
Comenius University in Bratislava
Faculty of Mathematics, Physics and

Informatics

Advice Complexity
of Online Algorithms

Master’s Thesis

2014

Bc. Peter Fulla

Comenius University in Bratislava
Faculty of Mathematics, Physics and

Informatics

Advice Complexity
of Online Algorithms

Master’s Thesis

Study programme: Computer Science
Field of study: 2508 Computer Science
Department: Department of Computer Science
Supervisor: prof. RNDr. Rastislav Královič, PhD.

Bratislava, 2014

Bc. Peter Fulla

22188809

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Peter Fulla
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: 9.2.1. informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický

Názov: Advice complexity of online algorithms
On-line algoritmy s pridanou informáciou

Cieľ: Nájsť horné a dolné odhady na veľkosť rady vo vybraných on-line problémoch.

Vedúci: prof. RNDr. Rastislav Královič, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: doc. RNDr. Daniel Olejár, PhD.

Dátum zadania: 08.11.2012

Dátum schválenia: 28.11.2012 prof. RNDr. Branislav Rovan, PhD.
garant študijného programu

študent vedúci práce

I would like to thank my supervisor Rastislav Královič for advice; he pre-
sented me with a most compelling subject to research.

I am also extremely grateful to my family and friends for their support, help,
and distractions.

i

Abstract

In the online graph exploration problem, an agent explores an unknown weighted
graph aiming to visit each vertex at least once and return to the starting node
while minimizing the total cost of its walk. The topology of the graph is revealed
to the agent gradually: After visiting a node, the agent learns all edges incident
to it. We provide some additional information about the input to the agent
in the form of advice, and study the trade-off between the amount of provided
advice and the competitive ratio (with respect to an optimal offline algorithm
knowing the graph beforehand). In this thesis, we focus on the exploration
problem on two restricted classes of graphs. We give asymptotically tight bounds
of Θ(lg n) and Θ(n lg n) on advice necessary to yield an optimal solution on
cycles and unweighted graphs respectively. Furthermore, we propose a new
algorithm that explores cycles achieving the competitive ratio of 1 + 3/22k

(for
any constant k) while requiring advice of size O(k) bits. Finally, we provide a
lower bound of Ω(n) on advice necessary to achieve a competitive ratio better
than 1 + 1

ln 16−1 ≈ 1.564 on unweighted graphs.

Keywords: online graph exploration, competitive analysis, advice complexity,
online algorithms

ii

Abstrakt

V probléme prehľadávania grafu online sa agent pohybuje po neznámom ohod-
notenom grafe s cieľom navštíviť každý jeho vrchol aspoň raz a vrátiť sa do
štartovacieho vrcholu, pričom sa snaží minimalizovať celkovú prejdenú vzdia-
lenosť. Agent sa topológiu grafu dozvedá postupne: Až keď navštívi vrchol
po prvýkrát, prezradíme mu, aké hrany z neho vedú. Agentovi navyše poskyt-
neme informáciu o grafe vo forme rady. Predmetom nášho skúmania je vzťah
medzi množstvom poskytnutej rady a dosiahnuteľným kompetitívnym pomerom
v porovnaní s optimálnym offline algoritmom (t.j. takým, ktorý prehľadávaný
graf pozná vopred). V tejto diplomovej práci sa zameriame na dve triedy grafov:
cykly a neohodnotené grafy. Ukážeme, že optimálny agent pre ne potrebuje
Θ(lg n) resp. Θ(n lg n) bitov rady. Okrem toho predstavíme nový algoritmus,
ktorý prehľadáva cykly s kompetitívnym pomerom 1 + 3/22k

(pre ľubovoľnú
konštantu k), pričom vyžaduje radu veľkosti O(k) bitov. Nakoniec ukážeme,
že ľubovoľný algoritmus prehľadávajúci neohodnotené grafy s kompetitívnym
pomerom menším ako 1 + 1

ln 16−1 ≈ 1.564 musí prečítať Ω(n) bitov rady.

Kľúčové slová: prehľadávanie grafu online, kompetitívna analýza, množstvo
pridanej informácie, online algoritmy

iii

Contents

Introduction 1

1 Overview 2
1.1 Online Algorithms . 2
1.2 Advice Complexity . 3
1.3 Online Graph Exploration Problem 4

2 Exploring Cycles 6
2.1 Optimal Solution . 6

2.1.1 Upper Bound on Advice 6
2.1.2 Lower Bound on Advice 7

2.2 Using Small Advice . 7
2.2.1 Algorithm . 7
2.2.2 Competitive Analysis . 8

3 Exploring Unweighted Graphs 10
3.1 Optimal Solution . 10

3.1.1 Upper Bound on Advice 10
3.1.2 Upper Bound on Advice for Sparse Graphs 11
3.1.3 Lower Bound on Advice 12

3.2 Competitive Ratio 1.564− ε . 14
3.2.1 Outline . 14
3.2.2 Elementary Definitions . 15
3.2.3 Estimating the Total Cost from Responses 18
3.2.4 Strategies . 20
3.2.5 Basic Lower Bound on Advice 22
3.2.6 Graphs with a Fixed Distribution of Ray Lengths 26
3.2.7 Linear Lower Bound on Advice 30
3.2.8 Uniform Distribution . 34
3.2.9 Optimal Demanding Distribution 36

Conclusion 40

Bibliography 41

iv

Introduction

In the field of computational complexity, we usually consider algorithms re-
stricted to use only a limited amount of certain resources, e.g. the number of
steps taken or the size of the allocated memory. Online problems provide a
similar challenge: An algorithm is supposed to produce a partial output before
it finishes reading the input, therefore it is generally unable to find an optimal
solution. In the case of online problems, an algorithm is limited in its access to
information about the future input.

There have been numerous attempts to examine the impact of additional
information provided to an online algorithm on its performance. Traditionally,
this information is presented in a qualitative manner, for example as a promise
of certain properties of the input instance. On the other hand, the study of
advice complexity offers a quantitative approach: An algorithm receives advice
that has been specially tailored for a particular input instance. The advice is in
the form of a binary sequence; by limiting its length we can control the amount
of information an agent obtains.

In this thesis, we focus exclusively on the online graph exploration prob-
lem, in which a mobile agent explores an unknown undirected weighted graph.
Starting in a designated node, the agent travels through the edges of the graph
aiming to visit every vertex at least once and to return to the initial vertex. For
every edge traversal, the agent incurs the cost equal to the length of that edge.
Naturally, the objective is to find an exploration walk with the minimum total
cost.

The question whether there is an algorithm solving the online graph ex-
ploration problem with a constant competitive ratio (i.e. incurring at most a
constant multiple of the optimal cost) remains open. Several authors have also
studied variants of the problem, mainly exploring graphs from restricted classes.
We contribute to this work by investigating the advice complexity of exploring
cycles and unweighted graphs. We prove tight lower and upper bounds on the
amount of advice necessary to yield an optimal solution on these classes of
graphs. We also devise a new algorithm on cycles that utilizes a constant num-
ber of advice bits and substantially improves its efficiency. Moreover, we prove
a lower bound on the competitive ratio of agents exploring unweighted graphs
with a sublinear amount of advice.

In the first chapter, we present an overview of online algorithms in general
with a special focus on advice complexity and the online graph exploration
problem. We summarize related work, known results, and open problems. The
following two chapters consist of our results. In the second chapter, we consider
a special case of the online graph exploration problem, when the given graph is
a cycle. In the third chapter, we look at the exploration of unweighted graphs.

1

Chapter 1

Overview

In this chapter, we present the reader with an overview of online algorithms,
competitive analysis, and advice complexity. We define basic concepts used in
this thesis, especially the online graph exploration problem. Finally, we discuss
related work and known results, and summarize our contribution.

1.1 Online Algorithms
In online problems, an algorithm receives the input in several parts and is also
required to produce output in such a fashion. Formally, an input instance of an
online problem is a sequence I = (x1, x2, . . . , xn). An online algorithm A com-
putes the output sequence A(I) = (y1, y2, . . . , yn), where yi = f(x1, x2, . . . , xi)
for some function f .1 Specifically, A has no information about xi+1, . . . , xn at
the moment it outputs yi. The output is then evaluated by a cost function; the
goal of the problem may be to minimize or maximize the cost. We refer the
reader to [3] for further information on online algorithms.

An extremely simple example of an online problem is SkiRental (see [3]),
in which a skier is repeatedly asked to choose between buying a pair of skis and
renting them in order to attend a series of ski trips. The cost of renting is lower,
but the skier obtains the gear only temporarily – for the length of one trip.
Buying, on the other hand, settles all subsequent queries, as the skis remain
forever in the skier’s possession. Finding the optimal solution is easy if we know
the number of trips. However, we lack this information in the online setting,
which prevents us from achieving the optimal cost.

The performance of an online algorithm is often measured by competitive
ratio (introduced in [11]) when we compare the cost of the algorithm’s solution
with that of an optimal solution. In the case of a minimization online problem,
an algorithm A is called r-competitive (r ≥ 1) if there exists some constant
q ≥ 0 such that for any input instance I,

C(A(I)) ≤ r · C(opt(I)) + q

where C is the cost function and opt(I) is an optimal solution of instance I.
If we allow for randomized algorithms, we require the bound holding for the

1In the case of randomized online algorithms, the elements of the output sequence are also
a function of the random bits used so far.

2

expected value of the incurred cost over all random strings:

E[C(A(I))] ≤ r · C(opt(I)) + q

Analogous definitions apply to maximization problems.
Let us consider our toy example, the SkiRental problem, with the cost of

renting a pair of skis equal to 1 and the cost of buying them equal to some
constant c > 1 which is a part of the input. An algorithm that responds to the
first query by buying a pair of skis regardless of their price is not r-competitive
for any constant r: The sequence of trips may end right after the first one,
in which case the optimal action would be renting, and the algorithm incurs
c times greater cost than the optimal one. Similarly, an algorithm that never
buys skis cannot be r-competitive, as the length of the input sequence is un-
bounded. However, there is a 2-competitive algorithm: We start by renting the
skis and continue doing so until the cumulative cost of renting exceeds c. At
that moment, we buy a pair of skis instead of renting them. Clearly, we pay at
most twice the optimum cost in such a case. If the input sequence ends before
us buying the skis, we have found an optimal solution.

Another well-studied example of an online problem is Paging: We maintain
a buffer of k items called pages. The input is a sequence of page requests. If
the requested page occurs in the buffer, nothing needs to be done; otherwise
we must choose a victim – a page in the buffer that will be replaced by the
requested page. A request of the latter type is called a page fault. The goal
of a paging algorithm is to minimize the number of page faults. As was shown
in [11], no deterministic algorithm can be better than k-competitive, and a k-
competitive algorithm exists. However, there is a randomized algorithm with
the competitive ratio of Θ(lg k) (see [5]).

1.2 Advice Complexity
An online algorithm is forced to make irreversible decisions at the time it has
seen only a part of the input, even though the unknown part may have a pro-
found impact on the total cost of the algorithm’s output. The notion of com-
petitive ratio is used to capture the inherent loss of performance (in comparison
with a hypothetical optimal solution) associated with a particular online prob-
lem. An interesting question is what amount of information about the input
does an online algorithm actually lack: If it knew the entire input in advance,
it would be able to produce an optimal solution,2 but this may be an unneces-
sary amount. For example, in the SkiRental problem, an algorithm does not
need to know the exact number of ski trips in the input in order to produce an
optimal solution. Instead, one bit of information is sufficient: should it buy a
pair of skis immediately, or should it rent them every time?

The concept of advice complexity enables us to investigate the trade-off
between the amount of additional information and the achievable competitive
ratio. Formally, we provide an algorithm A with a binary string φ called advice.
Let us denote by Aφ(I) the output produced by A on an input instance I given
advice φ. Algorithm A is r-competitive with advice complexity s(n) if there

2Let us note that we are not concerned with the computational complexity of the problem:
An algorithm is not restricted in the number of steps or the size of memory it use.

3

exists some constant q ≥ 0 such that for any n and any input instance I of size
n, there exists some advice φ such that

C(Aφ(I)) ≤ r · C(opt(I)) + q

and at most s(n) bits of φ have been accessed during the computation of Aφ(I).
For more detailed information, we refer the reader to [2].

As we mentioned earlier, one bit of advice is sufficient for an algorithm to find
the optimal solution of the SkiRental problem. Let us consider the Paging
problem now. To achieve optimality, we could encode an optimal sequence of
victims into the advice. However, just one bit per page request is sufficient.
On the other hand, an amortized constant number of advice bits per request is
necessary for an algorithm with a competitive ratio less than 1.25. (For these
results, see [2].)

1.3 Online Graph Exploration Problem
The problem was introduced in [7] as an online variant of the travelling sales-
man problem (TSP). In the online setting, there is a mobile agent exploring an
unknown undirected weighted graph. It starts in a designated vertex s and trav-
els through the edges of the graph. For every edge traversal, the agent incurs
the cost equal to the weight of the traversed edge. The topology of the graph
is not known to the agent beforehand; instead, it is revealed gradually as the
agent visits new vertices. Upon entering a vertex for the first time, the agent
learns the set of edges incident to that vertex together with their lengths and
endpoints. Every vertex in the graph is assigned a unique label, so the agent
is able to discern two vertices even if it has not visited them yet. The goal of
the agent is to visit every vertex of the graph at least once, and return to the
starting node s, while minimizing the total cost incurred.

Known local heuristics for the TSP can be also used in this online variant,
but none of them achieves a constant competitive ratio. For example, the nearest
neighbour (NN) algorithm, which repeatedly chooses the nearest yet unvisited
vertex and travels to it, is in the worst case Θ(lg n)-competitive even on planar
graphs with unit weights (see [8, 6]). The existence of an algorithm with a
constant competitive ratio remains an open question. The best known lower
bound on the competitive ratio of a deterministic agent is 5/2− ε (see [4]). For
graphs of genus at most g, a 16(1 + 2g)-competitive algorithm was devised in
[8] (i.e. a 16-competitive algorithm exploring planar graphs).

There have also been results concerning the online graph exploration problem
on cycles. In [1], it is shown that the NN algorithm attains the competitive ratio
of 1.5. A tight bound is given in [9], where the authors present an algorithm
with the competitive ratio of 1+

√
3

2 ≈ 1.366 and show that no algorithm with a
lower competitive ratio exists.

In another variant of the graph exploration problem, the explored graph is
unweighted (or equivalently, all edges have the same weight). As was shown in
[9], the depth-first search (DFS) algorithm is optimal with its competitive ratio
of 2.

In [4], the authors study the advice complexity of the online graph explo-
ration problem on general graphs. Namely, they show that Ω(n lg n) bits of

4

advice are necessary for an optimal agent. Moreover, they devise a determinis-
tic algorithm that uses O(n) bits of advice and achieves a constant competitive
ratio.

Our Results
In this thesis, we examine the advice complexity of the online graph exploration
problem on two classes of graphs: cycles and unweighted graphs.

We show that lg n + O(lg lgn) bits of advice3 are sufficient for an agent
to explore a cycle of n vertices with the minimum total cost. On the other
hand, we prove that any optimal agent requires at least lg n+O(1) advice bits.
Moreover, we devise an algorithm able to utilize a constant number of bits and
substantially improve its performance (in comparison with the NN algorithm
on which it is based). For any constant k, our algorithm reads 2k + 1 advice
bits and explores cycles attaining the competitive ratio of 1 + 3/22k+1.

When exploring unweighted graphs, O(n lg n) bits of advice are sufficient
to find an optimal solution. If we consider only graphs with the maximum
degree bounded from above by ∆, our algorithm requires O(n lg ∆) bits. We
also present a different optimal algorithm with the advice complexity of O(m),
where m is the number of edges. Conversely, we prove that Ω(n lg n) advice
bits are necessary to explore unweighted graphs optimally, thus generalizing the
lower bound in [4]. In addition, we show that any algorithm with a competitive
ratio less than 1 + 1

ln 16−1 ≈ 1.564 must obtain Ω(n) bits of advice.

3Throughout the thesis, we use lgn as a notation of the binary logarithm of n.

5

Chapter 2

Exploring Cycles

At first glance, the problem of exploring a cycle appears to be trivial. However,
if the length of the longest edge is greater than the sum of remaining lengths,
no optimal solution uses the longest edge.

To capture this fact formally, let us denote the length of the longest edge by
`m and the sum of lengths of all edges by L. The walk from the starting node s
around the cycle and back to s uses every edge exactly once and therefore costs
L. An alternative walk starts in s, leads to one of the longest edge’s endpoints,
then turns back and continues through the rest of the cycle to visit the opposite
endpoint, and finally returns to s. The cost of this walk is 2(L− `m), as it uses
all edges except the longest one exactly twice. It can be easily shown that the
first walk is optimal when `m ≤ L/2, otherwise the second walk is optimal.

In this chapter, we show that Θ(lg n) bits of advice are both necessary and
sufficient to explore a cycle of n vertices optimally. Moreover, we present an
algorithm based on the nearest neighbour heuristic that attains a much lower
competitive ratio using only a constant number of advice bits.

2.1 Optimal Solution
In this section, we give asymptotically matching lower and upper bounds on the
amount of advice necessary to yield an optimal solution on a cycle.

2.1.1 Upper Bound on Advice
Whether it is optimal to use every edge of the cycle or to skip the longest one,
we can communicate it to the agent in a single bit of advice. In the second
case, the agent must be able to recognize the longest edge, even before seeing
the complete cycle. Therefore we encode to the advice the number of edges the
agent can traverse until it reaches the longest edge.

Let n be the number of nodes of the cycle. We need to encode an integer
from the range 0, . . . , n − 1, which can be done using dlg ne bits. As the agent
does not know the number of nodes in advance, we use additional 2dlgdlg nee
bits to encode the value of dlg ne in a prefix-free code, interleaving the binary
digits with ones and appending a zero after the last digit. Hence the total advice
given to the agent is lg n+O(lg lg n) bits.

6

2.1.2 Lower Bound on Advice
For any k ≥ 2 let us define a cycle Ck with the following sequence of edge lengths
(starting and ending in the node s): 1, 3, 9, . . . , 3k−1, 3k, 3k−1, . . . , 9, 3, 1.

s
11

33

99

27

Figure 2.1: Graph C3

The graph Ck consists of 2k + 1 edges, the sum of their lengths is 2 · 3k − 1
and the greatest length is 3k. As 3k > (2 · 3k − 1)/2, no optimal walk uses the
longest edge.

Note that a deterministic agent cannot behave optimally on both graphs Ci
and Cj for i < j. The graphs are indistinguishable after traversing the first
i edges, hence in the next step the agent moves identically on both of them.
However, on the graph Cj the agent must traverse the next edge of length 3i,
but on the graph Ci it must not.

Let us consider all cycles Ck with at most n nodes, i.e. the graphs C2, C3,
. . . , Cb(n−1)/2c. An optimal agent cannot receive the same advice string for any
two of them, thus it requires at least

dlg(b(n− 1)/2c − 1)e = lg n+O(1)

bits of advice.

2.2 Using Small Advice
The algorithm NN (nearest neighbour) always visits the unvisited node closest to
the current node. It was shown by [1] that on cycles, NN is 1.5-competitive. In
this section, we present an algorithm based on NN that makes use of a constant
number of advice bits to achieve a lower competitive ratio. Again, we focus
only on the case when `m > L/2, since otherwise we can ensure the optimal
behaviour of the agent with a single advice bit.

2.2.1 Algorithm
If we are not allowed to traverse the longest edge, then for every node v there
is a unique path from s to v. We call an edge heavy if it is longer than the
path from s to it. Note that the longest edge of the cycle is heavy (both of its
corresponding paths are shorter than `m). Just like NN, our algorithm does not

7

traverse the longest edge and hence can recognize a heavy edge in the moment
it visits its first endpoint.

Let r be an integer greater than 1. For a given input, we count the heavy
edges on each of the two paths connecting s and the endpoints of the longest
edge. We encode to advice these two values modulo r. (To do that, d2 lg re bits
are sufficient.)

Our algorithm acts like NN with one exception. When the nearest node is
not adjacent to the current one, there is an untraversed heavy edge e incident
to the current node. If the number of heavy edges on the path from s to e is not
congruent modulo r to the value given in advice, the agent can be sure that e
is not the longest edge. If that is the case, the agent diverges from the nearest
neighbour strategy and continues by traversing e; otherwise it moves as the NN
algorithm.

After visiting all the nodes, the agent returns to s following the shortest
path.

2.2.2 Competitive Analysis
There are two paths connecting s and the longest edge; we call them A and B
in an arbitrary order. Let us define DA as the shortest subpath of A starting
in an endpoint of the longest edge and containing r heavy edges. If there are
fewer than r heavy edges in A, we define DA = A. Let TA be the subpath of A
consisting of all remaining edges. Analogously, we define subpaths DB and TB
of B. Let T be the concatenation of TA and TB .

s

`m

TA TB

DA DB

Figure 2.2: An illustration of the notation used in the analysis for r = 2. The
thick edges are heavy, the thin squiggly lines represent paths.

We show that the path DA (DB) forms a substantial part of A (B).

Lemma 1. For any cycle, |DA| ≥ (2r − 1) · |TA| and |DB | ≥ (2r − 1) · |TB |.

8

Proof. If there are fewer than r heavy edges in A, the path TA is empty and
therefore the claim holds.

Let there be r heavy edges in A, we consider them in order of their distance
from s. The first heavy edge (nearest to s) is, by definition, longer than TA. The
second heavy edge is longer than the concatenation of TA and the first heavy
edge, thus its length is greater than 2 · |TA|. By induction, the length of the i-th
heavy edge is greater than 2i−1 · |TA|. These inequalities together imply:

|DA| ≥ |TA|+ 2 · |TA|+ · · ·+ 2r−1 · |TA| = (2r − 1) · |TA|

The proof of the other claim is analogous.

Now we give an upper bound on the length of the agent’s walk.

Lemma 2. For any cycle, the agent’s cost on it is at most 2(|DA|+|DB |)+5·|T |.

Proof. Let us divide the agent’s walk into two phases. During the first phase the
agent moves only using the edges of T ; the second phase starts with a traversal
of an edge from DA ∪DB .

To bound the cost of the first phase, we place on every edge of T a number
of coins equal to the length of the edge. In addition, we place |T | coins on both
edges from DA∪DB incident to T . We claim that these 3·|T | coins are sufficient
to pay for the cost of the first phase. If the agent traverses the edge e incident
to the current node, we pay for this move with coins placed on e. Otherwise,
the agent moves to a node that is nearer than the opposite endpoint of e, thus
the coins on e are also sufficient to pay for this.

Without loss of generality, let us assume that the second phase starts with
a traversal of an edge from DA. Because of the check of congruency modulo r,
our algorithm continues traversing all edges of DA until it reaches the cycle’s
longest edge. After that, it turns back to visit the remaining nodes. It continues
traversing in the same direction until it reaches the other endpoint of the longest
edge (as `m > L/2, the shortest path to a node does not use the longest edge)
and then returns to s. The cost of the second phase is therefore at most 2(|DA|+
|DB |) + 2 · |T |.

An optimal walk has cost 2(L−`m) = 2(|DA|+ |DB |+ |T |). The competitive
ratio of our algorithm is therefore at most

2(|DA|+ |DB |) + 5|T |
2(|DA|+ |DB |+ |T |)

From Lemma 1 we have a lower bound on |DA| and |DB |; applying it we get
the competitive ratio of

1 +
3

2
· |T |

(2r − 1) · (|TA|+ |TB |) + |T |
= 1 +

3

2r+1

using 1 + d2 lg re bits of advice.

9

Chapter 3

Exploring Unweighted Graphs

The edges of a graph to explore may have in general different lengths. However,
if we restrict the class of possible inputs to graphs whose edges are of the same
length, we obtain a simpler problem. The cost of a walk in such a graph is
uniquely determined by the number of edges it consists of, therefore the actual
length of edges becomes irrelevant to the competitive analysis. We call such
graphs unweighted, although it is technically incorrect.

It was shown by [9] that on unweighted graphs, the depth-first search al-
gorithm (DFS) is optimal with the competitive ratio of 2. In this chapter, we
prove that any agent with a competitive ratio less than 1 + 1

ln 16−1 ≈ 1.564
requires Ω(n) bits of advice. We also establish a tight bound of Θ(n lg n) on ad-
vice necessary for an agent to find an optimal solution. If the graph’s maximum
degree is limited to ∆, the bound becomes Θ(n lg ∆). Furthermore, we describe
another algorithm that incurs the minimum possible cost while reading O(m)
advice bits, where m is the number of edges of the explored graph.

3.1 Optimal Solution
In this section, we give asymptotically matching lower and upper bounds on
the amount of advice necessary to yield an optimal solution on an unweighted
graph.

3.1.1 Upper Bound on Advice
Let us denote the maximum degree of a given graph by ∆. We are going to
describe an optimal agent A with advice complexity of O(n lg ∆), but first we
prove an upper bound on the length of an optimal exploration walk.

Lemma 3. Let G be an unweighted graph with n vertices. Then the length of
an optimal exploration walk on G does not exceed 2(n− 1).

Proof. We show that the length of the exploration walk on G found by the DFS
algorithm equals 2(n− 1).

The DFS algorithm constructs a spanning tree T of the explored graph. It
traverses exclusively the edges belonging to T , each of them exactly twice. As
any spanning tree of a connected graph with n vertices consists of n− 1 edges,

10

the DFS algorithm’s cost depends only on the value of n and equals 2(n − 1).
This gives us an upper bound on the length of an optimal walk.

We provide agent A with advice that completely specifies an arbitrary op-
timal walk. For every edge in the walk, we need to encode its index in the list
of edges incident to the current vertex. As the degree of any vertex does not
exceed ∆, we can encode the index in dlg ∆e bits. Altogether, 2(n− 1)dlg ∆e =
O(n lg ∆) bits of advice are sufficient to represent the entire optimal walk.

In general, the maximum degree of a graph may reach n − 1, therefore we
proved the upper bound of O(n lg n).

3.1.2 Upper Bound on Advice for Sparse Graphs
The previous algorithm requires only a linear amount of advice if we restrict
the class of input instances to graphs with the maximum degree bounded by a
constant. However, there are sparse graphs (i.e. graphs with O(n) edges) with a
high maximum degree, for example a star. To establish a tighter upper bound
on sparse graphs in general, we devise a different algorithm using O(m) bits of
advice.

Again, we choose an arbitrary optimal walk and describe it to the agent
using the advice. This time, however, the agent may not be able to replicate
the walk exactly, although it will still find a walk of the minimum length.

Lemma 4. Let G be an unweighted graph and ω an optimal exploration walk
of G. Then no directed arc x→ y occurs in ω more than once.

Proof. We prove the claim by contradiction. As ω is a closed walk with at least
two occurrences of some directed arc x→ y, we may partition it into these two
occurrences and the two remaining open walks α and β. Both α and β lead from
vertex y to vertex x. However, by reversing one of them and concatenating it
with the other we create a shorter closed walk passing through the same set of
vertices as ω. This contradicts the assumption that ω is an optimal exploration
walk.

This lemma implies that every directed arc of G is either not used in the
chosen optimal walk or is used exactly once. We write one advice bit per arc to
indicate which possibility occurred, i.e. 2m bits altogether. With this advice, the
agent will ignore the arcs not belonging to the optimal solution. The remaining
arcs form a directed Eulerian graph, because every vertex has an equal in-degree
and out-degree. Moreover, the graph is connected.

We define the exit arc of a vertex as the last arc in the optimal walk leading
from that vertex. The starting node is an exception: No arc leading from it is
marked as an exit arc. To brief the agent about exit arcs, we use one bit per
arc in the optimal walk, i.e. at most 2(n − 1) bits (by lemma 3). Altogether,
the agent obtains O(m) advice bits.

The agent follows a simple algorithm: In each step, it travels through any
outgoing arc that has not been used yet (with the exception of the ignored arcs).
However, it chooses the exit arc only when all the other outgoing arcs from the
current vertex were already traversed.

11

We shall prove that the agent as we defined it travels through every arc of
the optimal solution exactly once and finishes at the starting vertex, hence it
finds an exploration walk with the optimal length.

Firstly, let us note that at the moment the agent obeying its algorithm cannot
move any more, it is located at the starting node. If it were at a different node,
it would have entered and left this node the same number of times, which is not
possible.

Secondly, let us assume that the algorithm finished its walk, but it did not
travel through some exit arc x→ y. As the agent did not use all arcs leading to
y, it also did not travel through the exit arc of y. By repeating this argument
we obtain a sequence of exit arcs, none of them being used by the agent. From
the definition of the exit arc, no vertex occurs in this sequence more than once,
therefore it ends in the starting node. However, this contradicts our assumption:
If there is an unused arc leading to the starting node, there must be one leading
out of it and the agent’s walk is not finished.

In conclusion, the agent explores a given graph in the optimal number of
steps while reading O(m) advice bits.

The advice complexity could be improved: As at most 2(n − 1) arcs out of
2m occur in the optimal walk, we could encode them in less than 2m bits. To
be precise, at most ⌈

lg

(
2m

2(n− 1)

)⌉
bits are sufficient if 2(n − 1) ≤ m. For instance, this bound becomes O(n lg n)
on dense graphs.

3.1.3 Lower Bound on Advice
For any ∆ ≥ 2, we describe a graph W∆ on 2∆ vertices with the maximum
degree ∆. We consider a slightly altered problem, in which an agent explores a
graph starting in a node s and ending in a (possibly different) node t. For that
setting, we show that to yield an optimal solution, any agent requires at least
dlg(∆!)e advice bits. Then we combine an arbitrary number of copies of W∆

to obtain an input instance of our original problem. Finally, we show a lower
bound on advice for an optimal agent on that particular instance.

GraphW∆ consists of 2∆ vertices labelled 0, 1, 2, . . . , 2∆−1. For any vertices
i and j (i < j), there is an edge connecting them iff at least one of the following
conditions is satisfied:

• j = i+ 1

• i is even and j is odd

Clearly, no vertex has more than ∆ neighbours.

Lemma 5. For any ∆ ≥ 2, the path (0, 1, 2, . . . , 2∆−1) is the only Hamiltonian
path in W∆ connecting vertices 0 and 2∆− 1.

Proof. We show by induction that for any i satisfying 1 ≤ i ≤ ∆ − 1, every
Hamiltonian path connecting vertices 0 and 2∆− 1 contains edges (0, 1), (1, 2),
(2, 3), . . . , (2i− 1, 2i).

12

0 1 2 3 4 5 6 7 8 9

Figure 3.1: Graph W5

For i = 1, the statement holds, as any such Hamiltonian path must comprise
both edges incident to vertex 1, i.e. edges (0, 1) and (1, 2).

Let i > 1. Vertex 2i−1 is odd, hence it is adjacent to vertices 0, 2, 4, . . . , 2i−
2 and 2i. By the induction hypothesis, vertices 0, 2, 4, . . . , 2i − 4 cannot be
connected with 2i − 1 in any such Hamiltonian path. Therefore, edges (2i −
2, 2i− 1) and (2i− 1, 2i) must be used.

Finally, by the same reasoning, edge (2∆ − 2, 2∆ − 1) must be used in the
Hamiltonian path.

To simplify our analysis, we use numbers 0, 1, 2, . . . , 2∆− 1 to identify ver-
tices of W∆. However, if these were revealed to the agent, it could easily
find the optimal walk. Therefore, we label the vertices with a permutation
of 0, 1, 2, . . . , 2∆− 1 and show the agent only the labels.

The following lemma states that after this obfuscation, an agent cannot find
the optimal walk without receiving a considerable amount of advice.

Lemma 6. For any ∆ ≥ 2 and agent A reading strictly fewer than dlg(∆!)e
advice bits when solving an instance ofW∆, there is a permutation of node labels
for which A does not find the Hamiltonian path in W∆ connecting vertices 0
and 2∆− 1.

Proof. We permute the labels of odd and even vertices separately, so we get
(∆!)2 different inputs. As agent A can receive at most 2dlg(∆!)e−1 < ∆! different
advice strings, there are at least ∆! + 1 inputs with the same advice. Among
these, there exist at least two inputs such that all even vertices are labelled
consistently in both of them; an analogous statement holds for odd vertices
(with a different pair of inputs).

Assume that the agent starts in vertex 0. LetW 1
∆ andW 2

∆ be two inputs with
the same advice string, identically labelled even vertices, and unequally labelled
odd vertices. Let us denote by v the first odd vertex on the Hamiltonian path
connecting nodes 0 and 2∆− 1 that is labelled differently in W 1

∆ and W 2
∆. If A

follows the Hamiltonian path all the way from 0 to v − 1, the inputs W 1
∆ and

W 2
∆ are indistinguishable for it in the moment it reaches v − 1. In particular,

the set of neighbours’ labels in that moment is identical in W 1
∆ and W 2

∆. Agent
A deterministically chooses a label of adjacent node and moves to it. As the
labels of v in W 1

∆ and W 2
∆ differ, at least in one of the inputs the agent fails to

follow the optimal path.
If the agent starts in vertex 2∆− 1, the situation is symmetric – we simply

swap the roles of odd and even vertices.

13

Theorem 7. For any ∆ ≥ 3, k ≥ 1 and optimal agent A, there is an unweighted
graph G on 2k(∆ − 1) + 1 vertices with the maximum degree ∆, such that A
exploring it reads at least dk lg(∆− 1)!e advice bits.

Proof. We join k copies ofW∆−1 and a starting node s to create graph G. Apart
from the edges in the copies, we add an edge connecting vertex 2(∆ − 1) − 1
of i-th copy and vertex 0 of (i + 1)-th copy for every 1 ≤ i < k. Moreover, we
connect vertex s with vertex 0 of first copy and vertex 2(∆−1)−1 of k-th copy.
Clearly, graph G has k · 2(∆− 1) + 1 vertices and the maximum degree of ∆.

Every part of G (node s and the copies of W∆−1) is connected with exactly
two other in a circular manner, hence any Hamiltonian cycle in G consists of
Hamiltonian paths in the copies of W∆−1 and the connecting edges. According
to Lemma 5, there is a unique Hamiltonian path connecting vertices 0 and
2(∆−1)−1 of any W∆−1. Therefore, there is a unique Hamiltonian cycle in G.

We permute the labels of odd and even vertices in each copy of W∆−1 sepa-
rately, so we get ((∆− 1)!)2k different inputs. Following the same reasoning as
in the proof of Lemma 6, any optimal agent A must read at least dk lg(∆− 1)!e
bits of advice.

The previous theorem implies that any optimal agent exploring an un-
weighted graph on n vertices with the maximum degree ∆ requires at least⌈

n− 1

2(∆− 1)
lg(∆− 1)!

⌉
= Ω(n lg ∆)

advice bits. In particular, taking k = 1 we get a lower bound on advice for
graphs of unbounded degree: Ω(n lg n).

3.2 Competitive Ratio 1.564− ε

In this section, we establish that any agent achieving competitive ratio less than
1 + 1

ln 16−1 ≈ 1.564 on unweighted graphs must read Ω(n) bits of advice. As the
proof is quite long, we provide a brief outline of it first.

3.2.1 Outline
We will focus on a class of unweighted graphs called sun graphs, which are
particularly difficult to explore efficiently. A sun graph is essentially a cycle
with paths called rays connected to it (see fig. 3.2 for an example). An agent
traversing the cycle of a sun graphs faces a sequence of challenges: Every time it
enters a junction of the cycle and a ray, it must choose which path will it follow
first. It detects whether the chosen path lies on the ray or on a segment of the
cycle only after several steps. If it is the segment, the agent must eventually
return to visit the ray, which negatively impacts its performance. Therefore, an
efficient agent has to receive a bit of advice for at least a fraction of all junctions
in order to take the right decisions in them.

Firstly, we show that the total cost of an agent’s exploration walk can be
estimated by considering only its behaviour on individual challenges. Secondly,
we look at how an agent acts on problem instances that are similar to each other,
thus establishing an upper bound on the number of instances for which an agent

14

performs satisfactorily well. This leads to a linear lower bound on advice for
such an agent. However, the bound applies only to a subset of sun graphs
parameterized by a ratio of the number of rays of different lengths. Finally, we
find parameters that maximize the competitive ratio for which we can obtain a
linear lower bound on advice.

3.2.2 Elementary Definitions
Definition 1. A sun graph is an undirected graph that consists of a cycle and
a number of non-trivial paths called rays. Exactly one vertex of each ray lies on
the cycle, and each vertex of the cycle lies on at most one ray.

A vertex lying both on the cycle and on a ray is called a junction. A path
between two junctions that does not pass through any other junction is called
a sun segment.

We will show that sun graphs are quite difficult to explore efficiently, i.e.
no agent with sublinear advice can achieve competitive ratio less than a certain
constant. However, in our analysis we will be considering only a subset of sun
graphs that is defined below. The subset is parameterized by two numbers k
and `. The value of the minimum achievable competitive ratio on the graphs in
the subset depends on these two parameters; we obtain the main result of this
section by taking the limit as they approach infinity.

Definition 2. For any k ≥ 1, ` ≥ 3, a sun graph is of type k and order ` if it
satisfies all the following conditions:

• it contains exactly ` rays,

• no ray is longer than k,

• one of the sun segments has length 2k(2k + 1), all the others have length
k.

We will refer to the longer sun segment as the penalty segment. The starting
node s can be chosen arbitrarily from the inner vertices of the penalty segment.

The set of sun graphs of type k and order ` is denoted by Sk,`.

. . .

Figure 3.2: A sun graph of type 2 and order 5. The penalty segment is depicted
only partially; it consists of 21 vertices, including the junctions on its endpoints.

15

Lemma 8. Let G ∈ Sk,` be a sun graph with ri rays of length i. Then G has

n = k(`+ 4k + 1) +

k∑
i=1

iri

vertices and the optimal cost of exploring it offline is

C(opt(G)) = n+

k∑
i=1

iri

Proof. The cycle consists of k(` − 1) + 2k(2k + 1) vertices, as there are ` − 1
segments of length k and the penalty segment. A ray of length i contributes
another i vertices to the total count.

Any exploration walk must enter each vertex at least once. When returning
from the last vertex of a ray of length i, the walk must visit at least i vertices
for the second time. Clearly, there is a walk meeting this cost.

We are going to analyse the behaviour of a fixed deterministic agent on
graphs in Sk,` and to estimate the cost it incurs. To simplify the analysis, we
partition the agent’s walk into several stages, each of them starting when the
agent visits a junction for the first time. In such a situation the agent does not
know which one of the two untraversed edges incident with the junction lies on
the ray. It would prefer to visit all vertices on the ray first and then continue
along the cycle – but it may also visit the next junction before finishing the
ray, in which case it needs to return and visit the ray vertices it missed (not
necessarily right away).

To formalize this problem the agent faces, we define a concept of a challenge.

Definition 3. A challenge is an induced subgraph of a sun graphG ∈ Sk,` which
consists of a non-penalty sun segment and a ray incident to that segment. The
entrance of a challenge is the junction lying on the ray; the exit is the other
junction. The length of a challenge is the length of the ray.

a b

c

Figure 3.3: A challenge of length 2 from a sun graph of type 3. Vertices a, b are
junctions; a is the entrance and b is the exit. Vertex c is the last vertex of the
ray.

Let us note that a challenge is not uniquely determined by its entrance. A
junction can be visited for the first time using either of the two cycle edges
incident to it, which gives rise to two potential challenges with entrance in
that junction. Therefore, the set of actually faced challenges depends on the
behaviour of the analysed agent.

16

Apart from a couple of degenerated challenges at the final stages of the
agent’s walk, an important invariant holds: Right before entering a challenge,
the agent has not seen any vertex of it except for the entrance. Hence, the agent
can neither distinguish which direction from the entrance leads to the exit, nor
it can ascertain the length of the challenge. The situation changes when the
agent reaches the exit or the last vertex on the ray. At such a moment, the
agent has completed the challenge.

Let us continue by defining a response to a challenge, a concise notation of
the agent’s progress on the challenge.

Definition 4. A response to a challenge is a string of letters R and C denoting
the order in which an agent visits new vertices of the challenge. An occurrence
of letter R (C) corresponds with entering the next yet unvisited vertex on the
ray (on the cycle). If the challenge is of length i and lies in a sun graph of type
k, the response must end immediately after the i-th occurrence of letter R or
the k-th occurrence of letter C, whichever comes first.1

Definition 5. The cost of a response ρ is the minimum cost an agent starting
at the entrance of a challenge can incur by visiting vertices in the order specified
by ρ, then visiting the rest of vertices, and ending at the exit.

We will denote the cost of a response ρ to a challenge of length i lying in a
sun graph of type k by costk(ρ, i).

0 2 3 4

1

Figure 3.4: A challenge of length 2 from a sun graph of type 3, and the order
in which an agent applying response RCCC discovers its vertices. The cost of this
response is 15.

Lemma 9. The cost of any response ρ to a challenge in a sun graph of type k
is at most 2k(2k + 1).

Proof. Starting at the entrance, an agent needs to move to at most 2k + 1
vertices: k vertices of the segment, at most k vertices of the ray, and finally to
the exit. The distance between any two vertices of the challenge is at most 2k,
therefore the total cost does not exceed 2k(2k + 1).

Lemma 10. Let ρ be a response to a challenge of length i lying in a sun graph
of type k. If ρ ends with letter C, then the minimum cost an agent starting at
the entrance of the challenge can incur by visiting vertices in the order specified
by ρ is costk(ρ, i)−2k − 2i.

1This requirement ensures that by visiting the last vertex in the response the agent com-
pletes the challenge.

17

Proof. If response ρ ends with letter C, an agent applying ρ completes the chal-
lenge by visiting the exit and leaves the last vertex of the ray unvisited. Let us
denote the number of steps it has taken so far by t. After that, the agent moves
to the last vertex of the ray and then back to the exit, which requires at least
2k + 2i steps. By the definition we have costk(ρ, i) ≤ t+ 2k + 2i and therefore
t ≥ costk(ρ, i)−2k − 2i. Clearly, there is a walk meeting this bound.

3.2.3 Estimating the Total Cost from Responses
We cannot require that the agent remains in a challenge until it visits all vertices,
hence our definition of the cost of a response seems too restrictive. However,
we will show in the next lemma how the cost as we defined it can be used to
bound the total length of the agent’s walk.

To keep our analysis simple, we do not want the agent to participate in two
opened challenges at the same time. This may happen when the agent enters
a challenge and before reaching the exit or the last vertex of the ray, it travels
back through the starting vertex to the other side of the cycle and enters a new
challenge there. In such a situation, we say the agent has given up the first
challenge and it will never be completed. Let us note that the agent pays for
giving up by traversing the penalty segment.

As we mentioned earlier, in the final stages of the agent’s exploration, there
are a couple of corrupted challenges for which we cannot ensure that the agent
has not seen any vertex of them before entering.2 For this reason, we consider
only the first `− 2 challenges in our counts (and disregard the remaining two).

Lemma 11. Let A be a deterministic agent and G ∈ Sk,` a sun graph with
ri rays of length i. Let us denote the number of challenges A gives up while
exploring G by g, and the number of completed challenges of length i for which
A applies response ρ by ei,ρ. Then

C(A(G)) ≥ min

∑
i,ρ

costk(ρ, i) ei,ρ + 2k(2k + 1)g + k,C(opt(G)) + k(`− 3)

Proof. If agent A does not travel through every edge of G, then it avoids an
edge of the cycle and therefore effectively explores a tree. This cannot be done
in less than 2(n−1) steps (where n is the number of nodes of G). From lemma 8
we obtain the following bound:

C(A(G)) ≥ 2(n− 1)

≥ C(opt(G)) + k(`+ 4k + 1)− 2

≥ C(opt(G)) + k(`− 3)

In the rest of the proof we will look at the case when the agent travels through
every edge at least once.

We partition the agent’s walk into stages: the j-th one starts when A enters
j-th junction for the first time. We will refer to that junction as the current

2Let us consider the last segment to be visited. The agent may have seen both its junctions,
because the adjacent segments are already visited. Therefore, neither of the junctions is eligible
to act as the exit of a challenge.

18

junction of the stage. The current path is the visited path between the starting
node and the current junction.

Each of stages 1, 2, . . . , `−2 involves exploration of an uncorrupted challenge;
with the rest of the walk we will deal separately. We are going to follow agent
A’s progress and maintain several counts (each of them applies to the moment
of entering stage j):

• t(j) – the number of steps A has taken,

• a(j) – the number of junctions on the current path,

• b(j) – the number of remaining visited junctions (i.e. on the other side of
the cycle). Clearly, a(j) + b(j) = j.

• g(j) – the number of challenges A has given up,

• e(j)
i,ρ – the number of completed challenges of length i for which A has
applied response ρ,

• f (j)
i – the number of forgotten rays of length i. A forgotten ray is the ray
in a challenge that has been completed or given up, but the last vertex of
the ray has not yet been visited.

• c(j) – the number of forgotten rays on the current path. As the ray incident
to the current junction cannot be forgotten at the beginning of stage j,
we have c(j) ≤ a(j) − 1.

Let us prove by induction that the following invariant holds for all j ∈
{1, 2, . . . , `− 1}:

t(j) +
∑
i

2if
(j)
i + k

(
b(j) + 2c(j)

)
≥
∑
i,ρ

costk(ρ, i) e
(j)
i,ρ + 2k(2k + 1)g(j)

The base case (j = 1): All counters on the right-hand side of the invariant
are equal to zero, as the agent has just come to its first junction. The left-hand
side is clearly non-negative, thus the inequality holds.

The inductive step: Let us assume that the invariant holds for stage j − 1,
we shall prove it for stage j, where 2 ≤ j ≤ `− 1. During stage j − 1, the agent
was facing a challenge H of length i; let us consider the possible outcomes of it.

If the agent initiates stage j by visiting the exit of H, then challenge H
was definitely completed and we can tell what response ρ did the agent apply.
The appropriate counter e(j−1)

i,ρ increments by one, which is compensated by the
increase of counters t(j−1), f (j−1)

i , and c(j−1): If the agent visited all vertices
of the challenge (i.e. ρ ends with R), it took at least costk(ρ, i) steps; otherwise
(ρ ends with C) it took at least costk(ρ, i)−2k − 2i steps (by lemma 10) and
incurred one forgotten ray of length i. Meanwhile, the agent could visit some
forgotten rays from earlier stages, thus decreasing counters f (j−1)

i′ and c(j−1).
However, to visit a forgotten ray of length i′ and return back, agent A took at
least 2k + 2i′ steps.

In the second case, the agent initiates stage j by visiting the junction on the
other side of the cycle. Challenge H is either completed or given up; in both

19

cases the increase of the right-hand side is compensated by agent A’s traversal
through the penalty segment (by lemma 9, costk(ρ, i) ≤ 2k(2k+1)). Let us now
consider other changes on the left-hand side of the inequality. Agent A moved
from the a(j−1)-th junction on the current path to the (b(j−1) + 1)-th junction
on the other side, which took at least k

(
a(j−1) + b(j−1) − 1

)
steps (excluding

the penalty segment). Term kb(j−1) changed to kb(j) = ka(j−1). Counter c(j−1)

might have decreased, but not more than by its value, which we can bound from
above by a(j−1) − 1. Altogether these changes add up to an increase of at least

k
((
a(j−1) + b(j−1) − 1

)
+
(
a(j−1) − b(j−1)

)
− 2

(
a(j−1) − 1

))
= k

The agent could also visit some forgotten rays on its way, but the decrease of
counters f (j−1)

i′ is compensated by additional steps it took on those rays.

That concludes the proof by induction, and we have the invariant holding
at the beginning of stage `− 1. Now, the agent needs to visit the last junction,
all forgotten rays, and return back to the starting node. While doing so, if it
travels through every edge on the current path, we get a simple lower bound on
the length of its entire exploration walk: At least k

(
a(`−1) − 1 + b(`−1) − 1

)
=

k(`−3) edges of the cycle and all edges of the rays were traversed at least twice.3
Therefore, agent A took at least

k(`+ 4k + 1) + k(`− 3) +

k∑
i=1

2iri = C(opt(G)) + k(`− 3)

steps.
We are left with the second case: While completing its walk, the agent does

not travel through some edge on the current path. At the beginning of stage
` − 1, agent A has taken t(`−1) steps. Since then it needs at least

∑
i 2if

(`−1)
i

steps to visit forgotten rays, 2kc(`−1) steps to get to those rays on the current
path and back, and 2k + k

(
b(`−1) − 1

)
steps to return to the starting node.

Assuming e(`−1)
i,ρ = ei,ρ, g(`−1) = g, and that the invariant holds for j = ` − 1,

we obtain the following bound:

C(A(G)) ≥
∑
i,ρ

costk(ρ, i) ei,ρ + 2k(2k + 1)g + k

We showed that in any case, the cost of the agent’s walk is at least C(opt(G))+
k(`− 3), or at least

∑
i,ρ costk(ρ, i) ei,ρ + 2k(2k + 1)g + k.

3.2.4 Strategies
The previous lemma enables us to disregard the actual edge traversals an agent
makes and consider only its responses to challenges. In the following part, we
are going to look at how an agent performs on a whole class of graphs.

3The claim for the k
(
a(`−1) − 1

)
edges follows from the previous assumption. As for the

k
(
b(`−1) − 1

)
edges, the agent must have traversed them twice in order to move from that

side of the cycle to the current one. The claim also holds in the special case of b(`−1) = 0
when the agent did not visit any junctions on the other side.

20

A response to a challenge is an observable behaviour of the analysed agent.
However, the agent itself cannot be sure what its response is going to be, because
it also depends on the challenge’s characteristics unknown to the agent. We
define a set of similar challenges such that the agent cannot distinguish which
member of the set it is exploring until it completes the challenge. For such a
fixed set, the agent seems to have a common strategy from which we can infer
its response to any challenge in the set.

Definition 6. A family of challenges is a set {H1, H2, . . . ,Hk} such that for
any i ∈ {1, 2, . . . , k}, Hi is a challenge of length i lying in a graph of type k.
Moreover, for any pair of challenges Hi, Hj (i < j) in a family, the labels of
corresponding vertices are identical (i.e. the sequence of labels on the path from
the entrance to the exit of one challenge is equal to that of the other challenge;
the same holds for the labels of the first i vertices on the rays).

Definition 7. The transpose of a family of challenges F = {H1, H2, . . . ,Hk} is
a family of challenges F ᵀ = {Hᵀ

1 , H
ᵀ
2 , . . . ,H

ᵀ
k } such that the sequence of labels

on the segment of Hk is equal to the sequence of labels on the ray of Hᵀ
k , and

vice versa (in all cases the sequence starts with the label of the entrance).

9 4 2 7

1

Hᵀ
1

9 4 2 7

1

3

Hᵀ
2

9 4 2 7

1

3

6

Hᵀ
3

9 1 3 6

4

H1

9 1 3 6

4

2

H2

9 1 3 6

4

2

7

H3

Figure 3.5: A family of challenges and its transpose.

We now define a concept of a strategy that captures the behaviour of an
agent on all challenges in a family and its transpose.

21

Definition 8. A strategy for a family of challenges F = {H1, H2, . . . ,Hk} and
its transpose F ᵀ = {Hᵀ

1 , H
ᵀ
2 , . . . ,H

ᵀ
k } is a string of length 2k, consisting of k

digits 1 and k digits 2, and starting with 1. An agent applying strategy σ on a
challenge H ∈ F ∪ F ᵀ visits new vertices of H in the order specified by σ until
it completes the challenge. In the beginning, the agent chooses one of the two
paths leading from the entrance and visits its first vertex, thus declaring it the
first path. An occurrence of digit 1 (2) then corresponds with entering the next
yet unvisited vertex on the first (second) path.

We can find out the agent’s strategy directly from its response to challenge
Hk or Hᵀ

k . Conversely, from a strategy and the agent’s first move (whether it
visits a vertex on the cycle or a vertex on the ray) we are able to determine
its response to any challenge H ∈ F ∪ F ᵀ.4 For instance, if an agent exploring
Hi visits the first vertex of the ray in its first move, we obtain its response by
substituting R for every 1, C for every 2, and taking the longest prefix containing
at most i occurrences of R and at most k occurrences of C.

Let us denote the mapping from strategies to responses by responsek(σ, i, δ),
where k is the type of a sun graph, σ is a strategy, i is the length of a challenge,
and δ ∈ {C, R} is the first move of an agent. To shorten our notation, we define
costk(σ, i, δ) as costk(responsek(σ, i, δ), i).

3.2.5 Basic Lower Bound on Advice
In the following lemma, we obtain a lower bound on advice for efficient agents
exploring graphs from a certain subset of Sk,`. For now, the bound is expressed
in terms of a complicated function f (defined in the lemma below).

Lemma 12. Let G ⊆ Sk,` be the set of sun graphs with ri rays of length i (for
some fixed values of ri satisfying

∑k
i=1 ri = `). Let A be an agent with advice

such that for any graph G ∈ G, agent A reads at most b bits of advice and takes
at most t steps while exploring G, where t < C(opt(G)) + k(`− 3).5 Then

b ≥ `− 2 + lg

(
`

r1, r2, . . . , rk

)
− lg f((r1, r2, . . . , rk), t+ 8k2 + 3k)

where (
`

r1, r2, . . . , rk

)
=

`!

r1!r2! · · · rk!

is the multinomial coefficient, and f : Zk × R → Z is the function defined
as follows: For any ~x = (x1, x2, . . . , xk), y such that (x1, x2, . . . , xk, y ≥ 0) ∧
(∃i xi > 0),

f(~x, y) = max
σ

k∑
i=1

(
f(~x− ~τi, y − costk(σ, i, C)) + f(~x− ~τi, y − costk(σ, i, R))

)
where ~τi stands for the standard basis vector with a one at the i-th position and
zeros elsewhere. For any y ≥ 0,

f(~0, y) = 1

4Let us note that an agent makes the same first move for all challenges in a family, and
the opposite first move for all challenges in the family’s transpose.

5All graphs in G have the same optimal exploration cost.

22

In all other cases, i.e. (∃i xi < 0) ∨ (y < 0),

f(~x, y) = 0

Proof. An instance of the graph exploration problem is a graph G together
with a labelling of its vertices and a designated starting node. As we are now
primarily interested in labels, for any G ∈ G we place the start in the same
vertex on the penalty segment (we can choose arbitrary one).

Let us introduce an auxiliary concept of a pseudo-instance, which is an ex-
tension of an instance. A regular instance specifies a sequence of i labels for the
vertices of a ray of length i. A pseudo-instance always specifies a sequence of
k labels for a ray, regardless of its length (although only the first i labels are
actually used if the ray has length i; we could say the rest are labels of pseudo-
vertices). Clearly, we obtain an instance from a pseudo-instance by omitting
unused labels.

A pseudo-instance of a graph in Sk,` contains 2k` + 4k2 + k labels. To the
vertices of the penalty segment we will always assign the same labels, so there
are 2k`−k−1 labels left and (2k`−k−1)! ways how to assign them. We consider
only pseudo-instances with ri rays of length i, hence there are

(
`

r1,r2,...,rk

)
ways

how to choose the lengths of rays. Altogether we have a set I of

(2k`− k − 1)!

(
`

r1, r2, . . . , rk

)
pseudo-instances.

Agent A reads at most b bits of advice, so it can receive at most 2b different
advice strings. Therefore, there is a subset I ′ ⊆ I such that A receives the same
advice for any pseudo-instance from I ′, and

|I ′| ≥
(2k`− k − 1)!

(
`

r1,r2,...,rk

)
2b

(3.1)

Now, let us categorize pseudo-instances in I ′ following the agent’s behaviour
on them.6 Agent A starts somewhere in the penalty segment, and continues in
a unified way on all pseudo-instances until it enters the first challenge.

Firstly, we are going to partition I ′ into several groups according to the
labels in this challenge: k vertices on the segment and k (pseudo-)vertices on
the ray have not been assigned fixed labels yet, and we have 2k`− k − 1 labels
available. Thus, there are

(2k`− k − 1)2k

2

ways how to label the challenge,7 if we disregard the information about which
path is the ray and which is the segment. We create a separate group for each
such labelling. Let us note that the first challenges of instances from the same
group belong to a family or its transpose, so the agent applies the same strategy
for each of them.

6Let us note that the agent is fully deterministic on pseudo-instances in I′, as it receives
the same advice for all of them.

7xk is the k-th falling factorial power of x; xk = x(x− 1)(x− 2) · · · (x− k + 1).

23

Secondly, we subdivide each group from previous step into 2k groups accord-
ing to the length of the challenge and the agent’s first move (C or R). Pseudo-
instances in such a group are indistinguishable to the agent until it enters the
second challenge, so we can repeat the whole process.

In general, we have a set of pseudo-instances that are indistinguishable until
agent A visits the j-th challenge. At first, we partition them into

(2k(`− j) + k − 1)2k

2

groups according to the labels in the j-th challenge; then we subdivide each
group into 2k parts according to the length of the j-th challenge and the agent’s
first move on it.

This process is repeated for `−2 times.8 Each of the groups obtained by the
last iteration contains at most 2 · (3k − 1)! pseudo-instances, because there are
only 3k− 1 (pseudo-)vertices without fixed labels left and at most two different
lengths of rays to choose from. The whole procedure creates a categorization
tree; in its leaves we have individual groups from the last iteration and its
internal nodes represent subdivisions.

Let us estimate the maximum possible size of I ′ given the constraint t on
the length of agent A’s exploration walk. From lemma 11 we have the following
bound on the cost C(A(G)):

C(A(G)) ≥ min

∑
i,ρ

costk(ρ, i) ei,ρ + 2k(2k + 1)g + k,C(opt(G)) + k(`− 3)

As t < C(opt(G)) + k(`− 3), for any G ∈ I ′ it must hold

t ≥ C(A(G)) ≥
∑
i,ρ

costk(ρ, i) ei,ρ + 2k(2k + 1)g + k

Therefore, pseudo-instances from I ′ may end up only in certain leaves of our
categorization tree: The sum of response costs on the path to such a leaf may
not exceed t − k. As the cost of giving up a challenge is greater or equal than
the cost of any response (by lemma 9), we will ignore the possibility of giving
up in our estimation.

The labels of challenges are irrelevant when summing response costs,9 and
the number of ways how to assign labels in the j-th challenge depends only on
the value of j. Consequently, we can count ways of labelling and sequences of
responses separately, and multiply the counts in the end.

There are
(2k(`− j) + k − 1)2k

2

ways how to assign labels in the j-th challenge for j ∈ {1, 2, . . . , ` − 2}, and
(3k − 1)! labellings of the remaining vertices. The total number of possibilities

8The (`− 1)-th challenge may be corrupted, i.e. its exit may have been seen by the agent.
9They might be relevant to the agent, as it can choose different strategies depending on the

labels. However, in our analysis we will assume the agent chooses the optimal strategy (i.e. the
strategy maximizing the number of pseudo-instances in given subtree), which is independent
of the labels.

24

is

(3k − 1)!

`−2∏
j=1

(2k(`− j) + k − 1)2k

2
=

(2k`− k − 1)!

2`−2

Now, let us estimate the maximum possible number of sequences of re-
sponses. To simplify the analysis, we append to each sequence such two re-
sponses that the sequence contains exactly ri responses to challenges of length
i.10 Furthermore, we increase the limit on the total cost by 4k(2k+1) as a com-
pensation for the additional responses. We are going to show that the maximum
number of sequences containing xi responses to challenges of length i with the
sum of response costs not exceeding y is equal to f((x1, x2, . . . , xk), y), where f
is the function defined in the statement of this lemma. The proof is by induction
on the sum of xi’s.

If some of the arguments are negative, no such sequence of responses exists.
If for all i, xi = 0, only the empty sequence satisfies the conditions (assuming
y ≥ 0), therefore f(~0, y) = 1 holds. Otherwise, any valid sequence starts with
a response to a challenge from some family F or its transpose F ᵀ. If an agent
applies strategy σ, we can determine the cost of response to any challenge in
F ∪ F ᵀ, and also the number of sequences starting with that response. For
example, if the challenge is of length i and the agent’s first move is C, there are
f(~x− ~τi, y− costk(σ, i, C)) such sequences. Altogether the maximum obtainable
number of sequences when applying strategy σ equals

k∑
i=1

(
f(~x− ~τi, y − costk(σ, i, C)) + f(~x− ~τi, y − costk(σ, i, R))

)
We choose a strategy which maximizes this sum.

Finally, we obtain an upper bound on the size of I ′:

|I ′| ≤ (2k`− k − 1)!

2`−2
· f((r1, r2, . . . , rk), t+ 8k2 + 3k) (3.2)

By combining (3.1) and (3.2) we get

(2k`− k − 1)!

2`−2
· f((r1, r2, . . . , rk), t+ 8k2 + 3k) ≥

(2k`− k − 1)!
(

`
r1,r2,...,rk

)
2b

2b ≥
2`−2

(
`

r1,r2,...,rk

)
f((r1, r2, . . . , rk), t+ 8k2 + 3k)

b ≥ `− 2 + lg

(
`

r1, r2, . . . , rk

)
− lg f((r1, r2, . . . , rk), t+ 8k2 + 3k)

Function f gives a precise upper bound on the number of different response
sequences an efficient agent can make, but it is extremely cumbersome to work
with. In section 3.2.7, we are going to derive a simple upper bound on f , which
is tight for our purposes. However, this bound depends on the ratio of numbers
r1, r2, . . . , rk being fixed.

10This adjustment also takes care of the outstanding factor of 2 in the estimate of the
number of pseudo-instances in a leaf of our categorization tree.

25

3.2.6 Graphs with a Fixed Distribution of Ray Lengths
Definition 9. A ray lengths distribution is a vector ~α = (α1, α2, . . . , αk) such
that for any i ∈ {1, 2, . . . , k}, αi ∈ Q+, and

∑k
i=1 αi = 1. A sun graph G ∈ Sk,`

with ray lengths distribution ~α has αi` rays of length i.

From now on we will consider only sun graphs with a fixed ray lengths
distribution.

Definition 10. The average optimal cost of a challenge lying in a sun graph
of type k with a ray lengths distribution ~α = (α1, α2, . . . , αk) is denoted by
avgk(~α) and equals

avgk(~α) = k +

k∑
i=1

2αii

As we show in the next lemma, the average optimal cost can be used to
determine the total optimal cost of a graph exploration.

Lemma 13. Let G ∈ Sk,` be a sun graph with a ray lengths distribution ~α.
Then the optimal cost of exploring G offline is

C(opt(G)) = ` avgk(~α) +4k2 + k

Proof. From lemma 8 we have

C(opt(G)) = k(`+ 4k + 1) + 2

k∑
i=1

iri

where ri is the number of rays of length i. Graph G has αi` rays of length i,
therefore

C(opt(G)) = k`+ 4k2 + k + `

k∑
i=1

2αii = ` avgk(~α) +4k2 + k

Definition 11. The average cost of a strategy σ with respect to a ray lengths
distribution ~α = (α1, α2, . . . , αk) is denoted by avgk(σ, ~α) and equals

avgk(σ, ~α) =

k∑
i=1

αi
2

(costk(σ, i, C) + costk(σ, i, R))

Definition 12. A ray lengths distribution ~α is called demanding if the following
condition holds for any strategy σ:

avgk(σ, ~α) ≥ k + avgk(~α)

Lemma 14. Let ~α be a demanding ray lengths distribution. Then

min
σ

avgk(σ, ~α) = k + avgk(~α)

26

Proof. We show that the average cost of strategy σ′ = 1k2k equals k+ avgk(~α).
For any i ∈ {1, 2, . . . , k} we have costk(σ′, i, R) = k + 2i, because an agent

applying σ′ completes a challenge of length i by visiting the last vertex of the
ray. That takes i steps; additional i + k steps are necessary for moving to the
exit. Similarly, costk(σ′, i, C) = 3k+ 2i, because in this case an agent completes
a challenge by visiting the exit in k steps, then it takes k + i steps to visit the
last vertex of the ray and i+ k steps to return back.

Thus the average cost of σ′ is

avgk(σ′, ~α) =

k∑
i=1

αi
2

((3k + 2i) + (k + 2i))

= 2k +

k∑
i=1

2αii

= k + avgk(~α)

The average cost of a strategy is its most important characteristic. The
following lemma states that an agent employing the same strategy σ for every
challenge it encounters achieves competitive ratio

avgk(σ, ~α)

avgk(~α)

using only one bit of advice to determine which of the two adjacent unvisited
nodes it should visit first upon entering a challenge.

On the other hand, we will show in lemma 18 that to perform better than
by using the strategy with minimum average cost, any agent must read Ω(n)
bits of advice (provided the ray lengths distribution is demanding).

Lemma 15. Let ~α be a ray lengths distribution and σ a strategy. Let G be the
set of all sun graphs of type k with ray lengths distribution ~α. Then there is an
agent A exploring any graph G ∈ G and reading one bit of advice, such that

C(A(G)) ≤ avgk(σ, ~α)

avgk(~α)
C(opt(G))

Proof. We design a simple deterministic agent B based on the given strategy σ:
Agent B travels around the cycle, and at each junction, it arbitrarily chooses
one of the two adjacent unvisited nodes,11 moves to it and continues to explore
the current challenge according to strategy σ. If the agent reaches the exit
before visiting all vertices of the challenge,12 it immediately turns back to visit
the last node of the ray and returns to the exit, thus entering a new challenge.
At the end, the agent travels along the penalty segment to the starting node.

To calculate the cost of agent B’s exploration walk, we denote by xi the
number of times it started its response on a challenge of length i by visiting the
first node of the cycle. Similarly, we denote by yi the number of times it started

11The choice may be arbitrary, but it must follow a deterministic rule, e.g. selecting the
node with the smaller label.

12In the case of the last (`-th) challenge, there is no exit to reach; instead, the agent
recognizes that it is on the penalty segment when the k-th vertex since the last junction is
neither a junction nor a leaf.

27

in such a situation by visiting the first node of the ray. Clearly, xi + yi = αi`.
In addition to the challenges, the agent takes 2k(2k+ 1)− k = 4k2 + k steps on
the penalty segment (the −k term emerges because the agent visits a part of
the penalty segment during the last challenge). In total, the cost of agent B’s
walk is

C(B(G)) =

k∑
i=1

(xi costk(σ, i, C) +yi costk(σ, i, R)) + 4k2 + k

Let Bᵀ be an agent behaving in the same manner as agent B, but always
choosing the opposite option when deciding its first move in a challenge. Conse-
quently, agent Bᵀ makes on challenges of length i exactly yi responses starting
with C and xi responses starting with R. Its total cost is

C(Bᵀ(G)) =

k∑
i=1

(yi costk(σ, i, C) +xi costk(σ, i, R)) + 4k2 + k

The mean cost of B’s and Bᵀ’s walks equals

C(B(G)) + C(Bᵀ(G))

2
=

k∑
i=1

xi + yi
2

(costk(σ, i, C) + costk(σ, i, R)) + 4k2 + k

=

k∑
i=1

αi`

2
(costk(σ, i, C) + costk(σ, i, R)) + 4k2 + k

= ` avgk(σ, ~α) +4k2 + k

Therefore,

min(C(B(G)), C(Bᵀ(G))) ≤ ` avgk(σ, ~α) +4k2 + k

We define agent A now: It simulates B or Bᵀ depending on the bit of advice it
receives. Obviously, the oracle provides the bit such that A simulates the agent
with smaller cost on the given graph.

Finally, we give an upper bound on the competitive ratio of A (by lemma 13,
C(opt(G)) = ` avgk(~α) +4k2 + k):

C(A(G)) ≤ ` avgk(σ, ~α) +4k2 + k

≤ ` avgk(σ, ~α) +4k2 + k

` avgk(~α) +4k2 + k
C(opt(G))

≤ avgk(σ, ~α)

avgk(~α)
C(opt(G))

An another characteristic of a strategy, the second-order average cost, emerges
during our derivation of the upper bound on f .

Definition 13. The second-order average cost of a strategy σ with respect to
a ray lengths distribution ~α = (α1, α2, . . . , αk) is denoted by avg(2)

k (σ, ~α) and
equals

avg(2)
k (σ, ~α) =

k∑
i=1

αi
2

((
costk(σ, i, C) +1

2

)
+

(
costk(σ, i, R) +1

2

))

28

Lemma 16. Let ~α = (α1, α2, . . . , αk) be a ray lengths distribution and σ a
strategy. Then

avg(2)
k (σ, ~α) >

(
avgk(σ, ~α) +1

2

)
Proof. We will show that

k∑
i=1

αi
2

((
xi + 1

2

)
+

(
yi + 1

2

))
≥ 1

2

(
k∑
i=1

αi (xi + yi)

2

)(
k∑
i=1

αi (xi + yi)

2
+ 1

)

holds for any positive real numbers x1, x2, . . . , xk, y1, y2, . . . , yk. Then we will
substitute costk(σ, i, C) and costk(σ, i, R) for xi and yi respectively, and discuss
why is in our case the inequality strict.

Let us start with the weighted inequality of quadratic and arithmetic means
(QM-AM inequality):√√√√∑k

i=1 αi(xi + yi)2∑k
i=1 αi

≥
∑k
i=1 αi(xi + yi)∑k

i=1 αi

k∑
i=1

αi(xi + yi)
2 ≥

(
k∑
i=1

αi(xi + yi)

)2

(3.3)

From another QM-AM inequality we obtain√
x2
i + y2

i

2
≥ xi + yi

2

2(x2
i + y2

i) ≥ (xi + yi)
2

which we substitute into (3.3):

2

k∑
i=1

αi(x
2
i + y2

i) ≥

(
k∑
i=1

αi(xi + yi)

)2

2

k∑
i=1

αi(xi(x1 + 1) + yi(y1 + 1)) ≥

(
k∑
i=1

αi(xi + yi)

)2

+ 2

k∑
i=1

αi(xi + yi)

k∑
i=1

αi
2

((
xi + 1

2

)
+

(
yi + 1

2

))
≥ 1

2

(
k∑
i=1

αi (xi + yi)

2

)(
k∑
i=1

αi (xi + yi)

2
+ 1

)

The equality holds if and only if x1 = x2 = · · · = xk = y1 = y2 =
· · · = yk. This condition is not satisfied in our case: For any strategy σ,
y1 = costk(σ, 1, R) = k + 2, as an agent applying the strategy completes the
challenge in its first move and then makes k + 1 steps to reach exit. However,
x1 = costk(σ, 1, C) ≥ k+ 4, because after its first move, the agent makes at least
2 steps in order to visit the last vertex of the ray and then k + 1 steps to finish
at the exit.

Continuing our preparations for lemma 18, we prove a lower bound on the
multinomial coefficient from the statement of lemma 12.

29

Lemma 17. Let ~α = (α1, α2, . . . , αk) be a ray lengths distribution and ` such
a number that αi` is an integer for all i ∈ {1, 2, . . . , k}. Then

lg

(
`

α1`, α2`, . . . , αk`

)
≥ −`

k∑
i=1

αi lgαi +O(lg `)

Proof. Let us begin by reminding well-known lower and upper bounds of the
value of lg n! = lg 1 + lg 2 + · · ·+ lg n:

lg n! =

n∑
i=1

lg i ≥
∫ n

1

lg x dx = n lg n− n− 1

ln 2

lg n! =

n∑
i=1

lg i ≤
∫ n+1

1

lg x dx = (n+ 1) lg(n+ 1)− n

ln 2

To obtain a lower bound on the multinomial coefficient, we rewrite it in
terms of factorials and apply the aforementioned bounds:

lg

(
`

α1`, α2`, . . . , αk`

)
= lg `!−

k∑
i=1

lg(αi`)!

≥ ` lg `− `− 1

ln 2
−

k∑
i=1

(
(αi`+ 1) lg(αi`+ 1)− αi`

ln 2

)

≥ ` lg `+
1

ln 2
−

k∑
i=1

(αi` lg(αi`+ 1) + lg(αi`+ 1))

≥ ` lg `− `
k∑
i=1

αi lg

(
αi`

(
1 +

1

αi`

))
+O(lg `)

≥ −`
k∑
i=1

αi lgαi − `
k∑
i=1

αi lg

(
1 +

1

αi`

)
+O(lg `)

We use the Taylor series of function lg(1 + x) to eliminate term lg
(

1 + 1
αi`

)
:

lg

(
`

α1`, α2`, . . . , αk`

)
≥ −`

k∑
i=1

αi lgαi − `
k∑
i=1

αi

(
1

αi` ln 2
+O

(
`−2
))

+O(lg `)

≥ −`
k∑
i=1

αi lgαi +O(lg `)

3.2.7 Linear Lower Bound on Advice
Finally, we present a complementary result to lemma 15: We prove that a linear
number of advice bits is necessary to outperform an agent using the strategy
with the minimum average cost and a single bit of advice.

However, our proof works only for demanding distributions. This restriction
can be interpreted as ruling out distributions that under-represent longer rays
and therefore decrease the effective type of a sun graph. We will discuss it in
more detail later.

30

Lemma 18. Let k ≥ 1 be a type of sun graphs and ~α a demanding ray lengths
distribution. Then any agent exploring sun graphs of type k with ray lengths
distribution ~α that achieves competitive ratio

minσ avgk(σ, ~α)

avgk(~α)
− ε =

k + avgk(~α)

avgk(~α)
− ε

(for ε > 0), requires Ω(n) bits of advice.

Proof. Let A be an agent such that for any sun graph G of type k,

C(A(G)) ≤
(
k + avgk(~α)

avgk(~α)
− ε
)
C(opt(G)) +O(1)

where ε is infinitesimally small, but greater than 0. Although our proof works
only for sufficiently small values of ε, the claim for larger ε follows from it. We
will show that agentAmust read Ω(`) = Ω(n) bits of advice in order to efficiently
explore every graph G ∈ Sk,` with ray lengths distribution ~α = (α1, α2, . . . , αk),
where ` is sufficiently large. Let us note that due to αi ∈ Q+, there are graphs
satisfying these requirements with order greater than any given threshold.

We will make use of the lower bound on advice from lemma 12. However,
before using this lemma, we must ensure that the following condition holds:(

k + avgk(~α)

avgk(~α)
− ε
)
C(opt(G)) +O(1) < C(opt(G)) + k(`− 3)(

k

avgk(~α)
− ε
)
C(opt(G)) +O(1) < k`

From lemma 13 we obtain(
k

avgk(~α)
− ε
)

(` avgk(~α) +4k2 + k) +O(1) < k`

(k − ε avgk(~α))`+O(1) < k`

O(1) < ε avgk(~α) `

where the constant O(1) depends on the agent, ~α, and k. Clearly, the condition
holds when ` is sufficiently large.

To make subsequent derivations briefer, let us denote

min
σ

avgk(σ, ~α) = k + avgk(~α)

by g, and
max

{
avg(2)

k (σ, ~α)
∣∣∣ avgk(σ, ~α) = g

}
by g(2).

Let us denote by b(`) the maximum number of bits agent A reads on graphs
in Sk,`. Now we can use the bound from lemma 12:

b(`) ≥ `− 2 + lg

(
`

α1`, α2`, . . . , αk`

)
−

− lg f

(
`~α,

(
k + avgk(~α)

avgk(~α)
− ε
)
C(opt(G)) +O(1)

)

31

Again, we substitute the expression from lemma 13 for C(opt(G)). Moreover,
we apply the lower bound on the multinomial coefficient from lemma 17.

b(`) ≥ `− `
k∑
i=1

αi lgαi +O(lg `)−

− lg f

(
`~α,

(
g

avgk(~α)
− ε
)

(` avgk(~α) +4k2 + k) +O(1)

)
b(`) ≥ `− `

k∑
i=1

αi lgαi − lg f
(
`~α, `(g − ε avgk(~α)) +O(1)

)
+O(lg `) (3.4)

We are going to prove an upper bound on the values of f(~x, y) (where ~x =
(x1, x2, . . . , xk)) in the form

f(~x, y) ≤ (1 + λε)
y

k∏
i=1

(
2ψ

αi

)xi

(3.5)

where λ and ψ are constants that we will determine later (λ, ψ > 0).
The right-hand side of (3.5) is always positive, therefore we focus only on

cases when f is positive too. We prove the claim by induction on the sum of
xi’s. For any y ≥ 0,

f(~0, y) = 1 ≤ (1 + λε)y

If some of the xi’s are non-negative, by the definition of f we have

f(~x, y) = max
σ

k∑
i=1

(
f(~x− ~τi, y − costk(σ, i, C)) + f(~x− ~τi, y − costk(σ, i, R))

)
By applying the inductive hypothesis, we obtain an upper bound on f(~x, y):

max
σ

k∑
i=1

((1 + λε)y−costk(σ,i,C) + (1 + λε)y−costk(σ,i,R)
) αi

2ψ

k∏
j=1

(
2ψ

αj

)xj

It suffices to show that

max
σ

k∑
i=1

αi
2ψ

(
(1 + λε)y−costk(σ,i,C) + (1 + λε)y−costk(σ,i,R)

)
≤ (1 + λε)y

max
σ

k∑
i=1

αi
2

(
(1 + λε)− costk(σ,i,C) + (1 + λε)− costk(σ,i,R)

)
≤ ψ (3.6)

The value of λ depends only on g, g(2), and k; we will define it exactly later.
For a fixed value of λ, we choose the smallest ψ such that (3.6) holds (i.e. ψ
is equal to the left-hand side of the inequality). We denote the strategy which
maximizes the expression on the left-hand side by σ′. This concludes the proof
by induction.

Using the Taylor series

(1 + x)−m = 1−mx+

(
m+ 1

2

)
x2 +O(x3)

32

we obtain the following estimate of the value of ψ:

ψ =

k∑
i=1

αi
2

(
(1 + λε)− costk(σ′,i,C) + (1 + λε)− costk(σ′,i,R)

)
ψ =

k∑
i=1

αi
2

(
1− costk(σ′, i, C)λε+

(
costk(σ′, i, C) +1

2

)
λ2ε2+

1− costk(σ′, i, R)λε+

(
costk(σ′, i, R) +1

2

)
λ2ε2 +O(ε3)

)
ψ = 1− avgk(σ′, ~α)λε+ avg(2)

k (σ′, ~α)λ2ε2 +O(ε3) (3.7)

As ε is infinitesimally small, σ′ must have the lowest average cost of all strategies,
otherwise it would not maximize the left-hand side of (3.6). For the same reason,
it must have the highest second-order average cost among strategies with the
lowest average cost. Therefore,

ψ = 1− gλε+ g(2)λ2ε2 +O(ε3) (3.8)

We will need an estimate of lgψ; from the Taylor series

lg(1 + x) =
1

ln 2

(
x− x2

2
+O(x3)

)
we obtain

lgψ = lg
(

1− gλε+ g(2)λ2ε2 +O(ε3)
)

=
1

ln 2

(
−gλε+

(
g(2) − 1

2
g2

)
λ2ε2 +O(ε3)

)
(3.9)

In the next step, we prove an upper bound on lg f(`~α, `(g−ε avgk(~α))+O(1))
starting with (3.5):

f(`~α, `(g − ε avgk(~α)) +O(1)) ≤ (1 + λε)
`(g−ε avgk(~α))+O(1)

k∏
i=1

(
2ψ

αi

)αi`

lg f(`~α, `(g − ε avgk(~α)) +O(1)) ≤ (`(g − ε avgk(~α)) +O(1)) lg(1 + λε)+

+

k∑
i=1

αi` (1 + lgψ − lgαi))

≤ `(g − ε avgk(~α)) lg(1 + λε) +O(1)+

+ `

(
1 + lgψ −

k∑
i=1

αi lgαi

)

33

We substitute the estimate (3.9) for lgψ, and the Taylor series for lg(1 + λε):

lg f(`~α, `(g − ε avgk(~α)) +O(1)) ≤

≤ `

ln 2
(g − ε avgk(~α))

(
λε− 1

2
λ2ε2 +O(ε3)

)
+ `

(
1−

k∑
i=1

αi lgαi

)
+

+
`

ln 2

(
−gλε+

(
g(2) − 1

2
g2

)
λ2ε2 +O(ε3)

)
+O(1)

≤ `

ln 2

(((
g(2) − 1

2
g2 − 1

2
g

)
λ2 − avgk(~α)λ

)
ε2 +O(ε3)

)
+

+ `

(
1−

k∑
i=1

αi lgαi

)
+O(1) (3.10)

Let us return to the lower bound on advice; we apply (3.10) to (3.4):

b(`) ≥ `

ln 2

(((
g(g + 1)

2
− g(2)

)
λ2 + avgk(~α)λ

)
ε2 +O(ε3)

)
+O(lg `)

(3.11)

We aim to make this lower bound as tight as possible, hence we choose the value
of λ which maximizes the coefficient of ε2. The expression(

g(g + 1)

2
− g(2)

)
λ2 + avgk(~α)λ

is a quadratic function of variable λ with a negative leading coefficient (by
lemma 16), therefore it attains its maximum for

λ =
avgk(~α)

2g(2) − g2 − g
(3.12)

Substituting this value of λ into (3.11), we obtain

b(`) ≥ `
(

(avgk(~α))2

ln 2(4g(2) − 2g2 − 2g)
ε2 +O(ε3)

)
+O(lg `) (3.13)

The coefficient of ε2 is positive (by lemma 16), therefore b(`) ∈ Ω(`) (assum-
ing that ε is sufficiently small). As the number of vertices n ≤ 2k` + 4k2 + k,
we have also shown that agent A reads Ω(n) bits of advice on some sun graphs
of type k with ray lengths distribution ~α.

3.2.8 Uniform Distribution
Lemma 18 works only for demanding ray lengths distributions. In the next part,
we prove that the uniform distribution satisfies this condition. Consequently,
we show a lower bound on competitive ratio for which at least linear advice is
necessary. However, we will need a different distribution for our main result.

Definition 14. A uniform ray lengths distribution ~α = (α1, α2, . . . , αk) is a ray
lengths distribution such that αi = 1/k for all i ∈ {1, 2, . . . , k}.

34

Lemma 19. Let ~α be a uniform ray lengths distribution. Then

avgk(~α) = 2k + 1

Proof. From the definition of the average optimal cost we have

avgk(~α) = k +

k∑
i=1

2i

k
= 2k + 1

Lemma 20. Any uniform ray lengths distribution ~α is demanding.

Proof. We are supposed to prove that for any strategy σ,

avgk(σ, ~α) =

k∑
i=1

1

2k
(costk(σ, i, C) + costk(σ, i, R)) ≥ 3k + 1

Let us consider challenges from a family and its transpose in the way how an
agent applying strategy σ sees them before completion: There is the entrance
and two paths incident to it. The paths are marked 1 and 2 correspondingly
with the notation of the strategy. We denote the family for which the agent’s
first move is R by {H1, H2, . . . ,Hk}.

Now, let us examine the paths’ nodes in the order specified by σ. The first
node in σ is the last vertex of the ray in challenge H1, from which the agent must
return to the entrance and take additional k steps towards the exit. Therefore,
costk(σ, 1, R) = k + 2. If the second node in σ also lies on path 1, it is the last
ray vertex in H2, and we have costk(σ, 2, R) = k+ 4. Otherwise, this node is the
last ray vertex in Hᵀ

1 , hence costk(σ, 1, C) = k + 4.
In general, the j-th node in σ is the last ray vertex in a challenge of length

aj . The agent must visit j − aj vertices of the cycle before it enters the j-th
node, therefore the cost of its response is at least 2(j − aj) + 2aj + k = k + 2j.

As the ray lengths distribution is uniform, we may simply add up the lower
bounds on individual response costs in order to obtain a lower bound on the
average cost:

avgk(σ, ~α) ≥ 1

2k

2k∑
j=1

(k + 2j) = 3k + 1

Theorem 21. For any ε > 0, any agent exploring sun graphs with competitive
ratio 3/2− ε requires Ω(n) bits of advice.

Proof. When we choose some constant k ≥ 1 and a uniform ray lengths dis-
tribution ~α, by lemma 20 we are allowed to use lemma 18. After substituting
2k + 1 for avgk(~α) (from lemma 19) it states that any agent with competitive
ratio strictly less than

k + avgk(~α)

avgk(~α)
=

3k + 1

2k + 1
(3.14)

requires Ω(n) bits of advice.
The limit of the fraction as k approaches infinity is

lim
k→∞

3k + 1

2k + 1
=

3

2

35

Therefore, for any ε > 0, there is a value of k such that fraction (3.14) is strictly
greater than 3/2− ε.

3.2.9 Optimal Demanding Distribution
In order to obtain a better lower bound on competitive ratio, we need to find a
demanding distribution with smaller average optimal cost.

Lemma 22. Let k ≥ 1 be a type of sun graphs and ~α = (α1, α2, . . . , αk) a ray
lengths distribution such that

αi =
2i

k + i
− 2(i− 1)

k + i− 1

Then ~α is a demanding distribution. Moreover, it has the minimal average
optimal cost avgk(~α) among demanding distributions.

Proof. Given a strategy, we will call any its maximal substring containing
a single kind of letter a run. Let us define a set of basic strategies B =
{σ1, σ2, . . . , σk}, where σj = 1j2k1k−j . Clearly, set B consists of all strategies
with at most 3 runs.

An agent employing strategy σj visits j vertices of the first path before trying
the second path. Therefore, if the first path is actually the cycle segment in a
challenge of length i, the cost of the agent’s response equals

costk(σj , i, C) = k + 2i+ 2j

If the first path is the ray in a challenge of length i, the cost depends on whether
the agent encounters the last ray vertex during its j moves on the first path:

costk(σj , i, R) =

{
k + 2i if i ≤ j
3k + 2i+ 2j if i > j

For any demanding distribution ~α = (α1, α2, . . . , αk), the average cost of a
basic strategy σj is at least k + avgk(~α). Let us first compute avgk(σj , ~α):

avgk(σj , ~α) =

k∑
i=1

αi
2

(k + 2i+ 2j) +

j∑
i=1

αi
2

(k + 2i) +

k∑
i=j+1

αi
2

(3k + 2i+ 2j)

=

k∑
i=1

2αi(k + i+ j)−
j∑
i=1

αi(k + j)

= k + 2j + avgk(~α)−(k + j)

j∑
i=1

αi

If ~α is demanding, we have

k + avgk(~α) ≤ k + 2j + avgk(~α)−(k + j)

j∑
i=1

αi

j∑
i=1

αi ≤
2j

k + j
(3.15)

36

Let us set
αi =

2i

k + i
− 2(i− 1)

k + i− 1

so that the equality holds in (3.15) for any j ∈ {1, 2, . . . , k} (which also im-
plies

∑k
i=1 αi = 1). Firstly, we will prove that no distribution satisfying (3.15)

achieves lower average optimal cost than ~α does. Secondly, we will show that ~α
is demanding.

Let us consider a distribution ~β = (β1, β2, . . . , βk) satisfying (3.15) such that
for some j, the inequality is strict, i.e.

j∑
i=1

βi =
2j

k + j
− ε

for some ε > 0. We may increase βj by ε and correspondingly decrease one or
more of βj′s for j′ > j, thus obtaining a distribution with lower average optimal
cost that satisfies (3.15) too. Therefore, the only distribution that cannot be
improved is ~α.

Now, we are going to prove that for any strategy σ, avgk(σ, ~α) ≥ k+avgk(~α).
We already know this condition holds for strategies with at most 3 runs. Let
us consider a strategy σ with at least 4 runs; we will denote the lengths of the
last two runs by x and y. Regardless of the letters in these runs, there are some
other runs before them with the same letters, hence 1 ≤ x, y ≤ k−1. We create
another strategy σ′ by exchanging the last two runs of σ (the number of runs
decreases by one).

Similarly as in the proof of lemma 20, we examine the vertices of two paths
of a challenge in the order specified by σ and σ′. In particular, we are interested
in the last x vertices of one path and the last y vertices of the other path,
because that is where our two strategies differ. Let us denote by t the number
of steps an agent employing σ takes to visit the (2k−x−y)-th vertex. To reach
a node among the following x vertices, the agent makes additional k − y steps
to return to the entrance and then i steps, where i is the distance between the
node and the entrance. For each of the following y vertices, the agent makes
t+ (k − y) + 2k + i steps. Therefore, the contribution of the last x+ y vertices
to the average cost of σ is

k∑
i=k−x+1

αi
2

(t+ 2k − y + 2i) +

k∑
i=k−y+1

αi
2

(t+ 4k − y + 2i) (3.16)

On the other hand, an agent employing σ′ does not change paths after
visiting the (2k− x− y)-th vertex. Hence, to reach a node among the following
y vertices, it takes just i − (k − y) steps (again, i is the distance between the
node and the entrance). For the following x vertices, the agent makes y + k+ i
steps. Altogether, the contribution to the average cost of σ′ is

k∑
i=k−y+1

αi
2

(t+ y + 2i) +

k∑
i=k−x+1

αi
2

(t+ 2k + y + 2i) (3.17)

37

We show that (3.17) is less than (3.16):

k∑
i=k−x+1

αi
2
y +

k∑
i=k−y+1

αi
2
y <

k∑
i=k−x+1

αi
2

(−y) +

k∑
i=k−y+1

αi
2

(4k − y)

k∑
i=k−x+1

αiy <

k∑
i=k−y+1

αi(2k − y)

y

(
1−

k−x∑
i=1

αi

)
< (2k − y)

(
1−

k−y∑
i=1

αi

)

y

(
1− 2(k − x)

2k − x

)
< (2k − y)

(
1− 2(k − y)

2k − y

)
y · x

2k − x
< (2k − y) · y

2k − y
x < k

The average cost of any strategy with at least 4 runs can be improved while
decreasing the number of runs by one. Therefore, basic strategies achieve
lower average cost than others, and we proved that they satisfy the condition
avgk(σj , ~α) ≥ k + avgk(~α). Hence, ~α is a demanding distribution.

Lemma 23. Let ~α be the ray lengths distribution defined in the statement of
lemma 22. Then

avgk(~α) = 4k (H2k−1 −Hk−1)− k
where Hn is the n-th harmonic number.

Proof. From the definition of the average optimal cost we have

avgk(~α) = k +

k∑
i=1

2i

(
2i

k + i
− 2(i− 1)

k + i− 1

)

= k + 2k · 2k

2k
− 4

k∑
i=1

i− 1

k + i− 1

= 3k − 4

k∑
i=1

(
1− k

k + i− 1

)
= 4k(H2k−1 −Hk−1)− k

Theorem 24. For any ε > 0, any agent exploring sun graphs with competitive
ratio

1 +
1

ln 16− 1
− ε ≈ 1.564− ε

requires Ω(n) bits of advice.

Proof. This time we use the ray lengths distribution defined in lemma 22 for a
chosen type of sun graphs k. Lemma 18 states that any agent with competitive
ratio strictly less than

k + avgk(~α)

avgk(~α)
= 1 +

1

4(H2k−1 −Hk−1)− 1
(3.18)

38

requires Ω(n) bits of advice.
The limit of H2k−1 −Hk−1 as k approaches infinity is

lim
k→∞

k−1∑
i=0

1

k + i
= lim
k→∞

1

k

k−1∑
i=0

1

1 + i
k

=

∫ 1

0

1

1 + x
dx = ln 2

from which we have the limit of (3.18):

lim
k→∞

1 +
1

4(H2k−1 −Hk−1)− 1
= 1 +

1

ln 16− 1

Therefore, for any ε > 0, there is a value of k such that fraction (3.18) is strictly
greater than

1 +
1

ln 16− 1
− ε

39

Conclusion

In this thesis, we presented an overview of the field of online algorithms and
competitive analysis. Especially, we were interested in advice complexity of
online algorithms, i.e. how one can improve the competitive ratio of an online
algorithm by providing it with a limited amount of information about the input
instance the algorithm is being run on. We chose the online graph exploration
problem as the subject of our research.

We summarized known results and previous work on the online graph explo-
ration problem not only in the general case, but also when the input instances
are restricted to cycles or unweighted graphs (i.e. graphs containing only edges
of a unit length). In general, it remains an open question whether there is a de-
terministic algorithm with a constant competitive ratio. The best known lower
bound on the competitive ratio of an agent without advice is 5/2−ε ([4]). Using
a linear amount of advice, one can achieve competitive ratio 6 + ε (also [4]). On
cycles, an optimal algorithm with the competitive ratio of (1 +

√
3)/2 ≈ 1.366

was discovered by [9]. On unweighted graphs, the depth-first search algorithm
is optimal with the competitive ratio of 2, as was shown by [9].

Our results contribute to the research of the two aforementioned special cases
of the online graph exploration problem. We proved a lower bound of lg n+O(1)
advice bits necessary to find an optimal solution if the set of input instances is
restricted to weighted cycles. Conversely, we showed that lg n+O(lg lg n) bits of
advice are sufficient for an optimal agent. Furthermore, we devised an algorithm
that is able to efficiently utilize a constant number of advice bits: Given 2k+ 1

bits, it explores cycles with the competitive ratio of 1 + 3/22k+1. In the case of
unweighted graphs, we proved a lower bound of Ω(n lg n) advice bits necessary
to find an optimal solution. On the other hand, we showed that O(n lg n) bits
are also sufficient. For sparse graphs, our optimal algorithms require O(n lg ∆)
or O(m) bits of advice, where ∆ is the maximum degree of a graph and m is the
number of its edges. Finally, we proved that any agent exploring unweighted
graphs with a competitive ratio less than 1 + 1/(ln 16− 1) ≈ 1.564 must obtain
Ω(n) bits of advice.

There are several questions left open, mainly in the case of exploring un-
weighted graphs. We showed that Ω(n lg n) bits of advice are necessary for an
agent to find the optimal exploration walk, but what is the lower bound on
advice for an agent performing only slightly worse than the optimum (i.e. using
at most a constant number of additional steps)? Can the lower bound of 1.564
on the competitive ratio of an agent with sublinear advice be pushed towards
2? It would also be interesting to find an algorithm that uses o(n lg n) advice
and achieves a competitive ratio less than 2.

40

Bibliography

[1] Y. Asahiro, E. Miyano, S. Miyazaki, and T. Yoshimuta. Weighted nearest
neighbor algorithms for the graph exploration problem on cycles. Informa-
tion Processing Letters, 110(3):93 – 98, 2010.

[2] H.-J. Böckenhauer, D. Komm, R. Královič, R. Královič, and T. Mömke. On
the advice complexity of online problems. In Algorithms and Computation,
pages 331–340. Springer, 2009.

[3] A. Borodin and R. El-Yaniv. Online computation and competitive analysis.
Cambridge University Press, 1998.

[4] S. Dobrev, R. Královič, and E. Markou. Online graph exploration with
advice. In G. Even and M. Halldórsson, editors, Structural Information and
Communication Complexity, volume 7355 of Lecture Notes in Computer
Science, pages 267–278. Springer Berlin Heidelberg, 2012.

[5] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E.
Young. Competitive paging algorithms. Journal of Algorithms, 12(4):685–
699, 1991.

[6] C. A. Hurkens and G. J. Woeginger. On the nearest neighbor rule for the
traveling salesman problem. Operations Research Letters, 32(1):1–4, 2004.

[7] B. Kalyanasundaram and K. R. Pruhs. Constructing competitive tours
from local information. In Automata, Languages and Programming, pages
102–113. Springer Berlin Heidelberg, 1993.

[8] N. Megow, K. Mehlhorn, and P. Schweitzer. Online graph exploration: New
results on old and new algorithms. Theoretical Computer Science, 463:62–
72, 2012. Special Issue on Theory and Applications of Graph Searching
Problems.

[9] S. Miyazaki, N. Morimoto, and Y. Okabe. The online graph exploration
problem on restricted graphs. IEICE transactions on information and sys-
tems, 92(9):1620–1627, 2009.

[10] D. Rosenkrantz, R. Stearns, and P. Lewis, II. An analysis of several heuris-
tics for the traveling salesman problem. SIAM Journal on Computing,
6(3):563–581, 1977.

[11] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28(2):202–208, 1985.

41

	Introduction
	Overview
	Online Algorithms
	Advice Complexity
	Online Graph Exploration Problem

	Exploring Cycles
	Optimal Solution
	Upper Bound on Advice
	Lower Bound on Advice

	Using Small Advice
	Algorithm
	Competitive Analysis

	Exploring Unweighted Graphs
	Optimal Solution
	Upper Bound on Advice
	Upper Bound on Advice for Sparse Graphs
	Lower Bound on Advice

	Competitive Ratio 1.564 -
	Outline
	Elementary Definitions
	Estimating the Total Cost from Responses
	Strategies
	Basic Lower Bound on Advice
	Graphs with a Fixed Distribution of Ray Lengths
	Linear Lower Bound on Advice
	Uniform Distribution
	Optimal Demanding Distribution

	Conclusion
	Bibliography

