
Comenius University, Bratislava

Faculty of Mathematics, Physics and Informatics

Automatic 3D scanning using drones and

photogrammetry

Master's Thesis

2019

Bc. Ladislav Feldsam

Comenius University, Bratislava

Faculty of Mathematics, Physics and Informatics

Automatic 3D scanning using drones and

photogrammetry

Master's Thesis

Study programme: Informatics

Study �eld: 2508 Informatics

Department: Department of Applied Computer Science

Supervisor: doc. RNDr. Milan Ftá£nik, CSc.

Consultant: RNDr. Martin Buj¬ák, PhD.

Bratislava, 2019

Bc. Ladislav Feldsam

81578299

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Ladislav Feldsam
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Automatic 3D scanning using drones and photogrametry
Automatické 3D skenovanie s použitím dronov a fotogrametrie

Anotácia: Teoreticko-implementačná práca

Cieľ: Cielom prace je navrhnut algoritmus, ktory naplanuje trajektoriu a pohlady
pre dron tak, aby zmapoval cely vopred zadany 3D objekt. Dron moze
opakovane vzlietnut a pristat, zanalyzovat data a navrhnut dalsie doplnujuce
lety. Ocakavanie je vytvorenie algoritmu, ktory dostane na vstupe riedky model,
polohy kamier, pripadne mesh a navrhne nove miesta, odkial treba objekt
dofotit. Nasledne spocita krivku, po ktorej bude dron letiet a kam bude pozerat.

Vedúci: doc. RNDr. Milan Ftáčnik, CSc.
Konzultant: RNDr. Martin Bujňák, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 11.10.2017

Dátum schválenia: 11.12.2017 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce

iii

Acknowledgement: I want to thank for every help in the implementation of the

algorithm from my consultant RNDr. Martin Buj¬ák, PhD. and the whole team of

Capturing Reality. I want to thank to my supervisor doc. RNDr. Milan Ftá£nik, CSc.

for help in the academic part of the thesis. Nevertheless I want to thank to my family

with the huge support behind the writings of this thesis.

iv

Abstract

In this thesis we focus on the problem of automatic scanning of a general 3D world

object or a scene using a drone. We mainly address the �ight mission planning part,

where the locations and look-at directions of the drone's camera are calculated as well

as the path planing. New camera positions and a path, that visits all the camera po-

sitions with a drone, are calculated from the sparse mesh and camera poses calculated

with photogrammetry. We �nd regions in the sparse model with insu�cient detail.

These regions are then clustered into bigger regions in a way, that they can be pho-

tographed in whole. Camera positions, which are viewing the regions with small detail

are constructed to have a clear line of sight to the given region. The routed �ight, that

visits all the camera positions is evaluated to be unobstructed and to have the smallest

possible �ight time. This process of �ight and processing can be repeated until we get

our desired reconstruction.

Keywords: Drone, Photogrametry, Automatic reconstruction

v

Abstrakt

V tejto práci sa sústredíme na problém automatického skenovania ©ubovo©ného 3D ob-

jektu alebo scény s pouºitím dronu. Zameriavame sa hlavne na £as´ plánovania letovej

misie, kde vypo£ítavame pozície kamier dronu, ich poh©ady a tieº trasy medzi nimi.

Nové polohy kamier s poh©admi a cesta, ktoré prechádza cez v²etky polohy kamier

s dronom, sú vypo£ítané z riedkeho modelu a polôh kamier, ktoré sú vypo£ítané fo-

togrametriou. Z tohto modelu nájdeme oblasti, ktoré majú nedostatok detailu. Tieto

oblasti sú zhlukované to vä£²ích oblastí, tak aby ich bolo moºné odfotografova´ v celku.

Pozície kamier, ktoré majú poh©ady na oblasti s nízkou kvalitou detailu sú skon²truo-

vané tak aby mali priamu vidite©nos´ na danú oblas´. Smerovaný let, ktorý nav²tívi

v²etky pozície kamier je, navrhnutý tak, aby obchádzal prekáºky a mal najniº²í moºný

£as letu. Tento proces letu a spracovania je moºné opakova´ dovtedy, kým nedostaneme

poºadovanú kvalitu rekon²trukcie.

K©ú£ové slová: Dron, Fotogrametria, Automatická rekon²trukcia

Contents

Introduction 1

1 State of The Art 3

1.1 Orthographic photogrammetry . 3

1.2 General path planning . 5

1.2.1 Intel's Mission Control . 6

1.3 Plan3D . 7

1.3.1 Optimizing viewpoint trajectories 8

1.3.2 Submodular voxel information 9

1.3.3 Maximizing the submodular formulation 10

1.4 Unmanned Aerial Vehicles . 11

1.4.1 Advantages of UAVs . 12

1.4.2 Disadvantages of UAVs . 12

1.5 Depth acquisition techniques . 13

1.5.1 Time-of-Flight camera measurement 13

1.5.2 Structured light scanner . 14

2 Our work 16

2.1 Background . 16

2.1.1 Feature detection and matching 17

2.1.2 Structure from Motion . 19

2.1.3 Clustering algorithms . 22

2.1.4 Path �nding algorithms . 25

2.2 Initial �ight . 26

2.3 Camera positions . 27

2.3.1 Insu�cient details . 27

2.3.2 Clustering . 28

2.3.3 Camera cone . 30

2.4 Flight Path . 33

2.4.1 Flight zone . 33

2.4.2 Paths between cameras . 33

vi

CONTENTS vii

2.4.3 Triangle inequality . 34

2.4.4 Metric TSP . 36

3 Implementation 38

3.1 Capturing Reality`s SDK . 38

3.2 Simulation and Visualization . 39

3.3 Point cloud �tting . 40

3.4 Collision detector . 42

4 Experiments 43

4.1 Boat example . 43

4.2 Castle example . 45

4.3 Temple example . 46

Conclusion 48

List of Figures

1.1 Orthographic overlap . 4

1.3 Orthographic photogrammetry . 4

1.4 Intel`s Mission Control software . 6

1.6 Plan3D . 7

1.8 Time-of-Flight multi-frequency . 14

1.10 Structured light . 15

2.1 Feature matched images . 17

2.3 Feature qualities . 18

2.5 Triangulation . 20

2.7 Epipolar geometry . 21

2.9 Triangle size �ltering . 28

2.10 DBSCAN . 29

2.11 Sphere and Fibonacci sphere . 31

2.12 Camera cones . 32

2.13 Graph compression . 34

2.14 Path collapse . 35

3.1 Simulator . 39

3.2 Point cloud �tting . 40

3.3 Collision detector . 42

4.1 Boat example . 44

4.2 Castle example . 45

4.3 Castle featureless . 46

4.4 Temple example . 47

viii

Introduction

Growing hunger for 3D models is natural, since end users are expecting a better ex-

perience, e.g., by shifting from 2D maps to 3D maps or demand �uent 3D graphics

instead of 2D bitmaps, but there are also completely new areas like Virtual Reality,

where 3D content is crucial. In the past, the main-stream methods for creating 3D

models were laser scanning (or time of �ight sensors) and structured light sensors. It

was due to their speed, but at the same time these methods were inaccessible due to

their cost and they were used mainly in surveying, manufacturing and so on. However,

with a recent development in mathematics and algorithms, photogrammetry become a

very competitive player in terms of speed, accuracy and typically produces higher level

of detail. It also does not need a special device, just images, e.g., from mobile phone.

With the help of photogrammetry methods, we are able to automatically register

the image`s position, without any additional information just using the visual informa-

tion. This means that we can use any imagery, even without georeferencing or data

from accelerometers, which were commonly used in the past. However, having this

information available, we can georeference the 3D model.

On the other hand, since we want to have all the possible details of the scene, which

is being scanned, we must capture every detail. This task can be hard for novices and

even for professionals. It is possible, that while capturing the scene abroad, we forgot

to capture some detail and thus loose the information about that region. Even worse is,

if it might not be possible to go back and take the photograph of the given region again.

In our work we are targeting an autonomous process of taking photographs of scenes

with drones. We are using drones, which developed rapidly in the recent past and got

cheaper and more accessible for everyone.

Drones become the perfect tool for such task because of:

� Battery life: Today drones are capable of �ying over half an our, due to dense

lithium-ion batteries which are always getting better.

� Sensors: Most of the drones have sensors, that allows the drone to sense the

scene near to it. It can stop or even avoid obstacles.

1

Introduction 2

� GPS: The global positioning system in these �ying machines is precise. This

allows us to know the georeference of the taken photographs with an accuracy of

few centimetres.

� Camera: Drones are equipped with high resolution cameras, that are capable

taking perfect images for photogrammetry reconstructions.

The goal of this thesis is to calculate the required information about the scene and

cameras with a portable computer in a short time is a mandatory requirement for this

thesis. The goal is to develop algorithms, that can calculate new camera positions,

from which we are able to take lacking features from the scene. Also to calculate the

paths through, which the drone can safely �y from the starting point through every

camera position and back to the starting point.

In the �rst chapter, we introduce the State of The Art. What is done around this

thematic. We show what are the current autonomous methods for planning �ight mis-

sions and what is the closest work related to ours. For completeness we show what

depth acquisition techniques exist and what exactly UAV`s (Unmanned Aerial Vehicles)

are.

The second chapter is focused in what is our approach for autonomous 3D scanning.

In the background, we introduce important notions and techniques used in the work.

We show how, we �nd the related regions in the model and how to plan the �ight

mission for the drone.

The Implementation chapter shows what engines and libraries are used in our soft-

ware. How to test the method constructed in the section about our work and how to

solve the problem with non georeferenced images.

The �nal chapter is showing the results of our method and what runtimes we manage

to achieve with our method.

The result should be an application achieving an easy and cheap 3D scanning for

everyone with the smallest e�ort possible.

Chapter 1

State of The Art

In this chapter we are going to discuss, semi-autonomous and fully-autonomous systems

of capturing information for 3D reconstruction. We also show di�erent approaches to

obtain the depth informations, from which we can make the 3D reconstruction.

Since our work is related to drones, we will show the advantages and disadvantages

of these UAVs (Unmanned Aerial Vehicles) and how are they used in photogramme-

try nowadays. Although, most of the autonomous systems using UAVs for capturing

photos are limited for nadiral (orthographic) image collection, we managed to �nd one

work which has the same objective as has this thesis. This work will be also described

at the end of this chapter.

There is a lack of systems, which try to solve autonomous image acquisition of generally

shaped objects and this was also mentioned by Remondino [6]. The next sentence is

cited from this paperwork.

�Flight planning is quite simple when using nadiral images, the same task becomes

much more complex in case of 3D objects requiring convergent images and, maybe, ver-

tical strips. Future work has to be addressed to develop tools for simplifying this task.�

Later works, were focused more in better navigation and processing of orthographic

scans. Also with LiDAR technology the focus was to make devices more accurate. Just

a few works were done in the same directions as is the main goal of this thesis.

1.1 Orthographic photogrammetry

Orthographic photogrammetry was one of the �rst method for creating maps used for

measuring distances, urban planing and so on.

This was achieved by systematically taking and processing photographs (Figure

1.1) from high altitude or later using satellite imagery to produce these maps.

3

CHAPTER 1. STATE OF THE ART 4

Figure 1.1: Orthographic overhead pattern for the UAV.

Source: PhotogrammetryNews [18]

Typically the �ight path was calculated in a way, that the given overlap between

images was ensured and at the altitude, the required resolution of the photographs was

achieved.

Today the big demand for 3D maps and surveying started this method of obtaining

imagery. These scans were �rstly done with big planes, that have mounted camera`s.

One that is looking straight down and four looking to the sides in a 45° angle. The

images are obtained with a given overlap to be able to reconstruct the 3D model (Fig.

1.1).

Later the big aeroplanes were replaced with smaller drones for more precise image

acquisition. To be able to reconstruct the 3D model from orthoimages in a speci�c

detail we need �ight planning, such that the distance from the ground is not changing.

If the images are taken from a higher altitude, we loose resolution and thus have smaller

detail than required.

Figure 1.3: Orthographic overhead pattern for the UAV.

CHAPTER 1. STATE OF THE ART 5

Remondino [6] describes the preparation of the �ight plan for orthographic pho-

togrammetry.

Such �eld surveying requires a �ight or mission planning, GCPs (Ground Control

Points) measurement (if not available and required for geo-referencing).

The missions are planned in lab with dedicated software, starting from the area of

interest, the required ground sample distance or footprint, and knowing the intrinsic

parameters of the mounted digital camera. Thus �xing the image scale and camera

focal length, the �ying height is derived. This is calculated for the desired precision of

the reconstruction and it is critical for the terrain with variable height.

Orthographic scans mostly use aerial vehicles like drones or ultra light planes. A

great advantage is that they can cover huge areas and take photographs from high

above the terrain.

The disadvantage is that they scan the terrain only from above and details from

shallow angles are not captured. Thus the details of more precise objects like cars,

trees or houses etc. are limited.

In most cases it is not necessary to have such a detail of an aerial scan, but there

are applications, where we need to have the most out of the scan and have it as precise

as possible.

The mission sends the UAV for a speci�c path above the desired area to take

photographs. It is not evaluating the result afterwards, to get more picture information

in the next �ight and that is the biggest di�erence with our work.

There is whole study about what path of overlapping photographs (Figure 1.1)

reconstructs the best result, but the method does not considerate the di�erence in

various situations for adaptation. This is the reason why this method is not suited for

generally shaped objects.

1.2 General path planning

In recent years several drone platforms came up with systems, which allow general path

planning. One of such is Intel`s Insight Platform.

Intel developed a software that enables the user to plan �ight mission where the

user is able to construct not only orthographic paths but also vertical paths or spirals

that �y around the given object.

According to Intel [10] and [9].

Intel's Insight Platform is a digital asset management system that enables aerial

data management and analysis using Pix4D`s and Bentley`s photogrammetric process-

ing engines. It allows customers to store, share and manage data that commercial

drone systems collect. According to the company, the platform is designed to reduce

CHAPTER 1. STATE OF THE ART 6

costs, improve e�ciency and fuel growth. It takes the aerial data and can generate 2D

and 3D models, take measurements and run data analytics.

1.2.1 Intel's Mission Control

Is the company's next-generation �ight planning software for its Falcon 8+ drone.

According to the company, it is designed to increase work�ow e�ciency and enhance

automation of drone �ights for commercial missions.

Mission Control allows Falcon 8+ drone operators to create 2D and 3D �ight plans

for commercial surveying, mapping and inspection missions. Flight planning is auto-

mated with advanced preset mapping modes. Multiple layers of airspace information

are integrated to support �ight safety and compliance. Automatic pre-�ight safety and

system checks help validate the �ight plan before the mission is executed. After the

mission is completed, the software provides a quick preview of the collected data so the

UAV operator can check and verify for adequate area coverage and overlap and even

inspect the quality of individual images in a 3D format.

Obstacle avoidance increases safety and reliability of complex missions. The tech-

nology includes depth-sensing modules that compute raw image streams into high-

resolution 3D depth maps. The obstacle-avoidance feature on the Intel Imaging and

Intel Dual Imaging payloads enables the Intel Falcon 8+ drone to detect and avoid

potential obstacles or hazards and has the ability to maintain and hold a set distance

from an asset during inspection. Within a mission, objects are continually identi�ed

in real time and a 3D depth map of the environment is maintained in memory.

Figure 1.4: Screenshot of the Intel`s Mission Control software

Source: Intel [9]

CHAPTER 1. STATE OF THE ART 7

The software allows planning of missions, which includes vertical strips with hori-

zontal looks to a given 3D scene. On the Figure 1.4 the vertical strips, which are paths

for the drone can be seen.

This option is an improvement to other methods, but it is still a manual process of

placing the vertical strips.

1.3 Plan3D

Plan3D [1] tries to solve exactly the same problem as in this thesis, which is Viewpoint

and Trajectory Optimization for Aerial Multi-View Stereo Reconstruction.

The work introduces a method which e�ciently computes a set of viewpoints and

trajectories for high quality 3D reconstruction in outdoor environments. Goal is to

automatically explore an unknown area and obtain a complete 3D scan, using an RGB

camera mounted on a autonomously navigated quadcopter. The �ight time is restricted

by the maximal �ight time of the UAV.

At the core of this method lies a hierarchical volumetric representation that allows

the algorithm to distinguish between unknown, free, and occupied space. Further-

more, this information gain based formulation leverages this representation to handle

occlusions in an e�cient manner. In addition to the surface geometry, they utilize the

free-space information to avoid obstacles and determine collision-free �ight paths.

First, a user de�nes a region of interest and speci�es a safe and simple overhead pattern

(orthographic scan) to obtain the initial set of images.

These images are then processed by the state-of-the-art Structure from motion

(SfM) and Multi View Stereo (MVS) pipeline to obtain camera positions with depth

and normal maps for each viewpoint. To generate a 3D surface reconstruction these

depth maps are fused to a dense point cloud, and with a utilization of the Poisson

Surface Reconstruction method a mesh is extracted.

This initial reconstruction is highly inaccurate, since the viewpoints are acquired

by a simple overhead pattern. From this initial scan the volumetric occupancy map is

obtained.

Figure 1.6: Plan 3Ds algorithm pipeline

Source: Plan3D [1]

CHAPTER 1. STATE OF THE ART 8

On the picture (1.6) we can see the approach of authors to this problem. The �rst

step, which is seen on (A) is initialization via images from a regular overhead pattern

which is not shown on the picture. On picture (B) we can see the generated set of view-

point candidates (yellow) on which they use a submodular optimization formulation

to �nd an optimized viewpoint paths, maximizing information about uncertain space,

which are seen in red. (C) shows the generated trajectory, which takes constraints on

SfM and MVS reconstruction such as preference for fronto-parallel view and matching

quality into consideration. In the �nal picture we can see the �nal high quality recon-

struction obtained via SfM and MVS pipeline.

The most interesting part is how they calculate the relevant positions for the cam-

eras and �nd the path, which �ies through them.

The approach consists of voxelization of the scene and �nding voxels with the un-

certainty about the scene. The main objective of the optimization is to maximize total

information, while staying within the travel budget of the quadrotor and respecting

constraints imposed by SfM and MVS. The total information corresponds to the obser-

vation count of all voxels withing the region of interest. In theory if all voxels have been

observed multiple times from di�erent angles the entire surface can be reconstructed

with high quality. This goal has to be traded-o� with limited battery time of the UAV

and computational cost as the evaluation of all possible viewpoints during planning

is infeasible. Furthermore, it has been shown that at some point adding views yields

diminishing returns.

Image (1.6), C shows the output of their planning method, where viewpoints that

were added due to their contributed information are rendered in blue. Additional

viewpoint that were added to ensure that the SfM and MVS backend can register all

images into a single reconstruction are rendered in cyan.

1.3.1 Optimizing viewpoint trajectories

The goal is to �nd an optimized subset of viewpoints, from a larger set of candidate

views, that maximizes the information gained about the 3D surface of the scene.

Assume given graph G = (C,M) of viewpoint candidates C alongside observed

voxels and motions M between viewpoint as edges. Each viewpoint υ ∈ C has an

associated position and orientation denoted as υp and υq.

The trajectory (path through a subset of the nodes of candidates) for the UAV

that yields good reconstruction quality and ful�ls the maximal travel distance Lmax is

constructed as follows. Let VP = (vp1, . . . , vpn) be the sequence of viewpoints to be

traversed during image capture where vpi ∈ C. Let L(VP) be the geometric length of

the trajectory VP and with S the set of all sequences VP .

CHAPTER 1. STATE OF THE ART 9

Formally, they solve the following optimization problem:

VP∗ = argmax
VP∈S

I(VP), L(VP) ≤ Lmax, (1.1)

where I(VP) is the objective function that measures the amount of information

contributed by the respective viewpoints. This objective function can be written as:

I(VP) =
∑

τ∈OM\OMfree

VI (τ,VP)

OMfree = {τ ∈ OM : oc(τ) ≤ ocfree}

where VI (τ,VP) is the camera measurement model specifying how much informa-

tion of voxel τ is contributed by the traversed viewpoints VP , oc(τ) ∈ [0, 1] is the

occupancy value of each voxel τ ∈ OM and ocfree is a lower threshold that determines

when a voxel is considered to be free space.

1.3.2 Submodular voxel information

To make the previous problem tractable, they approximate the contributed information

of a voxel by assuming that a single viewpoint υ can directly provide information about

the 3D surface. For a single voxel τ and viewpoint υ be this information written as

vi(τ, υ). The contributed information depends on the incidence angle of the observation

ray and the normal of the voxel.

This model ignores the stereo-matching process and does not explicitly encourage

the selection of images form diverse viewpoints. However, it does allow to re-formulate

the optimization problem in a way that exploits sub-modularity in the objective func-

tion and therefore allow for more e�cient maximization of the problem.

To incorporate stereo matching into the view objective function a high incremental

objective value is added to the view if an another view can be matched to it. Let

A,B ⊂ 2S, A ⊂ B and x ∈ S \ B where S is the set of all possible camera poses.

Lets assume that B contains a view that allow good stereo matching with x while A

contains no such view.

The total information of a voxel τ contributed by a set of viewpoints is:

VI (τ,VP) = min
(

1,
∑
υ∈VP

vi(τ, υ)
)

where the min function ensures saturation at 1. This objective function is submod-

ular by writing the information gain resulting from adding υ to the viewpoint sequence

VP :

IG(τ, υ,VP) = VI (τ, {υ} ∪ VP)− VI (τ,VP)

= min(vi(τ, υ), 1− VI (τ,VP))

CHAPTER 1. STATE OF THE ART 10

VI (τ,VPA) ≤ VI (τ,VPB) for VPA ⊆ VPB and thus the submodular property

IG(τ, υ,VPA) ≥ IG(τ, υ,VPB) is ful�lled.

1.3.3 Maximizing the submodular formulation

The camera model exposes desirable structure in the optimization problem Eq. 1.1.

While the problem is still NP-complete in general, submodularity provides guarantees

on the approximation quality of a greedy algorithm. This guarantee does not hold any-

more when travel/time budget constrain is introduced on the path through the selected

viewpoints. By combining the greedy algorithm and the cost bene�t algorithm and

choosing the better solution their algorithm guarantees to be within (1−1/e)/2 ' 0.32

of the optimal solution.

The algorithm proceeds as follows: the budget is split into a �rst and second part

and middle viewpoint is selected. A recursion step is made for the �rst part and the

second part. The recursion ends when no new viewpoint can be reached with the avail-

able budget. Additionally the budget for the second half is adjusted so the remaining

budget after the �rst half can be used. A formal description of the method is given in

Alg. 1.

CHAPTER 1. STATE OF THE ART 11

Procedure recursiveGreedy(V , Vs, Ve, B):
Vm ← Viewpoint with maximum information gain that is still reachable

with budget B;

if Vm == ∅ then
return;

end

VP1 ← recursiveGreedy (V ∪ {Vm}, Vs, Vm, B/2);
B1 ← Compute travel length of VP1;

B2 ← B −B1;

VP2 ← recursiveGreedy (V ∪ VP1 , Vm, V3, B2);

return VP ← (Vs) + VP + (Vm) + VP2 + (Ve);

end
Algorithm 1: Recursive greedy algorithm to maximize the optimization problem

in Eq.1.1. The recursive procedure takes the set of viewpoints V currently on the

path VP(i.e. V = {υ∀υ ∈ VP}) and the start viewpoint Vs , end viewpoint Ve and

budget B of subproblem as input. It returns the viewpoint path for the subproblem.

The initial call of the procedure is recursiveGreedy(∅, Vi, Vi, Btotal), where Vi is the

viewpoint with the overall maximum score and Btotal is the full travel budget of the

quadrotor. The middle viewpoint Vm can be computed in an e�cient manner by

keeping a sorted list of IG and evaluating them in a lazy fashion. A viewpoint is

reachable with the current travel budget if the travel distance from Vs to Vm and

from Vm to Ve does not exceed the budget B.

Plan3D`s method is using a full reconstruction using state of the art MVS to �nd

the camera positions. The MVS reconstruction is very process intensive and takes a

long time to compute. This is limiting the software to not be able to use it in terrain

with a portable computer.

1.4 Unmanned Aerial Vehicles

�UAV acronym for Unmanned Aerial Vehicle is an aircraft piloted by remote control or

onboard computers� stated by the Oxford English Dictionary [3].

Eisenbeiss [5] is describing UAV photogrammetry in his PhD Thesis.

UAV photogrammetry describes a photogrammetric measurement platform, which

operates remotely controlled, semi-autonomously, or autonomously. The platform is

equipped with a photogrammetric measurement system. This can be a LiDAR system,

video camera, special spectrum cameras or a combination thereof. Current UAVs

CHAPTER 1. STATE OF THE ART 12

allow the registration and tracking of the position and orientation of the position and

orientation of these sensors in a local or global coordinate system.

UAVs can be understood as a photogrammetric tool for taking photographs in close

range domain, combining aerial and terrestrial photogrammetry. They can be a low

cost alternative to the classical manned aerial photogrammetry.

1.4.1 Advantages of UAVs

Major advantage of UAVs compared to manned aircraft systems is that they can be

used in high risk situations without endangering human lifes in inaccessible areas, at

low altitudes or close range �ights to the objects where aircrafts cannot be �own.

These regions can be natural disaster sites, mountains, volcanic areas, �ood plains,

desert areas or scenes of accidents.

Also in areas where aircrafts are not permitted, UAVs can be the only practical al-

ternative. The capability to �y low under the clouds allows UAVs to take photographs

in conditions, where aircrafts cannot be used. Supplementary advantages are the ca-

pability to transmit real-time images, videos, positions and orientation data to the

ground control station.

They are commercially available on the market and they are cheaper to operate

than manned aircraft vehicles.

GPS (Global Positioning System) and approximity sensors on UAVs allow precise

and safe �ights respectively. We can estimate and expect product accuracy pre�ight.

Looking at rotary wing UAVs, the platform allows vertical take-o� and landing and

also permits image acquisition on a hovering point.

1.4.2 Disadvantages of UAVs

Specially low-cost UAVs are limited for sensor payload by weight and dimension, so

that often low weight sensors with small format cameras are selected. This can imply

in less accurate results. Furthermore, low-cost UAVs are equipped with less powerful

engines, limiting reachable altitude. In addition to these drawback, low-cost UAVs do

not bene�t from sensing and intelligent features as reacting to unexpected situations,

e.g. unexpected appearance of an obstacle.

Nevertheless there are also a lot of regulations, where and how we can �y such

vehicles. Flight range is also, in addition to the line-of-sight regulation, dependant on

the skill of the pilot to detect and follow the orientation of the UAV. To take the full

advantage of the impressive �ying capabilities of UAVs, there needs to be a well trained

pilot, due to security issues. The pilot should be able to interact with the system at

any time.

CHAPTER 1. STATE OF THE ART 13

1.5 Depth acquisition techniques

In our work we are using photogrammetry to get 3D reconstruction of the scene. How-

ever our method is not limited just to photogrammetry and we can use any depth

reconstruction method for path planning.

Such devices are for example Time-of-Flight (ToF) cameras or measurements with

cameras using structured light projections. ToF cameras can be used in open environ-

ments like normal cameras, but cameras using structured light, must be in a controlled

environment mostly using turntables, which are limited for volume.

1.5.1 Time-of-Flight camera measurement

The next desccription for this measurement device is obtained from [14] and [21].

Time-of-Flight (ToF) cameras are measurement devices consisting of an image sen-

sor, image processing chip and modulated light source. These systems work by illu-

minating the scene, with a modulated light source (typically infrared) and then by

measuring the phase shift of the light wave, that is re�ected back to the camera. Since

light has a constant speed, ToF cameras can measure the time, which took the emitted

light to return to the camera. Thus calculating the distance.

Rather than scanning the image line by line, ToF camera will illuminate the scene

all at once and measures phase shift in the light re�ected back to the image sensor.

The light source is pulsed or modulated by a continuous-wave (CW) source, typi-

cally sinusoid or square wave. Square wave modulation is more common, because they

can be easily realized using digital circuits. These cameras can achieve high frame

rates, and the depth measurement is straight forward, so it can be extracted from the

scene in real-time using embedded processors.

The fact that the CW measurements is based on phase, which wraps around every

2π, means, that the distance will also have an aliasing distance. The distance where

aliasing occurs is called the ambiguity distance, damb = c
2f
. Where c is the speed of

light constant and f the frequency.

Since the distance wraps, damb is the maximum measurable distance. For compen-

sation, we can extend the measurable distance by reducing the modulation frequency,

but at a cost of reduced accuracy.

Instead of compromising this fact, advanced ToF systems deploy multi-frequency

techniques to extend the distance, without reducing the modulation frequency. These

work by adding one or more modulation frequencies to the mix, where each modu-

lation will have di�erent ambiguity distance, but true location is the one where the

di�erent frequencies overlap. The frequency where two modulations agree is called beat

CHAPTER 1. STATE OF THE ART 14

frequency.

Figure 1.8: Extending distance using a multi-frequency technique

Source: Texas Instruments ToF [21]

ToF cameras are superior in low and also bright light environments, where stereo

vision using images can su�er. The major disadvantage is that they cannot capture

color and that is the reason why are they commonly used in combination with stereo

vision.

1.5.2 Structured light scanner

Structured light scanners are cameras in addition with a projector, which projects

di�erent patterns helping to understand depth. These patterns are usually black and

white stripes with di�erent frequencies. The patterns become distorted, when they are

projected onto the surface of the object. These distortions are then captured with the

camera or cameras on the scanner.

The projected light does not need to be visible to the human eye. The pattern

can be projected in infra-red (IR) light and captured with camera, which can see such

spectrum of light. This is exactly how Microsoft`s Kinect and Apple`s FaceID works.

The advantage of IR light is that the device can illuminate the object even in the dark

without inconvenience.

Structured light scanning is often used as an alternative to 3D laser scanning, due

to the tendency for lasers to get easily disrupted by re�ective surfaces, any form of

transparency and even the complex interference patterns in laser light itself.

Also, this method is highly depended on �nding the same exact correspondences on

the images. This can fail if the illuminated pixels are occluded, the image is blurred

CHAPTER 1. STATE OF THE ART 15

or due to global illumination.

Figure 1.10: Pattern projection with di�erent frequencies on a bowl

Source: Physics based Methods in Vision class at Carnagie Mellon university [16]

Chapter 2

Our work

In this chapter we will describe how we approached the automatic 3D scanning using

drones and photogrammetry.

The �rst section will tell how to reconstruct 3D objects from images using state

of the art Structure from motion (SfM) (Section 2.1.2). We will use this method in

our work to get information about the camera poses and 3D structure of the scene

from images. Although, we could use any depth acquisition method (Section 1.5) for

Structure from Motion reconstruction, we decided to use the method with photographs,

which are are generally accessible.

We process these information about the scene in order to get new camera positions

with unobstructed views and to get collision free paths between these positions.

The algorithm is allowed to use the new images, supplying the previous ones to

evaluate new camera views in multiple iterations. This means, that the drone can

takeo� and land multiple times to gather image information about the scene. This

may be necessary due to maximal drone �ight time.

2.1 Background

This section will introduce the methods we based on the thesis. We will brie�y describe

what is the most common approach to reconstruct a 3D scene from 2D images. This

includes detections of features from images which are then used to estimate the 3D

points and camera poses using structure from motion. The information about these

methods will be inspirted from Szeliski [20].

Next we will show di�erent known clustering algorithms, which we tried to use in

this thesis.

Lastly we show what are the most common known approaches for �nding the short-

est paths in graphs.

16

CHAPTER 2. OUR WORK 17

2.1.1 Feature detection and matching

The �rst and most essential step for good and successful 3D reconstruction is feature

extraction and matching between these features. Consider two pairs of images as on

Figure 2.1. For the pairs, we may wish to establish a dense set of correspondences so

that a 3D model can be reconstructed or an in-between view can be generated.

The �rst kind of features, which can be noticed are speci�c locations on the image,

such as mountain peeks, rocks, di�erent patches on the snow, etc. These kinds of

localized features are often called key-point features, interest points or corners and are

often described by the appearance of patches of pixels surrounding the point location.

Another features are edges, for example the pro�le of the mountain against the sky.

These kind of features can be matched based on their orientation and local appear-

ance. The edges can be also good indicators for object boundaries where they can

be grouped into curves and line segments, which can be matched or analyzed to �nd

vanishing points and calculate the internal and external camera parameters.

Figure 2.1: Image pairs with extracted patches below

Source: Computer Vision: Algorithms and Applications [20]

There are two main approaches in �nding feature points and their correspondences.

The �rst is to �nd features in one image, which can be accurately tracked using lo-

cal search techniques. This is more suitable when the images are taken from nearby

viewpoints or in rapid succession such as in video sequences. The second is to indepen-

dently detect features in all the images and then match these features based on their

local appearance. The second technique is better when the images have large amount

of motion or appearance change is expected.

CHAPTER 2. OUR WORK 18

Feature detectors and descriptors

The best features in the image are well textured patches with large contrast changes.

Textureless patches on the other side are useless. Also straight line segments at a single

orientation are only possible to align along the direction normal to the edge direction.

Patches which have at least two di�erent orientations are the easiest to localize, see

Figure 2.3.

Figure 2.3: (a) stable corner feature; (b) edge feature; (c) textureless region. Red

vectors indicates the displacement between the patch centers.

Source: Computer Vision: Algorithms and Applications [20]

In most cases, the local appearance will change in orientation, scale and sometimes

even undergo a�ne deformations between pictures. We want the descriptors for these

features to be more invariant to such changes, while still preserving discriminability

between di�erent (non-corresponding) patches.

There are a lot of feature descriptors which are better in one aspect than other [12].

Feature matching

Once we have extracted features and their descriptors from two or more images, the

next step is to establish some preliminary feature matches between these images.

This can be done by comparing all features against all other features in each pair

of potentially matching images. This can be quadratic in the number of extracted

features. Better approach is to devise an indexing structure, such as multi-dimensional

search trees like kd-trees or a hash table.

After we have hypothetical matches, we need to verify which matches are inliers and

which ones are outliers. This can be done by using geometric alignments. If we ex-

pect the whole image to be translated or rotated in the matching view, we can �t a

global geometric transform and keep only those feature matches that are su�ciently

close to this estimated transformation. This is often done by RANSAC [13] (Random

Sampling).

CHAPTER 2. OUR WORK 19

In our case these features are used to �nd the set of corresponding locations in di�erent

images for computation of camera poses using structure from motion technique which

are prerequisite for computation of a denser set of correspondences using multi view

stereo matching.

2.1.2 Structure from Motion

In the previous section, we saw how to �nd features on images and how to accurately

match them between images. In this section, we look at the converse problem of

estimating the locations of 3D point from multiple images given only a sparse set of

these feature correspondences between images.

This process involves simultaneously estimating both 3D geometry (structure) and

camera poses (motion), therefore it is commonly known as structure from motion.

We brie�y show how we can estimate 3D points using triangulation if we know

the camera locations. Next we show the two-frame structure from motion problem,

which involves the determination of the epipolar geometry between two cameras which

is really useful in the full reconstruction using Multi view Stereo method.

Triangulation

The problem of determining a point`s 3D position from a set of corresponding image

locations and known camera positions is known as triangulation.

One of the simplest ways to solve this problem is to �nd the 3D point p that lies

closest to all of the 3d rays corresponding to the 2D matching feature locations {xj}
observed by cameras {Pj = Kj[Rj|tj]}, where tj = −Rjcj and cj is the jth camera

center.

In Figure 2.5, these rays originate at cj in a direction v̂j = N (R−1j K−1j xj). The

nearest point to p on this ray, which we denote as qj, minimizes the distance

‖ cj + dj v̂j − p ‖2,

which has a minimum at dj = v̂j · (p− cj).

qj = cj + (v̂j v̂
T
j)(p− cj) = cj + (p− cj)

the optimal value for p, which lies closest to all of the rays can be computed as a regular

least squares problem by summing over all the squared distances between p and qj and

�nding the optimal value of p.

CHAPTER 2. OUR WORK 20

Figure 2.5: 3D point triangulation by �nding the point p that lies nearest to all of the

optical rays cj + dj v̂j.

Source: Computer Vision: Algorithms and Applications [20]

Two-frame structure from motion

In the previous section we showed how to �nd the position of the point in 3D space

using triangulation which assumed that we know the camera positions.

This section will show the true structure from motion, which does not have to know

the camera positions and simultaneously recovers the 3D structure and camera poses

from image correspondences.

The Figure 2.7 shows a 3D point p being viewed from two cameras whose relative

position can be encoded by a rotation R and a translation t. Since we do not know

anything about the camera positions, we can set the �rst cameras`s origin arbitrary

anywhere. Let this position be c0 = 0 at a canonical orientation R0 = I.

The observed location of point p in the �rst image, p0 = d0x̂0 is mapped into the

second image by the transformation

d1x̂1 = p1 = Rp0 + t = R(d0x̂0) + t,

where x̂j = K−1j xj are the local ray direction vectors. Taking the cross product of both

sides with t in order to annihilate it on the right hand side yields

d1[t]× x̂1 = d0[t]×Rx̂0.

CHAPTER 2. OUR WORK 21

Figure 2.7: Epipolar geometry: The vectors t = c1− c0, p− c0 and p− c1 are co-planar
and de�ne the basic epipolar constraint expressed in terms of the pixel measurements

x0 and x1.

Source: Computer Vision: Algorithms and Applications [20]

Taking the dot product of both sides with x̂1 yields

d0x̂
T
1 ([t]×R)x̂0 = d1x̂

T
1 [t]× x̂1 = 0,

we therefore arrive at the basic epipolar constraint

x̂T1Ex̂0 = 0,

where E = [t] × R is called the essential matrix. Given this relationship we can use

it to recover the camera motion encoded in the essential matrix E. If we have N

corresponding measurements {(xi0, xi1)}, we can form N homogeneous equations in

the nine elements of E = {e00, . . . e22},

xi0xi1e00 + yi0xi1e01 + xi1e02 +

xi0xi1e00 + yi0yi1e11 + yi1e12 +

xi0e20 + yi0e21 + e22 = 0

Once we know the essential matrix E, the direction of the translation vector t

followed by the rotation matrix R can be estimated with the use of SVD (Singular

Value Decomposition) of E.

Note that the absolute distance between the two cameras can never be recovered

from pure image measurements alone, regardless of how many cameras or points are

used. Knowledge about absolute camera and point positions or distances is often called

ground control points and they are always required to establish the �nal scale, position,

and orientation.

CHAPTER 2. OUR WORK 22

2.1.3 Clustering algorithms

The information about di�erent clustering techniques was inspired from Seif [7].

Clustering is a technique that involves the grouping of data points. Given a set of

data points, we can use a clustering algorithm to classify each data point into a speci�c

group.

Data points that are in the same group should have similar properties or features,

while data in di�erent groups should have dissimilar properties. We can use clustering

analysis to gain some valuable insights to our data by seeing what groups the data

points will be put in when we apply a clustering algorithm.

K-Means

This clustering technique stores k centroids that it uses to de�ne clusters. A point is

considered to be in a particular cluster, if it is closer to that cluster's centroid than

any other centroid.

1. To begin, we �rst need to select the k which represents the number of groups.

Then we will randomly initialize their respective center points. To �gure out the

number k we need to identify the data in order to approximate this number well.

2. In the next step each data is classi�ed by computing the distance between that

point and each group center, and then classifying the point to be in the group

whose center is closest to it.

3. Based on these classi�ed points, we recompute the group center by taking the

mean of all the vectors in the group.

4. By repeating these step for a set number of iterations or until the group centers

do not change much between iterations.

This algorithm is really simple and fast. The computation is consists only of cal-

culating the distances between points and group centers. But we need to know the

number k in prior to tell the algorithm how many clusters we want to �nd.

Mean shift

The next information about meanshift is gathered from Comaniciu [4].

The mean shift algorithm is a nonparametric clustering technique, which does not

require prior knowledge of the number of clusters, and does not constrain the shape of

the clusters.

It is a procedure for locating maxima of a density function given to discrete data

from that function. Mean shift is an iterative method and it starts with an initial

CHAPTER 2. OUR WORK 23

estimate x. Let the kernel be K(x). The kernel is a function which determines the

weight of nearby point for re-estimation of the mean (typically a Gaussian kernel is

used).

Let xi, i ∈ {1, . . . , n} be the data points on a d-dimensional space Rd, then the

kernel density estimate with window radius h is:

f(x) =
1

nhd

n∑
i=1

K

(
x− xi
h

)
(2.1)

For radially symmetric kernel functions (for example Gaussian), it su�ces to de�ne

the pro�le of the kernel K(x) satisfying:

K(x) = ck,dk(‖x‖2)

where ck,d is a normalization constant which assures K(x) integrates to 1. The modes

of the density function are located at the zeros of the gradient function ∇f(x) = 0.

The gradient of the density estimator 2.1 is:

∇f(x) =
2ck,d
nhd+2

n∑
i=1

(xi − x)g

(∥∥∥x− xi
h

∥∥∥2)

=
2ck,d
nhd+2

[n∑
i=1

g

(∥∥∥x− xi
h

∥∥∥2)][∑n
i=1 xig

(∥∥x−xi
h

∥∥2)∑n
i=1 g

(∥∥x−xi
h

∥∥2) − x
]

where g(s) = −k′(s). The �rst term is proportional to the density estimate at x

computed with kernel G(x) = cg,dg(‖x‖2) and the second term

mh(x) =

∑n
i=1 xig

(∥∥x−xi
h

∥∥2)∑n
i=1 g

(∥∥x−xi
h

∥∥2) − x
is the mean shift. The mean shift vector always points toward the direction of the

maximum increase in the density. The mean shift procedure is then obtained by these

two successive operations

� computation of the mean shift vector mh(x
t)

� translation of the window xt+1 = xt +mh(x
t)

The convergence is complete when the gradient of the density function is zero.

The mean shift algorithm solves the clustering without the �xed k, where k-means

had a disadvantage. Nevertheless the selection of the window size can be a non trivial

task.

CHAPTER 2. OUR WORK 24

Density-based spatial clustering

Also noted as DBSCAN, discovers clusters of arbitrary shape in spatial databases with

noise.

DBSCAN groups together points that are close to each other based on distance

measurement (most commonly Euclidean distance).

This clustering algorithm �nds the number of clusters by itself.

The algorithm takes two parameters:

� Epsilon: the minimum distance between two points. It means that if the distance

between two points is lower or equal to this value (ε), these points are considered

as neighbours.

� MinPoints: the minimum number of points to form a dense region. For example,

if we set the minPoints parameter as 5, then we need at least 5 points to form a

dense region.

The neighbourhood is de�ned by ε (Epsilon) value as follows

Nε(p) = {q ∈ X | dist(p, q) ≤ ε}

where p is the given point, X is the set of input points q, where q must satisfy that the

distance between the point p is smaller or equal to ε.

The points in the given cluster are categorised to:

� Core point: point p is considered as core point if it has MinPoints amount of

neighbours.

� Directly reachable: are the points, which are distanced ε amount from the core

point.

� Reachable: q is reachable when there is a path p1, . . . , pn with p = p1 and q = pn

where each pi+1, i ∈ 1, . . . , n− 1 is directly reachable from pi.

� Outliers/Noise: are points that do not satisfy any of the rules in the mentioned

categories.

The algorithm starts at a random point p which is not assigned to a cluster, and

�nds it neighbours. If |Nε(p)| < MinPoints, a new random point is selected.

if |Nε(p)| ≥ MinPoints a new cluster is created. Then an expansion of the cluster is

started from the point p for every point q where the algorithm �nds the neighbours for

every q and determines if q is a new core point or just a reachable point from p. These

points are added to the newly created cluster until we �nd all reachable points from

p. Then the algorithm starts from the beginning until all the points are categorised as

CHAPTER 2. OUR WORK 25

belonging to a cluster or as noise.

The biggest disadvantage of this clustering algorithm is how to choose the right ε

and MinPoints.

2.1.4 Path �nding algorithms

Dijkstra

If the costs of the paths are non negative real numbers, we can �nd the shortest paths

from the starting point, to all other points with Dijkstra`s algorithm.

Worst case performance of this algorithm is O(|V 2|) �uri² [17].

A* algorithm

According to Brilliants wikipage [22], A* is a computer algorithm that is widely used

in path�nding and graph traversal. The algorithm e�ciently plots a walkable path

between multiple nodes, or points, in the graph.

Like Dijkstra, A* works by making a lowest-cost path tree from the start node to

the target node. What makes A* di�erent and better for many searches is that for

each node, A* uses a function f(n) that gives an estimate of the total cost of a path

using that node. Therefore, A* uses heuristics, which di�ers from an algorithm in that

a heuristic is more of an estimate and is not necessarily provably correct.

A* expands nodes with the lowest value of the function

f(n) = g(n) + h(n)

where

� f(n): is the total estimated cost of path through node n

� g(n): cost of the path from the starting node to n

� h(n): estimated cost from n to goal node. This is the heuristic part of the cost

function.

The algorithm starts from the start node and visits all adjacent vertices. Once these

vertices has been populated it picks the cell with the lowest cost which is the estimated

by f(n). This process is recursively repeated until the shortest path has been found to

the target.

CHAPTER 2. OUR WORK 26

Floyd-Warshall

this is an algorithm that �nds the shortest path between every node in the graph with

positive or negative edge weights, but with no negative cycles.

The algorithm compares all possible paths through the graph between each pair of

vertices and, thus having Θ(V 3) complexity �uri² [17].

The original algorithm �nds only the costs of the shortest paths between vertices

but it can be modi�ed to remember the paths too.

Function FloydWarshall():

dist ← |V | × |V | array of minimum distances initialized to ∞;

foreach edge(u, v) do

dist[u][v]← edgew(u, v);

end

foreach vertex(v) do

dist[v][v]←∞;

end

for k ← 0 to |V | do
for i← 0 to |V | do

for j ← 0 to |V | do
if dist[i][j] > dist[i][k] + dist[k][j] then

dist[i][j]← dist[i][k] + dist[k][j]

end

end

end

end

end
Algorithm 2: Original Floyd-Warshalls algorithm

2.2 Initial �ight

In the beginning of the scanning we do not know anything about the scene. We have

not captured any images to evaluate the 3D scene and calculate camera positions with

unobstructed views.

The user must de�ne a safe overhead pattern, similar to one described in ortho-

graphic photogrammetry (Section 1.1), which has a safe �ight height above the given

interest zone.

CHAPTER 2. OUR WORK 27

Although, these images could be any arbitrary images from which we can construct

an initial 3D model, we will be mostly remaining and referencing to an orthographic

scan. Such an overhead pattern can be fully autonomous and the path can be easily

constructed by the user.

2.3 Camera positions

After we calculated the 3D model with the use of SfM (�rstly from images obtained

by the initial �ight), we can calculate new relevant camera positions with look at

directions, to supplement the 3D model with new information about the scanned scene.

These new positions are strictly obtained from the so far known mesh of the 3D

model. In order to get other positions, the application has to re�ne the model with

new images to get more information about the scene.

2.3.1 Insu�cient details

To estimate places where the details are insu�cient we will mainly work with the

so called preview mesh generated by SfM. This mesh is calculated from the matched

features in the images, which we described in the background section 2.1.1. This

mesh can be calculated very e�ciently and quickly, even with portable computers in

the terrain. We could have also use the full 3D reconstruction using MVS, which

calculates the mesh from all the available pixels on the image by knowing the camera

poses and epipolar planes. This method is very process intensive and takes a long time

to calculate. With the experiments it shows that the preview mesh is estimating the

model good enough to work with.

We can consider areas with low detail of quality, as big faces in the mesh. This

statement is true, when the scene has a well textured surface. If we are able to see a

feature with a good resolution of pixels, in at least two pictures, we are able to �nd

matchings between them. Thus �nding 3D position of that feature in space.

On the other hand if the surface is featureless, we do not have any features from

that region. This means, that we cannot have matchings between images to �nd the

corresponding 3D point. In the background section, we showed how we can �nd features

and why texture is so important (Section 2.1.1).

In the Figure 2.9 we can see the preview mesh obtained by orthographic scanning,

which had been �ltered by triangle size. It is easy to observe that the faces which had

good texture and enough pixels to resolve features, generated small triangles in the

mesh. The big triangles are areas, which had not enough resolution to resolve features

or they are featureless.

CHAPTER 2. OUR WORK 28

Figure 2.9: Triangles with edge bigger than 1m and smaller than 30cm were deleted

The problem is, that we cannot di�erentiate if the big triangle arose from lack of

photograph coverage or from lack of texture.

We can start with the existing images, which are observing the big triangle. For

every such image we can calculate the pixel size on the surface of the triangle. If the

pixel size is above the desired threshold we ignore the image. Next we can ignore

images where the angle between the triangle normal and the ray of sight of the camera

corresponding to the image is above a certain threshold.

If remaining count of the photographs is above three, we can hypothesize that the

triangle is big due to the lack of texture, since it was already covered with enough

images.

In practical implementation we subdivide such big triangles to smaller ones. This

is in order to be able to handle triangles which are bigger than the �eld of view of the

camera.

In our implementation we will �lter the model only by triangle size to �nd insuf-

�cient regions. Although this is not the best solution we will be mostly working with

datasets which do have good texture.

2.3.2 Clustering

In this stage we have triangles, whose positions estimate insu�cient details in the

reconstruction. Now we want to �nd positions for the cameras where to look, so the

UAV can capture more detail. We will name these positions as lookat positions.

We could say, that these positions will be the centers of every single triangle, but

that would be very ine�cient. To be more e�ective we want to see multiple faces in

one photograph.

In our approach we �nd clusters with a given size, from the vertices of these faces

such that, we can see all of the faces (vertices) of the given cluster in at least one

CHAPTER 2. OUR WORK 29

picture. Then we can �nd their centroids in pair with the surface vectors to �nd new

camera poses.

We experiment with di�erent clustering techniques:

K-means

As we discussed in the previous section about clustering algorithms K-means has the

disadvantage, that we need to choose the number k in prior to start the algorithm. In

our case we would need complex precomputations to get the right k, and we do not

want to limit our algorithm to some number of clusters.

Mean-Shift

We experimented with this algorithm, and to choose the right size of the sliding window

was not an easy task, and the noise points in our model were ruining the results. We

opted for the next algorithm.

DBSCAN

We have seen that DBSCAN gets two parameters. ε and MinPoints. Since we know

how we �ltered the model for insu�cient details, thus this leads to the right ε. The

MinPoints can be chosen by the user to tell how small detail to capture.

We have only one major problem with this clustering algorithm. It can categorise

all the points into one cluster if they are reachable from each other. This is a desired

property for many applications but not for ours. This property can create big clusters,

that we cannot cover with one image. To overtake this problem we can easily modify

the algorithm with a maxPoints constraint, which stops the cluster expansion if the

set of the cluster contains MaxPoints points. See Figure 2.10.

Figure 2.10: On the left is the original DBSCAN, On the right the modi�ed with

MaxPoints constraint

CHAPTER 2. OUR WORK 30

The algorithm can be improved even more, with an another constraint of surface

normal vector. In the current stage the algorithm is creating clusters which are the

right size, but it does not take into consideration the surface`s rotation. For example,

take into consideration a wall, which has the width ≤ ε. The clustering algorithm will

categorise both sides of the wall into one cluster. This is infeasible for camera looks.

Normal

Normal or surface normal is a vector perpendicular to a given surface. The clusters

are calculated from the vertices of triangles. From these triangles we can calculate the

surface vectors and assign them to all the vertices of that concrete triangle.

Let P1 = (x1, y1, z1), P2 = (x2, y2, z2), P3 = (x3, y3, z3) be the points of the triangle.

Then the normal vector to the triangle with these three points as its vertices is then

given by the cross product

N = (P2 − P1)× (P3 − P1)

Let MaxAngle be a new constraint. It limits the algorithm to expand the cluster,

if the angle between the average normal vector of the current cluster and the new

reachable point is bigger than MaxAngle.

2.3.3 Camera cone

In previous section we categorised all the points into clusters, that now represents a

bigger surface to capture. The centroids of these clusters will be the lookat positions

for the cameras capturing detail of the given cluster. For points p1, . . . , pk, k ∈ N the

centroid is

C =
p1 + p2 + · · ·+ pk

k
(2.2)

The centroid represent the lookat position for the camera, but we do not know from

which position we can see this given point.

Since the normal vector for the centroids of clusters can be computed with same

averaging formula (2.2), we can obtain the normal vector for the centroid in the same

manner as its position, which is then normalized.

Now we know the lookat positions and their normal vectors, which are perpendicular

to the clusters. We could simply �nd the camera positions by pushing the lookat

position along its normal vector.

This naive approach is considering only one camera position, with a look perfectly

perpendicular to the cluster. This view can be blocked by some obstacles, thus not

having the lookat position in line of sight. If the point cannot be seen then we cannot

take photographs of the missing features.

CHAPTER 2. OUR WORK 31

We can �nd features on the image also if the surface is not perfectly perpendicular

to the view. Although, with big angles and distance we lose resolution on the image

of the given feature, thus not detecting them and not being able to use them for SfM

reconstruction. It shows that there is a maximal practical angle of about 30 − 45

degrees Mikolajczyk [12].

This can be easily solved by a construction of a cone in a direction of the calculated

normal vector, with maximal practical angle. This cone will represent all the possible

places where the camera can be placed, with consideration of �nding necessary features

for reconstruction.

Practical implementation

We want to construct a cone with relevant camera positions, which are in line of sight

with the lookat position and do not exceed the practical angle and given distance.

To estimate positions which are in the given distance from the lookat position, we

can use points on a sphere with radius of distance.

Since these looks can be from any angle, we ideally want a sphere, which has evenly

distributed points.

Fibonacci sphere is one of such spheres with good distribution of points.

Figure 2.11: On the left is a regular sphere calculated with simple trigonometry and

on the right is the Fibonacci sphere with evenly distributed points

The regular sphere, has the points on the poles placed much more compactly placed

than on the equator. Fibonacci`s sphere does not su�er with this issue, since the points

are evenly distributed between each other.

We know the normal vector of the lookat position, so we can construct a projection

matrix, which projects the point of the sphere to a plane in front of the normal vector.

Then, we can scale this projection with consideration of the practical angle to a bitmap

where we store our information about line of sight.

Let C = (x, y, z) be the lookat position and ~n = (xn, yn, zn) be the normal vector

CHAPTER 2. OUR WORK 32

from, which we want to construct the cone and ~u = (xu, yu, zu), ~v = (xv, yv, zv) any

orthonormal vectors.

〈~n,~v〉 = 〈~v, ~u〉 = 0

Then the projection matrix, which projects the point to the plane in the direction of

the normal vector is a 3× 4 matrix

M =

xu yu zu (xu ∗ x+ yu ∗ y + zu ∗ z)

xv yv zv (xv ∗ x+ yv ∗ y + zv ∗ z)

xn yn zn (xn ∗ x+ yn ∗ y + zn ∗ z)

Let xb, yb be the size of our bitmap and ϕ the practical angle. Then the other projection

matrix which projects the point of the sphere to the bitmap is a 3× 3 matrix

K =

xb ∗ tan(ϕ)/2 0 xb/2

0 yb ∗ tan(ϕ)/2 yb/2

0 0 1

It is clear that these two matrices can be fused together to form

P = K ×M

To update the line of sight information to the bitmap we gradually scale the sphere

from C and if some point of that sphere collides with the model we update the bitmap,

such that, there is an obstacle and we do not have line of sight in that path anymore.

Figure 2.12: Blue dots are all relevant camera positions, that have line of sight to the

centroid of the cluster

CHAPTER 2. OUR WORK 33

From these cones (Figure 2.12) we choose at least two points. This is needed for

SfM to be able to �nd the points location in space. The selection of these points in our

implementation is random, since all of them are correct.

2.4 Flight Path

After we found the camera positions as described in the previous section, we �nd a

safe path, which starts at a starting point de�ned by the user and visits all reachable

camera`s from this place.

Naturally this looks like the Travelling Salesmen Problem (TSP). We will show, how

we can �nd safe paths between the cameras, from which we construct a fully connected

graph. This graph will be constructed to hold the triangle inequality property. This

means, we will be able to use an approximation algorithm of Metric TSP to �nd the

desired path.

2.4.1 Flight zone

The user de�nes a region of interest (ROI) where the drone is allowed to �y and a

starting point, which must be inside the ROI. The region is approximated as a 3D

Cartesian grid, which we want to discover from the starting point. Let Gzone be this

grid de�ned as

Gzone = {(x, y, z) | x, y, z ∈ Z}

and Pstart = (xs, ys, zs); xs, ys, zs ∈ Z as the starting position. Then

� Safe Point: is a point Ps ∈ Rzone which is distanced r (user de�ned) units from

the model, which is a so far known representation of the scene.

� Reachable Point: is a point Pr which is Safe and there exists a path

Pstart, Pi, . . . , Pk, Pr, where between any consecutive point in the path the abso-

lute di�erence per coordinate from Gzone is maximally 1.

The �ight zone is a set of all reachable points.

2.4.2 Paths between cameras

If we know the �ight zone from the previous section we can �nd if a camera position

C = (x, y, z), x, y, z ∈ R is reachable from Pstart by �nding the closest point in Gzone

from C and checking if that point has the property being reachable. We do this for

every calculated camera position.

Theorem 2.4.1. Two camera positions C1 and C2 are reachable from each other, if

they are reachable from Sstart.

CHAPTER 2. OUR WORK 34

Proof. The proof is straight forward. The Sstart is the connecting point between them.

Since the theorem 2.4.1 is true we can �nd collision free paths between any two

reachable cameras. We want to �nd the shortest path between the cameras. We will

use the A* algorithm (Section 2.1.4) for this task.

Since we are using the Euclidean distance for the heuristic function, we are getting

more accurate paths than using others heuristic functions (i.e. Manhattan distance).

But we need to explore a larger area to �nd the path. This is mostly true when we

have a lot of obstacles between the cameras.

To reduce the number of possible obstacles, we �nd paths only between cameras,

which have a small Euclidean distance between each other. This has a drawback of

creating a non complete graph from these paths. In the next section we will show how

to solve this problem.

2.4.3 Triangle inequality

To be able to use a metric TSP approximation on the graph, we need to construct a

graph, which holds triangle inequality between each reachable cameras. Let P (ci, cj)

be a path from one reachable camera ci to another reachable camera cj then the graph

must satisfy

{P (ci, ck) + P (ck, cj) ≥ P (ci, cj)
∣∣ ci, cj, ck ∈ Creach} (2.3)

where Creach contains all reachable cameras.

We are constructing a graph from the paths found by the A* algorithm, where cost

of these paths are the edges in the new graph. This compression is shown in the Figure

2.13.

Figure 2.13: On the left we have paths found in the grid by the A* algorithm. On the

right the paths are compressed into a single edge. Blue dots are the reachable cameras

and the green dot is the starting point de�ned by the user.

CHAPTER 2. OUR WORK 35

Since A* star is a heuristic path �nder and not always �nds the shortest path, there

is a possibility that it will �nd a path, which will break the triangle inequality.

Because of this we constructed a function (3), which adds an edge to the graph in

a way, that it will hold triangle inequality (2.3). The function will use the following

operation showed in Figure 2.14 recursively.

Figure 2.14: Red edge(u, v) is the edge we are trying to add to the graph. If

edgew(u, v) > edgew(u, k) + edgew(k, v) then we will add in the edge(u, k) + edge(k, v)

instead, thus holding the triangle inequality 2.3.

Function AddEdge(u, v, c, g[][]):

foreach k ← vertices do

if g[u][k] + g[k][v] < cost then

c← g[u][k] + g[k][v];

end

end

g[u][v] = g[v][u] = c;

foreach k ← vertices do

if g[k][u] + c < g[k][v] then

g[k][v] = g[v][k] =∞;

AddEdge(k, v, g[k][u] + c, g[][]);

end

if c+ g[v][k] < g[u][k] then

g[u][k] = g[k][u] =∞;

AddEdge(u, k, c+ g[v][k], g[][]);

end

end

end
Algorithm 3: Recursive AddEdge function holding triangle inequality. u, v are the

vertices of the edge, c is the cost of the edge and g[][] is the adjacency matrix of

the graph

CHAPTER 2. OUR WORK 36

Note that we are not discovering all the paths with A* and our newly constructed

graph has the possibility to contain more components. We will check for the compo-

nent, which contains the starting (green) node and other components will be trashed.

Other possibility would be �nding a path which will connect together the components.

Although we showed how to add an edge without ruining the mandatory rule, we

decided not to �nd the A* paths between cameras which are too far from each other.

This was done in favour of speed. To satisfy the triangle inequality rule fully we need

to create a complete graph.

To �nd the missing edges we will �nd the shortest routes in the compressed graph

by using Floyd�Warshalls algorithm (Section 2.1.4).

Floyd-Warshalls algorithm �nds the perfect shortest paths in the graph, thus not

breaking the triangle inequality of our compressed graph. Since we are also using the

modi�ed Floyd-Warshalls algorithm that remembers the paths, we can unwrap the

compressed graph to get all the unobstructed paths between each reachable camera.

With this operation we do not have the true shortest paths between the reachable

cameras, just an approximated unobstructed path. This step is done in favour of speed

of the A* algorithm between cameras distanced far away. This part could use a better

heuristic or modi�cation of the A* algorithm to get better paths which are calculated

faster. We will discuss some in the future work.

Note that it is infeasible to use Dijkstra 2.1.4 or Floyd-Warshalls algorithm in the

Flight area space graph. This graph can contain thousands of vertices and these

two algorithms are exploring the whole graph to �nd paths, thus being too slow and

unusable for this application.

2.4.4 Metric TSP

Next informations were gathered from Cowen [19].

Metric TSP is a special case of TSP where the triangle inequality holds (Eq: 2.3).

Both TSP and Metric TSP are NP-hard problems, that is, there is no know polynomial-

time algorithm for solving these problems, unless P = NP . But we can use approxi-

mation algorithms to get within a certain factor of the optimal answer.

Let OPT denote the cost of the minimum weight tour. We will show a polynomial

time algorithm which outputs a tour of cost C, where C ≤ 2×OPT .

C ≤ 2×OPT algorithm

1. Take the minimum-weight spanning tree (MST) of the TSP graph. This can be

computed in polynomial time using Kruskal`s or Prim`s algorithm.

CHAPTER 2. OUR WORK 37

Theorem 2.4.2. Weight of MST ≤ OPT .

Proof. By contradiction: Assume an instance of Metric TSP with OPT < MST .

By removing an edge from OPT we will create an acyclic graph, which is hitting

every node once, therefore it is a spanning tree with weight T < OPT ,

thus T < OPT < MST . This means MST was not minimal.

2. by doing a depth-�rst search through MST we will visit every node twice. Let

PT be this tour. Then PT will have the cost=2×MST ≤ 2×OPT .

3. To get the desired tour T we do not want to visit the nodes twice. While doing

depth-�rst search we will remember which node we visited and put it to the tour

only once (preorder listing).

Theorem 2.4.3. The constructed tour T has a cost of T ≤ PT ≤ 2×OPT .

Proof. From the triangle inequality. Going from A to B must be cheaper than

from A to C to B.

We will be using this algorithm in our application. There is a better algorithm which

is being able to construct a 1.5× OPT tour. We will show it in the section of Future

work.

Chapter 3

Implementation

In this chapter, we show what libraries and engines were used to be able to implement

the ideas and techniques from the previous chapter.

The whole implementation is written in C++ and uses the Software Development

Kit (SDK), provided by CapturingReality [2] to be able to reconstruct the 3D models

from images using state of the art techniques. We also used OpenGL for simulation and

data visualization, which is being used for generating images for the 3D reconstructions

and point cloud visualization respectively.

3.1 Capturing Reality`s SDK

We are using Capturing Reality`s SDK [2] for the state of the art 3D reconstruction

from images using photogrammetry. Although the SDK is capable for reconstructions

also from laser scans and many more, we are using only a small portion from the SDK.

We are mainly interested for the SfM registration of images, which returns a sparse

point cloud.

We create a mesh from the SfM image registration. This can be either a full

reconstruction or just a preview mesh. The SDK enables us to get information about

the 3D model and also information about the cameras. This information are then

further processed, with our algorithms.

With the use of SDK we are also able to export the created models so we can

examine the results side by side with the ground truth models.

The GUI (Graphical User Interface) version of the SDK is also available for us. We

used it also for some visualizations and model creation. It has the same functionality

as the SDK, but with a nice intuitive GUI.

38

CHAPTER 3. IMPLEMENTATION 39

3.2 Simulation and Visualization

To test the algorithm, we do not want to �y drones. This can be dangerous and also

inconvenient for testing purposes. Because of this, we implement a simulator, which

renders ground truth models and it is able to take images from given positions with

view angles.

The Simulator is written in OpenGL, since the SDK by CapturingReality is

written in C++ too.

The ground truth models are mainly models, that were reconstructed with the use

of photogrammetry. To be able to load the models and render them, we use Assimp

(Open Asset Import Library), that is a portable Open Source Library to import various

3D model formats.

Since we are choosing ground truth models, that are reconstructed by photogram-

metry, we can be sure that the model is well textured, and thus being able to use the

naive method for �nding Insu�cient details in the model, that we showed in section

2.3.1.

Figure 3.1: Image rendered by the simulator in OpenGL

Since our method for �nding relevant camera positions is processing mainly 3D

points, we also implemented a visualizer for them. This visualizer was mainly used

while debugging, but also for visualizing results in this thesis.

This 3D point renderer has a free �ying camera implementation with the use of

quaternions to be able to use also roll and not only pitch and yaw.

CHAPTER 3. IMPLEMENTATION 40

3.3 Point cloud �tting

In the section 2.1.2 about SfM we mentioned that if we do not have georeferenced

images (not knowing the absolute distance between cameras) we are unable to know

the �nal scale, rotation and position of the reconstruction.

Since our rendered images by the simulator do not store the information about geo-

reference, we are reconstructing models whose scale, rotation and position is di�erent

from true locations. See Figure (3.2).

Figure 3.2: Blue dots are the true positions of the cameras, Red points are the poses

calculated by SfM.

The only reference we know is, that from where we rendered the images with the

simulator and the camera poses from the SfM reconstruction. If we know the matchings

between these points we are able to calculate the scale, rotation and translation.

With these transformations we can transform the points of the reconstruction to

have the true scale and location in space.

We use Least-Squares Fitting of two 3D Point Sets to �nd the transforma-

tions Arun [11].

Let {pi} and {p′i} i ∈ {1, 2, . . . , n} be two sets of 3D points (pi and p′i are 3 × 1

column matrices) where the relation between them is

p′i = RSpi + T +Ni (3.1)

S =

∑n
i=1

∑n
j=1‖pi − pj‖∑n

i=1

∑n
j=1‖p′i − p′j‖

where R is a 3× 3 rotation matrix, T is a translation vector (3× 1 column matrix), Ni

a noise vector and S is the scale factor. We want to �nd R and T to minimize

Σ2 =
n∑
i=1

‖p′i − (RSpi + T)‖2

CHAPTER 3. IMPLEMENTATION 41

We use a noniterative algorithm which involves the Singular Value Decomposition

(SVD) of a 3× 3 matrix.

If the least-squares solution to (3.1) is R̂ and T̂ then {p′i} and {p′′i , R̂pi = T̂} have
the same centroid

p′ = p′′

where

p′ ,
1

N

n∑
i=1

p′i

p′′ ,
1

N

n∑
i=1

p′′i = R̂p+ T̂

p ,
1

N

n∑
i=1

Spi

Let

qi , Spi − p

q′i , p′i − p′

We have

Σ2 =
n∑
i=1

‖q′i −Rqi‖2 (3.2)

Therefore, the original least-squares problem is reduced to two parts

1. Find R̂ to minimize Σ2 in (3.2)

2. Then, the translation is found by

T̂ = p′ − R̂p

To �nd R̂ we use SVD of the 3× 3 matrix

H ,
n∑
i=1

qiq
′T
i ; H = UΣV T

Let

X = V UT

Then if the determinant of X

� det(X) = 1, then R̂ = X.

� det(X) = −1, the algorithm fails.

CHAPTER 3. IMPLEMENTATION 42

3.4 Collision detector

In the previous sections we required the knowledge if some point with a given radius

collides with the model. This operation is done just to know if we are within a safe

distance from the model.

The easiest test is to check the Euclidean distance from the vertices of the triangles.

It is easy to see that this approach can have an issue if either of the triangle edges is

bigger than the radius of the tested point.

Let the radius be a constant, such that it will not change during the checks. Then,

we can subdivide the problematic triangles of the model to smaller ones, which will

have all the edges sizes smaller than the radius.

This is done, because triangle collision with a sphere is a non trivial task and it

can have bad time complexity. On the other hand checking the Euclidean distance is

a much easier task.

Note that the 3D model have the possibility to contain hundreds of thousands

triangles. To check all the possible triangles with every test is infeasible.

Instead of checking all the triangles we can divide the model to vertical columns

and by checking a collision we test only the relevant columns.

Figure 3.3: Points of the subdivided triangles categorised into vertical strips, where

each color is a di�erent strip

Chapter 4

Experiments

In this chapter we show examples of the results and also runtime reports.

The whole experiment was done on a laptop with following parameters.

� CPU: Intel Core i7-4700HQ, 4 cores, 2,40GHz base frequency and 3,40GHz max

overclock.

� RAM: 8GB DDR3 800MHz.

� GPU: Nvidia GeForce GT 750M with 2GB of GDDR5 memory and 384 CUDA

cores.

The images for all of the experiments were generated with the simulator in 1000px ×
1000px resolution, where the background of these images were black.

4.1 Boat example

The �rst experiment was done on a model of a boat. This boat represents an open

space with some di�cultly to capture areas like the cabin.

After 3 iterations of �ight and with the orthographic initial scan we collected 154

images.

With this example we know that the original ground truth model was reconstructed

from 293 images.

The average runtimes for each step in the algorithm per iteration of �ights were

SfM and Meshing 39.56 seconds

Clustering 0.69 seconds

Collision detector 3.46 seconds

Camera positions 2.25 seconds

Flight paths 31.62 seconds

Total 1 minutes and 17.58 seconds

43

CHAPTER 4. EXPERIMENTS 44

Figure 4.1: The top picture shows the signed distance between the ground truth model

an reconstructed mode. On the left is the ground truth model and on the right is the

reconstructed model from the simulated images

On the Figure 4.1 we can see that we were unable to reconstruct the cabin of the

boat. The reason is that the collision avoidance system did not allow the drone to

come too close to the back of the cabin. The algorithm proposed taking photograph

from the space behind the boat zoomed to the cabin inside. Also the background of

the synthetically rendered images of the boat was black and it caused di�culties to

SfM. Because of this the reconstruction could not resolve enough details to reconstruct

CHAPTER 4. EXPERIMENTS 45

the model properly.

4.2 Castle example

The second experiment was a scan of a much bigger dataset. We tried to reconstruct

the castle located in Nitra.

After 3 iterations of �ight including the orthographic initial scan we collected 300

images.

The average runtime for each step in the algorithm per iteration of �ights were

SfM and Meshing 2 minutes and 5.06 seconds

Clustering 5.78 seconds

Collision detector 17.06 seconds

Camera positions 15.39 seconds

Flight paths 59.65 seconds

Total 3 minutes and 42.94 seconds

Figure 4.2: On top left is the ground truth model and on the top right is the re-

constructed model from the simulated images. The picture at the bottom shows the

standard diviation between the two models

CHAPTER 4. EXPERIMENTS 46

On the Figure 4.2 we can see the standard diviation between the ground truth

model and the model created from the pictures taken by the algorithm. We managed

to reach 0.020923 standard diviation (in meters).

We can see that the edges are spoiling the result. The ground truth model is just

that big and on the edges we have a black featureless background from which we cannot

reconstruct the surface. Also trees can be challenging to reconstruct, because they have

a repeating feature pattern and it is hard to match them. We can also see that the tip

of the castle is not reconstructed. This is due to low resolution images that we used.

We had not enough resolution to resolve features on the tip.

Figure 4.3: Featureless spot with trees. On the left is the ground truth model and on

the right the reconstructed model.

4.3 Temple example

The third experiment was to try the algorithm in a closed space with narrow paths

and with a lot of detail.

We simulated 5 �ights and an initial scan with a grand total of 383 images. The

average runtimes per algorithms for one simulation were

SfM and Meshing 3 minutes and 6.09 seconds

Clustering 5.71 seconds

Collision detector 17.48 seconds

Camera positions 17.99 seconds

Flight paths 21.74 seconds

Total 4 minutes and 9.01 seconds

We managed to achieve 0.168872 standard diviation (in meters) between the ground

truth model and the reconstructed model.

CHAPTER 4. EXPERIMENTS 47

Figure 4.4: The top picture shows the signed distance between the ground truth model

an reconstructed mode. On the left is the ground truth model and on the right is the

reconstructed model from the simulated images

In the Figure 4.4 we can see that the standard diviation is showing that the algo-

rithm did not managed to capture the roof in the second room and detail behind the

statue. We can see that the detail behind the statue is textureless in the ground truth

model, thus we was not able to reconstruct that region. The roof was not reconstructed,

because our algorithm did not managed to detect that there is lack of detail.

Conclusion

In this thesis we created an automatic mission planning algorithm for drones, that

enables scanning of general 3D world objects or a scenes.

Our method starts with the initially de�ned �ight plan and it automatically plans

one or more new missions to enhance the previous reconstruction.

We successfully reconstructed a mesh with a use of e�ective photogrammetry soft-

ware given by Capturing Reality.

Insu�cient details in the mesh were found with the hypothesis of big triangles, that

were used to locate regions without the wanted level of quality.

To �nd bigger regions within the regions found in the previous step, we implemented

a known clustering algorithm, that was modi�ed to �nd points in space, which are

suited to be photographed in a way to take the least amount of images in one �ight.

After that we found all the possible camera positions looking to the points found

with clustering. This was done with the use of cones constructed from points on a

sphere, which have a view, that is unobstructed and in line of sight to the region

without the detail. These positions are viewing the given point in a practical angle, in

which we are still able to extract features from images.

To photograph the images from the given positions, we found the space for the

drone, where it is enabled to �y safely without hitting any obstruction in the scene.

This was done with a created structure, that e�ciently tells if a sphere is hitting the

model.

Then, we discovered the shortest paths between the camera positions, that are

inside the safe region. To be able to �nd the path, which visit all the cameras, we

showed how to construct a graph, from the shortest paths between the camera, that

holds triangle inequality. After that, we was able to �nd the TSP path with the use of

approximation algorithm.

Finally in the experiment section, we have demonstrated that our algorithm is

capable to automatically reconstruct a scene, which is matching the ground truth

model with a small standard deviation. We demonstrated it both in an exterior and

interior scene.

48

Conclusion 49

Future work

During our research we identi�ed several possible future work tasks to improve the

existing algorithm.

� Finding regions of insu�cient detail in the mesh by checking if the triangle has

a coverage with a desired resolution from the images.

� Clustering algorithm that is considering also the normals of triangles.

� Better implementation of �nding the shortest paths. For example Theta* instead

of A*. It can by also optimized with a path �nding, which starts from both nodes

of the path. After that the path should be smoothed out.

� 1.5×OPT Metric TSP (Christo�des algorithm) instead of 2×OPT MST algo-

rithm.

� Consideration of maximal �ight time of the drone.

Since the process of calculation is very fast and can be improved even further the

next goal can be a real time algorithm, which processes images from the drone while

�ying by image streaming, and modi�es the path in real time.

Bibliography

[1] Benjamin Hepp, Matthias Nieÿner, Otmar Hilliges. Plan3D: Viewpoint and

Trajectory Optimization for Aerial Multi-View Stereo Reconstruction. https:

//shiropen.com/seamless/plan3d, 2018. [Online; accessed 9-April-2019].

[2] Capturing Reality s.r.o. Capturing Reality. https://www.capturingreality.

com/, 2019. [Online; accessed 28-April-2019].

[3] Oxford English Dictionary. art, n.1. Oxford University Press, 2010.

[4] Dorin Comaniciu, Peter Meer. Mean Shift: A Robust Approach Toward

Feature Space Analysis. https://courses.csail.mit.edu/6.869/handouts/

PAMIMeanshift.pdf, 2002. [Online; accessed 23-April-2019].

[5] Eisenbeiss, Henri. UAV photogrammetry. PhD thesis, University of Technology

Dresden, 2009.

[6] F. Remondino, L. Barazzetti, F. Nex, M. Scaioni, D. Sarazzi. UAV PHO-

TOGRAMMETRY FOR MAPPING AND 3D MODELING �CURRENT STA-

TUS AND FUTURE PERSPECTIVES�. http://3dom.fbk.eu/sites/3dom.

fbk.eu/files/pdf/Remondino_etal_UAV2011.pdf, 2011. [Online; accessed 11-

February-2018].

[7] George Seif. The 5 Clustering Algorithms Data Scientists Need to

Know. https://towardsdatascience.com/the-5-clustering-algorithms-

data-scientists-need-to-know-a36d136ef68, 2018. [Online; accessed 28-

April-2019].

[8] Zisserman Hartley. Multiple View Geometry in Computer Vision. The Edinburgh

Building, Cambridge cb2 2ru, UK, 2004.

[9] Intel. Intel Unveils Drone Software Solutions that Enable Businesses to Un-

lock Potential of Aerial Data. https://newsroom.intel.com/news/intels-

hardware-software-solutions-enable-businesses-unlock-potential-

aerial-data/#gs.830ex5, 2018. [Online; accessed 26-April-2019].

50

https://shiropen.com/seamless/plan3d
https://shiropen.com/seamless/plan3d
https://www.capturingreality.com/
https://www.capturingreality.com/
https://courses.csail.mit.edu/6.869/handouts/PAMIMeanshift.pdf
https://courses.csail.mit.edu/6.869/handouts/PAMIMeanshift.pdf
http://3dom.fbk.eu/sites/3dom.fbk.eu/files/pdf/Remondino_etal_UAV2011.pdf
http://3dom.fbk.eu/sites/3dom.fbk.eu/files/pdf/Remondino_etal_UAV2011.pdf
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://newsroom.intel.com/news/intels-hardware-software-solutions-enable-businesses-unlock-potential-aerial-data/#gs.830ex5
https://newsroom.intel.com/news/intels-hardware-software-solutions-enable-businesses-unlock-potential-aerial-data/#gs.830ex5
https://newsroom.intel.com/news/intels-hardware-software-solutions-enable-businesses-unlock-potential-aerial-data/#gs.830ex5

BIBLIOGRAPHY 51

[10] Intel. Intel Insight Platform. https://www.intel.com/content/www/us/en/

drones/solutions/intel-insight-platform.html, 2019. [Online; accessed 25-

April-2019].

[11] K. S. ARUN, T. S. HUANG, S. D. BLOSTEIN. Least-Squares Fitting of Two 3-

D Point Sets. http://www.math.pku.edu.cn/teachers/yaoy/Fall2011/arun.

pdf, 1987. [Online; accessed 28-April-2019].

[12] Krystian Mikolajczyk, Cordelia Schmid. A performance evaluation of local de-

scriptors. https://ieeexplore.ieee.org/document/1498756/, 2005. [Online;

accessed 26-April-2019].

[13] M. A. Fischler and R. C. Bolles,. Random Sample Consensus: A Paradigm for

Model Fitting with Applications to Image Analysis and Automated Cartography.

http://dx.doi.org/10.1145/358669.358692, 2011. [Online; accessed 1-May-

2019].

[14] Mark Patrick, Mouser. Capturing 3D Images with Time-of-Flight Camera Tech-

nology. https://www.allaboutcircuits.com/industry-articles/capturing-

3d-images-with-tof-camera-technology/, 2018. [Online; accessed 7-April-

2019].

[15] Michal Jancosek, Tomas Pajdla. Multi-view reconstruction preserving weakly-

supported surfaces. 2011.

[16] Mohit Gupta, Srinivasa G. Narasimhan, Amit Agrawal, Ashok Veeraragha-

van. Structured Light 3D Scanning In the presence of Global Illumina-

tion. http://www.cs.cmu.edu/afs/cs/academic/class/16823-s16/www/T3P5.

pdf, 2016. [Online; accessed 12-April-2019].

[17] Pavol �uri². Tvorba efektívnych algoritmov. PhD thesis, Faculty of Mathematics,

Physics and Informatics, UK, 2009.

[18] Photogrammetry News. Planning of Aerial Photography-Overlaps, Crab,

Drift, Scale, Image Movement, Height accuracy, Camera and others.

https://photogrammetrydevelopment.blogspot.com/2015/12/planning-

of-aerial-photography-overlaps.html, 2011. [Online; accessed 1-May-2019].

[19] prof. Lenore Cowen. The Travelling Salesman Problem (TSP). http://www.cs.

tufts.edu/~cowen/advanced/2002/adv-lect3.pdf, 2002. [Online; accessed 25-

April-2019].

[20] Richard Szeliski. Computer Vision: Algorithms and Applications. 2010.

https://www.intel.com/content/www/us/en/drones/solutions/intel-insight-platform.html
https://www.intel.com/content/www/us/en/drones/solutions/intel-insight-platform.html
http://www.math.pku.edu.cn/teachers/yaoy/Fall2011/arun.pdf
http://www.math.pku.edu.cn/teachers/yaoy/Fall2011/arun.pdf
https://ieeexplore.ieee.org/document/1498756/
http://dx.doi.org/10.1145/358669.358692
https://www.allaboutcircuits.com/industry-articles/capturing-3d-images-with-tof-camera-technology/
https://www.allaboutcircuits.com/industry-articles/capturing-3d-images-with-tof-camera-technology/
http://www.cs.cmu.edu/afs/cs/academic/class/16823-s16/www/T3P5.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/16823-s16/www/T3P5.pdf
https://photogrammetrydevelopment.blogspot.com/2015/12/planning-of-aerial-photography-overlaps.html
https://photogrammetrydevelopment.blogspot.com/2015/12/planning-of-aerial-photography-overlaps.html
http://www.cs.tufts.edu/~cowen/advanced/2002/adv-lect3.pdf
http://www.cs.tufts.edu/~cowen/advanced/2002/adv-lect3.pdf

BIBLIOGRAPHY 52

[21] Texas Instruments. Time-of-Flight Camera � An Introduction. Technical report,

Texas Instruments Incorporated, 2014. [Online; accessed 9-April-2019].

[22] Thaddeus Abiy, Hannah Pang, Beakal Tiliksew, Thaddeus Abiy, Hannah Pang,

Beakal Tiliksew. A* Search. https://brilliant.org/wiki/a-star-search/,

2016. [Online; accessed 24-April-2019].

https://brilliant.org/wiki/a-star-search/

	Introduction
	State of The Art
	Orthographic photogrammetry
	General path planning
	Intel’s Mission Control

	Plan3D
	Optimizing viewpoint trajectories
	Submodular voxel information
	Maximizing the submodular formulation

	Unmanned Aerial Vehicles
	Advantages of UAVs
	Disadvantages of UAVs

	Depth acquisition techniques
	Time-of-Flight camera measurement
	Structured light scanner

	Our work
	Background
	Feature detection and matching
	Structure from Motion
	Clustering algorithms
	Path finding algorithms

	Initial flight
	Camera positions
	Insufficient details
	Clustering
	Camera cone

	Flight Path
	Flight zone
	Paths between cameras
	Triangle inequality
	Metric TSP

	Implementation
	Capturing Reality`s SDK
	Simulation and Visualization
	Point cloud fitting
	Collision detector

	Experiments
	Boat example
	Castle example
	Temple example

	Conclusion

