
Institute of Applied Informatics
Faculty of Mathematics, Physics and Informatics

Comenius University, Bratislava

Application of Dynamic Logic Programming
in Evaluation of Computer Games’ World State

(Diploma Thesis)

Michal Turček

Supervisor:
Mgr. Jozef Šǐska Bratislava, 2007

iii

I honourably proclaim, that I wrote the thesis by
myself and I did not use any other than referenced
resources.

. .

v

I would like to thank my supervisor Mgr. Jozef Šǐska for such interesting
thesis theme and his guidance during this work. Also, I would like to express
my gratitude to a friend, Mgr. Tomáš Záthurecký. Not only for providing
development environment and overall technical support but for all his help
through the course of my studies.

vi

Abstract (English)

Application of Dynamic Logic Programming in Evaluation of Computer
Games’ World State

Aim of this work is to make use of Dynamic Logic Programming (Dyn-
LoP) in making of computer games. More specifically - to enhance some ex-
isting game creation toolkit (game engine) with the capability of employing
DynLoP for evaluation of game-world state. This should be an implementa-
tion of the original idea by Mgr. Jozef Šǐska [1].

key words: knowledge representation, computer games, Dynamic Logic
Programming

Abstrakt (Slovensky)

Využitie Dynamického Logického Programovania pri vyhodnocovańı stavu
sveta v poč́ıtačových hrách

Práca si kladie za ciěl umožnǐt uplatnenie Dynamického Logického Pro-
gramovania (DynLoP) pri tvorbe poč́ıtačových hier. Presneǰsie - rozš́ırǐt
nejakú existujúcu sadu nástrojov na tvorbu hier (herný engine) o možnosť
použǐt DynLoP pre vyhodnocovanie stavu herného sveta. Ide o implementáciu
pôvodnej ideii Mgr. Jozefa Šǐsku [1].

ǩlúčové slová: reprezentácia znalost́ı, poč́ıtačové hry, Dynamické Log-
ické Programovanie

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Summary of Goals . 2
1.3 What Follows . 2

2 Logic Programming 3
2.1 Syntax . 3
2.2 Semantics . 4

2.2.1 Answer Set Programming 5

3 Dynamic Logic Programming 7
3.1 Semantics . 7

3.1.1 Dynamic Stable Models 7
3.1.2 Transformational Semantics 8

4 World State Evaluation in Computer Games 11
4.1 Standard Approach . 11
4.2 Overview of Related Projects 12
4.3 DynLoP Approach to WSE 13

4.3.1 Benefits . 15

5 Implementation 17
5.1 World State Evaluator . 18

5.1.1 dynlop2lp.py - transformational semantics 18
5.1.2 evaluator.py - world state evaluation 20

5.2 Integration to Game Engine - Adonthell 24
5.2.1 evaluator.cc - world state evaluation 24
5.2.2 Other files . 27

vii

viii CONTENTS

5.2.3 Demonstration game - Waste’s Edge 28
5.2.4 User’s manual . 29

6 Resume 31

Chapter 1

Introduction

1.1 Motivation

What we do in this work, is making a connection between computer games
and knowledge representation theories. The reason behind is that these two
areas might be significantly beneficial to each other.

How could computer games profit from theoretical artificial intelligence
(AI) is quite straightforward. Trends in game industry have so far lead us to
moment, where virtual worlds are an eye-candy. Visuals are rendered in real-
istic graphics. Objects in game environments react accordingly to the laws of
physics. Everything is cast in perfect animations and surround sound. What
often spoils the overall impression is the intelligence of computer controlled
agents. It is disturbingly mechanical, too simple or even flawed. Very fre-
quently it does not correspond to the expected behaviour. This situation is
unarguably caused mainly by the fact the intelligence can not be promptly
perceived by the main sense - vision. And that is of course what sells the
game. Another reason might be the lack of more general tools for program-
ming AI, so the development would be rather costly. This is where we might
help. In comparison, for each of the features already mentioned (graphics,
physical simulations, sound) there exist both software libraries (OpenGL,
DirectX, etc.) and dedicated hardware. Exactly these hardware accelerator
cards make using Central Processing Unit for computing artificial intelligence
possible.

The opposite direction - games helping science - is even more important.
Application of theoretical models into practical use is always of major signifi-

1

2 CHAPTER 1. INTRODUCTION

cance. Game development might prove to be another such source of valuable
feedback. Logic-based representation of dynamic knowledge is still relatively
young, evolving concept. As such, providing testbed and playground for peo-
ple studying it might be helpful. Particularly for the research of its various
semantics, their correspondence to intuition, etc. But also more generally,
for problem solving by means of Dynamic Logic Programming (DynLoP).
The reasons for using computer games for this purpose is that game worlds
could serve as an adequate approximation of the real one. It is easy to work
with them for their simplicity and always available, exact, explicit, formal
description (given by the set of rules of that particular game). On the other
hand, game worlds could be complex enough at the same time, to make the
results relevant for real world applications.

1.2 Summary of Goals

• development of framework for world state evaluation (WSE), that wold
utilize Dynamic Logic Programming

• embedding this WSE unit into an existent game creation toolkit (game
engine)

• provide usage demonstration example in actual computer game built
on this engine

1.3 What Follows

Before describing our practical implementation, we present a theoretical view
on the subject in the following three chapters.

Chapter 2 formally introduces Logic Programming, as a prerequisite for
chapt. 3 which deals with Dynamic Logic Programming. These two can be
skipped if reader is already familiar with the addressed topics.

Chapter 4 describes on what our focus in computer games lays on. What
knowledge representation problems we try to face and how could DynLoP be
used to improve the currently most used solutions. Also we take a look at
projects similar to ours. That means those, somehow involving both knowl-
edge representation theory and computer games.

Finally, the last chapter covers the actual implementations description.

Chapter 2

Logic Programming

For the purpose of self containment of this thesis we present the knowledge
representation formalism called logic programming (LP) here. Note that we
aim to describe the class of logic programs that our implementation works
with, although the deviations from the standard definitions are only of cos-
metic nature. However, the exact syntax depends a lot on the ASP solver
used (more in sec. 5.1.2). We provide only the needed basics - more on the
subject of LP and DynLop can be found for instance in [3].

2.1 Syntax

Definition 2.1.1 (Term) A term is either a variable or a constant, where
both are symbols drawn from the disjoint sets of variable and constant symbols
correspondingly.

Definition 2.1.2 (Atom) An atom is an expression of the form p(t1, t2, . . . , tn),
where p is an predicate symbol with arity n and each ti is a term. An atom
is called grounded if it does not contain any variables.

The set of all grounded terms is called the Herbrand universe. The Her-
brand base is the set of all grounded atoms.

Definition 2.1.3 (Literal) A literal is any of these:

• objective literal - an atom: A

• default literal - an atom with default negation: not A

3

4 CHAPTER 2. LOGIC PROGRAMMING

Notation 2.1.4 Two literals A, B are called conflicting if one of them is
negation of the other one, that is either A = not B or B = not A. We denote
this fact by A ./ B

Notation 2.1.5 For a set of literals M we denote by M+ the set of all
objective literals from M and by M− the set of all default literals from M .

Definition 2.1.6 (Logic Program) A logic program is a countable set of
rules of the form:

L0 ← L1, L2 . . . , Ln.

where each Li is a literal. If n = 0 we call this rule a fact and denote it
simply:

L0.

Intuitively, every rule represents an implication L1 ∧ L2 ∧ . . . Ln ⇒ L0.

Notation 2.1.7 Let r be a rule L0 ← L1, L2 . . . , Ln., then by head(r) we
refer to L0 and by body(r) to the set {L1, L2 . . . , Ln}.
Notation 2.1.8 Two rules r1, r2 are called conflicting iff head(r1) ./ head(r2).
We denote this fact by r1 ./ r2

2.2 Semantics

Definition 2.2.1 (Herbrand interpretation) A Herbrand interpretation of
a logic program is any subset of its Herbrand base.

An interpretation I is minimal among the set S if there does not exists
any J ∈ S such that J ⊂ I. We say an interpretation I is least among the
set S if for all J ∈ S holds I ⊆ J .

Notation 2.2.2 A literal L is satisfied in an interpretation I (denoted by
I |= L) iff either L is objective and L ∈ I or L is defualt (i.e. L = not A)
and A /∈ I.

A set of literals S is satisfied in I (I |= S) iff ∀L ∈ S; I |= L. We also say
that I models S.

A rule r is satisfied in I iff (I |= body(r))⇒ (I |= head(r)).

Definition 2.2.3 (Herbrand model) A Herbrand model of a logic program
P is a Herbrand interpretation of P such that it satisfies all rules in P .

2.2. SEMANTICS 5

2.2.1 Answer Set Programming

All the logic programming used in this thesis is based on the Answer Set se-
mantics. Therefore, we now proceed to enumerating some basic (syntactical)
classes of logic programs and defining their stable models - answer sets. We
begin with the most simple ones and continue towards the more general ones.
Whenever we use the term model, except in formal definitions in chapt. 2
and 3 we mean an answer set.

Definite logic programs

Definition 2.2.4 (Definite logic program) . . . is a countable set of rules of
the form L0 ← L1, L2 . . . , Ln. where each Li is an atom.

Definition 2.2.5 A stable model (i.e. answer set) of a definite logic program
P is the least model of P .

Normal logic programs

Definition 2.2.6 (Normal logic program) . . . is a countable set of rules of
the form L0 ← L1, L2 . . . , Ln. where L0 is an atom and each L1≤i≤n is a
literal.

Definition 2.2.7 (Gelfond-Lifschitz operator) Let P be a normal logic pro-
gram and I an interpretation. The GL-transformation of P modulo I is the
program P I obtained from P by:

• removing each rule containing a default literal not A such that A ∈ I.

• removing each literal not A such that A /∈ I from remaining rules.

Since the resulting program P I is a definite program, it has a unique least
model. We define Γ(I) = least(P I).

Definition 2.2.8 An interpretation M of a normal logic program P is a
stable model of P iff Γ(M) = M .

6 CHAPTER 2. LOGIC PROGRAMMING

Generalized logic programs

Definition 2.2.9 (Generalized logic program) . . . is a countable set of rules
of the form L0 ← L1, L2 . . . , Ln. where each Li is a literal.

Definition 2.2.10 Let ′ be an operator that replaces all default literals not A
by new atoms not A. An interpretation M of a generalized logic program P
is a stable model of P iff

M ′ = least((P ∪M−)′)

Extended logic programs

Intuition behind the two types of negation is, that by explicit negation we
claim that we have evidence that something is not true. Whereas by default
negation we state that if no evidence is found to support a certain statement
we assume it is false.

Definition 2.2.11 (Extended logic program) . . . is a logic program with ex-
plicit negation. An explicitly negated atom is called an extended objective
literal (¬A) and not ¬A is an extended default literal.

Definition 2.2.12 (Extended Gelfond-Lifschitz operator) Let P be a normal
logic program and I an interpretation. The GL-transformation of P modulo
I is the program P I obtained from P by:

• removing each rule containing a default literal not A such that A ∈ I.

• removing each literal not A such that A /∈ I from remaining rules.

Since the resulting program P I is a definite program, it has a unique least
model. If least(P I) contains a pair of complementary objective literals (A,
¬A), then Γ(I) = Herbrand base. Otherwise, we define Γ(I) = least(P I).

Definition 2.2.13 An interpretation M of an extended logic program P is
a stable model of P iff Γ(M) = M .

Chapter 3

Dynamic Logic Programming

Dynamic Logic Programming (DynLoP) is an extension of the Logic Pro-
gramming, designed for describing knowledge changing in time. Syntacti-
cally it is simply a sequence of logic programs. This represents the timeline
of knowledge gathering. However it can be viewed generally as a sequence,
where any information expressed on a certain position is strictly more im-
portant (update, overriding inconsistencies) than anything that precedes it.
It might for instance mean knowledge acquired from different sources, sorted
by their reliability.

3.1 Semantics

3.1.1 Dynamic Stable Models

Notation 3.1.1 Let P = (P1, P2, . . . Pn) be a dynamic logic program, then
by ρ(P) we mean a logic program obtain by uniting all the rules from
P1, P2, . . . Pn.

ρ(P) =
⋃

Pi

Definition 3.1.2 (Dynamic Stable Model) An interpretation M is a stable
model of a dynamic logic program P = (P1, P2, . . . Pn) iff

M = least([ρ(P)\Reject(P , M)] ∪Default(ρ(P), M))

where

7

8 CHAPTER 3. DYNAMIC LOGIC PROGRAMMING

Reject(P , M) = {ri|ri ∈ Pi,∃rj ∈ Pj, ri ./ rj, i < j,M |= body(rj)}

Default(ρ(P), M) = {not A|A ∈ A, 6 ∃r ∈ ρ(P), M |= body(r), head(r) = A}
A is the set of all atoms from the DynLoP P.

On the intuitive level, this definition says that we can test whether an
interpretation M is a stable model by:

1. uniting all the updates (i.e. programs P1, P2, . . . Pn)

2. removing all the rules that are in conflict with a more important rule
(i.e. coming from a more recent update and having its body modeled
by M)

3. adding facts not A for every atom A that is not in the head of any rule
that has its body modeled by M .

3.1.2 Transformational Semantics

The previous declarative semantics provide us only with a way of testing
whether a certain given interpretation is an answer-set. The need of having
a method of computing the stable models is obvious. In this section we
present a procedural semantics for DynLoP.

Definition 3.1.3 (Dynamic Program Update) Let P = (P1, P2, . . . Pn) be a
dynamic logic program, let T = {1, 2, . . . n}.

Let K be the set of all atoms from P. Let {A−, As, A
−
s , APs , A

−
Ps
|A ∈

K, s ∈ T ∪ {0}} be a set of new atoms (i.e. disjoint with K).
By the dynamic program update over the sequence of updating programs

P we mean the logic program
⊎P, which consists of the following rules:

(RP) Rewritten program clauses:

APs ← B1, . . . , Bm, C−
1 , . . . , C−

n

A−
Ps
← B1, . . . , Bm, C−

1 , . . . , C−
n

for any clause
A← B1, . . . , Bm, not C1, . . . , not Cn

3.1. SEMANTICS 9

not A← B1, . . . , Bm, not C1, . . . , not Cn

of Ps ∈ P respectively, where s ∈ T .

(UR) Update rules:
As ← APs

A−
s ← A−

Ps

for all atoms A ∈ K and for s ∈ T . (A is true/false in the state s if it is
true/false in the program Ps)

(IR) Inheritance rules:

As ← As−1, not A−
Ps

A−
s ← A−

s−1, not APs

for all atoms A ∈ K and for all s ∈ T . (A is true/false in the state s if it is
true/false in the previous state s − 1 and it is not forced to be false/true by
the program Ps)

(DR) Default rules
A−

0

for all atoms A ∈ K. (All objective atoms are initially false.)

Definition 3.1.4 (Dynamic Program Update at a Given State) Given a
fixed state s ∈ T , by the dynamic program update at the state s, denoted
by

⊎
sP, we mean the dynamic program update

⊎P with the following rules
added:

(CSs) Current State Rules:

A← As

A− ← A−
s

not A← A−
s

for all atoms A ∈ K.

Theorem 3.1.5 (Soundness and Completeness) Given a Dynamic Logic
Program P, the stable models of

⊎
sP, restricted to the original set of atoms,

coincide with the stable models of P at state s.

10 CHAPTER 3. DYNAMIC LOGIC PROGRAMMING

Chapter 4

World State Evaluation in
Computer Games

The basic principle of games intended for playing solo or players versus envi-
ronment (in contrast to player versus player) is accomplishing certain tasks,
designed by the creators of the game. Our focus will be on so called adventure
and role-playing games (RPGs). This is due to specific type of tasks that
the player of such games needs to complete. These are commonly referred
to as quests. The difference that make them suitable for our cause is their
complexity - implying the effort needed to describe them and the difficulty of
checking their completion. However the same concept, described later (sec.
4.3), might probably be successfully used for other types of games as well.
Mainly strategic or more complex logical puzzles. By the term “world state
evaluation” (WSE) we mean the process of obtaining truth value of arbi-
trary statements in the context of the in-game world (mostly for the sake of
checking whether a certain quest or its part is solved).

4.1 Standard Approach

Tracking the player’s progress through the game involves maintaining a rep-
resentation of the state the game world is in. The standard approach to do
this uses very limited or none inference (reasoning by making conclusions)
at all.

Typically for every quest there exists a set of player actions influencing the
outcome of that particular quest. This set can be organized as a simple table

11

12CHAPTER 4. WORLD STATE EVALUATION IN COMPUTER GAMES

(list) or some more complicated structure, for instance a tree (generally a
graph). The structure represents mutual relations between these facts (pieces
of knowledge). Also it often implicitly or explicitly codes the way how to
compute the overall result of changing a single fact. When player executes
any of those noteworthy actions a simple procedure derives the status of
all the related information carrying nodes and ultimately of the quest itself.
Nearly never does this process make use of any knowledge representation
theories. Describing the game world and its mechanics (inference rules) in
this fashion is rather cumbersome and is very frequently source of erroneous
(from the players point of view) game behaviour.

In the rapidly changing market of computer games, eliminating the need
of programming a game from scratch is essential. Therefore modular archi-
tectures and ready-to-use frameworks are a must. These reusable (and often
subject to trade) parts of code and sets of development tools are called en-
gines. They range from those for very specific tasks (for instance graphics
engines) to the complete prefabricates of a whole game. However they rarely
cover the areas of artificial intelligence or knowledge representation. These
parts have to be programmed ad hoc. If a development instrument should be
put to easy use, embedding it into a game engine is the right way to go. On
the other hand for the sake of general applicability it should be also provided
as a module usable in other engines or software projects. In this work we
target both of these needs.

4.2 Overview of Related Projects

Except [1] (on which this thesis is based on) there are few other works con-
cerning artificial intelligence and computer games. A brief description of
those most closely related follows.

Qsmodels: ASP Planning in Interactive Gaming Envi-
ronment

Qsmodels [8] is a software architecture, that is an interface between a game
and Smodels [4] inferential engine. It is used for controlling an agent inside
the game - an automatic player, often called a bot. Behaviour of the bot
is determined by a planner written in the language of Logic Programming
under the Answer Set semantics. This program is interpreted by the Smodels

4.3. DYNLOP APPROACH TO WSE 13

solver. The game is a real-time action ’Quake 3: Arena’ and Qsmodels is
conceived as its modification.

Evolving Characters in Role Playing Games

In this work [9] authors enhance Java based Multi-Agent Platform madA-
gents with Evolving Logic Programming (EVOLP). MadAgents are then used
in Role Playing Game engine to control the non-player characters (NPCs).
EVOLP is a formalism descending from Logic Programming, intended to
work with dynamic knowledge, evolving in time. These two attributes (RPG
engine and EVOLP) make this project very similar to ours. The differences
are as follows. Our focus lays on more basic, more general task than NPC
behaviour - the underlying evaluation of game-world state. More than just
the NPC activities could be built on this knowledge. The second distinc-
tion is that the used game engine (MulE - Multi-player Evolutive Game
Engine) is for developing Massive Multi-player Online Role-Playing Games
(MMORPGs). Their concept of thousands of players interacting with the
same game world simultaneously somewhat limits the depth, volume (pro-
cessing power issues) and scope (one player heavily influencing the game for
all the others would not be desired) of advanced AI methods used within.

Proprietary Solutions

Recently, there is some noticeable raise of interest for artificial intelligence
in the game industry. As a pioneer that made a significant advancement
should be considered ’The Elder Scrolls IV: Oblivion’ [10]. It is a commercial
computer game of the role playing (RPG) genre, released in 2006.

It exhibits certain features that might be achieved by similar means as
we present. These features include most notably the non-player characters’
reasoning, setting up daily schedules, designating goals and planning how to
achieve them. The authors’ term for this is ’Radiant AI’. However, what
actual techniques are hidden beneath this is not publicly known.

4.3 DynLoP Approach to WSE

Knowledge needed to decide whether a certain statement is true in the current
state of the game, consists of description of the game mechanics plus the

14CHAPTER 4. WORLD STATE EVALUATION IN COMPUTER GAMES

query and the state itself. In case of quest completion checking, in addition to
general game mechanics we also need specific rules that drive this particular
quest. The present state is defined by the initial game configuration and its
updates. These updates are actions (or their most direct effects) that the
player has performed until the moment of querying. Let’s sum it up ...

1. general, background knowledge about game mechanics - rules of the
game (PG)

2. initial configuration (P0)

3. sequence of configuration updates (P1, P2 . . . Pn)

4. description of the current context - quest (PQ)

5. query (Q)

All this knowledge (general mechanics, quest rules, starting state, each
individual action and the query) could be represented by separate logic pro-
grams. Furthermore, these programs can be sorted linearly according the
increasing weight of the statements made within. That means if a statement
from a latter program is in conflict with a former one, this should be resolved
in favor of the more important one. Thus we obtain a dynamic logic program,
that describes the current in-game situation.

P = (PG, P0, P1, P2, . . . , Pn, PQ)

What we are looking for is the occurrence of Q in the models of P . By
checking whether the query Q holds in all, some or none of the models we
obtain the answer whether this statement is surely true, might be true (we
do not have enough information) or is not true correspondingly.

There exists a transformation that can translate a DynLoP to an equiva-
lent logic program (sect 4.2). After that, one of the existing ASP solvers (for
instance DLV[5] or smodels[4]) could be used to obtain the models of P .

Because updates of the world state (P0, P1, P2, . . . , Pn) might be quite
frequent we would like to remove them from our concept. Registering these
changes (or their most direct consequences) is simple and every game already
has a mechanism to handle them in place. So all we need to do is borrow the
configuration (PS) from this internal mechanism. This way we have simplified
our dynamic logic program to:

P = (PG, PS, PQ)

4.3. DYNLOP APPROACH TO WSE 15

4.3.1 Benefits

Aside from reasons stated in the introduction (sec. 1.1) we try to enumerate
the major features of blending the classic WSE concept with Dynamic Logic
Programming in this section. The idea is to unite the advantages of both
these approaches:

1. swiftness of the traditional mechanisms for the frequent, simple tasks

2. power of DynLoP for the more difficult problems

Thanks to its declarative nature, description of game world (game rules,
quests etc.) by means of ASP (DynLoP) has the following attributes:

1. It is much simpler and more intuitive (thus allowing more complexity
and bigger scope)

2. less rigid - potentially providing more, different solutions to quests.
Even such, that the designer did not think of explicitly. This relates to
the next good property, that I would call...

3. robustness - less vulnerability to imperfections and bugs in the quest
designs. There is no need for the creator of the quest to encode all the
possible ways of finishing the quests. Instead he/she just describes the
dependencies and interactions.

4. Easier modification and expansion.

5. It could be a layer that more intricate features might be based on -
such as event occurrence detection, computer controlled characters’ (so
called NPCs - non player characters) decision making and behaviour
or planning.

16CHAPTER 4. WORLD STATE EVALUATION IN COMPUTER GAMES

Chapter 5

Implementation

We start this chapter by outlining the general concepts of the implementata-
tion. Then we describe our universal world state evaluator unit in the next
section. Afterwards, we show how it was used to enhance the Adonthell [2]
RPG engine. The last section presents a manual for the users of our soft-
ware. It is a simple guide for the game designers, showing how to create
quests specification in the language of Logic Programming.

The core of this project is programmed in Python [6] scripting language.
This comprises a general world state evaluator, that could be used in any
computer game or even similar programs. Everywhere, where we have to
deal with evaluating statements in a formally describable world. In the most
general point of view it can be employed as a Dynamic Logic Programming
solver based on Smodels [4]. Python was chosen for several reasons. The
most promiment one beeing that it is quite frequently used in rapid game
development. Source code written in python is very clean, easily understand-
able, in comparison for instance with the C language. This is quite useful in
making further modification easy.

Since there exist no Dynamic Logic Programming solvers suitable for our
case, we resort to transformational semantics and consecutive solving of the
resulting logic program by one of the available ASP solvers. Thus creating
our own DynLoP solver.

As discussed in cha. 4, the best way of releasing a programming tool to aid
in game development, wold be to embed it into a game engine. Adonthell
is well suitable for our purpose. It is an open source single-player Role
Playing Game engine. It is quite simple to make the integration easy. But
fully functional, with demonstration game available, therefore well suited for

17

18 CHAPTER 5. IMPLEMENTATION

evaluator.py

dynlop2lp.py

lparse

smodels

mkatoms

LP solver

Figure 5.1: World state evaluator’s component dependence scheme.

presentation purpose. What makes it particularly favourable is that games
based on this engine are intended to be written in Python. Therefore it
already contains strong support for this language.

5.1 World State Evaluator

One of the main goals behind this thesis was the development of a framework
for world state evaluation that wold utilize Dynamic Logic Programming.
Description of two python modules which together fulfill this task follows.

5.1.1 dynlop2lp.py - transformational semantics

This module’s main purpose is to provide the Dynamic Logic Program to
logic Program transformation. The transformation itself is described in sec.
3.1.2.

constants

• _tmpfilename = ’/tmp/dynlop2lp.tmp’ On a few occasions we need
to save auxiliary data to a file. This says what file to use if not spec-
ified otherwise. Note that this low-level module does not delete its
temporary file.

5.1. WORLD STATE EVALUATOR 19

• prefix = ’dynlop2lp’ Since we have to generate many unique liter-
als, the most convenient way to achieve this is starting the identifiers
with a string, that we hope will not be a prefix of any of the literals
from input.

function: remove explicit

Transforms a Logic Program into an equivalent without explicit negation.
This is needed because transformational semantics do not handle explicit
negation. All explicitly negated atoms −A are translated into new atoms
prefix + ’_expneg_’ + A.

arguments:

• infilename

• outfilename Name of file to save the output to. This form of output
was chosen because the DynLoP to LP transformation is expected to
have files as input.

function: get atoms

For the transformational semantics we need to produce, among others, facts
of form A−

0 for every atom A contained in the DynLoP to be transformed.
This cannot be done with non-grounded atoms. One of the things that lparse
(preprocessor for smodels) does is grounding all the atoms from input and
making a list of them. Because lparse does not support default negation in
rule heads, what we do is uniting all the logic programs and changing all
default literals to objective ones. This way we get a logic program that will
yield us the same set of grounded atoms as the original DynLoP.

arguments:

• infilenames List of the filenames containing Logic Programs, repre-
senting a Dynamic Logic program, that we need to ground.

• tmpfilename= _tmpfilename This is an auxiliary file that is fed to
lparse for grounding.

return value: List of grounded atoms from the input files.

20 CHAPTER 5. IMPLEMENTATION

Table 5.1: Correspondence of new atoms produced by dynlop2lp function to
the transformational semantics algorithm described in sec. 3.1.2

A A

A− prefix + ’_n_model_’+ A

As prefix + ’_p_state_’ + s + ’_’ + A

A−
s prefix + ’_n_state_’ + s + ’_’ + A

APs prefix + ’_p_program_’ + s + ’_’ + A

A−
Ps

prefix + ’_n_program_’ + s + ’_’ + A

function: dynlop2lp

Transforms a Dynamic Logic Program into an equivalent Logic Program,
having the same set of stable models. It is a direct implementation of the
algorithm from [3].

arguments:

• infilenamea List of the filenames containing Logic Programs, repre-
senting a Dynamic Logic program, that we want to transform.

• outfilename Name of file to which the resulting LP should be out-
putted.

• exp_neg = True Specifies whether the input logic programs use ex-
plicit negation. If they do not, setting this argument to false saves
some processing time.

• tmpfilename = _tmpfilename This is used as an output for remove_explicit
and as a temporary file for get_atoms.

5.1.2 evaluator.py - world state evaluation

The evaluator class is defined in this module. It is an universal world state
evaluator and could also serve as a general python interface for Dynamic
Logic Programming.

5.1. WORLD STATE EVALUATOR 21

attributes

• general_knowledge= None List of names for files (interpreted as a
dynamic logic program) that will be used for every evaluation by the
query method as a background knowledge. Full path to files must be
provided here to allow it to be located somewhere else as quest specific
knowledge.

• explicit_neg= True Specifies whether explicit negation is used in any
logic program evaluator deals with. If it is not, setting this argument
to false saves some processing time.

• reasoning= ’cautious’ The default reasoning style for evaluate and
query metheds. Valid values are:

– ’cautious’ True is returned only if query holds in all models of
the world.

– ’brave’ True is returned only if query holds at least in one model
of the world.

– ’precise’ Returns pair (|good_models|, |all_models|), where
good_models are those where query holds.

• tmpfiles_prefix= "" Location for temporary files, including trailing
(back)slash.

• tmpfilename_solve= ’evaluator_solve.tmp’ Name of temporary file
used by the solve method.

• tmpfilename_query= ’evaluator_query.tmp’ Name of temporary file
used by the query method.

• tmpfilename_status= None The default name of file containing logic
program, that describes the current status of the world. This is in-
tended to be derived from the game’s internal world status.

• tmpfilename_dynlop2lp= ’evaluator_dynlop2lp.tmp’ Name of tem-
porary file for dynamic logic program to logic program transformation
(dynlop2lp.py module).

• knowledgefiles_prefix= "" Location of files with logic programs de-
scribing quests, including trailing (back)slash.

22 CHAPTER 5. IMPLEMENTATION

• knowledgefiles_suffix= "" Filename ending common for all quest
descriptions (this is meant to allow omitting the extension when spec-
ifying file names).

method: delete

Deletes all the temporary files.

method: solve

Solves dynamic logic program specified by list of filenames. Note that after
translating the DynLoP into a regular logic program, smodels solver is used
to compute the models. Although other ASP solvers could be used for this
purpose. For instance DLV [5].

arguments:

• infilenames

return value: Stream containing models of the inputted DynLoP. Format-
ted by MKAtoms [7], that means - every literal on a separate line, individual
models divided by line with ’::endmodel’ string.

method: evaluate

Checks models of Dynamic Logic Program specified by infilenames for oc-
currence of atom, according to the desired reasoning mode.

arguments:

• infilenames

• atom

• reasoning= None Valid values are:

– None Use the default mode, specified by object’s reasoning at-
tribute.

– ’cautious’ True is returned only if atom is present in all the
models.

5.1. WORLD STATE EVALUATOR 23

– ’brave’ True is returned only if atom is present in at least one of
the models.

– ’precise’ Returns pair (|good_models|, |all_models|), where
good_models are those containing atom.

method: query

Gives answer for the query. This method calls
self.evaluate(infs, ’evaluator_good_model’, reasoning) and re-

turns its result. Infs is a dynamic logic program assembled from:

1. self.general_knowledge

2. knowledge

3. status

4. evaluator_good_model← query

by concatenating them in this order.

arguments:

• knowledge List of filenames containing logic programs (interpreted as a
DynLoP) , describing the context this query refers to. Most commonly,
this will be the quest, status of which we want to know. The attributes
knowledgefiles_prefix and knowledgefiles_suffix are added to
get the actual name (with location).

• query String "a_1, a_2, ... a_n", where each a_i is a literal, inter-
preted as a conjunction a1 ∧ a2 ∧ . . . an.

• status= None Name of file containing logic program, that describes
the current status of the world. This is intended to be derived from the
game’s internal world status. If not specified, object’s tmpfilename_solve
attribute is taken as default value. The attribute tmpfiles_prefix is
added to get the actual name (with location).

• reasoning= None If not specified, object’s reasoning attribute is taken
as default value.

24 CHAPTER 5. IMPLEMENTATION

5.2 Integration to Game Engine - Adonthell

In most usage situations it would be required (or at least desirable) to write
a wrapper for the general world state evaluator (described in the previous
section). This is needed to consistently incorporate our extension to the host
engine and adopt its specifics. There are two major possibilities how to do
this:

1. Python The most convenient way would be to write a subclass of the
evaluator class. Redefining or adding methods as needed. Fig. 6.3
depicts a possible architecture based on this approach.

2. language of host engine This is the path that we chose and is described
in the next few sections. A scheme of this architecture is shown on the
fig. 6.2.

Where is which solution more appropriate differs from case to case. It de-
pends mostly on factors such as the level of support for Python language
in the host engine and the intensity of communication needed between the
evaluator and rest of the engine (for instance for obtaining the current game-
world status from the engine’s original data structures). These inter-language
calls should be minimized as much as possible because they are usually rather
costly.

5.2.1 evaluator.cc - world state evaluation

This is an extension of the Adonthell engine. It allows describing geneneral
background and quest specific knowledge in the language of Logic Program-
ming. All this logic programs can refer to internal quest status representa-
tions. Evaluator can then give answers whether certain statements are true
or not. This can be used to drive the course of the game.

In the evaluator.h header file the evaluator class is defined. This is
a wrapper for the general python evaluator class from evaluator.py (sec.
5.1.2). Its purpose is to make calls to its methods from the Adonthell engine
easy, as well as adding code to handle Adonthell specific features. It also
adds WSeval, which is a pointer to instance of the evaluator class, to the
data namespace.

5.2. INTEGRATION TO GAME ENGINE - ADONTHELL 25

DynLoP evaluator

dialog_demo.py

main.cc

adonthell engine
demo game

gamedata

evaluator.ccquest_demo.sm

smodels Python C++

game_rules.sm

Figure 5.2: Integration of our DynLoP-WSE unit into Adonthell game engine.
(C++ wrapper version)

DynLoP evaluator

dialog_demo.py

main.cc

adonthell engine
demo game

gamedata

evaluator_adonthell.pyquest_demo.sm

smodels Python C++

game_rules.sm

Figure 5.3: Integration of our DynLoP-WSE unit into Adonthell game engine.
(Python wrapper version)

26 CHAPTER 5. IMPLEMENTATION

attributes

• private: py_object *evaluator_py Points to the instantiated python
evaluator class.

constructor

Instantiates and initializes the evaluator_py attribute.

arguments:

• (string) general_knowledge Full path to file containing logic pro-
gram with background knowledge for all the evaluations by query

method.

• (bool) explicit_neg Specifies whether explicit negation is used in
any logic program evaluator deals with.

• (string) reasoning What reasoning mode should the evaluator use.
Either ’’cautious’’ (True is returned only if query holds in all models
of the world) or ’’brave’’ (True is returned only if query holds at least
in one model of the world).

• (string) tmpfiles_prefix Location for temporary files, including
trailing (back)slash.

• (string) tmpfilename_solve Name of temporary file for python eval-
uator’s solve method.

• (string) tmpfilename_query Name of temporary file for python eval-
uator’s query method.

• (string) tmpfilename_status Name of auxiliary file for saving cur-
rent Adonthell’s internal world state as a logic program.

• (string) tmpfilename_dynlop2lp Name of temporary file for dy-
namic logic program to logic program transformation.

• (string) knowledgefiles_prefix Location of files with logic pro-
grams describing quests, including trailing (back)slash.

• (string) knowledgefiles_suffix Filename ending common for all
quest descriptions (extension including dot).

5.2. INTEGRATION TO GAME ENGINE - ADONTHELL 27

destructor

Calls the evaluator_py’s __delete__ method to clean up temporary files.

method: (bool) query

Gives answer for the query.

arguments:

• (string) knowledge Name of the quest this question refers to (also
filename of its logic programming description).

• (string) query Conjunction of literals (in form of comma separated
list).

return value: Whethert query holds in the current world state or not.

method: (void) quest2lp

Saves the Adonthell’s internal quest representation to a file as a logic pro-
gram. This means that from data::quests[questname] dictionary every
entry will be saved as a fact <key>(<value>).

arguments:

• (string) questname

• (string) filename

5.2.2 Other files

Except adding evaluator.h, evaluator.cc, dynlop2lp.py, evaluator.py
our DynLoP-WSE extension for Adonthell modifies the following original
files:

• main.cc Instantiates and initializes the data::WSeval of the evaluator
class. Following values are used for the initialization:

– general_knowledge =

game::game_data_dir () + "/quests/background.sm"

28 CHAPTER 5. IMPLEMENTATION

– explicit_neg = true

– reasoning = "cautious"

– tmpfiles_prefix = "/tmp/"

– tmpfilename_solve = "adonthell_solve.tmp"

– tmpfilename_query = "adonthell_query.tmp"

– tmpfilename_status = "adonthell_status.tmp"

– tmpfilename_dynlop2lp = "adonthell_dynlop2lp.tmp"

– knowledgefiles_prefix =

game::game_data_dir () + "/quests/"

– knowledgefiles_suffix = ".sm"

• gamedata.h Defines the static evaluate method for Adonthell’s gamedata
class. It has the same two parameters as the query method of our
evaluator class. Only thing it does is calling data::WSeval->query

with those parameters and returning its result. Its sole purpose is to
stay consistent with the design of Adonthell code. This is the func-
tion that can be called from the dialogues scripts to get the needed
statements evaluated.

• makefiles - to incorporate all these changes to the Adonthell installation
package.

5.2.3 Demonstration game - Waste’s Edge

Because a simple example is often more helpful than complex documenta-
tion we provide this little demo. Its purpose is to show how our Adonthell
DynLoP-WSE extension can be used. Not to show what everything can be
achieved by writing quests by this method. Therefore it only contains the
minimum. Instances of features usage, on both the levels of the engine and
the logic programming syntax.

It includes background knowledge (background.sm), quest specific knowl-
edge (demo.sm) and a dialogue sample (demo_intro_1.py) that is querying
this quest’s status. It is the first dialogue that automatically executes after
the start of the Waste’s Edge game.

5.2. INTEGRATION TO GAME ENGINE - ADONTHELL 29

5.2.4 User’s manual

This brief guide explains how to install and use our DynLoP-WSE extension
for Adonthell game engine.

Installation

1. In order for this software to work you need a python interpreter, lparse,
smodels and mkatoms installed. You can download them here:

http://www.python.org/download/

http://www.tcs.hut.fi/Software/smodels/

http://www.krlab.cs.ttu.edu/mkatoms/

2. Get Adonthell and/or Waste’s Edge source code distributions. You can
download them from:

http://adonthell.linuxgames.com/download/index.shtml

3. Get the DynLoP-WSE package for Adonthell. Either from the bundled
CD or from

http://www.tulasacra.host.sk/index.php?dir=_diplomovka/

Copy the desired directories from this package (depending on whether
you want just the engine extension or also the demo quest) over the
engine and game sources respectively, overwriting all original files.

4. Run autoconf, then compile and install selected packages according to
instructions in their documentation.

Technical issues

For some reason the original Adonthell distribution does not compile with
gcc-4. However it works well for instance with versions 3.4.4 or 3.4.6. If you
have these older versions installed on your system you can force their usage
by entering (before compilation):

export CC=gcc-3.4.6 ; export CXX=g++-3.4.6

30 CHAPTER 5. IMPLEMENTATION

Usage

If you want to design your own quests in the Logic Programming fashion
follow these simple steps:

1. Get our DynLoP-WSE engine extension properly installed.

2. Write your quests description in the language of Logic Programming.
Name these files <questname>.sm and save them to your game data di-
rectory, subdirectory quests. Note that <questname> should be iden-
tical to the Adonthell’s internal quest identifier.

3. If you want you can specify knowledge common for all the quests in a
separate file. It should be named background.sm and also placed in
<game data directory>/quests.

4. When writing dialogues, in the condition statement you can now call:

adonthell.gamedata_evaluate(questname, query)

to get the query evaluated in the context of the specified quest, where
query is a string of comma separated literals (representing their con-
junction) and questname is a string denoting both the quest identifier
in the Adonthell’s quests dictionary and the filename for that quest’s
logic programming description.

Chapter 6

Resume

Study of logic programming based formalisms for representing dynamic or
hierarchically ordered knowledge could benefit from the existence of more
practical implementations. The artificial intelligence in computer games
needs boosting. These were the problems that we addressed. Application
of the more recent approaches from the area of knowledge representation to
the game engines seems to be the right step.

The main outputs of this thesis are:

• implementation of transformational semantics for Dynamic Logic Pro-
gramming (DynLoP) in Python language (sec. 5.1.1) We made a func-
tion that can transform a dynamic logic program to equivalent logic
program. This can subsequently be evaluated by any available An-
swer Set Programming (ASP) solvers. As a byproduct we obtained a
function for grounding of DynLoP programs (sec. 5.1.1)

• Dynamic Logic Programming solver in Python language (sec. 5.1.2)
The evaluator class can conveniently be used for computing models
of DynLoP programs. Its principle is to make the DynLoP to LP
transformation and solving the resulting logic program. Version that
we provide, uses Smodels for this purpose. But if needed, it might be
easily modified to work with DLV [5] or potentially other ASP solvers.

• general DynLoP world state evaluator (sec. 5.1.2) Probably the most
important result - the evaluator class. It could be used in any com-
puter game engine (although RPGs, adventures, more complicated puz-

31

32 CHAPTER 6. RESUME

zles or strategies are the intended target domain) or similar applica-
tions. It should be well suited whenever we have to deal with evaluating
statements in a formally describable (and evolving in time) world.

• DynLoP-WSE extension for Adonthell game engine (sec. 5.2.1) One of
the main goals was embedding DynLoP world state evaluator into an
existent game engine. Adonthell was our choice, mainly because it is
opensource, python friendly and of the role playing genre.

• usage demonstration quest in Waste’s Edge game (sec. 5.2.3) For the
most simple and quickest understanding how our Adonthell DynLoP-
WSE mod should be used, demo quest was written. It includes back-
ground knowledge, quest specific knowledge and a dialogue sample that
is querying this quest’s status.

Enhancing a component with such underlying nature as a world state
evaluator, opens up a space for a lot of possible future work. It could be
a basic layer for more advanced applications. Such as event occurrence de-
tection, decision making of computer controlled entities, or more complex
behaviour for instance goals acquisition and assembling plans how to achieve
them.

Bibliography

[1] Jozef Šǐska. Dynamic Logic Programming and world state evaluation in
computer games, In Procs. of WLP06, 2006

[2] Adonthell game engine. http://adonthell.linuxgames.com/

[3] J.A.Leite. Evolving Knowledge Bases, volume 81 of Frontiers in Artifical
Inteligence and Applications. IOS Press, 2003.

[4] Stable model semantics implementation - smodels.

http://www.tcs.hut.fi/Software/smodels/

[5] A disjunctive datalog system - DLV.

http://www.dbai.tuwien.ac.at/proj/dlv

[6] Python programming language. http://www.python.org/

[7] MKAtoms utility for smodels. http://www.krlab.cs.ttu.edu/mkatoms/

[8] L.Padovani, A.Proverti. Qsmodels: ASP Planning in an Interactive Gam-
ing Environment. In Procs. of the 9th European Conference on Logics in
Artificial Intelligence (JELIA’04), Springer-Verlag, LNAI 3229, 2004

[9] J. Leite and L. Soares, Evolving Characters in Role-Playing Games, In
R. Trappl (ed.), Cybernetics and Systems 2006, 18th European Meeting
on Cybernetics and Systems Research (EMCSR 2006), vol 2, pp. 515-520,
Vienna, Austria, Austrian Society for Cybernetic Studies, 2006

[10] Role-playing game TES4: Oblivion.

http://www.elderscrolls.com/games/oblivion_overview.htm

33

