
Comenius University

Faculty of Mathematics, Physics and

Informatics

Department of Computer Science

On descriptional complexity
of infinite words

(Master’s Thesis)

Miroslava Kemeňová

Advisor: doc. RNDr. Pavol Ďurǐs, CSc. Bratislava, 2006

I hereby declare that the work presented in this thesis
is my own, except where otherwise indicated, under
the careful supervision of my thesis adviser.

. .

3

Acknowledgements

I am very grateful to my advisor Pavol Ďurǐs for helpful discussions during
the work on this thesis.

I am grateful to my friends from dormitory, for being a surrogate family
during all the years I stayed there. I also wish to thank Michal Pokorný for
his positive attitude.

Finally, I am indebted to my family for their encouragement and care.

4

Abstract

We consider several mechanisms generating infinite words over a finite
alphabet in real time. The simplest and most used mechanism is iterating a
morphism on free monoid. There are various natural generalizations of this
method – e.g. substitutions, periodic iteration of morphisms and iterating
a deterministic GSM. All these iterative mechanisms are related and can be
unified on the framework of TAG systems. The main result of this thesis is
proving the existence of a dense hierarchy within the class of binary infinite
words obtained by substitution (CD0L TAG system) – depending on cardi-
nality of the control alphabet. Similarly, there is a dense hierarchy within the
class of infinite words obtained by iterating a DGSM – depending on number
of states of the DGSM. Since the notion of the state of a DGSM is equivalent
to the notion of the letter of the control alphabet of a DGSM TAG system,
these are the same results for classes DGSM and binary CD0L.

Keywords. Infinite words, D0L TAG systems, iterating a morphism, sub-
stitution, iterating a GSM.

5

Contents

1 Introduction 7

2 Preliminaries 8

3 Models and examples 10

3.1 Iterating a morphism . 10
3.2 Extensions of D0L TAG systems 12
3.3 Hierarchy . 16

4 CD0L TAG system - cardinality of control alphabet 17

5 Number of states of a DGSM 25

6 Conclusion 28

6

1 Introduction

The theory of words has various applications in many fields of science, but
without doubt it is the theoretical computer science that is responsible for
the expansion of study in this area. The basic object of this theory is a word,
either finite or infinite, i.e. a sequence of symbols from a finite set.

In the last decades the research on infinite words extended rapidly. The
most of the work was done on the combinatorial properties of infinite words,
for example the unavoidability, see [Lo81]. Recent survey articles on this area
are [CK97], [Lo02] and [BK03].

The goal of this thesis is to present new results on complexity of infinite
words. There are various different ways to define the complexity measure of
infinite words. In computational complexity, the measure is how much time
or space is needed to print the n-th letter of a given infinite word. Quite a
lot of research was done on the subword complexity – specifying for every n
how many different factors of the length n there are within the given infinite
word.

We will concentrate on the third type of complexity measure – the de-
scriptional complexity which inquires how complicated mechanism is needed
to generate a particular infinite word. Typical mechanisms used are iterated
morphisms, codings of iterated morphisms, iterated deterministic GSM’s and
double D0L TAG system, see [Th06] and [CK94].

The comparison of the descriptional and computational complexity of
infinite words was brought in [HKL94] and [DM03].

This thesis is organized as follows. In Section 2 we present the basic
definitions of the theory of words.

In Section 3 we introduce the most used devices for generation of infinite
words.

In Section 4 we prove the result that there is an infinite dense hierarchy
within the class of binary codings of infinite words generated by iterating a
morphism, namely CD0L TAG system – depending on the number of letters
in the alphabet of the iterated morphism.

In Section 5 we show that there is an infinite dense hierarchy within the
class of DGSM words, i.e. the infinite words obtained by iterated application
of a deterministic GSM – depending on the number of states of the iterated
GSM.

7

2 Preliminaries

Here we fix our terminology and recall basic notions on words, infinite words
and mechanisms used to generate them.

Let Σ be a non-empty finite set referred to as an alphabet. Elements of Σ
are called symbols or letters, and sequences over Σ are called words. A word
can be finite or infinite. An empty word, which is denoted as ε, is a sequence
of length zero.

We will omit commas and depict the word as:

a0a1a2 . . . an

instead of representing it as a formal sequence

(a0, a1, a2, . . . , an)

Let w = a0a1a2 . . . an be a word with ai ∈ Σ. Then we say that n is the
length of w and we represent it as |w|. By |w|a, where a ∈ Σ we mean the
number of occurrences of letter a in w. We define w(i) to denote the i-th
letter of word w.

If the word u is a continuous subsequence of the word w, we call it a
subword or a factor of w. We define an operator alph(u) which denotes the
set of all letters of Σ that occur in u.

Let u be a finite word over an alphabet Σ where Σ = {a1, a2, . . . , ar}.
We assign to the word u a vector ~u of length r where i-th component of ~u
is equal to the number of occurrences of the letter ai in u (i.e. |u|ai

). The
norm of the vector ‖~u‖ is defined as sum of its components, i.e. it is equal
to the length of the word u.

The catenation1 is operation on two words u = a1a2 . . . an and v =
b1b2 . . . bm and the product of catenation is the word uv = a1a2 . . . anb1b2 . . . bm.
If w = uv, we call u the prefix of word w and v the suffix of w.

The set of all finite words over Σ is denoted as Σ∗ and it is a free monoid
under the operation of catenation. The set of all infinite words over Σ is
denoted as Σω. We use the notion Σ+ for the set Σ∗\{ε}.

The central object of this thesis is an infinite word, often also referred
to as ω-word. Formally, it is a mapping from N into Σ, but we prefer to
represent it as: w = a0a1a2 . . . where ai ∈ Σ. When there is no danger of
confusion we call infinite words simply words.

1or concatenation

8

We call an infinite word marked if it is of the form

w = w1#w2#w3# . . .

where wi’s are finite words over Σ and # /∈ Σ. The word wi will be referred
to as a block of the word w.

A crucial notion for us is that of a morphism on free monoid, which is a
mapping h : Σ∗ → Σ∗, satisfying

h(uv) = h(u)h(v) for all u, v ∈ Σ∗.

Necessarily, h(ε) = ε and it is sufficient to give only the values h(a) for all
letters a ∈ Σ to define the morphism completely. We use notation h : a → w
to denote that h(a) = w.

We shall need several specific types of morphisms. We say that the mor-
phism h is:

non-erasing (or ε-free) if |h(a)| > 0 for all a ∈ Σ

prolongable on a (or that it satisfies the prefix condition on letter a) if
h : a → aw w ∈ Σ+

binary if |Σ| = 2, e.g. Σ = {0, 1}

coding if it is length-preservable, i.e. |h(a)| = 1 for all a ∈ Σ

Other definitions will be presented when needed.

9

3 Models and examples

The goal of this section is to describe some basic algorithmic methods used
to generate the infinite words.

First, however, let us note that the cardinality of the set of infinite words
is non-denumerable, and therefore any algorithmic model can cover only a
small part of it. A simple argument for that is diagonalization.

We aim our attention to generating of infinite words by iteration (repeated
application) of simple mappings, specifically morphisms on free monoids or
their natural generalizations. We concentrate on the real-time generation
of infinite words, therefore erasing is not allowed in our models, i.e. all
considered mappings are ε-free.

We present several different but related mechanisms. Relationship among
them and unified approach to real-time generation of infinite words was de-
veloped in [CK94].

3.1 Iterating a morphism

Probably the simplest and most commonly used procedure generating an
infinite word is iterating a non-erasing morphism h : Σ∗ → Σ∗ on letter a on
which it satisfies the prefix condition.

Thus h(a) = ax for some x ∈ Σ+ and consequently for all i the word
hi(a) is a proper prefix of hi+1(a). Therefore the word w:

w = hω(a) = lim
i→∞

hi(a) = axh(x)h2(x)h3(x) . . .

is well defined, and we say that it is obtained by iterating a morphism h on
letter a.

Generation of this word can be viewed also as a self-reading process us-
ing the same morphism h on the same letter a differently: Let us consider
a potentially infinite tape with one reading and one writing head on it. At
the beginning there is a word h(a) = ax written on the tape, the reading
head is on the first letter of word x and writing head is in the first empty
position on the tape. Now we continue indefinitely by reading current symbol
and moving the reading head right to the next symbol and simultaneously
writing its morphic image and moving the writing head to the first empty
position on tape. This is illustrated in Figure 1.

10

We call this model D0L TAG system and this self-reading mechanism
was introduced by Post already in 1920’s, see [Mi67]. Connection between
iterating a morphism and D0L TAG system is obvious.

We call an infinite word w a D0L word if it, or word Sw is defined by
either of these methods, where S is a symbol not in Σ. Although these
mechanisms define the same class of infinite words, the TAG machine will
serve us better when defining more general devices generating infinite words.

Example 3.1. Even this simple tool can generate quite complicated infinite
words. Typical example is the Thue-Morse word, t = 0110100110010110...
where t(n) is the number of 1’s in the binary expansion bin(n) of n modulo 2.
It can be generated on letter 0 by morphism h : {0, 1}∗ → {0, 1}∗

h :
0 → 01
1 → 10

0 1

0 1 1 0

0 1 101 0

Figure 1: The generation of the Thue-Morse word by the D0L TAG system.

Example 3.2. Another well-known example is the Fibonacci word. This
word reflects the Fibonacci sequence into the theory of words. It is also defined
by a similar recursion as Fibonacci numbers:

f0 = a, f1 = ab, fi+1 = fifi−1, for i ≥ 1

Then
f = lim

i→∞
fi

11

is called Fibonacci word and can be obtained by iteration of a simple morphism
f on letter a:

f :
a → ab
b → a

3.2 Extensions of D0L TAG systems

There are at least two ways to extend the D0L TAG system.

• We can process the D0L word after its generation by some other method.

• We can use more general mappings than morphisms on free monoids.

Substitution (CD0L TAG system), which is a morphic image of a D0L
word under a coding, is natural extension of the D0L TAG system of the
first type. Formally, let h : Σ∗

h → Σ∗
h be a non-erasing morphism that is

prolongable on a and let c : Σ∗
h → Σ∗

c be a coding. Then we call the pair
(h, c) a substitution, generating a CD0L word :

w = c(hω(a))

A way to describe this procedure by a TAG system is to use two tapes. The
first tape is a control tape and generates a D0L word hω(a) and the second
tape is a generating tape and letters generated by morphism h are translated
from the first tape to the second tape by coding c. The result is the word
generated on the second tape.

Example 3.3. CD0L words are obtained from D0L words by merging some
letters together. Therefore, for any morphism h : Σ∗ → Σ∗ the marked
infinite word

Sa|x|#a|h(x)|#a|h2(x)|# . . .

is a CD0L word. Concrete examples are:

Pow2 = Sa#a4#a9# . . .#an2

. . .

and
Sf1#f2#f3# . . .#fn . . .

where fn = aFn and Fn is the n-th Fibonacci number.

12

Iterating a deterministic GSM (DGSM TAG system) is an example of the
modification of D0L TAG system of the second type – using more powerful
mappings than morphism in the iteration. In this case, it is a deterministic
generalized sequential machine (a DGSM), i.e. a deterministic finite state
transducer. We assume that DGSM is non-erasing and satisfies the analogy
of the prefix condition. To generate a DGSM word we can also use the
TAG model. As in the CD0L case, we will use two tapes - control and
generating tape. Control tape records only the current state of the DGSM
which influences the generation of infinite word written on generating tape.
This model is called DGSM TAG system.

Example 3.4. The infinite word

BIN = 0#1#01#11# . . .#rbin(n)# . . .

where rbin(n) is the reverse binary representation of the number n is a DGSM
word.

Double D0L TAG system is further generalization which captures both
CD0L and DGSM extensions of D0L system. It consists of two infinite tapes
each of which has one reading and one writing head on them. Reading heads
are moving synchronously while writing heads may progress at a different
pace. In each step of generation both reading heads read a letter from the
tape and move right to the next letter while both writing heads write the cor-
responding outputs to first empty places of the tapes. Outputs are specified
by rewriting rules of the form:

(

a

b

)

→

(

α

β

)

, where a, b ∈ Σ, α, β ∈ Σ+

Regardless the generality of this system we will refer to one tape as generating
and to the other as control tape. We say that a word is a double D0L word
if it is generated on the generating tape of double D0L system. That is so
because we are interested in generating infinite words rather than pairs of
infinite words. This model is presented in Figure 2.

Note that if in each rewriting rule |β| = 1 we obtain the DGSM TAG
system.

We will present some more restrictions of double D0L TAG system - D0L
TAG system with X control. These are double D0L TAG systems where the
control tape is independent of the generating tape and itself generates a word

13

2 2

0 1

2 2

0 1 0

1 1

2 2

0 1 0

1

1

1 2

Figure 2: The generation of Kolakoski word by the double D0L TAG system.

of type X. We say also that this infinite word was generated by non-interactive
outside control.

We consider only very simple instances where X is either periodic or D0L.
Words obtained by this method are called D0L words with periodic control
and D0L with D0L control, respectively. The rewriting rules of the case of
D0L with D0L control are of the form:

(

a

b

)

→ α and b → β

The word written on the control tape of the D0L with periodic control is
ultimately periodic, i.e. a word of the form Swω. This system is equivalent
to periodic iteration of morphisms. In this method we use p non-erasing
morphisms h0, h2, . . . , hp−1 : Σ∗ → Σ∗ to generate the sequence of words
w0, w1, w2, . . ., where w0 = a ∈ Σ and if wi = a0a1a2 . . . an then

wi+1 = h0(a0)h1(a1)h2(a2) . . . hn mod p(an) (1)

If h0 is prolongable on a then the product of iteration of these morphisms
in the sense (1) yields a unique infinite word.

Example 3.5. Even D0L with periodic control can generate infinite words

14

with remarkable properties. Perhaps the most famous example is Kolakoski
word which is defined by the rules:

• It is made of consecutive blocks of symbols 1 and 2

• The first block is 22

• The length if the i-th block is equal to the value of i-th digit of the word

It starts as follows:
Kol = 2211212212211 . . .

and it can be obtained by periodical iteration of morphisms:

h0 :
1 → 2
2 → 22

and h1 :
1 → 1
2 → 11

Kolakoski word possesses many interesting properties and is also a source of
many open problems, see [Kn72] and [Sh88].

We can proceed also to generalization of the double D0L TAG system.
One of the interesting models is generation of codings of DGSM words be-
cause this method combines both considered types of extensions of D0L TAG
system at once. This model is known as CDGSM TAG system.

More general extension is a triple D0L system which consists of three
totally interconnected D0L TAG systems where the transition rules are of
the form:





a
b
c



 →





α
β
γ



, where a, b, c ∈ Σ, α, β, γ ∈ Σ+

There are many special cases of triple D0L TAG systems other than
CDGSM TAG system but there is no motivation to formalize them. More-
over, there are infinite words that cannot be generated even by triple D0L
TAG system or even by generalized D0L TAG systems with n tapes. This is
sustained by the argument of diagonalization [CK94].

15

3.3 Hierarchy

Here we sketch the relative generating power of mentioned models. The dia-
gram in Figure 3 shows known relations between different families of infinite
words. The solid line denotes inclusion, the arrow meaning the proper inclu-
sion, and the dotted arrow from X to Y denotes that X is not included in
Y . Consequently, the bi-directional dotted arrow represents incomparability
between X and Y .

CD0L

D0L

CDGSM

D0L

DGSM

double D0L

triple D0L

D0L

with D0L
control

with periodic
control

Figure 3: Comparison of the generating power of TAG systems.

The separation of classes double D0L and triple D0L was shown in [DM03].
The other relations were presented in [CK94]. However, there are many
remaining open problems, see [CK94].

16

4 CD0L TAG system - cardinality of control

alphabet

Here we aim our attention only to generation of binary infinite words. We
will prove that for any k ∈ N there exist a binary infinite word that cannot
be generated by CD0L TAG system (h, c) that has less than k + 1 letters in
the control alphabet Σh; and since it can be generated by CD0L TAG system
having exactly k+1 letters in the control alphabet, there is a dense hierarchy
within the class of binary CD0L words depending on the cardinality of Σh.

To establish this let us consider a class of binary marked infinite words

Powk = San1#an2#an3# . . .#ani# . . .

where ni = ik. It is straightforward exercise to prove that these words are
not D0L words.

Theorem 4.1. There is a CD0L TAG system (h, c) generating infinite word
Powk where cardinality of the control alphabet Σh is k + 1.

Proof. The proof is inductive. First, we define the substitution (h, c) which
generates the word Pow2:

h :

S → Sa#
a → abb
b → b
→ a#

And the coding

c :
a → a
b → b
→

We used 3 letters to generate Pow2 (Σh = {a, b, #}). Furthermore, let
us note that in i-th block of generated control word hω(S), there is exactly i
occurrences of letter a.

Now let us state the inductive hypothesis: Let the word

Powk = Sw1#w2# . . .#wi . . .

be generated by substitution (hk, ck) where Σhk
= {a1, a2, . . . , ak, #} and

moreover, following equations hold for all the blocks of the control word
hω

k (S):

17

|wi|a1
= i

|wi|a1
+ |wi|a2

= i2

|wi|a1
+ |wi|a2

+ |wi|a3
= i3 (2)

...

|wi|a1
+ |wi|a2

+ . . . + |wi|ak
= ik

We now define substitution (hk+1, ck+1), where Σhk+1
= {a1, a2, . . . , ak, ak+1, #},

which generates infinite word Powk+1.

hk+1 :
ai → hk(ai).ak+1

ti ∀i, 1 ≤ i ≤ k
ak+1 → ak+1

→ a1#

where ti satisfies the constraint

|hk(ai).ak+1
ti | = 1 + bi + bi+1 + · · ·+ bk

and b1, . . . , bk are coefficients of the polynomial

(n + 1)k+1 − nk+1 = b1.n
k + b2.n

k−1 + · · ·+ bk

Coding ck+1 is defined as follows:

ai → a ∀i, 1 ≤ i ≤ k + 1
→

Clearly, the control word hω
k+1(S) satisfies the equations (2) of the induc-

tion hypothesis.

Now we are going to head towards the proof of the result that the infinite
word Powk cannot be generated by a CD0L TAG system with less than k+1
letters in the control alphabet. This proof will consist of two main parts.
First, we will prove that there is some kind of regularity and periodicity in
the generation of this word by any CD0L TAG system. Then we shall use
this regularity in the second part of the proof where we will show using the
algebraic properties of the word Powk that less than k + 1 letters in the
control alphabet is not enough to generate this infinite word.

18

In the following three lemmas we will state some properties of the mor-
phism which will serve us in the first part of the mentioned proof. In the first
lemma we will prove that the function alph(hx(u)) is ultimately periodic for
every word u.

Lemma 4.1. For every morphism h : Σ∗ → Σ∗ and every word w there exist
positive integers Z and C such that for any i1, i2, j ∈ N:

alph(hZ+i1C+j(w)) = alph(hZ+i2C+j(w)) (3)

Proof. Let G be a oriented graph where vertices represent all subsets of Σ
and an oriented edge leads from the vertex A to vertex B iff B is the set of
all letters occurring in the morphic images of letters from A, i.e. if x ∈ Σ
then

x ∈ B ⇐⇒ ∃a ∈ A, x is a factor of h(a)

The morphic image of every letter is uniquely defined, therefore there is
exactly one outgoing edge from each vertex. Since the graph is finite, the
path from every vertex leads after several steps to a cycle.

Then Z is the length of the path from vertex alph(w) to the beginning of
the cycle and the length of this cycle shall stand for C. Hence the equation
(3) follows directly from the definition of the graph.

Let us now note that the infinite word Powk does not contain two blocks
of the same length. This leads to another useful property of the morphism,
as it is stated in following two lemmas.

Lemma 4.2. Let h be a morphism generating a marked infinite word w
consisting of only finite number of blocks of the length l for every l ∈ N. Let
v be some factor of w occurring infinitely many times in w. Then for any
positive integer i the word hi(v) contains at most one symbol #.

Proof. The claim is trivial.

Lemma 4.3. Let w be a marked infinite word generated by substitution (h, c)
on the letter S, consisting of only finite number of blocks of the length l for
every l ∈ N. Let v be some factor of the word hω(S) occurring infinitely many
times in hω(S). Then for any positive integer i the word hi(v) contains at
most one letter that is translated to the symbol # by the coding c.

Proof. Follows directly from previous lemma.

19

Lemma 4.4. For any positive integer P , the polynomials

(x + P)k − xk

(x + 2P)k − xk

(x + 3P)k − xk

...

(x + kP)k − xk

are linearly independent.

Proof. The degree of each of these polynomials is k − 1 and its coefficients
are written into the rows of a matrix:

























kP
(

k

2

)

P 2
(

k

3

)

P 3 . . . P k

2kP 4
(

k

2

)

P 2 8
(

k

3

)

P 3 . . . 2kP k

3kP 9
(

k

2

)

P 2 27
(

k

3

)

P 3 . . . 3kP k

...
. . .

...
. . .

...
. . .

kkP k2
(

k

2

)

P 2 k3
(

k

3

)

P 3 . . . kkP k

























This matrix can be easily reduced to well-known symmetric Vandermonde’s
matrix (see [BL67]), and therefore these k polynomials are linearly indepen-
dent.

With the above lemmas we can prove the final theorem of this section.

Theorem 4.2. The infinite word Powk cannot be generated by a substitution
h, c where |Σh| < k + 1.

Proof. Let there be a CD0L system (h, c) generating the infinite word Powk

where the control word w = hω(S) is over Σ where |Σ| = r < k + 1. Let us
divide the letters of the alphabet into two sets Σa and Σ# according to the
letter to which they are translated by coding c. We will call all letters of the
set Σ# simply hashes and the letters of the set Σa a-letters.

Let the last occurrence of the symbol appearing only finitely many times
in the control word w be in the position N of the word w. Then let us fix
as u some factor of w appearing on the tape right to this symbol (i.e. in

20

the position greater than N) such that u is written on tape between reading
and writing head at some time of the generation. That means that all letters
of u occur infinitely many times in w and since word u is written between
heads at some step of generation, the writing head will follow with writing
the iterated morphic images of u on the tape so that the rest of the word will
be

uh(u)h2(u)h3(u) . . .

According to Lemma 4.1 there are positive integers Za, Ca for each letter
a occurring in the word u such that Za, Ca satisfy the equation (3). Let Z
and C be integers defined as follows:

Z = max{Za| a is a letter of the word u}

and
C = lcm2{Ca| a is a letter of the word u}

Then the condition

alph(hZ+jC+l(a)) = alph(hZ+l(a)), for all j, l

holds for every letter a of the word u.
This means if u = u1u2 . . . ut, with ui ∈ Σ, then for any positive integer l

the words

hZ+l(ui), h
Z+l+C(ui), h

Z+l+2C(ui), h
Z+l+3C(ui), . . . (4)

consist of the same letters.
Moreover, since the letter ui is occurring infinitely many times in the word

w, we obtain from Lemma 4.3 that either there is exactly one occurrence of
hash in each of the words of the sequence (4), or there are no hashes within
these words.

Consequently, for any positive integer l there is the same number of hashes
in each of the words

hZ+l(u), hZ+l+C(u), hZ+l+2C(u), hZ+l+3C(u), . . . (5)

We shall now consider two cases:
Case 1: There is an integer n ≥ Z such that hn(u) contains at least two
hashes. Consequently, also the words

hn(u), hn+C(u), hn+2C(u), . . . (6)

2the least common multiple

21

contain at least two hashes.
Let us fix the first two occurrences of hashes in the word hn(u), say #1

and #2. These are delimiting a block of a-letters that will be in the end
translated by the coding c to some block of the infinite word Powk, let it be
the s-th block.

The hash #1 is a symbol of the image hn(up) for some letter up of u
and #2 is a letter of hn(uq) for some letter uq of u and moreover, p 6= q.
This follows directly from Lemma 4.3 and the fact that all letters in u are
occurring infinitely many times in w.

Note that the first two occurrences of hashes in all words of the sequence
(6) are again letters belonging to the images of the letters up and uq, therefore
these hashes are again symbols #1 and #2. But since for any l there is the
same number of hashes in the words of the sequence (5), there is a positive
integer M such that the block delimited by these symbols #1 and #2 in the
word hn+jC(u) is coded by c to (s + jM)-th block of the infinite word Powk.

Now let us concentrate on the sequence of words

hn(up), h
n+C(up), h

n+2C(up), h
n+3C(up), . . . (7)

We already noted that there is exactly one hash in each of these words,
concretely the symbol #1. But this hash has originated from some letter e1,
i.e. hC(e1) contains the letter #1. Since there are the same letters in these
words, also the symbol e1 must occur exactly once in each of these words.
Using the analogous reasoning we can build a sequence

. . . e3 −−−−−−→
hC

e2 −−−−−−→
hC

e1 −−−−−−→
hC

#1, (8)

i.e. ei belongs to the image hC(ei+1) and must occur exactly once in each
word of the sequence (7).

Since number of different letters in Σ is only finite and the morphism
is ‘deterministic’, there must be a cycle within the derivation path (8), i.e.
there is a symbol e = ez for some z and a positive integer g such that hgC(e)
contains both symbols #1 and e.

By analogous method we prove that there is a symbol d and a positive
integer g′ such that the symbol d occurs in each of the words

hn(uq), h
n+C(uq), h

n+2C(uq), h
n+3C(uq), . . .

exactly once and moreover, hg′C(d) contains both symbols #2 and d.

22

Now let us put P = gg′C and consider the sequence of words

hn(u), hn+P (u), hn+2P (u), hn+3P (u), . . . (9)

Since (9) is a subsequence of the sequence (6) it satisfies similar conditions.
Concretely, each of these words contains the same number of hashes and
there is a positive integer M ′ such that the first two hashes of hn+jP (u) are
delimiting the block of a-letters translated to the (s + jM ′)-th block of the
word Powk.

Let yi denote the word delimited by e and d in the word hn+iP (u). Then
translating the word eyid by the morphism hP will produce the word qeyi+1dq′

where q, q′ ∈ Σ∗.
Moreover, since in each of the words of the sequence (9) the symbols #1

and e (#2 and d, respectively) belong to the image hP (e) (hP (d), respec-
tively), the distance between these symbols in all words of the sequence (9)
is the same.

Let us now consider the vectors ~yi assigned to the words yi. It is obvious
that there exists a matrix A which is a matrix of transformation of the vector
~yi to the ~yi+1 for any i ∈ N.

Note that there is no occurrence of symbols equivalent to e or d in the
words yi, i ∈ N, therefore the components of the vectors ~yi corresponding
to these letters are equal to zero. Therefore for fixed i ∈ N the k vectors
~yi+1 − ~yi, ~yi+2 − ~yi, . . . , ~yi+k − ~yi are linearly dependent, i.e.

(∃a1, a2, . . . , ak 6= 0) a1(~yi+1 − ~yi) + . . . + ak(~yi+k − ~yi) = 0 (10)

Furthermore, since ~yi+1 = ~yiA, we get that the equation (10) holds for
each i ∈ N with the same coefficients aj’s, i.e.

(∃a1, a2, . . . , ak 6= 0)(∀i ∈ N) a1(~yi+1 − ~yi) + . . . + ak(~yi+k − ~yi) = 0

Moreover, this equation holds also for norms of these vectors:

(∃a1, a2, . . . , ak 6= 0)(∀i ∈ N) a1‖ ~yi+1 − ~yi‖ + . . . + ak‖ ~yi+k − ~yi‖ = 0

Let us now note that the expression

‖ ~yi+r − ~yi‖, 1 ≤ r ≤ k (11)

denotes the difference in length between the words yi+r and yi. Since the
distance between the symbol #1 and e (#2 and d, resp.) is same in all words

23

of the sequence (9), the expression (11) represents also the difference in length
between the (s+(i+ r)M ′)-th and the (s+ iM ′)-th block of the word Powk.

Therefore, for each i ∈ N the norms of the vectors ~yi+1 − ~yi, ~yi+2 −
~yi, . . . , ~yi+k − ~yi are equal to the polynomials

(i + M ′)k − ik

(i + 2M ′)k − ik

(i + 3M ′)k − ik

...

(i + kM ′)k − ik

But according to Lemma 4.4 these polynomials are linearly independent
which is a contradiction with (11).
Case 2: For any integer n ≥ Z the morphic image hn(u) contains at most
one hash. This can be easily reduced to the first case:

First, there must be integers t > s ≥ Z such that both hs(u), ht(u)
contain exactly one hash, otherwise following from some position of the tape
the writing head would be writing only a-letters, a contradiction with the
definition of the word Powk.

Then if we substitute the word u for the word

hs(u)hs+1(u) . . . ht(u)

and the morphism h for the morphism ht−s+1 the proof follows as in the first
case.

24

5 Number of states of a DGSM

In this section we present the result that there is a dense infinite hierarchy
within the class of DGSM words – based on the number of states of the
iterated DGSM. Actually, this is the similar result to the one presented for
the class of CD0L words in the previous chapter, since the notion of state is
equivalent to that of a letter of the control tape of the DGSM TAG system.

We shall need following class of binary marked words over Σ = {a, #}:
Let us fix a positive integer k and define an infinite word

Link = Sc1#c2#c3# . . .

where cn = w1,n#w2,n# . . .#wk,n = an#a2n#a3n# . . .#akn. We shall call
the words cn components of Link and its subwords wi,n delimited by symbols
the units of cn. We say that the unit wi,n holds a position i in the word
cn.

Thus, explicitly the infinite word Link looks like follows:

Link = Sa#a2# . . .#ak#a2#a4# . . .#an#a2n . . .#akn#an+1 . . .

Theorem 5.1. For each positive integer k there exists a DGSM TAG system
Mk having exactly k states which generates the infinite word Link.

Proof. Clearly, the word Link is obtained by a deterministic DGSM TAG
system Mk with states q1, q2, . . . qk and the following set of transition rules:

(

S
q1

)

→

(

Sa#a2#a3 . . .#ak#
q1

)

(

a
qi

)

→

(

a
qi

)

, for each i ∈ {1, 2, . . . , k}

(

#
qi

)

→

(

ai

q(i+1) mod k

)

, for each i ∈ {1, 2, . . . , k}

Similarly as in the proof of Theorem 4.2 we will prove there is some kind
of regularity in the generation of the word Link which leads to the following
result.

Theorem 5.2. The infinite word Link cannot be generated by a DGSM TAG
system having less than k states.

25

Proof. Suppose there is a DGSM TAG system M generating the infinite word
Link and the number of states of M is lower than k. Let Q denote the set of
those states of GSM M that are read from the control tape infinitely many
times at those steps of computation when there is a symbol # read from the
generating tape. Note that since both heads move synchronously these states
are represented by letters written ‘under’ the symbol # on the control tape.

If we generalize the notion of a rewriting rule from translating one letter
to translating a word w ∈ Σ+ we get that there is a positive integer B such
that a rewriting rule for each state qs ∈ Q and for each i ≥ B must be of a
form:

(

#ai

qs

)

→

(

ax#ay

qz

)

, for some x, y ∈ N and qz ∈ K (12)

This is obtained as follows. First, since a rule of this form is applied
infinitely many times for qs (differing only in number of a’s following the
symbol #), there must be at most one occurrence of letter # on the right-
hand side of (12). Otherwise there would be infinitely many blocks with the
same length in the word Link which is obviously a contradiction.

In fact, there must be exactly one occurrence of # on the right side of the
rewriting rule (12) or else the number of letters # written between reading
and writing head would decrease in time which is simply false.

That means that from some point of the computation the number of
hashes between heads does not vary in time and therefore there are positive
integers t, n1 such that every n-th block of the word Link where n ≥ n1 is
with some delay translated to the (n+t)-th block by the DGSM TAG system
M .

Thus translating i-th unit of the n-th component will be as follows:

w1,n → wp,n+r

w2,n → wp+1,n+r

· · ·

wi,n → wk,n+r

wi+1,n → w1,n+r+1

· · ·

wk,n → wk−i,n+r+1

But since the GSM M is non-erasing t must be a multiple of k. Otherwise
there would be a block with an image shorter than the block itself. Indeed,

26

if for any n the unit wj,n is translated to the unit w1,n+r+1 where j 6= 1, then
putting n ≥ r+1

i−1
yields a contradiction.

Let us now consider the word

v = an.k!, n ≥ n1

This is obviously a factor of Link. Furthermore,

v = wi, n.k!
i

, for each i ∈ {1, 2, . . . , k}

which means that for each position i there is a component in which v is the
unit holding the position i. Since the number of states of the GSM M is
lower than k, there are at least 2 of these positions where the left delimiting
hash is read in the same state. Let it be the positions c, d.

We have already shown that following from the n1-th block each unit wi,n

is translated to the unit wi,(n+ t

k
) and therefore wc, n.k!

c

must be translated to

wc,(n.k!
c

+ t

k
) and wd, n.k!

d

to wd,(n.k!
d

+ t

k
). But this is a contradiction with the fact

that the GSM M is deterministic.

27

6 Conclusion

In this thesis we investigated various mechanisms generating infinite words.
The most used mechanism is iterating a morphism. We concentrated on
two basic extensions of this method – coding the morphic word after its
generation, namely CD0L TAG system; and using more powerful mechanism
in the iteration, namely DGSM TAG system.

We proved two main results:

• There is a dense hierarchy within the class of binary CD0L words –
depending on the cardinality of the control alphabet.

• There is a dense hierarchy within the class of DGSM words – depending
on the number of states of the iterated deterministic GSM.

Since the notion of state of a deterministic GSM is equivalent to the
notion of the letter of a control alphabet of a TAG machine, these are the
same results for classes binary CD0L and DGSM.

It has to be emphasized that there seems to be very few results of nature:
“Certain infinite word cannot be generated by certain mechanism.” We hope
that ideas from proofs of theorems 4.2 and 5.2 may be useful in searching for
concrete words that cannot be generated by CD0L and DGSM TAG systems.

Finally, we would like to refer to one open problem of this type, presented
in [CK94] – namely, whether there is an infinite word generated by morphisms
iterated periodically which cannot be generated by any CD0L TAG system.

28

References

[BL67] C. Birkhoff and S. Mac Lane, Algebra. New York: MacMillan, 1967.

[BK03] J. Berstel and J. Karhumäki, Combinatorics on Words - A Tutorial,
Bull. EATCS 79. 2003.

[CK94] K. Culik II and J. Karhumäki, Iterative devices generating infinite
words, Int. J. Found. Comput. Sci. 5, 1994.

[CK97] C. Choffrut and J. Karhumäki, Combinatiorics of words, In: A.
Salomaa and G. Rozenberg (eds.), Handbook of Formal Languages,
Vol. 1. Springer-Verlag, 1997.

[DM03] P. Ďurǐs and J. Manuch, On the computational complexity of infi-
nite words, Theoret. Comput. Sci. 1-3, 2003.

[HU79] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[HKL94] J. Hromkovič, J. Karhumäki, and A. Lepistö, Comparing descrip-
tional and computational complexity of infinite words, In: J.
Karhumäki, H. Mauer, and G. Rozenberg (Eds., Results and Trends
in Theoretical Computer Science LNCS 812. Springer-Verlag, 1994.

[Kn72] D. Knuth: Solution to Problem E 2307, Amer. Math. Monthly 86,
1972.

[Lo81] M. Lothaire: Combinatorics on Words. Addison-Wesley, 1981.

[Lo02] M. Lothaire: Algebraic Combinatorics on Words. Encyclopedia of
Mathematics 90, Cambridge University Press, 2002.

[Mi67] M.L. Minsky, Computation: Finite and Infinite Machines.
Prentice-Hall, 1967.

[Sh88] J. Shallit, A Generalization of Automatic Sequences, Theoretical
Computer Science 61, 1988.

[Th06] A. Thue, Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr.
I. Mat. Nat. Kl., Christiana 7, 1906.

29

Resumé

Táto diplomová práca je venovaná zložitosti nekonečných slov, ktorá
je popisovaná generat́ıvnou silou rôznych výpočtových mechanizmov. Na-
jznámeǰśım a najpouž́ıvaneǰśım z týchto mechanizmov je iterovanie homo-
morfizmu. Sú dve základné možnosti rozš́ırenia tejto metódy:

• Aplikovat’ nejakú d’aľsiu metódu na nekonečné slovo po jeho vygen-
erovańı iterovańım homomorfizmu.

• Použ́ıvat’ v iterovanom procese silneǰsie zobrazenie, ako je homomorfiz-
mus.

Substitúcia (CD0L-TAG systém), je pŕıkladom rozš́ırenia prvého typu.
Pri tejto metóde sa nekonečné slovo vygenerované iterovańım homomorfizmu
prelož́ı kódovańım na výsledné nekonečné slovo. Pŕıkladom druhého typu
rozš́ırenia je DGSM TAG systém, v ktorom sa iteruje deterministické GSM.
Existujú mnohé iné rozš́ırenia metódy iterovania homomorfizmu, ktoré sú
zjednotené na báze TAG systémov (D0L s periodickou kontrolou, double
D0L, DGSM, atd’.).

Hlavnými výsledkami tejto práce sú dve tvrdenia:

• V triede binárnych nekonečných slov generovaných CD0L TAG systé-
mami je maximálne hustá hierarchia vzhl’adom na počet ṕısmen kon-
trolnej abecedy (abecedy iterovaného homomorfizmu).

• V triede DGSM – slov generovaných iterovańım deterministického GSM
je maximálne hustá hierarchia vzhl’adom na počet stavov iterovaného
GSM.

Ked’že počet stavov GSM je ekvivalentný mohutnosti kontrolnej abecedy
TAG systému, hovoria tieto dva tvrdenia o tej istej vlastnosti daných tried.

Diplomová práca je zoradená nasledovne:
Úvodná čast’ je venovaná rôznym pohl’adom na zložitost’ nekonečných slov
a oboznámeniu s obsahom práce.
Druhá čast’ pozostáva z defińıcíı a základnej terminológie z oblasti teórie slov
a jazykov.
Tretia čast’ popisuje základné výpočtové modely generujúce nekonečné slová

30

a pŕıklady konkrétnych nekonečných slov, ktoré tieto modely generujú. Tieto
modely definujú triedy nekonečných slov, vzt’ahy medzi ktorými sú uvedené
v závere tejto časti.
V štvrtej časti je dokázaný výsledok o existencii hustej hierarchie v triede
binárnych CD0L slov.
V piatej časti je dokázaný výsledok o existencii hustej hierarchie v triede
DGSM slov.
V závere práce poukazujeme na otvorené problémy, ku riešeniu ktorých môže
táto práca pomôct’.

31

