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In this thesis we initiate the study of a balanced use of resources in computations. We
consider a particular model of computation — deterministic finite automata — and
take states as the resource to be used in a balanced way. In this setting we develop
notions and prove results which can serve as an example for similar studies in other
settings. Three possible approaches to define a balanced use of states by deterministic
finite automaton are investigated: a strict equiloadedness, an equiloadedness, and an
equiloadedness on sequences of words. We analyze properties of families of automata
and languages with respect to different definitions of balanced use of states.

We show a characterization of the family of languages for which there exists a strictly
equiloaded automaton. We exhibit the closure properties of this family based on this
characterization.

The family of languages for which there exists an equiloaded automaton is analyzed
by proving closure properties, by providing a necessary condition for a language to be
in this family, and by defining a set of transformations that preserve the equiloadedness
of an automaton.

Considering equiloadedness on sequences of words, we analyze the influence of dif-
ferent orderings of words on the equiloadedness tolerance. We investigate the equiload-
edness on sequences for various bounds on the equiloadedness tolerance function.

KEYWORDS: equiloaded automata, balanced use of resources, deterministic finite au-
tomata
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Chapter 1

Introduction

Our research is motivated by balancing resources in computations. A balanced use of
resources can be important in many real-world problems. For example, it is desirable
that all parts of a system (e.g., processor chip) are used so that none of the parts wears
out substantially faster (or heats up more) than other parts.

Since this topic has not been investigated yet, it is necessary to develop the ba-
sic notions for this type of study. We have chosen a simple model of computation,
deterministic finite automaton, and its natural resource, the state.

Deterministic finite-state automaton is a well known computation model. It has
good properties for our research, for example on a word w, there are always |w| + 1
usages of states. Many problems in automata theory are at first studied on this simple
model and then extended to more complex models such as pushdown automata, linear-
bounded automata or even Turing machines.

We define a new property of finite automata, equiloadedness: the balanced use of
each state of an automaton. We shall explore three ways of defining this notion.

The Structure of Thesis

In Chapter 2 we define a deterministic finite automaton and related concepts, which is
a computational model used throughout the thesis.

In Chapter 3 we start with a basic definition by which an automaton is strictly
equiloaded if it uses every state equally often (except for a constant difference) on every
word from the language accepted. We are able to characterize all strictly equiloaded
automata, see Section 3.3.

In Chapter 4 we introduce a different definition of an equiloaded automaton — an
automaton is equiloaded if, for each given length n, it uses its states equally often during
computations in total over words of length n from the language accepted. We describe
a set of automata transformations, which do not change the equiloadedness property.
We provide a necessary condition for a language to be in the family of languages
accepted by equiloaded automata. We prove closure properties of this family. Finally,

we conjecture a sufficient condition for an automaton to be equiloaded. If it holds, this
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conjecture would lead to infinite number of non-trivial equiloaded automata.

In Chapter 5 we analyze equiloadedness on sequences of words. This setting is
motivated by a batch processing of an input. We do not require that an automaton
uses its states equally often on all words. We rather determine some checkpoints
where the states must be used equally often, up to the equiloadedness tolerance. In
this chapter we answer questions about the impact of different orderings of words on
equiloadedness on sequences of words.

We conclude by stating several open problems about equiloadedness and indicate
several possibilities for continuing this research.



Chapter 2

Preliminaries

In this chapter, we present the definition of deterministic finite automaton (DFA) used
in this thesis. We use the definition of DFA such that an automaton can halt without
reading an input word to the end.

We use the halting DFA because we are only interested in the load of states while
processing words from the accepted language. Words not from the accepted language,
and thus rejected by the DFA, are not relevant to our analysis. The “dead state” used
to finish reading input words will thus not distort the balanced use of other states. It
is possible to study the balanced use of resources on non-halting DFA, but we find this
setting more interesting.”

Throughout the thesis, we assume that the set of natural numbers N contains 0.

Definition 2.1. A deterministic finite automaton A is a 5-tuple A = (Q, 3,9, qo, F)
consisting of a finite set of states () with an initial state ¢y € @, a finite alphabet >,
a transition function § : Q) x ¥ — @, and a set of accepting states F' C Q.

Remark. In our version of DFA (halting DFA), we shall consider the transition function
to be a partial function.

Definition 2.2. A configuration of the DFA A is a pair (¢, w) € @ x X*, where ¢ is
a state of the automaton and w is the remaining part of the input.

Definition 2.3. A computation step of the DFA A is a relation F4 on configurations

defined by
(¢.a0) Fa (p,v) <= p=0(q,a).

Remark. If it is clear from the context which automaton we mean, we shall use F

instead of 4. We shall denote the reflexive and transitive closure of -4 by 7.

Definition 2.4. A language accepted by the deterministic finite automaton A is the
set of words L(A) = {w € ¥* | (qo,w) % (¢,¢), ¢ € F}.

*For strict equiloadedness used in Chapter 3 it is not hard to see that languages for which there is
a strict equiloaded automata form “trivial” family of languages — all over one letter alphabet and of
very specific form.
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Some of our results are based on a graphical representation of a DFA. For the sake
of completeness we shall define the term graphical representation.

Definition 2.5. Let A = (Q, %, 0, q, F') be a DFA. A graphical representation of the
DFA A is the directed labelled graph G(V, E), V = @, with a marked set of vertices
F and an initial vertex gy, where a set of arcs is defined as follows:

e There is an arc (p, q) € E labeled by x if and only if §(p, z) = ¢ for some x € 3.
Moreover, the number of arcs from p to ¢ is equal to the number of different
x € 3 such that §(p,z) = q.

Remark. We shall draw the non-accepting states in the graphical representation of A
as circles and accepting states as double circles. The initial vertex ¢y shall be marked
with one additional input arc. The reader can see a graphical representation of a DFA
at Figure 3.2 in the next chapter.

We shall use the term minimal-state automaton in respect to Myhill-Nerode The-
orem. [Nerode, 1958]

Theorem 2.1 (Myhill-Nerode). Let L C ¥* be a language. The following statements

are equivalent.
1. L is a regular language.

2. There is a right-invariant equivalence relation ~ of finite index such that L is
a union of some of the equivalence classes of ~.

3. A relation ~p defined by u ~p v <= (Vo ux € L <= wvx € L) is of finite

index.

Definition 2.6. Let L be a regular language. An automaton A = (Q, 31,0, qo, F) is
said to be the minimal-state automaton for the language L, if it is defined as follows.
The states of A are the equivalence classes of ~; with € € qo. The set of accepting
states consists of equivalence classes such that L = J .z ¢. The transition function 0
is defined by

d(p,x) =q RN Yw €E€p wr € q.



Chapter 3

Strictly Equiloaded Automata

In this chapter, we shall analyze properties of strictly equiloaded automata as defined
in [Kova¢, 2008]. We define the concept of strictly equiloaded automata. We show
two results from [Kovag, 2008|, relationship with minimal-state automaton and strict
equiloadedness of finite languages. Finally, we characterize the family of languages
for which there exists a strictly equiloaded automaton. Using this characterization we
prove closure properties of the family of languages accepted by equiloaded automata.

3.1 Definition and Equivalent Form

A very strict view of a balanced use of states is that on every word in the accepted
language all states are used equally many times. We shall relax this condition by
an equiloadedness tolerance or equiloadedness constant® in such a way, that difference
between load of any two states is less than the equiloadedness tolerance.

Notation. Let A be a DFA and w be a word from L(A). We denote by #4[q, w]
(or simply by #]q, w]) the number of times the automaton A uses the state ¢ when

processing the input w.

Definition 3.1 (Strict equiloadedness). Let A = (Q, X, 4, qo, F)) be a deterministic
finite automaton. The automaton A is strictly equiloaded at words from L = L(A) if
there exists k € R such that

Yw e L, Vp,q € Q |#[p,w] — #[q,w]| < k.

The smallest k for which this inequality holds will be called an equiloadedness constant.
Remark. Instead of writing “A is strictly equiloaded at words from L(A)” we shall
simply write “A is strictly equiloaded”.

Notation. The family of languages for which there is some strictly equiloaded automa-

ton is denoted by Lggqa.

*In Chapter 5 we shall use the term equloadedness tolerance for a function, thus for the sake of
clarity we shall now use the term equiloadedness constant
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Ezample 3.1. The language L = {a*" | i € N} belongs to the family Lgpqa. In
Figure 3.1(a) we can see the minimal-state automaton A for the language L. Because
all computations on words from L(A) end in the state go, every state is equally loaded
on any w € L(A). Hence, the equiloadedness constant for A is k4 = 0.

On the other hand, there is no strictly equiloaded automaton for the language
L' = {wabav | w,v € ¥*}. In Figure 3.1(b) is the minimal-state automaton B that
accepts this language. It is easy to prove non-equiloadedness of the automaton B —
on words abav € L' is the accepting state g3 used |v| times and the state g only once,
thus there is no constant k such that, for any length n = |v|+3, it holds ||v| —1| < k. It
can be proved from Theorem 3.1 that no strictly equiloaded minimal-state automaton

implies non-existence of strictly equiloaded automaton.

(a) The automaton A (b) The automaton B

Figure 3.1: An example of (a) a strictly equiloaded and (b) a non-strictly equiloaded
automaton

Now, we shall provide an equivalent form of the condition of strict equiloadedness

from the above definition.

Lemma 3.1. A DFA A = (Q, X, 6, qo, F) is strictly equiloaded at words from L = L(A)
if and only if there exists k; € RT such that

lw| + 1
Vwe L |max yW|) — ———| < ky. 3.1
Remark. The fraction (Jw|+ 1)/|Q| expresses the average load of states on the word
w, since there are |w| 4+ 1 states used and |@| is the number of states. Hence, when
deciding whether an automaton A is equiloaded, it suffices to compute the average load
and compare it with the load of the most used state.

Proof. Tf A is strictly equiloaded, for all w € L(A) it holds |#[p, w]| — #[q, w]| < k.
Hence, if we choose p to be the most used state and ¢ to be the least used state, it
holds that

<

max(#[q, w]) — min(#[q, w])| <k

qeQ q€Q

V€ L(A)  |max(#lo,v]) - |w||@+| 1\

Conversely, if (3.1) holds, then the load of the most used state g4, is bounded from
above by (Jw| 4+ 1)/|Q| + k1 and the load of the least used state g, is bounded from
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below by (Jw| +1)/|Q| — k1 - (|Q] — 1). Thus, for a difference between the load of any
two states it holds that |#[p, w]| — #[q, w]| < |#[@maz, W] — #[@min]| < k1|Q| =k. O

3.2 Elementary Results

For the sake of completeness we shall present two theorems from [Kova¢, 2008]. The
first theorem provides a strong principle for proving the strict equiloadedness of an au-

tomaton.

Theorem 3.1. A regular language L is in Lggqa if and only if the minimal-state
automaton for L is strictly equiloaded.

Proof. A proof can be found in [Kova¢, 2008]. O
Theorem 3.2. Every finite language L is in the family Lgsgqa.

Proof. Consider the minimal-state automaton A for the language L. The automaton
A has no cycles, hence on every word is each state used once or not at all. Thus

|[#[p, w] — #lg, w]| < 1. O

3.3 Characterization

Theorem 3.3 (Characterization of Lspqa). Every language L € Lggqa is either finite
or a graphical representation of any equiloaded automaton that accepts L is an oriented

multicycle through all states.

Remark. By an oriented multicycle through all states we mean an automaton with
transition function defined by §(¢;, ) = q(i+1) mod k, Where z € X. For the state g;, it is
possible that there exists more than one symbol from 3 for which transition function
is defined. See example 3.2.

Proof. Suppose that L is an infinite language accepted by an equiloaded automaton
A=(Q,%,0,q,F). We will show that A must contain a multicycle through all states.
If it does not contain one, we know that A is either acyclic (thus, L(A) is a finite
language) or there is a cycle C' which does not contain all states. Let u be a substring
such that, when A processes u, A changes its state from ¢qq to g., where ¢. lies in the
cycle C. Let v be a substring such that A (when it processes v) starts at the state g,
visits all states from the cycle, and returns to the state ¢g.. Let w be a substring such
that A changes its state from f. to an accepting state. If such a substring does not
exist, then the load of ¢. on every word is equal to zero. Therefore A is not strictly
equiloaded.

If w exists, then at word wv*w the DFA A will not be strictly equiloaded. This
implies that in A must exist a multicycle through all states.
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Now suppose that there exists a transition at symbol x, such that A will change its
state from (current) ¢; to ¢;, where j # i + 1. It means that there is another cycle in
A, but not through all of its states. So we can use the same principle of constructing
input for A as above. It can be shown that A is not a strictly equiloaded automaton,
a contradiction. Therefore, a graphical representation of A is a multicycle through all
states. [

Ezxample 3.2. The automaton A = ({qo, ¢1, 2, g3}, {a,b,c},d, qo,{¢2}) shown in Figure
3.2, where 9 is defined by

(5((]0,&) = {1, 6((]17 a) = 5(611,C> = ({2,
d(q2,b) = g3, 6(g3,2) = qo,

is a multicycle. Thus, the language L = {aaba,acba}* - {ac,aa} is strictly equiloaded.

Figure 3.2: The automaton A for L = {aaba, acha}* - {ac, aa}

Ezample 3.3. Based on our characterization of the family Lggqa it is easy to see that
there are many regular languages not in this family. For example, any language of
words that contain some substring, e.g., L = {wabbav | w,v € ¥*}. It is unfortunate,
but we can not expect that all regular language will be (strictly) equiloaded.

3.4 Closure Properties

As we shown in [Kovag, 2008|, languages accepted by strictly equiloaded automata are
not closed under inverse homomorphism, union, Kleene star, Kleene plus, concatena-
tion and complement. Now we shall examine three additional closure properties. In
particular, we show that Lgrqga is not closed under homomorphism and reversal, and
it is closed under intersection. Two of this results follows directly from the character-
ization of languages accepted by strictly equiloaded automata provided by Theorem

3.3.
Theorem 3.4. The family Lggqa is not closed under homomorphism.

pT’OOf. Let A = ({QO}7{a7b}767 QOJ{QO}) be a DFA> where 5((]07&) = 5(Q07b) = {qo-
The language accepted by the automaton A is L = L(A) = {a,b}*. Consider a homo-
morphism h defined by h(a) = aab and h(b) = aa. We would show that the language
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h(L(A)) = {aax | z € {e,b}}* is not equiloaded. The minimal-state automaton for
this language is B = ({qo, 1,92}, {a, b}, 05, qo, {q2}), where the transition function is

defined by 0p(qo,a) = q1, dp(g2,a) = q1, d5(q1,a) = q2, and d5(g2,b) = qo. The
automaton B is not equiloaded. (For example, at the word h(b*) = a?*.) O

Theorem 3.5. The family Lgrqa is not closed under reversal.

Proof. Consider the language L = {(abb)'z | z € {a,e}, i« € N}. The graphical
representation of the minimal-state automaton A; = ({qo, 41,42}, %, 01, G0, {qo, 1 }) for
L is an oriented multicycle, hence L € Lgpqa. (The transition function d; is defined
as follows. d1(qo,a) = q1, 61(q1,b) = ¢2 and 91(¢2,b) = qo.) Yet, the minimal-state
automaton Ay = (Q, 3, da, qo, {qo, q1}) for L® is not strictly equiloaded. The automaton
As has four states, and the transition function s is defined by

52(610,30 = {1, 52(610,b) = {2, 52((]1>b) = (g2,
92(q2,b) = g3, 02(g3,2) = 1.

Therefore, the graphical representation of A, is not an oriented multicycle and Ay is
not strictly equiloaded. O

Theorem 3.6. The family Lgpqa is closed under intersection.

Proof. If at least one of Ly, Ly € Lspqa is finite, the intersection L; N Lo is finite and
thus is in Lgpqa. Let A, B be automata accepting Ly and L, respectively. If we use the
standard construction’ of an automaton from the intersection of two languages, then
the result (call it C') will be either a multicycle (suppose we remove states that C' never
visits) or L(C) will be finite. If L(C) is finite, then L(C') is also strictly equiloaded.
Suppose that L(C) is infinite. If there is a state (p,q) such that there exist states
(p1,q1) and (pa, g2) such that

Sc((p,q), ) = (1, q1), Oc((p,q),y) = (P2, q2)-

Thus p; = py and ¢ = ¢ (both A and B are multicycles). Similarly, if there is a state
(p, q) such that there exist states (p1,¢q1) and (p2, ¢2) such that

dc((pr, 1), ) = (0,q), Oc((p2,42),y) = (p, ),

then p; = ps and ¢; = ¢o. Thus, C' is a multicycle and equiloaded. O]

By above theorems and results in [Kovac, 2008|, we can summarize the closure
properties of Lspqga. The family Lggpqa is closed under intersection and it is not
closed under homomorphism, inverse homomorphism, union, concatenation, Kleene
star, Kleene plus, reversal and complement. The overview of closure properties of

families R, Lsrqa and Lgqg A} is shown in Table 4.1.

fStates of the new automaton are pairs of states from A and B respectively. There is a transition
from (p, q) to (p',q’) on a symbol z if and ounly if 04(p,z) = p’ and dp(g,x) = ¢ .
"Defined in the next chapter.



Chapter 4

Equiloaded Automata

In this chapter, we shall discuss a relaxation of the strict definition of an automaton
which uses its states in a balanced way in total over all words of each given length n. The
relaxation of the property of strict equiloadedness gives us new non-trivial automata
which are equiloaded. We shall define some transformations of automata which preserve
the equiloadedness property and analyze properties of equiloaded automata and the
family of languages accepted by equiloaded automata.

4.1 Definition and Equivalent Form

Notation. Let A be a DFA and L' be a language, L' C L(A). We denote by #4[q, L]
(or simply by #[q, L'], if it is clear from the context which automaton we mean) the
number of times the automaton A uses the state ¢ when processing the inputs from

L’. Tt holds that
#A[Q7 L/] = Z #A[q7w]

weL!

Definition 4.1 (Equiloadedness). Let A = (Q,%, 4, qo, F)) be a deterministic finite
automaton. The automaton A is equiloaded at words from L = L(A) if there exists
k € R such that

VneN, VpgeQ |#[p, LNE"]—#[q, LNE"| < k|ILNX"|.

The smallest k£ for which this inequality holds will be called the equiloadedness

constant.

Remark. The factor |[LNY"| on the right side of the inequality expresses the possibility
of one state to be used constantly more than other on every word. Without this factor,

there will be a strictly equiloaded automaton which is not equiloaded.

Notation. The family of languages L for which there is an equiloaded automaton will
be denoted by Lgqa.

10
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Ezample 4.1. Consider the language L = {a’b’ | 4,7 € N}. The minimal-state automa-
ton A for this language shown in Figure 4.1(a). This automaton is equiloaded, as is
shown in the proof of Theorem 4.1. Intuitively, for each word a’h’ there is a word a/b’
of the same length and automaton A uses each state approximately 7 4+ 7 times.

In Figure 4.1(b) there is a non-equiloaded automaton B. It can be shown that the
load of the state gy on words of a given length n = 3¢ is (¢ + 1)|L U ¥"|. The average
load of states on words of the length 3¢ is (3¢ + 1)|L U ¥"|/5. From Lemma 4.1 and
from above we can prove that B is not equiloaded, because for any constant k£ there is
¢ such that (¢ + 1) — (3¢ 4+ 1)/5 > k. However, this does not mean that the language
L(B) = {aaa, bbb}* is not equiloaded.

(1) ——()

(a) An equiloaded automaton A (b) A non-equiloaded automaton B

Figure 4.1: Example of (a) an equiloaded and (b) a non-equiloaded automaton

Similarly to the strict equiloadedness case, we provide an equivalent form of our
definition. This form is mostly used in proofs of equiloadedness of an automaton
because it is easier to consider the most used state rather than compare all possible
pairs of states.

Lemma 4.1. A DFA A = (Q, %, 9, qo, F') is equiloaded at words from L = L(A) if and
only if there exists k; € R™ such that

Vn € N I;leaé((#[q’Lmzn]) _ (n+1)|-Q\‘LﬂZ"|

Remark. The left side of the inequality (4.1) can be read as a difference between the

<k|LNZ".  (4.1)

load of the most used state and the average load of states at all words from L of a given
length n. For all n where L N X" # (), the inequality (4.1) can be written as

max (#[g, LN Z"]) il

[L N e

Seeing that in the case where L N X" # (), the inequality holds, we shall use the above

forms of the equiloadedness condition as needed.

Proof. If A is equiloaded, it holds that

Vn € N |max (#[¢, LNE"]) — min (#[q, LN E"])| < k|LNE".

q€eqQ q€Q
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Since the least used state is used at most as many times as the average load of states,
the inequality (4.1) is valid.

Conversely, suppose that the inequality (4.1) holds. For a given n, let g, be the
most used state. A load of each state at words from L N X" is bounded from above by
#[Gmaz, L N 3"] and therefore by

HILNX"
(n+1)| BRI
Q|
On the other hand, the load of every state is bounded from below by
n+ 1)|LNX"
T U R

If we use these bounds in |#[p, L N X"| — #[q, L N X"]|, we obtain
[#p, L OS] — #la, LOSM| < BILOS + R LA S(Q] - 1) < k- [LN 7).

Since k = k1|Q)| is a constant, A is equiloaded. O

4.2 Elementary Results

Theorem 4.1. /CSEQA g ACEQA g_ R.

Proof. Consider L € Lgpqga. There exists a strictly equiloaded automaton A such that
L = L(A). Since |#[p, w] — #[q,w]| < k for all p,q € Q, for all n it holds that

#p. LS = #lg. L0 = | Y (#lp,w] - #[g,w])

weLNL®
< |#pw] = #g,w]| < K[LOT.
welLN¥n
We showed that Lspqa € Lrqa. To show that Lspqa # Lrqa it suffices to show
that a language L = {a'b’ | 4,7 € N}isin Lrqa. Let A = ({qo, @1}, {a, b}, 0, 90, {q0, 01 })
be the minimal-state automaton for the language L. It is easy to see that the minimal-
state automaton A for L is not strictly equiloaded, for its graphical representation is
not an oriented multicycle. The transition function ¢ is defined by

0(qo,a) = qo, 9(q0,b) =q1, d(q1,b) = aqu.

We will show that the expression |#[qo, L N X" — #[q1, L N X"]| is bounded from above
by n+1 = |LNX"|. The load of the state go is ) ., i+ 1, because #[qo, a’b" ] =i+ 1.
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The load of the state ¢; is Y ;. yn —i =Y. ,i. Therefore,

n n

#lgo, LOSY| = #q, LOE"| =D (i+1-i)=) 1=n+1.

i=0 =0

Hence, A is equiloaded and L € Lgqa.

To show that Lrqa € R it suffices to find a language L and its minimal-state
automaton B such that, for any ¢, there exists arbitrarily large n such that B uses a
particular state more than ¢ times the load of another state on words of the length n.
This statement is proved in Theorem 4.3.* Such a language is for example the language
L = {wbbv | w,v € ¥*} with the minimal-state automaton B shown in Figure 4.2.

Figure 4.2: The minimal-state automaton B for the language L = {ubbv | u,v € ¥*}

For a given length n, words from L(A) are of the form a‘'ba®b...a"bbv, where
[v[ =n—m—1-3"" ;. Theload of g on these words is equal to |v| + 1. Therefore,

#la2, LNX"] = Z2ZZ<”_i;2_m)(i+1).

= m>0

Similarly the load of ¢; on the words of above form is equal to m, so it holds that

#lq2, LN "] = ZTZ(H_Z.;f_m)(m—i-l).

= m>0

From the fact that

Z(?’L—Z;n2—m) :Fn_i_h

m>0

where F;, is the n-th Fibonacci number, we obtain

n—2
#lg, LOL" =D 2(i 4+ 1)F iy,

1=0

and

n—2
=0

Z(”_Z_z_ )n—z—2 22171—2—2 L

m>

It is a well known fact that there are constants a,b such that a¢"” < F, < b¢", where

*Theorem 4.3 is proved independently of the result Lrqa € R.
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¢ is the golden ratio. From that we can compute a lower bound of #[gs, L N ¥"] as

n—2 n—2 i
Hlp, LAY > 2(i+1)ag" —i—2=0ad" > (i+1) (2) :
=0 i=0

By simplifying the sum we obtain

n—1
#lg2, LOY"] > 29" (0 — 2) (§> .

The analogous computation can be done for the load of the state ¢;:

#lg, LNY"] < bqﬁ“nf(n —i—2) (2)

pay ¢
n—3 J 9 i
< w33 (5)
7=0 =0
b n_21m73 (E%)i
<z 4G
2

n— n—1
o (2) e (2)

From above we get that #[qa, LN X" > ((n —2)ce/c1) - #[q1, L N X", therefore for

any ¢ from Theorem 4.3 there exists an arbitrarily large number n such that
#[q2, LNE"] > (#[q, LN E".

Hence, B is not equiloaded and Lgqa # R. ]
Corollary 4.1. Every finite language is in Lgqa.

Proof. Follows directly from Theorem 4.1. O]

4.3 Relationship with Minimal-State Automaton

Unlike in the case of strict equiloadedness, there is an language L € Lgqa such that
the minimal-state automaton for L is not equiloaded. Therefore, it is harder to show
that some language L does not belong to Lgqa because it does not suffice to prove
that the minimal-state automaton is not equiloaded. However, there is a relationship
between minimal-state automaton and equiloadedness of a language, as we shall see in
Theorem 4.3

Theorem 4.2. There exists a language L € Lgga such that the minimal-state au-
tomaton for the language L is not equiloaded.
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(a) The minimal-state automaton (b) The equiloaded automaton

Figure 4.3: The minimal-state automaton and the equiloaded automaton for the lan-
guage L = {ab,ba}*

Proof. Consider the language L = {ab, ba}*. The minimal state automaton in Figure
4.3(a) for Lis A1 = ({90, 01,92}, {a, b}, d1,q0,{q}), where §; is defined by

51((]0)&) = ({1, 61(Q07b) = {2,
51((11,b) = qo, 51((]273) = qo-

We can see that A; is not equiloaded, because

S #laow] = (+1)-27,
weLNy2n

(2n+1)-2"  2n+1 o

3 N 3 ’

and from this and Lemma 4.1 we get k > (n — 2)/3, so k is not a constant.

Now it suffices to show that L € Lgqa. In order to find an equiloaded automaton
for L, we can look at the automaton A; and determine that ¢q is used every time ¢; or
¢z is used. So we can try to split the state gy into two states. We obtain an automaton
in Figure 4.3(b) As = ({qo, ¢1, 42, 43}, {2, b}, 92, 90, {q0, ¢3}), where 05 is defined by

92(q0,8) = q1, 62(qo,b) = q2, d2(q1,b) = g3,
52(612,3) = qo, 52(613,3) = {1, 52(Q3,b) = (q2.

This automaton is equiloaded. One way to prove this is by using algebraic represen-
tation from Section 4.7. Another way is to directly use the definition, or the equivalent
form from Lemma 4.1. It is easy to see that the most used state will be ¢y or g3 because
it holds that #[qo, w] > #[q2, w| and #[q3, w] > #[q1,w]. It is easy to see that, for
a word w consisting of ¢ pairs “ab” and j pairs “ba”, the load of qo is #[qo, w] = j + 1
and the load of ¢ is #[q3, w] = i. Therefore, it holds that

g0, LUS™] = Zn: (ZL) (i+1) =2 (n+2)

1=0

#lgs, LUT™ = Z (”) (i) = 2" n.
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The most used state is go. The average load of states is (2n + 1)2"~2, therefore there
exists k such that

2" n+2)— (2n+1)2" 2 =3-2"2 < k|LN Y| = k2™

Thus A, is equiloaded and L € Lrqa. O

Theorem 4.3. Let L be a language. If for the minimal-state automaton A for the
language L it holds that

I, q € QVLER Vng e NIneN, n>ny #[p, LNX"] > (#[q, LNX"],

then L g ACEQA-

Proof. Suppose that L € Lrqa and let B = (Qp, X, 05, qop, F5) be an arbitrary equi-
loaded automaton such that L = L(B). Let kg be the equiloadedness constant of B.
From the condition in the theorem, there are states p, ¢ such that the inequality holds.
Some of states from @ (let us call them py, ..., p.) compose the equivalence class from
Myhill-Nerode Theorem, which belongs to the state p. Similarly, there are some states
q1, - - -, 44, which belong to the state q. At least for one of the states py,...,p. (let it

be p;) it holds
Hplp, LN > w.

Similarly, without loss of generality, suppose that for ¢; it holds

#plg, LNY"] < w'

Let £ = (kg + 1)c. Then

#lp, LOE" (ks +1)d#lg, LOET]

LnXx" >
#[pla N ] jtl c d

> (kg + 1)d#([q, LNXE"].

From the above inequality we have
#[pl, LN En] — #[qu LN En] > ]{?Bd#[ql, LN En]

If #[q1, LNOY" > |LNX"/d, it is clear that B cannot be equiloaded, thus we can
assume the contrary. But then #[q;, L N 3" < |L N X"| and there is some state, that
is used more or equal to the average load of all states, thus

(n+1)|LNx"| (n+1—1Q)|LNx"
Q Q| ’

so B is not equiloaded. Therefore, our first assumption L € Lyga must be false. [

—|LNX"| =
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4.4 Automata Transformations

Theorem 4.4. Let A be a DFA. Let B be a DFA, obtained from A by a sequence
of arbitrary changes in the transition function from §(p,x) = ¢ to §(p,y) = ¢ in such
a way that B is still a deterministic finite automaton. If A is equiloaded, then B is
equiloaded.

Proof. The graphical representation of the automaton A is equal to the graphical repre-
sentation of the automaton B. Thus, for every word w € L(A) there is exactly one word
w’ € L(B) such that B uses the same sequence of transitions on w’ as A uses on w. A
load of a particular state ¢ in the automaton A on a word w will be the same as the load
of ¢ in the automaton B on a word w’. Therefore #4[q, L(A)NX"] = #5[q, L(B)NX"],
so B is equiloaded. O

Definition 4.2. Let A = (QA,EA,(SA,QOA,FA), B = (QB,EB,(SB,(]OB,FB) be deter-
ministic finite automata such that ¥4 N Xp = (0 . The A, B-composition automaton
C = (QA X Qp, 24 UXR, 0, (qu,QOB),FA X FB) is a DFA with dc such that

Vr € ¥p dc((qa,qB), v) = (qa,pB) PN 0p(qB,*) = pg,
Ve e Xy dc((qa,q), ) = (pa, qoB) AL d4(qa,z) = pa and qp € Fpg.

We shall write C = Ao B.

Ezample 4.2. Let A be a minimal-state automaton for a language L; = {a®"*? | n € N}
and let B be a minimal-state automaton for Ly = ({b}-{b, cc})*-{b}. (See figure 4.4.)

Then automaton C' = A o B is an automaton that accepts a language

Ly = {wiaws ... aws, | n € NVi < 3n w; € Ly}.

Theorem 4.5. Let A = (Qa,%4,04,q04, Fa), B= (Qp,%X5,95, s, Fs) be equiloaded
automata such that ¥4 N Y5 = (), and the equiloadedness constants for both A and B

are equal to 0. Then the automaton A o B is equiloaded with equiloadedness constant
0.

Proof. We compute the load of each state while the automaton C' = A o B processes
all words of length n. It can be shown that a word w € L(C') = L of the length n
has the form w = wyajwyas ... wy, where w; € L(B), ajay . ..a,—1 € L(A). We denote
LN Y™ by L™, We shall show that

[#cl(p, @), ™) — #c[(p, q2), L™ 0 and
|#C[(p17Q)7L(n)] _#C[p27q7 L(n)]l S 0.

IN
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Figure 4.4: The automata A (left) and B (right) compose the automaton C' = Ao B
(below).

Then it holds that

|#c[(p1, Ch)a L(n)} - #C[(p% CI2)7 L(n)”
[#cl(pr, q1), L™] = #cl(p1, @2), L™] + #c((p1, ¢2), L] — #cl(p2, ¢2), L™

#cl(p1 @), L] — #c (91, @2), L™]| + |#c (1, 42), L™] — #c[(p2: ¢2), L™
07

IACIA

and A o B is equiloaded.
It is clear from the construction of A o B that

L(Ao B) ={wiaqws...a, w, | w; € L(B), ajay...a, € L(A)}.

Therefore, for all words of a given length n, it holds that

where

i+l
L§”) ={wia; ... qw;p1 | wy € L(B), a;...a; € L(B), Z |wg| =n —i}.
k=1
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Firstly, we shall compute |L™)|. It holds that

n n ' n—i _ i1 4
1| — ()| _ @] . n=J - )
20 =31 = S oY (" T e ninm)
1=0 =0 7=0
because for given aj, . .., a;, there are (n — j — 1) choose (i — 1) words in L such that

the first substring from L(B) has the length j.
Now we shall compute #[(p,q), L'™] by summing the load of (p,q) on all words
from LZ(»"). Similarly as in the case of counting words from Ll(»n) it holds that

Ho 20 = Y 2] 3 ("0 )+ vl 08

—\ i1
_ N DAY G == 1Y G DILB)Y]
B Z( i—1 )“” Qo]

In the above equation we can see that the load of a state (p, ¢) does not depend on p or
q, therefore the load is the same for (p,q) and (p, ¢’), or for (p,q) and (p’, q). It means
that any two states are equally loaded on words from L™, therefore equiloadedness
constant for C' is equal to 0. m

The previous theorem does not hold if the equiloadedness constant for A or B is

Nnon-zero.

Theorem 4.6. Let ¥4, Y be finite alphabets such that ¥4 N YXp = (). There exist
equiloaded automata A = (Qa,%4,04,q04, Fa), B = (Qp,%X5,95, 95, F5) such that
A o B is not equiloaded.

Proof. Let A be an automaton for the language L, = {a,b} and B be the minimal-
state automaton for the language Ly = {c’ | i € N}. A language accepted by Ao B is
the language L = {c'zc’ | i,j € N,z € {a,b}}. The automaton Ao B is not equiloaded,
although the language L € Lrqa. The load of the state (goa, qop) is

n—1

#[(q04, q0B), LNX"] = 22@’ +1=n(n+1).

1=0

The average load of the states of Ao B is (n + 1)n/3. Thus, there is no constant k

such that . 5 )
n(n+1) — ”(”3+ ) _ "(”; ) < k(w).
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4.5 Closure Properties of Lrqa

In this section we shall prove several theorems about closure properties of the family
Lrqga. Most of them are proved using Theorem 4.3.

Theorem 4.7. The family Lrqa is not closed under union.

Proof. Consider languages L, = {a’ | i € N} and L, = {b' | i € N}. It is clear that
L,, Ly, € Lgqa. In an automaton A which accepts L = L,U Ly, there must be an initial
state qp such that automaton A will not return to ¢y during computation. Therefore,
the load of gy on words of a given length n is equal to the number of words of the
length n. (Which is equal to 2: a” and b".) Moreover, there is a state ¢ € Q4 such
that

(n+1)|LNYX" 2(n+1)

Lnx" =
#a LN ¥ 2 Q4 |Qal

From the above we get

—_ " 2(n+1)_ :<n—|—1_ ) "
#lg, LN X" #[qo,LﬂE]z—‘QA‘ 2 i1 1)|Lnxn,

thus, A is not equiloaded. n
Theorem 4.8. The family Lrqa is not closed under homomorphism.

Proof. Let L = {a'ba’ | i,5 € N}. This language is in the family Lpqa, we can
construct the automaton for the L by relabelling one arc in the graphical representation
of the minimal state automaton for the language L; = {a'b’ | i,j € N, j # 0}.
(We relabel the loop (gi1,¢1) by a.) Let h be a homomorphism such that h(a) = a,
h(b) = bb. Then the minimal-state automaton A = ({qo,q1,¢},{a,b},da, qo,{¢})
for the language h(L) = {a'bba’ | i,j € N} fulfils the condition from Theorem 4.3, so
h(L) & Lrqa. (The transition function 64 is defined by d4(qo,a) = qo, 04(q0,b) = ¢1,
da(q1,a) = q1). For showing it we compare the load of states ¢; and ¢ in the automaton
A.

On the word a’bba’ € h(L) the state ¢; is used once, and the state g is used
j+1 times. Because each word is determined by position of the first occurrence of the

symbol b, the number of words of a given length n is n. Therefore, we obtain

—_

#lge, h(L) N X" = : (n—1i) = nQ;n’
i=0
and »
#H(q, h(L)NX"] = Z 1 =n.
i=0

Thus, for any ¢ there exists arbitrarily large n such that the load of the state ¢, is
at least ¢ times greater than the load of the state ¢;. This ensures that we can use
Theorem 4.3, hence h(L) & Lrqa. O



Chapter 4. Equiloaded Automata 21

Theorem 4.9. The family Lrqa is not closed under concatenation.

Proof. Consider languages L; = {a’ | i € N} and Ly = {b}. They both belong to
the family Lgqa, for the first the minimal-state automaton is equiloaded, the second
is finite thus belongs to Lspqa € Lrqga. We will show that the concatenation of these
languages L = L; - Ly = {a’b | i € N} is not in the family Lgqa, because for the
minimal-state automaton A = ({qo, q1}, %, 9, qo, {q1 }) the condition from Theorem 4.3
holds: (LN Y™ = {a" 'b})

#[Q(LLQETL] =n, #[QhLﬂzn] - 17

so for a number /¢ there is a length n = ¢ + 1 such that the load of ¢ is greater than
¢ times the load of ¢;. O

Theorem 4.10. The family Lgqa is not closed under intersection.

Proof. As we showed in the proof of Theorem 4.11, the deterministic finite automaton
A= ({q,n,q},{a,b},d,q,{q}), where the transition function is defined by

5((]078‘) = qo, 5(Q07b) = {1, 5(@170) = {1,
6(Q17 b) = {2, 5(927 a) = {2,

is equiloaded. It is easy to see that the language accepted by the automaton A is
L = {a'bc’bak | 4,7,k € N}. By relabeling the loop (qi,¢) by d we obtain equiloaded
automaton A’ for the language L' = {a’bd’ba* | i, j, k € N}. The intersection of L and
L'is Ly N Ly = {a’bba” | i,k € N}. This language is not equiloaded, as was shown in
the proof of Theorem 4.8. Hence, the family Lrqga is not closed under intersection. [

Theorem 4.11. The family Lrqa is not closed under inverse homomorphism.

Proof. Consider a language L = {a‘bc’ba® | i,j,k € N} and homomorphism A such
that h(a) = a, h(b) = b, h(c) = a. Then L' = h=(L) = {a’bba’ | i, j € N}. We already
know from the proof of Theorem 4.8 that L' ¢ Lrqa. We will show that L € Lgqa.
Consider the minimal-state automaton A = ({qo, ¢1, 92}, {a, b}, , qo, {g2}) for language

L, where the transition function is defined by

5(Q07a> = qo, 5((107b) = {1, 5((]170) = {1,
6(q1,b) = g2, (g2, 2) = qa.

Consider a word a’bc’ba” of length n. On this word, the load of the state g is equal
to ¢ + 1, the load of the state ¢; is equal to j 4 1, and the load of the state ¢, is equal
tok+1=mn—1i—j— 1. The number of words of length n is equal to (n? +n — 2)/2
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Let us compute the load on words from L N ¥™:

n—2 n—i—1 n—2
#lo LNT = D Y itl=) (i+1)(n—1)
=0 j=0 i=0
= (n—1) Owﬁgn—m)+nm_n_}n—mmgmgn_$
~on(n=1)(n+4) n’+3n°—4n
= : _ : |
n—2n—i—1 n—2 (n B Z)(n _ Z N 1)
#l, LN = Zj+1zz ;
=0 j=0 i=0
 (n=1)n*+4n+6) n’+3n°+2n—06
= ; _ - |
n—2 n—i—1 n—29 ] )
#lge, LOY") = >N n—i—j—1= (n—i)(n—i—1)
i=0 j=0 =0 6
_ (n—1)n(n+1) nd—n
= : -2

Hence we have

(n® 4 3n?+2n —6) — (n® —n)

6
3n?+3n—6
— n++:|[,ﬂ2”|_

[#[p, LN — #[q, LN <

Thus A is equiloaded, L € Lrqa, h™'(L) = L' € Lrqa, hence the family Lrqa is not
closed under inverse homomorphism. O]

Theorem 4.12. The family Lgqa is not closed under reversal.

Proof. Consider the language L = {a'b’/ | i,j € N}. We will show that L € Lgqa,
but LY € Lrqa. The minimal-state automaton A = ({qo, q1},%, 04, Qo, {q0, q1 }) for the
language L, where the transition function is defined by

04(q0,8) = qo, 0a(qo,b) =aq1, 6a(q1,b) = qu,

is equiloaded. To see it, let us compute the load of state gy and ¢, respectively.

n—1

" , P2+

#[qg,LﬂZ]:;z+1: 5

— 2+
#[ql,LﬂE”]:;n—i: 5

It means that A is equiloaded with the equiloadedness constant equal to 0.
The minimal-state automaton B = ({qo,q1, 42}, %, 08, G0, {q1,¢2}) for language L%
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has the transition function defined by

53(Qo,b) = q1, 5B(Q1,b) = q1, 5B(Q1,a) = {2, 53(612,&) = (q>.

It is obvious that the state g is used exactly once on every word, thus |L N X"| times
on all words of a given length n. For length n there exists an state ¢ used at least
(n+1)|LNX"|/3 times. This means that for any ¢ there is an arbitrary big n such that
#[q, L N X"] is greater than ¢ - #[qo, L N X"]. Therefore by Theorem 4.3 L® & Lrqa
and thus Lrqga is not closed under reversal.

O

Theorem 4.13. The family Lgqa is not closed under complement.

Proof. Every finite language belongs to the family Lgqa, so does L = {aa} € Lrqa. We
will show that the minimal-state automaton A = ({qo, ..., q3},{a,b},d, 9, {90, @1, q})
shown in Figure 4.5 fulfils the condition from Theorem 4.3. On every word w the state
o is used only once and the state g3 is used at least |w| — 2 times. Therefore, it is easy
to see that for any ¢ there exists arbitrarily large n (n > ¢ + 3) such that the load of
the state ¢, is greater than ¢ times the load of the state ¢o. The language L% is not in
the family Lrqa, thus Lrqa is not closed under complement. O

Figure 4.5: The minimal-state automaton for the language {a,b}* — {aa}.

We left open the problem of determining whether the family Lggqa is closed under
Kleene star and Kleene plus, we believe that the answer is negative in both cases.
The reader can compare our results with closure properties of the family of regular
languages in Table 4.1.

‘ U ﬂ . h h— 1 C R * +

R yes yes yes yes yes yes yes yes yes
Lgga | 1O NO no no nNo NO nNO Open open

Lspga | DO yes no no no  no o no no

Table 4.1: Closure properties of R, Lrgqa and Lgpqa
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4.6 Characterization

Since it is not true that L € Lgqa if and only if the minimal-state automaton for L is
equiloaded, it is harder to characterize the family Lrqga. In this section, we present our
approaches to the characterization of the family Lgqa, although we will not prove this
characterization. We shall state some theorems that partially characterize this family,
but a final characterization is still open.

The characterization of the family Lsgpqa was built on the graphical representation
of automata regardless of a set of accepting states F'. However, in the case of the family
Lrqga we shall see that graphical representation of automata alone does not suffice.

There are two ways to create a partial characterization. One way is to formulate
a condition such that if it holds for an automaton A, then A is not equiloaded (or,
conversely, if A is equiloaded, then condition is not true). A good candidate for this
condition seems to be a bridge in the graphical representation of an automaton, but
as the theorem below demonstrates, this condition is not really good for our purposes.

Theorem 4.14. There is an equiloaded automaton A such that the graphical repre-
sentation of A contains a bridge.

Proof. Such an automaton is, for example, any automaton for a finite language, or the
minimal-state automaton for the language L = {a’b’ | i, j € N} considered in the proof
of Theorem 4.1. O]

Another type of condition which will partially characterize the family Lggqa is such
a condition that if it holds, then A is equiloaded. A good candidate for this type of
condition seems to be “equal number of cycles through each state.” But, unfortunately,
this is not a sufficient condition.

Theorem 4.15. There is a non-equiloaded automaton A such that there is an equal
number of cycles through each state.

Proof. Consider the minimal-state automaton A = ({qo,q1, 2}, {a,b},0,q0, {q1}) for
the language L = {a’b® ™ | i, j € N} that has one cycle through the state gy and one
cycle through the states g1, go. Therefore, there is an equal number of cycles through
all states. This automaton is not equiloaded. O]

4.7 Algebraic Representation

We shall now introduce an algebraic representation for DFA. This representation can
be used to show (non-)equiloadedness of automata.
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Let A= (Q,%,0,q, F) be a DFA. For n € N, we shall use

Moo moq My 1Q|-1 Qg
n n n n
Mo my T myQ|-1 a;
M, = . y  Op = )
n n n n
PR a
Mgl-10 MQ|-1,0 MQ|-1,Q|-1 Ql-1

where M,, is a matrix (of the size |Q| x |Q[) where the element m7; equals to the load
of the state ¢; at all words of length n, for which the computation of A finishes in the
state ¢;. The a,, is a column vector such that o is the number of words of length n,
for which A’s computation finishes in the state g;.

Without loss of generality, for n = 0 it holds that

0 1
00 --- 0 0

My = Lo . , Qo=
00 --- 0 0

If we want to compute M,, from M, (and a,,_1), we need a transition matrix A —
from the transition function of A. The element 9, ; is the number of transitions from g;
to ¢;. (For a better insight see the proof of Theorem 4.16.) Now we can create formulae
for both «,, and A,:

a, = A-apq, (4.2)
M, = A-M, ;+diag(a,).

Remark. The function diag is defined by

Qo Qo o --- 0

a 0 a --- 0
diag _1 = '

ay 0 0 - ag

If we are able to compute the matrix M,,, we can easily compute the minimal value
of the constant k from Definition 4.1 such that the condition from this definition holds
for n. We can construct a vector ¢ with 1 at the i-th element if ¢; is an accepting state
and 0 otherwise. By multiplying ¢ and M,, we obtain a vector ¢ with the load of the
state ¢; at the i-th element of the vector ¢ (on words from L(A) of length n). The
maximal element of ¥ contains the load of the maximally used state. We can compute
the average load by summing all elements of ¢) and dividing by |@Q|.

Now we will show an example of proving the equiloadedness of an automaton using
the algebraic representation.



Chapter 4. Equiloaded Automata 26

Theorem 4.16. An automaton A = ({qo, q1, 92,3}, {a,b}, 0,90, {90, q3}), where § is
defined by

6(go,a) = q1, 0(qo,b) = g3, 6(q1,b) = o,

(gs,a) = qo, 0(g2,2) = q1, 0(g2,b) = gs.

is equiloaded.

Proof. We shall prove the equiloadedness of the automaton A using algebraic repre-
sentation. The transition matrix A for the automaton A is

>

Il
= O = O
o = O O
—_— O = O
o O O =

Now we prove that for n > 0 it holds that

gn-1 0
0 on1
Q9pn = 271,71 s and Qopt1 = 0 . (44)
0 2n71

We can easily see that the previous statement holds for n = 1. By induction we obtain

2" 0
0 2n
Qop42 = AOé2n+1 = y  Oopy3 = A042n+2 =
2" 0
0 2n
Next we shall look at My, ..., My and we see that
1 0 00 00 0O 2 0 01
11
M():OOOO,Mlz 007M2:0000’
0 00O 00 0O 1 110
0 00O 1 0 01 0 00O
0 00O 51 1 3
11
M, — 3 3 M, = 0 00O
0 00O 33 31
3113 0 00O

Using (4.4) we can see that if My, (as My is) can be written (for some value ¢,) as

cp+ 20t ¢, —2n1 ¢, — 201 Cy,
0 0 0 0

M2n = n—1 )
Cn cn C’I’L CTL - 2
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then the matrix My, o can be written as

2c, + 2"+ 271 2¢, — 2771 2¢, — 2771 2¢, 4+ 2771

Mapiy — 0 0 0 0
2¢, +2"1 2¢, + 271 2¢, + 271 2¢, — 277!
0 0 0 0
Cnt1+2" cpi1 — 2" cppr — 2" Cntl
B 0 0 0 0
B Cnt1 Cntl Cnt1 Cny1 — 2"
0 0 0 0

(The matrices with odd indices are not interesting, because the number of words w of
length 2n + 1 such that A ends in an accepting state while processing the word w is
7€ero)

We can see that £ = 3/4 is good enough for definition of the equiloadedness.
Indeed, for n = 2[ the maximally used state is gy with load 2¢; + 21, the average load
is (8¢; — 2!)/4 and |L N ¥"| = 2. O

4.8 Open Questions

4.8.1 Characterization

We left open the characterization of equiloaded automata. The algebraic representation
of automata can be turned into computer program, which determines k;, such that A is
equiloaded at words of the length ¢ with equiloadedness constant k;. After examining
matrices A with small size, we observed that if a sum of each row or column in A is
equal to 2, and 0(;+1) mod n,i > 1, then {£;}2, seems to be convergent.

Definition 4.3. Let ¢ be a permutation of elements 0, 1,...,n — 1. We shall say that
a directed graph G is defined by the permutation 1, if

Vie{0,....,n—1} (i,9(i)) € E(G).

Conjecture 4.1 (Two-cycles equiloaded automata). Let 91, ..., be permutations
over |@| elements. Let A be an automaton such that the graphical representation of A
is Gy U Uf:o G;, where Gy = (V, Ey) is an directed graph containing cycle through all
states and G; = (V, E;) is an directed graph defined by the permutation v;. Then A is
equiloaded.

4.8.2 Equiloadedness Preserving Transformations

There are two automata transformations we conjecture to be equiloadedness preserving.
First of them is a change of set of accepting states in such a way, that every state is
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used on some w € L(A).
The second transformation is m-regular splitting of automaton A defined as follows.

Definition 4.4. Let A = (Q, %, 94, qo, F)) be an automaton, let m be a nonzero natural
number. By an m-regular splitting of automaton A we obtain an automaton B =
(@ x{1,...,m},¥,0p,(q,1), Fg), where Fg C F' x {1,...,m} and for the transition
function dp holds that

Vp,g € Q Ji,j e N\ {0} da(p,z) =q=0dp((p.i),2) = (g, 7)-
Moreover every state is accessible:
Vpe @, Vi e N\ {0} FJw e L(B)#[(p,i),w] > 0.

Conjecture 4.2. By an m-regular splitting of an equiloaded automaton A we obtain
an equiloaded automaton.

4.8.3 Sufficient Condition for Language to Be in Lgqga

In Theorem 4.3 we provide the necessary condition for automaton not to be equiloaded.
We believe that converse implication holds as we state in the following conjecture.
When the minimal-state automaton A for a language fulfils the inequality (4.5) it
suffices to split states of A in such a way, that A will be equiloaded. However, it is
not clear that such a splitting is possible. In Example 4.3 we show an automaton for

which such a splitting of states exists.

Conjecture 4.3. Let L be a language. If for the minimal-state automaton A for the
language L it holds that

Vp,ge Q H eR" Ing e NVneN, n>ng #[p, LNI"| <I#[q, LNE"], (4.5)

then L € EEQA-

Ezxample 4.3. Consider the language L = {aaa,bbb}*. The minimal-state automaton
A for this language is shown in Figure 4.6. This automaton is not equiloaded, as we
showed in Example 4.1. However, it fulfils the inequality (4.5) because

#lg0, L N 3] 9.2 <3
#qr, L N X3k] k
According to the above conjecture, there should be an equiloaded automaton B
that accepts the language L. Indeed, such an automaton exists as we can see in Figure
4.6. To show equiloadedness of the automaton B, we determine the load of the state
qo, which is used the most. On all words of length n = 3m, the load of ¢, is equal to

triples consisting of a (a-triples) plus one (the initial use). The number of a-triples is
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between 0 and m. Furthermore, there are m choose ¢ words of length n with i a-triples.
Hence, the load of gy on words of length 3m is

" /m
LNy = 4+ 1) =2""'m 4 2™
#w L5 =3 (7)) =2
The automaton B is equiloaded, because

B 3m+1)2"  5.27 5
2m—t 2m—< = = —|LNX¥".
me 6 6 d |

(a) A non-equiloaded automaton (b) An equiloaded automaton

Figure 4.6: (a) A non-equiloaded and (b) an equiloaded automaton for the language
L = {aaa,bbb}*
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Automata Equiloaded on Sequences of
Words

In this chapter, we shall extend the previous definitions of equiloaded automata from
words to sequences of words. According to Definition 3.1 the automaton is equiloaded,
if it is equiloaded on each word. Sometimes, it is better to think about the load of an
automaton while it is computing at many inputs. (Batch processing.) Definition 4.1
can be understood as an intermediate step to this point of view. It tells us that there
can be some sequence of inputs, sorted by lengths of words, on which an automaton
will load each state equally. As we will see in this chapter, Definition 4.1 can be taken
as a special case of the definition of an automaton equiloaded on a sequence of words.

5.1 Definition

Firstly, we shall define a sequence of words. We shall only consider DFA that accept
infinite languages. For our purposes, a sequence of words S = wy, ws, ... is an infinite
sequence of words from a language L(A) accepted by a given automaton A. Moreover,
words in a sequence will not be repeated, thus w; = w; = 1 = j.

We shall denote by S(i, j) the subsequence of S starting at the i-th word and ending
at the j-th word.

Definition 5.1. Let A = (Q, %, d, qo, F') be a deterministic finite automaton. Let S be
a sequence of words from L(A). The automaton A is equiloaded on S if there exists an
ascending function f : N — N and a function k : N — R* such that for all i € N and
all p,q € @ it holds that

|[#[p, S(f(0), Fi+1) = 1)) = #q, S(f(0), Fi + 1) = DI < k(@S0 + 1) = (7).

The function k is said to be an equiloadedness tolerance.The function f is said to

be a windows-defining function.

30
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5.2 Equivalent Form

Notation. The function symb(S(i, j)) = >_,csu) |w| gives the number of symbols in
the subsequence S(i, 7).

Remark. For the sake of brevity, we shall often use notation f; instead of f(i) and k;
instead of k(7).

Lemma 5.1. A DFA A = (Q, X, 4, q, F) is equiloaded on a sequence S if and only if
there exists an ascending function f : N — N and a function ¥’ : N — RT such that
for all 7 € N it holds that

I;é%{(#[QaS(fiale = D)) —avg(S(fi, firn — 1)) < ké(fi+1 — fi), (5.1)

where | | |
avg(S(i, 7)) = symb(S(z,7))+j+1—i
| Q

is the average load of states while A processes words from the subsequence S(i, 7).
Furthermore, there exists a ¢ € RT such that ¢ - k'(i) > k(i) for k from Definition 5.1.

Proof. If A is equiloaded on a sequence S, then similarly to previous definitions we
consider the most- and the least-used state. It is easy to see that the average load of
states on the subsequence S(f;, fix1 — 1) is greater than or equal to the load of the
least used state, hence the inequality (5.1) holds for k; = k.

Conversely, suppose that the inequality (5.1) holds. Then, for a given 7, the load of
each state is less than

avg(S(fi, fix1 — 1)) + Ei(fis1 — fi)-

Also, the load of each state is greater than

avg(S(fi, fir1 — 1)) — k’g(fiﬂ - f)(Q - 1).

Therefore, the difference between loads of arbitrary states p and ¢ is not greater than
ki(fivr — i) + K(1Q] = V) (fixa — fi) = K- Q- (fisa — fi)-

Hence, automaton A is equiloaded on the sequence S with equiloadedness tolerance

ki = k”Q‘ L

Theorem 5.1. For a given automaton A, a sequence S, and an ascending function
f N — N, there is a function k : N — R* such that A is equiloaded on the sequence
S with a windows-defining function f and an equiloadedness tolerance k.

Proof. Define k(n) by k(i) = maxy,es(s),fG+1)-1) |w| + 1. We shall show, that A is
equiloaded on the sequence S with the equiloadedness tolerance k. Let us bound from
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above the maximal load of a state at the subsequence S(f (i), f(i +1) —1) = S;:

#l4, 5:] < symb(S;) < (f(i +1) = f(9)) - (maxfw| + 1) = (f(i + 1) = [ (7)) - k(3).

weS;
Hence, A is equiloaded on the sequence S. n

Thus for a large equiloadedness tolerance the notion of equiloadedness becomes
trivial. We shall therefore consider “reasonably small” f and k in what follows. It comes
from the following theorem, that “reasonably small” in the case of the equiloadedness

tolerance means constant, or at least sub-linear.*

Theorem 5.2. For every given automaton A there exists a sequence S of all words
in L(A) and a windows-defining function f such that A is equiloaded on S with the
equiloadedness tolerance k(n) = Q(n).

Proof. The sequence we are looking for is the lexicographically ordered sequence S.T
Let f(i) = . This means, that we will consider windows of constant length 1. It is
easy to see that

#lq, S(i,1)] = #[g, w;] < wi| +1 <|Q|i + 1.

The last inequality follows from the fact that if there is a word of length n in an infinite
language accepted by the automaton A, then in A has to be a cycle of length at most
|Q|, therefore there exists a word of length at most n+|Q|. From the above inequality we
obtain that it suffices to take the equiloadedness tolerance k(i) = |Q|i +1 = Q(n). O

It should be possible to define the meaning of “reasonably small” value even for the
case of the windows-defining function f. We conjecture that if an automaton is equi-
loaded on a sequence with a windows-defining function f; and a constant equiloaded-
ness tolerance, then it is equiloaded on another sequence with a linear windows-defining

function f and a constant equiloadedness tolerance.

5.3 Impact of Order of Words on Equiloadedness Tol-

erance

We shall discuss the impact of choosing a sequence for an automaton A, on which
we want A to be equiloaded. As the first example, we shall consider an automaton
A= ({q,n},{a,b},d,q,{q,q}), where the transition function ¢ is defined by

(5(%,&) = qo, 5(6.70»]0) = {1, 5(611,b) = (-

Let S be the lexicographically ordered sequence of words in the language L(A), i.e.,
S =¢,a,b,aa,ab,bb,...

*Thus, in the following we shall consider only constant equiloadedness tolerance.
Tt suffices to consider any sequence S’ = wy,ws, ..., w, for which |w;| < |w;i1].
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Theorem 5.3. For the automaton A and the sequence S defined above, if k(n) is a
constant, and A is equiloaded on S, then for any non-zero [ € N it holds f(n) > in for
sufficiently large n, where f is a windows-defining function from Definition 5.1. (The

size of windows is greater than constant.)

Proof. For a given constant k' = k(n) and [, we shall find a number n such that A is not
equiloaded on S(In,In + 1 — 1) with the equiloadedness tolerance k'. Let n = 2lk" + 1.
Then the subsequence S(In,In+1—1) = S(2(Ik")* + 1K', 2(IK')> + Ik’ + 1 — 1) consists

of words a2k’ a2 —1h . a2W—I+1H1=1 The load of the state ¢ on this subsequence is
#[qo, S(In,In+1—1)] = 2lK' + 14+ 21K +2lk' =1+ - -+ 2lK' —1+1 = (1/2)I(4lK' —1+3).

The load of ¢; is just (1/2)I({—1), therefore A is not equiloaded with the equiloadedness

tolerance &'. O

Theorem 5.4. Consider A defined above. There is a sequence S’ of words in L(A)
such that A is equiloaded on S” with the equiloadedness tolerance k(n) = 0 and a linear

windows-defining function f, f(n) = 2n.

Proof. If f(n) = 2n, the size of each window is equal to 2. We want to choose pairs of
words from L(A), such that the load of gy on the pair is equal to the load of ¢;. First,
we realize that by #[qo, w] and #[q;, w] w is exactly determined: w = a#lao-wl-1p#larwl
We shall construct S’ in pairs as follows. For the i-th pair, we choose the first non-used
word wsy,; from S and find a pair wy,,,, which is also a non-used word from S, such
that #[qo, wh;] + #[q0, whi 1] = #lq1, wy;] + #[q1, wh;1]. The sequence S’ looks like
g,bb, a,abb, b,abbb, ... Then, A is equiloaded on the sequence S" with k(n) = 0 and
f(n) =2n. O

Now, we shall consider another automaton B = (Q,{a,b}, s, q,q), & minimal
automaton for a language L = {aaa,bbb}*. This automaton, shown in Figure 4.6(a)

in the previous chapter, is defined by transition function

53(610,3) = {1, 5B(Q1,a) = ({2, 53((]27 a) = qo,
08(q0,b) = q3, 0B(q3,b) = s, 0B(qs,b) = qo.

It is easy to see that for all w € L it holds that

#[quw] = #[ql;w] + #[quw] +1

We shall prove that there is no sequence S such that B is equiloaded on S with constant
equiloadedness tolerance (and arbitrary f).

Theorem 5.5. There is an automaton B such that for any sequence S and an ascending
function f it holds that B is not equiloaded on S with the windows-defining function
f and a constant equiloadedness tolerance.
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Proof. Consider the automaton B defined above and the subsequence of S from f(7)
to f(i + 1) — 1. Without loss of generality, we may assume that ¢; is the least used
state on that subsequence. Then it holds that

#lq0, S(fi, fixn — V)] — #lqr, S(fis firn — 1] =
symb(S(fi, fi+1 — 1)) symb(S(fi, fi+1 — 1))

=z 3 + (fixr = fi) — 5
> Symb(s(fiéfi+1 —1)) + (fior — i)

_ s symb(S(f3, fit1 — 1)))

— U ( 6(fir—F) )

Hence, the equiloadedness tolerance of B on sequence S should be at least

. symb(S(fi, fi+1 — 1))
k() 2 ( 6(fiv1 — fi) ) # O).

It is easy to see that there is 7y such that if ¢+ > iy the number of symbols in the
subsequence is greater than the number of words in this subsequence. O
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Conclusion

In this thesis we discussed three approaches to the equiloadedness property for DFA.
We have established a characterization of strictly equiloaded automata and, based on
this characterization, we proved closure properties of the class Lsgqa.

We analyzed the characterization of equiloaded automata. After proving some ba-
sic results about equiloaded automata, we proved a necessary condition for a language
to be in the family Lrqga. We introduced an algebraic representation which makes it
easier to determine the equiloadedness of an automaton. We proved closure properties
of the family Lgqa. Although we did not find a characterization based on a graph-
ical representation of an automaton, we were able to formulate a conjecture on this
characterization.

Next, we investigated equiloadedness property for sequences of words. We have
shown that every automaton is equiloaded on every sequence given a sufficiently large
equiloadedness tolerance. Furthermore, we proved that for each automaton there ex-
ists a sequence such that the automaton is equiloaded on the sequence with a linear
equiloaded tolerance and a linear windows-defining function f. We have shown an
existence of an automaton which is not equiloaded on any sequence with a constant
equiloadedness tolerance.

Although we provide solutions to many interesting problems concerning equiload-
edness, there are still some open problems, mainly in the area of equiloadedness on
sequences of words. Among the most prominent are:

Equiloaded automata: a characterization of equiloaded automata and/or the fam-
ily Lgqa, transformations preserving equiloadedness, a sufficient condition for

a language to be in Lgqa.

Automata equiloaded on sequences: f-k trade-off, operations over sequences.”

These questions may be an interesting topic for further research. Our results sug-
gests that it may be worthwhile to study a balanced use of resources on a different
model (NFA, push-down automata, ...) or with different resources (transitions be-

tween states).

*For this problem, we need to consider sequences of words from L C L(A).
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Predkladana préaca sa zaobera stidiom rovnomerného vyuzivania prostriedkov vo
vypoctoch. Uvazujeme konkrétny vypoctovy model, deterministicky konecny automat,
a stavy takéhoto automatu ako prostriedok, ktory sa mé pouzivat rovnomerne. V
tomto modeli definujeme potrebné pojmy pre rovnomerné vyuzivanie stavov a dokazu-
jeme vysledky. V praci prezentujeme tri mozné pristupy k rovnomernosti — strik-
tnii rovnomernost, rovnomernost a rovnomernost na postupnostiach slov. Analyzujeme
triedy automatov a jazykov vzhladom na tieto pristupy.

V praci prinaSame charakterizaciu triedy jazykov, pre ktoré existuje striktne rov-
nomerny automat. Dokazujeme uzaverové vlastnosti tejto triedy.

Analyzujeme triedu jazykov, pre ktoré existuje rovnomerny automat, dokazujeme
uzéverové vlastnosti tejto triedy, ako aj nutni podmienku, ktort musi jazyk spliat, aby
do tejto triedy patril. Definujeme mnozinu transformécii automatov, ktoré zachovéavaju
rovnomernost.

V stvislosti s rovnomernostou na postupnostiach slov skiimame vplyv réznych uspo-
riadani slov na mieru nerovnomernosti pre rovnomernost na postupnostiach slov. Sku-
mame rovnomernost na postupnostiach slov pre rézne ohrani¢enia miery nerovnomer-
nosti.

Nage vysledky moézu poslizit ako priklad pre podobny vyskum pre iné vypoctové
modely a prostriedky.

KLUCOVE SLOVA: rovnomerne vyuzivané automaty, rovnhomerné vyuzivanie prostried-

kov, deterministické kone¢né automaty
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