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Abstract

In 1979 Yao proposed a simple model for studying communication com-

plexity. In the first chapter we investigate the lower bound methods for this

model - Fooling set method and Rank method. We prove the bounds on the

number of functions with given communication complexity that can be ex-

posed be these two methods. We give new proof that most of the functions

are hard.

In the second chapter we focus on the multiparty extension of Yao’s

model, more precisely on the ”number in the hand” model. Inspired by pre-

vious results concerned with communication complexity bounds for functions

linked together with logic operators we fill the bounds for missing operators.

In the third chapter we propose a modification of this multiparty model

and prove some results pointing at differences between the original and the

modified model.

Keywords: communication complexity, bounds, hard functions

Abstrakt

V roku 1979 Yao navrhol jednoduchý model na skúmanie komunikačnej

zložitosti. V prvej kapitole sa venujeme dvom metódam na dokazovanie

spodných hrańıc komunikačnej zložitosti - Fooling set metóde a Rank metóde.

Dokážeme hranice pre počet funkcíı s danou komunikačnou zložitosťou, ktorá

je dokázatělná pomocou daných dvoch metód. Tiež podávame nový dôkaz,

že takmer všetky funkcie sú ťažké.

V druhej kapitole sa zameriavame na viacúčastńıcke rozš́ırenie tohto

modelu, konkrétne skúmame ”number in the hand” model. Inšpirovańı

predošlými výsledkami týkajúcimi sa odhadov zložitosti funkcíı spojených

logickými operátormi, zúplňujeme tieto výsledky pre ostatné bežné logické

spojky.

V tretej kapitole navrhujeme modifikáciu tohto viacúčastńıckeho mod-

elu a dokazujeme nejaké vlastnosti poukazujúce na rozdiely medzi pôvodným

modelom a jeho modifikáciou.

Kľúčové slová: komunikačná zložitosť, ohraničenia, tažké funkcie
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Chapter 1

Prologue

The White Rabbit put on his spectacles. ”Where shall I begin, please

your Majesty?” he asked.

”Begin at the beginning,” the King said, very gravely, ”and go on till you

come to the end: then stop.”

Lewis Carroll

Alice’s Adventures in Wonderland

Consider the following situation. You have a backup server for some

network. Once in a week you run a backup procedure and upload important

files from the network to this sever. But in order to save storage space and

network resources you want to update only those files on the server that

had been modified during the last week. How can you with 100% accuracy

check whether you have up-to-date files on the server? Can it be done with

less information transmitted than just sending the whole file to the server

for it to decide?

This is a problem when (at this point intuitively understood) communi-

cation complexity arises in somewhat obvious way. But many other problems

quite different in nature than the one stated above can be viewed from the

viewpoint of communication complexity and eventually solved easier than

through methods related to their own fields. Determining the bounds for
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number of states in finite automata or time-space tradeoffs in Turing ma-

chines just to mention a few examples.

So, to be more precise now, communication complexity studies the amount

of communication bits needed to be exchanged between two (or more) par-

ties in order to evaluate some Boolean function of two (or more) variables.

The basic two-party model was defined by Andrew Yao in 1979 [Yao79]. In

this model, there are two parties Alice and Bob and their task is to com-

pute the function f(x, y), where x is known only to Alice and y is known

only to Bob. Here we focus solely on the amount of communication bits

exchanged and we are oblivious to the computational resources that Alice

and Bob might need (that is we consider them to have unlimited power in

this sense).

Even in its simplicity this model captures many of the fundamental is-

sues related to the complexity of communication and, as we have mentioned

before, results proven in this model can be often extended to more compli-

cated scenarios. For example C. D. Thompson revealed the connection to

VLSI (Very-Large-Scale Integration), more precisely to Area-Time tradeoffs

for VLSI chips [Tho79] and P. Miltersen discovered the connection with data

structures [Mil94].

The base model can be subsequently modified in many ways. We can

consider probabilistic protocols (that is, each message sent is a probabilistic

function of sender’s input and of the communication so far, and protocol

is allowed to make errors), variable partition models (where the parties are

allowed to choose the partition of the 2n input bits for a given function f ,

n bits for each party), nondeterministic protocols (where messages sent are

chosen nondeterministically and only existence of such execution of protocol

that leads to the correct answer is required) etc . . . .

A more complete survey can be found in [Kus97] and [KN97].

1.1 Yao’s Model

In this section we formally describe the two-party model1. As we have men-

tioned before one of the most important features of this model is its simplici-

1Based on the definitions from [Kus97], [KN97] and [Yao79]
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ty. It considers a situation where there are only two communication parties

which we will call Alice and Bob. Together they wish to evaluate a Boolean

function f(x, y) : {0, 1}n × {0, 1}n → {0, 1} where the inputs x and y are

two n-bit strings such that x is known only to Alice and y is known only to

Bob. This model is not concerned with any computational resources needed

by Alice and Bob to achieve their goal and focuses solely on the commu-

nication exchanged between them. Some examples of such functions include:

• equality EQ(x, y) is defined to be 1 if x = y (and 0 otherwise).

• inner-product IP (x, y) is defined as
∑n

i=1 (xiyi) mod 2, where

x = x1 . . . xn and y = y1 . . . yn.

• greater-than GT (x, y) is defined to be 1 if x > y (and 0 otherwise),

where x and y are viewed as numbers written in binary code.

• disjointness DISJ(x, y) is defined to be 1 if there is no index i such

that xi = yi = 1 (and 0 otherwise).

The functions mentioned above are again very simple yet natural so we

can get a good understanding of what can be done with them.

The computation of a function is done using a communication protocol.

During the execution of the protocol, the communicating parties alternate

roles in sending messages where each of these messages are strings of bits.

We require the messages to be self-delimiting. Protocol determines who

sends a message and what is the content of such message. The protocol also

specifies when the execution terminates in which case it also specifies the

output.

A communication protocol P computes a function f(x, y) if for every

input pair (x, y) ∈ {0, 1}n×{0, 1}n the protocol terminates with the value

f(x, y) as its output.

It is easy to observe that every function can be computed by a trivial

protocol that will send all bits that Alice possess to Bob who can now com-

pute the function and send the result to Alice. However, we will consider

n to be large thus making this protocol very expensive. There are many

functions that can be computed using much less amount of communication
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but, unfortunately, many more of those which cannot be computed with less

communication than n.

The study of communication complexity aims at identifying the mini-

mal number of bits that must be sent in order to compute the function

f . More precisely, the complexity measure for a protocol P is the worst

case number of bits exchanged by the two parties. Formally, let sP (x, y) =

{m1,m2, . . .mr} be the communication exchanged on the input (x, y) during

the execution of P , where mi denotes the i-th message sent in the protocol.

Also denote by |mi| the number of bits of mi and let |sP (x, y)| =
∑r

i=1 |mi|.
We now define the (deterministic) communication complexity of P as the

worst case number of bits exchanged by the protocol. That is,

D(P ) = max
(x,y)∈{0, 1}n×{0, 1}n

|sP (x, y)|

The (deterministic) communication complexity of a function f is the com-

munication complexity of the best protocol that computes f . That is

D(f) = min
P :P computes f

D(P )

By using the trivial protocol we described above we get

∀f : {0, 1}n × {0, 1}n → {0, 1} D(f) ≤ n+ 1

Functions that cannot be computed with less communication then n are

called hard. Moreover, hard functions whose complement functions are also

hard are called very hard.

1.2 Lower Bounds

In the previous chapter we have shown a trivial upper bound for any function

f . Generally, proving upper bounds of functions consists of finding some

smart protocol and proving its complexity. On the other hand, to prove

a lower bound of a given function, one must prove that any solution (a

solution that we can assume nothing about it except the fact that it solves

the problem) has at least a certain communication complexity.

While the upper bounds tell us how much time (or resources or whatever)

we need to compute a given function, lower bounds tell us how good our
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solution can possibly be. That is, if lower and upper bound is the same,

then we have the best solution to be had. If they do not meet, then we

know that there is a room for improvement.

Here we show two widely used lower bound techniques but first we need

some definitions and lemmas. We will analyze so called rectangles - a com-

binatorial structures imposed by protocols.

Definition 1.2.1. [Kus97] A rectangle is a subset of {0, 1}n × {0, 1}n of

the form A× B, where each of A and B is a subset of {0, 1}n. A rectangle

R = A × B is called f -monochromatic if for every x ∈ A and y ∈ B the

value of f(x, y) is the same.

To imagine this think of a matrix of size 2n × 2n with numbered rows

and columns such that each row with number x and column with number

y corresponds to an input pair (x, y). A set A from the definition above is

then a subset of rows and B is a subset of columns. Note that a rectangle

induced by A and B does not have to have adjacent rows and columns. An

example of such rectangle is on Figure 1.

Figure 1

Lemma 1.2.2. [Kus97] Let P be a protocol that computes a function f and

(m1, . . .mr) be a sequence of messages. The set of inputs (x, y) for which

sP (x, y) = (m1, . . .mr) is an f -monochromatic rectangle.

Definition 1.2.3. [Kus97] For a function f : {0, 1}n × {0, 1}n → {0, 1} we

define CP (f) as the minimum number of f -monochromatic rectangles that

partition the space of inputs {0, 1}n × {0, 1}n.
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Lemma 1.2.4. [Kus97] For every function f : {0, 1}n × {0, 1}n → {0, 1} :

D(f) ≥ log2C
P (f).

Proof. By the lemma 1.2.2, every protocol P partitions the space of inputs

into f -monochromatic rectangles. The number of these rectangles is equal

to the number of possible communications and that is at most 2D(P ). Since

D(f) ≤ D(P ) it follows that CP (f) ≤ 2D(f) and finally D(f) ≥ log2C
P (f).

So according to the above lemma, instead of proving lower bounds on

the communication complexity we can prove the lower bounds on minimal

number of f -monochromatic rectangles that partition the space of inputs.

Remark 1.2.5. [KN97] Note that although every protocol partition the input

space into monochromatic rectangles, not every partition corresponds to

some protocol. An example of such partition is on the Figure 2.

Figure 2

Consider any protocol P for computing the function defined by Figure 2.

Since the function is not constant, there must be a first player who sends

a message that is not constant. Suppose that this player is Alice. Since

the messages that Alice sends on x, x′, x′′ are not all the same, there are

two possibilities: (1) her message on x and x′ are different. In this case

the rectangle {x, x′}×{y} is not a monochromatic rectangle induced by the

protocol P ; or (2) her messages on x′ and x′′ are different. In this case the

rectangle {x} × {y′, y′′} is not a monochromatic rectangle induced by the

protocol P . Similar analyses applies if Bob sends the first message.
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1.2.1 Fooling Set Method

This method was used implicitly in [Yao79] and made more explicit in [LS81].

It is based on finding such a set of input pairs, that none of them can be in

the same f -monochromatic rectangle.

Definition 1.2.6. [Kus97] A set of input pairs {(x1, y1), ..., (xl, yl)} is called

a fooling set (of size l) with respect to f if there exists b ∈ {0, 1} such that

1. For all i f(xi, yi) = b

2. For all i 6= j f(xi, yj) 6= b or f(xj , yi) 6= b

Lemma 1.2.7. [Kus97] If there exists a fooling set of size l with respect to

f then

D(f) ≥ log2 l

For the illustration purposes we state the full proof from [Kus97].

Proof. By Lemma 1.2.4, it suffices to prove that CP (f) ≥ l. For this,

we prove that in any partition of {0, 1}n × {0, 1}n into f -monochromatic

rectangles the number of rectangles is at least l. Suppose that the number of

f -monochromatic rectangles is smaller than l. In this case, there exists two

pairs in the fooling set (xi, yi) and (xj , yj) that belong to the same rectangle

A × B. This implies that xi, xj ∈ A and yi, yj ∈ B. By the definition

of fooling set f(xi, yi) = f(xj , yj) = b while at least one of f(xi, yj) and

f(xj , yi) is different than b. This implies that the rectangle A × B is not

f -monochromatic.

We can apply this method to determine the lower bound for the com-

munication complexity of equality function EQ(x, y). One can easily see

that the set {(x, x) | x ∈ {0, 1}n} is a fooling set of size 2n. Thus the EQ

function is hard.

For the function DISJ(x, y) the fooling set of size 2n is {(A,Ac) | A ⊆
{1, ..., n}}. Hence the function DISJ is also hard.

1.2.2 Rank Method

The second method is based on algebra and more specifically on ranks of

matrices. We have previously associated the space of inputs with matrix

2n × 2n where rows correspond to inputs x and columns to inputs y and
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each (x, y) entry of this matrix is equal to f(x, y). We shall call this matrix

Mf (note that any zero-one matrix 2n × 2n defines some function). The

following lemma that relates the communication complexity of f to the

rank of matrix Mf appeared in [MS82].

Lemma 1.2.8. [MS82] Let f : {0, 1}n × {0, 1}n → {0, 1} be a function.

Then

D(f) ≥ log2 rank(Mf ).

The proof is from [Kus97].

Proof. By Lemma 1.2.2, it suffices to prove that CP (f) ≥ rank(Mf ). Given

an optimal cover of {0, 1}n × {0, 1}n with f -monochromatic rectangles, let

R1, ..., Rt be those rectangles which are 1-monochromatic. It is enough to

prove that t ≥ rank(Mf ). For each of the rectangle Ri (1 ≤ i ≤ t) define a

2n × 2n matrix Mi whose (x, y) entry is 1 if (x, y) ∈ Ri and 0 otherwise. It

follows that

Mf =
t∑
i=1

Mi.

Since the rank is sub-additive, we get

rank(Mf ) ≤
t∑
i=1

Mi.

Since Ri is a 1-monochromatic rectangle then for every i, rank(Mi) = 1.

Hence, rank(Mi) ≤ t, as desired.

Remark 1.2.9. [AB09] Note that as 0,1 are elements of every field, we can

compute the rank of the matrix Mf over any field. Some fields may yield

lesser communication complexity and some greater. Therefore the choice of

a field is crucial.

Remark 1.2.10. [KN97] What we get from the above proof is actually a lower

bound on the number of 1-rectangles. By switching to a function f ′ = 1− f
and a matrix Mf ′ = ||1ij ||2n×2n −Mf we can get similar estimate of 0-rec-

tangles for the function f . It is easy to see that the ranks of matrices Mf
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and Mf ′ differ by at most 1.

rank(Mf ) = rank
(
(1)2n×2n −Mf ′

)
=

= rank
(
(−1)2n×2n +Mf ′

)
≤

≤ rank ((1)2n×2n) + rank(Mf ′)

rank(Mf )− rank(Mf ′) ≤= rank((1)2n×2n) = 1

We used here that rank(cM) = rank(M) where c is some nonzero con-

stant in the field over which we compute the rank.

Therefore

D(f) ≥ log2 (2rank(Mf )− 1).

Again a few examples. The matrix corresponding to the function EQ is

the indentity matrix I2n×2n whose rank is of course 2n.

The matrix corresponding to the inner-product function IP is a so-called

Hadamard matrix whose rank is known to be 2n − 1.

1.3 Combinatorics of the Rank Method

We have previously defined hard functions as functions with maximal com-

munication complexity. That is, no protocol that computes such function is

better than the trivial one. We have also seen two methods for proving lower

bounds on communication complexity. Now the question of how good these

methods are might arise. Firstly we will focus on their ability to expose the

hard functions. So how can we compare them in this sense?

One possible way might be to count the number (or give a reasonably

good lower bound) of hard functions and the number of hard functions that

can be detected by these two criteria. We can then consider the limit of ratio

of these numbers (for fooling set method and rank method) and number of

all hard functions as n (the length of the binary input strings) approaches

infinity.

Let us start with enumerating those hard functions that can be exposed

by the rank method. Whenever we mention a matrix in the following text

we always mean a matrix over the field Z2.

16



We will start with the estimation of the number of hard functions that

can be exposed with this method. That is, the number of those functions

where rank(Mf ) = 2n - denote this number as R(2n) (actually rank(Mf ) ≥
2n−2 + 1 is sufficient but for pedagogical reasons we start with this result

first).

The procedure of constructing matrices with full rank is simple. We

start with the first row - here we have 22
n−1 possibilities as we do not want

a row with zeros only (a row which is linearly dependent with anything).

Otherwise anything is acceptable. As for the second row, compared to the

first row we have one less possibility - which is the first row. For the third

row we can use anything except zero-row, first and second row and moreover

any linear combination of them (but since we work over the field Z2 there is

only one such combination so far). It is clear that this construction covers

all matrices and that it is deterministic, thus unique.

It is good to realize that in general when we consider a linear combina-

tion of k vectors c1α1 + c2α2 + ...+ ckαk, each of the coefficients ci is either

1 or 0 therefore any such combination of k vectors can be described by a

binary vector β = (c1, ..., ck). Moreover, if the vectors α1, ..., αk are linearly

independent then any two different linear combinations give two different

vectors. This allows us to effectively count the number of all linear combi-

nations of vectors α1, ..., αk - the number is 2k.

Having said this we can write down the possibilities for each row

first row : 22
n − 1

second row : 22
n − 1− 1

third row : 22
n − 1− 2− 1

fourth row : 22
n − 1− 3− 3− 1 etc.

Hence

R(2n) =

2n∏
i=1

(
22

n −
i−1∑
j=0

(
i− 1

j

))
=

2n∏
i=1

(
22

n − 2i−1
)
. (1.1)

Let Nall be the number of all functions f : {0, 1}n × {0, 1}n → {0, 1}.
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It is easy to see that Nall = 22
2n

. Now lets compare R(2n) with Nall:

lim
n→∞

∏2n

i=1

(
22

n − 2i−1
)

222n
= lim

n→∞

(
22

n)2n∏2n

i=1

(
1− 1

2i

)
222n

= lim
n→∞

2n∏
i=1

(
1− 1

2i
)

It is known that if {ai}∞i=1 is a sequence of positive numbers and the

series
∑∞

i=1 ai converges then the product
∏∞
i=1

(
1− ai

)
converges to some

non-zero number. Therefore limn→∞
∏2n

i=1

(
1− 1

2i

)
exists and its value can

be numerically determined as 0.288788 . . . . Thus

lim
n→∞

∏2n

i=1

(
22

n − 2i−1
)

222n
= 0.288788 · · · > 1

4

This proves that randomly chosen 0-1 matrix over the field Z2 has full

rank with probability at least 1
4 (for sufficiently large n).

We have previously mentioned that for a function f to be hard the rank

of the matrix Mf does not have to be 2n. According to the Remark 1.2.10

the rank(Mf ) ≥ 2n−2 + 1 is sufficient because

D(f) ≥ log
(
2(2n−2 + 1)− 1

)
= log

(
2n−1 + 1

)
= (n− 1) + log

(
1 +

1

2n−1

)
and since D(f) has to be a natural number we have D(f) ≥ n.

Obviously, the number of functions with rank at least 2n−2 +1 is greater

than the number of functions with rank precisely 2n. Thus we proved the

following:

Theorem 1.3.1. Randomly chosen Boolean function f : {0, 1}n×{0, 1}n →
{0, 1} is hard with probability at least 1

4 .

According to Remark 1.2.9 the choice of a field over which we calculate

the rank can be crucial. It was proved by Komlós in [Kom67] and [Kom68]

that randomly chosen 0-1 matrix n × n has full rank over the field Q with

probability approaching 1 as n tends to infinity. Thus

Theorem 1.3.2. Let 0 < α < 1 be a real number. Then for sufficiently large

n the probability that randomly chosen function f : {0, 1}n×{0, 1}n → {0, 1}
is hard is at least α.

Moreover, for sufficiently large n the rank method can expose (in other

words can be successfully used to determine tight lower bound on communi-

cation complexity of) almost all hard functions.
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At the end of this section we will show that this theorem holds over the

field Z2 as well.

Now let us continue in our analysis. How many matrices of the size

2n × 2n and with some small rank (now again over the field Z2) are there?

For example, a matrix with rank 1 can have at most two different kinds of

rows. A non-zero one and maybe some zero-rows too. This gives us

R(1) =
(
22

n − 1
) 2n∑
k=1

(
2n

k

)
=
(
22

n
+ 1
)2

= 22
n+1 − 22

n+1 + 1

possible matrices. A small number compared to 22
2n

.

If R(k) will denote the number of matrices of size 2n × 2n with rank

k, it is interesting to ask for which value k the numbers R(k) and Nall are

comparable. And in this direction our analysis follows - how many matrices

are there with rank log n or
√
n etc.?

Definition 1.3.3. We say that vectors (or rows in our case) α1, ..., αm are

linearly dependent if there exist index j and non-zero vector β = (c1, c2, ..., cj−1)

such that αj = c1α1 + c2α2 + ...+ cj−1αj−1. We say that vectors α1, ..., αm

are linearly independent if they are not linearly dependent.

Note that this definition of linearly independent vectors is equivalent to

that which does not consider which vector is first, second etc.

Matrices we are interested in have k linearly independent rows and for

such positioning we have
(
2n

k

)
possibilities (here we are not concerned with

which vectors lie in these rows except that they are linearly independent).

These rows define a submatrix of the size k×2n with rank k and the equation

(1.1) gives us the number of all acceptable vector assignments. Hence we

have (
2n

k

) k∏
i=1

(22
n − 2i−1)

possibilities for choosing linearly independent vectors and their positions in

matrix Mf .

Now we need to select the rest of the rows. The k independent rows

create altogether at most k + 1 gaps between each of them or above/below

the first/last row.
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Let αi1 , ..., αik be linearly independent vectors and ij is number of the

row in which the vector αij lies. Then

Mf =



gap n. 0

αi1
gap n. 1

αi2
. . .

gap n. k − 1

αik
gap n. k


The number of all rows that lie in these gaps is clearly 2n−k. We will fill the

l-th gap with linear combinations of vectors αi1 , ..., αil−1
(the set of linearly

independent vectors that lie above the l-th gap). Note that the gap n. 0, if

exists, must have only zero-only rows.

Now we need to show that we can construct each matrix Mf in this way

and that such construction is unique.

Let Mf be any matrix with rank k. Let Λ be an empty set. Let {i1, ..., ik}
be a set of indices and z = 1. Go through all rows from top to bottom (let

i be the index of current row). Vector in the row i is either

1. a linear combination of the vectors in the set Λ or zero-only vector. In

this case do nothing.

2. a vector linearly independent with vectors in the set Λ. In this case

add the vector in this row to Λ, set iz = i and z = z + 1.

After this procedure is finished the set Λ contains k linearly independent

vectors (any other number would contradict the fact that the rank of the

matrix Mf is k). Moreover, every vector either lies in Λ or is a linear

combination of the vectors that lie higher in the matrix Mf and are in Λ.

Specially, vectors that lie above the vector αi1 are zero-only vectors.

Hence every matrix Mf can be constructed in our way.

Uniqueness. This also follows from the construction above. Because if

we could construct some matrix in two different ways then they would have

to agree at least on the number of zero-only rows on the top of the matrix
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Mf . But then, they would also have to agree on the first linearly indepen-

dent vector and on the index of its row. Since the procedure is deterministic,

there is no way in which the computation would split and continued in two

separate ways.

Now that we have showed how to construct every matrix of the size

2n × 2n with the rank k we can calculate the number of such matrices. We

have previously showed that to select k rows and k linearly independent

vectors we have (
2n

k

) k∏
i=1

(22
n − 2i−1)

possibilities. For the l-th gap (l ∈ {0, ..., k}) we have
∑l

i=0

(
l
i

)
= 2l different

vectors this gap can contain as this is the number of all linear combinations

(including zero-only vector) of some l − 1 linearly independent vectors (we

do not care which these linearly independent vectors are because we have

selected them before). And if the size (number of rows) of the l-th gap is il

then it follows that ∑
(i0,...,ik)

i0+...+ik=2n−k

k∏
j=0

(2j)ij

is the number of all permissible gaps between the vectors α1, ..., αk.

But note that by selecting the positions of k linearly independent vec-

tors we also defined the numbers i0, ..., ik from the
∑

(i0,...,ik)
i0+...+ik=2n−k

. And

vice versa, by selecting the numbers i0, ..., ik we defined the positions of the

linearly independent vectors. Thus

Theorem 1.3.4. The number of matrices of the size 2n× 2n with rank k is

R(k) =

(
k∏
i=1

(22
n − 2i−1)

)( ∑
(i0,...,ik)

i0+...+ik=2n−k

k∏
j=0

(2j)ij

)
. (1.2)

The equation (1.2) does not present us with a reasonable way to deter-

mine the number of matrices with the rank, say, n or log n etc. Therefore
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we may want to try to simplify the equation even at the cost of obtaining

only some bound.

Firstly, for the left part of the equation (1.2) we can write

1

4
2k2

n ≤
(

2n

k

) k∏
i=1

(22
n − 2i−1) ≤ 1

2
2k2

n

Right part of the equation (1.2) will be a bit more complicated. Firstly, we

would like to get rid of the
∑

- we already argued above that the number

of summands in this sum is
(
2n

k

)
. But we can count this number in another

way as well: In how many ways can we partition 2n − k rows into k + 1

ordered groups when we permit empty groups as well?

We start with an easier task - in how many ways can we write some

number n as a sum of non-zero numbers? We can think of the number n

as n dots in a row. To write this number as a sum of non-zero numbers is

equal to placing delimiters between the dots.

For one summand we have just one option. For two summands we have

n − 1 positions to place a delimiter - we want only non-zero summands

therefore the beginning and the end of the row of dots is not an acceptable

place for a delimiter. That makes
(
n−1
1

)
possibilities. In general, for i + 1

summands (i ∈ {1, ..., n − 1}) we have
(
n−1
i

)
possibilities, especially for n

summands (i = n− 1) we need to place delimiters in all n− 1 positions and

for this we have only one option.

Thus to write a number n as a sum of non-zero numbers there are

n−1∑
j=0

(
n− 1

j

)
= 2n−1

possibilities.

Now to get back to the original task. If 2n−k = 1 - that is, we have one

row which we want to divide between k + 1 groups. For this we have
(
k+1
1

)
possibilities - we just need to choose into which group we put this row. If

2n − k = 2 then either we put 2 rows in one group -
(
k+1
1

)
possibilities -

or we separate these rows by placing them in two different groups -
(
k+1
2

)
possibilities.

Consider 2n − k = 3. We have learnt that to write number 3 as 1,2 or 3

summands we have respectively
(
2
0

)
,
(
2
1

)
and

(
2
2

)
possibilities. Plus for each
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number of summands we need to allocate the appropriate number of groups.

Thus we have altogether(
2

0

)(
k + 1

1

)
+

(
2

1

)(
k + 1

2

)
+

(
2

2

)(
k + 1

3

)
possibilities.

In general, if we have 2n − k rows which we want to divide between k + 1

groups then we have

2n−k−1∑
j=0

(
2n − k − 1

j

)(
k + 1

j + 1

)
(1.3)

possibilities.

k - the rank of the matrices of size 2n×2n we are trying to count - ranges

from 0 to 2n − 1. If k = 2n then the matrices have full rank and the right

part of the equation (1.2) technically does not exist - the above equation

yields an empty sum. Nevertheless we shall consider the number of these

nonexisting options as 1 - because in this case the equation (1.2) is

R(2n) =

2n∏
i=1

(
22

n − 2i−1
)

what is precisely the number of matrices with full rank we derived before.

Lets try another value. If k = 0 then, according to what was said above,

there are no linearly independent rows - hence all rows must be zero-only

rows. And there is only one such matrix.

2n−1∑
j=0

(
2n − 1

j

)(
1

j + 1

)
=

(
2n − 1

0

)(
1

1

)
= 1

Lets make a small diversion here. It is known ([GKP94]) that if l,m, n

are integers and l ≥ 0 then∑
i

(
l

m+ i

)(
s

n+ i

)
=

(
l + s

l −m+ n

)
(1.4)

The terms on the left side of this equation are nonzero for i

max{−m,−n} ≤ i ≤ min{l −m, s− n}.
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Now compare this binomial identity with the equation (1.3). In this case

m = 0

n = 1

l = 2n − k − 1

s = k + 1.

Moreover, one can easily check that the terms in the equation (1.3) are

nonzero for 0 ≤ j ≤ min{2n − k − 1, k}. Thus we can use the identity (1.4)

2n−k−1∑
j=0

(
2n − k − 1

j

)(
k + 1

j + 1

)
=

(
2n

2n − k

)
=

(
2n

k

)
. (1.5)

Lets check small cases. If k = 0 then identity (1.5) holds : 1 = 1. If

k = 1 then (1.3) holds as well - 2n = 2n. For k = 2 we have

1

(
3

1

)
+

(
2n − 3

1

)(
3

2

)
+

(
2n − 3

2

)
= 3 + 2

(
2n − 3

1

)
+

(
2n − 3

1

)
+

(
2n − 3

2

)
=

= 3 + 2

(
2n − 3

1

)
+

(
2n − 2

2

)
= 3 +

(
2n − 3

1

)
+

(
2n − 2

1

)
− 1 +

(
2n − 2

2

)
=

= 2 +

(
2n − 3

1

)
+

(
2n − 1

2

)
=

(
2n − 1

1

)
+

(
2n − 1

2

)
=

(
2n

2

)

If k = 2n − 1 then (1.5) holds again : 2n = 2n. We once again got the

result that ∑
(i0,...,ik)

i0+...+ik=2n−k

1 =

(
2n

k

)

So we know the number of summands but we still know nothing about

the indices ij .

∑
(i0,...,ik)

i0+...+ik=2n−k

k∏
j=0

(2j)ij =
∑

(i0,...,ik)
i0+...+ik=2n−k

2lg
∏k

j=0 2
jij

=
∑

(i0,...,ik)
i0+...+ik=2n−k

2
∑k

j=0 jij
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2n − k ≤
k∑
j=0

jij ≤ (2n − k) k

(
2n

k

)
22

n−k ≤
∑

(i0,...,ik)
i0+...+ik=2n−k

k∏
j=0

(2j)ij ≤
(

2n

k

)
2(2

n−k)k

Putting both estimates together we get

Theorem 1.3.5 (Alice’s theorem).

R(k) ≥ 1

4
2k2

n

(
2n

k

)
22

n−k (1.6)

R(k) ≤ 1

2
2k2

n

(
2n

k

)
2(2

n−k)k (1.7)

Notice that the function R(k) is increasing - there are more matrices

with rank k than there are with rank k − 1.

Now that we have more user friendly equations we can have a look at

the number of matrices with some specific rank - in this way we can count

the probability that randomly chosen function has some specific communi-

cation complexity. For example, how many matrices 2n × 2n with the rank

n are there - that is, functions with at least logarithmic communication

complexity? We think the following bounds for n sufficiently big:

R(n) ≥ 1

4

(
2n

n

)
2n2

n
22

n−n ≥ 2n2
n

R(n) ≤ 1

2

(
2n

n

)
2n2

n
2(2

n−n)n ≤ 22n2
n

The bound is, in a way, asymptotically tight. Moreover, we know that

function f : {0, 1}n × {0, 1}n → {0, 1} is hard when rank(Mf ) ≥ 2n−2 + 1.

Consider the limit

lim
n→∞

22
2n −

∑2n−2

i=1 R(i)

222n
≥ lim

n→∞

22
2n − 2n−2R(2n−2)

222n
≥
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We used the fact that the function R(i) is increasing.

≥ lim
n→∞

22
2n − 2n−2 1

222
n−22n

(
2n

2n−2

)
2(2

n−2n−2)2n−2

222n
≥

≥ lim
n→∞

22
2n − 2n−2 1

22
22n

4

(
2n

2n−2

)
2

3
16

22n

222n
≥

≥ lim
n→∞

22
2n − 2

7
16

22n2O(n2n)

222n
= lim

n→∞

(
1− 2O(n2n)

c22n

)
= 1 (c > 1)

We used the fact that 1
22n−2

(
2n

2n−2

)
= 2O(n2n).

In other words almost all functions are hard and exposable by the rank

method. This is another proof of the Theorem 1.3.2 now using only the field

Z2.

1.4 Combinatorics of the Fooling Set Method

Now we turn to the fooling set method. We would like to prove similar

results as we have proved before for the rank method in order to compare

them. Previously we denoted the number of matrices with rank k as R(k).

In this spirit we will denote the number of matrices with fooling set of size

at least k as F (k).

Say we have a hard function f : {0, 1}n × {0, 1}n → {0, 1} and a fooling

set F = {(x1, y1), ..., (xl, yl)} with respect to f (the indices ik, jk, k = 1..l,

correspond to the coordinates of the input pair (xik , yjk) in the matrix Mf ).

Since f is hard it follows from Lemma 1.2.7 that l ≥ 2n−1 +1. But lets start

with more simple case when l = 2n as the ideas we demonstrate here will

prove very useful later.

Observe that no two elements in F can be in the same row or same

column (otherwise such two elements would contradict the properties of the

fooling set, namely the second condition). Since l = 2n, each column and

each row of the matrix Mf contains exactly one element from the set F .
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Now consider any two elements from the set F , say (xi, yj) and (xk, yl)

(i 6= k, j 6= l). These two elements have by the definition of the fooling set

the value b ∈ {0, 1}. What about the elements (xi, yl) and (xk, yj) (call this

pair of elements of matrix Mf a complementary pair to the pair (xi, yj) and

(xk, yl))? Again, by the definition of the fooling set, we have exactly three

ways of assigning values to these two elements (that is (1 − b, 1 − b), (1 −
b, b), (b, 1 − b); the value (b, b) contradicts the definition of the fooling set).

Note that in this case each element of matrix Mf is either an element of F

or is part of some complementary pair with respect to F .

If we now realize that any function f is fully given by her matrix Mf ,

we can enumerate (and count) all hard functions that have fooling set of the

size 2n. Firstly we spot all elements from the fooling set F . We can think

of this as a spotting of 2n rooks on a chessboard of the size 2n× 2n in a way

that no two rooks threaten each other. Secondly we assign a single value to

all rooks (the value b from the definition of the fooling set) and the values

to the complementary pairs of all pairs of elements of F . By doing so we

define the matrix Mf .

Thus the number of all possibilities is (choose b, spot the rooks, choose

values for complementary pairs)

F (2n) = 2 ∗ (2n)! ∗ 3(2
n

2 )

The following example shows that it is possible to create one matrix more

than once, hence what we have got is actually an upper bound

F (2n) ≤ 2 ∗ (2n)! ∗ 3(2
n

2 )

and it is therefore not so nice result compared to the rank method, where

we derived the exact number. (”Fooling set matrices” seems to be some-

how harder to fully grasp.) Let Λ = {(1, 1), (2, 3), (3, 2), (4, 4)} and ∆ =

{(1, 2), (2, 1), (3, 3), (4, 4)} and b = 1

Mf =


1λ 1δ 0 0

1δ 0 1λ 0

0 1λ 1δ 0

0 0 0 1δ,λ


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We can derive a simple lower bound as well. Obviously, if only the

elements from F had value b in the matrix Mf and the rest of the elements

had value 1 − b then each different set F corresponds to a different matrix

Mf . So, the repetitions are due to the term 3(2
n

2 ) - choices for complementary

pairs. Let us limit these choices. Previously we allowed all of the following

possibilities (the so called complementary pairs are in bold):

. . . . . . . . .
...

...
...

b . . . 1-b
...

...
...

1-b . . . b
...

...
...

. . . . . . . . .





. . . . . . . . .
...

...
...

b . . . b
...

...
...

1-b . . . b
...

...
...

. . . . . . . . .





. . . . . . . . .
...

...
...

b . . . 1-b
...

...
...

b . . . b
...

...
...

. . . . . . . . .




. . . . . . . . .
...

...
...

1-b . . . b
...

...
...

b . . . 1-b
...

...
...

. . . . . . . . .





. . . . . . . . .
...

...
...

b . . . b
...

...
...

b . . . 1-b
...

...
...

. . . . . . . . .





. . . . . . . . .
...

...
...

1-b . . . b
...

...
...

b . . . b
...

...
...

. . . . . . . . .


Now we allow only the first two choices from each row (value b can be

only in the top corner) - call the respective fooling set a fooling set with

limited choices. We will show that in this case we removed all repetitions.

Assume, on the contrary, that there is a matrix M that corresponds to two

different fooling sets Λ and ∆ and look at the last row of M . If Λ and ∆

differ in the element from the last row then

M =



. . . . . . . . . . . . . . .
...

...
...

...
...

. . . . . . . . . bλ . . .
...

...
...

...
...

. . . bλ . . . bδ . . .


But this contradicts the allowed choices because the element bδ is in the

bottom corner. Therefore Λ and ∆ agree on the element from the last row.
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Next consider the second last row. By the similar argument we have that Λ

and ∆ must agree here as well.

M =



. . . . . . . . . . . . . . .
...

...
...

...
...

. . . . . . . . . bλ . . .
...

...
...

...
...

. . . bλ . . . bδ . . .

. . . . . . . . . . . . . . .


Finally one can prove by the induction that Λ = ∆ what is a contradic-

tion that they are different. Hence the lower bound on F (2n) follows

F (2n) ≥ 2 ∗ (2n)! ∗ 2(2
n

2 )

Before we move on, consider the following limit

lim
n→∞

F (2n)

Nall
≤ lim

n→∞

2 ∗ (2n)! ∗ 3(2
n

2 )

Nall
= lim

n→∞

2O(n2n)3
2n(2n−1)

2

222n
=

= lim
n→∞

2O(n2n)

√
3
2n

(√
3

2

)22n

= lim
n→∞

2nO(2n)

c2nO(2n)
= 0 (c > 1)

We used here the fact that (2n)! = 2O(n2n).

This limit proves that the number of functions with full fooling set is

small compared to the number of all functions. Moreover, from the last line

we can see that this number decreases at least exponentially.

We argued before that no two elements from the fooling set can be in the

same column or same row. This means that if we have a fooling set F of size

k, we have k columns and k rows each with one element from F . If we now

look at all elements of the matrix Mf that lie on the intersections of such

rows and columns, we get a submatrix Ak×k of the matrix MF (elements

of such submatrix A may not have adjacent elements in the original matrix

Mf ).

Now lets get back to the case where l ≥ 2n−1 + 1. We see that in this

case we need to choose the submatrix A(2n−1+1)×(2n−1+1) (which is equal to
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choosing 2n−1 + 1 rows and columns) and assign values to the elements of

this submatrix in the way we sketched above (that is, in such a way that we

will create a fooling set of size 2n−1 + 1). The rest of the matrix Mf can be

chosen arbitrarily. Therefore the upper bound (we include lots of repetitions

here) for all possibilities is

F (2n−1 + 1) ≤
(

2n

2n−1 + 1

)2

∗ 2 ∗ (2n−1 + 1)! ∗ 3(2
n−1+1

2 ) ∗ 22
2n−(2n−1+1)2

We can again define a simple lower bound as well. If we consider only

those matrices that have a submatrix A(2n−1+1)×(2n−1+1) with the fooling

set with limited choice of size 2n−1 + 1 fixed in their top left corner

Mf =

(
A B

C D

)
2n×2n

we get a lower bound on the number of matrices with fooling set of size at

least 2n−1 + 1.

F (2n−1 + 1) ≥ 2 ∗ (2n−1 + 1)! ∗ 2(2
n−1+1

2 ) ∗ 22
2n−(2n−1+1)2

Again we can compare the bounds for F (2n−1+1) with the number Nall.

lim
n→∞

F (2n−1 + 1)

Nall
≤ lim

n→∞

(
2n

2n−1+1

)2
2(2n−1 + 1)!3(2

n−1+1
2 )22

2n−(2n−1+1)2

222n
≤

≤ lim
n→∞

2 22n(2
n−1+1)

√
3
2n−1(2n−1+1)

22
2n−22n−2−1

222n
≤

≤ lim
n→∞

2n2
n+n+2n−2 lg 3

(
8
√

3 4
√

2
3
)22n

222n
≤

≤ lim
n→∞

2nO(2n)

c2nO(2n)
= 0 (c > 1)

Thus the number of functions with the fooling set of the size at least

2n−1 + 1 (in other words the number of hard functions exposable by the

fooling set method) dwindle at least exponentially with n growing.
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Theorem 1.4.1. Let 0 < ε < 1 be a real number. Then for sufficiently large

n the probability that randomly chosen function f : {0, 1}n×{0, 1}n → {0, 1}
has a fooling set of size at least 2n−1 + 1 is at most ε.

Theorems (1.3.2) and (1.4.1) tells us that almost no hard functions have

large fooling sets. Therefore, the fooling set method is weaker than rank

method in this probabilistic sense. On the other hand almost all functions

have a fooling set of constant size (with respect to n) - compare this with the

fact that almost no functions have constant rank. This probabilistic ”com-

plementarity” of fooling set method and rank method is indeed interesting.

In the following step of our analysis we focus our attention to find a

correlation between the size k of a fooling set F and some upper bound of

F (k) (the number of matrices with the fooling set of size at least k). We

have witnessed the generalization step going from k = 2n to k = 2n−1 + 1

and to go to arbitrary k is indeed simple:

Theorem 1.4.2 (Bob’s theorem).

F (k) ≤
(

2n

k

)2

∗ 2 ∗ k! ∗ 3(k2) ∗ 22
2n−k2

F (k) ≥ 2 ∗ k! ∗ 2(k2) ∗ 22
2n−k2

Lets use this bounds to estimate the number of functions with the fool-

ing set with size at least n - that is, functions with at least logarithmic

communication complexity that can be exposed by the fooling set method.

F (n) ≥ 2 n!2(n2)22
2n−n2 ≥ 2n lgn−n lg e 2

1
2
n2− 1

2
n 22

2n−n2 ≥ 22
2n−n2

F (n) ≤
(

2n

n

)2

2 n!3(n2)22
2n−n2 ≤ 22n

2−n lgn+n lg e 3
1
2
n2− 1

2
n 22

2n−n2
= 22

2n+O(n2)

Compare this with our previous result

R(n) ≥ 2n2
n

R(n) ≤ 22n2
n
.
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1.5 Other known results

Here we mention some results from [DHS96]. They are of similar nature.

We will denote the communication complexity a function f as cc(f).

Definition 1.5.1. [DHS96] Let f be a Boolean function. For an arbitrary

field F with identity elements 0 and 1, let RankF (f) denote the rank of the

matrix Mf over F . We define

• Rank(f) = max{RankF (f)|F is a field with identity elements 0 and 1}

• r(f) = dlog2(Rank(f))e

Definition 1.5.2. [DHS96] Let f be a Boolean function of 2n variables.

For b ∈ {0, 1}, a set

A(f) = {(α1, β1), ..., (αk, βk)}, αi, βi ∈ {0, 1}n, i = 1, ..., k

is called a b-fooling set for f if

1. f(αi, βi) = b for all i ∈ {1, ..., k}, and

2. i 6= j, i, j ∈ {1, ..., k} implies that f(αi, βj) 6= b or f(αj , βi) 6= b.

We define

• Fool(f) = max{card(A(f))| A is a b-fooling set for f and b ∈ {0, 1}}

• fs(f) = dlog2(Fool(f))e

Theorem 1.5.3. [DHS96] (i)If n ∈ N is sufficiently large then for at least

a fraction of 1
4 of Boolean functions f of 2n variables the following holds:

• Fool(f) ≤ 10n (i.e., fs(f) ≤ log2 n+ log2 10), and

• RankZ2(f) = 2n (i.e., r(f) = cc(f) = n).

(ii) Almost all Boolean functions f of 2n variables satisfy Rank(f) = 2n

and Fool(f) ≤ 10n.

Part (ii) of this theorem shows that the Rank method is exponentially

better than the Fooling set method for almost all functions; part (i) shows

that this is true for a substantial number of functions even if only rank over

Z2 is used.
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Theorem 1.5.4. [DHS96] For all Boolean functions f and all fields F

Fool(f) ≤ (RankF (f) + 1)2 (i.e., fs(f) ≤ 2r(f) + 2)

Furthermore, we consider the function g2n(x1, ..., xn, y1, ..., yn) =
∑n

i=1 xiyi mod 2,

the inner product over Z2. The family {g2n} provides a specific example for

which the Rank method is exponentially better than the Fooling Set method.

Theorem 1.5.5. [DHS96] For every n ∈ N we have

1. Rank(g2n) = 2n − 1, and

2. Fool(g2n) = (n+ 1)2.

Thus, fs(g2n) ≤ lg2(n+ 1) and r(g2n) = n

It was also shown that there is a function for which the Fooling Set

method is better than the Rank method.

Theorem 1.5.6. [DHS96] There is an algorithm that, for any n = 4m, m ∈
N, constructs a Boolean function h2n of 2n variables such that

1. Fool(h2n) = 2n, and

2. Rank(h2n) = 3
n
2 .

Thus, 0.79... · n = 1
2 log2 3 · n = r(h2n) < fs(h2n) = n = cc(h2n)
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Chapter 2

Multiparty Communication

Complexity

”Curiouser and curiouser!”

Lewis Carroll

Alice’s Adventures in Wonderland

In the previous chapter we dealt with two-party communication model.

One natural way to extend this model is to allow more parties and distribute

the input equally among them. But unlike in the two-party model, here the

parties will not be able to communicate between each other. Instead, there

will be a coordinator, an entity which communicates with parties and directs

the computation. Also we do not require for parties to know the output of

such computation, only coordinator is entitled to this knowledge.

This model was studied in [DF89], [DF92], [Ď04] and others. The

lower bound technique (a generalization of fooling set method) appeared

in [ĎR98].

Another lower bound method is that of partition arguments: partition

all processors into two disjoint sets and find a lower bound for the induced

two-party communication complexity problem. Some results concerned with
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this method can be found in [DKW09].

The model we sketched above is often called ”Number in the hand”

model. There is also another one, called ”Number on the forehead” model.

In this model the input is distributed in such a way, that the party pi sees the

whole input except the part xi. The parties then communicate through the

shared ”blackboard” (broadcast). This model was introduced in [CFL83]

and appeared in [BNS89] where an interesting relation to time-space trade-

offs and branching programs were discovered. Note that in this model the

partition arguments method will not work as any two processors already

know the whole input.

In this chapter we will consider the ”Number in the hand” model. We

shall start with definitions.

2.1 Definitions and basic properties

The definitions were adopted from [Ď04]. The schema of the model is fol-

lowing:

◦C

•p1x1 •p2x2 •p3x3 . . . •pnxn

Let ε be the empty string and let w = w1$w2$...$wl, l ≥ 1, wi ∈ {0, 1}+

for every i. We define : h(ε) = ε and h(w) = w1w2...wl. Let r = (r1, r2, ..., rt),

t ≥ 1, where either ri = r1i $r
2
i $...$r

ji
i , r

l
i ∈ {0, 1}+, ji ≥ 1, or ri = ε. We

define: h(r) = h(r1)h(r2)...h(rt). We denote the lenght of a string w (the

cardinality of a set S) by |w| (by |S|). If S is a set then by h(S) we denote

the set {h(s)|s ∈ S}.
Suppose a coordinator wishes to evaluate a function f(x1, x2, ..., xn). The

input vector x = (x1, x2, ..., xn) is distributed among n parties (i.e., the pro-

cessors p1, p2, ..., pn), with xi known only to party i, where xi is chosen from

{0, 1}m for every i. Suppose there is a deterministic protocol P that accepts

the language defined by f (when the value of f is 1). In such a case we will
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say that P computes f . Generally, the computation of P consists of several

phases, where one phase is as follows: The coordinator sends some messages

(nonempty binary strings) to some parties (not necessary to all parties) and

then, each party that got a message, sends a message back to the coordinator.

The communication behaviour of P can be described by a communication

vector s = (s1, s2, ..., sn), where either si = s1i $s
2
i $...$s

ji
i , ji ≥ 2, sli ∈ {0, 1}+,

or si = ε; si is a communication sequence between the coordinator and the

party i (if there is no communication then si = ε). Note that ji is an even

number (each party must response after obtaining any nonempty message),

and s2l−1i [s2li ] is not necessary the message sent [received] by the coordinator

in the phase l (since the coordinator may have sent no message to the party

i in some previous phase k < l). We will also say ”communication sequence

on the link i” instead of ”communication sequence between the coordinator

and the party i”. Also we will say ”processor pi” instead of ”party i”.

Formally, a deterministic protocol P is an (n + 1)-tuple of functions

(φ0, φ1, ..., φn), for which the following holds: Let

K = {0, 1, $}∗ × ...× {0, 1, $}∗ (n times)

M = {0, 1}∗ × ...× {0, 1}∗ (n times)

(a) φ0 is a function from K to M ∪ {”accept”, ”reject”}. Intuitively, be-

haviour of the coordinator is given by φ0, where the argument of φ0 is

a communication vector of all previous messages, with $ serving as a

delimiter between messages. The result of φ0 are either the next mes-

sages sent to the parties or the coordinator stops the communication

and accepts/rejects the input.

(b) For i = 1, 2, ..., n, φi is a function from {0, 1}m × {0, 1, $}∗ to {0, 1}+.

Intuitively, behaviour of the party i, (1 ≥ i ≥ n), is given by φi, where

the first argument of φi is the local input for the party i and the

second argument of φi is a sequence of all previous messages on the

link i (delimited by $). The result of φi is the next message sent by

the party i to the coordinator.

A computation under P on input x = (x1, ..., xn) with xi ∈ {0, 1}m

for each i is a communication vector sk = (sk1, ..., s
k
n), where k ≥ 0, (k

is the number of all phases performed on x under P ), such that for every
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j = 0, 1, 2, ..., k−1 there is a communication vector sj = (sj1, ..., s
j
n), (sj is the

communication vector after completing the j-th phase of the computation

on x under P ), for which (c), (d), (e) hold.

(c) s0i = ε for i = 1, 2, ..., n; (the coordinator starts the communication with

the empty communication vector s0 = (ε, ..., ε)).

(d) For j = 0, 1, 2, ..., k − 1 it holds: Let φ0(s
j) = (dj1, ..., d

j
n). Then sj+1

i =

sji$d
j
i$φi(xi, s

j
i$d

j
i ) if dji 6= ε, otherwise sj+1

i = sji for i = 1, 2, ..., n.

(e) φ0(s
k) ∈ {”accept”, ”reject”}. If φ0(s

k) =”accept” [φ0(s
k) =”reject”]

then sk is an accepting [rejecting] computation vector under P , (or,

sk is an accepting [rejecting] computation under P on x)

We require that nonempty communication sequences on each link are

self-delimiting, i.e., if si = s1i $s
2
i $...$s

ji
i and ri = r1i $r

2
i $...$r

li
i are any two

different nonempty communication sequences on the link i under P , and if

s1i = r1i , ..., s
q
i = rqi for some q ≥ 0, then q ≤ min{ji, li} and sq+1

i is not any

proper prefix of rq+1
i , or vice versa. (Note that one can easy show that then

h(si) 6= h(ri) and h(si) is not any proper prefix of h(ri), or vice versa).

In fact, we do not need the ”end of transmission” symbol, ”$”, because

of the self-delimiting property (introduced in [PS82]). We use this property,

since we want to pin down exactly the communication complexity.

Let f(x1, ..., xn) be a Boolean function with xi ∈ {0, 1}m for each i,

and P be a deterministic protocol. We say that P computes f if, for each

x = (x1, ..., xn) with xi ∈ {0, 1}m for each i, the computation under P on

the input x is an accepting one iff f(x) = 1.

Let S be the set of all accepting and rejecting communications vectors

under P . By DC(f) we denote the maximum over all s ∈ S of |h(s)|
minimized over all deterministic protocols computing f . DC(f) is called

the deterministic communication complexity of f .

We also consider nondeterministic protocols. In such a case, φi’s are

”nondeterministic functions”, i.e., they may have several values (and there-

fore they are not functions). Moreover, they may be ”partial nondeter-

ministic functions”, i.e., they may not be defined for all possible values of

arguments; in such a case, the current communication is aborted. We can

apply the definitions above also for nondeterministic protocol in such a way

that whenever we write φ0(s) [φi(x, s), i > 0] we mean a possible value of
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φ0(s) [of φi(x, s)]. We require the self-delimiting property also for nondeter-

ministic protocols.

Let f(x1, ..., xn) be a Boolean function with xi ∈ {0, 1}m for each i,

and P be a nondeterministic protocol. We say that P computes f if, for

each x = (x1, ..., xn) with xi ∈ {0, 1}m for each i, there is an accepting

communication under P on input x iff f(x) = 1.

Let A be the set of all accepting communication vectors under a nonde-

terministic protocol P . By C(f) we denote the maximum over all s ∈ S of

|h(s)| minimized over all nondeterministic protocols computing f . C(f) is

called the nondeterministic communication complexity of f .

We have seen that the trivial upper bound for two-party communication

complexity was n+1 if the length of input X (and of Y ) was n. The similar

upper bound for nondeterministic multiparty communication follows.

Theorem 2.1.1. [Ď04] C(f) ≤ nm for each Boolean function f(x1, ..., xn)

with xi ∈ {0, 1}m for i = 1, 2, ..., n.

Proof. For each f under consideration, there is a nondeterministic protocol

P computing f using nm exchanged bits as follows. Given input (x1, ..., xn)

the coordinator nondeterministically guesses the first bit of xi and sends

it to pi. Then each pi responds the rest of xi if the guess was successful,

otherwise it aborts the communication. If all guesses were successful then the

coordinator knows the whole input, hence it can accept the input correctly.

For deterministic protocols we have this upper bound.

Theorem 2.1.2. DC(f) ≤ n(m+1) for each Boolean function f(x1, ..., xn)

with xi ∈ {0, 1}m for i = 1, 2, ..., n.

Proof. For each f under consideration, there is a deterministic protocol

P computing f using n(m + 1) exchanged bits as follows. Given input

(x1, ..., xn) the coordinator sends some one-bit signal message (be it 0 or

1, it does not matter) to all pi. Then each pi responds its input xi. Thus

coordinator knows the whole input and it can accept it correctly.

For the two-party model, we defined the notion of hard functions. Sim-

ilarly we can introduce multiparty hard functions. But now we can distin-

guish between deterministic and nondeterministic hard functions. On the
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other hand, if a function f is hard in nondeterministic sense, then it is

hard also in deterministic sense (while the other implications does not have

to hold). Therefore we will consider mostly nondeterministic hard functions.

Definition 2.1.3. Let f(x1, ..., xn) be a Boolean function with xi ∈ {0, 1}m

for i = 1, 2, ..., n. If C(f) ≥ nm then we will call such function hard.

Moreover, if for some hard function f the function f ′ = 1 − f is also hard,

then we call the function f (and obviously f ′ too) very hard.

Note that DC(f) = DC(1− f) for all functions. Therefore if function f

is deterministically hard it is automatically deterministically very hard. On

the other hand this does not hold in nondeterministic sense.

We have seen that almost all functions for two-party model were hard.

It is not therefore surprising that similar result holds for multiparty model

as well.

Theorem 2.1.4. [Ď04] For each integer n ≥ 3 and for each real number

α, 0 < α < 1, there is a positive integer m such that randomly chosen

Boolean function f(x1, ..., xn) with xi ∈ {0, 1}m for i = 1, 2, ..., n is very

hard with probability α.

Some examples of hard and very hard functions are in place.

Theorem 2.1.5. [ĎR98] Let v(b) denote the integer represented by b. Let

• f1(x1, ..., xn) = 1 iff x1 = x2 = ... = xn

• f2(x1, ..., xn) = 1 iff x1...xn
2

= xn
2
+1...xn (for n even)

• f3(x1, ..., xn) = 1 iff v(x1...xn
2
) ≤ v(xn

2
+1...xn) (for n even).

where xi ∈ {0, 1}m for every i. Then C(fi) ≥ nm for i = 1, 2, 3.

Note that that the first two functions are not very hard. Consider the

following protocols for the functions f ′1 = 1− f1 and f ′2 = 1− f2.
In the first case the coordinator guesses a number k, 1 ≤ k ≤ m, and

numbers n1, n2, 1 ≤ n1, n2 ≤ n (in other words, he guesses which two

inputs differ on which position). Thus the coordinator needs to send at

most dlog2me+ dlog2me bits - binary encoded number k sent to processors

n1 and n2 - while the answer he gets is just two bits long - one bit from each

processor. Therefore the upper bound for this protocol is 2(dlog2me+ 1).
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In the second case the protocol is basically the same. On the other hand

it has been shown in [ĎR98] that C(1− f3) ≥ nm− 2.

The function f1 is rather interesting from the practical point of view (for

example file servers etc.) and so more results were proven.

Theorem 2.1.6. [ĎR98] Let f1(x1, ..., xn) = 1 iff x1 = x2 = ... = xn, where

xi ∈ {0, 1}m for every i. The the following holds

• nm ≤ C(f) ≤ n(m+ 1)

• blog2 (m− 1)c ≤ C(1− f) ≤ 2blog2mc+ 2

• nm ≤ DC(f) = DC(1− f) ≤ n(m+ 1)

With this example we can see how much can nondeterminism help us

(although not always). The gap between C(1 − f) and DC(1 − f) can be

arbitrarily large.

Now consider somehow similar function

F (x1, ..., xn) = 1 iff ∀i,j∈{1,...,n} (i 6= j ⇒ xi 6= xj) where xi ∈ {0, 1}m

In other words such function that equals 1 if and only if the inputs in all

processors are different.

Firstly, lets have a look at such a case where n = 2m - the amount of

processors is the same as the number of all possible different inputs. In

this case we have exactly n! possible configurations at the beginning - all

permutations of numbers 1...n.

We claim that each permutation - each distribution of inputs - has a

different communication. Assume the opposite - let Π = (x1, ..., xj , ..., xn)

and Π′ = (x′1, ..., x
′
j , ..., x

′
n) be two different permutations with the same

communications on all links. Since the Π and Π′ are different there must

exists such index j ∈ {1, ..., n} that xj 6= x′j . According to our assumption

the communication is the same for both permutations on all links, therefore

the input (x1, ..., x
′
j , ..., xn) will be accepted too - the coordinator does not

see the inputs, only the communication sequences on all links - and this we

did not change. But this is a contradiction because there exists such index

l ∈ {1, ..., n}/{j} that xl = x′j .
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Thus, for different permutations of inputs we have a different communi-

cation and

C(f) ≥ lg(n!) ≈ lg
(√

2πn
(n
e

)n)
= lg

√
2πn+ n lg n− n lg e ≥ n(m− 2)

On the other hand, consider n to be small compared to m. In such a

case the nondeterministic coordinator can(?) guess a vector (i1, ..., in), ij ∈
{1, ...,m} - positions at which the inputs differ - and send this coordinates

to appropriate processors. Processors, after receiving the message from the

coordinator, send back the appropriate bit. Alas, this strategy will not

succeed. Consider the following scenario

x1 = 1111111

x2 = 0111111

x3 = 1011111

What are the coordinators options? Any index he chooses for the first input

has value 1. For the second input he now needs to choose the second index -

otherwise he would not be able to detect that x1 6= x2. This index has value

0. For the third input, in order to detect that x2 6= x3, the coordinator needs

to choose an index with value 1. But choosing such index the coordinator

is not able to detect that x1 6= x3.

On the other hand, there are
(
n
2

)
different pairs of inputs and to be able

to detect that each pair of processors contains different input we need to

know two bits - one bit from each processor. Hence

C(f) ≤ 2

(
n

2

)
lgm+ 2

(
n

2

)
≤ n(n− 1) lgm+ n(n− 1)

2.2 Linking functions with logic operators

One of the more interesting things we can do with multiparty functions is

combining them. Say we have k functions computed on k systems each with

a coordinator i and its ni processors. We want to compute the function

F = f1(x
1
1, ..., x

1
n1

) ∧ ... ∧ fk(xk1, ..., xknk
)
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Is it possible for some (maybe all) functions to save communication bits

if instead of computing k functions separately we computed them together

using only one coordinator, thus computing only one function?

•1 •2 . . . •k

•x11 . . . •x1n1
•x21 . . . •x2n2

. . . •xk1 . . . •xknk

•C

Intuitively, whether this can or cannot be done will depend on whether

we consider deterministic or nondeterministic protocols. Also, we can con-

sider other logical operators such as ∨, →, ⊕, ⇐⇒ etc.

2.2.1 Nondeterministic protocols

Theorem 2.2.1. [ĎR98] Let 0 = n1 < n2 < ... < nk+1 = n, k ≥ 1, be any

integers with ni + 2 ≤ ni+1 and let fi be an (ni+1 − ni)-ary function with

C(fi) > 0 for i = 1, 2, ..., n. Let

f(x1, ..., xn) =

k∏
i=1

fi(xni+1, ..., xni+1).

Then

C(f) =
k∑
i=1

C(fi).

Thus it does not matter whether we compute the functions fi separately

or somehow together, the amount of nondeterministic communication is the

same.

Theorem 2.2.2. Let 0 = n1 < n2 < ... < nk+1 = n, k ≥ 1, be any integers

with ni + 2 ≤ ni+1 and let fi be an (ni+1 − ni)-ary function with C(fi) > 0
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for i = 1, 2, ..., n. Let

f(x1, ..., xn) = max
i∈{1,...,k}

{fi(xni+1, ..., xni+1)}.

Then

C(f) = max
i∈{1,...,k}

{C(fi)}.

Proof. First we show that C(f) ≥ maxi∈{1,...,k}{C(fi)}. Lets assume that

C(fj) = maxi∈{1,...,k}{C(fi)} and C(f) < C(fj) for some protocol P com-

puting the function f . We will create a protocol P ′ computing the function

fj with better communication complexity than C(fj).

The protocol P ′ computing the function fj will simulate the protocol P

in the following way. The protocol P ′ will start with input (xnj+1, ..., xnj+1).

In the first step the protocol will nondeterministicaly guess the rest of the

vector (x1, ..., xn) in such a way that for all j, j 6= i: fj(xnj+1, ..., xnj+1) = 0

(such inputs do exist since C(fi) > 0 for all i). Then the protocol P ′ will

follow the steps of the protocol P on the input (x1, ..., xn) with the difference,

that the only actual communication is on the links (nj + 1, ..., nj+1) and the

rest of the communication is simulated inside the coordinator.

The protocol P ′ will arrive at the result

f(x1, ..., xn) = max
i∈{1,...,k}

{fi(xni+1, ..., xni+1)}

with the communication C(f) < C(fj). But since for all j, j 6= i:

fj(xnj+1, ..., xnj+1) = 0

it follows that f(x1, ..., xn) = fj(xnj+1, ..., xnj+1). Since the protocol P is

correct by our assumption, so is the protocol P ′. Thus

C(f) ≥ max
i∈{1,...,k}

{C(fi)}

Now we will complete the proof. Consider the following protocol P com-

puting the function f . The protocol starts with the input (x1, ..., xn). But

instead of computing all functions fj the protocol will nondeterministically

guess such j that fj(xnj+1, ..., xnj ) = 1 and then compute only this function.

If such j for the given input (x1, ..., xn) exists, then this computation will

eventually confirm that the guess was correct. Therefore

C(f) ≤ max
i∈{1,...,k}

{C(fi)}

and the proof is complete.

43



Hence we can save a considerable amount of communication bits if we

choose to compute the function f(x1, ..., xn) = maxi∈{1,...,k}{fi(xni+1, ..., xni+1)}
with just one coordinator.

Theorem 2.2.3. [Man97] Let f(x1, ..., xk), g(xk+1, ..., xn) be Boolean func-

tions such that C(f)C(g) > 0 and C(1− f)C(1− g) > 0. Let

h(x1, ..., xn) = f(x1, ..., xk)⊕ g(xk+1, ..., xn).

Then

C(h) ≥ max{C(f) + C(1− g), C(1− f) + C(g))}

C(h) ≤ max{C(f) + C(1− g), C(1− f) + C(g))}+ n.

Therefore if we want to compute, for example, the function

F (x1, ..., x2k) = f(x1, ..., xk)⊕ f(xk+1, ..., x2k)

where

f(x1, ..., xk) = 1 iff x1 = x2 = ... = xk

we need at most km+ 2(dlog2me+ 1). Since km+ 2(dlog2me+ 1) < 2km

for k,m > 2, we can save some amount of communication bits.

The same applies in the following case as well.

Theorem 2.2.4. Let f(x1, ..., xk), g(xk+1, ..., xn) be Boolean functions such

that C(f)C(g) > 0 and C(1− f)C(1− g) > 0. Let

h(x1, ..., xn) = f(x1, ..., xk)⇔ g(xk+1, ..., xn).

Then

C(h) ≥ max{C(f) + C(g), C(1− f) + C(1− g))}

C(h) ≤ max{C(f) + C(g), C(1− f) + C(1− g))}+ 2n.

Proof. The proof for the upper bound is basically the same as the proof for

Theorem 2.2.3 from [Man97]: the coordinator guesses wether

(x1, ..., xk) ∈ f−1(1)

(xk+1, ..., xn) ∈ g−1(1)
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or

(x1, ..., xk) ∈ f−1(0)

(xk+1, ..., xn) ∈ g−1(0).

In the first case the coordinator sends ”1” to all parties. Each party must

respond after obtaining a message so all parties send back ”1”. After this

procedure is complete, the computation follows separately for each function

f, g.

In the second case, the coordinator sends ”0” to all parties and all parties

send back ”1”. After this procedure is complete, the computation follows

separately for each function 1− f, 1− g.

For the proof of the lower bound we can use the Theorem 2.2.3. Assume

that we can compute the function h = f ⇔ g with better communication

complexity than max{C(f) + C(g), C(1− f) + C(1− g))}.
We know that in order to compute the function h′ = f ⊕ (1− g) we need

at least

max{C(f) + C(1− (1− g)), C(1− f) + C(1− g))} =

= max{C(f) + C(g), C(1− f) + C(1− g))}

Since

h = f ⇔ g ≡ f ⊕ (1− g) = h′

we have a contradiction:

C(h) < max{C(f) + C(g)), C(1− f) + C(1− g))}

C(h′) ≥ max{C(f) + C(g), C(1− f) + C(1− g))}.

Theorem 2.2.5. Let f(x1, ..., xk), g(xk+1, ..., xn) be Boolean functions such

that C(f)C(g) > 0 and C(1− f) > 0. Let

h(x1, ..., xn) = f(x1, ..., xk)⇒ g(xk+1, ..., xn).

Then

C(h) = max{C(1− f), C(g)}
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Proof. This result follows from the Theorem 2.2.2 and the fact that

f ⇒ g ≡ (1− f) ∨ g.

The upper bound follows directly. As for the lower bound, assume that we

can compute the function h = f ⇒ g with better communication complexity

than max{C(1− f), C(g)}.
We know that in order to compute the function h′ = (1− f)∨ g we need

at least max{C(1− f), C(g)} communication bits. Since

h = f ⇒ g ≡ (1− f) ∨ g = h′

we have a contradiction:

C(h) < max{C(1− f), C(g)}

C(h′) ≥ max{C(1− f), C(g)}.

Here again we can save a great deal of communication bits by using just

one coordinator.

We have seen that being able to nondeterministically guess something

(e.g. input vector or output of some computation) can help us a lot. As

we will see in the following section, without this ability the results are quite

different.

2.2.2 Deterministic protocols

Lets for a while consider a slight modification of this model. We will restrict

the coordinator in such a way, that it will not be allowed to send any infor-

mation to other processors. That is, if a coordinator wishes to send some

message to some party xi it will always be one-bit signal 1. This model is

sometimes called one-way as the information is allowed to flow only in one

direction - from processors to the coordinator.

Let f : {00, 01, 10, 11} × {00, 01, 10, 11} → {0, 1} be a function given as

follows (the line between two inputs means that the function value is 1):

•11 •10 •01 •00

•11 •10 •01 •00
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Mf =


1 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0



Because the fooling set of this matrix is {(10, 00), (01, 01), (00, 10)}, the

function f is hard in the two party model.

We claim that this function is hard in multiparty model too - DC(f) =

n(m+ 1) = 2(2 + 1) = 6 (n is the number of processors and m is the length

of input).

If the coordinator sends a signal to both parties, to which they respond

by sending their whole input back, then 6 bits are sufficient.

Can 5 bits be enough? Firstly note that we get the most information

bits if the communication has only one round, that is the coordinator sends

at most two bits - one to each party. In this case we can get 3 bits of

information from the processors (any more bits sent by the coordinator

lessen this number).

If the protocol is correct, the coordinator would know the answer just

by knowing 2 bits from, say, the first processor and 1 bit from the second

processor. Since 1 bit is not enough to uniquely identify the input of the

second processor, the coordinator must somehow gather this 1 bit of missing

information from the bits it has got from the first processor.

The computation is deterministic and the processors do not know about

each other, therefore the processor that sends only one bit is the same for

all possible inputs - in our case the second (or left) processor - the second

processor receives ”1” from the coordinator and it does not know whether

the first processor sent 1 or 2 bits - therefore neither processor can pick how

many bits it sends - the first processor sends always the whole input and

the second processor sends only one bit.

But this contradicts that the function f is hard in the two party model

- by making the first processor virtual part of the coordinator we get a pro-

tocol for the two party model for the function f that needs to transmit only

one bit (the bit from the second processor).
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Theorem 2.2.6. Let F (x1, ..., xk, ..., xn) = f1(x1, ..., xk) ∧ f2(xk+1, ..., xn)

and DC(f1) ·DC(f2) > 0. Then there exists such functions that DC(F ) <

DC(f1) +DC(f2).

Proof. Let f1 = f from above and let f2 be defined as follows

Mf2 =

(
1 0

0 1

)

It is easy to see that in multiparty model DC(f2) = 4 (2 bits sent and 2

bits received).

Since the last two rows (and the last two columns) of the matrix Mf are

same we need to distinguish only between 3 different inputs. Therefore we

can encode them as 0, 10, 11 respectively :

•11 •11 •10 •0

•11 •11 •10 •0

Figure 3

Instead of sending the whole input x the processor can send encoded in-

put c(x) and it will still suffice to compute the function f . Closer examina-

tion of the function f reveals, that if f(x, y) = 1 then 2 ≤ |c(x)|+ |c(y)| ≤ 3.

We can use this fact and construct the protocol for the function F (x1, x2, x3, x4)

in the following way:

1. Compute the function f first - send the signal vector (1, 1, ε, ε).

2. Receive the message vector (c(x1), c(x2), ε, ε) from the processors.

3. If f(x1, x2) = 1 then send the message vector (ε, ε, 1, 1) and receive

the reply vector (ε, ε, c(x3), c(x4)).

4. Evaluate F (x1, x2, x3, x4).

Now lets look at the number of bits transmitted in each step.
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1. 2 bits

2. Depending on the input pair x1, x2 - 2, 3 or 4 bits.

3. If f(x1, x2) = 1 then, as we have mentioned before, 2 ≤ |c(x1)| +
|c(x2)| ≤ 3 and in this case we send and receive 2 + 2 = 4 more bits.

If f(x1, x2) = 0 then no other communication is needed.

4. Altogether we need to communicate either 2+{2, 3}+4 ≤ 9 or 2+4 = 6

bits. In either case it is less than 10.

Here we get a different result compared to nondeterministic protocols.

Being able to guess is a powerful help but sometimes that much power can

be restrictive too.

Let f ′ = 1− f . It follows that DC(f ′) = 6 and that if f ′(x, y) = 0 then

2 ≤ |c(x)|+ |c(y)| ≤ 3. Thus

Corollary 2.2.7. Let F (x1, ..., xk, ..., xn) = f1(x1, ..., xk) ∨ f2(xk+1, ..., xn)

and DC(f1) ·DC(f2) > 0. Then there exists such functions that DC(F ) <

DC(f1) +DC(f2).

As we see we can, in principle, save some communication bits if we use

one coordinator instead of two. On the other hand, the amount of such bits

is much smaller than as it was with nondeterministic protocols.

Note that if we had considered the original two way model we would

not have had this result. The following protocol for the two way multiparty

model shows that we need only 5 bits in order to compute the function f

with inputs encoded according to the Figure 3.

1. Coordinator sends ”1” to the left processor.

2. Left processor sends its input to the coordinator.

3. If the received input is

• 1-bit long the coordinator sends ”0” to the right processor.

• 2-bit long the coordinator sends ”1” to the right processor.
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4. The right processor sends back either its input if it received ”0” or

only the first bit if it received ”1”.

5. The coordinator can now compute the function.

We see that only 5 bits were transmitted. The correctness of this protocol

follows from the Figure 3.

We were not able to prove theorem 2.2.6 for the two way multiparty

model.

Theorem 2.2.8. [Ď04] Let

f(x1, ..., xk, ..., xn) = f1(x1, ..., xk)⊕ f2(xk+1, ..., xn).

Then DC(f) = DC(f1) +DC(f2).

And since DC(f) = DC(1− f) and (x⇔ y) ≡ ¬(x⊕ y) it follows that

Corollary 2.2.9. Let

f(x1, ..., xk, ..., xn) = f1(x1, ..., xk)⇔ f2(xk+1, ..., xn).

Then DC(f) = DC(f1) +DC(f2).

We see that in these two cases we cannot save one bit of communication

complexity - again something different compared to nondeterministic ⊕ and

⇔.

Theorem 2.2.10. Let F (x1, ..., xk, ..., xn) = f1(x1, ..., xk)⇒ f2(xk+1, ..., xn)

and DC(f1) ·DC(f2) > 0. Then there exists such functions that DC(f) <

DC(f1) +DC(f2).

Proof. Assume that for all functions f1, f2 it holds that DC(f) = DC(f1)+

DC(f2). Let f, g be the functions from the Theorem 2.2.6.

According to our assumption DC(f ⇒ g) = DC(f) +DC(g). But

f ⇒ g ≡ (1− f) ∨ g

and according to the Theorem 2.2.7 (and remarks above this theorem)

DC((1− f) ∨ g) < DC(1− f) +DC(g) = DC(f) +DC(g).

A contradiction.
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2.3 Very Hard Functions

In this section we will sum up the implications of previous two sections to

hard and very hard functions. That is, if f and g are two very hard functions

we would like to know if f ◦ g is also very hard.

Theorem 2.3.1. Considering nondeterministic protocols, if f(x1, ..., xk)

and g(xk+1, ..., xn) are two very hard functions then f ◦ g is also very hard

where ◦ ∈ {⊕, ⇔}.
If f(x1, ..., xk) and g(xk+1, ..., xn) are two hard functions then f ◦ g is

also hard where ◦ ∈ {∧, ⊕, ⇔}.

Theorem 2.3.2. Considering deterministic protocols, if f(x1, ..., xk) and

g(xk+1, ..., xn) are two very hard functions then f ◦g is also very hard where

◦ ∈ {⊕, ⇔}.

We can also define asymptotic very hard functions as functions such that

C(f) = C(1 − f) = Θ(mn) where n is the number of processors and m is

the length of the input of each processor. From the practical point of view

there is little difference between the very hard and asymptotically very hard

functions, therefore we might be interested in ways of constructing them.

There is one such easy way.

Theorem 2.3.3. Let f(x1, ..., xk) and g(xk+1, ..., xn) be two hard functions

not necessarily very hard and let k = Θ(n). Then f ◦(1−g) is asymptotically

very hard where ◦ ∈ {∧, ∨, ⊕, ⇔}.

Proof. The proof follows from the Theorems 2.3.1 and 2.3.2.
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Chapter 3

Modified Multiparty Model

’Be what you would seem to be’ - or, if you’d like it put more simply

- ’Never imagine yourself not to be otherwise than what it might appear to

others that what you were or might have been was not otherwise than what

you had been would have appeared to them to be otherwise.’

Lewis Carroll

Alice’s Adventures in Wonderland

In this chapter we introduce a modifications of the multiparty model we

considered so far. In this modification we allow the coordinator to carry part

of the input - in other words we merge one processor with the coordinator.

Call this model ℵ.

We will show that this modification changes the original model quite

substantially in certain ways.

The following graph shows the schema of this model:

◦Cx0

•p1x1 •p2x2 •p3x3 . . . •pnxn
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We do not give the full formal definition of this modified model. It is

basically the same as for the original multiparty model except a few changes

given below:

The coordinator wishes to evaluate the function f(x0, x1, ..., xn) where

x0 is known only to the coordinator and xi is known only to the processor

pi and xi ∈ {0, 1}m for all i.

A deterministic protocol P is an (n+1)-tuple of functions (φ0, φ1, ..., φn),

for which the following holds: Let

K = {0, 1}m × {0, 1, $}∗ × ...× {0, 1, $}∗ ({0, 1, $}∗ n times)

M = {0, 1}∗ × ...× {0, 1}∗ (n times)

(a) φ0 is a function from K to M ∪ {”accept”, ”reject”}. Intuitively, be-

haviour of the coordinator is given by φ0, where the argument of φ0 is

a coordinator’s input and a communication vector of all previous mes-

sages, with $ serving as a delimiter between messages. The result of

φ0 are either the next messages sent to the parties or the coordinator

stops the communication and accepts/rejects the input.

(b) For i = 1, 2, ..., n, φi is a function from {0, 1}m × {0, 1, $}∗ to {0, 1}+.

Intuitively, behaviour of the party i, (1 ≥ i ≥ n), is given by φi, where

the first argument of φi is the local input for the party i and the

second argument of φi is a sequence of all previous messages on the

link i (delimited by $). The result of φi is the next message sent by

the party i to the coordinator.

A computation under P on input x = (x1, ..., xn) with xi ∈ {0, 1}m

for each i is a communication vector sk = (sk1, ..., s
k
n), where k ≥ 0, (k

is the number of all phases performed on x under P ), such that for every

j = 0, 1, 2, ..., k−1 there is a communication vector sj = (sj1, ..., s
j
n), (sj is the

communication vector after completing the j-th phase of the computation

on x under P ), for which (c), (d), (e) hold.

(c) s0i = ε for i = 1, 2, ..., n; (the coordinator starts the communication with

the empty communication vector s0 = (ε, ..., ε)).

(d) For j = 0, 1, 2, ..., k − 1 it holds: Let φ0(x0, s
j) = (dj1, ..., d

j
n). Then

sj+1
i = sji$d

j
i$φi(xi, s

j
i$d

j
i ) if dji 6= ε, otherwise sj+1

i = sji for i =

1, 2, ..., n.
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(e) φ0(x0, s
k) ∈ {”accept”, ”reject”}. If φ0(x0, s

k) =”accept” [φ0(x0, s
k) =”reject”]

then sk is an accepting [rejecting] computation vector under P , (or,

sk is an accepting [rejecting] computation under P on x)

We can also consider nondeterministic protocols. In such a case, φi’s

are ”nondeterministic functions”, i.e., they may have several values (and

therefore they are not functions). Moreover, they may be ”partial nonde-

terministic functions”, i.e., they may not be defined for all possible values

of arguments; in such a case, the current communication is aborted.

Note that if n = 1 and we consider deterministic versions then this model

behaves almost exactly like Yao’s two party model - the only difference being

that we still have a coordinator that has to start the computation. That is,

the computation starts a fixed party and this might be sometimes restrictive.

On the other hand, we need only one starting bit sent by the coordinator to

fix this - after the only processor receives this bit the computation can go

as in Yao’s two party model.

We have seen that in Yao’s model the trivial upper bound was m + 1

where m was the length of input - the +1 was there because we required both

parties to know the output. And the same trivial upper bound holds for this

new model too. Although we might need one bit start to computation, we

require only coordinator to know the output.

In general, if we have a function f and some protocol P that computes

this function in Yao’s model with complexity DC(P ) then basically the same

protocol Pℵ can compute the function f in this new model with complexity

DC(P )− 1 ≤ DC(Pℵ) ≤ DC(P ) + 1:

• Pℵ cannot save more than one bit compared to P because we can use

Pℵ almost as it is in Yao’s model - the only difference is that Pℵ does

not send the result to Bob - this is the only bit we can save. Therefore

DC(P )− 1 ≤ DC(Pℵ).

• Let Alice be the coordinating party in the new model.

• If Alice always sends the first message and is always first to know the

output then the only difference between P and Pℵ is that Pℵ does not

send the result to Bob. Thus DC(Pℵ) = DC(P )− 1.
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• If Alice always sends the first message but sometimes Bob learns

the output before Alice then the protocols are same and DC(Pℵ) =

DC(P ).

• If both Alice and Bob may start the communication and Alice is always

first to know the output then Pℵ may need a ”starting” bit but it does

not need to send the output to Bob. Hence DC(Pℵ) ≤ DC(P ).

• If both Alice and Bob may start the communication and sometimes

Bob learns the output before Alice then DC(Pℵ) ≤ DC(P ) + 1.

Similarly we can derive a protocol P for Yao’s model from Pℵ with com-

plexity DC(Pℵ)− 1 ≤ DC(P ) ≤ DC(Pℵ) + 1.

Something very similar holds for nondeterministic versions too. The only

difference concerns the new model where we can actually make some use of

the starting bit - the bit ”responsible” for the possible one bit difference

between DC(P ) and DC(Pℵ).

In the trivial protocol the coordinator can guess the first bit of the pro-

cessor’s input and send this bit as a starting bit. If the guess was successful

then the processor upon receiving this bit reponds by sending the rest of his

input to the coordinator. This way we have only transmitted m bits where

m is the length of the input - that is, we saved one bit compared to the

deterministic version of this model.

In general, Alice can guess that Bob would start the communication in

Yao’s model and also what would be the first message sent by him. Then A-

lice will choose the first bit of this guessed message as a starting bit and send

it to Bob. Bob knows that he would start the communication in Yao’s model

and upon receiving the starting bit and if the Alice’s guess was successful

he responds with the rest of the ”first” message (one that Alice guessed Bob

would sent had they been runnig Yao’s model). After this the communica-

tion continues as in Yao’s model. Again, if Alice is first to know the answer

then she does not have to reveal it to Bob. But if Bob is the first to know,

then he must tell Alice the result - this is same as in deterministic version

mentioned above.

Thus Pℵ can be better by one bit compared to P - no need to send result

to Bob. On the other hand P cannot be better than Pℵ - protocol P can

be used in the new model with slight the modification of protocol’s start
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described above that does not change the communication complexity.

Hence C(Pℵ) ≤ C(P ) ≤ C(Pℵ) + 1 and C(P )− 1 ≤ C(Pℵ) ≤ C(P ).

Because of this analogy, to avoid ambiguity we will use C2(f)
(
DC2(f)

)
for the two party communication complexity and Cℵ(f)

(
DCℵ(f)

)
for this

model’s communication complexity.

Let f(x1, x2), g(x1, x2) : {000, 001, ..., 111}×{000, 001, ..., 111} → {0, 1}
be two Boolean functions given as follows:

f:

x1 •111 •110 •101 •100 •011 •010 •001 •000

x2 •111 •110 •101 •100 •011 •010 •001 •000

g:

x1 •111 •110 •101 •100 •011 •010 •001 •000

x2 •111 •110 •101 •100 •011 •010 •001 •000

What is the communication complexity of these functions in the two

party model? If we look at the matrices Mf and Mg and use the Rank

method with remark 1.2.10

Mf =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


Mg =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


we get rank(Mf ) = rank(Mg) = 4 and

56



DC2(f) = C2(f) ≥ lg (2rank(Mf )− 1) = lg 7

DC2(g) = C2(g) ≥ lg (2rank(Mg)− 1) = lg 7

Both functions f, g are hard and the trivial protocol is as good as any.

Therefore

DC2(f) = DCℵ(f)

DC2(g) = DCℵ(g).

Now we want to compute f(x0, x1)⊕ g(x0, x2) in our new model.

◦Cx0

•p1x1 •p2x2

f g

If we computed the functions separately we would need at least 6 bits

from the processors plus 2 bits sent by the coordinator.

But since the first argument is same for both functions in model ℵ the

following protocol for f(x0, x1)⊕ g(x0, x2) needs only 3+1 bits (3 bits sent

by a processor and 1 bit sent by the coordinator).

x1 •111 •110 •101 •100 •011 •010 •001 •000

x0 •111 •110 •101 •100 •011 •010 •001 •000

x2 •111 •110 •101 •100 •011 •010 •001 •000

1. If x0 ∈ {111, ..., 100} then the coordinator sends one bit to p1 and

p1 sends back its input. The coordinator does not need to know x2

because in this case g(x0, x2) = 0 for any x2.

2. If x0 ∈ {011, ..., 000} then the coordinator sends one bit to p2 and

p2 sends back its input. The coordinator does not need to know x1

because in this case g(x0, x1) = 0 for any x1.
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3. Now the coordinator can compute f(x0, x1)⊕ g(x0, x2).

Thus we can save 3+1 bits in this model (compared to separate compu-

tation). Moreover, the functions, now defined on the set {0, 1}3 × {0, 1}3,
can be easily extended to a set {0, 1}n × {0, 1}n for some arbitrary n. In

any case

DCℵ (f ⊕ g) =
1

2

(
DCℵ(f) +DCℵ(g)

)
By analogy we get the same result for f ⇔ g:

DCℵ (f ⇔ g) =
1

2

(
DCℵ(f) +DCℵ(g)

)

Even more interesting is f(x0, x1) ∧ g(x0, x2) (same model). One can

easily see that for any given x0 either f(x0, x1) = 0 for all x1 or g(x0, x2) = 0

for all x2. Therefore

Cℵ (f ∧ g) = 0

Compare this results with the original multiparty model:

DC(f ⊕ g) = DC(f) +DC(g)

C(f ∧ g) = C(f) + C(g)

Now consider the function h : {0, 1}3×{0, 1}3 → {0, 1} defined as follows

h:

x1 •111 •110 •101 •100 •011 •010 •001 •000

x2 •111 •110 •101 •100 •011 •010 •001 •000
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Mh =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1


It is easy to see that C2(h) = 3 + 1. Thus the best protocol is as good

as the trivial one and from this it follows that Cℵ(h) = 1 + 3. But since

we cannot distinguish, for example, h(111, x2) from h(110, x2) (where x2 is

arbitrary) we can encode the inputs in more efficient way - we will consider

{100, 101, 110, 111} to be one element. Therefore we can ”change” the input

of function h where the element corresponding to the last row/column is

now the set {100, 101, 110, 111}.
h’:

x1 •{100,101,110,111} •011 •010 •001 •000

x2 •{100,101,110,111} •011 •010 •001 •000

Mh′ =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


The function h′ is still hard in model ℵ - Cℵ(h′) = 1 + 3 - but now there

are inputs for which we do not need to transmit 3 bits in order to compute

h′. In the following graph the subscript corresponds to the original input

and the superscript to the message sent instead of the original input.

x1 •00{100,101,110,111} •01011 •10010 •110001 •111000

x2 •00{100,101,110,111} •01011 •10010 •110001 •111000
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Now we want to evaluate the function h(x0, x1) ∧ h(x0, x2) in the new

model.

◦Cx0

•p1x1 •p2x2

h h

According to our remarks above we can use the following schema:

x1 •00{100,101,110,111} •01011 •10010 •110001 •111000

x0 •{100,101,110,111} •011 •010 •001 •000

x2 •111{100,101,110,111} •110011 •10010 •01001 •00000

Notice that x0 do not have superscript - this part is known to the coor-

dinator and therefore does not needs to be sent. Also notice that we used

different encoding for x1 and x2. This allows us to design a protocol that

needs to transmit only 7 bits to compute the function h(x0, x1)∧h(x0, x2) :

1. If x0 ∈ {000, 001, 010} send 1 to p1 and 0 to p2, otherwise send 0 to p1

and 1 to p2.

2. Each processor, upon receiving 1, sends back the whole encoded input

and, upon receiving 0, sends back only the first two bits of the encoded

input (superscript in the above schema).

3. The coordinator can now compute the function.

The protocol needs to transmit only 2+3+2=7 or 2+2+3=7 bits and its

correctness is obvious from the above schema. On the other hand, if we

computed the functions h(x0, x1) and h(x0, x2) separately we would need to

transmit 2(1+3)=8 bits.
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Moreover, the functions, now defined on the set {0, 1}3×{0, 1}3, can be

easily extended to a set {0, 1}n × {0, 1}n for some arbitrary n.

In theorem 2.1.6 the function f(x1, ..., xn) = 1 iff xi = xj for all (i, j)

(where xi ∈ {0, 1}m) was considered. It was shown that nm ≤ C(f). One

can easily see that the same holds for the function f ′(x0, x1, ...xn) computed

in the new model - nm ≤ Cℵ(f ′). If some protocol P ′ computed the func-

tion f ′ with less communication complexity than nm then we could simulate

such protocol in the original model - the coordinator would simply guess the

input x0 and then run the protocol P ′.

Now we can put the above results together:

Theorem 3.0.4 (Last theorem). There exist such functions f, g, h: {0, 1}n×
{0, 1}n → {0, 1} that Cℵ(f) = Cℵ(g) = Cℵ(h) = 1 + n and for which the

following holds:

Cℵ(f ⊕ g) = n+ 1

Cℵ(f ∧ g) = 0

Cℵ(h ∧ h) < 2(n+ 1).

Let F be a function defined as follows

F (x0, x1, ..., xn) = 1 iff x0 = x1 = ... = xn where xi ∈ {0, 1}m.

Then

Cℵ(F ) ≥ nm.

Model ℵ allows us to save hell of a lot of communication bits in some

cases. Hence even this slight modification creates, in principle, very different

model.
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Why is this model interesting? Well, we can look on it as a generalized

version of the original multiparty model. All functions that we might con-

sider for the original model can be simulated on this model - we simply add

one more argument to these functions - the one that coordinator holds - and

we will completely disregard it. On the other hand, the converse is not true

- the original model cannot simulate the new one.

Moreover, in some cases we can regard this model as a model that is

closer to real-life application, e.g. in networks. Recall the example from the

very beginning about the backup server - such server holds a string which

we want to update if necessary. Such string is also a variable.
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Chapter 4

Epilogue

”Would you tell me, please, which way I ought to go from here?”

”That depends a good deal on where you want to get to,” said the Cat.

”I don’t much care where——” said Alice.

”Then it doesn’t matter which way you go,” said the Cat.

”——so long as I get somewhere,” Alice added as an explanation.

”Oh, you’re sure to do that,” said the Cat, ”if you only walk long enough.”

Lewis Carroll

Alice’s Adventures in Wonderland

What remains to be done, among other things, is to return to the orig-

inal two way deterministic multiparty model and to determine whether we

can save some communication bits when we link two functions together with

∧. We were not able to resolve this and we only conjecture the even if some

save up was possible (for some functions) it would not be more than some

small constant (constant with respect to the length of inputs).

The newly proposed model is also worth more research. It has close ties

with Yao’s two party model and with the original multiparty model. It is,

for example, interesting to look for some lower bound methods that would

be some generalized versions of lower bound techniques from the previous

models.
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