
Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Departement of Computer Science

Equiloaded Automata
Master’s Thesis

Ivan Kováč

Supervisor: Bratislava, 2010
prof. RNDr. Branislav Rovan, PhD.

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Equiloaded Automata
Master’s Thesis

Study Program: Informatics
Branch of Study: 9.2.1 Informatics
Supervisor: prof. RNDr. Branislav Rovan, PhD.

Bratislava, 2010 Bc. Ivan Kováč

I hereby declare that I wrote this thesis by myself, only
with the help of the referenced literature, under the careful
supervision of my thesis advisor.

. .

ii

Acknowledgments

I am deeply grateful to my supervisor professor Branislav Rovan for his invaluable help
and for providing a compelling subject for this thesis.

I want to thank my second cousin Erik Goldman for the corrections he provided,
Mišo Kotrbčík for his advice, and Ondrej Budáč for help with the golden ratio.

Finally, I would like to sincerely thank my family and my girlfriend Ivana Selečéniová
for their support and help.

iii

Abstract

Author: Ivan Kováč
Title: Equiloaded Automata
University: Comenius University in Bratislava
Faculty: Faculty of Mathematics, Physics and Informatics
Departement: Departement of Computer Science
Supervisor: prof. RNDr. Branislav Rovan, PhD.
Number of Pages: 37
Year: 2010

In this thesis we initiate the study of a balanced use of resources in computations. We
consider a particular model of computation — deterministic finite automata — and
take states as the resource to be used in a balanced way. In this setting we develop
notions and prove results which can serve as an example for similar studies in other
settings. Three possible approaches to define a balanced use of states by deterministic
finite automaton are investigated: a strict equiloadedness, an equiloadedness, and an
equiloadedness on sequences of words. We analyze properties of families of automata
and languages with respect to different definitions of balanced use of states.

We show a characterization of the family of languages for which there exists a strictly
equiloaded automaton. We exhibit the closure properties of this family based on this
characterization.

The family of languages for which there exists an equiloaded automaton is analyzed
by proving closure properties, by providing a necessary condition for a language to be
in this family, and by defining a set of transformations that preserve the equiloadedness
of an automaton.

Considering equiloadedness on sequences of words, we analyze the influence of dif-
ferent orderings of words on the equiloadedness tolerance. We investigate the equiload-
edness on sequences for various bounds on the equiloadedness tolerance function.

Keywords: equiloaded automata, balanced use of resources, deterministic finite au-
tomata

iv

Contents

Abstract iv

Contents v

List of Figures vi

List of Tables vi

1 Introduction 1

2 Preliminaries 3

3 Strictly Equiloaded Automata 5
3.1 Definition and Equivalent Form . 5
3.2 Elementary Results . 7
3.3 Characterization . 7
3.4 Closure Properties . 8

4 Equiloaded Automata 10
4.1 Definition and Equivalent Form . 10
4.2 Elementary Results . 12
4.3 Relationship with Minimal-State Automaton 14
4.4 Automata Transformations . 17
4.5 Closure Properties . 20
4.6 Characterization . 24
4.7 Algebraic Representation . 24
4.8 Open Questions . 27

5 Automata Equiloaded on Sequences of Words 30
5.1 Definition . 30
5.2 Equivalent Form . 31
5.3 Impact of Order of Words on Equiloadedness Tolerance 32

6 Conclusion 35

Bibliography 36

Abstrakt 37

v

List of Figures

3.1 A strictly equiloaded and a non-strictly equiloaded automaton 6
3.2 An automaton for the language L = {aaba, acba}∗ · {ac, aa} 8

4.1 An equiloaded and a non-equiloaded automaton 11
4.2 The minimal-state automaton for the language L = {ubbv | u, v ∈ Σ∗} 13
4.3 The minimal-state and an equiloaded automaton for L = {ab, ba}∗ . . . 15
4.4 An A,B-composition automaton . 18
4.5 The minimal-state automaton for the language {a, b}∗ − {aa}. 23
4.6 Two automata for the language L = {aaa, bbb}∗ 29

List of Tables

4.1 Closure properties of R, LEQA and LSEQA 23

vi

Chapter 1

Introduction

Our research is motivated by balancing resources in computations. A balanced use of
resources can be important in many real-world problems. For example, it is desirable
that all parts of a system (e.g., processor chip) are used so that none of the parts wears
out substantially faster (or heats up more) than other parts.

Since this topic has not been investigated yet, it is necessary to develop the ba-
sic notions for this type of study. We have chosen a simple model of computation,
deterministic finite automaton, and its natural resource, the state.

Deterministic finite-state automaton is a well known computation model. It has
good properties for our research, for example on a word w, there are always |w| + 1

usages of states. Many problems in automata theory are at first studied on this simple
model and then extended to more complex models such as pushdown automata, linear-
bounded automata or even Turing machines.

We define a new property of finite automata, equiloadedness: the balanced use of
each state of an automaton. We shall explore three ways of defining this notion.

The Structure of Thesis

In Chapter 2 we define a deterministic finite automaton and related concepts, which is
a computational model used throughout the thesis.

In Chapter 3 we start with a basic definition by which an automaton is strictly
equiloaded if it uses every state equally often (except for a constant difference) on every
word from the language accepted. We are able to characterize all strictly equiloaded
automata, see Section 3.3.

In Chapter 4 we introduce a different definition of an equiloaded automaton — an
automaton is equiloaded if, for each given length n, it uses its states equally often during
computations in total over words of length n from the language accepted. We describe
a set of automata transformations, which do not change the equiloadedness property.
We provide a necessary condition for a language to be in the family of languages
accepted by equiloaded automata. We prove closure properties of this family. Finally,
we conjecture a sufficient condition for an automaton to be equiloaded. If it holds, this

1

Chapter 1. Introduction 2

conjecture would lead to infinite number of non-trivial equiloaded automata.
In Chapter 5 we analyze equiloadedness on sequences of words. This setting is

motivated by a batch processing of an input. We do not require that an automaton
uses its states equally often on all words. We rather determine some checkpoints
where the states must be used equally often, up to the equiloadedness tolerance. In
this chapter we answer questions about the impact of different orderings of words on
equiloadedness on sequences of words.

We conclude by stating several open problems about equiloadedness and indicate
several possibilities for continuing this research.

Chapter 2

Preliminaries

In this chapter, we present the definition of deterministic finite automaton (DFA) used
in this thesis. We use the definition of DFA such that an automaton can halt without
reading an input word to the end.

We use the halting DFA because we are only interested in the load of states while
processing words from the accepted language. Words not from the accepted language,
and thus rejected by the DFA, are not relevant to our analysis. The “dead state” used
to finish reading input words will thus not distort the balanced use of other states. It
is possible to study the balanced use of resources on non-halting DFA, but we find this
setting more interesting.∗

Throughout the thesis, we assume that the set of natural numbers N contains 0.

Definition 2.1. A deterministic finite automaton A is a 5-tuple A = (Q,Σ, δ, q0, F)

consisting of a finite set of states Q with an initial state q0 ∈ Q, a finite alphabet Σ,
a transition function δ : Q× Σ → Q, and a set of accepting states F ⊆ Q.

Remark. In our version of DFA (halting DFA), we shall consider the transition function
to be a partial function.

Definition 2.2. A configuration of the DFA A is a pair (q, w) ∈ Q × Σ∗, where q is
a state of the automaton and w is the remaining part of the input.

Definition 2.3. A computation step of the DFA A is a relation ⊢A on configurations
defined by

(q, av) ⊢A (p, v)
def⇐⇒ p = δ(q, a).

Remark. If it is clear from the context which automaton we mean, we shall use ⊢
instead of ⊢A. We shall denote the reflexive and transitive closure of ⊢A by ⊢∗

A.

Definition 2.4. A language accepted by the deterministic finite automaton A is the
set of words L(A) = {w ∈ Σ∗ | (q0, w) ⊢∗

A (q, ε), q ∈ F}.
∗For strict equiloadedness used in Chapter 3 it is not hard to see that languages for which there is

a strict equiloaded automata form “trivial” family of languages – all over one letter alphabet and of
very specific form.

3

Chapter 2. Preliminaries 4

Some of our results are based on a graphical representation of a DFA. For the sake
of completeness we shall define the term graphical representation.

Definition 2.5. Let A = (Q,Σ, δ, q0, F) be a DFA. A graphical representation of the
DFA A is the directed labelled graph G(V,E), V = Q, with a marked set of vertices
F and an initial vertex q0, where a set of arcs is defined as follows:

• There is an arc (p, q) ∈ E labeled by x if and only if δ(p, x) = q for some x ∈ Σ.
Moreover, the number of arcs from p to q is equal to the number of different
x ∈ Σ such that δ(p, x) = q.

Remark. We shall draw the non-accepting states in the graphical representation of A
as circles and accepting states as double circles. The initial vertex q0 shall be marked
with one additional input arc. The reader can see a graphical representation of a DFA
at Figure 3.2 in the next chapter.

We shall use the term minimal-state automaton in respect to Myhill-Nerode The-
orem. [Nerode, 1958]

Theorem 2.1 (Myhill-Nerode). Let L ⊆ Σ∗ be a language. The following statements
are equivalent.

1. L is a regular language.

2. There is a right-invariant equivalence relation ∼ of finite index such that L is
a union of some of the equivalence classes of ∼.

3. A relation ∼L defined by u ∼L v ⇐⇒ (∀x ux ∈ L ⇐⇒ vx ∈ L) is of finite
index.

Definition 2.6. Let L be a regular language. An automaton A = (Q,ΣL, δ, q0, F) is
said to be the minimal-state automaton for the language L, if it is defined as follows.
The states of A are the equivalence classes of ∼L with ε ∈ q0. The set of accepting
states consists of equivalence classes such that L =

∪
q∈F q. The transition function δ

is defined by
δ(p, x) = q

def⇐⇒ ∀w ∈ p wx ∈ q.

Chapter 3

Strictly Equiloaded Automata

In this chapter, we shall analyze properties of strictly equiloaded automata as defined
in [Kováč, 2008]. We define the concept of strictly equiloaded automata. We show
two results from [Kováč, 2008], relationship with minimal-state automaton and strict
equiloadedness of finite languages. Finally, we characterize the family of languages
for which there exists a strictly equiloaded automaton. Using this characterization we
prove closure properties of the family of languages accepted by equiloaded automata.

3.1 Definition and Equivalent Form

A very strict view of a balanced use of states is that on every word in the accepted
language all states are used equally many times. We shall relax this condition by
an equiloadedness tolerance or equiloadedness constant∗ in such a way, that difference
between load of any two states is less than the equiloadedness tolerance.

Notation. Let A be a DFA and w be a word from L(A). We denote by #A[q, w]

(or simply by #[q, w]) the number of times the automaton A uses the state q when
processing the input w.

Definition 3.1 (Strict equiloadedness). Let A = (Q,Σ, δ, q0, F) be a deterministic
finite automaton. The automaton A is strictly equiloaded at words from L = L(A) if
there exists k ∈ R+ such that

∀w ∈ L, ∀p, q ∈ Q |#[p, w]−#[q, w]| ≤ k.

The smallest k for which this inequality holds will be called an equiloadedness constant.

Remark. Instead of writing “A is strictly equiloaded at words from L(A)” we shall
simply write “A is strictly equiloaded”.

Notation. The family of languages for which there is some strictly equiloaded automa-
ton is denoted by LSEQA.

∗In Chapter 5 we shall use the term equloadedness tolerance for a function, thus for the sake of
clarity we shall now use the term equiloadedness constant

5

Chapter 3. Strictly Equiloaded Automata 6

Example 3.1. The language L = {a3i+2 | i ∈ N} belongs to the family LSEQA. In
Figure 3.1(a) we can see the minimal-state automaton A for the language L. Because
all computations on words from L(A) end in the state q2, every state is equally loaded
on any w ∈ L(A). Hence, the equiloadedness constant for A is kA = 0.

On the other hand, there is no strictly equiloaded automaton for the language
L′ = {wabav | w, v ∈ Σ∗}. In Figure 3.1(b) is the minimal-state automaton B that
accepts this language. It is easy to prove non-equiloadedness of the automaton B —
on words abav ∈ L′ is the accepting state q3 used |v| times and the state q0 only once,
thus there is no constant k such that, for any length n = |v|+3, it holds ||v|−1| ≤ k. It
can be proved from Theorem 3.1 that no strictly equiloaded minimal-state automaton
implies non-existence of strictly equiloaded automaton.

a

a

a

q0

q1

q2

(a) The automaton A

q0 q1

q2q3

a

b

a

b
b

a

b

a

(b) The automaton B

Figure 3.1: An example of (a) a strictly equiloaded and (b) a non-strictly equiloaded
automaton

Now, we shall provide an equivalent form of the condition of strict equiloadedness
from the above definition.

Lemma 3.1. A DFA A = (Q,Σ, δ, q0, F) is strictly equiloaded at words from L = L(A)

if and only if there exists k1 ∈ R+ such that

∀w ∈ L

∣∣∣∣max
q∈Q

(#[q, w])− |w|+ 1

|Q|

∣∣∣∣ ≤ k1. (3.1)

Remark. The fraction (|w| + 1)/|Q| expresses the average load of states on the word
w, since there are |w| + 1 states used and |Q| is the number of states. Hence, when
deciding whether an automaton A is equiloaded, it suffices to compute the average load
and compare it with the load of the most used state.

Proof. If A is strictly equiloaded, for all w ∈ L(A) it holds |#[p, w] − #[q, w]| ≤ k.
Hence, if we choose p to be the most used state and q to be the least used state, it
holds that

∀w ∈ L(A)

∣∣∣∣max
q∈Q

(#[q, w])− |w|+ 1

|Q|

∣∣∣∣ ≤ ∣∣∣∣max
q∈Q

(#[q, w])−min
q∈Q

(#[q, w])

∣∣∣∣ ≤ k

Conversely, if (3.1) holds, then the load of the most used state qmax is bounded from
above by (|w|+ 1)/|Q|+ k1 and the load of the least used state qmin is bounded from

Chapter 3. Strictly Equiloaded Automata 7

below by (|w|+ 1)/|Q| − k1 · (|Q| − 1). Thus, for a difference between the load of any
two states it holds that |#[p, w]| −#[q, w]| ≤ |#[qmax, w]−#[qmin]| ≤ k1|Q| = k.

3.2 Elementary Results

For the sake of completeness we shall present two theorems from [Kováč, 2008]. The
first theorem provides a strong principle for proving the strict equiloadedness of an au-
tomaton.

Theorem 3.1. A regular language L is in LSEQA if and only if the minimal-state
automaton for L is strictly equiloaded.

Proof. A proof can be found in [Kováč, 2008].

Theorem 3.2. Every finite language L is in the family LSEQA.

Proof. Consider the minimal-state automaton A for the language L. The automaton
A has no cycles, hence on every word is each state used once or not at all. Thus
|#[p, w]−#[q, w]| ≤ 1.

3.3 Characterization

Theorem 3.3 (Characterization of LSEQA). Every language L ∈ LSEQA is either finite
or a graphical representation of any equiloaded automaton that accepts L is an oriented
multicycle through all states.

Remark. By an oriented multicycle through all states we mean an automaton with
transition function defined by δ(qi, x) = q(i+1) mod k, where x ∈ Σ. For the state qi, it is
possible that there exists more than one symbol from Σ for which transition function
is defined. See example 3.2.

Proof. Suppose that L is an infinite language accepted by an equiloaded automaton
A = (Q,Σ, δ, q0, F). We will show that A must contain a multicycle through all states.
If it does not contain one, we know that A is either acyclic (thus, L(A) is a finite
language) or there is a cycle C which does not contain all states. Let u be a substring
such that, when A processes u, A changes its state from q0 to qc, where qc lies in the
cycle C. Let v be a substring such that A (when it processes v) starts at the state qc,
visits all states from the cycle, and returns to the state qc. Let w be a substring such
that A changes its state from fc to an accepting state. If such a substring does not
exist, then the load of qc on every word is equal to zero. Therefore A is not strictly
equiloaded.

If w exists, then at word uvkw the DFA A will not be strictly equiloaded. This
implies that in A must exist a multicycle through all states.

Chapter 3. Strictly Equiloaded Automata 8

Now suppose that there exists a transition at symbol x, such that A will change its
state from (current) qi to qj, where j ̸= i + 1. It means that there is another cycle in
A, but not through all of its states. So we can use the same principle of constructing
input for A as above. It can be shown that A is not a strictly equiloaded automaton,
a contradiction. Therefore, a graphical representation of A is a multicycle through all
states.

Example 3.2. The automaton A = ({q0, q1, q2, q3}, {a, b, c}, δ, q0, {q2}) shown in Figure
3.2, where δ is defined by

δ(q0, a) = q1, δ(q1, a) = δ(q1, c) = q2,

δ(q2, b) = q3, δ(q3, a) = q0,

is a multicycle. Thus, the language L = {aaba, acba}∗ · {ac, aa} is strictly equiloaded.

a a

ba

c
q0

q1

q2

q3

Figure 3.2: The automaton A for L = {aaba, acba}∗ · {ac, aa}

Example 3.3. Based on our characterization of the family LSEQA it is easy to see that
there are many regular languages not in this family. For example, any language of
words that contain some substring, e.g., L = {wabbav | w, v ∈ Σ∗}. It is unfortunate,
but we can not expect that all regular language will be (strictly) equiloaded.

3.4 Closure Properties

As we shown in [Kováč, 2008], languages accepted by strictly equiloaded automata are
not closed under inverse homomorphism, union, Kleene star, Kleene plus, concatena-
tion and complement. Now we shall examine three additional closure properties. In
particular, we show that LSEQA is not closed under homomorphism and reversal, and
it is closed under intersection. Two of this results follows directly from the character-
ization of languages accepted by strictly equiloaded automata provided by Theorem
3.3.

Theorem 3.4. The family LSEQA is not closed under homomorphism.

Proof. Let A = ({q0}, {a, b}, δ, q0, {q0}) be a DFA, where δ(q0, a) = δ(q0, b) = q0.
The language accepted by the automaton A is L = L(A) = {a, b}∗. Consider a homo-
morphism h defined by h(a) = aab and h(b) = aa. We would show that the language

Chapter 3. Strictly Equiloaded Automata 9

h(L(A)) = {aax | x ∈ {ε, b}}∗ is not equiloaded. The minimal-state automaton for
this language is B = ({q0, q1, q2}, {a, b}, δB, q0, {q2}), where the transition function is
defined by δB(q0, a) = q1, δB(q2, a) = q1, δB(q1, a) = q2, and δB(q2, b) = q0. The
automaton B is not equiloaded. (For example, at the word h(bk) = a2k.)

Theorem 3.5. The family LSEQA is not closed under reversal.

Proof. Consider the language L = {(abb)ix | x ∈ {a, ε}, i ∈ N}. The graphical
representation of the minimal-state automaton A1 = ({q0, q1, q2},Σ, δ1, q0, {q0, q1}) for
L is an oriented multicycle, hence L ∈ LSEQA. (The transition function δ1 is defined
as follows. δ1(q0, a) = q1, δ1(q1, b) = q2 and δ1(q2, b) = q0.) Yet, the minimal-state
automaton A2 = (Q,Σ, δ2, q0, {q0, q1}) for LR is not strictly equiloaded. The automaton
A2 has four states, and the transition function δ2 is defined by

δ2(q0, a) = q1, δ2(q0, b) = q2, δ2(q1, b) = q2,

δ2(q2, b) = q3, δ2(q3, a) = q1.

Therefore, the graphical representation of A2 is not an oriented multicycle and A2 is
not strictly equiloaded.

Theorem 3.6. The family LSEQA is closed under intersection.

Proof. If at least one of L1, L2 ∈ LSEQA is finite, the intersection L1 ∩ L2 is finite and
thus is in LSEQA. Let A, B be automata accepting L1 and L2 respectively. If we use the
standard construction† of an automaton from the intersection of two languages, then
the result (call it C) will be either a multicycle (suppose we remove states that C never
visits) or L(C) will be finite. If L(C) is finite, then L(C) is also strictly equiloaded.
Suppose that L(C) is infinite. If there is a state (p, q) such that there exist states
(p1, q1) and (p2, q2) such that

δC((p, q), x) = (p1, q1), δC((p, q), y) = (p2, q2).

Thus p1 = p2 and q1 = q2 (both A and B are multicycles). Similarly, if there is a state
(p, q) such that there exist states (p1, q1) and (p2, q2) such that

δC((p1, q1), x) = (p, q), δC((p2, q2), y) = (p, q),

then p1 = p2 and q1 = q2. Thus, C is a multicycle and equiloaded.

By above theorems and results in [Kováč, 2008], we can summarize the closure
properties of LSEQA. The family LSEQA is closed under intersection and it is not
closed under homomorphism, inverse homomorphism, union, concatenation, Kleene
star, Kleene plus, reversal and complement. The overview of closure properties of
families R, LSEQA and LEQA

‡ is shown in Table 4.1.
†States of the new automaton are pairs of states from A and B respectively. There is a transition

from (p, q) to (p′, q′) on a symbol x if and only if δA(p, x) = p′ and δB(q, x) = q′.
‡Defined in the next chapter.

Chapter 4

Equiloaded Automata

In this chapter, we shall discuss a relaxation of the strict definition of an automaton
which uses its states in a balanced way in total over all words of each given length n. The
relaxation of the property of strict equiloadedness gives us new non-trivial automata
which are equiloaded. We shall define some transformations of automata which preserve
the equiloadedness property and analyze properties of equiloaded automata and the
family of languages accepted by equiloaded automata.

4.1 Definition and Equivalent Form

Notation. Let A be a DFA and L′ be a language, L′ ⊆ L(A). We denote by #A[q, L
′]

(or simply by #[q, L′], if it is clear from the context which automaton we mean) the
number of times the automaton A uses the state q when processing the inputs from
L′. It holds that

#A[q, L
′] =

∑
w∈L′

#A[q, w].

Definition 4.1 (Equiloadedness). Let A = (Q,Σ, δ, q0, F) be a deterministic finite
automaton. The automaton A is equiloaded at words from L = L(A) if there exists
k ∈ R+ such that

∀n ∈ N, ∀p, q ∈ Q |#[p, L ∩ Σn]−#[q, L ∩ Σn]| ≤ k|L ∩ Σn|.

The smallest k for which this inequality holds will be called the equiloadedness
constant.

Remark. The factor |L∩Σn| on the right side of the inequality expresses the possibility
of one state to be used constantly more than other on every word. Without this factor,
there will be a strictly equiloaded automaton which is not equiloaded.

Notation. The family of languages L for which there is an equiloaded automaton will
be denoted by LEQA.

10

Chapter 4. Equiloaded Automata 11

Example 4.1. Consider the language L = {aibj | i, j ∈ N}. The minimal-state automa-
ton A for this language shown in Figure 4.1(a). This automaton is equiloaded, as is
shown in the proof of Theorem 4.1. Intuitively, for each word aibj there is a word ajbi

of the same length and automaton A uses each state approximately i+ j times.
In Figure 4.1(b) there is a non-equiloaded automaton B. It can be shown that the

load of the state q0 on words of a given length n = 3ℓ is (ℓ + 1)|L ∪ Σn|. The average
load of states on words of the length 3ℓ is (3ℓ + 1)|L ∪ Σn|/5. From Lemma 4.1 and
from above we can prove that B is not equiloaded, because for any constant k there is
ℓ such that (ℓ + 1) − (3ℓ + 1)/5 > k. However, this does not mean that the language
L(B) = {aaa, bbb}∗ is not equiloaded.

q0 q1
b

ba

(a) An equiloaded automaton A

q0

q1

q2 q4

q3

a

a

a

b

b

b

(b) A non-equiloaded automaton B

Figure 4.1: Example of (a) an equiloaded and (b) a non-equiloaded automaton

Similarly to the strict equiloadedness case, we provide an equivalent form of our
definition. This form is mostly used in proofs of equiloadedness of an automaton
because it is easier to consider the most used state rather than compare all possible
pairs of states.

Lemma 4.1. A DFA A = (Q,Σ, δ, q0, F) is equiloaded at words from L = L(A) if and
only if there exists k1 ∈ R+ such that

∀n ∈ N
∣∣∣∣max
q∈Q

(#[q, L ∩ Σn])− (n+ 1) · |L ∩ Σn|
|Q|

∣∣∣∣ ≤ k1|L ∩ Σn|. (4.1)

Remark. The left side of the inequality (4.1) can be read as a difference between the
load of the most used state and the average load of states at all words from L of a given
length n. For all n where L ∩ Σn ̸= ∅, the inequality (4.1) can be written as

max
q∈Q

(#[q, L ∩ Σn])

|L ∩ Σn|
− n+ 1

|Q|
≤ k1.

Seeing that in the case where L ∩Σn ̸= ∅, the inequality holds, we shall use the above
forms of the equiloadedness condition as needed.

Proof. If A is equiloaded, it holds that

∀n ∈ N
∣∣∣∣max
q∈Q

(#[q, L ∩ Σn])−min
q∈Q

(#[q, L ∩ Σn])

∣∣∣∣ ≤ k|L ∩ Σn|.

Chapter 4. Equiloaded Automata 12

Since the least used state is used at most as many times as the average load of states,
the inequality (4.1) is valid.

Conversely, suppose that the inequality (4.1) holds. For a given n, let qmax be the
most used state. A load of each state at words from L∩Σn is bounded from above by
#[qmax, L ∩ Σn] and therefore by

(n+ 1)|L ∩ Σn|
|Q|

+ k1|L ∩ Σn|.

On the other hand, the load of every state is bounded from below by

(n+ 1)|L ∩ Σn|
|Q|

− k1|L ∩ Σ||(Q| − 1).

If we use these bounds in |#[p, L ∩ Σn]−#[q, L ∩ Σn]|, we obtain

|#[p, L ∩ Σn]−#[q, L ∩ Σn]| ≤ k1|L ∩ Σn|+ k1|L ∩ Σn|(|Q| − 1) ≤ k1|Q| · |L ∩ Σn|.

Since k = k1|Q| is a constant, A is equiloaded.

4.2 Elementary Results

Theorem 4.1. LSEQA (LEQA (R.

Proof. Consider L ∈ LSEQA. There exists a strictly equiloaded automaton A such that
L = L(A). Since |#[p, w]−#[q, w]| ≤ k for all p, q ∈ Q, for all n it holds that

|#[p, L ∩ Σn]−#[q, L ∩ Σn]| =

∣∣∣∣∣ ∑
w∈L∩Σn

(#[p, w]−#[q, w])

∣∣∣∣∣
≤

∑
w∈L∩Σn

|#[p, w]−#[q, w]| ≤ k|L ∩ Σn|.

We showed that LSEQA ⊆ LEQA. To show that LSEQA ̸= LEQA it suffices to show
that a language L = {aibj | i, j ∈ N} is in LEQA. Let A = ({q0, q1}, {a, b}, δ, q0, {q0, q1})
be the minimal-state automaton for the language L. It is easy to see that the minimal-
state automaton A for L is not strictly equiloaded, for its graphical representation is
not an oriented multicycle. The transition function δ is defined by

δ(q0, a) = q0, δ(q0, b) = q1, δ(q1, b) = q1.

We will show that the expression |#[q0, L∩Σn]−#[q1, L∩Σn]| is bounded from above
by n+1 = |L∩Σn|. The load of the state q0 is

∑n
i=0 i+1, because #[q0, aibn−i] = i+1.

Chapter 4. Equiloaded Automata 13

The load of the state q1 is
∑n

i=0 n− i =
∑n

i=0 i. Therefore,

|#[q0, L ∩ Σn]| −#[q1, L ∩ Σn]| =
n∑

i=0

(i+ 1− i) =
n∑

i=0

1 = n+ 1.

Hence, A is equiloaded and L ∈ LEQA.
To show that LEQA (R it suffices to find a language L and its minimal-state

automaton B such that, for any ℓ, there exists arbitrarily large n such that B uses a
particular state more than ℓ times the load of another state on words of the length n.
This statement is proved in Theorem 4.3.∗ Such a language is for example the language
L = {wbbv | w, v ∈ Σ∗} with the minimal-state automaton B shown in Figure 4.2.

q0 q1 q2
b

b

a
a a

b

Figure 4.2: The minimal-state automaton B for the language L = {ubbv | u, v ∈ Σ∗}

For a given length n, words from L(A) are of the form ai1bai2b . . . aimbbv, where
|v| = n−m− 1−

∑m
j=0 ij. The load of q2 on these words is equal to |v|+1. Therefore,

#[q2, L ∩ Σn] =
n−2∑
i=0

2i
∑
m>0

(
n− i− 2−m

m

)
(i+ 1).

Similarly the load of q1 on the words of above form is equal to m, so it holds that

#[q2, L ∩ Σn] =
n−2∑
i=0

2i
∑
m>0

(
n− i− 2−m

m

)
(m+ 1).

From the fact that ∑
m>0

(
n− i− 2−m

m

)
= Fn−i−1,

where Fn is the n-th Fibonacci number, we obtain

#[q2, L ∩ Σn] =
n−2∑
i=0

2i(i+ 1)Fn−i−1,

and

#[q1, L ∩ Σn] ≤
n−2∑
i=0

2i
∑
m>0

(
n− i− 2−m

m

)
(n− i− 2) =

n−2∑
i=0

2i(n− i− 2)Fn−i−1.

It is a well known fact that there are constants a, b such that aϕn < Fn < bϕn, where
∗Theorem 4.3 is proved independently of the result LEQA (R.

Chapter 4. Equiloaded Automata 14

ϕ is the golden ratio. From that we can compute a lower bound of #[q2, L ∩ Σn] as

#[q2, L ∩ Σn] ≥
n−2∑
i=0

2i(i+ 1)aϕn − i− 2 = aϕn−2 ·
n−2∑
i=0

(i+ 1)

(
2

ϕ

)i

·

By simplifying the sum we obtain

#[q2, L ∩ Σn] ≥ c2ϕ
n−2(n− 2)

(
2

ϕ

)n−1

·

The analogous computation can be done for the load of the state q1:

#[q1, L ∩ Σn] ≤ bϕn−2

n−2∑
i=0

(n− i− 2)

(
2

ϕ

)i

≤ bϕn−2

n−3∑
j=0

j∑
i=0

(
2

ϕ

)i

≤ b

(2
ϕ
− 1)

ϕn−2

n−3∑
j=0

(
2

ϕ

)i

≤ c1ϕ
n−2

(
2

ϕ

)n−2

≤ c1ϕ
n−2

(
2

ϕ

)n−1

·

From above we get that #[q2, L∩Σn] > ((n− 2)c2/c1) ·#[q1, L∩Σn], therefore for
any ℓ from Theorem 4.3 there exists an arbitrarily large number n such that

#[q2, L ∩ Σn] > ℓ#[q1, L ∩ Σn].

Hence, B is not equiloaded and LEQA ̸= R.

Corollary 4.1. Every finite language is in LEQA.

Proof. Follows directly from Theorem 4.1.

4.3 Relationship with Minimal-State Automaton

Unlike in the case of strict equiloadedness, there is an language L ∈ LEQA such that
the minimal-state automaton for L is not equiloaded. Therefore, it is harder to show
that some language L does not belong to LEQA because it does not suffice to prove
that the minimal-state automaton is not equiloaded. However, there is a relationship
between minimal-state automaton and equiloadedness of a language, as we shall see in
Theorem 4.3

Theorem 4.2. There exists a language L ∈ LEQA such that the minimal-state au-
tomaton for the language L is not equiloaded.

Chapter 4. Equiloaded Automata 15

q0

q1

q2

b

a

b
a

(a) The minimal-state automaton

q0 q1

q2 q3

a

b

a ab b

(b) The equiloaded automaton

Figure 4.3: The minimal-state automaton and the equiloaded automaton for the lan-
guage L = {ab, ba}∗

Proof. Consider the language L = {ab, ba}∗. The minimal state automaton in Figure
4.3(a) for L is A1 = ({q0, q1, q2}, {a, b}, δ1, q0, {q0}), where δ1 is defined by

δ1(q0, a) = q1, δ1(q0, b) = q2,

δ1(q1, b) = q0, δ1(q2, a) = q0.

We can see that A1 is not equiloaded, because∑
w∈L∩Σ2n

#[q0, w] = (n+ 1) · 2n,

(2n+ 1) · 2n

3
=

2n+ 1

3
· 2n,

and from this and Lemma 4.1 we get k ≥ (n− 2)/3, so k is not a constant.
Now it suffices to show that L ∈ LEQA. In order to find an equiloaded automaton

for L, we can look at the automaton A1 and determine that q0 is used every time q1 or
q2 is used. So we can try to split the state q0 into two states. We obtain an automaton
in Figure 4.3(b) A2 = ({q0, q1, q2, q3}, {a, b}, δ2, q0, {q0, q3}), where δ2 is defined by

δ2(q0, a) = q1, δ2(q0, b) = q2, δ2(q1, b) = q3,

δ2(q2, a) = q0, δ2(q3, a) = q1, δ2(q3, b) = q2.

This automaton is equiloaded. One way to prove this is by using algebraic represen-
tation from Section 4.7. Another way is to directly use the definition, or the equivalent
form from Lemma 4.1. It is easy to see that the most used state will be q0 or q3 because
it holds that #[q0, w] ≥ #[q2, w] and #[q3, w] ≥ #[q1, w]. It is easy to see that, for
a word w consisting of i pairs “ab” and j pairs “ba”, the load of q0 is #[q0, w] = j + 1

and the load of q1 is #[q3, w] = i. Therefore, it holds that

#[q0, L ∪ Σ2n] =
n∑

i=0

(
n

i

)
(i+ 1) = 2n−1(n+ 2)

#[q3, L ∪ Σ2n] =
n∑

i=0

(
n

i

)
(i) = 2n−1n.

Chapter 4. Equiloaded Automata 16

The most used state is q0. The average load of states is (2n + 1)2n−2, therefore there
exists k such that

2n−1(n+ 2)− (2n+ 1)2n−2 = 3 · 2n−2 ≤ k|L ∩ Σ2n| = k2n.

Thus A2 is equiloaded and L ∈ LEQA.

Theorem 4.3. Let L be a language. If for the minimal-state automaton A for the
language L it holds that

∃p, q ∈ Q ∀ℓ ∈ R+ ∀n0 ∈ N ∃n ∈ N, n ≥ n0 #[p, L ∩ Σn] > ℓ#[q, L ∩ Σn],

then L ̸∈ LEQA.

Proof. Suppose that L ∈ LEQA and let B = (QB,Σ, δB, q0B, FB) be an arbitrary equi-
loaded automaton such that L = L(B). Let kB be the equiloadedness constant of B.
From the condition in the theorem, there are states p, q such that the inequality holds.
Some of states from QB (let us call them p1, . . . , pc) compose the equivalence class from
Myhill-Nerode Theorem, which belongs to the state p. Similarly, there are some states
q1, . . . , qd, which belong to the state q. At least for one of the states p1, . . . , pc (let it
be p1) it holds

#B[p1, L ∩ Σn] ≥ #A[p, L ∩ Σn]

c
·

Similarly, without loss of generality, suppose that for q1 it holds

#B[q1, L ∩ Σn] ≤ #A[q, L ∩ Σn]

d
·

Let ℓ = (kB + 1)c. Then

#[p1, L ∩ Σn] ≥ #[p, L ∩ Σn]

c
>

(kB + 1)d#[q, L ∩ Σn]

d
≥ (kB + 1)d#[q1, L ∩ Σn].

From the above inequality we have

#[p1, L ∩ Σn]−#[q1, L ∩ Σn] > kBd#[q1, L ∩ Σn].

If #[q1, L ∩ Σn] > |L ∩ Σn|/d, it is clear that B cannot be equiloaded, thus we can
assume the contrary. But then #[q1, L ∩ Σn] ≤ |L ∩ Σn| and there is some state, that
is used more or equal to the average load of all states, thus

(n+ 1)|L ∩ Σn|
|Q|

− |L ∩ Σn| = (n+ 1− |Q|)|L ∩ Σn|
|Q|

,

so B is not equiloaded. Therefore, our first assumption L ∈ LEQA must be false.

Chapter 4. Equiloaded Automata 17

4.4 Automata Transformations

Theorem 4.4. Let A be a DFA. Let B be a DFA, obtained from A by a sequence
of arbitrary changes in the transition function from δ(p, x) = q to δ(p, y) = q in such
a way that B is still a deterministic finite automaton. If A is equiloaded, then B is
equiloaded.

Proof. The graphical representation of the automaton A is equal to the graphical repre-
sentation of the automaton B. Thus, for every word w ∈ L(A) there is exactly one word
w′ ∈ L(B) such that B uses the same sequence of transitions on w′ as A uses on w. A
load of a particular state q in the automaton A on a word w will be the same as the load
of q in the automaton B on a word w′. Therefore #A[q, L(A)∩Σn] = #B[q, L(B)∩Σn],
so B is equiloaded.

Definition 4.2. Let A = (QA,ΣA, δA, q0A, FA), B = (QB,ΣB, δB, q0B, FB) be deter-
ministic finite automata such that ΣA ∩ ΣB = ∅ . The A,B-composition automaton
C = (QA ×QB,ΣA ∪ ΣB, δC , (q0A, q0B), FA × FB) is a DFA with δC such that

∀x ∈ ΣB δC((qA, qB), x) = (qA, pB)
def⇐⇒ δB(qB, x) = pB,

∀x ∈ ΣA δC((qA, qB), x) = (pA, q0B)
def⇐⇒ δA(qA, x) = pA and qB ∈ FB.

We shall write C = A ◦B.

Example 4.2. Let A be a minimal-state automaton for a language L1 = {a3n+2 | n ∈ N}
and let B be a minimal-state automaton for L2 = ({b} ·{b, cc})∗ · {b}. (See figure 4.4.)
Then automaton C = A ◦B is an automaton that accepts a language

L3 = {w1aw2 . . . aw3n | n ∈ N,∀i ≤ 3n wi ∈ L2}.

Theorem 4.5. Let A = (QA,ΣA, δA, q0A, FA), B = (QB,ΣB, δB, q0B, FB) be equiloaded
automata such that ΣA ∩ΣB = ∅, and the equiloadedness constants for both A and B
are equal to 0. Then the automaton A ◦B is equiloaded with equiloadedness constant
0.

Proof. We compute the load of each state while the automaton C = A ◦ B processes
all words of length n. It can be shown that a word w ∈ L(C) = L of the length n

has the form w = w1a1w2a2 . . . wk, where wi ∈ L(B), a1a2 . . . an−1 ∈ L(A). We denote
L ∩ Σn by L(n). We shall show that

|#C [(p, q1), L
(n)]−#C [(p, q2), L

(n)]| ≤ 0 and

|#C [(p1, q), L
(n)]−#C [p2, q, L

(n)]| ≤ 0.

Chapter 4. Equiloaded Automata 18

q0 q1

q2

a

a a

q0 q1

q2

b

b
c c

q0, q0 q0, q1

q0, q2

q1, q0 q1, q1

q1, q2

q2, q0q2, q1

q2, q2

b

b

b

b

b

b

c c c c

cc

a

aa

Figure 4.4: The automata A (left) and B (right) compose the automaton C = A ◦ B
(below).

Then it holds that

|#C [(p1, q1), L
(n)]−#C [(p2, q2), L

(n)]|
= |#C [(p1, q1), L

(n)]−#C [(p1, q2), L
(n)] + #C [(p1, q2), L

(n)]−#C [(p2, q2), L
(n)]|

≤ |#C [(p1, q1), L
(n)]−#C [(p1, q2), L

(n)]|+ |#C [(p1, q2), L
(n)]−#C [(p2, q2), L

(n)]|
≤ 0,

and A ◦B is equiloaded.
It is clear from the construction of A ◦B that

L(A ◦B) = {w1a1w2 . . . an−1wn | wi ∈ L(B), a1a2 . . . an ∈ L(A)}.

Therefore, for all words of a given length n, it holds that

L(n) =
n∪

i=0

L
(n)
i ,

where

L
(n)
i = {w1a1 . . . aiwi+1 | wk ∈ L(B), a1 . . . ai ∈ L(B),

i+1∑
k=1

|wk| = n− i}.

Chapter 4. Equiloaded Automata 19

Firstly, we shall compute |L(n)|. It holds that

|L(n)| =
n∑

i=0

|L(n)
i | =

n∑
i=0

|L(A)(i)| ·
n−i∑
j=0

(
n− j − 1

i− 1

)
(i+ 1)|L(B)(j)|,

because for given a1, . . . , ai, there are (n− j− 1) choose (i− 1) words in L(i) such that
the first substring from L(B) has the length j.

Now we shall compute #[(p, q), L(n)] by summing the load of (p, q) on all words
from L

(n)
i . Similarly as in the case of counting words from L

(n)
i it holds that

#[(p, q), L(n)] =
n∑

i=0

#[p, L(A)(i)] ·
n−i∑
j=0

(
n− j − 1

i− 1

)
(i+ 1)#[q, L(B)(j)]

=
n∑

i=0

(i+ 1)|L(A)(i)|
|QA|

·
n−i∑
j=0

(
n− j − 1

i− 1

)
(i+ 1)

(j + 1)|L(B)(j)|
|QB|

·

In the above equation we can see that the load of a state (p, q) does not depend on p or
q, therefore the load is the same for (p, q) and (p, q′), or for (p, q) and (p′, q). It means
that any two states are equally loaded on words from L(n), therefore equiloadedness
constant for C is equal to 0.

The previous theorem does not hold if the equiloadedness constant for A or B is
non-zero.

Theorem 4.6. Let ΣA, ΣB be finite alphabets such that ΣA ∩ ΣB = ∅. There exist
equiloaded automata A = (QA,ΣA, δA, q0A, FA), B = (QB,ΣB, δB, q0B, FB) such that
A ◦B is not equiloaded.

Proof. Let A be an automaton for the language LA = {a, b} and B be the minimal-
state automaton for the language LB = {ci | i ∈ N}. A language accepted by A ◦B is
the language L = {cixcj | i, j ∈ N, x ∈ {a, b}}. The automaton A◦B is not equiloaded,
although the language L ∈ LEQA. The load of the state (q0A, q0B) is

#[(q0A, q0B), L ∩ Σn] = 2
n−1∑
i=0

i+ 1 = n(n+ 1).

The average load of the states of A ◦ B is (n + 1)n/3. Thus, there is no constant k
such that

n(n+ 1)− n(n+ 1)

3
=

2n(n+ 1)

3
≤ k(n).

Chapter 4. Equiloaded Automata 20

4.5 Closure Properties of LEQA

In this section we shall prove several theorems about closure properties of the family
LEQA. Most of them are proved using Theorem 4.3.

Theorem 4.7. The family LEQA is not closed under union.

Proof. Consider languages La = {ai | i ∈ N} and Lb = {bi | i ∈ N}. It is clear that
La, Lb ∈ LEQA. In an automaton A which accepts L = La∪Lb, there must be an initial
state q0 such that automaton A will not return to q0 during computation. Therefore,
the load of q0 on words of a given length n is equal to the number of words of the
length n. (Which is equal to 2: an and bn.) Moreover, there is a state q ∈ QA such
that

#[q, L ∩ Σn| ≥ (n+ 1)|L ∩ Σn|
|QA|

=
2(n+ 1)

|QA|
.

From the above we get

#[q, L ∩ Σn]−#[q0, L ∩ Σn] ≥ 2(n+ 1)

|QA|
− 2 =

(
n+ 1

|QA|
− 1

)
|L ∩ Σn|,

thus, A is not equiloaded.

Theorem 4.8. The family LEQA is not closed under homomorphism.

Proof. Let L = {aibaj | i, j ∈ N}. This language is in the family LEQA, we can
construct the automaton for the L by relabelling one arc in the graphical representation
of the minimal state automaton for the language L1 = {aibj | i, j ∈ N, j ̸= 0}.
(We relabel the loop (q1, q1) by a.) Let h be a homomorphism such that h(a) = a,
h(b) = bb. Then the minimal-state automaton A = ({q0, q1, q2}, {a, b}, δA, q0, {q2})
for the language h(L) = {aibbaj | i, j ∈ N} fulfils the condition from Theorem 4.3, so
h(L) ̸∈ LEQA. (The transition function δA is defined by δA(q0, a) = q0, δA(q0, b) = q1,
δA(q1, a) = q1). For showing it we compare the load of states q1 and q2 in the automaton
A.

On the word aibbaj ∈ h(L) the state q1 is used once, and the state q2 is used
j+1 times. Because each word is determined by position of the first occurrence of the
symbol b, the number of words of a given length n is n. Therefore, we obtain

#[q2, h(L) ∩ Σn] =
n−1∑
i=0

(n− i) =
n2 + n

2
,

and

#[q1, h(L) ∩ Σn] =
n−1∑
i=0

1 = n.

Thus, for any ℓ there exists arbitrarily large n such that the load of the state q2 is
at least ℓ times greater than the load of the state q1. This ensures that we can use
Theorem 4.3, hence h(L) ̸∈ LEQA.

Chapter 4. Equiloaded Automata 21

Theorem 4.9. The family LEQA is not closed under concatenation.

Proof. Consider languages L1 = {ai | i ∈ N} and L2 = {b}. They both belong to
the family LEQA, for the first the minimal-state automaton is equiloaded, the second
is finite thus belongs to LSEQA ⊆ LEQA. We will show that the concatenation of these
languages L = L1 · L2 = {aib | i ∈ N} is not in the family LEQA, because for the
minimal-state automaton A = ({q0, q1},Σ, δ, q0, {q1}) the condition from Theorem 4.3
holds: (L ∩ Σn = {an−1b})

#[q0, L ∩ Σn] = n, #[q1, L ∩ Σn] = 1,

so for a number ℓ there is a length n = ℓ + 1 such that the load of q0 is greater than
ℓ times the load of q1.

Theorem 4.10. The family LEQA is not closed under intersection.

Proof. As we showed in the proof of Theorem 4.11, the deterministic finite automaton
A = ({q0, q1, q2}, {a, b}, δ, q0, {q2}), where the transition function is defined by

δ(q0, a) = q0, δ(q0, b) = q1, δ(q1, c) = q1,

δ(q1, b) = q2, δ(q2, a) = q2,

is equiloaded. It is easy to see that the language accepted by the automaton A is
L = {aibcjbak | i, j, k ∈ N}. By relabeling the loop (q1, q1) by d we obtain equiloaded
automaton A′ for the language L′ = {aibdjbak | i, j, k ∈ N}. The intersection of L and
L′ is L1 ∩ L2 = {aibbak | i, k ∈ N}. This language is not equiloaded, as was shown in
the proof of Theorem 4.8. Hence, the family LEQA is not closed under intersection.

Theorem 4.11. The family LEQA is not closed under inverse homomorphism.

Proof. Consider a language L = {aibcjbak | i, j, k ∈ N} and homomorphism h such
that h(a) = a, h(b) = b, h(c) = a. Then L′ = h−1(L) = {aibbaj | i, j ∈ N}. We already
know from the proof of Theorem 4.8 that L′ ̸∈ LEQA. We will show that L ∈ LEQA.
Consider the minimal-state automaton A = ({q0, q1, q2}, {a, b}, δ, q0, {q2}) for language
L, where the transition function is defined by

δ(q0, a) = q0, δ(q0, b) = q1, δ(q1, c) = q1,

δ(q1, b) = q2, δ(q2, a) = q2.

Consider a word aibcjbak of length n. On this word, the load of the state q0 is equal
to i+ 1, the load of the state q1 is equal to j + 1, and the load of the state q2 is equal
to k + 1 = n− i− j − 1. The number of words of length n is equal to (n2 + n− 2)/2

Chapter 4. Equiloaded Automata 22

Let us compute the load on words from L ∩ Σn:

#[q0, L ∩ Σn] =
n−2∑
i=0

n−i−1∑
j=0

i+ 1 =
n−2∑
i=0

(i+ 1)(n− i)

= (n− 1)

(
(n− 1)(n− 2)

2

)
+ n(n− 1)− (n− 2)(n− 1)(2n− 3)

6

=
n(n− 1)(n+ 4)

6
=
n3 + 3n2 − 4n

2
,

#[q1, L ∩ Σn] =
n−2∑
i=0

n−i−1∑
j=0

j + 1 =
n−2∑
i=0

(n− i)(n− i+ 1)

2

=
(n− 1)(n2 + 4n+ 6)

6
=
n3 + 3n2 + 2n− 6

6
,

#[q2, L ∩ Σn] =
n−2∑
i=0

n−i−1∑
j=0

n− i− j − 1 =
n−2∑
i=0

(n− i)(n− i− 1)

6

=
(n− 1)n(n+ 1)

6
=
n3 − n

6
·

Hence we have

|#[p, L ∩ Σn]−#[q, L ∩ Σn]| ≤ (n3 + 3n2 + 2n− 6)− (n3 − n)

6

=
3n2 + 3n− 6

6
= |L ∩ Σn|.

Thus A is equiloaded, L ∈ LEQA, h−1(L) = L′ ̸∈ LEQA, hence the family LEQA is not
closed under inverse homomorphism.

Theorem 4.12. The family LEQA is not closed under reversal.

Proof. Consider the language L = {aibj | i, j ∈ N}. We will show that L ∈ LEQA,
but LC ̸∈ LEQA. The minimal-state automaton A = ({q0, q1},Σ, δA, q0, {q0, q1}) for the
language L, where the transition function is defined by

δA(q0, a) = q0, δA(q0, b) = q1, δA(q1, b) = q1,

is equiloaded. To see it, let us compute the load of state q0 and q1 respectively.

#[q0, L ∩ Σn] =
n−1∑
i=0

i+ 1 =
i2 + i

2
,

#[q1, L ∩ Σn] =
n−1∑
i=0

n− i =
i2 + i

2
.

It means that A is equiloaded with the equiloadedness constant equal to 0.
The minimal-state automaton B = ({q0, q1, q2},Σ, δB, q0, {q1, q2}) for language LR

Chapter 4. Equiloaded Automata 23

has the transition function defined by

δB(q0, b) = q1, δB(q1, b) = q1, δB(q1, a) = q2, δB(q2, a) = q2.

It is obvious that the state q0 is used exactly once on every word, thus |L ∩ Σn| times
on all words of a given length n. For length n there exists an state q used at least
(n+1)|L∩Σn|/3 times. This means that for any ℓ there is an arbitrary big n such that
#[q, L ∩ Σn] is greater than ℓ · #[q0, L ∩ Σn]. Therefore by Theorem 4.3 LR ̸∈ LEQA

and thus LEQA is not closed under reversal.

Theorem 4.13. The family LEQA is not closed under complement.

Proof. Every finite language belongs to the family LEQA, so does L = {aa} ∈ LEQA. We
will show that the minimal-state automaton A = ({q0, . . . , q3}, {a, b}, δ, q0, {q0, q1, q3})
shown in Figure 4.5 fulfils the condition from Theorem 4.3. On every word w the state
q0 is used only once and the state q3 is used at least |w|− 2 times. Therefore, it is easy
to see that for any ℓ there exists arbitrarily large n (n > ℓ + 3) such that the load of
the state q2 is greater than ℓ times the load of the state q0. The language LR is not in
the family LEQA, thus LEQA is not closed under complement.

q0

q1

q2

q3

a

a

b

b

a

b

a

b

Figure 4.5: The minimal-state automaton for the language {a, b}∗ − {aa}.

We left open the problem of determining whether the family LSEQA is closed under
Kleene star and Kleene plus, we believe that the answer is negative in both cases.
The reader can compare our results with closure properties of the family of regular
languages in Table 4.1.

∪ ∩ · h h−1 C R ∗ +

R yes yes yes yes yes yes yes yes yes
LEQA no no no no no no no open open
LSEQA no yes no no no no no no no

Table 4.1: Closure properties of R, LEQA and LSEQA

Chapter 4. Equiloaded Automata 24

4.6 Characterization

Since it is not true that L ∈ LEQA if and only if the minimal-state automaton for L is
equiloaded, it is harder to characterize the family LEQA. In this section, we present our
approaches to the characterization of the family LEQA, although we will not prove this
characterization. We shall state some theorems that partially characterize this family,
but a final characterization is still open.

The characterization of the family LSEQA was built on the graphical representation
of automata regardless of a set of accepting states F . However, in the case of the family
LEQA we shall see that graphical representation of automata alone does not suffice.

There are two ways to create a partial characterization. One way is to formulate
a condition such that if it holds for an automaton A, then A is not equiloaded (or,
conversely, if A is equiloaded, then condition is not true). A good candidate for this
condition seems to be a bridge in the graphical representation of an automaton, but
as the theorem below demonstrates, this condition is not really good for our purposes.

Theorem 4.14. There is an equiloaded automaton A such that the graphical repre-
sentation of A contains a bridge.

Proof. Such an automaton is, for example, any automaton for a finite language, or the
minimal-state automaton for the language L = {aibj | i, j ∈ N} considered in the proof
of Theorem 4.1.

Another type of condition which will partially characterize the family LSEQA is such
a condition that if it holds, then A is equiloaded. A good candidate for this type of
condition seems to be “equal number of cycles through each state.” But, unfortunately,
this is not a sufficient condition.

Theorem 4.15. There is a non-equiloaded automaton A such that there is an equal
number of cycles through each state.

Proof. Consider the minimal-state automaton A = ({q0, q1, q2}, {a, b}, δ, q0, {q1}) for
the language L = {aib2j+1 | i, j ∈ N} that has one cycle through the state q0 and one
cycle through the states q1, q2. Therefore, there is an equal number of cycles through
all states. This automaton is not equiloaded.

4.7 Algebraic Representation

We shall now introduce an algebraic representation for DFA. This representation can
be used to show (non-)equiloadedness of automata.

Chapter 4. Equiloaded Automata 25

Let A = (Q,Σ, δ, q0, F) be a DFA. For n ∈ N, we shall use

Mn =


mn

0,0 mn
0,1 · · · mn

0,|Q|−1

mn
1,0 mn

1,1 · · · mn
1,|Q|−1

...
...

mn
|Q|−1,0 mn

|Q|−1,0 · · · mn
|Q|−1,|Q|−1

 , αn =


αn
0

αn
1
...

αn
|Q|−1

 ,

where Mn is a matrix (of the size |Q| × |Q|) where the element mn
i,j equals to the load

of the state qj at all words of length n, for which the computation of A finishes in the
state qi. The αn is a column vector such that αn

i is the number of words of length n,
for which A’s computation finishes in the state qi.

Without loss of generality, for n = 0 it holds that

M0 =


1 0 · · · 0

0 0 · · · 0
...

...
0 0 · · · 0

 , α0 =


1

0
...
0

 .

If we want to compute Mn from Mn−1 (and αn−1), we need a transition matrix ∆ –
from the transition function of A. The element δi,j is the number of transitions from qj

to qi. (For a better insight see the proof of Theorem 4.16.) Now we can create formulae
for both αn and An:

αn = ∆ · αn−1 , (4.2)

Mn = ∆ ·Mn−1 + diag(αn) . (4.3)

Remark. The function diag is defined by

diag


a0

a1
...
ak

 =


a0 0 · · · 0

0 a1 · · · 0
...

...
0 0 · · · ak

 .

If we are able to compute the matrix Mn, we can easily compute the minimal value
of the constant k from Definition 4.1 such that the condition from this definition holds
for n. We can construct a vector φ with 1 at the i-th element if qi is an accepting state
and 0 otherwise. By multiplying φ and Mn we obtain a vector ψ with the load of the
state qi at the i-th element of the vector ψ (on words from L(A) of length n). The
maximal element of ψ contains the load of the maximally used state. We can compute
the average load by summing all elements of ψ and dividing by |Q|.

Now we will show an example of proving the equiloadedness of an automaton using
the algebraic representation.

Chapter 4. Equiloaded Automata 26

Theorem 4.16. An automaton A = ({q0, q1, q2, q3}, {a, b}, δ, q0, {q0, q3}), where δ is
defined by

δ(q0, a) = q1, δ(q0, b) = q3, δ(q1, b) = q2,

δ(q3, a) = q0, δ(q2, a) = q1, δ(q2, b) = q3.

is equiloaded.

Proof. We shall prove the equiloadedness of the automaton A using algebraic repre-
sentation. The transition matrix ∆ for the automaton A is

∆ =


0 0 0 1

1 0 1 0

0 1 0 0

1 0 1 0

 .

Now we prove that for n > 0 it holds that

α2n =


2n−1

0

2n−1

0

 , and α2n+1 =


0

2n−1

0

2n−1

 . (4.4)

We can easily see that the previous statement holds for n = 1. By induction we obtain

α2n+2 = ∆α2n+1 =


2n

0

2n

0

 , α2n+3 = ∆α2n+2 =


0

2n

0

2n

 .

Next we shall look at M0, . . . , M4 and we see that

M0 =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , M1 =


0 0 0 0

1 1 0 0

0 0 0 0

1 0 0 1

 , M2 =


2 0 0 1

0 0 0 0

1 1 1 0

0 0 0 0

 ,

M3 =


0 0 0 0

3 3 1 1

0 0 0 0

3 1 1 3

 , M4 =


5 1 1 3

0 0 0 0

3 3 3 1

0 0 0 0

 .

Using (4.4) we can see that if M2n (as M4 is) can be written (for some value cn) as

M2n =


cn + 2n−1 cn − 2n−1 cn − 2n−1 cn

0 0 0 0

cn cn cn cn − 2n−1

0 0 0 0

 ,

Chapter 4. Equiloaded Automata 27

then the matrix M2n+2 can be written as

M2n+2 =


2cn + 2n + 2n−1 2cn − 2n−1 2cn − 2n−1 2cn + 2n−1

0 0 0 0

2cn + 2n−1 2cn + 2n−1 2cn + 2n−1 2cn − 2n−1

0 0 0 0



=


cn+1 + 2n cn+1 − 2n cn+1 − 2n cn+1

0 0 0 0

cn+1 cn+1 cn+1 cn+1 − 2n

0 0 0 0

 .

(The matrices with odd indices are not interesting, because the number of words w of
length 2n + 1 such that A ends in an accepting state while processing the word w is
zero)

We can see that k = 3/4 is good enough for definition of the equiloadedness.
Indeed, for n = 2l the maximally used state is q0 with load 2cl +2l−1, the average load
is (8cl − 2l)/4 and |L ∩ Σn| = 2l.

4.8 Open Questions

4.8.1 Characterization

We left open the characterization of equiloaded automata. The algebraic representation
of automata can be turned into computer program, which determines ki, such that A is
equiloaded at words of the length i with equiloadedness constant ki. After examining
matrices ∆ with small size, we observed that if a sum of each row or column in ∆ is
equal to 2, and δ(i+1) mod n,i ≥ 1, then {ki}∞i=0 seems to be convergent.

Definition 4.3. Let ψ be a permutation of elements 0, 1, . . . , n− 1. We shall say that
a directed graph G is defined by the permutation ψ, if

∀i ∈ {0, . . . , n− 1} (i, ψ(i)) ∈ E(G) .

Conjecture 4.1 (Two-cycles equiloaded automata). Let ψ1, . . . , ψk be permutations
over |Q| elements. Let A be an automaton such that the graphical representation of A
is G0 ∪

∪k
i=0Gi, where G0 = (V,E0) is an directed graph containing cycle through all

states and Gi = (V,Ei) is an directed graph defined by the permutation ψi. Then A is
equiloaded.

4.8.2 Equiloadedness Preserving Transformations

There are two automata transformations we conjecture to be equiloadedness preserving.
First of them is a change of set of accepting states in such a way, that every state is

Chapter 4. Equiloaded Automata 28

used on some w ∈ L(A).
The second transformation is m-regular splitting of automaton A defined as follows.

Definition 4.4. Let A = (Q,Σ, δA, q0, F) be an automaton, let m be a nonzero natural
number. By an m-regular splitting of automaton A we obtain an automaton B =

(Q× {1, . . . ,m},Σ, δB, (q0, 1), FB), where FB ⊆ F × {1, . . . ,m} and for the transition
function δB holds that

∀p, q ∈ Q ∃i, j ∈ N \ {0} δA(p, x) = q ⇒ δB((p, i), x) = (q, j).

Moreover every state is accessible:

∀p ∈ Q, ∀i ∈ N \ {0} ∃w ∈ L(B)#[(p, i), w] > 0.

Conjecture 4.2. By an m-regular splitting of an equiloaded automaton A we obtain
an equiloaded automaton.

4.8.3 Sufficient Condition for Language to Be in LEQA

In Theorem 4.3 we provide the necessary condition for automaton not to be equiloaded.
We believe that converse implication holds as we state in the following conjecture.
When the minimal-state automaton A for a language fulfils the inequality (4.5) it
suffices to split states of A in such a way, that A will be equiloaded. However, it is
not clear that such a splitting is possible. In Example 4.3 we show an automaton for
which such a splitting of states exists.

Conjecture 4.3. Let L be a language. If for the minimal-state automaton A for the
language L it holds that

∀p, q ∈ Q ∃ℓ ∈ R+ ∃n0 ∈ N ∀n ∈ N, n > n0 #[p, L ∩ Σn] ≤ ℓ#[q, L ∩ Σn], (4.5)

then L ∈ LEQA.

Example 4.3. Consider the language L = {aaa, bbb}∗. The minimal-state automaton
A for this language is shown in Figure 4.6. This automaton is not equiloaded, as we
showed in Example 4.1. However, it fulfils the inequality (4.5) because

#[q0, L ∩ Σ3k]

#[q1, L ∩ Σ3k]
= 2 +

2

k
≤ 3.

According to the above conjecture, there should be an equiloaded automaton B

that accepts the language L. Indeed, such an automaton exists as we can see in Figure
4.6. To show equiloadedness of the automaton B, we determine the load of the state
q0, which is used the most. On all words of length n = 3m, the load of q0 is equal to
triples consisting of a (a-triples) plus one (the initial use). The number of a-triples is

Chapter 4. Equiloaded Automata 29

between 0 and m. Furthermore, there are m choose i words of length n with i a-triples.
Hence, the load of q0 on words of length 3m is

#[q0, L ∩ Σ3m] =
m∑
i=0

(
m

i

)
(i+ 1) = 2m−1m+ 2m.

The automaton B is equiloaded, because

2m−1m+ 2m − (3m+ 1)2m

6
=

5 · 2m

6
=

5

6
|L ∩ Σn|.

q0

q1

q2 q4

q3

a

a

a

b

b

b

(a) A non-equiloaded automaton

q0

q1

q2

q3

q4

q5

b

b

b

b

a

a

a

a

(b) An equiloaded automaton

Figure 4.6: (a) A non-equiloaded and (b) an equiloaded automaton for the language
L = {aaa, bbb}∗

Chapter 5

Automata Equiloaded on Sequences of
Words

In this chapter, we shall extend the previous definitions of equiloaded automata from
words to sequences of words. According to Definition 3.1 the automaton is equiloaded,
if it is equiloaded on each word. Sometimes, it is better to think about the load of an
automaton while it is computing at many inputs. (Batch processing.) Definition 4.1
can be understood as an intermediate step to this point of view. It tells us that there
can be some sequence of inputs, sorted by lengths of words, on which an automaton
will load each state equally. As we will see in this chapter, Definition 4.1 can be taken
as a special case of the definition of an automaton equiloaded on a sequence of words.

5.1 Definition

Firstly, we shall define a sequence of words. We shall only consider DFA that accept
infinite languages. For our purposes, a sequence of words S = w1, w2, . . . is an infinite
sequence of words from a language L(A) accepted by a given automaton A. Moreover,
words in a sequence will not be repeated, thus wi = wj ⇒ i = j.

We shall denote by S(i, j) the subsequence of S starting at the i-th word and ending
at the j-th word.

Definition 5.1. Let A = (Q,Σ, δ, q0, F) be a deterministic finite automaton. Let S be
a sequence of words from L(A). The automaton A is equiloaded on S if there exists an
ascending function f : N → N and a function k : N → R+ such that for all i ∈ N and
all p, q ∈ Q it holds that

|#[p, S(f(i), f(i+ 1)− 1)]−#[q, S(f(i), f(i+ 1)− 1)]| ≤ k(i)(f(i+ 1)− f(i)).

The function k is said to be an equiloadedness tolerance.The function f is said to
be a windows-defining function.

30

Chapter 5. Automata Equiloaded on Sequences of Words 31

5.2 Equivalent Form

Notation. The function symb(S(i, j)) =
∑

w∈S(i,j) |w| gives the number of symbols in
the subsequence S(i, j).

Remark. For the sake of brevity, we shall often use notation fi instead of f(i) and ki

instead of k(i).

Lemma 5.1. A DFA A = (Q,Σ, δ, q0, F) is equiloaded on a sequence S if and only if
there exists an ascending function f : N → N and a function k′ : N → R+ such that
for all i ∈ N it holds that

max
q∈Q

(#[q, S(fi, fi+1 − 1)])− avg(S(fi, fi+1 − 1)) ≤ k′i(fi+1 − fi), (5.1)

where
avg(S(i, j)) =

symb(S(i, j)) + j + 1− i

|Q|

is the average load of states while A processes words from the subsequence S(i, j).
Furthermore, there exists a c ∈ R+ such that c · k′(i) ≥ k(i) for k from Definition 5.1.

Proof. If A is equiloaded on a sequence S, then similarly to previous definitions we
consider the most- and the least-used state. It is easy to see that the average load of
states on the subsequence S(fi, fi+1 − 1) is greater than or equal to the load of the
least used state, hence the inequality (5.1) holds for ki = k′i.

Conversely, suppose that the inequality (5.1) holds. Then, for a given i, the load of
each state is less than

avg(S(fi, fi+1 − 1)) + k′i(fi+1 − fi).

Also, the load of each state is greater than

avg(S(fi, fi+1 − 1))− k′i(fi+1 − fi)(|Q| − 1).

Therefore, the difference between loads of arbitrary states p and q is not greater than

k′i(fi+1 − fi) + k′i(|Q| − 1)(fi+1 − fi) = k′i · |Q| · (fi+1 − fi).

Hence, automaton A is equiloaded on the sequence S with equiloadedness tolerance
ki = k′i|Q|.

Theorem 5.1. For a given automaton A, a sequence S, and an ascending function
f : N → N, there is a function k : N → R+ such that A is equiloaded on the sequence
S with a windows-defining function f and an equiloadedness tolerance k.

Proof. Define k(n) by k(i) = maxw∈S(f(i),f(i+1)−1) |w| + 1. We shall show, that A is
equiloaded on the sequence S with the equiloadedness tolerance k. Let us bound from

Chapter 5. Automata Equiloaded on Sequences of Words 32

above the maximal load of a state at the subsequence S(f(i), f(i+ 1)− 1) = Si:

#[q, Si] ≤ symb(Si) ≤ (f(i+ 1)− f(i)) · (max
w∈Si

|w|+ 1) = (f(i+ 1)− f(i)) · k(i).

Hence, A is equiloaded on the sequence S.

Thus for a large equiloadedness tolerance the notion of equiloadedness becomes
trivial. We shall therefore consider “reasonably small” f and k in what follows. It comes
from the following theorem, that “reasonably small” in the case of the equiloadedness
tolerance means constant, or at least sub-linear.∗

Theorem 5.2. For every given automaton A there exists a sequence S of all words
in L(A) and a windows-defining function f such that A is equiloaded on S with the
equiloadedness tolerance k(n) = Ω(n).

Proof. The sequence we are looking for is the lexicographically ordered sequence S.†

Let f(i) = i. This means, that we will consider windows of constant length 1. It is
easy to see that

#[q, S(i, i)] = #[q, wi] ≤ |wi|+ 1 ≤ |Q|i+ 1.

The last inequality follows from the fact that if there is a word of length n in an infinite
language accepted by the automaton A, then in A has to be a cycle of length at most
|Q|, therefore there exists a word of length at most n+|Q|. From the above inequality we
obtain that it suffices to take the equiloadedness tolerance k(i) = |Q|i+1 = Ω(n).

It should be possible to define the meaning of “reasonably small” value even for the
case of the windows-defining function f . We conjecture that if an automaton is equi-
loaded on a sequence with a windows-defining function f1 and a constant equiloaded-
ness tolerance, then it is equiloaded on another sequence with a linear windows-defining
function f and a constant equiloadedness tolerance.

5.3 Impact of Order of Words on Equiloadedness Tol-
erance

We shall discuss the impact of choosing a sequence for an automaton A, on which
we want A to be equiloaded. As the first example, we shall consider an automaton
A = ({q0, q1}, {a, b}, δ, q0, {q0, q1}), where the transition function δ is defined by

δ(q0, a) = q0, δ(q0, b) = q1, δ(q1, b) = q1.

Let S be the lexicographically ordered sequence of words in the language L(A), i.e.,
S = ε, a, b, aa, ab, bb, . . .

∗Thus, in the following we shall consider only constant equiloadedness tolerance.
†It suffices to consider any sequence S′ = w1, w2, . . . , wn for which |wi| ≤ |wi+1|.

Chapter 5. Automata Equiloaded on Sequences of Words 33

Theorem 5.3. For the automaton A and the sequence S defined above, if k(n) is a
constant, and A is equiloaded on S, then for any non-zero l ∈ N it holds f(n) > ln for
sufficiently large n, where f is a windows-defining function from Definition 5.1. (The
size of windows is greater than constant.)

Proof. For a given constant k′ = k(n) and l, we shall find a number n such that A is not
equiloaded on S(ln, ln+ l − 1) with the equiloadedness tolerance k′. Let n = 2lk′ + 1.
Then the subsequence S(ln, ln+ l − 1) = S(2(lk′)2 + lk′, 2(lk′)2 + lk′ + l − 1) consists
of words a2lk′ , a2lk′−1b, . . . a2lk′−l+1bl−1. The load of the state q0 on this subsequence is

#[q0, S(ln, ln+ l−1)] = 2lk′+1+2lk′+2lk′−1+ · · ·+2lk′− l+1 = (1/2)l(4lk′− l+3).

The load of q1 is just (1/2)l(l−1), therefore A is not equiloaded with the equiloadedness
tolerance k′.

Theorem 5.4. Consider A defined above. There is a sequence S ′ of words in L(A)

such that A is equiloaded on S ′ with the equiloadedness tolerance k(n) = 0 and a linear
windows-defining function f , f(n) = 2n.

Proof. If f(n) = 2n, the size of each window is equal to 2. We want to choose pairs of
words from L(A), such that the load of q0 on the pair is equal to the load of q1. First,
we realize that by #[q0, w] and #[q1, w] w is exactly determined: w = a#[q0,w]−1b#[q1,w].
We shall construct S ′ in pairs as follows. For the i-th pair, we choose the first non-used
word w′

2i from S and find a pair w′
2i+1, which is also a non-used word from S, such

that #[q0, w
′
2i] + #[q0, w

′
2i+1] = #[q1, w

′
2i] + #[q1, w

′
2i+1]. The sequence S ′ looks like

ε, bb, a, abb, b, abbb, . . . Then, A is equiloaded on the sequence S ′ with k(n) = 0 and
f(n) = 2n.

Now, we shall consider another automaton B = (Q, {a, b}, δB, q0, q0), a minimal
automaton for a language L = {aaa, bbb}∗. This automaton, shown in Figure 4.6(a)
in the previous chapter, is defined by transition function

δB(q0, a) = q1, δB(q1, a) = q2, δB(q2, a) = q0,

δB(q0, b) = q3, δB(q3, b) = q4, δB(q4, b) = q0.

It is easy to see that for all w ∈ L it holds that

#[q0, w] = #[q1, w] + #[q2, w] + 1

We shall prove that there is no sequence S such that B is equiloaded on S with constant
equiloadedness tolerance (and arbitrary f).

Theorem 5.5. There is an automaton B such that for any sequence S and an ascending
function f it holds that B is not equiloaded on S with the windows-defining function
f and a constant equiloadedness tolerance.

Chapter 5. Automata Equiloaded on Sequences of Words 34

Proof. Consider the automaton B defined above and the subsequence of S from f(i)

to f(i + 1) − 1. Without loss of generality, we may assume that q1 is the least used
state on that subsequence. Then it holds that

#[q0, S(fi, fi+1 − 1)]−#[q1, S(fi, fi+1 − 1)] ≥

≥ symb(S(fi, fi+1 − 1))

3
+ (fi+1 − fi)−

symb(S(fi, fi+1 − 1))

6

≥ symb(S(fi, fi+1 − 1))

6
+ (fi+1 − fi)

= (fi+1 − fi)

(
symb(S(fi, fi+1 − 1))

6(fi+1 − fi)

)
.

Hence, the equiloadedness tolerance of B on sequence S should be at least

k(i) ≥
(

symb(S(fi, fi+1 − 1))

6(fi+1 − fi)

)
̸∈ O(1).

It is easy to see that there is i0 such that if i > i0 the number of symbols in the
subsequence is greater than the number of words in this subsequence.

Chapter 6

Conclusion

In this thesis we discussed three approaches to the equiloadedness property for DFA.
We have established a characterization of strictly equiloaded automata and, based on
this characterization, we proved closure properties of the class LSEQA.

We analyzed the characterization of equiloaded automata. After proving some ba-
sic results about equiloaded automata, we proved a necessary condition for a language
to be in the family LEQA. We introduced an algebraic representation which makes it
easier to determine the equiloadedness of an automaton. We proved closure properties
of the family LEQA. Although we did not find a characterization based on a graph-
ical representation of an automaton, we were able to formulate a conjecture on this
characterization.

Next, we investigated equiloadedness property for sequences of words. We have
shown that every automaton is equiloaded on every sequence given a sufficiently large
equiloadedness tolerance. Furthermore, we proved that for each automaton there ex-
ists a sequence such that the automaton is equiloaded on the sequence with a linear
equiloaded tolerance and a linear windows-defining function f . We have shown an
existence of an automaton which is not equiloaded on any sequence with a constant
equiloadedness tolerance.

Although we provide solutions to many interesting problems concerning equiload-
edness, there are still some open problems, mainly in the area of equiloadedness on
sequences of words. Among the most prominent are:

Equiloaded automata: a characterization of equiloaded automata and/or the fam-
ily LEQA, transformations preserving equiloadedness, a sufficient condition for
a language to be in LEQA.

Automata equiloaded on sequences: f -k trade-off, operations over sequences.∗

These questions may be an interesting topic for further research. Our results sug-
gests that it may be worthwhile to study a balanced use of resources on a different
model (NFA, push-down automata, . . .) or with different resources (transitions be-
tween states).

∗For this problem, we need to consider sequences of words from L ⊆ L(A).

35

Bibliography

[Hopcroft et al., 2001] Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2001). Intro-
duction to automata theory, languages, and computation. Addison-Wesley Longman
Publishing, second edition.

[Hopcroft and Ullman, 1969] Hopcroft, J. E. and Ullman, J. D. (1969). Formal lan-
guages and their relation to Automata. Addison-Wesley Longman Publishing.

[Kováč, 2008] Kováč, I. (2008). O využívaní stavov v konečných automatoch. Bache-
lor’s thesis, Faculty of Mathematics, Physics and Informatics, Comenius University,
Bratislava.

[Nerode, 1958] Nerode, A. (1958). Linear automaton transformations. In Proceedings
of the American Mathematical Society, 9.

[Rovan and Forišek, 2008] Rovan, B. and Forišek, M. (2008). Formálne jazyky a au-
tomaty. http://foja.dcs.fmph.uniba.sk/materialy/skripta.pdf.

36

http://foja.dcs.fmph.uniba.sk/materialy/skripta.pdf

Abstrakt

Autor: Ivan Kováč
Názov práce: Equiloaded Automata
Univerzita: Univerzita Komenského v Bratislave
Fakulta: Fakulta matematiky, fyziky a informatiky
Katedra: Katedra informatiky
Školiteľ: prof. RNDr. Branislav Rovan, PhD.
Počet strán: 37
Rok: 2010

Predkladaná práca sa zaoberá štúdiom rovnomerného využívania prostriedkov vo
výpočtoch. Uvažujeme konkrétny výpočtový model, deterministický konečný automat,
a stavy takéhoto automatu ako prostriedok, ktorý sa má používať rovnomerne. V
tomto modeli definujeme potrebné pojmy pre rovnomerné využívanie stavov a dokazu-
jeme výsledky. V práci prezentujeme tri možné prístupy k rovnomernosti – strik-
tnú rovnomernosť, rovnomernosť a rovnomernosť na postupnostiach slov. Analyzujeme
triedy automatov a jazykov vzhľadom na tieto prístupy.

V práci prinášame charakterizáciu triedy jazykov, pre ktoré existuje striktne rov-
nomerný automat. Dokazujeme uzáverové vlastnosti tejto triedy.

Analyzujeme triedu jazykov, pre ktoré existuje rovnomerný automat, dokazujeme
uzáverové vlastnosti tejto triedy, ako aj nutnú podmienku, ktorú musí jazyk spĺňať, aby
do tejto triedy patril. Definujeme množinu transformácií automatov, ktoré zachovávajú
rovnomernosť.

V súvislosti s rovnomernosťou na postupnostiach slov skúmame vplyv rôznych uspo-
riadaní slov na mieru nerovnomernosti pre rovnomernosť na postupnostiach slov. Skú-
mame rovnomernosť na postupnostiach slov pre rôzne ohraničenia miery nerovnomer-
nosti.

Naše výsledky môžu poslúžiť ako príklad pre podobný výskum pre iné výpočtové
modely a prostriedky.

Kľúčové slová: rovnomerne využívané automaty, rovnomerné využívanie prostried-
kov, deterministické konečné automaty

37

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Strictly Equiloaded Automata
	Definition and Equivalent Form
	Elementary Results
	Characterization
	Closure Properties

	Equiloaded Automata
	Definition and Equivalent Form
	Elementary Results
	Relationship with Minimal-State Automaton
	Automata Transformations
	Closure Properties
	Characterization
	Algebraic Representation
	Open Questions

	Automata Equiloaded on Sequences of Words
	Definition
	Equivalent Form
	Impact of Order of Words on Equiloadedness Tolerance

	Conclusion
	Bibliography
	Abstrakt

