
Comenius University in Bratislava
Faculty Of Mathematics, Physics And Informatics

Using SELinux to Enforce
Two-Dimensional Labelled Security Model

with Partially Trusted Subjects

MASTER’S THESIS

Study programme: Computer Science
Field of Study: 2508 Computer Science, Informatics
Department: Department of Computer Science
Supervisor: RNDr. Jaroslav Janáček, PhD.

Bratislava 2012 Bc. Martin Jurčík

35831103

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Martin Jurčík
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: 9.2.1. informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Použitie SELinux-u na realizáciu dvojdimenzionálneho značkovaného
bezpečnostného modelu s čiastočne dôveryhodnými subjektami

Cieľ: Cieľom tejto práce je implementovať náš dvojdimenzionálny značkovaný
bezpečnostný model s čiastočne dôveryhodnými subjektami v operačnom
systéme Linux využitím mechanizmu SELinux. Od autora práce sa očakáva
vylepšenie implementácie prezentovanej v bakalárskej práci Martina Jurčíka
využitím MLS funkcionality SELinux-u. Implementácia by mala pozostávať
zo SELinux politiky a potrebných systémových nástrojov pre administrátora a/
alebo používateľov.

Vedúci: RNDr. Jaroslav Janáček, PhD.
Katedra: FMFI.KI - Katedra informatiky

Dátum zadania: 19.10.2010

Dátum schválenia: 19.10.2010 prof. RNDr. Branislav Rovan, PhD.
garant študijného programu

študent vedúci práce

35831103

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Martin Jurčík
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: 9.2.1. Computer Science, Informatics
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Using SELinux to Enforce Two-Dimensional Labelled Security Model with
Partially Trusted Subjects

Aim: The goal of the thesis is to implement our two-dimensional labelled security
model with partially trusted subjects in Linux operating system using SELinux
mechanism. The author of the thesis is expected to improve the implementation
presented in Martin Jurčík's bachelor thesis by utilizing multi-level security
features of SELinux. The implementation is expected to consist of the SELinux
policy definition and supporting tools for the system administrator and/or users.

Supervisor: RNDr. Jaroslav Janáček, PhD.
Department: FMFI.KI - Department of Computer Science

Assigned: 19.10.2010

Approved: 19.10.2010 prof. RNDr. Branislav Rovan, PhD.
Guarantor of Study Programme

Student Supervisor

Declaration of Authorship
I hereby declare that this thesis represents my own work and effort. Where other sources

of information have been used, they have been acknowledged.

Bratislava, 2012 Signature: .

Acknowledgements

I would like to thank my supervisor RNDr. Jaroslav Janáček, PhD. for his guidance,

support, and encouragement throughout writing this thesis.

Special thanks belong to my family for all their support.

Abstrakt

Autor: Bc. Martin Jurčík

Názov diplomovej práce: Using SELinux to Enforce Two-Dimensional Labelled

Security Model with Partially Trusted Subjects

Škola: Univerzita Komenského v Bratislave

Fakulta: Fakulta matematiky, fyziky a informatiky

Katedra: Katedra informatiky

Vedúci diplomovej práce: RNDr. Jaroslav Janáček, PhD.

Rozsah práce: 90 strán

Bratislava, 2012

Ciel’om tejto práce bolo implementovat’ náš bezpečnostný model s názvom Two-dimensional

labelled security model with partially trusted subjects použitím SELinux mechanizmu

v operačnom systéme Linux. Očakávali sme zlepšenie implementácie prezentovanej v

bakalárskej práci využitím viacúrovňových bezpečnostných prvkov SELinuxu. Imple-

mentácia mala pozostávat’ zo SELinux politiky a podporných nástrojov pre administrá-

tora systému a/alebo užívatel’ov. Podarilo sa nám nájst’ takú implementáciu tohto modelu,

ktorú je možné l’ahko kombinovat’ s l’ubovolnou už existujúcou SELinux politikou bez

potreby špeciálnych podporných nástrojov.

Kl’účové slová: politika toku informácií, bezpečnostný model, SELinux politika, MLS

SELinux, MCS SELinux

Abstract

Author: Bc. Martin Jurčík

Title: Using SELinux to Enforce Two-Dimensional Labelled

Security Model with Partially Trusted Subjects

University: Comenius University in Bratislava

Faculty: Faculty of Mathematics, Physics and Informatics

Department: Department of Computer Science

Supervisor: RNDr. Jaroslav Janáček, PhD.

Number of pages: 90

Bratislava, 2012

The goal of the thesis was to implement our two-dimensional labelled security model

with partially trusted subjects in Linux operating system using SELinux mechanism. We

expected to improve the implementation presented in bachelor thesis by utilizing multi-

level security features of SELinux. The implementation was expected to consist of the

SELinux policy definition and supporting tools for the system administrator and/or users.

We found an implementation of this model that can be easily combined with an arbitrary

SELinux policy without any special supporting tools.

Keywords: information flow policy, security model, SELinux policy, MLS SELinux, MCS

SELinux

Contents

1 Preliminaries 8
1.1 Security-Enhanced Linux . 8

1.1.1 SELinux Basics . 10

1.1.2 Summary . 11

1.2 SELinux Reference Policy . 12

1.2.1 SELinux Reference Policy Project Overview 12

1.2.2 SELinux Reference Policy Project Goals 13

1.2.3 Modules . 14

1.3 Two-Dimensional Labelled Security Model with Partially Trusted Subjects 14

1.3.1 Formal Definition of the Information Flow Policy 17

2 Means of Implementation 25
2.1 SELinux MLS . 25

2.1.1 History of Multi-Level Security 26

2.1.2 Security Context and MLS . 26

2.1.3 Security Context with MLS . 27

2.1.4 Defining Security Levels . 28

2.1.5 Range_transition Statement . 30

2.2 MLS Constraints . 31

2.2.1 Mlsconstrain Statement . 31

2.2.2 Mlsvalidatetrans Statement . 33

2.3 SELinux MCS . 33

2.4 TE Transition Rules . 35

2.4.1 Type_transition Statement . 35

4

CONTENTS 5

3 Previous Implementation 36
3.1 Bachelor’s Thesis . 36

3.1.1 Previous Implementation . 37

3.1.2 Disadvantages . 38

4 New Ideas and Solutions 42
4.1 Multi-Level or Multi-Category Security 42

4.2 Multi-Level Security Way-1.0 . 42

4.2.1 Solution . 43

4.3 Multi-Level Security Way-2.0 . 47

4.3.1 Solution . 48

4.3.2 Comparison . 50

4.4 Multi-Level Security Way-3.0 . 51

4.4.1 Solution . 51

4.4.2 Strict Security Model . 52

4.4.3 Rules . 56

4.4.4 Constraints . 58

4.4.5 Comparison . 59

4.5 Multi-Category Security WAY-4.0 . 60

4.5.1 Solution . 60

4.5.2 Implementation of Categories in SELinux 61

4.5.3 Non-Strict Security Model . 62

4.5.4 Functions for Work with Categories 63

4.5.5 Functions and Rules . 65

4.5.6 Security Context . 66

4.5.7 Technical Details . 68

4.5.8 Comparison . 70

5 Testing 72
5.1 Installation of our Solution . 72

5.1.1 How to Disable SElinux . 72

5.1.2 Compiling Modified SELinux Policy Compiler 73

5.1.3 Compiling SELinux Policy . 73

5.1.4 Kernel Patch and Kernel Installation 74

5.1.5 How to Enable SELinux . 74

5.2 Kernel Patch Installation . 75

5.2.1 Requirement . 75

5.2.2 Get the Source . 75

5.2.3 Prepare the Kernel Source Tree 76

5.2.4 Prepare Build Files . 77

5.2.5 Build the New Kernel . 78

5.2.6 Install the New Kernel . 78

5.3 Adjustment of Arbitrary Policy . 79

5.3.1 SELinux Policy without MLS 79

5.3.2 SELinux Policy with MLS . 81

5.3.3 Modified Refpolicy . 82

5.3.4 SELinux Security Context . 83

Introduction

Information security means protecting information and information systems from unau-

thorized access, use, disclosure, disruption, modification, perusal, inspection, recording

or destruction.

The terms information security, computer security and information assurance are fre-

quently used interchangeably. These fields are interrelated often and share the common

goals of protecting the confidentiality, integrity and availability of information; however,

there are some subtle differences between them.

These differences lie primarily in the approach to the subject, the methodologies used,

and the areas of concentration. Information security is concerned with the confidentiality,

integrity and availability of data regardless of the form the data may take: electronic, print,

or other forms. Computer security can focus on ensuring the availability and correct ope-

ration of a computer system without concern for the information stored or processed by

the computer. Information assurance focuses on the reasons for assurance that information

is protected, and is thus reasoning about information security.

The goal of this thesis is to implement our two-dimensional labelled security model

with partially trusted subjects in Linux operating system using SELinux mechanism. We

are expected to improve the implementation presented in bachelor thesis by utilizing

multi-level security features of SELinux. The implementation is expected to consist of

the SELinux policy definition and supporting tools for the system administrator and/or

users.

7

Chapter 1

Preliminaries

This chapter gives small overviews of framework that we use, and security model that we

will implement. Section 1.1 offers a brief summary of Security-Enhanced Linux, which

is our framework to implement our security model. We describe an overview about it,

its evolution in time, and security benefits. Section 1.2 gives small overview of SELinux

Reference Policy project. Section 1.3 onwards, Two-Dimensional labelled security model

with partially trusted subjects will be brought to life.

1.1 Security-Enhanced Linux

Security-Enhanced Linux (SELinux) is a Linux feature that provides a mechanism for sup-

porting access control security policies. SELinux also includes United States Department

of Defense-style mandatory access controls, through the use of Linux Security Modules

(LSM) in the Linux kernel. Its architecture strives to separate enforcement of security

decisions from the security policy itself and streamlines the volume of software charged

with security policy enforcement.

Security-Enhanced Linux implements the Flux Advanced Security Kernel (FLASK)

integrated in some versions of the Linux kernel with a number of utilities designed to

demonstrate the value of mandatory access controls to the Linux community and how

such controls could be added to Linux. Such a kernel contains architectural components

prototyped in the Fluke operating system. These provide general support for enforcing

many kinds of mandatory access control policies, including those based on the concepts of

Type Enforcement, Role-Based Access Control, and multilevel security. FLASK, in turn,

8

CHAPTER 1. PRELIMINARIES 9

was based on DTOS, a Mach-derived Distributed Trusted Operating System, as well as

Trusted Mach, a research project from Trusted Information Systems that had an influence

on the design and implementation of DTOS.

SELinux was originally a development project from the National Security Agency

(NSA) and others. As we mentioned above, the Flask architecture implements mandatory

access control, which focuses on providing an administratively-defined security policy

that can control all subjects and objects, basing decisions on all security-relevant infor-

mation. In addition, Flask focuses on the concept of least privilege, which gives a process

exactly the rights it needs to perform its given task.

The Flask model allows us to express a security policy in a naturally flowing man-

ner, so that parts of the security rules are like parts in a sentence. In Flask, changes are

supported so we can tune our policy. Added to this architecture in the security server

are Type Enforcement (TE) and Role-Based Access Control (RBAC) security models,

providing fine-grained controls that can be transparent to users and applications.

As a next step in the evolution of SELinux, the NSA integrated SELinux into the

Linux kernel using the Linux Security Modules (LSM) framework. SELinux motivated

the creation of LSM, at the suggestion of Linus Torvalds, who wanted a modular ap-

proach to security instead of accepting just SELinux into the kernel. Originally, the

SELinux implementation used persistent security IDs (PSIDs) stored in an unused field of

the ext2 inode. These numerical representations (i.e., non-human-readable) were mapped

by SELinux to a security context label. Unfortunately, this required modifying each file

system type to support PSIDs, so was not a scalable solution or one that would be sup-

ported upstream in the Linux kernel.

The next evolution of SELinux was as a loadable kernel module for the 2.4.<x>

series of Linux kernels. This module stored PSIDs in a normal file, and SELinux was able

to support more file systems. This solution was not optimal for performance, and was

inconsistent across platforms.

Finally, the SELinux code was integrated upstream to the 2.6.x kernel, which has full

support for LSM and has extended attributes (xattrs) in the ext3 file system. SELinux was

moved to using xattrs to store security context information. The xattr namespace provides

useful separation for multiple security modules existing on the same system.

CHAPTER 1. PRELIMINARIES 10

1.1.1 SELinux Basics

SELinux implements two information flow mechanisms – Domain and Type Enforcement

(DTE), and Multi-Level and Multi-Category Security (MLS and MCS). Every SELinux

controlled object and every subject (process) is assigned a security label consisting of four

parts – a user, a role, a type, and security level.

The SELinux user identities are not to be confused with the standard Linux user iden-

tities – they are independent attributes. They may be mapped in a 1:1 manner, but they do

not have to. The SELinux roles are assigned to subjects, and the SELinux policy specifies

the subject types (domains) that a role is authorized for, i.e. the set of types a subject

with a given role may be assigned. The policy also specifies the set of roles a SELinux

user is authorized to assume. We will not use specific roles for our model’s policy, so

we will assume that every user is authorized for a role that is authorized for all domains

unless another security policy is in force, in which case the set of domains and roles is

determined by the other policy.

The types are declared in the SELinux policy configuration. A type may be labelled

by several attributes. An attribute name may be used in the policy configuration to repre-

sent the set of types that are labelled with the attribute. The access control rules specify

permissions for triplets – the type of a subject, the type of an object and the class of the

object. Classes are used to distinguish different sorts of objects, such as files, directories,

processes

Another important concept of SELinux policy configuration is the concept of con-

straints. A constraint is specified for a set of classes and a set of permissions, and it

consists of a boolean expression. If the expression evaluates to false, no operation from

the set may be performed on an object of the specified class. The expression may compare

SELinux user identities, roles and types of the subject and the object with each other, or

with a set of values. The set of types may also be specified using the type attributes as

stated above. The MLS component of SELinux adds another sort of constraints – MLS

constraints. These constraints allow for comparison of security levels of subjects and

objects. Multi-Category Security (MCS), in comparison to Multi-Level Security (MLS),

ignores sensitivity levels, i.e. MCS always runs at a single level. SELinux MLS and

SELinux MCS will be discussed later, when their time has come.

CHAPTER 1. PRELIMINARIES 11

1.1.2 Summary

The security of a Linux system without SELinux depends on the correctness of the kernel,

of all the privileged applications, and of each of their configurations. A problem in any one

of these areas may allow the compromise of the entire system. In contrast, the security of a

system kernel based on a SELinux depends primarily on the correctness of the kernel and

its security-policy configuration. While problems with the correctness or configuration of

applications may allow the limited compromise of individual user programs and system

daemons, they do not pose a threat to the security of other user programs and system

daemons or to the security of the system as a whole.

A Linux kernel integrating SELinux enforces mandatory access-control policies that

confine user programs and system servers to the minimum amount of privilege they re-

quire to do their jobs. This reduces or eliminates the ability of these programs and dae-

mons to cause harm when compromised (via buffer overflows or misconfigurations, for

example). This confinement mechanism operates independently of the traditional Linux

access control mechanisms. It has no concept of a "root" super-user, and does not share

the well-known shortcomings of the traditional Linux security mechanisms.

Thus, SELinux provides a hybrid of concepts and capabilities drawn from manda-

tory access controls (MAC), mandatory integrity control (MIC), role-based access control

(RBAC), and type enforcement (TE) architecture. Mandatory access controls allow an

administrator of a system to define how applications and users can access different re-

sources such as files, devices, networks and inter-process communication. With SELinux

an administrator can differentiate a user from the applications a user runs. For example,

the user shell or GUI may have access to do anything he wants with his home directory but

if he runs a mail client the client may not be able to access different parts of the home di-

rectory, such as his ssh keys. The way that an administrator sets these permissions is with

the centralized SELinux policy. The policy for SELinux is a binary representation that

can be loaded into the kernel. It tells the system how different components on the system

can interact and use resources. The policy typically comes from distribution that is used,

but it can be updated on the end system to reflect different configurations or application

behaviour.

• SELinux can potentially control, which activities are allowed for each user, process

and daemon, with very precise specifications. However, it is mostly used to confine

daemons like database engines or web servers that have more clearly defined data

access and activity rights. A confined daemon that becomes compromised is thus

CHAPTER 1. PRELIMINARIES 12

limited in the harm it can do. Ordinary user processes often run in the unconfined

domain, not restricted by SELinux but still restricted by the classic Linux access

rights.

• SELinux is a security enhancement to Linux that allows users and administrators

more control over which users and applications can access which resources, such

as files. Standard Linux access controls, such as file modes (-rwxr-xr-x) are mo-

difiable by the user and applications that the user runs whereas SELinux access

controls are determined by a policy loaded on the system and not changeable by

careless users or misbehaving applications.

• SELinux also adds finer granularity to access controls. Instead of only being able

to specify who can read, write or execute a file, for example, SELinux lets us

specify who can unlink, append only, and move a file and so on. SELinux allows

us to specify access to many resources other than files as well, such as network

resources and interprocess communication (IPC).

• SELinux controls access between applications and resources. By using a manda-

tory security policy SELinux enforces the security goals of the system regardless

of whether applications misbehave or users act carelessly. SELinux is capable of

enforcing a wide range of security goals, from simply sandboxing applications to

locking down network facing daemons and restricting users to only the resources

they need to work.

1.2 SELinux Reference Policy

This section covers some background on SELinux Reference Policy project.

1.2.1 SELinux Reference Policy Project Overview

The SELinux Reference Policy project (refpolicy) is a complete SELinux policy that can

be used as the system policy for a variety of systems and used as the basis for creating

other policies. Reference Policy was originally based on the NSA example policy, but

aims to accomplish many additional goals.

Reference Policy is under active development, with support and full time development

staff from Tresys Technology. The current release is available on their web page [26]

(section DownloadRelease).

CHAPTER 1. PRELIMINARIES 13

1.2.2 SELinux Reference Policy Project Goals

Security is the reason for existence for SELinux policies and must, therefore, always be

the first priority. The common view of security as a binary state (secure or not secure)

is not a sufficient goal for developing a SELinux policy. In reality, different systems

have different requirements and purposes and corresponding differences in the meaning

of secure. What is a fundamental security flaw on one system might be acceptable, or

even the primary functionality, of another. The challenge for a system policy is to support

as many of these differing security goals as is practical. To accomplish this Reference

Policy will provide:

• Strong Modularity: Central to the design of the policy is strict modularity. Accesses

to resources are abstracted, and implementation details are encapsulated in the

module.

• Security Goals: Clearly stated security goals will for each component of the policy.

This will allow policy developers to determine if a given component meets their

security needs.

• Documentation: The difficulty and complexity of creating SELinux policies has

become the number one barrier to the adoption of SELinux. It also potentially re-

duces the security of the policies: a policy that is too complex to easily understand

is difficult to make secure. Reference Policy will make aggressive improvements in

this area by including documentation for modules and their interfaces as a critical

part of the infrastructure.

• Development Tool Support: In addition to documentation, Reference Policy aims

to make improvements in this area, making policies easier to develop, understand,

analyze, and verify by adding interface call back traces, which can be used for

debugging and graphical development tools.

• Forward Looking: Reference Policy aims to support a variety of policy configura-

tions and formats, including standard source policies, MLS policies, and loadable

policy modules all from the same source tree. This is done through the addition of

infrastructure for automatically handling the differences between source and load-

able module based policies and the additional MLS fields to all policy statements

that include contexts.

CHAPTER 1. PRELIMINARIES 14

• Configurability: Configuration tools that allow the policy developer to make im-

portant security decisions including defining roles, configuring networking, and

trading legacy compatibility for increased security.

• Flexible Base Policy: A base policy that protects the basic operating system and

serves as a foundation to the rest of the policy. This base policy should be able to

support a variety of application policies with differing security goals.

• Application Policy Variations: Application policy variations that make different

security tradeoffs. For example, two Apache policies might be created, one that is

for serving read-only static content that is severely restricted, and another that is

appropriate for dynamic content.

• Multi-Level Security: MLS is supported out-of-the-box without requiring destruc-

tive changes to the policy. It is possible to compile and MLS and non-MLS policy

from the same policy files by switching a configuration option.

1.2.3 Modules

Modules are the principal organizing component in refpolicy. A module contains the

policy for an application or related group of applications, private and shared resources,

labelling information, and interfaces that allow other modules access to the module’s re-

sources. The majority of the global policy has been eliminated in refpolicy. Certain policy

components, like users and object classes, are still global in refpolicy, but almost all TE

policy is now contained within a module.

1.3 Two-Dimensional Labelled Security Model with
Partially Trusted Subjects

In this section, we present our security model. The security model is based on PhD thesis

[9] written by RNDr. Jaroslav Janáček, PhD..

The model contains two types of entities – subjects and objects. Objects are passive

entities of the model – they represent information sources and destinations. Some typical

examples of objects in an operating system are files, directories, communication objects

(such as pipes, sockets . . .). Subjects are active entities of the model – they perform

operations on objects. Typical subjects of an operating system are processes.

CHAPTER 1. PRELIMINARIES 15

We will suppose these operations that a subject may perform on an object: read (and

get attribute), write (and set attribute), create, and delete (may signal). The read and get

attribute operations allow the subject to receive information from the object, and the write

and set attribute operations allow the subject to send information to the object. Each

object O and each subject S has several security attributes associated with it, and the

model’s information flow policy specifies whether a subject S is allowed to perform a

given operation on an object O based on the security attributes of the subject and the

security attributes of the object.

Our data classification scheme assumes that each object is assigned a confidentiality

level and an integrity level. Each object is also assigned an identifier of a user that is

the object’s owner. Our model assumes there are at least three confidentiality and three

integrity levels. As far as the confidentiality is concerned, we classify the data into three

basic categories: public data (level 0), normal data – C-normal (level 1), and data that are

sensitive regarding their confidentiality – Csensitive (level 2). The C-sensitive data are the

data that their owner (a user) wishes to remain unreadable to the others regardless of the

software the user uses, and even if the users makes some mistakes (such as setting wrong

access rights for discretionary access control). As far as the integrity (or trustworthiness)

of data is concerned, we also classify the data into three basic categories: potentially

malicious data (level 0), normal data – I-normal (level 1), data that are sensitive regarding

their integrity – I-sensitive (level 2). The requirements of the integrity protection of data

are tightly coupled to the trustworthiness of the data. The trustworthiness of data can

be thought of as a metric of how reliable the data are. If some data can be modified by

anyone, they cannot be trusted not to contain wrong or malicious information. If some

data are to be relied on, their integrity has to be protected. The potentially malicious data

require no integrity protection, and can neither be trusted to contain valid information,

nor can be trusted not to contain malicious content. The I-sensitive data are the data that

their owner wishes to remain unmodified by the others regardless of the software the user

uses, and even if the users makes some mistakes. The I-sensitive data are to be modifiable

only under special conditions upon their owner’s request. A special category of I-sensitive

data is the category of the shared system files such as the programs, the libraries, various

system-wide configuration files, the user database

Some of these files may be modifiable by the designated system administrator; some

of them should be even more restricted. The basic idea of our model is to prevent unin-

tended information flow from an object with a higher confidentiality/lower integrity level

to an object with a lower confidentiality/higher integrity level.

CHAPTER 1. PRELIMINARIES 16

Classical multi-level security models, such as Bell-La Padula or Biba, distinguish

between untrusted and trusted subjects. Trusted subjects are allowed to violate the basic

idea stated above. It turns out that in a typical small office or home desktop operating

system too many subjects would have to be considered trusted in order to achieve an

acceptable behaviour.

To overcome this problem, we divide subjects into three categories:

• untrusted subjects,

• partially trusted subjects, and

• trusted subjects.

A trusted subject is a subject that is trusted to enforce the information flow policy

with intended exceptions by itself. An untrusted subject is a subject that is not trusted

to enforce the information flow policy. It is assumed to perform any operations on any

objects unless it is prevented from doing so by the operating system.

A partially trusted subject is

• trusted not to transfer information from a defined set of objects (designated inputs)

at a higher confidentiality level to a defined set of objects (designated outputs) at a

lower confidentiality level in a way other than the intended one, and

• trusted not to transfer information from a defined set of objects (designated inputs)

at a lower integrity level to a defined set of objects (designated outputs) at a higher

integrity level in a way other than the intended one, but

• not trusted not to transfer information between any other objects.

The sets of designated inputs and outputs regarding confidentiality are distinct from the

sets regarding integrity. Any of the sets may be empty. A partially trusted subject, like

a trusted one, can be used to implement an exception to the basic policy, because it can

violate the policy (and it is trusted to do it only in an intended way). The most important

difference between trusted and partially trusted subjects is in the level of trust. While

trusted subjects are completely trusted to behave correctly, partially trusted subjects are

only trusted not to abuse the possibility of the information flow violating the policy be-

tween a defined set of input objects and a defined set of output objects.

CHAPTER 1. PRELIMINARIES 17

1.3.1 Formal Definition of the Information Flow Policy

Let C = {0,1, . . . ,cmax} be the set of confidentiality levels, I = {0,1, . . . , imax} be the set

of integrity levels, L be the finite set of possible labels for objects, 0 ∈ L being the default

label used for objects without an explicitly assigned label, and U be the final set of user

identifiers. Let C and I be ordered so that 0 is the least sensitive level and cmax and imax

are the most sensitive levels.

Let us assume that each object O has the following attributes:

• CO ∈C – the confidentiality level of the object,

• IO ∈ I – the integrity level of the object,

• LO ∈ L – the label of the object (used to define the input and output sets of objects

for partially trusted subjects),

• UO ∈U – the user identifier of the owner of the object.

Let us assume that each subject S has the following attributes:

• CRS ∈C – the highest confidentiality level the subject can normally read from,

• CWS ∈C – the lowest confidentiality level the subject can normally write to,

• CRLS ∈C – the highest confidentiality level of a specially labelled object that the

subject can read from,

• CWLS ∈C – the lowest confidentiality level of a specially labelled object that the

subject can write to,

• CRLSS ⊆ L – the set of labels of the objects that the subject can read from as a

partially trusted subject,

• CWLSS ⊆ L – the set of labels of the objects that the subject can write to as a

partially trusted subject,

• IRS ∈ I – the lowest integrity level the subject can normally read from,

• IWS ∈ I – the highest integrity level the subject can normally write to,

• IRLS ∈ I – the lowest integrity level of a specially labelled object that the subject

can read from,

CHAPTER 1. PRELIMINARIES 18

• IWLS ∈ I – the highest integrity level of a specially labelled object that the subject

can write to,

• IRLSS ⊆ L – the set of labels of the objects that the subject can read from as a

partially trusted subject,

• IWLSS ⊆ L – the set of labels of the objects that the subject can write to as a

partially trusted subject,

• CNS ∈C – the default confidentiality level of the objects created by the subject,

• INS ∈ I – the default integrity level of the objects created by the subject,

• LNS ∈ L – the label of the objects created by the subject,

• US ∈U – the user identifier of the owner of the subject,

• IRUSS ⊆U – the set of additional user identifiers of the users who are trusted by S

to maintain trustworthy integrity levels on the objects they own (e.g. a special user

designated to own the shared system libraries and programs).

• CWUSS ⊆U – the set of additional user identifiers of the users who are trusted by

S to maintain trustworthy confidentiality levels on the objects they own.

Let Cappr,Cshareable, Ishareable be system-wide constants with the following meaning:

• Cappr ∈C be the highest confidentiality level for which the user may interactively

approve a request to read from an object O by a subject S when Cappr ≥CO > CRS,

• Cshareable ∈C be the highest confidentiality level of an object that may be accessed

by a subject with a different owner than the owner of the object, and

• Ishareable ∈ I be the highest integrity level of an object that that may be modified by

a subject with a different owner than the owner of the object.

CHAPTER 1. PRELIMINARIES 19

Let us define the information flow policy protecting confidentiality and integrity of

data as follows:

1. A subject S may read from an object O if read(S,O) is true, where

read(S,O) def⇐⇒ [CRS ≥CO∨ (CRLS ≥CO∧LO ∈CRLSS)

∨ (Cappr ≥CO∧UserApprovedRead(S,O))]
(1.1a)

∧[IRS ≤ IO∨ (IRLS ≤ IO∧LO ∈ IRLSS)] (1.1b)

∧[US = UO∨CO ≤Cshareable] (1.1c)

∧[US = UO∨UO ∈ IRUSS∨ IRS ≤ Ishareable] (1.1d)

where UserApprovedRead(S,O) is true if and only if the user (the owner of S)

has approved the particular request to read from the object O by the subject S.

2. A subject S may write to an object O if write(S,O) is true, where

write(S,O) def⇐⇒ [CWS ≤CO∨ (CWLS ≤CO∧LO ∈CWLSS)] (1.2a)

∧[IWS ≥ IO∨ (IWLS ≥ IO∧LO ∈ IWLSS)] (1.2b)

∧[US = UO∨ IO ≤ Ishareable] (1.2c)

∧[US = UO∨UO ∈CWUSS∨CWS ≤Cshareable)] (1.2d)

3. A subject S may create a new object O within (or related to) an object P if create(S,P)

is true, where

create(S,P) def⇐⇒ read(S,P) (1.3a)

∧write(S,P) (1.3b)

CHAPTER 1. PRELIMINARIES 20

The attributes of the new object will be set as follows:

CO :=

CWLS if LP ∈CWLSS

CNS otherwise
(1.3c)

IO :=

IWLS if LP ∈ IWLSS

INS otherwise
(1.3d)

LO := LNS (1.3e)

UO := US (1.3f)

4. A subject S may delete an object O from (or related to) an object P if delete(S,O,P)

is true, where

delete(S,O,P) def⇐⇒ read(S,P) (1.4a)

∧write(S,P) (1.4b)

∧write(S,O) (1.4c)

5. Each untrusted subject S must satisfy:

CWS = CWLS ≥CRS = CRLS (1.5a)

IWS = IWLS ≤ IRS = IRLS (1.5b)

CWLSS = CRLSS = IWLSS = IRLSS = /0 (1.5c)

CNS ≥CWS (1.5d)

INS ≤ IWS (1.5e)

LNS = 0 (1.5f)

CHAPTER 1. PRELIMINARIES 21

6. Each partially trusted subject S must satisfy:

CWS ≥CRS (1.6a)

CWS ≥CRLS (1.6b)

CWLS ≥CRS (1.6c)

IWS ≤ IRS (1.6d)

IWS ≤ IRLS (1.6e)

IWLS ≤ IRS (1.6f)

CNS ≥CWS (1.6g)

INS ≤ IWS (1.6h)

The above rules fulfil the policy objectives on the condition that:

C = {0,1,2}

I = {0,1,2}

Cappr = 1

Cshareable = 1

Ishareable = 1

with the meaning of the confidentiality levels:

0−public,

1−C-normal,

2−C-sensitive,

and the meaning of the integrity levels:

0−potentially malicious,

1− I-normal,

2− I-sensitive.

CHAPTER 1. PRELIMINARIES 22

Additional Operations

• A subject S may set the confidentiality level of an object O to c, and the integrity

level of O to i if reclassify(S,O,c, i) is true, where

reclassify(S,O,c, i) def⇐⇒ [CO ≤CRS∧CO ≥CWS∧ c≥CWS] (1.7a)

∧[IO ≥ IRS∧ IO ≤ IWS∧ i≤ IWS] (1.7b)

∧CanRevoke(O) (1.7c)

∧UO = US (1.7d)

∧LO = LNS (1.7e)

• A subject D (the debugger) may use the debugging interface to debug a subject S if

debug(D,S) is true, where

debug(D,S) def⇐⇒CRD ≥max{CRS,CWS} (1.8a)

∧CWD ≤min{CRS,CWS} (1.8b)

∧IRD ≤min{IRS, IWS} (1.8c)

∧IWD ≥max{IRS, IWS} (1.8d)

∧UD = US (1.8e)

• A subject S may send a signal to a subject R if maysignal(S,R) is true, where

maysignal(S,R) def⇐⇒CWS ≤CRR (1.9a)

∧IWS ≥ IWR (1.9b)

∧US = UR (1.9c)

CHAPTER 1. PRELIMINARIES 23

Changing the subject’s security attributes

No subject may be able to modify its attributes in a way that allows it to perform more

operations. The following rules satisfy the requirement:

1. A subject S may change CNS to c if setCN(S,c) is true, where

setCN(S,c) def⇐⇒ c≥CWS (1.10)

2. A subject S may change INS to i if setIN(S, i) is true, where

setIN(S, i) def⇐⇒ i≤ IWS (1.11)

3. A subject S may change CRS to c if setCR(S,c) is true, where

setCR(S,c) def⇐⇒ c≤CRS (1.12)

4. A subject S may change CWS to c if setCW(S,c) is true, where

setCW(S,c) def⇐⇒ c≥CWS (1.13)

5. A subject S may change IRS to i if setIR(S, i) is true, where

setIR(S, i) def⇐⇒ i≥ IRS (1.14)

6. A subject S may change IWS to i if setIW(S, i) is true, where

setIW(S, i) def⇐⇒ i≤ IWS (1.15)

7. A subject S may change CRLS to c if setCRL(S,c) is true, where

setCRL(S,c) def⇐⇒ c≤CRS (1.16)

8. A subject S may change CWLS to c if setCWL(S,c) is true, where

setCWL(S,c) def⇐⇒ c≥CWS (1.17)

CHAPTER 1. PRELIMINARIES 24

9. A subject S may change IRLS to i if setIRL(S, i) is true, where

setIRL(S, i) def⇐⇒ i≥ IRS (1.18)

10. A subject S may change IWLS to i if setIWL(S, i) is true, where

setIWL(S, i) def⇐⇒ i≤ IWS (1.19)

11. When a subject S creates a new subject S′, the security attributes of S′ must be equal

to those of S.

Chapter 2

Means of Implementation

In this chapter, we present a variety of means that will help us with efficient implementa-

tion. The section 2.1 gives small overview of SELinux Multi-Level Security. In section

2.2, we give overview of MLS constraints that allow us to restrict specified permissions

for specified object classes by defining constraints. Section 2.3 gives small overview of

SELinux Multi-Category Security. Section 2.4 gives small overview of one of Type En-

forcement rules.

2.1 SELinux MLS

In the following section, we will look at SELinux Multi-Level Security.

Type Enforcement is far and away the most important mandatory access control (MAC)

mechanism that SELinux introduces. However, in some situations, primarily for a subset

of classified government applications, traditional multi-level security (MLS) MAC cou-

pled with Type Enforcement is valuable. In recognition of these situations, SELinux has

always had some form of MLS capability included. The MLS features are optional and

generally the less important of the two MAC mechanisms in SELinux. For the vast majo-

rity of security applications, including many if not most classified data applications, Type

Enforcement is the best-suited mechanism for enhanced security.

25

CHAPTER 2. MEANS OF IMPLEMENTATION 26

2.1.1 History of Multi-Level Security

The MLS functionality in SELinux is being developed as part of the Common Criteria

LSPP certification work. The LSPP work aims to get LSPP , RBAC , and CAPP certifica-

tion at EAL 4+. James Morris has a lot of background information on the LSPP work on

his blog [19].

Multi-Level Security (MLS) policy was first formalized by Bell and LaPadula (BLP)

[3] in the 70’s of the last century. Systems implemented with MLS policies were primar-

ily used to enforce confidentiality. In the 80’s and 90’s of the last century, the Compart-

mented Mode Workstation used MLS as the primary Mandatory Access Control (MAC)

mechanism for evaluation to the Orange Book [5]. Today, MLS is still a key requirement

to meet the Common Criteria [6] Label Security Protection Profile (LSPP) and future

Medium Robustness Multi-Level Operating System Profiles for Common Criteria.

2.1.2 Security Context and MLS

The main visible component of SELinux is the security context. The security context is

utilized by SELinux to work within the Flask architecture. The context is made up of four

fields: SELinux User, Role, Type, and MLS Range. The last portion, MLS Range, is an

optional component.

The security level used by MLS systems is a combination of a hierarchical sensitivity

and a set (including the null set) of nonhierarchical categories. These sensitivities and

categories are used to reflect real information confidentiality or user clearances. In most

SELinux policies, the sensitivities (s0, s1, ...) and categories (c0, c1, ...) are given generic

names, leaving it to userspace programs and libraries to assign user-meaningful names.

For example, s0 might be associated with UNCLASSIFIED and s1 with SECRET.
To support MLS, the security context is extended to include security levels as such

these:

user:role:type:sensitivity[:categories][-sensitivity[:categories]]

Notice that the MLS security context must have at least one security level (which is com-

posed of a single sensitivity and zero or more categories), but can include two security

levels. These two security levels are called low (or current for processes) and high (or

clearance for processes), respectively. If the high security level is missing, it is considered

to be the same value as the low (the most common situation). In practice, the low and high

CHAPTER 2. MEANS OF IMPLEMENTATION 27

security levels are usually the same for most objects and processes. A range of levels is

typically used for processes that are considered trusted subjects (that is, a process trusted

with the ability to downgrade information) or multilevel objects such as directories that

might contain objects of differing security levels.

2.1.3 Security Context with MLS

The security context is extended with two additional fields: a low and high security level.

A security level itself has two fields: a sensitivity and a set of categories. Sensitivities

are strictly hierarchical reflecting an ordered data sensitivity model, such as Top Secret,

Secret, and Unclassified in government classification controls. Categories are unordered,

reflecting the need for data compartmentalization. The basic idea is that we need both a

high enough sensitivity clearance and the right categories to access data.

The security levels are not hierarchical but rather governed by a dominance relation-

ship. Unlike strict ordering where a level is either higher than, equal to, or lower than

another level, in a dominance relationship, there is a fourth state called incomparable

(also known as noncomparable). What causes security levels to be related via dominance

rather than equality are the categories, which have no hierarchical relationship to one an-

other. As a result, the four dominance operators that can relate two MLS security levels

are as follows:

• dom (dominates): SL1 dom SL2 if the sensitivity of SL1 is higher or equal to the

sensitivity of SL2, and the categories of SL1 are a superset of the categories of

SL2.

• domby (dominated by): SL1 domby SL2 if the sensitivity of SL1 is lower than

or equal to the sensitivity of SL2, and the categories of SL1 are a subset of the

categories of SL2.

• eq (equals): SL1 eq SL2 if the sensitivities of SL1 and SL2 are equal, and the

categories of SL1 and SL2 are the same set.

• incomp (incomparable or noncomparable): SL1 incomp SL2 if the categories of

SL1 and SL2 cannot be compared (that is, neither is a subset of the other).

Given the dominance relationship, a variation of the Bell-La Padula model is implemented

in SELinux where a process can "read" an object if its current security level dominates the

security level of the object, and "write" an object if its current security level is dominated

CHAPTER 2. MEANS OF IMPLEMENTATION 28

by the security level of the object (and therefore read and write the object only if the two

security levels are equal).

The MLS constraints in SELinux are in addition to the TE rules. If MLS is enabled,

both checks must pass (in addition to standard Linux access control) for access to be

granted.

2.1.4 Defining Security Levels

In an SELinux policy, we define sensitivities using the sensitivity statement, as follows:

sensitivity s0;

sensitivity s1;

sensitivity s2;

sensitivity s3;

These statements define four sensitivities called s0, s1, s2, and s3. These names are a

typical generic sensitivity naming convention in SELinux. We could use any name we

want here. The sensitivity statement also supports the ability to associate additional alias

names with a sensitivity that will be treated the same as the core sensitivity name.

For example:

sensitivity s0 alias unclassified;

Because sensitivities must be hierarchically related, we must specify in the policy the

hierarchy of sensitivities using the dominance statement, as follows:

dominance s0 s1 s2 s3 # s0 is "low" and s3 "high"

The dominance statement lists the sensitivity names in order from lower to highest. Thus,

in our example, s0 is lower than s1, which is lower than s2, and so forth.

The ordering of sensitivities is from lower to highest. All defined sensitivities must

be contained within the dominance statement in order to define the complete sensitivity

hierarchy.

Categories are defined in a similar manner as sensitivities using the category state-

ment. As with sensitivities, categories may also have alias names. Unlike sensitivities,

categories are not hierarchically related (or related at all). So, there is no need to define

any explicit relationship between categories. The following statements are examples of

the category statement:

CHAPTER 2. MEANS OF IMPLEMENTATION 29

category c0 alias blue;

category c1 alias red;

category c2 alias green;

category c3 alias orange;

category c4 alias white;

The final step in defining security levels in the policy language is to define allowed se-

curity level combinations using the level statement. The level statement dictates how we

may associate categories with sensitivities. Remember that a combination of a single sen-

sitivity and a set of categories constitute a security level. Here are some examples of the

level statement:

level s0:c0.c4;

level s1:c0.c4;

level s2:c0.c4;

level s3:c0.c4;

These statements enable us to combine any of the defined categories with all the defined

sensitivities from our earlier examples. We would generally have a single level statement

for each defined sensitivity that identifies the categories that may be associated with each

sensitivity in a valid security level. In the preceding example, we associated all five de-

fined categories (c0.c4) with all four defined sensitivities. We can be more restrictive in

this association:

level s0:c0.c2;

level s1:c0.c2,c4;

In this example, s0 may be associated only with categories c0, c1, and c2; and s1 with

categories c0, c1, c2 and c4 (but not c3). By now, we should have noticed that a dot (.)

indicates an inclusive range of categories, and a comma (,) indicates a noncontiguous list

of categories.

Note 1: Just because ranges of categories are specified using the range operator (.), this

does not mean that categories are hierarchically related. Instead, the range operator is just

a convenient way to refer to a set of categories. The ordering of the categories for the

range operator is just the order in which they are declared and has nothing to do with any

intrinsic ordering implied by their names.

So, for example, if we declare that categories in the order c1, c0, and c2, the ex-

pressions c0.c2 would mean c0 and c2, and not c1. The level statement defines what

CHAPTER 2. MEANS OF IMPLEMENTATION 30

combinations of sensitivities and categories constitute an acceptable security level for the

MLS portion of the SELinux policy.

Note 2: For a security context to be valid, the high level must always dominate the low

level. In addition, the categories associated with the sensitivities must be valid per the

level statements in the policy.

So, for example, if we have the previous level statements:

level s0:c0.c2;

level s1:c0.c2,c4;

and user_u, user_r, and user_t are valid user, role, and type identifiers, the following

security contexts are invalid:

user_u:user_r:user_t:s0-s0:c2,c4

user_u:user_r:user_t:s0:c0-s0:c2

The first security context is invalid because category c4 is invalid for sensitivity s0. Se-

cond security context is invalid because the high security level does not dominate the low

security level.

2.1.5 Range_transition Statement
The range_transition statement is primarily used by the init process or administration com-
mands to ensure processes run with their correct MLS range (for example init would run
at s15:c0.c255 and needs to initialise / run other processes at their correct MLS range).
The statement was enhanced in Policy version 21 to accept other object classes.
The statement definition is

range_transition source_domain target_exectype : class new_mls_range;

Where:

• range_transition - The range_transition keyword.

• source_domain - A source process domain (as only the process object class is

supported).

• target_exectype - A target executable type or attribute. (i.e. an identifier for a file

that has the execute permission set.

CHAPTER 2. MEANS OF IMPLEMENTATION 31

• class - The optional object class keyword (this allows policy versions 21 and

greater to specify a class other than the default of process).

• new_mls_range - The new MLS range for the object class.

Example:

A range_transition statement from the MLS Reference Policy

showing that a process anaconda_t can transition between

systemLow (s0) and systemHigh (s15:c0.c255) depending

on calling applications level.

range_transition anaconda_t init_script_file_type:

process s0 - s15:c0.c255;

Two range_transition statements from the MLS Reference Policy

showing that init will transition the audit and cups daemon

to s15:c0.c255 (that is the lowest level they can run at).

range_transition initrc_t auditd_exec_t:process s15:c0.c255;

range_transition initrc_t cupsd_exec_t:process s15:c0.c255;

2.2 MLS Constraints

SELinux supports two MLS constraint statements, mlsconstrain and mlsvalidatetrans,

which together enable us to specify the optional MLS access enforcement rules. These

two statements are identical to their non-MLS counterparts except that they allow us to

also express constraints based on the security levels of a security context. We may only

use the MLS constraints in policies that have the optional MLS features enabled.

2.2.1 Mlsconstrain Statement

The mlsconstrain statement is based on the constrain statement. Detailed information

about the constrain statement can be found in our bachelor’s thesis [13]. The mlsconstrain

statement adds new keywords for stating constraints based on the low and high security

levels of the source (l1 and h1) and target (l2 and h2).

CHAPTER 2. MEANS OF IMPLEMENTATION 32

The mlsconstrain statement allows us to restrict specified permissions for specified

object classes by defining constraints based on relationships between source and target

security contexts that include the optional MLS features (that is, high and low security

levels). The full syntax for the mlsconstrain statement is as follows:

mlsconstrain class_set perm_set expression ;

Where:

• class_set - One or more object classes. Multiple object classes must be separated by

spaces and enclosed in braces ({ }) for example, file lnk_file. The special operators

*, ~, and - are not allowed in class sets for this statement.

• perm_set - One or more permissions. All permissions must be valid for all object

classes in the class_set. Multiple permissions must be separated by spaces and

enclosed in braces ({ })for example, read create. The special operators *, ~, and -

are not allowed in class sets for this statement.

• expression - A Boolean expression of the constraint.

The Boolean expression syntax supports the following keywords:

• t1, r1, u1, l1, h1 Source type, role, user, low level, and high level, respectively

• t2, r2, u2, l2, h2 Target type, role, user, low level, and high level, respectively

Constraint expression syntax also supports the following operators:

• == Set member of or equivalent.

• != Set not member of or not equivalent.

• eq (Roles and security level keywords only) equivalent.

• dom (Roles and security level keywords only) dominates.

• domby (Role and security level keywords only) not dominated by.

• incomp (Role and security level keywords only) incomparable.

The complete semantic meaning and allowed parameters for each operator are described

in [1].

CHAPTER 2. MEANS OF IMPLEMENTATION 33

2.2.2 Mlsvalidatetrans Statement

The mlsvalidatetrans statement is similar to the validatetrans statement except that it in-

troduces the six keywords l1 and h1, l2 and h2, and l3 and h3, meaning old low and

high security levels, new low and high security levels, and the source process low and

high security levels, respectively. The other difference between the two statements is that

the mlsvalidatetrans statement is more commonly used to support an MLS policy than

the validatetrans statement is in a typical TE policy. The mlsvalidatetrans statement re-
stricts the ability to change the security context of specified supported objects by defin-

ing constraints-based relationships with old and new security contexts and the security

context of the source process. The full syntax for the mlsvalidatetrans statement is as

follows:

mlsvalidatetrans class_set expression ;

Where:

• class_set - One or more object supported classes. Multiple object classes must

be enclosed in braces ({ })for example, file lnk_file. Currently, only permanent

filesystem object classes are supported.

• expression - A Boolean expression of the constraint.

The Boolean expression syntax supports the following keywords:

• t1, r1, u1, l1, h1 Old type, role, user, low level, and high level, respectively

• t2, r2, u2, l2, h2 New type, role, and user, low level, and high level, respectively

• t3, r3, u3, l3, h3 Process type, role, user, low level, and high level, respectively

Note: Validatetrans and mlsvalidatetrans constraint statements support only filesystem

objects; specifically, dir, file, lnk_file, chr_file, blk_file, sock_file, and fifo_file object

classes.

2.3 SELinux MCS

Multi-Category Security (MCS) is in fact an adaptation of Multi-Level Security (MLS).

It re-uses much of the MLS framework in SELinux, including the MLS label field, MLS

kernel code, MLS policy constructs, labelled printing and label encoding/translation.

CHAPTER 2. MEANS OF IMPLEMENTATION 34

There are a few major differences between MCS and MLS:

• MCS ignores sensitivity levels. Everything is labelled with the same sensitivity, s0,

which makes the idea of sensitivity levels effectively disappear.

• MCS discards the Bell La-Padula (BLP) security model. BLP properties such as

No-Write-Down, which is designed to prevent leakage from high security levels to

low security levels, are often confusing and break many assumptions of existing

software. Consider root not being able to write to /tmp, as one of many possible

problems relating to shared data.

• MCS is discretionary, similar to standard Unix DAC logic. The current implemen-

tation provides users with MCS control over their own files. This should map more

readily to more general cases, reflecting the typical discretionary nature of real-

world security outside of the Mil/Gov etc. environment. It is possible to adjust

MCS to make it less discretionary, but really, that is what MLS is for.

• MCS always runs at a single level. The current level of all subjects running on the

system is s0. When a subject is granted access to categories (remember: a security

level is a combination of sensitivity and categories), this is done by adding cate-

gories to the high range clearance of the subject. The high range clearance refers

to the maximum security level that the subject can run at. Under MCS, the sub-

ject will never run at anything other than s0, so the high range clearance is merely

used to determine which categories the subject has access to when performing an

access control decision. This is similar to Unix supplementary groups: a process

can have access to several supplementary groups but not be running in any of them.

Similarly, under MCS, a process can have access to a set of categories, but not be

running at a security level which includes them. Having everything running at the

same level vastly simplifies things.

MCS uses MLS technology, but is not MLS. Both traditional DAC and TE rules are con-

sulted before MLS or MCS rules.

CHAPTER 2. MEANS OF IMPLEMENTATION 35

2.4 TE Transition Rules

TE Transition rules are one of the Type Enforcement rules. The Type Enforcement rules

define what access control privileges are allowed for processes.

A transition decision, also referred to as a labelling decision, determines which se-

curity context will be assigned for a requested operation. There are two main types of

transition. Firstly, there is a transition of process domains which is used when we execute

a process of a specified type. Secondly, there is a transition of file type used when we

create a file under a particular directory.

TE transition rules specify the new domain for a process or the new type for an object.

In either case, the new type is based on a pair of types and a class. For a process, the first

type, referred to as the source type, is the current domain and the second type, referred

to as the target type, is the type of the executable. For an object, the source type is the

domain of the creating process and the target type is the type of a related object, e.g. the

parent directory for files.

2.4.1 Type_transition Statement

The type_transition statement specifies the labelling and object creation allowed between

the source_type and target_type when a Domain Transition is requested.

Example - Domain Transition:

type_transition initrc_t acct_exec_t:process acct_t

Example - Object Transition:

type_transition acct_t var_log_t:file wtmp_t;

Chapter 3

Previous Implementation

In previous chapter, we described the means of implementation generally. Later, we will

use these means in our new solution. In this chapter, we present our previous solution of

implementation of our model by using SELinux. Section 3.1 offers a brief summary of

our previous work.

3.1 Bachelor’s Thesis

In this section, we present our previous solution of implementation of our model by using

SELinux, namely Domain and Type Enforcement (DTE). In our previous solution, we

encoded our model’s attributes for objects and subjects as SELinux type attributes, and

we used constraints to enforce the rules of our policy.

The objective of our bachelor’s thesis was to create a prototype SELinux policy. We

created a prototype policy for SELinux and we demonstrated the basic principles of Two-

Dimensional Labelled Security Model with Partially Trusted Subjects. There we showed

that the using of SELinux to enforce this security model is feasible. We presented several

applications examples.

Now we describe only the basic ideas of this solution. For each entity of the operating

system, we defined unique type with corresponding attributes, except some aliases of

course. These attributes corresponded with level of confidentiality and integrity.

36

CHAPTER 3. PREVIOUS IMPLEMENTATION 37

A standard policy configuration consists of the following top-level components:

1. FLASK definitions

2. Type Enforcement (TE) and Role-Based Access Control (RBAC) declarations and

rules

3. User declarations

4. Constraint declarations

5. Security context specification

3.1.1 Previous Implementation

In our previous implementation, we used DTE types to encode the security attributes of

objects and subjects. We needed a new DTE type for each combination of the values of the

attributes. It led to a rather large number of types, and consequently to long expressions

in the rules. If we use only three confidentiality and three integrity levels and L labels,

we need 32 ·L types for objects, and 34 = 81 types for trusted and untrusted subjects. We

used to declare a new type for each partially trusted subject, because a general solution

based on all possible combinations of the attribute values would make the total number

of types infeasible. All the types were tagged with type attributes that were used in the

expressions for the operations (see fig. 3.1). If we do not take partially trusted subjects

into account, the number of type attributes is linear with respect to the number of security

levels, the number of types is polynomial (power of 4), and the number of substatements

in the rules is linear.

We defined the constraints for basic operations, namely read(S,O) and write(S,O),

and for remaining operations, namely create(S,O), debug(D,S), and maysignal(S,R).

The operation get object’s attributes getattr(S,O) is equivalent to operation read(S,O)

and the operation set object’s attributes setattr(S,O) is equivalent to operation write(S,O).

The corresponding permissions in SELinux for read(S,O) and getattr(S,O) are read and

getattr, for write(S,O) and setattr(S,O) are write and setattr, for create(S,O) are cre-

ate and link, for debug(D,S) is ptrace, and for maysignal(S,R) is corresponding class

process and its permissions sigkill, sigstop and signal. For all changing the subject’s
security attributes operations is corresponding permission class process and permissions

transition.

CHAPTER 3. PREVIOUS IMPLEMENTATION 38

attribute C0;
attribute C1;
attribute C2;
attribute I0;
attribute I1;
attribute I2;
type Obj_C0I0, C0, I0;
type Obj_C0I1, C0, I1;
...
attribute CR0;
attribute CR1;
...
type Subj_CR0CW0IR0IW0, CR0, CW0, IR0, IW0;
...
constrain object_classes read_perms (

(T2 == C2 and T1 == CR2)
or (T2 == C1 and T1 == {CR1 CR2})
or (T2 == C0)
... [rules for partially trusted subjects]
);
constrain object_classes read_perms (

(T2 == I0 and T1 == IR0)
or (T2 == I1 and T1 == {IR1 IR0})
or (T2 == I2)
... [rules for partially trusted subjects]
);

Figure 3.1: Previous SELinux constraints enforcing our policy

More detailed information about this solution of implementation can be found in our bach-

elor’s thesis [13].

We used TE transition rules to implement create mechanism, i.e. when a subject creates

a new object (file) under a particular directory, the new object should have an exactly

defined type. The section 2.4 describes the TE transition rules.

3.1.2 Disadvantages

From our point of view, unfortunately, the previous implementation has a number of limi-

tations or substantial disadvantages, and thus it makes the implementation feasible, but it

does not apply in practice easily.

CHAPTER 3. PREVIOUS IMPLEMENTATION 39

The most important disadvantages are these:

1. Long expressions in the rules

2. The number of substatements in the rules is linear

3. Unique name for type for each of possible combinations of the attribute values

4. TE Transition rules for each of possible combinations of the subjects and objects

that are used in create mechanism

The first and second disadvantages from our list are showed in fig. 3.2. This figure

contains a detailed description of rules for operation read(S,O). These rules contain sub-

statements for partially trusted subjects and only two labels. For better understanding,

we show a brief version of these rules in fig. 3.3. It is easy to see that the number of

substatements for partially trusted subjects depends on number of labels for objects. In

this case, there are only these labels: L0 and L1, respectively.

For the third disadvantage, suppose the following case. We have a special type for

certain subject, e.g. browser. This subject has a type browser1_t with corresponding

attributes values. If we need that this subject has a type with a special type with another

attributes values, we will define a new type, e.g. browser2_t. Each type must have its own

unique name.

Finally, for the fourth disadvantage, suppose this case. As stated in previous section,

we used TE transition rules to implement create mechanism, i.e. when a subject creates

a new object (a file) under a particular directory, the new object should have an exactly

defined type. We have a special type for certain subject, e.g. a text editor. This subject

has a type my_text_editor_t with corresponding attributes values. We have some directo-

ries in our filesystems, too. If we need that this subject creates a new file with a proper

security type in each of these directories, we will define a new TE transition rule for each

combination of this subject and all types of directories.

Fig. 3.4 shows an example of these type transition rules, where my_text_editor_t is

type for subject, dir1, . . . , dirN are types for directories, and sec_type1_t, . . . , sec_typeN_t

are proper types for new file in these directories.

CHAPTER 3. PREVIOUS IMPLEMENTATION 40

constrain { blk_file chr_file sock_file } { read } (
(T2 == C2 and T1 == CR2) or (T2 == C1 and T1 == {CR1 CR2})
or (T2 == C0)

or
(T2 == L0 and T1 == CRLS0 and T2 == C2 and T1 == CRL2)
or

(T2 == L0 and T1 == CRLS0 and T2 == C1 and T1 == {CRL1 CRL2})
or

(T2 == L1 and T1 == CRLS1 and T2 == C2 and T1 == CRL2)
or

(T2 == L1 and T1 == CRLS1 and T2 == C1 and T1 == {CRL1 CRL2})
);

constrain { blk_file chr_file sock_file } { read } (
(T2 == I0 and T1 == IR0) or (T2 == I1 and T1 == {IR1 IR0})
or (T2 == I2)

or
(T2 == L0 and T1 == IRLS0 and T2 == I0 and T1 == IRL0)
or

(T2 == L0 and T1 == IRLS0 and T2 == I1 and T1 == {IRL1 IRL0})
or

(T2 == L1 and T1 == IRLS1 and T2 == I0 and T1 == IRL0)
or

(T2 == L1 and T1 == IRLS1 and T2 == I1 and T1 == {IRL1 IRL0})

);

constrain { blk_file chr_file sock_file } { read } (
(U1 == U2 or T2 == {C0 C1})
and
(U1 == U2 or T2 == {I0 I1} or U2 == {root system_u})
);

Figure 3.2: Previous SELinux constraints enforcing the operation read(S, O) with
the partially trusted subject’s rules for only 2 labels

CHAPTER 3. PREVIOUS IMPLEMENTATION 41

constrain { blk_file chr_file sock_file } { read } (
(T2 == C2 and T1 == CR2) or (T2 == C1 and T1 == {CR1 CR2})
or (T2 == C0)

or
(
((T2 == L0 and T1 == CRLS0) or (T2 == L1 and T1 == CRLS1))
and

((T2 == C2 and T1 == CRL2) or (T2 == C1 and T1 == {CRL1 CRL2}))
)
);

constrain { blk_file chr_file sock_file } { read } (
(T2 == I0 and T1 == IR0) or (T2 == I1 and T1 == {IR1 IR0})
or (T2 == I2)

or
(
((T2 == L0 and T1 == IRLS0) or (T2 == L1 and T1 == IRLS1))
and

((T2 == I0 and T1 == IRL0) or (T2 == I1 and T1 == {IRL1 IRL0}))
)
);

constrain { blk_file chr_file sock_file } { read } (
(U1 == U2 or T2 == {C0 C1})
and
(U1 == U2 or T2 == {I0 I1} or U2 == {root system_u})
);

Figure 3.3: Compact version of SELinux constraints enforcing the operation
read(S,O)

type_transition my_text_editor_t dir1_t:file sec_type1_t;
type_transition my_text_editor_t dir2_t:file sec_type2_t;
...
type_transition my_text_editor_t diri_t:file sec_typei_t;
...
type_transition my_text_editor_t dirN_t:file sec_typeN_t;

Figure 3.4: Example of type transition rules

Chapter 4

New Ideas and Solutions

In this chapter, we provide our new implementation of our security model. We also de-

scribe our ideas, which led us to goal of this thesis. We describe the evolution steps of our

implementation.

4.1 Multi-Level or Multi-Category Security

As the first step, we analyzed MLS components of SELinux. We found two possible

ways how to propose new solution and/or improve our previous solution, respectively. In

both cases, we encode our model’s attributes for objects and subjects as MLS SELinux

attributes. We found these possibilities:

1. We use pure SELinux MLS (see section 2.1).

2. We use its special case that is SELinux MCS (see section 2.3).

MLS SELinux offers us better possibilities because we can use sensitivities and categories

together. On the other hand, we can use only categories in MCS SELinux. Thus, we

decided for MLS SELinux.

4.2 Multi-Level Security Way-1.0

In this section, we present on our first attempt of implementation that uses MLS com-

ponents of SELinux. The ideas are based on utilizing MLS components of SELinux in

addition to the DTE component. We presented this solution in [14].

42

CHAPTER 4. NEW IDEAS AND SOLUTIONS 43

4.2.1 Solution

Our new idea is based on using the security levels to encode our attributes of model, and

on using the dominance relation described below to evaluate the rules of our policy.

A SELinux security context is typically represented as:

system_u:system_r:kernel_t:s0:c0.c255-s15:c0.c255

The security level used by MLS systems is a combination of a hierarchical sensitivity

and a set (including the empty set) of nonhierarchical categories. Notice that the MLS

security context must have at least one security level(which is composed of a single sensi-

tivity and zero or more categories), but can include two security levels. These two security

levels are called low and high, respectively.

Sensitivities are defined in SELinux policy using the sensitivity statements. Sensitiv-

ities are strictly hierarchical and therefore we must specify the hierarchy of sensitivites

using the dominance statement. Sensitivities can be compared using the relational oper-

ators ≤, =, and ≥.

Categories are defined in a similar manner as sensitivities using the category state-

ment. Unlike sensitivities, categories are not hierarchically related and form a set. The

key relations between sets of categories X ,Y are X ⊆ Y and X ⊇ Y . The allowed security

level combinations are defined using the level statement.

Security level of X specified as s0:c0.c2-s7:c0.c2 defines the security levels:

• low part – labelled as lX – s0:c0.c2

• high part – labelled as hX – s7:c0.c2

Security levels form a lattice and can be compared using the dominance relationship

that can be used in the mlsconstrain rules. Let sens(SL) denote the sensitivity of the

security level SL and cat(SL) denote the set of categories of the security level SL. The

dominance relation is defined as follows:

SL1 dom SL2⇔ (sens(SL1)≥ sens(SL2))

∧(cat(SL1)⊇ cat(SL2))

SL1 domby SL2⇔ (sens(SL1)≤ sens(SL2))

∧(cat(SL1)⊆ cat(SL2))

CHAPTER 4. NEW IDEAS AND SOLUTIONS 44

The principal part of the rules of our policy for the read and write operations, that

apply to unstrusted and trusted subjects (i.e. to all but partially trusted subjects), is based

on comparisons of confidentiality and integrity levels of the subject and the object:

CRS ≥CO∧ IRS ≤ IO for read(S,O)

and

CWS ≤CO∧ IWS ≥ IO for write(S,O).

for write.

Noticing this, we decided to use the sensitivity to encode our model’s confidentiality

level, and categories to encode our model’s integrity level. Untrusted and trusted subjects

in our model have two confidentiality and two integrity levels assigned (for reading and

for writing). We decided to use the low and high parts of the security level to encode the

two pairs of confidentiality and integrity levels:

• Low part of security level will correspond to the attributes used for the read opera-

tion (CO, IO, and CRS, IRS, respectively)

• High part of security level will correspond to the attributes used for the write ope-

ration (CO, IO, and CWS, IWS, respectively).

A natural choice is to define a sensitivity level for each confidentiality level, and a

category for each integrity level. Unfortunately, it appears that SELinux does not allow

the low and high security levels of an object or of a subject to differ only in the categories

(e.g. a security context with the security level range s0:c0-s0:c1,c2 is considered invalid).

We found a solution that uses two sensitivity levels to encode the same confidentiality

level, depending on whether it is used in the low (read) or high (write) part. An object

with CO = X and IO = Y is assigned the security context:

system_u:system_r:obj_l:sX:cY-s(X+5):cY.

The principal part of the rules for the read operation can then be evaluated using the

dom operator provided we find a suitable mapping between the integrity level IRS and

categories for the low security level of the subject. If we denote the low security level of

a subject S as lS and the low security level of an object O as lO, we need to satisfy:

lS dom lO ⇐⇒ (CRS ≥CO∧ IRS ≤ IO)

CHAPTER 4. NEW IDEAS AND SOLUTIONS 45

That is

sens(lS)≥ sens(lO) ⇐⇒ CRS ≥CO

and

cat(lS)⊇ cat(lO) ⇐⇒ IRS ≤ IO

The principal part of the rules for the write operation can also be evaluated using the

dom operator, if we can satisfy the following (where hX denotes the high security level of

X):

hS dom hO ⇐⇒ (CWS ≤CO∧ IWS ≥ IO)

That is

sens(hS)≥ sens(hO) ⇐⇒ CWS ≤CO

and

cat(hS)⊇ cat(hO) ⇐⇒ IWS ≥ IO

All of these are satisfied when we define 6 sensitivity levels s0 < s1 < s2 < s7 < s6 <

s5 and three categories c0,c1,c2 and use the mappings given in the tables below to assign

the sensitivity and the categories to the low and high security levels for subjects. The

ordering of the sensitivity level can be easily specified using the SELinux statement:

dominance { s0 s1 s2 s7 s6 s5 }.

Operations read write

confidentiality level sensitivity low sensitivity high

CS0 s0 s5

CS1 s1 s6

CS2 s2 s7

Operations read write

Integrity categories low categories high

IS0 c0.c2 c0

IS1 c1.c2 c0.c1

IS2 c2 c0.c2

The notation c0.c2 means categories c0,c1,c2.

CHAPTER 4. NEW IDEAS AND SOLUTIONS 46

The principal part of the read and write rules can be specified as simple constraints:

mlsconstrain { file } { read } (

(l1 dom l2)

);

mlsconstrain { file } { write } (

(h1 dom h2)

);

Where:

• l1 represents low security level of subject

• h1 represents high security level of subject

• l2 represents low security level of object

• h2 represents high security level of object

There are other parts of the rules for the operations, however. First, there are rules com-

paring the user identities assigned to the subject and the object with some exceptions,

and then there are rules for partially trusted subjects. The former can be solved in a way

similar to what we used in [12, 13] – we would just need a special DTE type attribute

assigned to the object with CO = 2 and/or IO = 2. The part of the read and write rules,

comparing the user identities assigned to the subject and the object, can be specified as

simple constraints:

constrain { file } { read } (

(U1 == U2 or T2 != C2)

and

(U1 == U2 or T2 != I2 or U2 == {root system_u})

);

constrain { file } { write } (

(U1 == U2 or T2 != I2)

and

(U1 == U2 or T2 != C2 or U2 == {root system_u})

);

CHAPTER 4. NEW IDEAS AND SOLUTIONS 47

Partially trusted subjects can also be handled using specific DTE types for the subjects

and specific DTE types for labelled objects in a way similar to that in [12, 13]. These

constraints specified above would need to be extended to allow for an exception if the

subject is one of a partially trusted type. Let’s do this now.

In the best case, the complete rules for operation read(S,O) look like these:

mlsconstrain { file } { read } (

(l1 dom l2)

or

[rules for partially trusted subjects]

);

constrain { file } { read } (

(U1 == U2 or T2 != C2)

and

(U1 == U2 or T2 != I2 or U2 == {root system_u})

);

Where:

• l1 represents low security level of subject

• l2 represents low security level of object

However, the reality was different. The partially trusted subject S can use the substate-

ments in the rules for operations read(S,O) and write(S,O) this way. Subject S satisfies
the substatement of confidentiality for trusted or untrusted subjects and it satisfies the

substatement of integrity for partially trusted subjects or vice versa. Thus, the use of

mlsconstrain operations (dom or domby) on MLS SELinux is useless in this case. Thus,

we did not develop this solution further. We denoted this solution as MLS-1.0.

4.3 Multi-Level Security Way-2.0

In this section, we present on our second attempt of implementation that uses MLS com-

ponents of SELinux. The ideas are based on utilizing MLS components of SELinux in

addition to the DTE component and modification of MLS SELinux operations.

CHAPTER 4. NEW IDEAS AND SOLUTIONS 48

static inline int mls_level_dom(const struct mls_level *l1,
const struct mls_level *l2)
{
return ((l1->sens >= l2->sens)

&& ebitmap_contains(&l1->cat, &l2->cat));
}

Figure 4.1: Source code of MLS constraint operation dom

4.3.1 Solution

This solution is based on the MLS-1.0 (see previous section 4.2). The difference is in

implementation of partially trusted subjects.

Firstly, we decided to disable the check of security levels dominance. For a security

context to be valid, the high level must always dominate the low level. This condition is

contained in SELinux policy compiler, SELinux kernel, and sepol library.

Next, we defined new mlsconstrain operations, namely sdom and cdom, respectively.

The original mlsconstrain operation dom is defined as follows:

• dom: Security level SL1 dom (dominates) security level SL2 if the sensitivity of

SL1 is higher or equal to the sensitivity of SL2, and the categories of SL1 are a

superset of the categories of SL2.

This operation is declared in sepol library and kernel, namely sepol/policydb/mls_types.h

and selinux/ss/mls_types.h, respectively. For source code see fig. 4.1. The new mlscon-

strain operations sdom and cdom are defined as follows:

• sdom: Security level SL1 sdom (sensitivity dominates) security level SL2 if the

sensitivity of SL1 is higher or equal to the sensitivity of SL2

• cdom: Security level SL1 cdom (categories dominate) security level SL2 if the

categories of SL1 are a superset of the categories of SL2.

And therefor applies for these operations:

dom(SL1, SL2)⇔ sdom(SL1, SL2) ∧ cdom(SL1, SL2)

For source code see fig. 4.2.

We also enabled these operations in SELinux policy compiler, namely checkpolicy com-

piler.

CHAPTER 4. NEW IDEAS AND SOLUTIONS 49

static inline int mls_level_sdom(const struct mls_level *l1,
const struct mls_level *l2)

{
return (l1->sens >= l2->sens);

}

static inline int mls_level_cdom(const struct mls_level *l1,
const struct mls_level *l2)

{
return (ebitmap_contains(&l1->cat, &l2->cat));

}

Figure 4.2: Source code of new MLS constraint operations sdom and cdom

Since we disabled the check of the security levels dominance, we did not need to use

all sensitivities from MLS-1.0 solution. Now SELinux allows the low and high security

levels of an object or a subject to differ only in the categories (e.g. a security context with

the security level range s0:c0-s0:c1,c2 is considered valid). An object with CO = X and

IO = Y is assigned the security context:

system_u:system_r:obj_l:sX:cY-s(X+0):cY

Thus, we defined only 3 sensitivity levels s0 < s1 < s2 and three categories c0,c1,c2 and

used the mappings given in the tables below to assign the sensitivity and the categories

to the low and high security levels for subjects. The ordering of the sensitivity level was

easily specified as follows:

dominance { s0 s1 s2 }.

Operations read write

confidentiality level sensitivity low sensitivity high

CS0 s0 s0

CS1 s1 s1

CS2 s2 s2

Operations read write

Integrity categories low categories high

IS0 c0.c2 c0

IS1 c1.c2 c0.c1

IS2 c2 c0.c2

CHAPTER 4. NEW IDEAS AND SOLUTIONS 50

The notation c0.c2 means categories c0,c1,c2. The fig. 4.3 shows the resulting rules. We

denoted this solution as MLS-2.0.

mlsconstrain { file } { read } (
(l1 sdom l2)

or
(
((T2 == L0 and T1 == CRLS0) or (T2 == L1 and T1 == CRLS1))
and

((T2 == C2 and T1 == CRL2) or (T2 == C1 and T1 == {CRL1 CRL2}))
)
);

mlsconstrain { file } { read } (
(l1 cdom l2)

or
(
((T2 == L0 and T1 == IRLS0) or (T2 == L1 and T1 == IRLS1))
and

((T2 == I0 and T1 == IRL0) or (T2 == I1 and T1 == {IRL1 IRL0}))
)
);

constrain { file } { read } (
(U1 == U2 or T2 == {C0 C1})
and
(U1 == U2 or T2 == {I0 I1} or U2 == {root system_u})
);

Figure 4.3: New rules for read(S,O)

4.3.2 Comparison

Now, we compare new solution MLS-2.0 with old solution presented in our bachelor’s

thesis [13].

Complexity of Types

In both case, we use DTE types to encode the security attributes of objects and partially

trusted subjects. Furthermore, we use MLS to encode the security attributes of trusted and

untrusted subjects. The number of types for object and partially trusted subjects stay the

same. We duplicate the security attributes of objects because each of objects must have

CHAPTER 4. NEW IDEAS AND SOLUTIONS 51

the DTE types part and MLS context part. We spare some types for subject theoretically,

but nothing in real practise.

Complexity of Rules

The number of substatements in the rules for trusted and untrusted subjects is constant

and the number of substatements in the rules for partially trusted subjects is linear.

Disadvantages

We would like to point out that there exist important disadvantages of our old solution.

From the point of view of the new solution, we would like to check these disadvantages

now:

1. Long expressions in the rules

2. The number of substatements in the rules is linear

3. Unique name for type for each of possible combinations of the attribute valuesy

4. TE transition rules for each of possible combinations of the subjects and objects

that are used in create mechanism

The first, second, and third item have been partially solved. The fourth item has not been

solved at all.

4.4 Multi-Level Security Way-3.0

In this section, we present on our third attempt of implementation that use MLS compo-

nents of SELinux. The ideas are only based on utilizing MLS components of SELinux

and modification of MLS SELinux operations.

4.4.1 Solution

This solution is based on the MLS-2.0 (see previous section 4.3). The difference is in

implementation of partially trusted subjects.

Firstly, we decided to transform partially trusted subjects from DTE security context

into MLS one. We found a suitable mapping between the attributes for the trusted and/or

untrusted subjects and attributes for the partially trusted subjects. We decided to use

CHAPTER 4. NEW IDEAS AND SOLUTIONS 52

the sensitivity to encode the two confidentiality levels for all subjects. For operation

read(S,O), we defined the following priority sequence:

• Rule: CRS ≥CO∨ (CRLS ≥CO∧LO ∈CRLSS)

• Priority sequence: 00→ 11→ 01→ 10→ 22→ 02→ 12→ 21→ 20

For operation write(S,O), we defined the following priority sequence:

• Rule: CWS ≤CO∨ (CWLS ≤CO∧LO ∈CWLSS)

• Priority sequence: 02→ 01→ 20→ 10→ 00→ 21→ 12→ 11→ 22

Where:

• XY represents confidentiality level X for trusted and/or untrusted subject (CRS or

CWS) and confidentiality level Y for partially trusted subject (CRLS or CWLS).

• XY is useless in context of appropriate rule

• XY needs special care

In other words, we transform each trusted and untrusted subject into partially trusted

subject without any labels. These subjects have got same values of appropriate confi-

dentialities, i.e. theirs sensitivities (low or high) have form XX, where X is the original

confidentiality value. Underlined sensitivities need special care because we need to check

that the partially trusted subject has got a proper label.

This would be a nice solution. We need to ensure that this concept satisfies rules for

operation read (see 1.1a) and write (see 1.2a). To do this, we need a selector to select a

concrete sensitivity and compare it with our given sensitivity value. Unfortunately, MLS

SELinux does not provide this necessary selector and the implementation of this selector

would be a bit complex, i.e. we have had to refactor all MLS SELinux. Thus, this solution

is useless.

4.4.2 Strict Security Model

So, we chose a different approach. We looked at the conditions for untrusted subjects and

partially trusted subjects (see 1.5 and 1.6). We replaced some inequalities with equalities.

Hence, we got a strict security model. New conditions are described below:

CHAPTER 4. NEW IDEAS AND SOLUTIONS 53

Each untrusted subject S must satisfy:

CWS = CWLS = CRS = CRLS

IWS = IWLS = IRS = IRLS

Each partially trusted subject S must satisfy:

CRS = CWLS < CRLS = CWS

IRS = IWLS > IRLS = IWS

Next, we used the ideas from MLS-2.0 (see section 4.3). Thus, we decided to use

the low and high parts of the security level to encode the two pairs of confidentiality and

integrity levels for all objects and subjects:

• Low part of security level will correspond to the attributes used for the read opera-

tion (CO, IO, resp. CRS = CWLS, IRS = IWLS).

• High part of security level will correspond to the attributes used for the write ope-

ration (CO, IO, resp. CWS = CRLS, IWS = IRLS).

In other words, the low security context represents attributes of the operation read for

trusted and untrusted subjects, and attributes of the operation write for partially trusted

subject in the same time. On the other hand, the high security context represents attributes

of the operation write for trusted and untrusted subjects, and attributes of the operation

read for partially trusted subject in the same time too. We used our new operations (see

subsection 4.3.1) to work with this concept. New constraints look like these:

Rule for operation read(S,O):

• mlsconstrain { file } { read } (

(l1 sdom l2 or (h1 sdom l2 + label_check))

and
(l1 cdom l2 or (h1 cdom l2 + label_check))

and user_check);

Rule for operation write(S,O):

• mlsconstrain { file } { write } (

(l2 sdom h1 or (l2 sdom l1 + label_check))

and
(h1 cdom l2 or (l1 cdom l2 + label_check))

and user_check);

CHAPTER 4. NEW IDEAS AND SOLUTIONS 54

Where:

• l1 represents low security level of subject

• h1 represents high security level of subject

• l2 represents low security level of object

• h2 represents high security level of object

• label_check represents check that the partially trusted subject has a proper label

when it tries to access to object.

• user_check represents the rules 1.1c and 1.1d located on page 19.

New constraints look good. Unfortunately, there is small problem. SELinux (and

SELinux policy compiler too) supports only the following context for mls operations

(role_mls_op):

• l1 role_mls_op l2

• l1 role_mls_op h2

• h1 role_mls_op l2

• h1 role_mls_op h2

• l1 role_mls_op h1

• l2 role_mls_op h2

Where role_mls_op can represent operations eq, dom, domby, incomp, sdom, or

cdom.

That means that SELinux can not compare the low security level of object (l2) and

the high security level (h1) of subject. This corresponds with the first substatement in

write(S,O), namely (l2 sdom h1). Further, that means that SELinux can not compare low

security level of object (l2) and low security level (l1) of subject. This corresponds with

the second substatement in write(S,O), namely (l2 sdom l1 + label_check).

Thus, we added these comparisons to the SELinux, namely SELinux policy compiler,

SELinux kernel, and sepol library.

CHAPTER 4. NEW IDEAS AND SOLUTIONS 55

There is the corresponding source code:

#define CEXPR_L2H1 2048 /* low level 2 vs. high level 1 */

#define CEXPR_L2L1 4096 /* low level 2 vs. low level 1 */

There is the corresponding source code for compiler that allows us to declare these

rules:

| L2 role_mls_op H1

{ $$ = define_cexpr(CEXPR_ATTR, CEXPR_L2H1, $2);

if ($$ == 0) return -1; }

| L2 role_mls_op L1

{ $$ = define_cexpr(CEXPR_ATTR, CEXPR_L2L1, $2);

if ($$ == 0) return -1; }

The last remaining difficulties are label_check and user_check. The user_check can

be solved easily by comparing user’s identities and declaring specific attributes c_shareable

for confidentiality and i_shareable for integrity. Thus, the last difficulty is label_check.

Our first idea was this one. We will encode all labels to the categories. At first sight this

is possible because each of objects has only its label and each of subjects can have a set

of labels. We need to compare that the object’s label is in the set of subject’s labels. For

this comparison we can use operation cdom.

Unfortunately, there is a problem. We can not compare labels for confidentiality and

integrity independently. To solve this problem, we decided to look at implementation of

categories in Linux kernel. The main idea is a division of categories into three indepen-

dent parts (see fig. 4.5). In this way, we will obtain new meaning for security contexts of

our security levels.

For low security level:

• The first part of categories will represent attribute IRS = IWLS.

• The second part of categories will represent object’s label CL or subject’s set of

labels for confidentiality CWLSS.

• The last (third) part of categories will represent object’s label IL or subject’s set of

labels for integrity IWLSS.

CHAPTER 4. NEW IDEAS AND SOLUTIONS 56

Security level
sensitivity categories

Object low
CO IO CL + IL

Subject low
CRS IRS CWLSS + IWLSSCWLS IWLS

Subject high
CWS IWS CRLSS + IRLSSCRLS IRLS

Figure 4.4: Visualization of new security levels without divided categories

For high security level:

• The first part of categories will represent attribute IWS = IRLS.

• The second part of categories will represent subject’s set of labels for confidentia-

lity CRLSS.

• The last (third) part of categories will represent subject’s set of labels for integrity

IRLSS.

The categories are implemented as a vector of bits in SELinux kernel. More detailed

information about implementation of categories in SELinux can be found in next section

4.5.

4.4.3 Rules

So, we have the good idea and now, we transform it into reality. We can use the mls

operation sdom to work with sensitivities, but we can not use the mls operation cdom to

work with categories. Thus, we replace the operation cdom with a set of operations that

enable us to work with the divided categories.

CHAPTER 4. NEW IDEAS AND SOLUTIONS 57

Security level
sensitivity 1.part 2.part 3.part

Object low
CO IO CL IL

Subject low
CRS IRS CWLSS IWLSSCWLS IWLS

Subject high
CWS IWS CRLSS IRLSSCRLS IRLS

Figure 4.5: Visualization of new security contexts of our security levels with di-
vided categories

• Firstly, we defined a new operation icat for work with the first part of categories,

namely with attributes IRS = IWLS and IWS = IRLS.

• Secondly, we defined operation clcat for work with the second part of categories,

namely with labels for confidentiality CWLSS and CRLSS.

• Finally, we defined operation ilcat for work with the third part of categories, namely

with labels for interity IWLSS and IRLSS.

Source code for these operations:

static inline int mls_level_icat(const struct mls_level *l1,

const struct mls_level *l2){

return (ebitmap_contains_icat(&l1->cat, &l2->cat));}

static inline int mls_level_clcat(const struct mls_level *l1,

const struct mls_level *l2){

return (ebitmap_contains_clcat(&l1->cat, &l2->cat));}

static inline int mls_level_ilcat(const struct mls_level *l1,

const struct mls_level *l2){

return (ebitmap_contains_ilcat(&l1->cat, &l2->cat));}

CHAPTER 4. NEW IDEAS AND SOLUTIONS 58

Where functions ebitmap_contains_**(struct ebitmap *e1, struct ebitmap *e2) were

created by modifying the original function int ebitmap_contains(struct ebitmap *e1, struct

ebitmap *e2).

4.4.4 Constraints

Now we have all means for rewriting rules from subsection 4.4.2. These rewritten rules

are described below:

Rule for operation read(S,O):

• mlsconstrain { file } { read } (

(l1 sdom l2 or (h1 sdom l2 and h1 clcat l2))

and
(l1 icat l2 or (h1 icat l2 and h1 ilcat l2))

and user_check);

Rule for operation write(S,O):

• mlsconstrain { file } { read } (

(l2 sdom h1 or (l2 sdom l1 and l1 clcat l2))

and
(h1 icat l2 or (l1 icat l2 and l1 ilcat l2))

and user_check);

We can easily improve these rules. Firstly, we switch the second part of vector of

categories with the third part of vector of categories. Fig. 4.6 shows this change. Then,

we have to redefine the operation ilcat so that it would works like the operation icat and

the original operation ilcat together, i.e. we control the attribute for integrity level and the

appropriate label in the same time.

That means that we can replace the substatement (l1 icat l2 or (h1 icat l2 and h1 ilcat l2))

with this one (l1 icat l2 or (h1 ilcat l2)). The updated rules are described below.

Modified rule for operation read(S,O):

• mlsconstrain { file } { read } (

(l1 sdom l2 or (h1 sdom l2 and h1 clcat l2))

and
(l1 icat l2 or (h1 ilcat l2))

and user_check);

CHAPTER 4. NEW IDEAS AND SOLUTIONS 59

Security level
sensitivity 1.part 2.part 3.part

Object low
CO IO IL CL

Subject low
CRS IRS IWLSS CWLSSCWLS IWLS

Subject high
CWS IWS IRLSS CRLSSCRLS IRLS

Figure 4.6: Visualization of new security levels with modified divided categories

Modified rule for operation write(S,O):

• mlsconstrain { file } { read } (

(l2 sdom h1 or (l2 sdom l1 and l1 clcat l2))

and
(h1 icat l2 or (l1 ilcat l2))

and user_check);

We denoted this solution as MLS-3.0.

4.4.5 Comparison

Now, we compare this solution MLS-3.0 with old solution presented in our bachelor’s

thesis [13].

Complexity of Types

In this solution, we do not use DTE types to encode the security attributes of objects

and partially trusted subjects. We use only MLS to encode all security attributes of

trusted, untrusted, and partially trusted subjects. We need two types as a solution for

CHAPTER 4. NEW IDEAS AND SOLUTIONS 60

user_check, where we compare user’s identities and evaluate the condition for specific

attributes c_shareable for confidentiality and i_shareable for integrity.

Complexity of Rules

The number of substatements in the rules for all trusted, untrusted, and partially trusted

subjects is constant.

Disadvantages

Now, we look at important disadvantages of our old solution. From the viewpoint of this

solution, we would like to check these disadvantages:

1. Long expressions in the rules

2. The number of substatements in the rules is linear

3. Unique name for type for each of possible combinations of the attribute values

4. TE transition rules for each of possible combinations of the subjects and objects

that are used in create mechanism

The first, second, and third item have been fully solved. The fourth item has not been
solved at all because we only replace the TE transition rules with the MLS range_transition

rules like in previous solution 4.3. Unfortunately, there is one new disadvantage called

Strict security model. We can analyze this solution but we do not have to. The reason for

this is that we will reuse all ideas that were presented in sections on previous pages. We

present the effective use of these ideas in next section.

4.5 Multi-Category Security WAY-4.0

In this section, we describe our final solution. In this solution, we use all good ideas that

were presented in previous sections.

4.5.1 Solution

This solution is based on the solution MLS-3.0 and Strict security model (see previous

section 4.4). We will implement the whole non-strict security model, not only its strict

version that was presented in previous section (see subsection 4.4.2). Thus, we do not

CHAPTER 4. NEW IDEAS AND SOLUTIONS 61

have to divide the vector of bits of categories into three parts. We will encode all attributes

of model into independent parts of the vector of categories. We denoted this solution as

MCS-4.0.

4.5.2 Implementation of Categories in SELinux

In this subsection, as we promised in previous section, we describe in details implemen-

tation of categories in the SELinux kernel.

Implementation of categories is contained in a file /security/selinux/ss/ebitmap.h. Ca-

tegories are implemented as an extensible bitmap. An extensible bitmap is a bitmap that

supports an arbitrary number of bits. The extensible bitmaps are used to represent sets

of values, such as types, roles, categories, and classes. Each extensible bitmap is im-

plemented as a linked list of bitmap nodes, where each bitmap node has an explicitly

specified starting bit position within the total bitmap.

Categories are implemented in a structure called ebitmap that consists of a highest bit

and a structure called ebitmap_node. The structure ebitmap_node contains a link to next

ebitmap_node, a starting bit, and something called unsigned long maps[EBITMAP_UNIT

_NUMS]. These maps are very important for us. The maps are an array of 32 bits. The

length of the array is defined as a value of EBITMAP_UNIT_NUMS. This value is defined

as a complex expression (32 - sizeof(void *) - sizeof(u32)) / sizeof(unsigned long), where

value of:

• sizeof(void *) is 4,

• sizeof(u32) is 4,

• sizeof(unsigned long) is 4.

Thus, the length of the array maps is 6, because (32 -4 -4) / 4 is 6. Fig. 4.7 shows source

code.

Summary

Each node contains 6 x maps[i], where each of maps[i] contains 32 bits. Thus, we have

192 bits per node. Each of these bits represents a separate category.

CHAPTER 4. NEW IDEAS AND SOLUTIONS 62

#define EBITMAP_UNIT_NUMS ((32 - sizeof(void *) - sizeof(u32)) \
/ sizeof(unsigned long))

struct ebitmap_node {
struct ebitmap_node *next;
unsigned long maps[EBITMAP_UNIT_NUMS];
u32 startbit;

};

struct ebitmap {
struct ebitmap_node *node; /* first node in the bitmap */
u32 highbit; /* highest position in the total bitmap */

};

Figure 4.7: Source code of implementation of categories

4.5.3 Non-Strict Security Model

We will encode all attributes of model into independent parts of the vector of categories.

Thus we have to encode object’s attributes and subject’s attributes into this vector of ca-

tegories. We chose a block of 8 bits as a natural delimiter, that means we have 8 levels for

confidentiality and integrity. Now we describe our solution.

Node and Maps

Now we look at the first maps[0] in the first node. The attributes CO,CRS, and CWS

are implemented in the first block[0] of the maps[0]. The second block[1] contains the

attributes IO,IRS, and IWS. The third block[2] contains the attributes CRLS and CWLS.

The fourth block[3] contains the attributes IRLS and IWLS.

So, we have done all baseline attributes for levels of the confidentiality and integrity.

The last remaining attributes are labels of objects and the labels for confidentiality and

integrity of subjects. Thus, the maps[1] and maps[2] contain the labels for CRLSS and

CWLSS in the first node. Of course, we have to have the same number of labels for

confidentiality and integrity. We actually have 64 labels for the confidentiality. Thus, the

maps[3] and maps[4] have to contain only the labels for IRLSS and IWLSS. Source codes

are showed in fig. 4.8 and 4.9. Fig. 4.10 shows the visualization of the first maps[0].

Note: The position of category in vector of bits of categories is given by the position of

declaration of this category in source file of policy for SELinux, namely policy.conf.

CHAPTER 4. NEW IDEAS AND SOLUTIONS 63

Each node contains 6 items of maps ([0]-[5])
Each maps contains 32 bits

Confidentiality
category c0; # confidentiality 0 - public data
category c1; # confidentiality 1 - C-normal
category c2; # confidentiality 2 - C-sensitive
Reserved categories
category c3;
...
category c7;

Integrity
category i0; # integrity 0 - potentially malicious data
category i1; # integrity 1 - I-normal
category i2; # integrity 2 - I-sensitive
Reserved categories
category i3;
...
category i7;

Figure 4.8: Declaration of categories in the policy - part 1

4.5.4 Functions for Work with Categories

Functions for work with categories are defined in a file /security/selinux/ss/ebitmap.c. As

might be expected these functions work on all bits in vector of categories. Thus, we

defined new operations that replace our previous declared operations sdom and cdom (see

subsection 4.3.1). As you see later, these new operations will cover the whole operations

read(S,O) and write(S,O).

New operations (role_mls_op) are these:

• subject rule_read object

• subject rule_write object

• subject cshare object

• subject ishare object

Now we express these functions in the view of attributes of security model. Let do this.

The operation subject rule_read object covers the conditions:

[CRS ≥CO∨ (CRLS ≥CO∧LO ∈CRLSS)] ∧ [IRS ≤ IO∨ (IRLS ≤ IO∧LO ∈ IRLSS)]

CHAPTER 4. NEW IDEAS AND SOLUTIONS 64

Confidentiality labelled level
category clS0; # confidentiality 0 - public data
category clS1; # confidentiality 1 - C-normal
category clS2; # confidentiality 2 - C-sensitive
Reserved categories
category clS3;
...
category clS7;

Integrity labelled level
category ilS0; # integrity 0 - potentially malicious data
category ilS1; # integrity 1 - I-normal
category ilS2; # integrity 2 - I-sensitive
Reserved categories
category ilS3;
...
category ilS7;

Confidentiality labels
category cL0;
...
category cL63;

Integrity labels categories
category il0;
...
category il63;
category ps; # Technical detail
category sentinel; # Technical detail

Figure 4.9: Declaration of categories in the policy - part 2

The operation subject rule_write object covers the conditions:

[CWS ≤CO∨ (CWLS ≤CO∧LO ∈CWLSS)] ∧ [IWS ≥ IO∨ (IWLS ≥ IO∧LO ∈ IWLSS)]

The operation subject cshare object covers the condition:

CO ≤ 1

The operation subject ishare object covers the condition:

IO ≤ 1

Fig. 4.11 shows source code of these operations for compiler of SELinux policy.

CHAPTER 4. NEW IDEAS AND SOLUTIONS 65

The First Maps[0]

block[0] c0 c1 c2 c3 c4 c5 c6 c7
block[1] i0 i1 i2 i3 i4 i5 i6 i7
block[2] clS0 clS1 clS2 clS3 clS4 clS5 clS6 clS7
block[3] ilS0 ilS1 ilS2 ilS3 ilS4 ilS5 ilS6 ilS7

Figure 4.10: Visualization of the first maps[0]

#define CEXPR_CSHARE 6
#define CEXPR_ISHARE 7
#define CEXPR_READ 8
#define CEXPR_WRITE 9

case CEXPR_READ:
s[++sp] = mls_level_rule(l1, l2);
continue;

case CEXPR_WRITE:
s[++sp] = mls_level_rule(l1, l2);
continue;

case CEXPR_CSHARE:
s[++sp] = mls_level_cshare(l1, l2);
continue;

case CEXPR_ISHARE:
s[++sp] = mls_level_ishare(l1, l2);
continue;

Figure 4.11: Declaration for compiler

4.5.5 Functions and Rules

From the viewpoint of the implementation, the rules read (S,O) and write (S,O) are identi-

cal. That means that they can be expressed using the same function, namely mls_level_rule()

(see fig. 4.11), because the security contexts for write and read are linked to the low se-

curity level and high security level, respectively.

Function mls_level_rule() contains our new functions that we added into SELinux

kernel, namely in a file /security/selinux/ss/ebitmap.c. These functions work with the

independent parts of teh vector of categories. They check that the categories of subject

are a superset of the categories of object except empty set of course. Source code of

function mls_level_rule() is described in fig. 4.12. In previous solution 4.4, we used

two special attributes in the user_check part of rule. Now we do not have to use these

special attributes because we have specialized operation for this purpose, namely cshare

CHAPTER 4. NEW IDEAS AND SOLUTIONS 66

static inline int mls_level_rule(const struct mls_level *l1,
const struct mls_level *l2){
return ((ebitmap_contains_cdom(&l1->cat, &l2->cat) ||

ebitmap_contains_cldom(&l1->cat, &l2->cat))
&&

(ebitmap_contains_idom(&l1->cat, &l2->cat) ||
ebitmap_contains_ildom(&l1->cat, &l2->cat)));

}

Figure 4.12: Function mls_level_rule() - source code

mlsconstrain { file } { read } (
(h1 rule_read l2) and (
(U1 == U2) or (h1 cshare l2 and
(h1 ishare l2 or U2 == {root system_u}))
)

);

mlsconstrain { file } { write } (
(l1 rule_write l2) and (
(U1 == U2) or (l1 ishare l2 and
(l1 cshare l2 or U2 == {root system_u}))
)

);

Figure 4.13: Final full version of read(S,O) and write(S,O)

and ishare.

Fig. 4.13 shows final full version of the rules, namely read(S,O) and write(S,O).

Note: In this time, SELinux does not allow to declare a substatement U2 == {root sys-

tem_u}, i.e. a SELinux compiler does not recognize these user’s identities. That means

that the SELinux compiler does not satisfy the specification for the SELinux mlscon-

straints. This may be fixed in the new version of the compiler. Thus, we replaced the

substatement U2 == {root system_u} with the substatement U1 != U2. This is a tempo-

rary solution until the compiler is corrected.

4.5.6 Security Context

In this subsection, we describe how to set a proper security context to the objects and

subjects. We use the mappings given in the following tables to assign the categories to

the low and high security levels for objects and subjects. In comparison with the previous

CHAPTER 4. NEW IDEAS AND SOLUTIONS 67

solution MLS-3.0 in section 4.4, we swap the meaning of low and high security levels,

i.e. low and high security levels represent security context of write and security context

of read, respectively.

Security context write read
Security level low high

V
al

ue
of

O
bj

ec
t’s

at
tr

ib
ut

es CO = 0 c0 –
CO = 1 c1 –
CO = 2 c2 –
CO = 3 c3 –
CO = 4 c4 –
CO = 5 c5 –
CO = 6 c6 –
CO = 7 c7 –

Security context write read
Security level low high

V
al

ue
of

O
bj

ec
t’s

at
tr

ib
ut

es IO = 0 i0 –
IO = 1 i1 –
IO = 2 i2 –
IO = 3 i3 –
IO = 4 i4 –
IO = 5 i5 –
IO = 6 i6 –
IO = 7 i7 –

Setting the security context for objects

Security context write read
Security level low high

V
al

ue
of

Su
bj

ec
t’s

at
tr

ib
ut

es CS = 0 c0.cmax c0
CS = 1 c1.cmax c0.c1
CS = 2 c2.cmax c0.c2
CS = 3 c3.cmax c0.c3
CS = 4 c4.cmax c0.c4
CS = 5 c5.cmax c0.c5
CS = 6 c6.cmax c0.c6
CS = 7 c7 c0.c7

Security context write read
Security level low high

V
al

ue
of

Su
bj

ec
t’s

at
tr

ib
ut

es CLS = 0 clS0.clSmax clS0
CLS = 1 clS1.clSmax clS0.clS1
CLS = 2 clS2.clSmax clS0.clS2
CLS = 3 clS3.clSmax clS0.clS3
CLS = 4 clS4.clSmax clS0.clS4
CLS = 5 clS5.clSmax clS0.clS5
CLS = 6 clS6.clSmax clS0.clS6
CLS = 7 clS7 clS0.clS7

CHAPTER 4. NEW IDEAS AND SOLUTIONS 68

Security context write read
Security level low high

V
al

ue
of

Su
bj

ec
t’s

at
tr

ib
ut

es IS = 0 i0 i0.imax

IS = 1 i0.i1 i1.imax

IS = 2 i0.i2 i2.imax

IS = 3 i0.i3 i3.imax

IS = 4 i0.i4 i4.imax

IS = 5 i0.i5 i5.imax

IS = 6 i0.i6 i6.imax

IS = 7 i0.i7 i7

Security context write read
Security level low high

V
al

ue
of

Su
bj

ec
t’s

at
tr

ib
ut

es ILS = 0 ilS0 ilS0.ilSmax

ILS = 1 ilS0.ilS1 ilS1.ilSmax

ILS = 2 ilS0.ilS2 ilS2.ilSmax

ILS = 3 ilS0.ilS3 ilS3.ilSmax

ILS = 4 ilS0.ilS4 ilS4.ilSmax

ILS = 5 ilS0.ilS5 ilS5.ilSmax

ILS = 6 ilS0.ilS6 ilS6.ilSmax

ILS = 7 ilS0.ilS7 ilS7

Setting the security context for subjects

Note: The notation c0.cmax means categories c0,c1, . . . , cmax, similarly for the other cate-

gories. Attribute attrmax denotes a maximal level that we will use in our operating system,

i.e. when we use 3 levels for confidentiality and integrity (0, 1, and 2), the attribute attrmax

will represent the attribute attr2.

Our general implementation allows us to use maximal 8 levels for confidentiality and

integrity. Our implementaion also support 64 labels. We will use the categories for labels

this way:

When we assign a label L4 to an object, the security context of this object will have the

categories cL4 and iL4 in low security level.

In case of subjects, the situation is different. When we assign a label L4 for attributes

CRLSS and IWLSS and a label L5 for attribute CRLSS to a subject, the security context of

this subject will have the category iL4 in the low security level and the categories cL4 and

cL5 in the high security level.

4.5.7 Technical Details

Sensitivity

We have to define only one sensitivity level, namely s0, although we do not use it in this

solution, i.e. it is useless for our solution. The ordering of the sensitivity level can be

specified using the standard SELinux statement:

dominance { s0 }.

CHAPTER 4. NEW IDEAS AND SOLUTIONS 69

Sentinels

The categories ps and sentinel are our last declared categories. We use the category sen-

tinel in declaration of security level. The category ps is used in create mechanism. The

level statement enables the previously declared sensitivity and category identifiers to be

combined into a security level:

level s0:c0.sentinel; .

Create Mechanism

SELinux security context of a newly created object is determined by special rules or can be

automatically inherited from a parent subject that creates this new object. There is a corre-

sponding function for this purpose in SELinux kernel, namely int mls_compute_sid(struct

context *scontext, struct context *tcontext, u16 tclass, u32 specified, struct context *new-

context, bool sock) . This function, located in security/selinux/ss/mls.c, works as a stan-

dard create mechanism. It calls a function mls_context_cpy_low(newcontext, scontext),

located in a file /security/selinux/ss/context.h, that sets both levels in the MLS range of

’dst’ to the low level of ’src’. That means that the subject’s low security level is copied

into the low and high object’s security level. For this purpose, it uses another function

ebitmap_cpy(&dst->range.level[1].cat, &src->range.level[0].cat) that is located in a file

/security/selinux/ss/ebitmap.c.

We think that using this function is useless for us. Thus, we modified this automatic

mechanism. We replaced the function mls_context_cpy_low(newcontext, scontext) with

a new function mls_context_cpy_low_new(newcontext, scontext, tcontext) in the function

mls_compute_sid(. . .).

Our new create mechanism works like the original function. In addition, it converts

the subject’s low security level into the proper object’s security level. That means that

special function modifies only our reserved parts of the vector of categories that belong to

the created object. The function transforms a set of subject’s categories into appropriate

object’s category.

The function contains a body of original function, but we have added another func-

tion, namely ebitmap_cpy_convert_context(. . .). This function ensures the transforma-

tion mentioned above. As you can see above, the new function has a new parameter
tcontext. The parameter tcontext is a security context of parent directory. We need the

security context of parent directory to set a proper label for the created file.

CHAPTER 4. NEW IDEAS AND SOLUTIONS 70

To ensure a correct behaviour of operation create, all subjects will have own appro-

priate categories for corresponding attributes and a special category ps. A subject will

have the special category ps in its low security context. This category provides us the

right length of vector of categories that we will modify in create mechanism.

On the other hand, if we use specific rules to determine create mechanism, we will

need to use the range_transition rules (see subsection 2.1.5). The range_transition state-

ment was enhanced in Policy version 21 (and greater) to accept other object classes. Thus,

we can use the classes like dir, file, etc. in these rules. But these rules work with types.

Therefore, we would have to declare an independent type for each of possible combina-

tions of the attribute values (MLS categories). Thus, the use of the range_transition rules

for create mechanism is useless for us.

Modification of Standard MLS SELinux Functions

To ensure a full separation from standard MLS SELinux functions, we modified some

SELinux MLS functions. Thus, we defined new versions of the main functions that work

with MLS security levels, except for defined independent parts of vector of categories. In

this way, we ensure backward compatibility. That means that this step enables us to

integrate our model into an arbitrary SELinux policy independently of the given policy.

For detailed information about integration into the arbitrary SELinux policy, please see

section 5.3.

4.5.8 Comparison

Now, we compare this solution MCS-4.0 with previous solution MLS-3.0.

Complexity of Types

In this solution, same as before, we do not use DTE types to encode the security attributes

of objects and partially trusted subjects. We use only MLS to encode all security attributes

of trusted, untrusted, and partially trusted subjects. Unlike the previous solution, we do
not need two attributes like solution to user_check because we have created the special-

ized functions for this purpose.

CHAPTER 4. NEW IDEAS AND SOLUTIONS 71

Complexity of Rules

Same as before, the number of substatements in the rules for all trusted, untrusted, and

partially trusted subjects is constant.

Disadvantages

Now, we look at important disadvantages of our old solution again. From the point of

view of this solution, we would like to check the disadvantages of our previous solution

presented in our bachelor’s thesis [13].

1. Long expressions in the rules

2. The number of substatements in the rules is linear

3. Unique name for type for each of possible combinations of the attribute values

4. TE transition rules for each of possible combinations of the subjects and objects

that are used in create mechanism

Same as before, the first, second, and third item have been fully solved. Unlike the

previous solution, the fourth item has been solved as well.

Chapter 5

Testing

In this chapter, we present a practical impact of our work. In section 5.1, we wrote a step-

by-step tutorial on installing our solution. In section 5.2, we wrote a tutorial on building

a custom kernel with our solution. In section 5.3, we provide instructions for adjustment

of arbitrary SELinux policy that this policy will contain our model.

5.1 Installation of our Solution

In this section, we provide instructions for advanced users who want to install our solution

on their system. The installation of our solution consists of these steps:

1. Disabling SELinux

2. Compiling Modified SELinux Policy Compiler

3. Compiling SELinux Policy

4. Kernel installation

5. Enabling SElinux

The details of each step are described in the following subsections.

5.1.1 How to Disable SElinux

First of all, you need to disable SELinux. Disabling will completely disable all SELinux

functions including file and process labelling. To permanently disable SElinux you need

72

CHAPTER 5. TESTING 73

to edit SElinux’s config file /etc/selinux/config and add/alter the following line to disable

it:

SELINUX=disabled

5.1.2 Compiling Modified SELinux Policy Compiler
As you can see on previous pages, we made some important changes in SELinux kernel.
Of course, these changes have impact on SELinux policy compiler, called checkpolicy,
and sepol library. Thus, we modified the original compiler. We named new SELinux
policy compiler as mcheckpolicy. Because checkpolicy (and mcheckpolicy too) uses sepol
library, we modified it too. This modified library reflects our changes in SELinux kernel.
New compiler can be compiled using the command make. The source files of mcheck-
policy are stored in ./public-MCS-4.0/checkpolicy-2.0.19-modif-4.0 and the source files of
sepol library are stored in ./public-MCS-4.0/sepol. You can use the following commands
to compile mcheckpolicy:

cd ./public-MCS-4.0

cp sepol /usr/include

cd ./public-MCS-4.0/checkpolicy-2.0.19-modif-4.0

make

cp ./checkpolicy /usr/bin/mcheckpolicy

cp ./checkmodule /usr/bin/mcheckmodule

Note: If you use our solution with the SELinux reference policy (refpolicy), you do not
need to rename checkpolicy and checkmodule but you can only copy them into /usr/bin.
You can use the following simple commands to compile mcheckpolicy as the standard
checkpolicy:

cd ./public-MCS-4.0/checkpolicy-2.0.19-modif-4.0

make install

5.1.3 Compiling SELinux Policy

This subsection covers the considerations and methods for compiling SELinux policy.

When you install a new policy, you must eventually reboot to test that it works during

system start-up. If the policy change is significant enough, such as installing an entirely

new policy, you need to reboot to ensure all applications are running in the right context

for the loaded policy.

CHAPTER 5. TESTING 74

We provide a minimalist policy that demonstrates the possibilities of our implemen-

tation. This minimalist policy can be found in ./public-MCS-4.0/minimalist policy. Thus,

you can use the following commands to compile this policy:

cp ./public-MCS-4.0/minimalist policy /etc/selinux/minpolicy/

cd /etc/selinux/minpolicy/

mcheckpolicy -M -o ./policy/policy.24 ./src/policy.conf

Note: For compiling the SELinux reference policy that includes our model too, see section

5.3.

5.1.4 Kernel Patch and Kernel Installation

Finally, you need only compile the kernel with our patch. We have devoted a separate

section to the kernel patch and the installation of modified kernel. Please see section 5.2.

5.1.5 How to Enable SELinux

If all is done, you need to enable SELinux. Enabling will completely enable all SELinux

functions including file and process labelling. To enable SELinux you need to edit the

SELinux’s configuration file /etc/selinux/config again and set SELinux into permissive

mode:

SELINUX=permissive

After booting into permissive mode, run this command to relabel everything:

fixfiles relabel

Alternatively, in Fedora and RedHat Enterprise Linux you can run

touch /.autorelabel

and reboot.

Note that this can take quite some time for systems with a large number of files.

After relabelling the filesystem, you can switch to enforcing mode and your system

should be fully enforcing again. Thus, you need to edit the file /etc/selinux/config once

again and only set SELinux into enforcing mode:

SELINUX=enforcing

CHAPTER 5. TESTING 75

5.2 Kernel Patch Installation

In this section, we provide instructions for advanced users who want to rebuild their kernel

with our patch.

Note: However, when building or running any such kernel, you are pretty much on your

own here if something does not work as you would hope or expect. These instructions

apply to Fedora 12 and later releases.

5.2.1 Requirement

Before starting, make sure the system has all the necessary packages installed, including

the following:

• rpmdevtools

• yum-utils

yum-utils is a default package. To install the other package, use the following command:

su -c ’yum install rpmdevtools yum-utils’

5.2.2 Get the Source

1. Prepare a RPM package building environment in your home directory. Run the

following command:

rpmdev-setuptree

This command creates different directories $HOME/rpmbuild/SOURCES,

$HOME/rpmbuild/SPECS, and $HOME/rpmbuild/BUILD. Where $HOME is your

home directory.

2. Download the kernel-<version>.src.rpm file. Enable the appropriate source repo-

sitories with the –enablerepo switch. (yumdownloader –enablerepo=repo_to_enable

–source kernel)

yumdownloader --source kernel

CHAPTER 5. TESTING 76

3. Install build dependencies for the kernel source with the yum-builddep command

(root is required to install these packages):

su -c ’yum-builddep kernel-<version>.src.rpm’

4. Install kernel-<version>.src.rpm with the following command:

rpm -Uvh kernel-<version>.src.rpm

This command writes the RPM contents into $HOME/rpmbuild/SOURCES and
$HOME/rpmbuild/SPECS, where $HOME is your home directory. It is safe to
ignore any messages similar to the following:

warning: user kojibuilder does not exist - using root

warning: group kojibuilder does not exist - using root

Note: Space Required. The full kernel building process requires several gigabytes of

extra space on the file system containing your home directory.

5.2.3 Prepare the Kernel Source Tree

This step expands all of the source code files for the kernel. This is required to view the

code, edit the code, or to generate a patch.

1. Prepare the kernel source tree using the following commands:

cd ~/rpmbuild/SPECS

rpmbuild -bp --target=$(uname -m) kernel.spec

The kernel source tree is now located in the ~/rpmbuild/BUILD/kernel-<version>/

/linux-<version>.<arch> directory.

CHAPTER 5. TESTING 77

5.2.4 Prepare Build Files

This step makes the necessary changes to the kernel.spec file. This step is required for

building a custom kernel.

1. Change to the /rpmbuild/SPECS directory:

cd ~/rpmbuild/SPECS

2. Open the kernel.spec file for editing.

3. Give the kernel a unique name. This is important to ensure the custom kernel is

not confused with any released kernel. Add a unique string to the kernel name

by changing the buildid line. Optionally, change ".local" to your initials, a bug

number, the date or any other unique string.

Change this line:

#% define buildid .local

To this (note the extra space is removed in addition to the pound sign):

%define buildid .<custom_text>

4. If you generated a patch, add the patch to the kernel.spec file, preferably at the end

of all the existing patches and clearly commented.

cputime accounting is broken, revert to 2.6.22 version

Patch2220: linux-2.6-cputime-fix-accounting.patch

Patch9999: linux-2.6-samfw-test.patch

Our patch has name linux-2.6-modif-selinux.patch, located in ./public-MCS-4.0/.

Thus, you add only:

Patch15555: linux-2.6-modif-selinux.patch

CHAPTER 5. TESTING 78

The patch then needs to be applied in the patch application section of the spec file.

Again, at the end of the existing patch applications and clearly commented.

ApplyPatch linux-2.6-cputime-fix-accounting.patch

ApplyPatch linux-2.6-samfw-test.patch

ApplyPatch linux-2.6-modif-selinux.patch

Note: The patch needs to be copied into ./rpmbuild/SOURCES.

5.2.5 Build the New Kernel

This step actually generates the kernel RPM files. This step is required for building a

custom kernel with our patch.

Use the rpmbuild utility to build the new kernel:

1. To build with firmware included, do:

rpmbuild -bb --with baseonly --with firmware

--without debuginfo --target=‘uname -m‘ kernel.spec

The build process takes a long time to complete. A lot of messages will be printed to the

screen. These messages can be ignored, unless the build ends with an error. If the build

completes successfully, the new kernel packages will be located in the ~/rpmbuild/RPMS

directory.

5.2.6 Install the New Kernel
Make sure that the SELinux is disabled. This step actually installs the new kernel into
the running system. To install the new kernel, use the rpm -ivh command, not the -U or
–upgrade options:

su -c "rpm -ivh

CHAPTER 5. TESTING 79

$HOME/rpmbuild/RPMS/<arch>/kernel-<version>.<arch>.rpm

$HOME/rpmbuild/RPMS/<arch>/kernel-firmware-<version>.<arch>.rpm

$HOME/rpmbuild/RPMS/<arch>/kernel-headers-<version>.<arch>.rpm

$HOME/rpmbuild/RPMS/<arch>/kernel-devel-<version>.<arch>.rpm"

These commands will install your kernel in /boot, create a new initramfs to bootstrap your

kernel, and automatically add your new kernel to your grub bootloader "menu.lst". At this

point, you can reboot to give control to your new kernel.

5.3 Adjustment of Arbitrary Policy

In this section, we provide instructions for adjustment of arbitrary SELinux policy so that

this policy will contain our model.

An important result for us is the combination of an arbitrary SELinux policy with our

solution. There are two types of SELinux policy:

1. SELinux policy does not use SELinux MLS context,

2. SELinux policy uses SELinux MLS context.

5.3.1 SELinux Policy without MLS

In the first case, we need to add and enable SELinux MLS in current policy. Consider

we have a monolithic policy. A monolithic policy is an SELinux policy that is compiled

from one source file called policy.conf (i.e. it does not use the Loadable Module Policy

statements and infrastructure which therefore makes it suitable for embedded systems as

there is no policy store overhead). An example monolithic policy is the NSAs original

Example Policy.

A policy configuration file consists of the following top-level components:

1. FLASK definitions

2. MLS declarations and MLS Constraint declarations

3. Policy capability definitions

CHAPTER 5. TESTING 80

4. Type Enforcement (TE) and Role-Based Access Control (RBAC) declarations and

rules

5. User declarations

6. Constraint declarations

7. Security context specification

First of all, we need to declare all necessary things that are used in our solution MCS-4.0

(see section 4.5). For this purpose, we have to only add content of file ./public-MCS-

4.0/policy-src/MLS declaration into the appropriate place in policy.conf. As you can see

above, the appropriate place in policy.conf is between the FLASK definitions and the

Policy capability definitions that are followed by Type Enforcement (TE) and Role-Based

Access Control (RBAC) declarations and rules.
Next up, we have to add the mls context for user into User declarations. The modified

users’ declarations would look like these one:

user root roles { set of user’s roles } \

\ level s0 range s0 - s0:c0.sentinel;

user staff_u roles { set of user’s roles } \

\ level s0 range s0 - s0:c0.sentinel;

user sysadm_u roles { set of user’s roles } \

\ level s0 range s0 - s0:c0.sentinel;

user system_u roles { set of user’s roles } \

\ level s0 range s0 - s0:c0.sentinel;

user unconfined_u roles { set of user’s roles } \

\ level s0 range s0 - s0:c0.sentinel;

user user_u roles { set of user’s roles } \

\ level s0:c0 range s0 - s0:c0.sentinel;

As the last thing, we have to adjust the Security context specification. For this purpose,

we can use a new security context from file ./public-MCS-4.0/policy-src/SID. We only

replace an old security context with a new one.

Finally, we will need only compile our new policy. Now, we use our compiler mcheck-
policy. We can use the following commands:

cd /etc/selinux/user1/

mcheckpolicy -M -o ./policy/policy.24 ./src/policy.conf

Note: If you did not rename the new compiler, you will have to use the original compiler’s

name checkpolicy.

CHAPTER 5. TESTING 81

5.3.2 SELinux Policy with MLS

In the second case, we need to adjust the SELinux MLS context in current policy. Con-

sider we have a loadable module policy. The loadable module infrastructure allows policy

to be managed on a modular basis, in that there is a base policy module that contains all

the core components of the policy (i.e. the policy that should always be present), and zero

or more modules that can be loaded and unloaded as required (for example if there is a

module to enforce policy for ftp, but ftp is not used, then that module could be unloaded).

As an example we use the SELinux Reference Policy. For detailed information see

section 1.2. The SELinux Reference Policy can be built into a monolithic policy or a

loadable module policy.

The first step in the adjustment of SELinux policy with MLS is the addition of our

special categories to file ./refpolicy/policy/mls. These categories can be extracted from the

file ./public-MCS-4.0/policy-src/MLS declaration and they will be placed before a call of

macro gen_cats(mls_num_cats).

The second step is the adjustment of the security levels definition. The appropriate

security levels would look like this one:

level sx:c0.last_category;

Where sx is a sensitivity level used in policy and last_category is the last defined category

in policy.

The third step is the addition of the our MLS constraints definition. These MLS

constraints can be extracted from the file ./public-MCS-4.0/policy-src/MLS declaration

too.

The fourth step is the adjustment of the User declarations. We have to adjust the mls

context for users that allow each user to work with our categories.

The fifth step is the adjustment of the Security context specification. We have to add

an appropriate categories to the security context specified in this part. For this purpose,

we can use as an inspiration security context in the file ./public-MCS-4.0/policy-src/SID.
The final step is the compiling of the policy, in this case the compiling of SELinux

Reference Policy. We can use simple commands:

cd ./refpolicy

make install

For detailed information see a file called README located in ./refpolicy/.

CHAPTER 5. TESTING 82

5.3.3 Modified Refpolicy

Refpolicy consists of a base module and some modules. After reading a previous subsec-

tion you may think that an adjustment of refpolicy can be easily done. The modification

of the whole refpolicy is a bit complex. So we prepared the modified base module.

Note 1: We use the categories c0, . . . c7 as the specialized categories for the confiden-

tiality in our solution. Unfortunately, refpolicy uses the categories c0, . . . , c7 too. Thus,

we have renamed our specialized categories for the confidentiality. Now we have the ca-

tegories d0, . . . d7 for the confidentiality. The name for the categories of confidentiality

is derived from the Slovak noun dôvernost’ "confidentiality". The remaining categories

remain the same as before.

1. Extract the archive refpolicy-2DLSMwPTS.zip

2. Install and load our pre-prepared refpolicy

cd ~/refpolicy-2DLSMwPTS/src/policy

make install

make load

3. Compile our modified base module for refpolicy-2DLSMwPTS

cd ./public-MCS-4.0/policy-src/refpolicy/refpolicy-modif

checkmodule -M base.conf -o base.mod

4. Create the modified base module package for refpolicy-2DLSMwPTS

/usr/bin/semodule_package -o base.pp -m base.mod \

-f base.fc -u users_extra -s seusers

5. Install the new base.pp policy package for refpolicy-2DLSMwPTS.

install -m 0644 base.pp /usr/share/selinux/ \

refpolicy-2DLSMwPTS

Note 2: We did not include the X-server classes into mlscontraint rules in base module

because the security cover of X-server is still experimental in refpolicy.

Note 3: Refpolicy does not allow to set categories for user user. The user user has only

sensitivity s0 in its security context. Thus, we can not use the identity user in our modified

refpolicy.

CHAPTER 5. TESTING 83

5.3.4 SELinux Security Context

Finally, if all is done, we need to assign an appropriate security context to all entities in

our system, i.e. we need to determine the security context of objects and subjects. That

means that we have to analyze all objects and subjects, determine the values of attributes

for confidentiality and integrity, determine which object will have label, and determine

which subject will be the partially trusted subject.

We can use the type_transition and the range_transition rules to assign the appropriate

security context for the subject. Detailed information can be found in the section 2.4 and

the subsection 2.1.5, respectively.

This may be done using the command runcon too. We can use the runcon command

to run a command in a specific context. This is useful for scripting or for testing policy.

The command runcon allows for the launching of a process into an explicitly specified

context (user, role, domain, and level range), but SELinux may deny the transition if it is

not approved by the policy configuration.
The following example shows how to run bash as a partially trusted subject with

attributes CWS = 4,CLWS = 2, IWS = 2, ILWS = 3, and CRS = 1,CLRS = 3, IRS = 1, ILRS =
0, and labels: CLWSS = 3,CLRSS = 3, ILWSS = 3, ILRSS = 3.
Example:

runcon -l s0:c4.c_max,clS2.clS_max,i0.i2,ilS0.ilS3,cl3,il3,ps- \

s0:c0.c1,clS0.clS3,i1.i_max,ilS0.ilS_max,cl3,il3 bash

It is difficult to set a security context for command runcon. Thus, we provide a utility

launcher. This utility is designed to help us to set the security context for command

runcon.

Conclusions

In this thesis, we have improved our previous implementation of Two-Dimensional La-

belled Security Model with Partially Trusted Subjects. We described a full evolution of

our solution. We mentioned also advantages and disadvantages of our partial solutions

and we compared them with our solution presented in bachelor’s thesis. We made some

important changes in the SELinux kernel, SELinux compiler, and sepol library. These

changes in the SELinux kernel allow us to use only the categories in our final solution

MCS-4.0. And on the basis of this fact we can combine our final solution MCS-4.0 with

an arbitrary SELinux policy.

Although, according to the assignment, we were expected to create necessary sup-

porting tools, it was not necessary because the standard SELinux tools suffice.

Mgr. Miroslav Hoták [15] has shown in his master’s thesis that the implementation

of our model by creating the prototype model using Linux Security Modules architecture

is feasible. Unlike that solution, we can combine our model with an arbitrary SELinux

policy.

From a more general point of view, another challenging task is to analyze all modules

that are used in refpolicy. After this analysis, we will be able to set an appropriate security

context for each entity of operating system from a viewpoint of our model.

84

Bibliography

[1] MAYER, F. - MACMILLAN, K. - CAPLAN, D.: SELinux by Example: Using

Security Enhanced Linux, Prentice Hall, 2006. ISBN-10: 0-131-96369-4

[2] The official Security Enhanced Linux (SELinux) project page.

Accessed at

http://selinuxproject.org

[24.2.2012]

[3] Bell, D.E., La Padula L.J.: Secure Computer Systems: Mathematical Foundations

and Model, Technical Report (1973)

[4] Bell, D.E., La Padula L.J.: Secure Computer System: Unified Exposition and Mul-

tics Interpretation. Technical report (1976)

[5] DoD, Trusted Computer System Evaluation Criteria, Department of Defense

Standard 5200.28-STD, December 1985,

Accessed at

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.

28-STD.html

[24.2.2012]

[6] Common Criteria Project, Common Criteria Version 3.1,

Accessed at

http://www.commoncriteriaportal.org/cc/

[24.2.2012]

[7] Tipton, H.F., Krause, M. (editors): Information Security Management Handbook,

5th edition, CRC Press LLC (2004)

85

http://selinuxproject.org
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://www.commoncriteriaportal.org/cc/

BIBLIOGRAPHY 86

[8] Hanson, C.: SELinux and MLS: Putting the Pieces Together, Security Enhanced

Linux Symposium (2006)

Accessed at

http://selinuxsymposium.org/2006/papers/

03-SELinux-and-MLS.pdf

[24.2.2012]

[9] JANÁČEK, J.: General Purpose Operating System for Security-Critical Applica-

tions : PhD. thesis. Bratislava : Univerzita Komenského, 2010

[10] JANÁČEK, J.: A Security Model for an Operating System for Security-Critical Ap-

plications in Small Office and Home Environment. In: Communications : Scientific

Letters of the University of Žilina. 2009, vol. 11, no. 3, pp. 5–10.

[11] JANÁČEK, J.: Mandatory Access Control for Small Office and Home Environment.

In: Informačné Technológie – Aplikácie a Teória : Zborník príspevkov prezento-

vaných na pracovnom seminári ITAT. 2009, pp. 27–34.

[12] JANÁČEK, J.: Two Dimensional Labelled Security Model with Partially Trusted

Subjects and Its Enforcement Using SELinux DTE Mechanism. In: Networked

Digital Technologies : Communications in Computer and Information Science 87.

Springer, 2010, pp. 259–272.

[13] JURČÍK, M.: Using SELinux to Enforce Two-Dimensional Labelled Security

Model with Partially Trusted Subjects : bakalárska práca. Bratislava : Univerzita

Komenského, 2010.

[14] JANÁČEK, J., JURČÍK, M.: Implemantation of two-dimesional security model

with partially trusted subjects using SELinux DTE and MLS In: Informačné Tech-

nológie – Aplikácie a Teória : Zborník príspevkov prezentovaných na pracovnom

seminári ITAT. 2011, pp. 79-84

[15] HOTÁK, M.: Implementation of Two-dimensional Labelled Security Model with

Partially Trusted Subjects in Linux : diplomová práca. Bratislava : Univerzita

Komenského, 2011.

http://selinuxsymposium.org/2006/papers/03-SELinux-and-MLS.pdf
http://selinuxsymposium.org/2006/papers/03-SELinux-and-MLS.pdf

BIBLIOGRAPHY 87

[16] SMALLEY, S.: Configuring the SELinux Policy - Last revised: Feb 2005,

Accessed at

http://www.nsa.gov/research/_files/publications/

selinux_configuring_policy.pdf

[24.2.2012]

[17] MORRIS, J.: New secmark-based network controls for SELinux

Accessed at

http://blog.namei.org/2006/05/23/new-secmark-based-\

network-controls-for-selinux/

[24.2.2012]

[18] MORRIS, J.: A Brief Introduction to Multi-Category Security (MCS)

Accessed at

http://james-morris.livejournal.com/5583.html

[24.2.2012]

[19] MORRIS, J.: An Overview of Multilevel Security and LSPP under Linux

Accessed at

http://james-morris.livejournal.com/5020.html

[24.2.2012]

[20] BRINDLE, J.: Secure Networking with SELinux

Accessed at

http://securityblog.org/brindle/2007/05/28/

secure-networking-with-selinux/

[24.2.2012]

[21] Wikipedia Security-Enhanced Linux

Accessed at

http://en.wikipedia.org/wiki/Security-Enhanced_Linux

[24.2.2012]

[22] Red Hat Selinux Guide

Accessed at

http://www.centos.org/docs/4/html/rhel-selg-en-4/index.

html

[24.2.2012]

http://www.nsa.gov/research/_files/publications/selinux_configuring_policy.pdf
http://www.nsa.gov/research/_files/publications/selinux_configuring_policy.pdf
 http://blog.namei.org/2006/05/23/new-secmark-based-\network-controls-for-selinux/
 http://blog.namei.org/2006/05/23/new-secmark-based-\network-controls-for-selinux/
http://james-morris.livejournal.com/5583.html
http://james-morris.livejournal.com/5020.html
http://securityblog.org/brindle/2007/05/28/secure-networking-with-selinux/
http://securityblog.org/brindle/2007/05/28/secure-networking-with-selinux/
http://en.wikipedia.org/wiki/Security-Enhanced_Linux
http://www.centos.org/docs/4/html/rhel-selg-en-4/index.html
http://www.centos.org/docs/4/html/rhel-selg-en-4/index.html

BIBLIOGRAPHY 88

[23] NSA Security-Enhanced Linux

Accessed at

http://www.nsa.gov/research/selinux/index.shtml

[24.2.2012]

[24] Getting Started with Multi-Category Security (MCS)

Accessed at

http://www.centos.org/docs/5/html/Deployment_

Guide-en-US/sec-mcs-getstarted.html

[24.2.2012]

[25] Building a custom kernel

Accessed at

http://fedoraproject.org/wiki/Building_a_custom_kernel

[24.2.2012]

[26] SELinux Reference Policy

Accessed at

http://oss.tresys.com/projects/refpolicy

[24.2.2012]

http://www.nsa.gov/research/selinux/index.shtml
 http://www.centos.org/docs/5/html/Deployment_Guide-en-US/sec-mcs-getstarted.html
 http://www.centos.org/docs/5/html/Deployment_Guide-en-US/sec-mcs-getstarted.html
http://fedoraproject.org/wiki/Building_a_custom_kernel
http://oss.tresys.com/projects/refpolicy

Appendix A

This appendix provides a list of the CD-ROM contents. The CD-ROM enclosed with this

thesis contains our final implementation and previous implementations, namely MLS-1.0,

MLS-2.0, and MLS-3.0. The CD-ROM also contains a complete copy of the thesis in

Adobe Acrobat format, i.e. PDF.

The following directories can be found on the attached CD-ROM:

.:

launcher - The utility launcher.

original files - The original files of the kernel, checkpolicy, libsepol, and setools.

public-MCS-4.0 - The final solution.

public-MLS-1.0 - The partial solution, which preceded the final solution.

public-MLS-2.0 - The partial solution, which preceded the final solution.

public-MLS-3.0 - The partial solution, which preceded the final solution.

thesis - The complete copy of the thesis in Adobe Acrobat format.

89

Resumé

V tejto práci sme sa snažili zlepšit’ implementáciu "Two-Dimensional Labelled Security

Model with Partially Trusted Subjects" využitím viacúrovňovej bezpečnosti ako jedného

z prostriedkov, ktorý nám SELinux ponúka. Autorom modelu je RNDr. Jaroslav Janáček,

PhD., ktorý daný model navrhol v rámci svojej dizertačnej práce [9].

Ciel’om tejto práce bolo implementovat’ bezpečnostný model s názvom Two-dimen-

sional labelled security model with partially trusted subjects použitím SELinux mecha-

nizmu v operačnom systéme Linux. Od tejto implementácie sme očakávali zlepšenie im-

plementácie prezentovanej v bakalárskej práci [13] využitím viacúrovňových bezpečnos-

tných prvkov SELinuxu. Implementácia mala pozostávat’ zo SELinux politiky a pod-

porných nástrojov pre administrátora systému a/alebo užívatel’ov, nakol’ko sme očakávali,

že takéto podporné nástroje budú potrebné.

V práci uvádzame podrobnú evolúciu našho snaženia sa o dosiahnutie ciel’ov tejto

práce. Popisujeme aj rôzne prístupy ako riešit’ problémy, na ktoré sme narazili. Nakol’ko

je možné očakávat’ pridanie novej funkcionality pre SELinux, tak v prílohe tejto práce

uvádzame aj čiastočné riešenia, ktoré predchádzali finálnemu riešeniu. Pri každom riešení

popisujeme aj jeho výhody voči pôvodnému riešeniu.

Podarilo sa nám nájst’ takú implementáciu tohto modelu, ktorú je možné l’ahko kom-

binovat’ s l’ubovolnou, už existujúcou, SELinux politikou bez potreby špeciálnych pod-

porných nástrojov.

Výsledkom práce je implementácia, ktorá je kombinovatel’ná s l’ubovolnou SELinux

politikou len na základe využitia viacúrovňovej bezpečnosti a to bez nutnosti drastických

zásahov do pôvodnej, hostitel’skej politiky.

Kl’účové slová: politika toku informácií, bezpečnostný model, SELinux politika, MLS

SELinux, MCS SELinux

90

	Preliminaries
	Security-Enhanced Linux
	SELinux Basics
	Summary

	SELinux Reference Policy
	SELinux Reference Policy Project Overview
	SELinux Reference Policy Project Goals
	Modules

	Two-Dimensional Labelled Security Model with Partially Trusted Subjects
	Formal Definition of the Information Flow Policy

	Means of Implementation
	SELinux MLS
	History of Multi-Level Security
	Security Context and MLS
	Security Context with MLS
	Defining Security Levels
	Range_transition Statement

	MLS Constraints
	Mlsconstrain Statement
	Mlsvalidatetrans Statement

	SELinux MCS
	TE Transition Rules
	Type_transition Statement

	Previous Implementation
	Bachelor's Thesis
	Previous Implementation
	Disadvantages

	New Ideas and Solutions
	Multi-Level or Multi-Category Security
	Multi-Level Security Way-1.0
	Solution

	Multi-Level Security Way-2.0
	Solution
	Comparison

	Multi-Level Security Way-3.0
	Solution
	Strict Security Model
	Rules
	Constraints
	Comparison

	Multi-Category Security WAY-4.0
	Solution
	Implementation of Categories in SELinux
	Non-Strict Security Model
	Functions for Work with Categories
	Functions and Rules
	Security Context
	Technical Details
	Comparison

	Testing
	Installation of our Solution
	How to Disable SElinux
	Compiling Modified SELinux Policy Compiler
	Compiling SELinux Policy
	Kernel Patch and Kernel Installation
	How to Enable SELinux

	Kernel Patch Installation
	Requirement
	Get the Source
	Prepare the Kernel Source Tree
	Prepare Build Files
	Build the New Kernel
	Install the New Kernel

	Adjustment of Arbitrary Policy
	SELinux Policy without MLS
	SELinux Policy with MLS
	Modified Refpolicy
	SELinux Security Context

