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Abstract

Lot of research was done on the string similarity, due to many practical
applications (similarities of DNA/RNA structures, etc). In the first part of
this work, we shall introduce an abstract model of the distance of words, from
which the known distances such as edit-distance (Levenshtein distance) can
be derived. We shall present some other instances of this model. We shall
discuss what derivations can/cannot be effectively computed. In the second
part of this work we shall extend the notion of the distance on words to
the distance of a word and a language. We present algorithm for computing
∆-similarity of a word and a context-free language.
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Chapter 1

Similarities and distances

1.1 Introduction

The problem of determining, whether two strings are similar or not, is as old
as the mistakes done during some transcription process. Today, similarity of
strings is important mainly in:

(i) Similarity of DNA / RNA structures

(ii) Searching engines (Google, Amazon, AltaVista, etc.)

(iii) Correcting mistakes done during typing text

(iv) Protection from plagiarism

This wide area of applicability indicates that there can hardly exist one uni-
versal measure which would satisfy all these needs. This is exactly the reason,
why one can invest an endless effort to invent special distance functions that
would be fitted for very special sets of problems (and would be very accurate
for them). As a result of this effort we have many measures (and imple-
mented algorithms) and often one is not sure which algorithm is the best
one to use. For example in (i) only skilled molecular biologists know, which
algorithm will do the job best.

In this work, we shall present some frequently used distances and also
some distances that were not studied so well yet, or were not studied at all.
We shall also define a new abstract model can be defined, which generalizes
many distances to one abstract distance and thus it shows their common
base. In the second part of this thesis we shall investigate the distance
between a word and a language. We shall present known algorithm for edit-
distance between word and context-free language and also a new algorithm
for ∆-similarity between word and context-free language.
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1.2 Similarities and distances

In this chapter, we shall introduce some similarities and distances we can
compute on finite words. We shall recall the edit-distance, which is a stan-
dard and well studied distance on finite words, then ∆-similarity which was
introduced in [1]. We shall be interested in some modifications of the edit-
distance and then, some new distances will be introduced, which, were not
investigated so far. Let D : Σ∗ × Σ∗ → R be a distance function, measuring
the distance between two given words. Usually we require D to have these
properties:

D(w, w) = 0 (reflexivity)

D(u, w) = D(w, u) (symmetry)

D(u, w) + D(w, v) ≥ D(u, v) (triangle inequality)

However, we shall also consider other measures, e.g., measures that are
not symmetric (fragment distance). When defining a new distance measure,
it is important to know, which of these properties it has. Let us now consider
requirements a similarity function S should satisfy. First, S(v, w) should be
a real number between 0 and 1 (values 0 and 1 are allowed). The reason is
simple. We expect S(v, w) to provide the percentage of how similar the two
words are. There are, again three properties, that S should satisfy:

S(w, w) = 1 (reflexivity)

S(u, w) = S(w, u) (symmetry)

1.3 Abstract model for distances and its in-

stances

1.3.1 Basic edit-distance

Edit-distance is a common way of measuring distances between words. It is
motivated by editing text on a computer. Suppose we have a word u written
in a editor and we need to rewrite it to w. To transform u to w we can use
one of the following operations:

(i) Delete any letter from the word. Letters to the right of the deleted letter
will be shifted left, so that no space is created.
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(ii) Insert any letter to some position in the word. Letters to the right of
this position are shifted to the right.

(iii) Replace any letter by another one (substitution).

One can see that inserting and deleting is used in the usual way, as we
know it from typing the texts. Now, edit-distance is the minimal number
of operations which allows us to transform one word into another. This
definition is quite simple. We shall work with a more abstract definition,
that will allow us to treat other distances, using a similar principle. Many
distance functions can be described by a triple (O, T, C). O is a universum
of all possible operations that can be performed on words. T is a translation
function defined as follows:

T : O × {Σ∗ ∪ {⊥}} → Σ∗ ∪ {⊥}

C is a cost function, C : O → R. By a multi-operation we shall mean some
finite sequence of members of O. Universum of all these sequences will be
denoted by O∗. We shall treat the multi-operations as words and we shall
use standard word-operations to manipulate them. The translation function
can be extended also for multi-operations in this way: Let T (ε, w) = w and
for o1, . . . , on ∈ O

T (o1 . . . on, w) = T (on, T (on−1, (. . . T (o1, w) . . .)

If u = T (o, w) for some words u, v and a (multi-)operation o we say, that
o transforms u into v. Symbol ⊥ means, that the result of the translation
is not defined and we define T (o,⊥) = ⊥. Also the cost function can be
extended from operations to multi-operations. There are more possibilities
how to do this. The following definition suffices for the needs of this thesis:
1

C(o1 . . . on) = C(o1) + . . . + C(on)

Now we can finally define the distance between two words.

Definition 1.3.1. Given a triple (O, T, C) described above, the edit-distance
between words u, v is defined to be the cost of the cheapest multi-operation,
that transforms u into v. This distance of words u and v will be denoted as
dOTC(u, v) (when it is clear what triple (O, T, C) we are using, we can omit
the subscript OTC).

1Another approach is shown in [4], where authors show stochastic approach to edit-
distance.
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We shall now use this framework for defining the ”standard”edit-distance,
mentioned earlier, in a formal way. However, we shall not allow substitution
as an operation. The reason for this is simple, the substitution can be done
using insertion and deletion, so it is redundant. Of course, it has its mean-
ing when considering costs of operations, but when looking for the simplest
measure, we do not want such redundancy. So, let us define an instance of
edit-distance which we shall call the basic edit-distance.

Definition 1.3.2. The basic edit-distance is the edit-distance defined using
the triple (O, T, C), where:
O consists of pairs (a, n) a ∈ Σ ∪ {ε} , n ∈ N. Operations of type (ε, n) will
be called deletions, the other operations will be called insertions.
The translation is defined as follows:

(T ((ε, n), w) = u) ↔ ((∃p, s ∈ Σ∗) (∃a ∈ Σ) w = pas ∧ u = ps ∧ |p| = n)

If a ∈ Σ then

(T ((a, n), w) = u) ↔ ((∃p, s ∈ Σ∗) w = ps ∧ u = pas ∧ |p| = n)

In both definitions at most one u satisfies the conditions, so they are correct.
If there is no u satisfying the condition (such a, p, s, resp. p, s do not exist),
then the translation result is undefined.
The cost function is defined by: C(a, n) = 1 for all values of n, and a ∈
Σ ∪ {ε}.

This is one instance of the edit-distance. Varying O, T and C we can
modify the edit-distance, so it will have many useful properties. Before we
look at these modifications, let us first see some properties of the basic edit-
distance and consider the way to compute the basic edit-distance.

Theorem 1.3.1. The basic edit-distance is reflexive, symmetric and it sat-
isfies triangle inequality.

Proof: The reflexiveness is trivial, we do not need any operation to trans-
form a word to itself. Consider words u, v and a multi-operation o which
transforms u into v. When replacing all insertions by deletions and vice versa
we can contruct the multi-operation o′ having the same cost, that transforms
v into u. This means, that the basic edit-distance is symmetric. When trans-
forming u into w, we can first transform u into some v and then this v into
w. The multi-operation that does this is not necessarily the cheapest one,
but it is some way of transforming u into w, so d(u, w) ≤ d(u, v) + d(v, w).
�
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Definition 1.3.3. Let dOTC be a distance measure, and A ⊆ O. By CA we
denote such cost function, that counts the cost only of those operations, that
are member of A. Formally:

CA(o1 . . . on) =
∑

oi∈A

C(oi)

CA(o) will be called a partional cost of o.

Definition 1.3.4. Let dOTC be a distance measure, A1, . . . , An ⊆ O and
let for any i 6= j the condition Ai ∩ Aj = ∅ holds. Let o be any multi-
operation. We say that o can be aligned in order A1, . . . , An, if there exists a
multioperation o′ = o′1 . . . o′n such that these four conditions hold:

(i) (∀u ∈ Σ∗) T (o, u) = T (o′, u)

(ii) C(o′) ≤ C(o)

(iii) (∀i ∈ N) CAi
(o′) ≤ CAi

(o)

(iv) (∀i, j ∈ N) ((i ≤ j ∧ o′i ∈ Ak ∧ o′j ∈ Al) ⇒ k ≤ l)

Speaking informally, o can be aligned in order A1, . . . , An if we can find
o′ that realizes the same translation, it is not more expensive and even its
“partial” costs are not bigger and o′ has structure, that operations from A1

go first, then A2, etc..

Lemma 1.3.1. Considering the basic edit-distance, any multi-operation o

can be aligned in order: deletions, insertions. It can also be aligned in order:
insertions, deletions.

Proof: Consider two words u, v and a multi-operation o that transforms
u into v. We can make o cheaper (and even partially cheaper) if we eliminate
of all such pairs insertion, deletion, where the deletion deletes the same letter
that the insertion inserted. Clearly the multi-operation o′ obtained in this
way will have the same translation meaning as o. The deletions of o′ can
delete only the original letters of u, so they can happen at the begining of o′

and the insertions can be done afterwards. The proof, that also alignment in
the order insertions, deletions is also possible is similar. �

Notation 1.3.1. Let u be a word and i be an integer. Let us denote by ui

the i-th letter of word u. Also, let us denote by [u]i the prefix of u of length
i.
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Notation 1.3.2. Let us denote by N
l
k the set of all integers i, k ≤ i ≤ l. By

N
+ we denote all non-negative integers, e.g., 0, 1, 2, . . .

Definition 1.3.5. The longest common subsequence of words u, v is the word
w with maximal length |w| = n such that there exist k1, . . . , kn and l1, . . . , ln
such that ∀i, j i < j ⇒ ki < kj ∧ li < lj and ∀i ≤ n uki

= vli = wi. We shall
denote the longest common subsequence of words u and v by LCS(u, v).

We shall use also another look on LCS. Let f : N
+ → {N

+ ∪{⊥}} be an
increasing function such that for every i either f(i) = ⊥ or ui = vf(i) holds.
If we take such f that has minimal number of ⊥ values (for i = 0, . . . , |u|−1),
then the leters on positions in which f is defined form the LCS. We shall
also say that f defines partial mapping between letters of the words u, v.

Theorem 1.3.2. Let d denote the basic edit-distance. Then the following
equation holds:

(∀u, v ∈ Σ∗) d(u, v) = |u| + |v| − 2.|LCS(u, v)|

Proof: First, we shall prove that we can transform u into v using |u| +
|v| − 2.|LCS(u, v)| operations. First we take u and delete all letters that
are not in the longest common subsequence. We can do this using a multi-
operation with cost |u| − |LCS(u, v)|. Next, we shall add those letters that
are in v and are not in the longest common subsequence. This can be done
using a multi-operation with cost |v| − |LCS(u, v)|. The total cost of these
two multi-operations is exactly the right side of our equation, so we prove
that

(∀u, v ∈ Σ∗) d(u, v) ≤ |u| + |v| − 2.|LCS(u, v)|
Let us prove the other inequality. Using Lemma 1.3.1 we know, that for any
words u, v there exists multi-operation o such that T (o, u) = v, C(o) = d(u, v)
and o = o1.o2, where o1, o2 are multi-operations consisting only from dele-
tions and insertions respectively. Let w = T (o1, u). It is easy to see that
T (o2, w) = v so there exists a multi-operation o3 consisting only of dele-
tions, such that T (o3, v) = w and C(o3) = C(o2). Length of w is equal to
|u| − C(o1) and also |v| − C(o3). Combining these two equations we have
2|w| = |u| − C(o1) + |v| − C(o3) = |u| + |v| − C(o). w represents some
common subsequence of words u and v 2 so its lenght cannot be greater than
|LCS(u, v)|. So, we have: 2.|LCS(u, v)| ≥ |v|+|u|+C(o) ≥ |v|+|u|+d(u, v).
From this we easily obtain d(u, v) ≥ |v| + |u| − 2.|LCS(u, v)|. �

2In fact, the words w and LCS(u, v) are identical
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This theorem gives us a direct method for calculating the basic edit-
distance. All we have to do is to determine the length of LCS which can be
done, e.g., by the well-known algorithm based on the dynamic programming.
We shall use another approach that will be usefull later in this thesis. We
shall directly compute the basic edit-distance by a similar algorithm, also
based on dynamic programming.

Algorithm 1.3.1.

Input: words u, v ∈ Σ∗

Output: the basic edit-distance d(u, v)

We shall use an auxiliary function A : N
|u|
0 ×N

|v|
0 → R such that A(i, j) =

d([u]i, [v]j) (Recall that [u]i stands for the prefix of the word u of length i). 3

Of course, A(|u|, |v|) is the value we need to compute, but in our algorithm,
we shall compute every A(i, j). In the beginning, we can easily initialize
the values A(i, 0) = i and also A(0, j) = j. We now show how to compute
A(i, j). Let o = o1..on be multi-operation which transforms [u]i into [v]j. If
the last letters of [u]i and [v]j are the same, then A(i, j) = A(i − 1, j − 1).
If the last letters are different, then o must somehow achieve that the last
letters of T (o, [u]i) and [v]j are the same. (Of course, these two words must
be identical, but let us focus just on the last letters.) This can happen in
two ways. Either vj = uk for some k. Then o can simply delete all letters
beyond the k-th position and the last letters will be the same. In this case
A(i, j) = A(i − 1, j) + 1 where 1 is the cost of the deletion. Or, the letter vj

is just inserted to the end of T (o1..ok, [u]i) for some k (it does not make sense
not to insert it at the end). In this case A(i, j) = A(i, j − 1) + 1, where 1 is
the cost of the insertion. So, we have the two equations which correspond to
the two ways of transforming [u]i into [v]j. The distance will be the smaller
one of these values. If we summarize all this we can write the final formula:

A(i, j) = min{A(i − 1, j − 1) + d(ui, vj), A(i − 1, j) + 1, A(i, j − 1) + 1}(1.1)

In this formula d(ui, vj) is 0 if ui = vj and 2 if not. It holds that A(i −
1, j) ≤ A(i−1, j−1)+1, so if ui 6= vj, then A(i−1, j−1)+2 will be greater then
other two values and therefore not picked up by the minimization. Equation
1.1 gives us a direct way of computing A(i, j). All we have to do is to start
with small arguments of the function A and remember these results for further
computation. If i > 0, j > 0 then A(i, j) can be computed in constant time
using the values A(i, j), A(i− 1, j), A(i, j − 1). If i = 0 or j = 0, the value of
A(i, j) is known from the initial phase.

3Thus, we can visualize A as a table of size |u| × |v|.
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From this it is easy to see, that the time complexity of the algorithm is
O(|u|.|v|), which is exactly the number of operations needed to fill the table
of size |u| × |v| with values of the function A. The space complexity of the
algorithm described above is also O(|u|.|v|), but it can be easily reduced to
O(min{|u|, |v|}). This is so because we do not need to remember all values
of A(i, j); what we really need is just one row or one column of these values.
Using this row (column) and the initial values (no need to keep them in the
memory) we can compute the next row or the next column.

1.3.2 Computing the edit-distance effectively

From our definition of the edit-distance is clear, that there are many edit-
distances that can not be computed even on Turing machine with no time
limit. It is natural to try to find some conditions, under what edit-distance
will be computed effectively. 4

Definition 1.3.6. A set of operations O is called k−bounded if

(∀o ∈ O) (∀u, u′ ∈ Σ∗) T (o, u) = u′ ⇒
(∃p, w, w′, s ∈ Σ∗ |w′| ≤ k ∧ |w| ≤ k ∧ u = pws ∧ u′ = pw′s ∧
(∀p′, s′ ∈ Σ∗ ∃o′ ∈ O T (o′, p′ws′) = p′w′s′ ∧ C(o′) = C(o)))

Speaking informally, O is k−bounded if all operation it contains are mod-
ifying only some sub-word of length k and this modification does not depend
on the context surrounding this sub-word. If o ∈ O does some modification
to some sub-word then for every context surrounding this sub-word must
exist an operation, that transforms the sub-word in the same way and with
the same cost.

Let us now focus on the translation function. It is clear, that if we want
to compute the edit-distance effectively, the translation function must be
computed quickly. What it means is shown it the next definition:

Definition 1.3.7. Let f : N
+ → R

+. We say that an operation o is f -
computable, if for all u ∈ Σ∗ and for all i ≤ |u| we can compute the i-th
letter of T (o, u) in f(|u|) time. A set of operations O is f -computable if all
of its members are f -computable.

Next problem, which can occur in computing edit-distance is due to big
number of operations, that can be performed on words. Let us focus on
the basic edit-distance, as it was defined earlier. The set O consists of just

4Effectively means in polynomial time, but we shall analyze complexities of our algo-
rithms more precisely
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two types of operations, but in fact it is infinite. In spite of this we can
compute the basic edit-distance effectively, because for a given word only
a finite subset of operations in O have their result of translation defined.
For every word we can find this subset quickly. If O is k−bounded, then
we can focus only on operations that translate words of length k. Trivially,
there can be only a finite number of operations that differ from each other
in their translation meaning. Problem is, if we have an infinite number
of operations that are doing ’the same’. In this case, computation can be
impossible, because we must search an infinite set of operations just to make
sure, they are really identical. How can it possibly happen that there are
infinitely many operations with the same meaning? No ’reasonable’ definition
of O and T leads to this, so we can solve our problem simply by forbidding
these abnormal cases. In further text, when talking about k−bounded set
of operations, we shall automatically assume, that for every word there exist
only finite number of operations that have the same translation meaning.

Now, when talking about k−bounded computable set O, we avoided all
evident reasons, why we cannot compute generalized edit-distance effectively,
so we could have optimistic anticipation that we shall be able to compute
this edit-distance effectively. Following theorem shows, that in spite of these
restrictions problem still remains quite hard.

Theorem 1.3.3. Let O be a k-bounded set of operations that is O(1)-computable.
Let d be an edit-distance defined by a triple (O, T, C). The problem of de-
termining, whether the distance of two words is smaller than some given
constant c is NP-complete.

Proof: First, we can solve this problem by a non-deterministic polyno-
mial algorithm by guessing some multi-operation and verifying, whether it
really transforms one word to another and also verifying, if its cost is smaller
than c. The proof of NP-completeness will be done by a reduction to prob-
lem, whether given turing machine M accepts given word u on less than d

steps, where d is given constant. There are several possibilities for definying
a configuration of a Turing machine. We shall use a definition, where the
configuration is given by the contents of the tape and the head position is
marked within this contents by a special symbol representing the current of
the finite control of the machine. For example abbabq1bab means a configu-
ration, where abbabbab is the content of the tape, machine is in state q1 and
the head is located on the third letter from the right.

We shall construct a Turing machine M ′ which accepts the word u, if
and only if M accepts u in less than d steps. We can clearly assume that
the unique accepting configuration of M ′ on the word u is the configuration
z|u|qf where z is a special symbol and qf is unique accepting state of M ′.
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Furthermore, M ′ has ability to write blank symbols to the some position
of tape, if adjacent position already contains blank symbol. Note that this
“ability” does not mess with definition of configuration of the machine.

Now, we reduce the problem whether M ′ accepts a word u to computation
of the distance between v = Bq0uB and w = Bz|u|qfB, where q0 and qf is the
initial and the final state of M ′, respectively, the letter B stands for the blank
symbol. Words will be constructed over the alphabet Σ which is union of the
tape alphabet of M ′ and the symbols for states of M ′ (to prevent confusion,
these must be different from letters of tape alphabet). We allow only one
type of operations. Let t1a1qa2t2 be a word, where t1 and t2 are some words,
a1, a2 are letters from Σ−B (they are letters, not blank symbols) and q is a
state symbol in M ′. Now we can transform t1a1qa2t2 into:

(i) t1pa1a3t2 if (p, a3,−1) ∈ δ(q, a2)

(ii) t1a1pa3t2 if (p, a3, 0) ∈ δ(q, a2)

(iii) t1a1a3pt2 if (p, a3, 1) ∈ δ(q, a2)

Using these operations we are trying to simulate the computation of M ′

on the word u. The last thing we must solve is the problem with the end of
the tape. Turing machine has infinite number of blank symbols at each end.
We have only one blank symbol at each end, which can lead to problems.
But compared to Turing machine we have one “special ability”, we can write
many (two) symbols at once. Using this, we can manage the ends of the tape
as follows: If the word looks like t1a1qiB we can transform it into:

(i) t1pa1a2B if (p, a2,−1) ∈ δ(q, B)

(ii) t1a1pa2B if (p, a2, 0) ∈ δ(q, B)

(iii) t1a1a2pB if (p, a2, 1) ∈ δ(q, B)

for left end of the tape we have similar three rules. Cost of all operations
can be arbitrary. Using these operations, we can direct simulate the compu-
tation of M ′ on the word u. If M ′ accepts u then the distance of v and w

will be finite, else undefined ⊥-value. The set of operations is 2−bounded. �

So, we see that even with these restrictions we cannot compute the gen-
eralized edit-distance effectively. On the other hand, as we shall see, we can
compute the basic edit-distance even with some added operations.
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1.3.3 Modifications of the basic edit-distance

We have an algorithm to compute the basic edit-distance which is just one
particular instance of our abstract definition of the edit-distance. Now we
shall be interested in the question, what other instances of our abstract def-
inition of the edit-distance can be effectively computed. First, we can have
different costs for insertions and deletions. This just changes 1’s in Formula
1.1 to actual values of insertions or deletions. We can also have special costs
for the insertion of every letter. To do the same with deletions, we need to
modify the definition of deletion. Instead of a pair (ε, n) it will be a triple
(a, ε, n) where a ∈ Σ. The meaning of ε is just to distinguish deletions from
insertions. The translation function on these triples will be defined naturally
- if n + 1-th letter of a given word is a then it will delete it, else the result is
undefined. Now we can formulate a simple formula similar to 1.1:

A(i, j) = min{A(i − 1, j − 1) + d(ui, vj), A(i − 1, j) + d(ui, ε),

A(i, j − 1) + d([u]i, [u]i.vj)}
or, when we want to avoid trivial distances in this formula, we can re-write
it to the form:

A(i, j) = min{(A(i − 1, j − 1) + 2.(ui == vj)), A(i − 1, j) + C(ui, ε, i − 1)),

A(i, j − 1) + C(vj, i)}
where ui == vj stands for 0 if ui = vj and ∞ otherwise.
It is also common to add some new operations to the set O. The most

common operation added is substitution, which is in fact a multi-operation
(ε, n).(a, n). In most of the related work the edit-distance is automatically
taken with substitution included. It is wise to treat the substitution as a
single operation, because we can have special cost for it (different from multi-
operation written above). In our setting the substitution will be a triple
(a, b, n) where a is a letter which is deleted, b is the inserted letter and
n specifies the position where this happens. Formally, T ((a, b, n), u) = pbs

where u = pas and p = [u]n (If such p, s do not exist, the result is undefined),
a, b ∈ Σ (so they can not be ε).

Another very useful operation is the transposition of two adjacent letters.
The transposition of two adjacent letters is a common error which can occur
when someone is typing a text, so it is good that we can compute edit-distance
with transpositions effectively. According to the definition of the basic edit-
distance with different cost for deletions (deletion is a triple), transposition is
an operation (trans, a, b, n) with translation meaning the same as the multi-
operation

(a, ε, n).(b, ε, n).(a, n).(b, n)
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Now we show, how we can compute edit-distance with a transposition ef-
fectively. First we shall analyze the problem, when cost of all operations is
equal to 1. Later, we shall show how we can deal with different costs. We
shall use similar approach as when computing the basic edit-distance. For
two words u, v we shall compute the function A : N

|u|
0 × N

|v|
0 × Σ ∪ {ε} → R

with the meaning: A(i, j, a) is a distance between words [u]i.a and [v]j. It is
obvious, that A(i, j, ε) = A(i− 1, j, ui). Now, let us focus on a problem, how
it can happen that the last letters of these two words are identical. This can
happen in the following ways:

(i) a = vj already, we have no problem,
A(i, j, a) = A(i, j − 1, ε) = A(i − 1, j − 1, ui)

(ii) vj letter is added to the end of [u]i.a, A(i, j, a) = A(i, j − 1, a) + 1

(iii) vj is somewhere inside [u]i.a, but it is not the last or the last but one
letter. Now the last or the last but one letter must be deleted (we shall
see further why), so we have: A(i, j, a) = A(i, j, ε)+1 = A(i−1, j, ui)+1
when deleting the last letter or A(i, j, a) = A(i − 1, j, a) + 1 when
deleting the last but one.

(iv) vj is identical with ui. Now we can use the transposition, to move it to
the end. A(i, j, a) = A(i − 1, j − 1, a) + 1

Now it is no problem to write a formula for A(i, j, a), similar to 1.1. To show
its correctness we shall prove:

Theorem 1.3.4. For A(i, j, a) at least one equation from four cases (i)-(iv)
written above holds.

Proof: We shall use following lemma:

Lemma 1.3.2. Considering the basic edit-distance with transpositions, any
multioperation o can be aligned in order deletions, transpositions, insertions.
This holds for arbitrary costs of operations.

Proof: We use a similar reasoning as in Lemma 1.3.1. Any multi-operation
can be converted to a (partially) cheaper one, in which no letter that was
inserted will later be deleted and also, if transpositions will transpose only
those original letters, that are not going to be deleted. Now it is clear, that
we can make deletions at the begining, then transpositions and insertions at
the end. �

Now to the proof of Theorem 1.3.4. First, we want to show, why this
proof is not as easy as it was in Algorithm 1.3.1. Cases (i)-(iv) correspond
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to four possibilities, how can vj appear at the end of the other word. If vj is
somewhere inside the other string and we want to get it to the end of it, we
can do it using (iii) and (iv), but for example, we did not discuss the case
when vj comes to the end by several transpositions. Furthermore, we can use
a multi-operation which is made of some deletions and some transpositions.
These possibilities are not considered in our algorithm.

We shall solve this problem by showing that there always exists cheapest
multi-operation found by our algorithm. Let us consider a cheapest multi-
operation o that transforms the word u into v.a where u, v are words and
a is a letter. Using Lemma 1.3.2 we can assume that o has the following
structure: first deletions, then transpositions, then insertions. Moreover, we
shall assume that from all multi-operations satisfying these conditions, o has
minimal partial cost of transpositions. Let o = o1 . . . on and let oi, oj (i < j)
be some transpositions that are touching (i.e. transposing) some letter z and
no transposition between them is touching z. There are two posibilities, how
oi, oj can look like:

(i) oi = (trans, z, b, n) and oj = (trans, z, c, n+1) (for some b, c ∈ Σ, n ∈ N)

(ii) oi = (trans, z, b, n) and oj = (trans, c, z, n) (for some b, c ∈ Σ, n ∈ N)

When (i) happens, then we can replace oi by the deletion (z, ε, n) and oj by
the insertion (z, n + 2). The translation meaning and also the cost remains
the same. If (ii) happens, we can replace oi by the deletion (z, ε, n) and oj

by the insertion (z, n). Once again, neither the translation meaning, nor the
cost changed. Both cases lead to a contradiction with the assumption on the
minimality of the partial cost of transpositions of o, so such oi, oj cannot
exist. This proves that each letter is touched by at most one transposition.

Now it is clear, that the cases (i)-(iv) exhausted all the possibilities how
vj can appear at the end of u.a, either a = vj (i), or it is inserted there (ii),
or it is the last but one letter and we need exactly one transposition (iv);
or it is somewhere inside, and then at most one transposition can touch it.
From this we know, that all letters right to it except one must be deleted
and therefore the last or the last but one letter of u.a must be deleted. And
this is exactly what (iii) is counting with. �

In the previous algorithm we were significantly using the particular defi-
nition of the costs of the operations. Situation will be slightly more difficult,
when trying to compute the edit-distance with transposition with generalized
costs. Now, we cannot easily replace two adjacent transposition by deletion
and insertion, but fortunately, there exists a finite number of adjacent trans-
positions, that can be replaced (without increasing the total cost) by insertion
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and deletion. Let p be the maximal cost of inserting plus the cost of deleting
for any letter of the alphabet and let r be the minimal cost of transposition.
Now, minimal number of adjacent transpositions k that we can replace by
insertion and deletion is the minimal integer k such k.r ≥ p. Thus k = d p

r
e.

If r 6= 0 we have a straight-forward way to compute the distance. We know
that if a letter a contained in a word u is to be moved to the end of this
word, it can be touched by at most k transpositions. That is why we must
“widen” function A to N

|u|
0 × N

|v|
0 × (Σ ∪ {ε})k → R. The meaning of A stays

the same. When we construct A for words u and v then A(i, j, w) means
distance between words [u]i.w and [v]j.

Lemma 1.3.3. Let u, v be words and o = o1 . . . on is the cheapest multi-
operation that consists just of transpositions such that T (u, o) = v. Let a be
the last letter of v and let it be unique letter in it. Every transposition oi that
touches a, moves it forward (i.e. oi is of a type (trans, a, b, l)).

Proof: For contradiction, let there be an operation oi = (trans, b, a, l).
Now, letter b gets to the right of a. At the end of transforming u by o,
the letter a must be at the end, so a must be transposed with b once more
using transposition oj = (trans, a, b, k). When both oi, oj are transforming
the “actual version” of u, the letters a and b must be adjacent. From this
we know that between transposition oi and oj the letters a and b must be
transposed with the same set of letters. So, if we insert oj right after oi

(j = i + 1), we can permute the rest of o in the way that neither translation
meaning, nor cost is changed. But now, these two transpositions negate
themselves and can be omitted, what is a contradiction with the fact that o

is the cheapest. �

Lemma 1.3.4. Let w1, w2 be words and a be the last letter of w2. Let o be
the cheapest multi-operation such that T (o, w1) = w2. Let o1 be the cheapest
multi-operation aligned in order: deletions, transpositions, insertions, such
that there exist multi-operation o2 such that T (o1o2, w1) = w2, C(o1o2) =
C(o) and the last letter of T (o1, w1) is a. There are only following cases how
o1 can look like:

(a) o1 = ε

(b) o1 is one insertion of a to the end of w1

(c) Let us focus on last (most right) occurence of a in w1. Now o1 con-
sists of some deletions on the right of this occurrence followed by at
most k transpositions that move a forward (transpositions of the type
(trans, a, b, l)). Furthermore, o1 6= ε.
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Proof: The case (a) happens, if and only if the last letter of w1 is a. If
o1 contains one insertion, then from minimality of the cost of o1 it must be
exactly the insertion of a to the end of w1. Furthermore, no other operation
can be included in o1. If o1 is not empty and does not contain any insertion,
then it consists only of transpositions and deletions. After the deletions
take place, w1 is transformed to some word w3 which is transformed by
transpositions to w2. For w3 and w2 we can use Lemma 1.3.3. Furthermore,
from minimality of the cost of o1 it is clear that every used transposition
must touch a and also that maximal number of transpositions is k. �

Now, let us modify cases from Theorem 1.3.4 for this case. We can repeat
the same arguments when considering (i), (ii) (this follows also from Lemma
1.3.4). When analysing how letter a from somewhere inside of the word can
get to its end, we shall also use Lemma 1.3.4. We know that k is the maximal
number of transpositions that is “allowed” to touch a. If a is not placed in
the suffix of length k, then at least one letter from this suffix must be deleted.
When all costs were equal to 1, we had to distinguish the cases whether the
last or the last but one letter is deleted. Now we have to distinguish exactly
k cases. So, instead of previous (iii) we shall have:

(iii) in case the l-th letter is deleted from the suffix of length k the following
equation holds: A(i, j, w) = A(i, j, w1.w2..wl−1.wl+1..wk) + c where c is
the cost of deletion of l-th letter

We must modify also the case (iv). Here we suppose that a is located in the
suffix of length k and gets to its place by some transpositions (all deletions
were done in (iii)). From Lemma 1.3.4 we know that all transpositions move
only the last occurrence of a and they move it in forward direction, so we
can write:

(iv) A(i, j, s1.a.b.s2) = A(i, j, s1.b.a.s2) + c where s1, s2 ∈ Σ∗, a = vj, s2

does not contain a and c is the cost of used transposition

Last problem we have to solve is to find some order in which values of A

can be computed. Similar to former algorithms, when having words of length
n, m, we must compute O(n.m) values of function A (third argument of A is
the word of length k over finite alphabet and so it has only finite number of
possibilities what it can be). In former algorithms values of A(i, j, anything)
were computed using values A(i′, j ′, anything), such that i′ ≤ i ∧ j ′ < j ∨
i′ < i ∧ j ′ ≤ j. Now we compute A(i, j, w) using A(i, j, w′) which can
raise questions, whether our computation is finite. Now we show that there
exists an ordering relation � (relation that is reflexive, anti-symmetric and

transitive) on the set N
|u|
0 × N

|v|
0 × (Σ ∪ {ε})k with the following property: If
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we know values A on all triples that are smaller than some (i, j, w) (in the
sense of �) then we can also compute A(i, j, w) (using (i)-(iv)).

Definition 1.3.8. Let us have a function A computed for two words u, v as
defined above. We define the relation �: (i, j, w) � (i′, j ′, w′) if and only if
one of these two conditions holds:

(i) i + j + |w| < i′ + j ′ + |w′|

(ii) i+ j + |w| = i′ + j ′ + |w′| ∧ j = j ′ ∧ Last(vj , [u]i.w) ≤ Last(vj, [u]′i.w
′)

where the function Last(a, u) returns the distance between the last occur-
rence of letter a and the end of the word, formally: Last(a, u) = |u| −
max {i | ui = a} if u contains at least one letter a; otherwise Last(a, u) = |u|.

Now, we have all we need. When we are computing the distance using
(iii) or (iv) we are always referring to the values of A which are computed
on smaller triples. Consider the time complexity of the algorithm. We must
compute |u|.|v|.|Σ|k values of the function A. In spite of the fact, that |Σ|k
can be quite large, it is still a constant, so is time for one of these values. For
the total complexity we have O(|u|.|v|).

After success with transpositions, we could think that we can compute
the edit-distance with many other operations, that are k-bounded and that
are just permuting the letters in some sub-word of a given word.

Definition 1.3.9. Operation o is called permuting, if for all u ∈ Σ∗ it holds
that T (o, u) is either undefined, or it is some word, that is a permutation of
the word u. The set of operations O is called permuting if for every o ∈ O it
holds that either o is an insertion, a deletion, or it is a permuting operation.

Sadly, once more, we cannot compute this edit distance effectively.

Theorem 1.3.5. Let O be k-bounded permuting set of operations, that is
O(1)-computable. Let d be an edit-distance defined by triple (O, T, C). Prob-
lem of determining, if a distance of two words is lower than some value c is
NP-complete.

Proof: We shall only modify Theorem 1.3.3. Some differences will be
done in constructing M ′ from M . M ′ will have blank symbols only on one
side of the input word. Moreover, the number of these blank symbols is
limited to number n. The initial configuration (for word u) is Zbq0uBnZe,
where Zb, Ze are endmarkers, (such as endmarkers in the linearly bounded
automaton, i.e. head of the machine can not go beyond them and they cannot
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be replaced with other characters). We can clearly assume that only the
accepting configuration of M ′ on the word u is the configuration Zbz

n+|u|qfZe

where z is a special symbol and qf is the unique accepting state of M ′. If
M ′ does not have enough place to do its computation, then it will not accept
the word, otherwise it will accept those words that are accepted by M on
less than d steps (see Theorem 1.3.3). For finite Σ (which is union of the
tape alphabet of M ′ and letters representing the states of M ′) there exist an
integer k, such that every member of Σ can be uniquely encoded to some
member of set W , which must safisfy:

(i) W is sub-set of {0, 1}2k.

(ii) For every w ∈ W holds that #0(w) = #1(w) = k, where #a(w) means
number of occurences of letter a in word w

(iii) There exists small integer 2 < l < n
4

(for example we can take l = 4)
such that (∀w ∈ W ) ([w]l = 1l)

(iv) For every w ∈ W , the prefix of w of length l is the only sub-word of w

that is equal to 1l

(v) For every w ∈ W , the last letter of w is 0

(vi) |W | ≥ |Σ|

When encoding the members of Σ as the members of W , from any contiguous
part of the tape of the machine M ′ we can unambiguously decide, where are
the members of W located (those, that are whole included in the part). Now,
all operations defined in Theorem 1.3.3 that are not dealing with the end of
the tape (not widening the tape) are permuting and 4k-bounded. We do not
need other operations (neither insertions and deletions).

The only problem is that we do not know exactly, how much place M ′

needs for accepting the word u. To solve this, we start with computing
distances between words Zbq0uBnZe and Zbz

n+|u|qfZe for n = 1, 2, 3, . . . If
M accepts u in less than d steps, then an integer n is found in polynomial
time, such that the distance between these two words will be a finite number,
otherwise it will be still ⊥ value. �

What is important, the hardness of this problem does not lie in the ab-
stractness of this model, but problem is hard even for some concrete oper-
ations. For example, in [3] it is shown, that solving even an easier problem
(edit-distance on permutations) is NP-hard once we are considering such op-
erations as a reverse of sub-string.
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1.4 Other measures

1.4.1 Fragment distance

Let us consider the following situation: We are given a long string v (long
word) and a “query” u. Our task is to decide, whether u contains patterns
similar to v. Let us look for some instance of the edit-distance that could help
us to solve this properly. Once v has patterns similar to u (for example, v can
contain u as a sub-word) we want the distance to be constant. For example,
the distance between u and v.u should be some low value independent of
v. This can be achieved by calculating an edit-distance d(u.v, u) if we have
zero cost of deletions. But once we have zero cost deletions we can obtain
anything from sufficiently long and “rich” text, which destroys any structure
of v.

Notation 1.4.1. Let u ∈ Σ∗. By [u]ji we denote the sub-word of a word u

that starts at the position i and ends at the position j−1, i.e. ui.ui+1 . . . uj−1.
If i ≥ j then [u]ji is ε. Since in many related articles the notion of a sub-word
is used in the same meaning as LCS, i.e., as “scattered” sub-word. For our
contiguous sub-word we shall use the term “fragment”.

Using this notation we shall easily define fragment distance.

Definition 1.4.1. Let u, v ∈ Σ∗. Df(u, v) means a fragment distance of u

from v and let it be equal to the minimal n, for which there exist indeces
ai, bi, 0 ≤ i ≤ n − 1 such that u = vb0

a0
..vbn−1

an−1
. If such n does not exist then

the fragment distance of u from v is ∞.

Our first observation is that if u contains some letters that are not in-
cluded in v, then the fragment distance is automatically ∞. If this case does
not happen, then we can construct u using up to |u| fragments (in the worst
case, each letter is one fragment). But even when we compute the fragment
distance of a random query from a random text that is much longer than
the query, we can expect distance much lower than |u|. Now, we present an
algorithm for computing the fragment distance. We start by an easy lemma:

Lemma 1.4.1. Let v, u, w ∈ Σ∗ be words such that u is a prefix (or a suffix)
of w. Then Df(u, v) ≤ Df (w, v)

Proof: If we can assemble w using some number of fragments, then we
can surely assemble any prefix (or suffix) with at most the same number of
fragments. �

Now, we present a greedy algorithm that computes the fragment distance
between words u, v.
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Algorithm 1.4.1.

Input: words u, v ∈ Σ∗

Output: the fragment distance Df (u, v)

(i) Find such i, j that [v]ji is a prefix of u and j − i is maximal.

(ii) If [v]ji = ε return ∞ else take such s ∈ Σ∗ that [v]ji .s = u and return
1 + Df (s, v)

Proof: When computing Df(u, v) we are trying to assemble the word u

from the fragments of v. If up is the first fragment used to build u and
u = up.us then Df(u, v) = 1 + Df(us, v). Lemma 1.4.1 clearly shows, that
we can use the greedy approach and take up as long as possible. �

When computing Df (u, v) we must find a partitioning of u into up.us such
that up is fragment of v. The first approach can be as follows: We start with
i = 1. Now we shall be increasing the value of i until [u]i is a fragment of v.
After finding the maximal prefix, we shall remove it from u and repeat the
whole process with up. This approach is quite inefficient. Let us solve another
task: finding out whether the whole u is a fragment of v. This can be done in
O(|v|) time, using Knuth-Morris-Pratt algorithm. The point is to construct
a deterministic finite automaton A that accepts all words which contain u as
a sub-word. We can construct this automaton in O(|u|) time. For example,
in the Figure 1.1 we can see the deterministic finite automaton that accepts
all words over the alphabet {a, b} that contain sub-word abaabab.

a

a ab ba a b

b

b

a

b a

b

a

b

q
0

q
1

q
2

q
3

q
4

q
5

q
6

q
7

Figure 1.1: Deterministic automaton for string matching problem

If such automaton accepts v then the whole u is included in v and we
have no problem. Let us assume that we have already read i letters from
v and (after processing the i-th letter) we are in the j-th state of A (states
are enumerated in the same way as in the example in Figure 1.1). That
means, [v]ii−j−1 = [u]j−1. This helps us to find the longest prefix of u that is
a sub-word of v. We shall construct the automaton A and try if it accepts
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v. During the computation, we shall remember the maximal state (the state
with the maximal index) that is reached and also, what letter (its position in
v) was processed as the last when getting into this state. After (accepting or
non-accepting) computation of A on the word v we know the longest prefix
of u that is a sub-word of v which is exactly what we wanted. For the
time complexity of computing Df(u, v) we have: we must search Df(u, v)
times whether some suffix of u is a sub-word of w which can take O(|v|).
So, the whole computation can take O(|v|.Df(u, v)). This form is not quite
good, because we are expressing the time complexity by the result of our
computation. The only way we can eliminate Df(u, v) in this formula is to
approximate it by |u|. Now the formula for time complexity is O(|v|.|u|). It
can be quite surprising that we can compute this distance as fast as the basic
edit-distance.

1.4.2 Fragment distance with costs

When computing the fragment distance, we are interested only in the minimal
number of fragments needed to assemble the word that we need. It is natural
to count not only the number of these fragments, but also the sum of the costs
of them. In this thesis, the cost function C : N

+ → R
+ will be the function

of the length of the fragments only. Before we define fragment distance with
costs, let us see some auxiliary definitions first.

Notation 1.4.2. Let f : N → R be a function. By ∆(f) we denote the
forward difference of f , i.e. ∆f(x) = f(x + 1) − f(x).

Definition 1.4.2. Let f : N → R be a function. We call the function f

convex (concave, non-convex, non-concave) if ∆f is increasing (decreasing,
non-increasing, non-decreasing) on the whole interval of definition. 5

Now, the fragment distance with costs can be defined as follows:

Definition 1.4.3. Let u, v ∈ Σ∗ and C : N
+ → R

+ be the cost function
which satisfies:

(i) C is non-decreasing

(ii) C(0) = 0

(iii) C is non-convex function

5Note that likewise the non-decreasing function does not mean not decreasing function,
the non-concave function does not mean function that is not concave.
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Fragment distance with costs of u from v is equal to the minimal S, such that
there exists a non-negative integer n and indices ki, li, 0 ≤ i ≤ n − 1 such
that u = vl0

k0
..v

ln−1

kn−1
and S =

∑n−1
i=0 C(li −ki). If such n, ki, li do not exist then

the fragment distance with costs of u from v is ∞.

Now we want to explain, why applying conditions (i)-(iii) to the function
C is necessary. All these conditions are necessary if we want to get reasonable
results. It would be quite strange if using of shorter fragment was more
expensive than using some long fragment, so (i) must hold. Also (ii) is
a reasonable condition, using ε does not change the assembled word, so it
should bear not cost. We can also argue, that the function C should be
non-convex (iii). Let us discuss what would happen, if C was convex. Let n

be length of one fragment that was used to assemble u. Cost of using this
fragment is C(n) and recalling (ii) we can write:

C(n) = (C(1) − C(0)) + (C(2) − C(1)) + · · · + (C(n) − C(n − 1)) =

∆C(0) + ∆C(1) + · · ·+ ∆C(n − 1) > n∆C(0) = n.C(1)

From this it is clear, that using the fragment of length 1 n times is more
profitable than using a big fragment with length n. This will lead to the
fact that Df(u, v) can be equal to only two values, either ∞ (if u can not be
assembled) or |u|.C(1) if we use fragments of length 1. We certainly do not
want the fragment distance to have such property.

On the other hand, concave functions work quite well. Concaveness of C

causes that the fragment distance works in a way we want: It tends to search
for long common fragments and use them. When two fragments concatenated
are equal to u (so the sum of their lengths is |u|), then one segment tends to
be as long as possible and the other one does the rest. Good (concave) cost
function is for example C(x) =

√
x.

Now we may try to adjust the greedy algorithm for computing the frag-
ment distance to compute the fragment distance with costs. Following the
analysis we have done, we may think that when we find the longest common
fragment, we have fragment that is surely used when assembling u. If this
was true, we could delete this fragment from u and repeat the search for
the longest common fragment, so we could write very effective greedy algo-
rithm. Sadly, as the next example shows, the longest common fragment is
not necessarily used.

Example 1.4.1. u = abcdefghijkl v = v1.v4.v2.v5.v3.v6, where
v1 = abcde, v2 = fg, v3 = hijkl

v4 = abc, v5 = defghi, v6 = jkl

Now, it is clear, we have only two ways, how to choose fragments, so that
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after concatenation they will be equal to u. It holds, that u = v1.v2.v3 and
v = v4.v5.v6.
Let us assume, that C(x) =

√
x, which is an increasing concave function

with C(0) = 0. The cost of u = v1.v2.v3 is approximately 5.06, the cost of the
second alternative is approximately 5.91 which is larger despite the fact that
only this alternative contains the longest common fragment (v5).

So, as this example illustrates, when computing the fragment distance
with costs, we cannot use the greedy algorithm - or at least not such a
simple greedy algorithm. Once again, the dynamic programming will help
us.

Algorithm 1.4.2.

Input: words u, v ∈ Σ∗

Output: the fragment distance with costs Df(u, v)

We shall construct the function A : N
∗ → R

+ so that

A(i) = Df ([u]
|u|+1
|u|+1−i

, v)

In other words, A(i) tells us, how far is suffix of length i of u from v. Trivially
A(0) = 0. The value A(i) can be easily computed for i > 0 using the values
A(j), j < i. We can compute it using the formula

A(i) = min
0<l≤|u|
i−l≥0

{C(l) + A(i − l) |

(∃k ∈ N) ((0 ≤ k < k + l ≤ |v|) ∧ ([u]i+l
i = [v]k+l

k ))}

Correctness of this algorithm is quite clear and can be easily proved by
complete induction on the function A. When computing A(i) we assume
that all values A(j) for j < i are computed correctly. Now, the first letter

of [u]
|u|
|u|−i

must get to its place in a fragment of some length. We try all

possibilities and take one with the minimal cost, so we surely compute A(i)
correctly, which is the proof of the induction step in our proof. �

Now, let us think about the time complexity of Algorithm 1.4.2. When
computing the fragment distance (without costs) we showed, how we can
find the longest prefix of u that is also the fragment of v. Once we have
found it (with length l), then we have automatically found the prefixes (and
fragments simultaneously) of all lengths that are smaller than l. So, this is
the way, how the minimization can be done in O(min{|u|, |v|}) time, which is
not more than time O(|v|) (needed for Knuth-Morris-Pratt algorithm). So,
the total time complexity is O(|v|.|u|).
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1.4.3 Fragment distance with editing

The fragment distance has some inconvenient features. When computing
Df (u, v), the first problem is, when u contains letters that are not included
in v. This problem can be solved when instead of Df(u, v) we would be
computing Df (u

v, v) + |u| − |uv| where uv is the word u without all letters
that are not in v. After computing the fragment distance of the modified u

and v, the number of these letters is added to the result as some penalization
(we can estabilish some penalty function here). Although this technique
solves our problem, it is not a natural way how to cope with this problem.
The following example reveals more problems: Let us have two words u, v.
Suppose the whole u is a fragment of v, so Df(u, v) = 1. Now, we add some
letters inside v, so u will not be the fragment of v any more. In the worst
case, adding n letters forces us to use n + 1 fragments, which is quite a lot.
A similar problem occures, when we delete n letters. In these cases, we use
many fragments just to simulate basic edit-operations such as insertions and
deletions. But according to our intuition, using long fragment is a much more
“significant” operation than just the insertion (deletion) of one letter.

Definition 1.4.4. Let u, v be words in Σ∗. By the fragment distance with
editing of u from v we shall mean the cost of the cheapest multi-operation,
that transforms ε into u. To do so, we can use operations of two types:

(i) Inserting or deleting a letter with cost c.

(ii) Inserting some fragment vf of v to any place of the assembled word, with
cost C(|vf |), where C is a cost function, satisfying the three conditions
from Definition 1.4.3

The fragment distance with editing will be denoted by Dfe(u, v)

In spite of the fact, that this distance is not an instance of edit-distance
(we are transforming ε to u, not u to v), we can naturally widen Definition
1.3.4 also to this case. Now we can see that:

Lemma 1.4.2. Considering the fragment distance with editing, any multi-
operation o can be aligned in order: insertions of fragments, deletions, inser-
tions (of letters).

Proof: We can make o (partially) cheaper if it will delete only letters that
were inserted as a part of the bigger fragment, so deletions can be done before
insertions. Insertion of fragments has no effect on possibility of inserting or
deleting some letter, so this can be done at the beginning. �

This gives us another way, how to define the fragment distance with editing.
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Theorem 1.4.1. The following equation holds for the fragment distance with
editing :

Dfe(u, v) = min {c|(∃w ∈ Σ∗) c = Df (w, v) + De(w, u)}

where Df is the fragment distance with the same cost function C as we are
using when computing Dfe, and De is such an edit-distance, where insertions
and deletions have the same cost as insertions and deletions in Dfe.

Proof: From Lemma 1.4.2 we know that any multi-operation o can be
aligned in order: insertions of fragments, deletions, insertions (of letters).
Let o′ be a multi-operation that contains only insertions of fragments from
o. Let w = T (o′, ε). Now Dfe(u, v) = Df(w, v)+De(w, u). Word w we found
is clearly the one, for which Df (w, v) + De(w, u) is minimal. �

Although this theorem is interesting, it does not lead us to an effective
algorithm to compute this distance. We shall again use the dynamic pro-
gramming algorithm:

Algorithm 1.4.3.

Input: words u, v ∈ Σ∗

Output: the fragment distance with editing Dfe(u, v)

First, we shall construct the function E : N
|u|
0 × N

|u|
0 × N

|v|
0 × N

|v|
0 → R,

such that E(i, j, k, l) = De([u]ji , [w]lk), where De is the same distance as it
was in Theorem 1.4.1, so we already know, how to compute it. Now, we can
construct the function A : N

|u|
0 × N

|u|
0 → R, such that A(i, j) = Dfe([u]ji ).

First, it is clear, that ∀i A(i, i) = 0, because distance ε from anything is
trivially 0. Now, we have:

A(i, j) = min {c + A(i + 1, j)} ∪ {t| ∃ k, l, m ∈ N i < m ≤ j (1.2)

∧ t = C(k − l) + E(i, m, k, l) + A(m, j)}

Having computed A, we have Dfe(u, v) = A(0, |u|+ 1).

We shall prove the correctness of the algorithm by induction on j−i. The
trivial case j = i is evidently well assigned, so let us focus on the recursive
relation for A(i, j). Let us focus on how the letter ui gets to its place. The
first possibility is, that this letter is inserted. Now, the rest of the sub-word
we want to assemble ([u]ji+1) must be assembled as cheaply as possible - From
the induction hypothesis, this is exactly the value A(i + 1, j). The second
possibility is, that ui comes in some larger block and it is at the end of it.
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Now, this block is inserted and edited, so it gets the whole sub-word [u]mi to
its place. Once again, the rest of [u]ji (it actually is [u]jm) must be assembled
as cheaply as possible. We discussed all possibilities, how ui can get to its
place and we are taking the cheapest one, so this proves the induction step.
�

Now to the time complexity of the algorithm. When computing the func-
tion E we must compute O(|u|2.|v|2) times the edit-distance of two sub-
strings. The lengths of these substrings are at most |u| and |v|, so for the
total complexity of computing E we have

O(|u|.|v|).O(|u|2.|v|2) = O(|u|3.|v|3)

Next, we must compute O(|u|2) values of the function A. To detain one value,
we must try all possibilities for k, l, m in equation 1.2. k, l are referring to
some positions in the word v, so we have O(|v|2) possibilities how to choose
them. For k we have j − i possibilities, what is less then |u|. Putting all this
together, for complexity of computing A we have

O(|u|2).O(|u|.|v|2) = O(|u|3.|v|2)

Note, that the complexity of computing E is higher, so we can say, that the
total complexity of the algorithm is the same as the complexity of computing
E which is O(|u|3.|v|3). Note also, that it is good to compute all values of
E in the beginning. If we computed a value of E every time we need it (and
forget it afterwards), the time complexity will be even higher.

The complexity of Algorithm 1.4.3 is quite high. It is hard to imagine,
how to use an algorithm with time complexity O(n6) (for |u| = |v| = n), when
even the basic edit-distance with O(n2) is too slow in some applications. Now
we present an idea, how this algorithm can be improved. First, when talking
about fragment distance, we say that we treat u as not a very long word and
we try to assemble it from fragments of some longer text v. This asymmetry
was not very important until now. Of course, Df or Dfe are non-symmetric
functions, but we did not try to minimize the computation complexity due
to the parameter |v| more than due parameter |u|. Situation will be quite
different now. We shall try to minimize the exponent of |v| more than the
exponent of |u|, for example the complexity O(|u|.|v|) will be treated as much
worse complexity, as O(|u|2). This view gives us some possibilities, how to
make the algorithm work more effectively. When u is small comparing to v,
then it is sure, that only small fragments (maximal length can be roughly
estimated as length of u) will be used for assembling u. In the following text,
we shall try to find a maximal length of a fragment that we are using.
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Lemma 1.4.3. Let u, w ∈ Σ∗, |w| > |u|. Consider the longest common
subsequence of words u and w. There exists a fragment of w of length at
least d |w|−|u|

|u|+1
e which does not contain any occurence of a letter from the longest

common subsequence.

Proof: The length of the longest common subsequence (LCS) is at most
|u|, so in w there must be at least |w| − |u| letters, that are not included
in LCS. Letters of LCS divide w to at most |u| + 1 sub-words (they may
be empty). The statement in the lemma clearly follows using the Dirichlet’s
principle. �

Now, we shall be using the properties of the function C.

Lemma 1.4.4. Let C be a non-decreasing non-convex function with C(0) =
0. Then

lim
n→∞

C(n) − 2.C(dn
2
e)

n
= 0

or equivalently,

C(n) − 2.C(dn

2
e ∈ o(n)

Proof: Let ∆C(n) = C(n+1)−C(n). C is non-decreasing, so ∆C(n) ≥ 0,

but C is non-convex, so ∆C(n) is non-increasing. Let U(n) = C(n)
n

and
L = lim

n→∞
U(n). The question is, whether this limit exists. We know, that

the function U is positive and as we shall see it is also non-increasing. This
two properties are enough to say that L must exist. To verify that U is
non-increasing we can write:

U(n + 1) − U(n) =
C(n + 1)

n + 1
− C(n)

n
=

C(n + 1).(n) − C(n).(n + 1)

n.(n + 1)

For n > 0 the denominator of this fraction is positive, so it suffices to analyze
the sign of the numerator:

C(n + 1).(n) − C(n).(n + 1) = n.(C(n + 1) − C(n)) − C(n) =

n.∆C(n) − ∆C(0) − ∆C(1) − · · · − ∆C(n − 1) =

(∆C(n) − ∆C(1)) + (∆C(n) − ∆C(2)) + · · ·+ (∆C(n) − ∆C(n − 1))

From the fact, that ∆C is non-increasing it follows, that all addends are
non-positive, so the difference of U is non-positive.

Once we know, that L exists, we can split the proof into two cases:
L = 0. Now,

lim
n→∞

2.C(dn
2
e)

n
= L = 0

32



This automatically proves what we wanted.
Now to the case L 6= 0. Let C(n) = R(n) + n.L. Now, R has some

properties: Surely, R(0) = 0. Also,

∆R(n) = R(n + 1) − R(n) = ∆C(n) + L

From this we see, that if ∆C is a non-increasing function, then ∆R is also a
non-increasing function. Moreover,

lim
n→∞

∆R(n) = lim
n→∞

∆C(n) − L = 0

Now we have:

2.C(dn
2
e) − C(n)

n
= 2.R(dn

2
e) + 2.

n

2
− R(n) − n = 2.R(dn

2
e) − R(n)

for R holds that

lim
n→∞

R(n)

n
= lim

n→∞

C(n) − L.n

n
= 0

so we can finish the proof in similar way as the case before. �

In the next theorem we shall see the reason for having the above two
lemmas:

Theorem 1.4.2. There exist an integer k such that all fragments used by
Algorithm 1.4.3 to assemble the word u have length at most k.|u|.

Proof: Let us assume we are computing the distance of words u and v

and w is some fragment of v we want to use. If w is too long, then there must
exist some letters that are deleted and so they are not used in assembling
u. Now from Lemma 1.4.3 we know that, in w there exists a fragment with
length Θ( |w|

|u|
). Let us denote this fragment as f and let wp, ws be the prefix

and the suffix of w such that w = wp.f.ws. If we want to use the fragment w

we must first insert it with cost C(|w|) and then delete (at least) the fragment
f so the cost of the whole operation will be at least C(|w|) + |f |.c where c is
the cost for insertion or deletion. However, the same effect can be achieved,
when wp is inserted first and then ws with total cost C(wp) + C(ws). Now
we know that |wp| + |ws| ≤ |w| and also from non-convexness of C we know

that C(wp) + C(ws) ≤ 2.C(d |w|
2
e). So, the difference between costs of these

two possibilities is less than 2.C(d |w|
2
e)−C(|w|)+ |f |.c When we use Lemma

1.4.4 we have that 2.C(d |w|
2
e) − C(|w|) ∈ o(1) and using Lemma 1.4.3 we

have |f | = Θ( |w|
|u|

). So the difference of costs is

DC(|w|, |u|) = o(1) − Θ(
|w|
|u| ).c = o(1) − Θ(

|w|
|u| )
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If the value of DC is positive, then inserting w as a whole is preferable, if the
value is negative, then surely the second possibility (inserting wp and then
ws) is better. From the last equation we know that there must exist positive

constants c1, c2 such that DC(|w|, |u|) ≤ c1 − c2.
|w|
|u|

. This expression will be

negative, if |w| ≥ c1.|u|
c2

, so k = d c1
c2
e is exactly the constant we are looking

for. �

From the last theorem it is clear, that we can improve the first part of
Algorithm 1.4.3 to work in time O(|v|.|u|5) and the second part to O(|u|4.|v|),
so the total complexity is O(|v|.|u|5). The time complexity of the algorithm
is very sensitive to the length of the word we want to assemble. In case
this word is not very long, we can use the algorithm to effectively find the
distance from long strings.

1.4.4 ∆-similarity

This similarity measure was introduced in [1]. Motivation for defining ∆-
similarity is obvious - if d(u, v) = 2 (d stands for the basic edit-distane),
and |u| = |v| = 2, then these words do not seem very similar. On the other
hand, if |u| = |v| = 1000, then u, v look quite similar. In [1], ∆-similarity
was defined in a similar way like Definition 1.4.5. The original definition is
not included here, because it contained small inaccuracies. Our definition is
here:

Definition 1.4.5. ∆-similarity is a function Σ∗ ×Σ∗ →< 0, 1 >, such that:

(∀ a ∈ Σ ∪ ε) ∆(a, a) = 1 (1.3)

(∀ u, v ∈ Σ∗) (u = ε XOR v = ε) ⇒ ∆(u, v) = 0 (1.4)

(∀ a, b ∈ Σ) (∀ u, v ∈ Σ∗) ∆(au, bv) =
1

|aubv| · max{

∆(a, b) + ∆(u, v).|uv|, (1.5)

∆(au, v).|auv|, (1.6)

∆(u, bv).|ubv|} (1.7)

Although this definition was used in [1], we shall use an equivalent defi-
nition, that is more practical.

Definition 1.4.6.

(∀u, v ∈ Σ∗) ∆(u, v) =
2 · |LCS(u, v)|

|u| + |v|
where LCS means the longest common subsequence (see Definition 1.3.5).
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Theorem 1.4.3. Definitions 1.4.5 and 1.4.6 are equivalent.

Proof can be easily done by induction. When |u| = 0, |v| = 0 or |v| =
|u| = 1, both two definitions do trivially the same (in Definition 1.4.5 we use
only the first two formulas (1.3 and 1.4) to compute the result). Now let us
assume that definitions do the same for all u, v such that |u|+ |v| < n. Now
we prove that definitions do the same also for all u, v such that |u|+ |v| = n.
If u or v is ε, then it is a trivial case and we have already proven it. If not,
we can write u = a.u′, v = b.v′ and use 1.5, 1.6 and 1.7 for computation of
∆(u, v). Now, |u′| + |v′| + 2 = |u| + |v| so for all ∆ expressions in the first
definition in 1.5, 1.6 and 1.7 we can use Definition 1.4.6. Now we can write:

∆(au′, bv′) · |au′bv′|
2

=
1

2
max{2 · ∆(a, b) + 2 · |LCS(u′, v′)|,

2 · |LCS(au′, v)|, 2 · |LCS(u, bv′|} =

max{∆(a, b) + |LCS(u′, v′)|, |LCS(au′, v)|, |LCS(u, bv′|}

Now we see that ∆(au′,bv′)·|au′bv′ |
2

exactly matches the formula for computing
|LCS(au′, bv′)| so we can write

∆(au′, bv′) · |au′bv′|
2

= |LCS(au′, bv′)| ⇒ ∆(u, v) =
2 · |LCS(u, v)|

|uv|

which proves the induction step of our proof. �

The following lemmas were proved in [1]. We do not need them directly,
they are presented here to illustrate how easy they can be proven using the
equivalent Definition 1.4.6

Lemma 1.4.5. Given x, y, u, v ∈ Σ∗ the following inequality holds:

∆(xu, yv) ≥ ∆(x, y)|xy| + ∆(u, v)|uv|
|xyuv|

Proof: We use Definition 1.4.6 and we get an equivalent inequality:

|LCS(xu, yv)| ≥ |LCS(x, y) + LCS(u, v)|

which holds trivially. �

Lemma 1.4.6.

(∀u1, u2, v ∈ Σ) ∆(u1u2, v) = maxv=v1v2
{∆(u1, v1)|u1v1| + ∆(u2, v2)}
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Proof: Using Definition 1.4.6 we can re-write the lemma to its equivalent
form:

(∀u1, u2, v ∈ Σ) LCS(u1u2, v) = maxv=v1v2
{LCS(u1, v1) + LCS(u2, v2)}

Now, this is a trivial property of LCS. �

Lemma 1.4.7.

(∀a ∈ Σ ∀u, v ∈ Σ∗) ∆(au, av) =
2 + ∆(u, v)|uv|

|auav|

Proof: Once again, in the notation of LCS we are saying only that

LCS(au, av) = 1 + LCS(u, v)

which is not surprising at all. �

Lemma 1.4.8.

(∀x, u, v ∈ Σ∗) ∆(xu, xv) =
2|x| + ∆(u, v)|uv|

|xuxv|

Proof: Same as in Lemma 1.4.7

LCS(xu, xv) = |x| + LCS(u, v)

�

Definition 1.4.7. Let u, u1, u2 . . . , un ∈ Σ∗ be words. We call {ui}n
i=1 a

partition of u iff u = u1 . . . un.

Definition 1.4.8. Let {ui}n
i=1, {vi}n

i=1 be partitions of words u, v respectively.
We call {vi}n

i=1 ∆-corresponding partition to partition {ui}n
i=1 iff:

∆(u, v) =

∑n

i=1 ∆(ui, vi).|uivi|
|uv|

Lemma 1.4.9. Let u, v ∈ Σ∗ be words and {ui}n
i=1 be partitions of word u.

Then there exist a partition of v ∆-corresponding to {ui}n
i=1.
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Proof: Using Definition 1.4.6 we have that {ui}n
i=1, {vi}n

i=1 are ∆-corresponding
iff

LCS(u, v) =

n
∑

i=1

LCS(ui, vi)

Let us choose the partition {vi}n
i=1 such that vi contains all letters that are

corresponding with ui due to LCS(u, v) (all letters from ui used in LCS(u, v)
have their pairs in vi and vice versa). From this it is immediately clear, that

∆(u, v) ≤
∑n

i=1 ∆(ui, vi).|uivi|
|uv|

Moreover, LCS(u, v) indicates existence of some common subsequences in
any two sub-words of u, v. If we look at the common subsequence induced
by LCS(u, v) in words vi, ui, this must be the longest one, if not, we shall
be able to use it for constructing a longer common subsequence of u, v than
LCS(u, v) is. �.

Lemma 1.4.10.
(∀u, v ∈ Σ∗) ∆(u, v) = ∆(uR, vR)

Proof: Lemma is straight-forward corollary of the fact |LCS(u, v)| =
|LCS(uR, vR)| �

Lemma 1.4.11. For ∆ similarity it holds:

(i) Reflexivity: (∀u ∈ Σ∗) ∆(u, u) = 1

(ii) Symmetry: (∀u, v ∈ Σ∗) ∆(u, v) = ∆(v, u)

Proof: First part is a consequence of |LCS(u, u)| = |u|, the second part
is clear from |LCS(u, v)| = |LCS(v, u)|. �

1.4.5 ∆-similarity on random words

In this sub-section, we shall be interested in a question, how large is the
∆-similarity between two random words. Motivation for the interest in this
question is quite clear: Assume, that having two words u, v of length 1000
over the alphabet {a, b} we know that ∆(u, v) = 0.8. At a first sight, words
with similarity 0.8 should be really similar. But in fact, long random words
upon alphabet of size 2 have their ∆-similarity about 0.8. With this fact,
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words u, v do not look similar at all. So when talking about ∆-similarity
of two words, it is good to know what is the average ∆-similarity between
two random words of a given length. Once we know that, we can make
conclusions, how similar these two words are. Whether we are interested in
∆-similarity or the basic edit-distance, we can reduce our questions to the
expected value of |LCS| between two random words.

This problem was first studied in [7] and then in many other publications,
from which many are citing [7]. In these publications many interesting re-
sults can be found, mostly based on non-trivial combinatorical reasonings.
For these reasons we present only few estimations in this work, that are in-
teresting for a reason, that we do not need to build such complex machinery
as in [7] or [6]. We focus on alphabet of size 2 and words of equal length.

Definition 1.4.9. Let u, v ∈ {a, b}∗, |u| = |v| = n, be two random words.
Let E(x) mean the expected value of x. Now

γn = E(∆(u, v))

Using Definition 1.4.6 we can write

γn = E
( |LCS(u, v)|

n

)

Theorem 1.4.4. There exist limit γ = lim
n→∞

γn. Moreover

γ = sup {γn}

Proof can be found in [6]. � We shall be interested in some estimations
of value γ. We can immediately say that

Theorem 1.4.5.

γ ≥ 1

2

Proof: For every 0 ≤ i ≤ n − 1 the equation ui = vi (ui is the i-th letter
of u) holds with probability of 1

2
. If we reduce function f which determine

LCS (see the note after Definition 1.3.5) only to f(i) = i or f(i) = ⊥, we
automaticaly have common subsequence with average length n

2
. �

We shall improve this estimate in the following theorem:

Theorem 1.4.6.

γ ≥ 3

4

Proof: We shall prove this theorem by finding an algorithm that con-
structs a common subsequence that takes 3

4
of the whole length of a word.
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Algorithm 1.4.4.

Input: Words u, v ∈ {a, b}∗, |u| = |v| = n

Output: A common subsequence with average length 3
4

of word length (for
large n)

(i) Set i = 0, j = 0

(ii) If i > n or j > n then terminate the algorithm.

(iii) If ui = vj then add letters ui, vj to LCS, set i = i + 1, j = j + 1 and go
to step (ii)

(iv) If ui 6= vj and ui = vj+1 then add the letters ui to LCS, set i = i + 1,
j = j + 2 and go to step (ii)

(v) Set i = i + 1, go to step (ii)

Now let us prove, that the common subsequence found by this algorithm
will be as long as we want it to be. When the algorithm comes to step (iii)
then the current prefix of LCS increases by 1 with probability 1

2
. If this

does not happen (probability 1
2
), we shall try to skip one letter in v and

find a match there (probability 1
2
). So this happens with total probability

1
4
. With probability 1

4
none of this happens, we increase i (step (v)) and we

do not increase the current prefix of LCS. When we look at the average
case, between two consecutive executions of step (ii) we increase the i by
1
2
· 1 + 1

4
· 1 + 1

4
· 1 = 1 and j by 1

2
· 1 + 1

4
· 2 + 1

4
· 0 = 1. Size of the current

prefix of LCS is increased by expected value 1
2
· 1 + 1

4
· 1 + 1

4
· 0 = 3

4
. This

proves our goal, but we must solve some technical issues first.
The problem occures, if one of the values i, j, reaches end of the word and

the other word is not processed yet. If u was infinitely long, then the common
subsequence constructed by our algorithm is of the length x, where x is a
random value with the expected value E(x) = 3

4
n and normal ditribution

(for large n). If v was infinitely long, then the common subsequence is of
length y, where y is a random value from the same distribution as x. One
word (the one that is not used to its full length) looks to us as if it was
infinite, so we can express the expected |LCS| by z = min {x, y}. We can
express z as z = x − (x − min {x, y}). We know, that E(x − min {x, y}) is
linearly dependent on

√
D where D is a dispersion of the distribution, which

is linearly dependent on n, so the whole expression is linearly dependent on√
n and thus lim

n→∞

x−min {x,y}
n

= 0. �.

This algorithm proves our goal. �
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What is the real value of γ? The exact value is not known, but it is no
problem, to turn on computer, let it generate many strings with the length
for example one milion and compute γ approximately. In [6] the estimation
γ ∈ (0.8120, 0.8125) can be found.
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Chapter 2

Projection of words to
languages

2.1 Some easy but important algorithms

In this subsection we would like to present some algorithms that are not
very hard to invent (and surely they already are in some literature, at least
in form of exercises for readers). They will be quite important in the next
subsections but not presenting them until then could harm the integrity of
the text for a bit.

Definition 2.1.1. Consider a context-free grammar G = (N, T, P, S). Let A

be any non-terminal from G. By GA we shall mean a context-free grammar
GA = (N, T, P, A) and let L(GA) be the language generated by this grammar.
Trivially L(G) = L(GS). When no confusion is possible, we shall use just A

instead of GA or L(GA) to make our notations shorter.

Now, we shall be interested in the length of the shortest word from some
non-empty context-free language L. We shall call this value Sht(L). Formally
Sht(L) = min {|w||w ∈ L}. To make our notations shorter, we shall use
Sht(A) instead of Sht(L(GA)) when it is clear what grammar G are we
referring to.

We shall need to compute every Sht(L(GA)) for every non-terminal A ∈
N . For this purpose, we shall use this algorithm:

Algorithm 2.1.1.

Input: context-free grammar G = (N, T, P, S) in Chomsky normal form

Output: Sht(L(GA)) for every non-terminal A ∈ N
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The algorithm will be similar to the Dijkstra algorithm for finding the shortest
path in graphs. We shall use some auxiliary set of non-terminals called H

which will satisfy: In some stage of computing, for every non-terminal A it
holds A ∈ H ⇔ we already know the value of Sht(A). The set H will have
another useful property: If A and B are non-terminals and A ∈ H ∧ B 6∈ H

then Sht(A) ≤ Sht(B).

Initialization: We shall try to find every non-terminal A such that Sht(A) ≤
1. First find those non-terminals for which it holds Sht(A) = 0. Those
non-terminals can be found by this sub-algorithm.

(init 1): set H = {A|A → ε ∈ P}.

(init 2): Construct the set H ′ by the rule

H ′ = {A| ∃B, C A → BC ∧ B, C ∈ H ∧ A 6∈ H}

(init 3): construct the new set H := H ∪ H ′. If H did not change (i.e. H ′

is empty) end, else go to step init 2

Those non-terminals A for which Sht(A) = 1 can be found in a similar
way. Once we have them, the initialization phase is over and we can do the
algorithm itself.

(1) set H = 0

(2) For every non-terminal A from set N −H find the value Sht′(A) by the
rule:

Sht′(A) = min {l| (∃B, C ∈ N) A → BC ∧ l = Sht(B) + Sht(C)}

If the minimizing set is empty, than Sht′(A) = ∞. Now, let A be
any non-terminal from set N − H with minimum Sht′(A). For this
non-terminal it holds that Sht(A) = Sht′(A).

(3) construct new set H := H ∪ {A}. If H = N end, else go to step (1)

Proof of correctness: First, we shall prove the correctness of the initial-
ization phase. When repeating step (init 2) for the i-th time H ′ contains
all non-terminals, such that for every non-terminal A ∈ H ′ there exists a
derivation tree with root A such that ε is derived and the height of this tree
is exactly i. It is obvious, if Sht(A) = 0 then for a non-terminal A there
must exist such tree with height at most |N |. If not, consider such a tree

42



with minimal height. Then, some non-terminal is derived from itself, there-
fore this sequence can be omitted from the tree. Repeating of this step will
lead to a contradiction with the minimal height of the tree. Therefore, our
algorithm will find every non-terminals with the property Sht(A) = 0. When
finding non-terminals with Sht(A) = 1, algorithm and also proof will be very
similar, so we can omit them.

The proof of body of algorithm itself is also not hard. We must prove, that
for a non-terminal which we find in (2) it really holds Sht(A) = Sht′(A) and
also, that this non-terminal is one with the minimal Sht value not known
yet (i.e. it does not belong to H yet). After the initialization, these two
properties hold. Now we shall discuss the induction step due to the number
of repetitions of the step (2). Suppose, there is some non-terminal B for
which Sht(B) < Sht′(A) (actually, B and A can be the same, so this case
includes all possibilities, why induction step can be wrong). Suppose that
Sht value of B is minimal. Now, take the derivation tree of this B. Let
B → CD be the rule which is used in this tree for B. Now, without loss of
generality, two things can happen: Either Sht(B) = Sht(D) ∧ Sht(C) = 0
or 1 ≤ Sht(C) < Sht(B) ∧ 1 ≤ Sht(D) < Sht(B) If the first possibility
occurs, we can repeat this with the non-terminal D until the second possi-
bility occurs. If the second case occurs, let us look on C, D. If one of these
non-terminals does not belong to H, then B was not a non-terminal with
minimal Sht value, which is a contradiction. If B and C belongs to H, then
the value Sht(B) = Sht(C) + Sht(D) ≥ Sht(A), which is a contradiction
with the way, how we found B. �

The time complexity of the algorithm can be measured according to many
parameters, for example |T |, |N | or |P |. We shall use the parameter |G|,
which we define as a length of the description of G that is done in some
“standard” encoding. If G does not use “useless” (non-)terminals (such (non-
)terminals that are not contained in any rule, then |G| = Θ(|P |). Let us
return to the former question - what is the complexity of the algorithm.
First, consider the initialization. The most time-consuming step is the step
(init 2). One iteration of this step takes time of O(|G|). We shall repeat it
O(|G|) times, so its complexity is equal to O(|G|2). Finding non-terminals
with Sht(A) = 1 is as hard as for the zero value. Now, for the algorithm
itself. In (1) we must compute Sht′(A) for O(|G|) non-terminals. Every
computation takes O(|G|). This step is repeated O(|G|) times, so the whole
complexity is O(|G|3).

Now we shall try to solve another problem: Compute, how long is the
shortest word from some language L that contains some letter a ∈ Σ. Al-
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though this problem can look quite unimportant, we shall need this result
further. So let Shl(L, a) be the value corresponding to the language L and
the letter a. We shall be often in case L = L(A) so we shall use also Shl(A, a).

Algorithm 2.1.2.

Input: Context-free grammar G = (N, T, P, S) in Chomsky normal form

Output: Shl(L(A), a) for every non-terminal A ∈ N and every a ∈ Σ

Initialization: We calculate Sht value for every non-terminal of G. Simi-
larly like in the former algorithm, we shall use the set H that will store
all pairs (A, a) for which we already known the Shl(A, a) value. This
set will have the property similar to the former one:

(A, a) ∈ H ∧ (B, b) 6∈ H ⇒ Shl(A, a) ≤ Shl(B, b)

After the initialization phase, H should contain all pairs (A, a) such
that Shl(A, a) = 1. Proof of this is easy, we can immediately see that
such (A, a) that (A → a) ∈ P has this property. Then also any pair
(B, a) which satisfies B ⇒∗ A will have this property. Therefore, set
of all pairs which will have this property can be constructed by an
iterative approach similar to the initialization phase when finding Sht.
Let us look directly at the algorithm

(1) For all pairs (A, a) 6∈ H calculate Shl′(A, a) by the rule

Shl′(A, a) = min{l| (∃B, C)(A → BC) ∈ P∧
∧(Shl(B, a) + Sht(C) = l ∨ Shl(C, a) + Sht(B) = l)}

If the minimizing set is empty then Shl(A, a) = ∞. Let (A, a) be any
pair not included in H with minimal Shl value. Then Shl′(A, a) =
Shl(A, a).

(2) Construct the new set H by rule H := H ∪ (A, a). If H contains all
possible pairs terminate, else go to step (1)

Proof of the algorithm is similar to the proof of Algorithm 2.1.1, so we
can omit it. �

Also, calculating the complexity of this algorithm is similar to Algorithm
2.1.1. One complication is in the fact, that instead of non-terminals, we are
working with pairs (A, a) the number of which is O(|G|2). Therefore, the
complexity of this algorithm is O(|G|6)
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2.2 Algorithms for projections

2.2.1 Basic edit-distance and context-free languages

Edit-distance and ∆ similarity have nice properties such as symmetry and
reflexivity. This encourages us to ask some more difficult questions about
it. In geometry it is common to define distance of two objects as a distance
of two nearest points A, B, belonging to the first and the second object,
respectively. We shall take some inspiration from this and we shall define
distance between a word and a language.

Definition 2.2.1. Let d : Σ∗×Σ∗ → R
+ be a similarity or distance measure.

Now we can extend the definition of d so that for any word u and any language
L we define

d(u, L) = inf{d(u, v)|v ∈ L}
for distance functions and

d(u, L) = sup{d(u, v)|v ∈ L}

for similarity functions.

In this definition we are using supremum and infimum, because minimal
and maximal value of given sets do not have to exist, but in all cases we shall
assume, they do, so we can use minimal and maximal values instead.
Now, we shall be interested in the question: How big is distance between a
word and a language L, when considered distance is the basic edit-distance
(only insertions and deletions with cost 1 are allowed) and for L we take a
context-free language. First thing helping us is that the basic edit-distance
d has nice properties, when considering the distance between a word and
L = L1 · L2. This is formulated in the following lemma.

Theorem 2.2.1. Let u ∈ Σ∗ be a word, L1, L2 be languages and L = L1 ·L2.
Then the following equation holds:

d(u, L) = min
u=u1u2

{d(u1, L1) + d(u2, L2)}

Proof: First, we can use this lemma:

Lemma 2.2.1.

d(u, v) = min{|u1| + · · · + |un| + |v1| + · · ·+ |vn||
∃v1 . . . vn, u1 . . . un ∈ Σ∗, ∃a1, . . . , an−1 ∈ Σ∗

u = u1a1 . . . un−1an−1un ∧ v = v1a1v2a2 . . . vn−1an−1vn}

45



For purposes of this lemma, any decomposition of a pair (u, v) as was used
above will be called a partitioning, the sum we are minimizing will be called
a cost of partitioning and partitioning found by minimization will be called
optimal.

This lemma is corrollary of 1.3.2 and properties of LCS. �

Let us continue the proof of Theorem 2.2.1. Let v ∈ L be a word for which
it holds: d(u, L) = d(u, v). Clearly v is a concatenation of two words v1 ∈ L1

and v2 ∈ L2. Now, we consider the optimal partitioning of u and v (in the
sense of the above lemma). This partitioning is inducing a decomposition of
u to u = u1u2 and some partitionings on pairs (u1, v1) and (u2, v2). The sum
of the costs of these two partitionings is as large as the cost of the optimal
partitioning on (u, v), so this proves that d(u, v) is greater or equal than the
right side of the equation.

Moreover, taking any decomposition u = u1u2, v = v1v2 and transforming
u1 to be equal to v1 and u2 to be equal to v2 is some (not necessarily optimal)
method of transforming u to be equal to v. Thus d(u, v) is less than or equal
to the right side of the equation. �

Now, we shall see, how this theorem helps us to find distance between a word
and a context-free language.

Consider a context free grammar G = (N, T, P, S) in Chomsky normal
form. When computing d(u, GA) (A ∈ N), we can use:

LA =

B,C∈N
⋃

A−>BC

LBLC ∪
a∈T
⋃

A−>a

a

and for d(u, BC) we can use the method that is implied by Theorem 2.2.1 -
we try all partitionings u = u1u2, recursively compute the basic edit-distance
u1 from L(GB) and u2 from L(GC) and we find the minimum. This method
can be easily implemented, but it has one little problem. Suppose we are
computing d(u, BC). We know there exists u = u1u2 such that d(u, BC) =
d(u1, B) + d(u2, C). If u1 = ε, we must compute d(u, C). But the problem
will remain, computation of d(u, C) will lead to a computation of d(u, D)
etc., so the computation will be infinite. We must find some way, how to
eliminate these problems. To make the situation more clear, we can visualize
the computation of d(u, A) as follows:

d(u, A) = d(u1, B)+d(u2, C) = d(u11, E)+d(u12, F )+d(u21, G)+d(u22, H) = . . .

where some oracle advises us, how the words should be split and which rules
for non-terminals should be used. Our problem with never-ending computa-
tion looks like:

d(u, A) = d(u, B) + d(ε, C) = d(u, E) + ... . . .
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We shall call such part of a computation an ε part. Whether d(ε, C) is equal
to zero or not, we can assume that the computation does not contain an ε

part of length more than |N |. If so, some non-terminal must appear more
than once in it, so the whole computation between these two occurrences can
be omitted. This will make the ε part shorter (and if some d(ε, C) which
arises somewhere between two occurrences of the same non-terminal is non-
zero, then it is in direct contradiction with the minimal computation we are
considering).

So, we shall be counting, how long is the actual ε-part of the computation.
If this length is more than |N |, we know, that all other ε steps are in vain
and we can force the computation to do some non-ε step. We write these
thoughts formally in this algorithm:

Algorithm 2.2.1.

Input: Context-free grammar G = (N, T, P, S) in Chomsky normal form,
word u ∈ Σ∗

Output: The basic edit-distance between word u and language L(G)

For purposes of the computation of d(u, L(G)) where G = (N, T, P, S) we

define the function D : N
|u|
0 × N

|u|
0 × N × N → R in such way, that

D(i, j, A, k) = d([u]ji , L(GA))

where k is the length of the last ε part in the computation. Now for D it
holds that:

(i) D(i, i, A, m) = d(ε, A) = Sht(A)

(ii) D(i, j, A, 0) = min{α1, α2} where i < j, and:

α1 = min
w∈T
A→w

{d([u]ji , w)}

α2 = min
i<k<j
A→BC

{D(i, k, B, |N |) + D(k, j, C, |N |)}

(iii) D(i, j, A, m) = min{β1, β2, β3} where m > 0, and:

β1 = min
A→BC

{D(i, j, B, m − 1) + Sht(C)}

β2 = min
A→BC

{D(i, j, C, m − 1) + Sht(B)}

β3 = D(i, j, A, m − 1)
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Step (i) solves the trivial case, when looking for distance between ε and
the language L(GA) which we can easily compute using Algorithm 2.1.1. Step
(iii) allows the computation to create an ε part of length at most |N |, but
it is not necessary to create it (β1). Step (ii) is the one, where we force the
computation to do a non-ε step (therefore i < k < j).

Now to the time-complexity of the algorithm. We must compute O(|u|3.|N |)
values of the function D. If we compute Sht(A) for all A and remember it,
then the step (i) is fast. So is the step (iii). The step (ii) takes most of the
time. By this step also most of the values of D are computed. One step (ii)
takes O(|G|.|u|), so for the total complexity we have O(|u|4.|G|2).

2.2.2 ∆-similarity and context-free languages

In this subsection we shall compute the ∆ similarity of a word and a context-
free language. Similar to problems with basic edit-distance and context-free
languages, also this problem was solved in [1], where author presented an
algorithm for finding a lower bound for this value. In this subsection an
algorithm for exact value will be presented. First, we shall see, that it is
necessary to do more, than just modify the algorithm for the basic edit-
distance. The following lemma shows where the problem is:

Lemma 2.2.2. There exist languages L1, L2 and a word u such that:

(∀u1, u2 ∈ Σ∗)(∃v1 ∈ L1, v2 ∈ L2)((u = u1u2 ∧ ∆(u1, L1) = ∆(u1, v1) ∧
∆(u2, L2) = ∆(u2, v2)) ⇒ ∆(u, v1v2) 6= ∆(u, L))

Proof: In other words, this lemma says, that such property like Theorem
2.2.1 does not hold. We illustrate this fact on the following example that is
also used in [1]

Example 2.2.1. L1 = {aa}, L2 = {abccc, ac}, u = aaab. For concatenation
of L1 and L2 we have L1L2 = aaabccc, aaac. Now, 8

11
= ∆(aaab, aaabccc) <

∆(aaab, aaac) = 3
4
, so v = aaac and ∆(u, L) = ∆(u, v). Now we can try

all partitionings u = u1u2 to verify that there always exist v1, v2 such that
∆(u1, L1) = ∆(u1, v1) and ∆(u2, L2) = ∆(u2, v2) and v 6= v1.v2

(i) u1 = ε u2 = aaab. Now v1 = aa and v2 = abccc. v 6= v1v2

(ii) u1 = a u2 = aab. Now v1 = aa and v2 = abccc. v 6= v1v2

(iii) u1 = aa u2 = ab. Now v1 = aa and v2 = abccc. v 6= v1v2

(iv) u1 = aaa u2 = b. Now v1 = aa and v2 = abccc. v 6= v1v2
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(v) u1 = aaab u2 = ε. Now v1 = aa and v2 can be either abccc or ac. The
second possibility satisfies v = v1v2, but the first does not.

This example proves our lemma. �

Lemma 2.2.2 shows, that we cannot just modify Algorithm 2.2.1 to get
an algorithm for ∆-similarity and context free language. Although, we can
modify Algorithm 2.2.1 to find some estimation for a value we are looking
for. This approach was used in [1].

We started by Definition 1.4.6 that gives us an idea to compute LCS

instead of ∆-similarity. We can naturally extend the definition of LCS in
such a way that it will also define the LCS of word and language. Given a
word u and a context-free language L we compute words v1, . . . , vn, where
(n = |u|) such that vi is the shortest word for which |LCS(vi, L)| = i. Now
we know that

(∃j ∈ N) ∆(u, L) = ∆(u, vi)

The only thing we have to do is to try all vi’s and find the maximum of i
|uvi|

.
Now we show, how we are going to find the vi’s. We use a property of LCS,
that ∆-similarity does not posess. This property is shown in the following
theorem:

Theorem 2.2.2. For LCS, word u and languages L1, L2 it holds that:

|LCS(u, L1L2)| = max
u=u1u2

{|LCS(u1, L1)| + |LCS(u2, L2)|}

Furthermore it holds that:

|LCS(u, L1 ∪ L2)| = max {|LCS(u, L1)|, |LCS(u, L2)|}

Proof: The second property is a direct consequence of the extended defini-
tion of LCS to LCS between a word and a language. For the first property let
v denote a word for which LCS(u, L) = LCS(u, v). The word v is a concate-
nation of some v1 ∈ L1 and v2 ∈ L2. Now v1 and v2 gives some partitioning
of u into u1u2. This partitioning is the one that ‘wins’ the maximization (if
not, it is a contradiction with the maximal length of LCS(u, L1L2)) and it
has exactly the same value as the left side of the proven equation. �

We are now ready to present our algorithm:

Algorithm 2.2.2.

Input: Context-free grammar G = (N, T, P, S) in Chomsky normal form,
word u ∈ Σ∗

Output: ∆-similarity between word u and language L(G)
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We construct words v1, . . . , vn (n = |u|). For the construction of vp we do

the following: We define a function Dp : N
|u|
0 × N

|u|
0 × N × N → R such that

Dp(i, j, A, m) = min {|v| : v ∈ L(GA) ∧ |LCS([u]ji , L(GA))| = p}

Now, we can construct the function Dk using the following rules:

(i) D0(i, j, A, m) = d(ε, A) = Sht(A)

(ii) D1(i, j, A, m) = min
i≤k<j

({Shl(uk, A)} ∪ {∞})

(iii) Computation of Dp(i, j, A, m) for p > 1:

(a) Dp(i, j, A, 0) = min
i<k<j−1

A→BC
p=l+r

r>0, l>0

{Dl(i, k, B, |N |) + Dr(k, j, C, |N |)}

(b) Dp(i, j, A, m) = min{β1, β2, β3} where m > 0 and:

β1 = min
A→BC

{Dp(i, j, B, m − 1) + Sht(C)}
β2 = min

A→BC
{Dp(i, j, C, m − 1) + Sht(B)}

β3 = Dp(i, j, A, m − 1)

Having D computed, return

max
i

{2Di(0, |u|, S, |N |)
i + |u|

}

To make the algorithm easier to understand, let us make some notes.
First, the meaning of m, the last argument of the function D is the same as
the meaning of the last argument of D in Algorithm 2.2.1. Our computation
can do ε-steps (included in β1, β2). Using the same argumentation as in
Algorithm 2.2.1 we find out, that it makes no sense to make more than |N |
ε-steps. Thus we can force the algorithm to do non-ε-step, this is done in
(iii-a), where we insist on i < k < j − 1 and also on r > 0, l > 0 (without
these conditions, the algorithm could perform never-ending computations).

Let us consider the time complexity of the algorithm. We must compute
O(|u|3.|N |) values of the function D. If we compute Sht(A) and Shl(a, A)
for all A and all A, a and remember the results, then steps (i) and (ii) are
fast. Analysing the step (iii): Most of the time is taken by the step (a), where
we must try all rules for the non-terminal A (|N |), all positions of k and l

(resp. r), so one step takes O(|G|.|u|2) values. The total complexity of the
algorithm is thus O(|u|5.|G|2).
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Chapter 3

Conclusion

There are several questions, which have arisen from this work that were not
well answered here.

First, it is the problem: At what circumstances can the generalized edit-
distance be computed effectively? We have found some conditions that
are rather restricting for the edit-distance, but this only resulted in NP-
completeness of the problem. On the other hand, there exist some instances
such as the basic edit-distance that are computable effectively. Question is
whether there exist some other restrictions, under which the edit-distance
becomes computable in polynomial time.

The second problem is related to similarities on random words. ∆-
similarity of two long random words over binary alphabet is about 0.8 (80%).
This means that ∆-similarity in some way does not fit our intuition, because
two words that are not related with each other seem very alike according to
their ∆-similarity.

The third question is connected with extending the distance function to
languages. It would be interesting, if distance of two languages could be
defined using only a distance function that defines the distance of words.
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Resumé

Táto diplomová práca je venovaná rôznym spôsobom určovania vzdi-
alenosti konečných slov. V tejto oblasti sú už dosiahnuté mnohé výsledky.
Hnaćım motorom sú potreby praxe (najmä biológia). Je známych viacero
viac či menej použitel’ných funkcíı na určovanie vzdialenosti. Ak definujeme
nejakú vzdialenostnú funkciu, môžeme sa posunút’ “o úroveň d’alej” a začat’
si klást’ otázku, ako definovat’ vzdialenost’ slova a jazyka. V druhej časti
práce sa venujeme práve tomuto problému.

Zauj́ımavým problémom je tiež skúmat’ priemernú vzdialenost’ dvoch slov
ktoré boli vygenerované istým spôsobom. Tejto problematike sa však práca
venuje iba okrajovo.

Hlavnými výsledkami tejto práce sú:

• Abstraktná defińıcia edit-distance, predstavenie niekol’kých jej inštan-
cíı.

• Niekol’ko tvrdeńı, ktoré sú výsledkom snahy zistit’, kedy sa konkrétna
inštancia edit-distance dá rátat’ v polynomiálnom čase.

• Defińıcia fragment-distance, návod na jej rátanie a niekol’lko vlastnost́ı.

• Zjednodušená defińıcia ∆-podobnosti, definovanej v [1] a niekol’ko dôka-
zov, ktoré sa vd’aka tejto defińıcii zjednodušili.

• Algoritmus na rátanie ∆-podobnosti slova od bezkontextového jazyka.
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