2(N2+5KN−L2−LK)/2K)2L(L−1)/2+1

=O(2(N2+5KN+KL2−2LK−L2+2K)/2K)

Since K is a constant and L = O(log2N), we get

f(1) = 2(N2+5KN)/2K+O(logN) = 2N
2/2K+O(N)

It follows that the time complexity of the algorithm is 2N
2/2K+O(N).

Chapter 3

Approximation algorithms in GRN

In this chapter we consider broadcast schemes that are not optimal. We
present a global polynomial algorithm that produces broadcast scheme with
broadcasting time O(D(rmax

rmin
)3) and also a distributed algorithm that per-

forms broadcast in the same time O(D(rmax

rmin
)3). In the second algorithm we

assume that all nodes know positions, labels and ranges of all nodes within
distance rmax + rmin. Since the optimal time is at least D, our algorithms
have approximation ratio O((rmax

rmin
)3).

Lemma 3.1. Let P be a partition of a plane into a mesh of unit squares. Let
C be a circle with radius r arbitrarily placed in the plane. Then the number
of unit squares in partition P that are fully inside C is at least πr2− 8r− 6.

Proof. All unit squares in partition P can be divided into 3 sets G1, G2 and
G3. Denote by S the centre of the circle C. In the first set G1 are the squares
that do not have common point with disk C, i.e. every point in these squares
is farther from S than r. The second set G2 consists of squares that intersect
with circle C and are not fully inside C, i.e. points of a square in G2 are both
inside and outside C. Finally, the third set G3 consists of squares that are
fully inside C.

Let v be the number of times C intersects with vertical edges and let h be
the number of times C intersects with horizontal edges. Each edge belongs to
exactly two squares, hence the total number of intersection points is 2(h+v).
This number is the “total number of intersections” of C with the squares in
G2. It is easy to see that each corner intersection is counted twice, because
two edges intersect in the corner. All other intersections are counted once.

At most 4 squares in G2 can have exactly one intersection point with circle
C (see figure 3.1). There are also squares with only one intersection point in
the corner, but as we said earlier, we will count the corner intersection as two

19

CHAPTER 3. APPROXIMATION ALGORITHMS IN GRN 20

Figure 3.1: Four squares in the mesh that have just one common point with
a circle.

Figure 3.2: Two examples of an intersection of circle and square.

intersection points. All other squares in G2 intersect with circle C at least
two times (see figure 3.2). Hence the total number of intersection points of
all squares in G2 with the circle C is at least 2(|G2| − 4) + 4.

2(|G2| − 4) + 4 ≤ 2(h+ v)

|G2| − 2 ≤ h+ v (3.1)

The horizontal and vertical edges of the squares in P form parallel lines
one unit away from each other. The circle C intersects each line at most two
times and there are b2r + 1c horizontal and vertical lines within radius r of
the circle C (see figure 3.3). Thus we get another pair of inequalities:

h ≤ 2b2r + 1c (3.2)

v ≤ 2b2r + 1c (3.3)

Finally, from inequalities 3.1, 3.2 and 3.3 we get:

|G2| − 2 ≤ 4b2r + 1c ≤ 8r + 4

|G2| ≤ 8r + 6 (3.4)

CHAPTER 3. APPROXIMATION ALGORITHMS IN GRN 21

Figure 3.3: Circle intersects with both vertical and horizontal lines.

Let A be the set of points that are inside C but not inside one of the
squares in G2. The area of C is πr2 and from (3.4) we get

|A| = πr2 − |G2| ≥ πr2 − 8r − 6

By the definition of A, all points of squares from G3 form set A. Thus we
have

|G3| ≥ πr2 − 8r − 6

Lemma 3.2. Let P be a partition of a plane into a mesh of unit squares. Let
S be a square in the partition P and let C is the set of points that are at most
r units away from S, i.e. the closest point from S is at most r units away.
Then the number of squares in partition P that have at least one common
point with C is at most πr2 + 12r + 9.

Proof. We will divide all squares in partition P into 3 groups G1, G2 and G3.
In the first group G1 are the squares that do not have any common point
with C, i.e. every point in these squares is farther from S than r. The second
group G2 consists of squares whose points are both inside and outside C.
Finally, the third group G3 consists of squares that are fully inside C.

The size of G3 can be bounded by the area of C. Each square in G3 has
to be fully inside C, hence

|G3| ≤ |C| (3.5)

The shape of C can be seen on figure 3.4. We see that C is a union of two
rectangles B1B2B5B6, B3B4B7B8 and four quarter circles. These four quarter

CHAPTER 3. APPROXIMATION ALGORITHMS IN GRN 22

B2

B1

A1

B4 B3

A2

B6

B5

A3

B8B7

A4

Figure 3.4: The set of points which are at most r units away from a unit
square.

circles have centres in points A1, A2, A3 and A4 and their union forms a full
disk. Union of rectangles B1B2B5B6, B3B4B7B8 has area 4r+ 1, because the
two rectangles have size (2r + 1)× 1 and their intersection is a unit square.
Thus the area of C is πr2 + 4r + 1 and by (3.5) we have

|G3| ≤ πr2 + 4r + 1 (3.6)

To bound the size of G2 we will use arguments from lemma 3.1. Since
the four quarter circles with centres in A1, A2, A3, A4 form together a cir-
cle, by inequality 3.4 the number of squares that intersects with these four
quarter circles is at most 8r + 4. There are four other squares that be-
long to the set G2. These four squares are those that intersect with lines
B1B2, B3B4, B5B6, B7B8. Hence

|G2| ≤ 8r + 4 + 4 = 8r + 8

and finally by (3.6), it follows that

|G2|+ |G3| ≤ πr2 + 12r + 9 (3.7)

CHAPTER 3. APPROXIMATION ALGORITHMS IN GRN 23

3.1 Global polynomial approximation algorithm

In this section we will present a global polynomial algorithm that finds broad-
cast scheme with broadcast time O(D(rmax

rmin
)3) for a geometric radio network,

where D is the eccentricity of the source, rmax is the maximal range and rmin
is the minimal range of the nodes.

Theorem 3.1. Let G is a geometric radio network with source eccentricity D.
There exists a global polynomial algorithm which finds broadcast scheme with
broadcast time O(Dx3), where x = rmax/rmin, rmax is the maximal range and
rmin is the minimal range of all nodes in G.

Proof. We will use the following construction: partition the plane into a mesh
of squares of side rmin/

√
2, called tiles. There are many such partitions, use

any of them. Each node now belongs to at least one tile. There are some
nodes lying on the edges of the tiles and these nodes belong to two or more
tiles. Nodes lying on vertical edges will belong to the right tile and nodes
lying on horizontal edges will belong to the upper tile. Nodes lying on both
types of edges, thus lying in the corner of a square, will belong to the upper
right tile.

Observe that the points that are farthest away from each other in the
tile are rmin units away from each other, hence every two nodes that are in
the same tile can communicate with each other. We will number tiles in the
partition such that tiles with the same number will be at least 2rmax units
away from each other. We can number the tiles using A(x)2 numbers where

A(x) = A

(
rmax
rmin

)
=

⌈
2
√

2rmax
rmin

+ 1

⌉
= d2
√

2x+ 1e

We will fill theA(x)×A(x) square with numbers from the set {0, 1, . . . , A(x)2−
1} as shown on figure 3.5 and repeat this pattern throughout the plane.
The example on figure 3.5 uses numbers 0, 1, . . . , 24, hence in this case
d2
√

2x+ 1e = 5.
The broadcast scheme works as follows. Every node will be either in the

state informed or uninformed. Initially, all nodes except the source node
are uninformed, i.e. they did not hear the source message yet. The tile is
informed if all nodes in the tile are informed. The broadcast scheme will
consist of phases that will be divided into rounds. Phases are numbered
from 0 to A(x)2 − 1. In the i-th phase only nodes in tiles numbered i can
transmit. Additionally, only tiles that contain at least one informed node
can transmit. After phase number A(x)2−1 ends, phase 0 starts again. This
will happen D + 1 times, thus the total number of phases is (D + 1)A(x)2.

CHAPTER 3. APPROXIMATION ALGORITHMS IN GRN 24

0

1

2

3

4

0

1

2

3

4

0

5

6

7

8

9

5

6

7

8

9

5

10

11

12

13

14

10

11

12

13

14

10

15

16

17

18

19

15

16

17

18

19

15

20

21

22

23

24

20

21

22

23

24

20

0

1

2

3

4

0

1

2

3

4

0

5

6

7

8

9

5

6

7

8

9

5

10

11

12

13

14

10

11

12

13

14

10

15

16

17

18

19

15

16

17

18

19

15

20

21

22

23

24

20

21

22

23

24

20

0

1

2

3

4

0

1

2

3

4

0

Figure 3.5: Partition of the plane with numbering of the tiles

Let T is a tile that can transmit in the current phase, i.e. the number of
this tile is the same as the number of the current phase. In the first round
the node in T with the smallest label that is informed transmits the source
message. Since the length of the side of the tile is rmin/

√
2, all nodes in the

tile T will hear the message, thus they enter the informed state (unless they
had not entered the informed state earlier).

In the second round the node t̂ in the tile T with the lowest label amongst
the nodes in T with the largest range transmits the source message. Let F
be the set of tiles that were fully covered by this transmission, i.e. all nodes
in the tiles in F heard the message.

Let H is the set of tiles, such that they are reachable from tile T , i.e.
for each tile S in H there exists u ∈ S and v ∈ T such that u is reachable
from v. In the remaining rounds we will reach all tiles in H that have not
been covered by the transmission in round 2. These tiles are in the set
H \ F = {h1, . . . , hm}.

By the definition of H, for each tile hi there exists a node ti ∈ T such
that at least one node in hi is reachable from ti. In the next m rounds, nodes
t1, t2, . . . , tm will transmit the source message.

Let R be the largest range of a node in T . By lemma 3.2, the number of
tiles reachable from T is at most r2 + 12r + 1 where r = R

r1/
√

2
, hence

|H| ≤ πr2 + 12r + 11

By lemma 3.1, the number of tiles fully covered by broadcast of node t̂ is at

CHAPTER 3. APPROXIMATION ALGORITHMS IN GRN 25

least r2 − 8r − 4, hence
|F | ≥ πr2 − 8r − 4

It follows that

|H \ F | ≤ πr2 + 12r + 11− πr2 + 8r + 4 = 20r + 15 =

= 20

(
R

rmin/
√

2

)
+ 15 ≤ 20

(
rmax
√

2

rmin

)
+ 15 = 20

√
2x+ 15 (3.8)

|H \F | is an integer, hence |H \F | ≤ b20
√

2xc+15. There are two rounds
before these |H \ F | rounds, hence the number of rounds needed to reach at
least one one in all tiles reachable from T is at most b20

√
2xc+17. The overall

broadcast time of the broadcast scheme is (D+1)A(x)2(b20
√

2xc+17), which
is O(Dx3).

The algorithm to generate the broadcast scheme performs only operations
working in polynomial time: select a node with the lowest label from a given
set of nodes, partition the plane into tiles, etc. These polynomial operations
are performed once, for all tiles that contain at least one node or for some
pairs of tiles that contain at least one node. Since the number tiles that
contain at least one node is O(N), the overall complexity is polynomial in
the number of nodes.

To finish the proof of the lemma we need to prove that the broadcast
scheme is correct, i.e. all nodes will eventually get the source message. We
start by proving that there will be no interference. Suppose the contrary.
Let there be a node u such that at least two his in-neighbours transmit.
Denote these two nodes by v, w (if there are more than two in-neighbours
transmitting, take any pair). The distance from v and w to u is at most rmax.
By triangle inequality, the distance from v to w is at most 2rmax. If both
v and w are transmitting, the numbers of their tiles have to be the same,
because only tiles with the same number can transmit in the same phase. The
distance of two tiles with the same number is more than (A(x)− 1)rmin/

√
2,

which is equal to

(A(x)− 1)
rmin√

2
= (d2

√
2x+ 1e − 1)

rmin√
2

=

=

⌈
2
√

2
rmax
rmin

⌉
rmin√

2
≥

(
2
√

2rmax
rmin

)
rmin√

2
= 2rmax (3.9)

We have a contradiction, because the distance of v and w is at most 2rmax.
Thus there will be no interference during the execution of the broadcast
scheme.

CHAPTER 3. APPROXIMATION ALGORITHMS IN GRN 26

Let Li be the set of nodes that are at most i hops away from the source
node. We will prove by induction that after i ·A(x)2 + j phases and 1 round,
all nodes in Li with tile number j are informed. At the beginning, only the
source node has the source message, thus for i = 0 the statement holds.
Suppose that the statement holds for i. By the broadcast scheme, in the
rounds 2, 3, . . . , b20

√
2xc + 17 all tiles that are within reachability distance

of a tile will contain at least one informed node. Hence at the end of phase
(i+ 1)A(X)2, all tiles within reachability distance of Li will contain at least
one informed node. In the first round of each of the next A(x)2 phases, all
these tiles will become informed, because they contain at least one informed
node. Thus all nodes in Li+1 will be informed.

The broadcast ends after (D+ 1)A(x)2 phases, hence all nodes in LD will
eventually get the source message. By the definition of D, LD is the set of
all nodes in the network, thus the broadcast scheme is correct.

3.2 Large-knowledge algorithm

In this section we assume that all nodes know labels, positions and ranges of
all nodes within range rmax+rmin. We will introduce a distributed algorithm,
with broadcast time O(Dx3), where x = rmax

rmin
. It will be a modification of the

algorithm from previous section. We cannot repeat the construction from the
previous algorithm where the node with the lowest label that received the
source message in the previous A(x)2 phases transmits the source message in
the first round of the phase. This is not possible, because nodes in the tile do
not know, which nodes heard the source message. In this modified algorithm,
node with the lowest label which heard the source message does not wait for
the phase with the right number to begin, but immediately informs all nodes
in the tile. This modification increases the broadcast time by a factor of 8.

Theorem 3.2. Let C be a geometric radio network, where all nodes know
labels, positions and ranges of all nodes within range rmax + rmin. Then
there exists a distributed deterministic broadcasting algorithm that performs
broadcasting in O(D(rmax

rmin
)3)

Proof. Every node will execute the same algorithm. We will partition the
plane into a mesh of squares of side rmin/

√
2, called tiles such that the edges

of the squares are parallel to x-axis and y-axis and one square has a corner at
position (0, 0). Each node now belongs to at least one tile. There are some
nodes lying on the edges of the tiles and these nodes belong to two or more
tiles. Nodes lying on vertical edges will belong to the right tile and nodes
lying on horizontal edges will belong to the upper tile. Nodes lying on both

CHAPTER 3. APPROXIMATION ALGORITHMS IN GRN 27

types of edges, thus lying in the corner of a square, will belong to the upper
right tile.

We will number the tiles such that every two tiles are at least 4rmax unit
away from each other. We can do this using B(x)2 numbers where

B(x) = d4
√

2x+ 1e =

⌈
4
√

2rmax
rmin

+ 1

⌉
=

We will fill theB(x)×B(x) square with numbers from the set {0, 1, . . . , B(x)2−
1} as shown on figure 3.5 and repeat this pattern throughout the plane. This
construction will ensure that all tiles with the same number will be at least
4rmax units away from each other.

The broadcast scheme will consists of phases. We start with phase number
0, continue with number 1 and so on. After we reach phase number B(x)2−1,
we start with 0 again. This will happen D times, hence the total number of
phases is DB(x)2.

Each phase will consist of b40
√

2xc + 31 rounds. In phase number j, we
will start the transmission from informed tiles numbered j. Let T be an
informed tile with number j. The nodes will choose a node t̂ with the lowest
label in T with the largest range. This is possible, since every node in T has
knowledge about all nodes in T . Node t̂ transmits the source message. Let
F be the set of tiles that are fully covered by this transmission. All tiles that
are in F enter the informed state, unless they did not enter it before. Nodes
that are in tiles that are not in F are not allowed to enter informed state.

Let H be the set of tiles, such that they are reachable from tile T , i.e.
for each tile S in H there exists u ∈ S and v ∈ T such that u is reachable
from v. In the remaining rounds we will reach all tiles in H that have not
been covered by the transmission in the first round. These tiles are in the
set H \ F = {h1, . . . , hm}.

Let ti ∈ T and vi ∈ hi be nodes such that vi is reachable from ti and the
pair (ti, vi) is lexicographically smallest. By the definition of hi, such pair
will exist. Since nodes have enough information about all nodes within range
rmax + rmin, every node in T will choose the same pair (ti, vi). In round 2i
node ti transmits the source message. In round 2i+ 1 node vi transmits the
source message and tile hi enters informed state, unless it did not enter it
before.

We will now bound the size of the set H \ F . Let R be the largest range
of a node in T . By lemma 3.2, the number of tiles reachable from T is at
most r2 + 12r + 1 where r = R

r1/
√

2
, hence

|H| ≤ πr2 + 12r + 11

CHAPTER 3. APPROXIMATION ALGORITHMS IN GRN 28

By lemma 3.1, the number of tiles fully covered by transmission in round 1
is at least r2 − 8r − 4, hence

|F | ≥ πr2 − 8r − 4

It follows that

|H \ F | ≤ πr2 + 12r + 11− πr2 + 8r + 4 = 20r + 15 =

= 20

(
R

rmin/
√

2

)
+ 15 ≤ 20

(
rmax
√

2

rmin

)
+ 15 = 20

√
2x+ 15 (3.10)

We need to perform 2|H \F |+ 1 rounds, hence the maximum number of
rounds is 40

√
2x + 31. As there are DB(x)2 phases, the algorithm consists

of DB(x)2(40
√

2x+ 31) rounds, which is O(Dx3) rounds.
Now we will prove that the broadcast scheme is correct. We start by

proving that there will be no interference. Let j be the number of a phase.
In rounds 1, 2, 4, 6, . . . only nodes in tiles with number j transmit. Since
their distance is at least 4rmax, there will be no interference in these rounds.
In rounds 3, 5, 7, . . . nodes that are at most rmax units away from tiles with
number j will transmit. Hence the distance of any two transmitting nodes is
at least 4rmax − 2rmax = 2rmax units. Thus there will be no interference.

Let Li be the set of nodes that are at most i hops away from the source.
By the beginning of the algorithm, only the source node is informed. In
40
√

2x+ 31 rounds of a phase number j all tiles reachable from all informed
tiles with number j become informed. With this information it is easy to
prove by induction that by the phase number iB(x)2, all nodes in Li are
informed. Hence by the phase DB(x)2, all nodes in the network will be in
the informed state and the algorithm is correct.

Chapter 4

Summary

Broadcasting in radio networks has been studied in many papers in the recent
years. It was proved in [SH97] that establishing optimal broadcast scheme
is NP-hard, even in geometric radio networks. This thesis is the first one to
study various algorithms for optimal broadcast scheme. In the second chapter
we have introduced three algorithms. The first one works in time O(M3N)
and memory O(N2N). The second algorithm works in 2N

2/2+O(N) time and
O(N2) space. Finally, the third algorithm works in time 2N

2/2K+O(N) and
O(NK) space for a constant K ≥ 2. This algorithm is an extension of the
second algorithm parametrized by a constant K.

Since establishing optimal broadcast time is known to be NP-hard, mainly
approximation algorithms have been studied. Obvious lower bound for broad-
cast time is the eccentricity of the source D. Additionally, in [ABNLP91]
authors proved that there exists a family of N -node networks of radius 2,
such that any deterministic broadcasting algorithm requires time Ω(log2N).
For symmetric networks, deterministic algorithm to produce broadcasting
scheme with broadcasting time O(D + log2N) was published in [KDPA07].

Our work was based mainly on the broadcasting algorithm published in
[DP07]. Authors claimed that broadcasting time is O(D), but they treated
the ration rmax

rmin
as a constant, where rmax is the maximal range and rmin is

the minimal range of the nodes. The broadcasting time of the algorithm is
actually O(D(rmax

rmin
)4).

We have presented a global algorithm, which finds broadcast scheme with
broadcasting time O(D(rmax

rmin
)3). The second algorithm in the third chapter

was a distributed algorithm, where nodes know the labels, positions and
ranges of all nodes within range rmin + rmax. The broadcasting time of this
algorithm is also O(D(rmax

rmin
)3). It remains an open question if this can be

reduced both in global and distributed setting further to O(D(rmax

rmin
)2) or even

less.

29

Bibliography

[ABNLP91] Noga Alon, Amotz Bar-Noy, Nathan Linial, and David Peleg.
A lower bound for radio broadcast. J. Comput. Syst. Sci.,
43(2):290–298, 1991.

[BDP97] Danilo Bruschi and Massimiliano Del Pinto. Lower bounds for
the broadcast problem in mobile radio networks. Distrib. Com-
put., 10(3):129–135, 1997.

[CGG+02] Bogdan S. Chlebus, Leszek Gasieniec, Alan Gibbons, Andrzej
Pelc, and Wojciech Rytter. Deterministic broadcasting in ad
hoc radio networks. Distrib. Comput., 15(1):27–38, 2002.

[DP07] Anders Dessmark and Andrzej Pelc. Broadcasting in geometric
radio networks. J. of Discrete Algorithms, 5(1):187–201, 2007.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik.
Concrete Mathematics: A Foundation for Computer Science.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1994.

[IKP08] David Ilcinkas, Dariusz R. Kowalski, and Andrzej Pelc. Fast ra-
dio broadcasting with advice. In SIROCCO ’08: Proceedings of
the 15th international colloquium on Structural Information and
Communication Complexity, pages 291–305, Berlin, Heidelberg,
2008. Springer-Verlag.

[KDPA07] Kowalski, Dariusz, Pelc, and Andrzej. Optimal deterministic
broadcasting in known topology radio networks. Distributed
Computing, 19(3):185–195, January 2007.

[RS94] Krishnamurthi Ravishankar and Suresh Singh. Broadcasting on
[0,l]. In Proceedings of the international workshop on Broadcast-
ing and gossiping 1990, pages 299–319, New York, NY, USA,
1994. Elsevier North-Holland, Inc.

30

BIBLIOGRAPHY 31

[SH97] Arunabha Sen and Mark L. Huson. A new model for scheduling
packet radio networks. Wirel. Netw., 3(1):71–82, 1997.

[SW06] Stefan Schmid and Roger Wattenhofer. Algorithmic Models for
Sensor Networks. In 14th International Workshop on Paral-
lel and Distributed Real-Time Systems (WPDRTS), Island of
Rhodes, Greece, April 2006.

	Introduction
	Terminology and model description
	Previous work and our results
	Useful definitions

	Exact Algorithms
	Exponential algorithm
	C++ implementation

	Backtracking algorithm
	Algorithm with cache

	Approximation algorithms in GRN
	Global polynomial approximation algorithm
	Large-knowledge algorithm

	Summary

