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Abstrakt

Predpoveď ľudského správania a analýza davu sú jednou z najdôležitejších aplikácií
počítačového videnia. Nedávne pokroky v tejto oblasti ukazujú, že metódy hlbokého
učenia prinášajú zaujímavé výsledky, aplikované na problémy počítačového videnia.
V našej práci skúmame možné použitie týchto metód na problém predpovedania po-
hybu chodcov z videozáznamu zachyteného dozornou kamerou zameranou na verejný
priestor, ako sú stanice metra, vlakov alebo autobusov. Na predpovedanie budúcej
masky umiestnenia ľudí sme použili konvolučné neurónové siete. V našom prístupe sa
zameriavame na predpovedanie budúcich lokací chodcov iba z jednotlivých obrazkov
videa, kde naše modely nemajú žiadne informácie o predchádzajúcom pohybe chodcov.
Taktiež prezentujeme naše výsledky a poskytujeme rozsiahlu analýzu chýb natréno-
vaných sietí a problemu ako takého.

Kľúčové slová: predpoveď pohybu chodcov, predpovede správania ľudí, analýza
davu, hlboké učenie, neurónové siete, konvolučné neurónové siete, konvolučné enkodéry
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Abstract

Prediction of human behaviour and crowd analysis is one of the most important ap-
plications of computer vision. Recently, deep learning methods have been shown to
produce interesting results when applied to computer vision problems. In our work
we investigate possible application of these methods to the problem of predicting a
pedestrians movement from the video captured by surveillance camera capturing pub-
lic space, such as metro, train or bus stations. We used convolutional neural networks
to predict a future mask of pedestrians locations. In our approach we focus on pre-
diction of these locations from raw video frames where our models do not have any
prior information about each pedestrian movement. We present our results and provide
extensive error analysis of trained networks and the problem as such.

Keywords: pedestrian movement predictions, human behavior prediction, crowd
analysis, deep learning, neural networks, convolutional neural networks, convolutional
encoders
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Chapter 1

Introduction

In our work we will focus on a problem of pedestrian behavior modeling. We will try
to predict a future movement of individual pedestrians currently present in the scene
that is being captured with surveillance camera. Such a predictor then can be used
for pedestrian behavior analysis, classification of pedestrian behavior, surveillance or
outlier detection. One can predict future pedestrian paths and use this prediction to
classify pedestrian movement as outlier and alert to such a behavior.

Path prediction is a difficult task because pedestrian behavior and consequent move-
ment is influenced by many factors, such as other pedestrian moving across the scene,
large crowd groups present in the scene or other points of interest. This problem was
already addressed in the past with various techniques, but until the last decade this
problem did not receive enough attention. Recent advances in computer vision brought
interest to similar topics, for example, crowd analysis, crowd counting, behavior mod-
eling etc.

In recent years a lot of attention from computer vision community was also dedi-
cated to machine learning and deep neural networks. These models where used to solve
various tasks ranging from classification of objects in the scene [9] to answering human
given questions about pictures shown to the network [10]. Advances in this field also
led to applications of deep learning techniques for previously mentioned similar topics
where neural networks were used for crowd counting [3] or our task of pedestrian path
prediction [5].

The main theme in works focusing on our topic is a prediction of future pedestrian
locations from given exact previous pedestrian coordinates. This approach presents
a problem since information about each individual pedestrian location is usually very
hard to obtain and other techniques have to be used to extract individual pedestrian
coordinates. In many cases, techniques used for a such task of extracting pedestrian
coordinates, fail due to various factors related to the scene, for example, lighting condi-
tion, scene layout and perspective or high variance in pedestrian representation in one

1



CHAPTER 1. INTRODUCTION 2

image (pedestrians closer to the camera appear larger than pedestrians farther away).
We tried to solve this problem by using a deep convolutional neural networks that

were trained on previous raw frames extracted from a video captured by a surveillance
camera. We trained and tested our networks on a dataset proposed in [5], which is one
of the largest datasets dedicated to this topic. Our models did not get any information
about previous pedestrian locations and had to extract this information from frames
of surveillance video. Trained models had to also make prediction based on extracted
pedestrian locations. Using a convolutional neural network has many benefits as it
allows us to combine various factors influencing individual behavior into one model
that is also driven by the data. For example, convolutional neural network can use
its learned filters to extract features about current layout of the scene as well as find
each pedestrian location and try to predict future walking pattern in relation to this
information.

We structure our work as follows. In Section 2 we describe current body of literature
dedicated to previously mentioned topics of pedestrian behaviour modeling and crowd
analysis. In Section 3 we introduce some basic machine and deep learning methodology
to make our work more self contained. In Section 4 we analyze the dataset used in our
work as well as describe our data processing steps. In Section 5, we present architectures
of proposed and tested models. In Section 6 we present our results and provide detailed
error analysis of our approach.



Chapter 2

Related Work

Topics of predicting human behavior and crowd analysis gained traction in the past
decade, mainly because of the recent advances in computer vision. There has been a
large number of works focused on motion tracking, crowd counting, behavior analysis,
path planing, etc. Despite being a principal technique for various applications 1 and
consistent attention given to these topics by computer vision community, many of these
problems still remain unsolved. Although many advances in this field have been made,
there is still insurmountable gap between machine intelligence and human capability
to solve these problems [11]. One of the main topics in this field, which lately gained
popularity is pedestrian behavior modeling, which can be used for various applications
including behavior prediction [12], pedestrian detection and tracking [13, 3], crowd
motion analysis [14], abnormal detection [15] and pedestrian path prediction [5].

2.1 Pedestrian Walking Behavior Modeling

Modeling pedestrian behavior is a challenging task, because pedestrian path can be
influenced by many factors, such as decision making of individuals as subjects to “so-
cial force” [1] or by surrounding environment, for instance, by stationary or moving
pedestrians [12]. Another factor affecting pedestrians is historical motion statistics of
a scene.

2.1.1 “Social force” model

One of the first works in this field is [1], which introduces a model for describing
pedestrian decision making while walking. This model is called “social force” model
and is based on earlier works that try to model pedestrian behavior in terms of physics
of gases and liquids, such as gas-kinetic pedestrian model. This “social force” model is

1Such as surveillance, tracking, autonomous driving for instance.

3
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Figure 2.1: Graph of decision making of individual pedestrian based on “social force”
model, Helbing, et al. [1].

based on the idea that pedestrian behavior is not chaotic but governed by simple “social
forces” as internal motivations of certain movements (Figure 2.1). “It is suggested that
the motion of pedestrians can be described as if they would be subject to “social forces.”
These forces are not directly exerted by the pedestrians’ personal environment, but
they are a measure for the internal motivations of the individuals to perform certain
actions (movements)” [1]. Authors propose that the individual path is influenced by
three factors. First, person is motivated to reach certain destination as comfortable
as possible. This means that individuals tend to choose shortest paths without taking
any detours if there are no obstacles in their paths. This path will usually have a shape
of a polygon. Second, pedestrian is repulsed by other pedestrian, for instance, people
tend to feel more uncomfortable closer they get to other unknown person or group of
people. Pedestrians tend to also keep some distance from borders of walls or buildings.
Authors model this repulsive behavior as an ellipse around each person. Third, person
is attracted to points of interest, such as, friends, street artists or window displays.
Each of these “forces” is expressed as mathematical equation. The “social force” model
is then constructed by combining all of these equations with some fluctuation term,
which is introduce to cope with fluctuations in individual pedestrian behavior.

2.1.2 Motion statistic models

While “social force” model can predict a path based on pedestrian decision making,
it doesn’t take into account historical motion statistics of a scene. There have been
many works focused on this part of a problem. Many of these works used probabilistic
models such as Bayesian networks or Hidden Markov Machines to generate flow maps
of the scene and to extract and categorize different activities. In [16] authors present
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Figure 2.2: Cluster trajectories used model by Dual-HDP, X. Wang, et al. [1].

novel approach to trajectory clustering as methods to learn motion from the given
scene. Authors propose a framework for unsupervised trajectory analysis and seman-
tic region modeling using nonparametric Bayesian model - Dual Hierarchical Dirichlet
Processes (Dual-HDP). This is done by treating trajectories as documents and individ-
ual observations on the trajectories as words. Trajectories and semantical regions are
jointly modeled in Dual-HDP and learned using Dirichlet Processes. Found trajecto-
ries are then clustered based on the same semantical regions (Figure 2.2). Authors use
this process to detect abnormal activities in surveillance settings. In [2] authors also
construct flow map of the scene (Figure 2.3) by running rotation invariant multiview
face detector proposed in [17]. This detector is used on individual frames of the video
where over a number of frames constructs a probability map, which is then again used
to guide the face detector. This is done by firstly setting the whole frame to have an
equal probability of finding a top part of a human body. This probability is then slowly
reduced to flow regions. Authors use head and shoulder detector to find only top parts
of a human body as it is the most distinguishable part and also partly address the
problem of occlusion that is commonly present in surveillance settings.

2.2 Machine learning

With growth of computer science and increase of computational power in recent years,
the field of machine learning became one of the most desired and fastest growing fields
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Figure 2.3: Constructed flow map of the scene model by multiview face detector, Xing,
et al. [2]

in computer science. Its core idea is to create a model that is able to extract information
from historically known data (datasets) and based on this data is able to correctly make
prediction, classify the data or find previously hidden structures in the data. There
has been much new advancement in this field in the past decade that revolutionized
this field and made it more popular.

2.2.1 Behavior modeling

Work [12] is based on this principle, where authors used main concepts of “social force”
models together with learnable parameters from data. Similarly to [1], authors propose
three forces that influence pedestrian behavior while moving through the scene. First is
a scene layout, there are many obstacles that can’t be crossed. These obstacles generate
repulsive force on pedestrians while moving trough the scene. Next, authors propose
that pedestrian, as in “social force” model, is influenced by other moving pedestrians,
which also generate some repulsive force. Last force exerted on a pedestrian is by
stationary crowd groups, which are present in the scene. This work mainly focuses on
the last aspect.

The authors speculate, that pedestrians are mostly influenced by stationary crowd
groups that naturally form in the scene. Another difference between previously men-
tioned “social force” model (Section 2.1.1), is the absence of attractive force which
drives people closer to points of interest in the scene. Every force that influences each
pedestrian is then modeled by equations similar to those in “social force” model and is
weighed by parameters θ1, θ2, θ3 respectively. These parameters are learned from data.
Based on this authors construct general energy map M , that can be represented also
as probability map of how likely is a pedestrian to walk through that spot in the scene,
for example, obstacle in the scene that can not be crossed will have energy 0. Also
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pedestrians that walk through the crowd groups are penalized. For this purpose the
last parameter, group density weight θ4 is introduced.

Since behavior of every pedestrian can be different, energy map MP of every in-
dividual pedestrian is constructed. Parameter P , is first estimated based on previous
data and similarity of walking patterns and trajectories. All the pedestrians can be
classified into three categories based on their walking behaviors: aggressive, conserva-
tive, and abnormal. Aggressive pedestrians prefer to walk directly to their destinations.
Conservative pedestrians prefer to walk longer paths to avoid close contact with oth-
ers. Pedestrians who take long routes to their destination and also conservativeness
no longer properly describe behavior of these pedestrians are classified as abnormal.
Constructed maps are then used to predict paths of each individual. Based on simi-
larity between the predicted path and true movement, abnormal behavior is detected.
Authors also show from learned weights that stationary crowd groups have highest
influence on pedestrians behavior and his/her walking patterns. Another contribution
of this work is a large dataset of crowd scenes.

2.3 Deep learning

In recent years there has been a lot of attention dedicated to deep learning and to
neural networks in general. Recent advances made it possible to train deeper models.
Attention given to this topic sparked the creation of large datasets as well as the new
and robust features and new models.

For instance, [14] constructed one of the largest and robust crowd scene datasets
consisting out of 10000 videos from 8257 crowded scenes, and building an attribute
set with 94 attributes that were used to label scenes depicted in given videos. They
also constructed a deep convolutional neural network for labeling given scenes and
proposed new features which can be extracted from individual frames of the video
and can better describe the scene. These new features served as input to this model.
Authors also created a study to evaluate human performance on the constructed dataset
and compared it to their trained model.

Another dataset was proposed in [3] which focuses on crowd counting from single
image. The dataset consists out of 1198 images with 330000 annotated heads. It is one
of the largest datasets collected for this purpose to this date.

2.3.1 Crowd counting

Many of the works in the current body of literature, such as [2], use detector based
crowd counting. People typically assume that a crowd is composed of individual entities
which can be detected by some given detectors. The limitation of such detection-based
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methods is that occlusion among people in a clustered environment or in a very dense
crowd significantly affects the performance of the detector. Most frequent approach to
crowd counting is the use of feature-based regression. The main step of this approach
consists out of segmenting the foreground, extracting features from the foreground and
utilizing a regression function to estimate the crowd count. These methods yield decent
performance even with simple models such as linear regression. Or if they utilize a more
complex model they usually require additional information about the scene.

Authors in [3] propose new Multi-Column Convolutional Neural Network (MCNN)
for the problem of crowd counting. There are generally two approaches to crowd
counting using neural network models. First, models whose input is an image and
expected output is a headcount. Second approach is to use density map, from which
headcount can be derived. Model takes image as input and produces density map as
output. Authors choose the second approach because of two key advantages. “Den-
sity map preserves more information. Compared to the total number of the crowd,
density map gives the spatial distribution of the crowd in the given image, and such
distribution information is useful in many applications.” And secondly, “In learning the
density map via a CNN, the learned filters are more adapted to heads of different sizes,
hence more suitable for arbitrary inputs whose perspective effect varies significantly.”
Since proposed dataset contained only label heads, authors also proposed a method
for translating labels into a density map which is used as target variable in training of
the MCNN. Each pixel in the image that contains a head is represented by some delta
function δ. This is then convolved with a Gaussian kernel with parameters σ, which
is based on the size of the head for each person within the image. This parameter is
introduced to estimate geometric distortion caused by distortion between the ground
plane and the image plane.

The model proposed in this paper is a stack of Convolutional Neural Networks
(Figure 2.4). Each consists of 4 layers (conv-pool-conv-pool). Every network has filters
of different size. These smaller networks are then stacked in column architecture and
the outputs are merged together to produced a final density map. Each network was
first trained separately by mapping the input directly to density map. After combining
these models into one network with a final merge layer, the whole network was then
fine-tuned on the proposed dataset. This architecture was chosen mainly based on
the fact that many scenes contain heads of different sizes. This fact is represented
by different sized filters for every smaller network. This is also due to the geometric
distortion in the image, that also produces heads of different size.

The proposed architecture has main advantage against a single CNN. It can be
easily adapted to different sets of conditions (head of different sizes based on different
scene geometry), mainly due to the filters of different size that corresponds to different
head sizes. Authors train this model on their proposed dataset and tested it on previ-
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Figure 2.4: Architecture of Multicolumn Convolutional Neural Network proposed by
Y. Zhang, et al. [3]

ously known smaller datasets. They experimented with different approaches to transfer
learning their model. Results were better than previously proposed state-of-the-art on
individual datasets. This also shows that proposed network is easily adaptable to
different conditions despite its simplistic design.

2.3.2 Pedestrian detection

In [4] authors used multi-spectral images and Fast R-CNN to detect pedestrians. Au-
thors test 4 architectures of convolutional neural networks on Caltchet pedestrian de-
tection datasets, which all four achieve state-of-the-art performance. First was vanilla
CNN which was also used as baseline detector. Next, authors propose Fast R-CNN
models that fuse together information from RGB image and thermal images. Three
models are proposed each fusing these two sources of information at different feature
level (Figure 2.5). Low-level feature fusion model, merges information right after the
first convolutional layer. Mid-level feature fusion model (Halfway fusion), uses two
branches of basic CNN block to extract from both RGB and thermal image mid-level
features (C4-features) and then used Network-in-Network (NiN) to fuse them together.
Last model, high-level feature model, uses F7-features of both RGB and thermal im-
ages, which merges fully-connected features together. F7-features are conventionally
used as new representations of objects. All of these networks are reported to achieve
state-of-the-art performance on Caltech dataset. It is worth noting that to authors’
best knowledge Fast R-CNN were not used for pedestrian detection before. From ex-
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Figure 2.5: Three proposed architectures of Multispectral Fast R-CNN proposed by
Liu, et al. [4], each merging two sources of input at different feature level. Low-level
feature fusion model (left), halfway fusion model (middle), high-level feature model
(right).

periments best results yielded Halfway model, which outperformed by small margin
two other proposed fusion models.

2.3.3 Pedestrian path modeling

While previous methods all focused on few of the previously mentioned aspects of
pedestrian behavior, in [5], authors combine all of these aspects of behavior modeling
into a single convolutional neural network. Authors argue that the main problem with
pedestrian path prediction using neural networks is how to efficiently encode walking
information of pedestrians in scene throughout multiple frames. Straightforward way
by using dense optical flow maps to describe motions of a whole frame will lead to
ambiguities when merging and splitting events happen frequently in crowded scenes.
That is why special pedestrian path encoding scheme is introduced in this work. Ev-
ery pedestrian path throughout a set of frames up to some time tm is expressed as
a vector. These vectors are then encoded into displacement volume that is used as
input to newly proposed convolutional neural network (Figure 2.6). The volume vec-
tors consist of normalized spatial (x and y position in the frame) information xmi of
individual pedestrians, where m ∈ t1, . . . , tm and i ∈ 1, . . . , N where N is the number
of pedestrians present in the frame. Each position xmi is normalized by the width and
height of the frame. This then creates di ∈ R2M for every pedestrian i. Input to CNN
is then 3D displacement volume of size RX×Y×2M based on di.

Authors then propose Behavior-CNN (Figure 2.6) that takes this input and pro-
duces same displacement volume but at times tM + 1 . . . tM +M which are future time
points to predict. Behavior-CNN contains three bottom convolution layers, one max-
pooling layer and an element-wise addition layer, three top convolution layers, and one
deconvolution layer. Convolutional layers are followed by ReLU nonlinearity. Due to
high sparsity of the input data new layer-to-layer learning scheme is propose. To avoid
the possibility that the network may converge to a bad local minimum, if all the pa-
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Figure 2.6: Architecture of Behavioral CNN proposed by S. Yi, et al. [5]

rameters are trained together, a simpler network with three convolution layers is first
trained until convergence. Afterwards, the trained convolution layers are used as the
bottom layers of Behavior-CNN. The remaining layers are then added. Lastly, all the
layers are jointly fine-tuned.

The network was trained on two datasets with annotated walking paths and eval-
uated against state-of-the-art models. The network outperformed all state-of-the-art
models on both datasets. Authors also added bias map of the scene to the input so
that the network can more easily extract layout of the scene. This helped the network
achieve lower error but hindered model transfer ability.

Location awareness property of the network was also tested. This experiment is
conducted to test if the network has location invariant property. All of the testing
samples are flipped horizontally and/or vertically. If predictions of the model has
location invariance, flipping all the pedestrian paths at all spatial locations, in the
same way, will not make difference on prediction errors. However this was not the case
since testing error increased when images were flipped. Authors argue based on these
results that different locations have different dependence on moving directions.

Authors also provide a deep analysis of the trained network as well as lower and
high-level features. They also argue that pedestrians are highly influenced by other
people in the scene. This is demonstrated by testing other network architectures with
smaller filter sizes. Where networks with larger filters outperformed networks that had
smaller filters. This is to show that larger filters can capture more information around
pedestrians and capture activities around them which leads to better performance over
all. Current filters are 10% of the scene. Authors also analyze filters at different depth
of the Behavioral-CNN. They show that stationary groups also highly contribute to
ones decision making when walking through a scene. Filters corresponding to higher
level features, show high activation response to stationary pedestrians or groups of
pedestrians. Filter corresponding to lower level features slowly learned to distinguish
different motion patterns and spatial location for pedestrians in the scene.

In test settings, paths that where used in displacement volume where extracted
with Kanade–Lucas–Tomasi (KLT) feature tracker [18]. Network was as part of the
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Figure 2.7: Paths proposed by Behavioral CNN, S. Yi, et al. [5]

experiment also trained on only paths extracted from KLT tracker. Although the error
of the network was higher it was not by a large margin and the network still made
correct predictions and displayed ability to correct fragmented or early terminated
trajectories that is often case with KLT tracker. In current settings the best proposed
model predicts trajectories of individual pedestrians 5 time points (4 seconds) ahead
(Figure 2.7). Long-term prediction can be made by recurrently using predicted volumes
as input to the network. The network was also evaluated in destination prediction.
The destination is determined as the nearest exit to the predicted future walking path.
Behavioral-CNN also achieved state-of-the-art results where it achieve Top3 accuracy
of 84%.

As part of this work we try to replicate the results. Unfortunately, we were unable
to train the proposed network and therefore replicate the reported results. The main
reason was, as mentioned before, high sparsity of the input data that is construed by
proposed encoding. This led to the network that learned to predict only zeros even
when trying aformetioned layer-to-layer greedy learning scheme. The network after the
first couple of iterations set all weights to zero and learning stopped. We also think,
that proposed encoding, although being good for encoding pedestrian movement does
not capture all the aspects of the scene. The scene is only represented by learnable
bias map. This might underrepresent the true dynamics of the scene. Also, the prepro-
cessing step uses, during test time, a KLT feature tracker which might extract various
other interesting points from the scene and skip the walking pedestrian. The network
is never trained to find individual pedestrian, only to repair mistakes made by the KLT
and therefore is very depended on the performance of the tracker.

The main contribution of our work is to somewhat combine two of the proposed
methods. Our goal is to merge Behavioral-CNN proposed in [5] and Multi-Column
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Convolutional Neural Network proposed in [3] to remove the need of constructing
displacement volume of all spatial location of all pedestrians present in the scene as
input to our convolutional neural network. And train the network from raw frames,
were network will be able to extract individual locations of the pedestrians and predict
their movement. We believe this could then simplify the process of pedestrian path
prediction.



Chapter 3

Methodology

Methods utilizing historical motion statistics of a scene often lack decision making
process of pedestrian that is provided, for instance, by using “social force” models or
other agent based models [19]. On the other hand, methods utilizing internal processes
of pedestrian moving through the scene, lack the deeper understanding of the layout
present in the scene. Many works in current body of the literature focus on one specific
part of a problem while ignoring other aspects. In this work we are going to focus on
machine learning approach to this problem. Machine learning can be used to extract
and combine multiple aspects of the problem. More specifically in this work we are
focusing on Deep Convolutional Neural Networks.

In recent years there has been a lot of attention dedicated to deep learning and to
neural networks in general. We will discuss some basic methodology in this section.
The aim of this chapter is not to explain the neural networks and deep learning in
detail, but rather to briefly describe, repeat and approach each of the concepts of deep
learning to make this work more self contained. Therefore, we expect the reader to
have basic understanding of machine learning concepts, gradient based optimization
and neural networks. More thorough explanation of these concepts can be found in [7].

3.1 Neural networks

Feedforward neural networks, or multilayer perceptrons (MLPs) represents one of the
basic and yet one of the most powerful models of deep learning or rather machine
learning in general. They are a basis for many commercial applications, for example,
deep convolutional neural networks are used for object detection and recognition or
recurrent neural networks are used for language translation or sentiment analysis.

The main purpose of a neural network is to approximate some arbitrary function f ′.
For basic classification problems these network define a mapping of some input x to class
y as y = f(x; θ), where θ are parameters that network learns through gradient based

14
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optimization to achieve best approximation. The networks are also called feedforward
because the information flows in forward fashion through the function, meaning it flows
from x through intermediate computations of the network to define f .

The neural network typically consists of many different functions stacked upon
each other. In other words, one of the main reasons they are called networks apart
from neurological similarity, is that the model is a directed acyclic graph (network)
describing how individual functions are chained together. These individual function
are called layers. First function in the graph is called input or the first layer, second
is called second layer and so on. The last function in the network is called output
layer. The final function is then computed by chaining these function together f(x) =

f (1)(f (2)(. . . (f (n)(x))). We also refer to the total number of layers as depth of the
network. The layers which are in between the input and the output layer are also
called hidden layers. This name comes from the fact that when training the network
the data does not provide desired output to each of the layers and learning algorithm
must decide how to adjust each layer in order to best approximate the function f ′.

Each layer consists of units representing vector-to-scalar function. These units act
in parallel and are called neurons. This is due to their resemblance to neurological
neurons. The neural part of the name stems from this neurological context. The
resemblance comes from the fact that each neuron computes its activation which is
a vector-to-scalar function, similarly to biological neuron. This function represents
neuron excitation. In other words, how much the given neuron responds to particular
input. Formally, this is done by computing

y = f(~wx)

where w is called a weight of the neuron and provides importance mapping from input
to output. The function f is called activation function and usually is nonlinear
function, for example, a sigmoid function was often used. These neurons are then
organized into layers and weights of each neuron can then be put into a matrix. This is
very efficient since we can now compute each neuron activation in the layer by vector,
matrix multiplications

~y = f̂(W Tx)

where W are called layer weights. The networks were historically guided by neuro-
science. Although, modern neural networks steer away from this trend and are rather
guided by mathematical and engineering disciplines.

For regular neural networks, the most common layer type is the fully-connected
layer in which neurons between two adjacent layers are fully pairwise connected, but
neurons within a single layer share no connections (Figure 3.1). Connections in between
neurons in the same layer are called lateral connections. In the design of the network
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Figure 3.1: A 3-layer neural network with three inputs, two hidden layers of 4 neurons
each and one output layer[8].

there are multiple parameters that are arbitrarily chosen prior to training and are
usually based on experiments with the network. We called these hyper-parameters.
In typical feedforward network we choose the depth of the network, number of units per
each layer also called width of the network. Each neuron has its activation function
which are commonly non-linear functions.

Unlike all other layers, the output layer neurons typically do not have assigned any
activation function (or we usually think of them as having a linear identity activation
function). Output layer is usually taken to represent the class scores (e.g. in classifica-
tion), which are arbitrary real-valued numbers, or some kind of real-valued target (e.g.
in regression) and therefore we do not introduce any non-linearity to these layers2. The
neural networks usually learn (update layer weights) through the process called back-
propagation. This process is done with use of computational graphs. Description of
this process is beyond the scope of this work and thorough explanation can be found
in [7]. It is also worth noting that neural networks with at least one hidden layer with
non-linear activation function are universal approximators of continuous functions on
a discrete set of points [20].
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Figure 3.2: A simple perceptron with weights w1 . . . wn taking input x1 . . . xn and
producing output activation z.

3.2 Units

3.2.1 Perceptron

Perceptrons were developed in the 1950s and 1960s by the scientist Frank Rosenblatt,
inspired by earlier work by Warren McCulloch and Walter Pitts. It is the basic artificial
neuron. A perceptron, as shown in Figure 3.2, takes several binary inputs x1, x2, . . . xn
and produces a single binary output. To compute the output of the perceptron we
use weights, which are real numbers, w1, w2, . . . wn, weighing importance of respective
inputs to the output. The neurons output, which can be 0 or 1 is then determined
whether the weighted sum

∑
j wjxj is greater or lower then a given threshold.

output =

0 if
∑

j wjxj ≤ threshold

1 if
∑

j wjxj > threshold
(3.1)

Single perceptron can be thought of as a device that makes decision based on
weighing up different inputs to the simple problem or also logical gate - a device that
can compute elementary logical functions, AND, OR, NAND, etc. In the modern sense
a perceptron is a binary classifier that maps its input ~x (a real-valued vector) to a
single binary value. We can obtain the most common form of perceptron occurring in
modern neural network literature by rearranging the equation shown in Figure 3.1 as
follows

2In deep neural networks it is common practice to set number of output neurons to be equal to
number of classes (for classification tasks) and then use softmax nonlinearity on top of these neurons.
Each neuron then predicts a probability of individual class assigned to it with values ranging from 0
to 1.
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(a) OR
(b) XOR

Figure 3.3: Simple boolean function separated by a one and two lines representing a
decision boundaries separating classes.

output =

1 if
∑

j wjxj + b > 0

0 otherwise
(3.2)

where w are weights, x is the input and b is called intercept term or more commonly
know as bias. This term acts as offset that shifts the decision boundary and its inde-
pendent from the input. We can view a single perceptron as the simplest feedforward
network. It can correctly classify linearly separable problems. By stacking multiple
perceptrons we get multi-layer perceptron and thus extend set of problems it is capable
of solving. For instance, the single perceptron is capable of solving simple boolean ex-
pression separable by a single line as shown in Figure 3.3a. More complicated boolean
expressions where individual classes can not be separated by a single linear line, such
as, XOR are solvable by stacking two or more perceptrons on top of each other, as shown
in Figure 3.3b.

In the context of neural network we stack many of these or similar neurons often
accompanied by non-linear activation functions into layers to solve complex problems.
One of the main reasons networks are organized into layers and main advantage is that
we can then compute these calculation in matrix vector operations. Individual weights
of neurons are organized into matrices and bias into vector of real numbers. Also the
input can now be a vector that holds multiple training examples and thus speeding up
the gradient optimization. The forward pass of a fully-connected layer corresponds to
one matrix multiplication followed by a bias offset and an activation function.

~y = f̂(W Tx+~b)

where W are layer weights, f is an activation function, b represents the bias vector and
x is input to the layer.
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(a) Sigmoid function (b) hyperbolic tangent function

3.2.2 Sigmoid units

Sigmoid unit is a standard neuron similar to perceptron with sigmoidal activation
function. Instead of being just 0 or 1 as perceptron, its outputs can take on any values
between 0 and 1. Sigmoid function is used to represent the probability distribution
over binary variable. We can think of sigmoid neuron as consisting out of two parts.
First the standard linear computation

z = wTx+ b

where w is a weight of the unit b is bias and x is input to the unit. Second, it uses
sigmoid activation function to convert z into probability by computing sigmoid (logistic
function) defined as follows

σ(z) ≡ 1

1 + e−z

Sigmoidal units - saturate when z is very positive - saturate when z is very negative
(Figure 3.4a). They are only very sensitive when z is close to 0. This widespread sat-
uration has proven difficult in terms of gradient based optimization. In larger network
this leads to phenomenon called vanishing gradient, where a gradient flowing through
the network becomes very small and learning effectively stops. For this reason their use
in more modern neural networks is discouraged and sigmoidal units are often replaced
by hyperbolic tangent function, since tanh(z) = 2σ(2z)− 1.

In practice it was shown that hyperbolic tangent performs better. The function
resembles more identity function near 0 (Figure 3.4b). Therefore, in certain cases it
resembles more training a linear model which makes gradient optimization easier. The
sigmoid function has seen frequent use historically since it has a nice interpretation
as the firing rate of a neuron: from not firing at all (0) to fully-saturated firing at an
assumed maximum frequency (1).

3.2.3 Softmax units

These neurons use as their activation function softmax function. Softmax units
naturally represent a probability distribution over a discrete variable with n possible
values. So this type of units acts as some sort of a switch. Their are most commonly
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used in the output layer but can be in certain cases used inside the model itself as units
of hidden layers. For instance, if we wish the model to choose from different classes.

Another way to look at the softmax is as a generalization of sigmoid function
which represents a probability of a distribution over a binary variable defined as ŷ =

P (y = 1|x). Softmax then can be defined as ŷi = P (y = i|x). The softmax function
also consists out of two components. First, a linear layer predicts unnormalized log
probabilities for each class by computing z = W Th + b. The softmax function then
exponentiates this logarithm and normalizes the output to obtain desired ŷ. Softmax
is formally defined as

softmax(z)i =
exp(zi)∑
j exp(zj)

(3.3)

where zi is the output of linear layer for ith class while j goes through all the classes.
Softmax units still can saturate and therefore it is numerically unstable. But the
softmax function responses to difference between its outputs not on the output itself

softmax(z) = softmax(z + c)

where c is a constant. Using this property one can derive a numerically stable variant
of the softmax

softmax(z) = softmax(z −max
i
zi)

Even though the unit can became saturated we can show that it does not suffer from
vanishing gradient problem, that was present in sigmoid unit, by using log to undo the
exp function which results in the following

log softmax(z)i = zi − log
(∑

j

exp(zj)
)

(3.4)

as we can see the first term of the input zi will always have a direct affect on the input
and therefore this term can not became saturated and learning can proceed even if
the contribution of the second term becomes very small. From neurological point of
view we can think of softmax as a competition between nearby neurons. When output
of one neuron increases the output of other must decrease since softmax always sums
up to 1. This kind of winner-take-all completion between nearby neurons is believed
to exists in the cortex of the brain and is wired into many more biologically plausible
models, such as Self Organizing Maps [21].

3.2.4 ReLU units

The Rectified Linear Unit is another type of artificial neuron that has become very
popular in the last few years, mainly in image processing community. They were first
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Figure 3.5: The Rectified Linear function

introduced in deep learning context in [9]. Now, the ReLU units or their variants are
almost exclusively used in most of the convolutional neural networks, generative models
and inside many more. The output is computed by function

f(z) = max(0, z) (3.5)

where z is linear activation computed as

z = wTx+ b

where w is a weight of the unit b is bias and x is input to the unit. To put it simply, the
neurons linear activations are simply thresholded at zero (Figure 3.5). Units similarity
to basic linear units makes it very easy to optimize. Gradients flowing through the
units are large and steady throughout. It has been found that ReLU units can greatly
accelerate the convergence of stochastic gradient descent compared to the sigmoid
functions. One major drawback of ReLU units is that they can “die” during training,
meaning that a large gradient flowing through a ReLU neuron could cause the weights
to update in such a way that the neuron will never activate on any datapoint again. If
this happens, then the gradient flowing through the unit will forever be zero. Another
drawback, is the ReLU units can not learn via gradient base optimization, for training
examples whose activations are zero. Several variations of ReLU exist and try to solve
these issues, e.g., leaky ReLU [22] or parametric ReLU [23]. Most of them performer
comparably, but their computational cost is higher.

3.3 Dropout

One of the most used regularization techniques in modern neural networks is method
called Dropout [6]. We can think about dropout as a very computationally efficient
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Figure 3.6: An example of thinned net after applying dropout [6]

method of bagging (Bootstrap Aggregation) ensemble of even very large models. With
bagging we train multiple models and evaluate these models on each test example.
Bagging is so called “meta-algorithm” that reduces variance of the models. It is a tech-
nique that combines predictions from multiple machine learning algorithms together
to make more accurate predictions than any individual model. Concretely, we train k
models and construct k different dataset that are sample from original dataset with
replacement. Then the model i is trained on dataset i. For example, bagging is used
together with decision trees to reduce their inherently high variance.

This by the current definitions of bagging seems impossible with deep learning mod-
els that can consist out of tens of layers. To train and evaluate tens of models would
require extensive computational power, time and memory. Dropout aims to approxi-
mate this process. The main difference between dropout and bagging is that different
models share their parameters which is not the case with bagged ensemble models. It
is also worth noting that even though ensembles are often used in in conjunction with
neural networks (usually five to ten, as used in [24]) it is not on the same scale as with
usual bagging where it is common to see hundreds of models.

Dropout provides cheap approximation of training and evaluating exponentially
many bagged ensembles of neural networks. It is also an inexpensive regularization
for a wide family of models. Specifically, dropout trains ensemble of subnetworks,
that can be constructed from underlying base (parent) network, by removing some of
its non-output units, as illustrated in Figure 3.6. In current architectures of neural
networks this can be achieved by simple multiplication of the units output by zero.
This requires slight modifications to the training algorithm, but has been empirically
shown to increase the performance. At the train time for every loaded example we
randomly sample a binary mask for all input and hidden units. This mask is sampled
independently for each unit. The probability of the unit being activated (sampling a
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mask value equal to 1) is a hyper-parameter of the network and it is chosen prior to
the training. Typical setting of probability - for input unit to be included is 0.8 - for
hidden unit to be included is 0.5.

Forward propagation step remains the same. We have to keep track of all the
units and their mask because at the backpropagation, gradient cannot flow through
the drop units. This might take O(n) memory, where n is the number of units, while
we get to the backpropagation stage. Main advantage of dropout is that it is also
very computational cheap. It also takes O(n) computations per example per update,
to generate n random samples and multiply activations of the units. Other significant
advantage of dropout is that it can be applied to a wide variety of models without any
modifications to the algorithm or any significant modification to the model itself.

At the test time we do not want to generate the mask and keep dropping the
neurons. So at the test time every neuron sees every input. This presents a problem in
term of strength of activations. For example, if we dropped the units during training
with probability p = 0.5 then the strength of the signal coming into the units is
multiplied by factor of 2 during test time. Therefore, we have to scale the activations by
the probability p during testing. But performance during testing is crucial. Optimally
we would want to perform the scaling during the training and leave the testing part
untouched. This is called inverted dropout and it multiplies each active unit by 1/p

at the training to boost the strength of the activation. Then at the test time each unit
is getting approximately the same signal strength.

Since the first introduction of the dropout there has been a lot of research devoted
to understanding its properties and its similarity to regularization [25]. Dropout falls
into a more general category of algorithms. The main theme of these algorithms is to
introduce stochastic behaviour to forward pass of the network during training. One
example of research devoted to these algorithms is a algorithm similar to dropout called
Drop connect, where a random set of weights is instead dropped during the forward
pass [26].

Dropout can be described not just as an approximation to bagging in models with
distributed representations. Dropout does not train just bagged ensembles of models
but ensembles of models that share hidden units. This means, together with the fact
that we are dropping random units that models learn stronger features, because, each
unit has to be able to correctly perform its function without relying on any other unit.
To put it in other words, to be able to be swapped for any other unit in the network
and perform the same function. This leads to units not only having good features
but rather features that perform well in many contexts. In [27] they compare features
learned through dropout and features learn with ensemble of independent models.
Dropout offers additional improvement over individually learned features. The power
of dropout comes from this fact. The features learned through this method have to
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be universal. For example, if we train a model to recognize a face, it might do so by
training some unit to recognize nose. While using dropout this unit might be dropped
and the model has to train another unit to replicate this dropped unit or to learn other
features that help it correctly identify face in other units, such as, mouth or eyes. This
makes the models more robust and perform better. “This can be seen as form of highly
intelligent, adaptive destruction of the information content of the input rather than
destruction of the raw values of the input” [7].

It is important to note that this is different from just adding noise to the input.
By simply adding noise we can not erase nose representation in the model and force it
to leverage all accumulated information so far to make correct prediction. Lastly, the
noise added through dropout is multiplicative not additive. If the noise were additive
with fixed scale than units activation might just become large enough to make noise
insignificant. This is not the case with multiplicative noise and dropout does not suffer
from such a problem.

3.4 Learning algorithms

In this section we will discuss basic gradient based optimization techniques used for
training of neural networks.

3.4.1 Gradient descent

In standard machine learning gradient optimization we continuously evaluate a loss
(cost) function, which is a measure how “wrong” is our prediction. We then compute a
gradient of this loss function and perform a parameter update. This is called gradient
descent, because we are moving opposite of the gradient and therefore descending to
local optima. In case of neural network update is performed by propagating a gradient
throughout the network in back-to-front fashion and updating weights of each layer.
As previously mentioned this is called backpropagation. A basic version of gradient
descent algorithm is sometimes also called vanilla gradient descent. Each step, or in
other words parameter update, is performed after evaluating entire dataset and then
computing gradient on loss function.

θ = θ − α∇θJ(θ)

where θ is parameter vector, J(θ) is a cost function, ∇θJ(θ) is the gradient of the cost
function w.r.t. the parameters θ and α is a the learning rate.

In large scale machine learning problems, where datasets can have millions of train-
ing examples, evaluating a loss function and then computing gradient to perform only
a single parameter update becomes unfeasible. We can therefore modify this algorithm
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(a) Optimization with standard gradient
descent

(b) Optimization with momentum.

Figure 3.7: Optimization with SGD and Momentum SGD. The contour line depicts a
quadratic function. Arrow in (b) at each step indicate the size and direction a standard
SGD would take [7].

to perform parameter update after each training example. This is called stochastic
gradient descent (SGD). This modification causes gradient to “jump around” in pa-
rameter space since every example has direct influence on the size and direction of the
gradient. We can mitigate this by computing an unbiased estimate of the gradient,
by taking the average gradient on a minibatch of m examples randomly drawn from
the data distribution. This is called minibatch stochastic gradient descent and
is most used optimization algorithm in today’s neural networks. The m becomes a
hyper-parameter of neural network, fewer examples cause gradient to “jump around”
more. With an increasing number of training examples in a minibatch this effect is
weakened but each step takes longer to evaluate. In this stochastic setting choosing a
good learning rate is crucial, since SGD introduces a source of noise (random sampling)
that does not vanish even when we arrive at the local optima. Therefore it is common
in practice with each iteration to decrease a learning rate.

The gradient from a minibatch is a good approximation of the gradient of the full
objective. Therefore, much faster convergence can be achieved in practice by evaluating
the minibatch gradients to perform more frequent parameter updates. Often times the
minibatch prefix is omitted in practice and is referred to minibatch stochastic gradient
descent as simply stochastic gradient descent or SGD. In next subsections we will look
at some improvements on this algorithm that help even more with faster convergence
and problems often encountered in gradient descent optimization, such as saddle points
or flat surfaces.
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3.4.2 Momentum

Momentum is a modification of standard SGD algorithm that almost always enjoys
better convergence. The method of momentum [28] was designed to help learning in
high curvature space, or small but static or noisy gradients. The momentum gradient
descent accumulates gradients and moves along in their direction, as shown in Figure
3.7b. This can be motivated from physics point of view. Where loss function represents
a hilly terrain. A random initialization can then be seen as placing a particle somewhere
in this terrain with zero velocity and optimization process as rolling this particle down
the hill. The force felt by the particle is precisely the (negative) gradient of the loss
function. More formally, F = ma, where m is mass of the particle in our case assumed
to be 1 and a is acceleration of the particle. This view then suggests that the movement
of the particle is only influenced by the velocity. Therefore, momentum algorithm does
not update parameters directly. Rather it introduces a variable v which is a decaying
sum of previous values and is also modified by current step in the space

vt = µvt−1 − α∇θJ(θ)

where α is learning rate, θ parameter vector, ∇θJ(θ) is the gradient of the cost function
w.r.t. the parameters θ and µ is hyper-parameter specifying the amount of exponential
decay. Then parameters are influenced by velocity vector θ = θ + v. This is different
from standard SGD in a way that now the size of the steps depends on the size and
alignment of the gradients. The step is going to be largest where many consecutive
gradients will point in the same direction. The µ parameter can be interpreted as
friction slowing down the particle. Otherwise the particle would never come to stop.

Nesterov momentum is a slight modification on momentum update [28]. It is
based on Nesterov accelerated gradient method [29, 30]. It has stronger theoretical
convergence guarantees for convex functions and also often times works slightly better
in practice than basic momentum. The main difference is in the point where a gradient
is evaluated. In Nesterov momentum, gradient is evaluated after current velocity is
applied. This is similar as adding a correction factor to standard momentum update.
Another way to look at this update is that in standard momentum update, we know
that momentum term is going to be nudged by µv. So we can treat θ + µv as “look-
ahead”. We are surely going to end up in vicinity of this point therefore it makes sense
to evaluate gradient at this “look-ahead” location (Figure 3.8). The full update is then

vt = γvt−1 + α∇θJ(θ − µvt−1)

θ = θ − vt

where α is the learning rate, θ is the parameter vector, ∇θJ(θ − µvt−1) is the “look-
ahead gradient of the cost function w.r.t. the parameters θ and γ is the amount of
decay applied.
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Figure 3.8: Momentum and Nesterov momentum update [8].

3.4.3 Adagrad

All previously discussed methods modified learning rate globally and with the same
value for each parameter. There is quite a lot of work in current literature dedi-
cated to per parameter update methods. Many of these methods might require more
hyper-parameter optimization but they are well behaved for a broader range of hyper-
parameter values than the raw learning rate.

One of these optimization methods is an adaptive learning rate method - Adagrad
[31]. It works by adaptively scaling the learning rates of all model parameters. This
scaling is done inversely proportional to the square root of the sum of all the historical
squared values of the gradient.

θ = θ − µ√
G− ε

�∇θJ(θ)

whereG is diagonal matrix containing squared values of previous gradients, ε is smooth-
ing factor and � is a matrix-vector dot product. The parameters with larger partial
derivatives have higher decrease in their learning rate, while parameters with small
partial derivatives of the loss have a relatively small decrease. This produces effect
on the network where greater progress is made in the more gently sloped directions
of the parameter space. Adagrad enjoys nice theoretical guaranties. A downside of
Adagrad is that in case of deep learning, the monotonic learning rate usually proves
too aggressive and stops learning too early.

3.4.4 RMSProp

Modification of previously mentioned Adagrad is RMSProp [32]. It works by slightly
modifying gradient accumulation and performs better in non-convex settings. Adagrad
is designed to converge rapidly in convex settings. In training neural networks the
parameter space is a highly non-convex surface. It might pass various structures during
training and then at the end arrive to a region that is locally a convex bowl. It scales
learning rate based on entire history of the squared gradient and therefore, might shrink
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the learning too much before arriving at such a local convex region. RMSProp modifies
this accumulation of the gradients into an exponentially weighted moving average.

G = γG + (1− γ)∇θJ(θ)2

θ = θ − α√
G− ε

�∇θJ(θ)

where γ is a decay rate and usually set to γ = 0.9 or γ = 0.999 and G is a diagonal
matrix of previous gradients. This discards some of its extreme past and can converge
more rapidly when in local convex bowl region. This convergence is similar to Adagrad
if we initialize it somewhere in this convex bowl region. “Empirically, RMSProp has
been shown to be an effective and practical optimization algorithm for deep neural
networks. It is currently one of the go-to optimization methods” [7].

3.4.5 Adam

In current deep neural networks the probably most used and also one of the go-to
optimization method is “adaptive movements” algorithm called Adam [33]. It can
be perhaps best summarized as a combination of previously mentioned RMSProp and
Momentum with few important distinctions. Momentum is directly incorporated to
Adam as first order moment with exponential weighting of the gradients.

mt = β1mt−1(1− β1)∇θJ(θ)

vt = β2vt−1 + (1− β2)∇θJ(θ)2

where β1 and β2 are decay rates which authors suggests are set to β1 = 0.9, β2 = 0.999

Also, Adam incorporates a bias correction of both first order moments (the movement
term) and and the (uncentered) second-order moments to account for their initialization
at the origin.

m̂t =
1

1− βt1

v̂t =
1

1− βt2
This compensates for the fact that in the first few time steps the movement vectors
are both initialized and therefore biased at zero, before they can fully “warm up”.
Adam is regraded to by fairly robust in terms of hyper-parameters although some
slight modification to learning rate are sometimes necessary. The parameter update is
as follows

θ = θ − α√
v̂t + ε

m̂t

where ε is smoothing factor that avoids division by zero and is usually ε = 10−8. As
mentioned earlier Adam with its default parameters is usually go-to choice when testing
deep neural networks. Note, that RMSProp has been shown to work slightly better in
some cases with use of recurrent neural networks.
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(a)
(b)

Figure 3.9: Comparison between standard 3 layer neural network (a) and convolutional
neural network (b) [8]. Note, that how hidden layers and output of CNN is a volume.

3.5 Convolutional Neural Networks

Convolutional neural networks are very similar to ordinary neural networks. They
are made up of neurons that have learnable weights. Unlike normal neural networks,
convolutional neural networks make the explicit assumption that the input is a signal
in any form, for instance, images, speech, music, etc. This assumption that input is a
signal allows us to encode certain properties into the architecture of the network.

In the high dimensional setting, such as images, the full connectivity of the regular
neural network is wasteful. Also huge amount of parameters would quickly lead to
overfitting. Therefore, convolutional neural networks do not connect neurons in such
a fully-connected matter. The neurons in one layer are connected only to a small
region of neurons the layer before it. Another main difference between normal neural
and convolutional network is that later has its neurons arranged in 3D volume (Figure
3.9). A simple basic convolutional network also consists of sequences of layers. In a
typical convolutional network there are three types of layers: convolutional, pooling
and fully-connected.

3.5.1 Convolutional layer

Convolutional layers are the main building block of convolutional networks as the layer
does most of the computations. The convolutional layer’s parameters consist of a set
of learnable filters. Every filter is small spatially, but extends through the full depth
of the input volume. For instance, first filters in the network processing images, might
have dimension of 5× 5× 3 as they extend through 3 channels of RGB images. During
the forward pass of the network, we convolve each filter (also sometimes called kernel)
with the input volume and compute dot products between the entries of the filter and
the input at all spatial location. The output is then a 2-dimensional activation map
that gives the responses of that filter at every position. More formally if we assume
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two dimensional input image I the discrete convolution can be defined as

S(i, j) = (K ? I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n)

where S is output feature map, K is two dimensional kernel and I is two dimensional
input. Intuitively, this map shows how much a filter is similar or in other words “likes”
every position in the input. The network then learns this filters through the process
of backpropagation so they extract important features for given task. For example,
at the first layers, networks learn to recognize simple shapes such as edges. These
simple features are in deeper layers combined to create more complicated shapes, such
as honeycombs or wheel like blobs of color. Deeper the layer, more complicated filters
it learns. These filters then produce high activations at similar locations in the input.
Each filter produces such a activation map. We then stack these activation maps along
the depth dimension to produce the output volume.

We can look at the output volume as an output of the neuron that looks only at a
small region of the input and shares its weights spatially. It would be very impractical
to connect all neurons to each other, specially when dealing with high-dimensional
objects like images. The neurons in convolutional networks are connected to only local
regions in the input. The region the neuron is connected to is called a receptive field
and it is a hyper-parameter of the filter. The size of the output volume produced by
convolutional layer is also based on other hyper-parameters, such as number of filters,
size of filters, stride with which we are applying these filters and padding of the input.

3.5.2 Pooling layer

Pooling layer are usually inserted in-between successive convolutional layers. Its func-
tion is to progressively reduce the spatial size of the representation and to reduce the
amount of parameters and computations in the network. It operates independently
on every activation map of the input and reducing each map spatially using, most
commonly, max operation [34]. It works in a similar way to the convolution layer.
Sliding window is applied with arbitrary chosen stride to spatial location of the input
computing max operation over its elements. This also helps to control overfitting of the
network. As the convolutional filter slides through the input it transfer information to
the next layer about every spatial location of that given input. Pooling layers reduce
this information only to its most important part and therefore help the network to
focus only on the important features of the signal rather then spatial locations of the
filter. In other words pooling helps to make representations approximately invariant to
small translations of the input. “Invariance to local translation can be a useful property
if we care more about whether some feature is present than exactly where it is” [7].
Example of pooling layer is shown in Figure 3.10.
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(a) Example of maximum pooling layer

(b) 2D maximum pooling operation

Figure 3.10: Pooling layer with example of corresponding max pooling operation [8].

Most common setup is a pooling layer with window of size 2 and stride of size 2
or 3 also called overlap pooling [9]. This setup achieves good performance while not
discarding many features of the image. Larger receptive fields are too destructive. It is
also worth noting there are other kinds of pooling operations, such as, average pool-
ing or L2-norm pooling. There are also methods that learn pooling by clustering
interesting features [35]. There was some work done analyzing different pooling meth-
ods and problems they are suitable for [36]. Historically, average pooling was often
used, but recently the max pooling became more popular.

3.5.3 Fully-connected layer

Fully-connected layer is the same layer as in regular neural networks. Neurons in a fully
connected layer have full pairwise connections to all activations in the previous layer,
as seen in regular neural networks. Last 3D output volume of pooling or convolutional
layer is resized to a long one dimensional vector and is treated as normal fully connected
layer.

Note, that the only difference is that the convolutional layers are connected only
to local region in the input and neurons share parameters. Functional form of fully-
connected layers and convolutional layers is identical as they both compute the dot
product over the input. It is therefore possible to convert fully-connected layers to
convolutional layers and vice versa. The second conversion from fully-connected to
convolutional layers is often used in practice. To convert between these layers the
filter size of convolutional layer is set to full spatial dimension of the input and setting
the number of filters to be equal to the number of neurons originally contained in
fully-connected layer. This conversion allows us to slide the whole network over the
bigger input very effectively. This is most commonly used to get better performance
by upscaling the image and evaluating the network at many different spatial locations
of bigger image in a single forward pass and averaging the score.
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Figure 3.11: An example of autoencoder structure.

3.6 Autoencoders

In this section we will discuss models called autoencoders. Autoencoder is a neural
network that is trained to reproduce its input as output. More precisely, autoencoder
has a hidden layer h that represents or codes its input. Autoencoders consist of two
parts. First, encoder that transforms input of the network to some hidden represen-
tation. Second, a decoder that tries to reconstruct input from this encoded represen-
tation, as shown in Figure 3.11. More formally, encoder learns a function h = f(x)

and decoder that produces a reconstruction r = g(h). The obvious simple solution is
to learn an identity function g(f(x)) = x. This is not particularly useful and therefore
encoders are usually restricted in some way not to copy the input but to reconstruct
an approximation of the input. These restrictions force the model to prioritized which
features of the input should be reconstructed. Model is then often forced to learn
useful properties of the data. The autoencoders are not a new idea and been part of
active research for quite some times [37, 38]. Historically, autoencoders where used for
dimensionality reduction or feature learning. In recent years a connection between au-
toencoders and latent variable modeling pushed these models to forefront of generative
modeling. Autoencoders can be viewed as feed-forward networks and therefore trained
with all the same techniques, such as minibatch gradient descent followed by gradients
computed by backpropagation algorithm. But, there is also another way that autoen-
coders can be trained. This method is called recirculation [39] and is biologically more
plausible than backpropagation. Recirculation optimizes the network by comparing
activation on original input with activation on the reconstructed input.

One way to restrict the autoencoder not to learn an identity function is to pose
a restriction on h to have smaller dimensions then input x. Such a autoencoder is
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called undercomplete or CAE. Note, that CEA shorthand is also used in literature
to denote a Convolutional Autoencoder, which uses convolution layers and is often
used to reconstruct images. Learning such a undercomplete representation forces the
autoencoder to learn only most silent features of the input. This learning process
is described by simple optimization of the loss function based on difference between
reconstructed output g(f(x)) being dissimilar from input x.

L(x, g(f(x)))

where loss function L can be, for instance, Mean Squared Error (MSE). Unfortunately,
if the encoder and decoder are allowed too much capacity they fail to extract anything
useful and rather learn to copy the image even if we pose very strict restrictions on h.

Similar problem occurs also if the dimensions of hidden representation h is allowed
to be equal or in case of CAE greater then input dimension. In these cases even a
linear model can learn just simply copy the input without learning anything useful
about data distribution. We should be able to train any autoencoder and choose its
capacity and hidden representation based on complexity of data distribution. One way
how to achieve this are Regularized Autoencoders.

3.6.1 Regularized Autoencoders

Regularized Autoencoders do not limit model capacity by keeping it shallow or by
position restriction on dimensionality of h. Rather, they use specific loss function to
force the model to have different properties, other than coping input. Such properties
might include a sparsity of the representation, small derivative of the representation or
robustness to noise or missing inputs. Regularized autoencoders can be deep, nonlinear
and undercomplete and still be capable of learning something useful about data distri-
bution even when their capacity is large enough to learn trivial identity function. It is
worth noting that any generative model with latent variables and inference procedure
can be viewed as some form of autoencoder, for instance, Variational Autoencoders
(VAE) [40] or Generative Stochastic Networks [41].

One class of these regularized models are sparse encoders. These encoders force
a sparsity property on hidden representation h by simply adding a sparsity penalty
Ω(h) to standard reconstruction error

L(x, g(f(x))) + Ω(h)

where g(h) is output of the decoder and h = f(x) and its output of the encoder. Ω(h)

can be represented as a sum of absolute value penalty

Ω(h) = λ
∑
i

|hi|
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where λ is treated as hyper-parameter.
Other model that utilizes regularization is Denoising Autoencoder (DAE) [42].

The denoising autoencoder is an autoencoder that receives a corrupted data point as
input and is trained to predict the original, uncorrupted data point as its output. This
model does not add a regularization term Ω(h) but rather modifies a optimization of
the loss function. In standard autoencoder we use

L(x, g(f(x)))

loss function which optimizes a reconstruction error. Denoising autoencoder modifies
this to compute

L(x, g(f(x′)))

where x′ is a modified input x with random noise. This forces model to first repair the
damaged done by adding noise to the input. This shows that useful features can be
learned as a byproduct of optimizing reconstruction error. Methods described in this
section are only some basic regularization techniques. More regularization methods,
such as Regularizing by Penalizing Derivatives, can be found in [7].



Chapter 4

Dataset

In this section we will analyze the dataset used in this work and describe the sampling
technique to create training samples. Our models were trained and evaluated on the
dataset proposed in [5]3.

This dataset contains annotated paths of 12684 pedestrians from when they entered
the scene to the time they left the scene and were no longer visible. The dataset is
composed of two parts. First, a set of 6001 full-HD RGB frames of surveillance video
taken from public camera and saved every 20 frames (0.8 seconds). Concatenated, this
dataset is 4800.8 seconds in length. Second part is a set of files for each pedestrian
containing mapping to each frame he/she is visible in with exact coordinates in image
space.

4.1 Error analyses

The dataset contains labeling errors and therefore needed to be cleaned for further
use. Not all frames have assigned pedestrian files with coordinates annotations for
pedestrians visible in the scene. This dataset contains 260 unlabeled images. These

Figure 4.1: Sequence of 5 unlabeled images from the dataset.

3This dataset can be found at http://www.ee.cuhk.edu.hk/~syi/

35
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Figure 4.2: (a) Lengths histogram of missing sequences in the data. (b) Lengths
histogram of sequences containing badly annotated frames in the data

images represent 10 different sequences of consecutive frames with the largest sequence
spanning across 123 frames (98.4 seconds), as can be seen in Figure 4.2. Unlabeled
frames are not empty in terms of people moving through the scene and in some cases
contain many pedestrians, as shown in Figure 4.1. Other frames are not completely
annotated and contain errors in labeling. Error frames have annotations for only a
fraction of pedestrian actually visible in the scene and can be identified by setting a
threshold on a number of annotations associated with individual frames. We consider
every image that has a low number of labels to be marked as “badly annotated” and
removed from our set. Figure 4.3 shows relationship between the number of badly
annotated images and increasing pedestrian threshold. As we can see from the graph
(Figure 4.3) the relationship has a logarithmic nature until it reaches the threshold
value of 40. This value represents 1007 badly labeled images. After this value, graph
shows linear relation of badly annotated files in respect to increasing threshold value.
This suggests that after this threshold the images have more or less correct annotations
and may contain less people moving through the scene. Furthermore, average number
of labels per image is 79 with a maximum number of labels being 289 on a single frame.

The number of sequences (consecutive frames) these badly annotated images create
grows exponentially in respect to the threshold value (Figure 4.4). Most of these
sequences contain only one frame, as shown in Figure 4.4, which if removed would
introduce many small one frame holes into our dataset, even with sufficiently small
threshold. For instance, threshold value set to 30 removes 770 images and creates
138 holes from which 122 are only single frame long. These single frame holes might
introduce “time skips” to our models. This property is undesirable because images are
fed to our models in sequences. This is because our models are using 3D convolution
to also capture the time dimension of the data. Therefore, one frame holes would
represent impossible jumps of individual pedestrians. These jumps might be explained
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Figure 4.3: Total number of badly annotated frames in relation to increasing pedestrian
threshold.

only by every short and very small 1.6 second runs and might hinder the models ability
to extract time based information from sequences of frames.

It could be argued that these holes create somewhat adversarial environment. The
models should learn to ignore or fix these holes and in the end this type of errors should
make the models more robust. This might be true for larger models and bigger datasets
but due to the fact that our dataset is not particularly large in terms of shear number of
images, with higher threshold value, we would remove sizable chunk of almost correctly
annotated images. Also, our models should be reasonably small so they can be actually
used in production and therefore might be unable to deal with these types of errors.
Based on these fact we set the pedestrian threshold to 20 labels. This is a good trade-
off between removing enough badly annotated images that have almost no annotations
and not creating many holes in the data. Each image that contains less than 20 labels is
considered to be badly annotated and therefore removed. This threshold value removes
700 frames which are represented in 21 missing sequences with the largest one being
399 frames long (319.2 seconds), as shown in Figure 4.2. Rendering the total size of
our dataset to 5041 images.

4.2 Sampling

As mentioned in the previous section, our dataset is not large in terms of shear image
count. Hence, we artificially expanded the dataset with technique called data aug-
mentation [43]. One of the most common data augmentation is flipping the image
horizontally. This creates new training samples as well as helps the models to preserve
spatial invariant property. This should help the model to extract relevant information
from the frames rather than focusing specific part of the image. For instance, in our
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Figure 4.4: Number of sequences created by badly annotated files in relation to in-
creasing pedestrian threshold.

case, networks should learn to identify where the individual pedestrians are on the
image rather than focusing on the fact that there are never any pedestrians in top left
corner.

As mentioned in Section 3.6 we are trying to predict a mask of future coordinate
points where the pedestrians will be in the next time step of the video. The main
problem with this approach is the sparsity of the output. Most of the pixels in the
output mask are zeros. The consequence of this fact is that if we would try to predict
entire mask, our weights of our models would effectively become zero. Since, for most
of the sensible loss functions, predicting mask of all zeros would yield a small enough
error and therefore models would stop learning after few epochs. This is due to the
fact that the zero pixel predicting model would be in most of the cases correct and
miss only few pixels representing pedestrians resulting in a small error rate. One way
how to make the output less sparse is to enlarge the representation of the pedestrians
on the mask and thus resulting in less zeros in the output. This approach might lead
to unreasonably big representations and merging of pedestrians representation to big
blobs. We tested various sizes of pedestrian representations. In Figure 4.5 we can
see the ratio between all zero samples and samples containing parts of pedestrian in
relation to increasing pedestrian representation. Results, which these representations
have on performance of the model are proposed in Section 6.2. Based on this ratio,
shown in Figure 4.5 we also assigned a less importance to samples that contain no
pedestrians.

The other approach used in [44, 45] is to split the input and output to smaller
chunks. First, we sample M consecutive images and stack them together to create
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Figure 4.5: Ratio between all zero samples and samples containing at least on pixel
representing pedestrian in relation to increasing size of pedestrian representation.

volume D of size M ×H ×W × 3, where H and W are height and width of a image.
Next, we split this volume into smaller equal patches each of size M × Hp ×Wp × 3,
where Hp and Wp are width and height of a patch. The size of each patch was chosen
arbitrary to fit the size of the image. The patches were created by sliding a window
through our volume D and cutting out the overlapping part, as shown in Figure 4.6.
Sliding window was also parametrized by striding value so we can control how much
are individual patches overlapping.

There are two main approaches we are going to use to construct the final output
volume from model prediction. First, our model will predict entire probability mask
for each input patch. A thresholding operation will be applied on these prediction
so we get 0/1 mask (Figure 4.7). Then, we merged the patches together. There are
multiple merging schemes we can use to put together the overlapping parts of the
volume. For instance, if one pixels is in three different patches, the final value will
be determined based on the majority value of this pixels in these overlapping patches.
Second approach is to classify each pixel of the output volume based on the input patch
(Figure 4.7). This approach is also used in [44]. The data for this model can be created
by setting the stride of our cutting window to 1. If the we keep the spatial dimension
of the input we would downscale the output volume. This is because there is no space
for window to be centered on the edge pixels. For this reason we also have to pad the
volume (each frame) with zeros.

This process creates a set of smaller volumes of size N ×M ×Hp ×Wp × 3, where
Hp and Wp are width and height of a patch and N is the number of patches that fit
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Figure 4.6: Process of segmenting input into smaller patches.

Figure 4.7: Illustration of our approaches. (a) Illustration of predicting entire volume
at once. (b) Illustration of classifying task where we classify each pixel.

into the volume and can tbe calculated as follows

N =
(H −Hp + 2× Ph

Sh
+ 1
)
×
(W −Wp + 2× Pw

Sw
+ 1
)

where H, W are volume height and width respectively. Pw and Ph is the amount of
padding applied in each direction. Sh, Sw are strides the cutting window is sliding in
respective directions. We evaluated our models for different patch sizes. Results can
be found in Section 6.2. The true labels are constructed in similar way. First, for
each image in the input we create equally sized output mask where all elements are
set to zero. Based on the provided annotations we mark each pedestrian with a small
matrix of ones of various sizes based on experiments as mentioned before. These output
masks are stacked to create a output volume D′ of size M ′ × H ×W , where H and
W are height and width of input images and M ′ is the number of time steps ahead we
want to predict. Note, there is no 4th dimension representing RGB channels, because
all elements of our masks are ones and zeros representing pedestrians and everything
else respectively. These volumes are also segmented into smaller patches. Each patch
representing a mask of specific input patch, therefore having same spatial dimension
M ×Hp×Wp. For pixel classification models, the cutting step is removed and the true
labels are constructed by taking each H ×W vectors of size M from output volume
D′.

In current implementation we set M = 5. Each input volume contains five con-
secutive frames taken from video. As mentioned before frames are sampled every 0.8
second therefore allowing our networks to look at 4 seconds snapshots of the video. The
larger the value of M more computations and bigger models are needed. With larger
values of M the performance is also increasing due to the fact that the network has
more information and is looking at longer snapshots of the video. Output is created
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from annotated input and therefore also sampled at the same rate of 20 frames (0.8
seconds). For instance, for M ′ equal to 5 we predict pedestrian locations and their
path for 5 consecutive frames which is 4 seconds. We tested multiple values of M ′ and
evaluating models ability to predict various time frames ahead. Dataset was split to
test and train set with ratio of 80:20 and test results can be found in Section 6.2. We
used a library called scikit-learn [46] to implement some of the preprocessing steps and
all data were stored in NumPy arrays [47] .



Chapter 5

Model architectures

In this section we will discuss the architecture of proposed models. There were two main
approaches as described in Chapter 4. First, we tried to predict entire volume of pixels
in the output mask. Second, we approached the problem as a binary classification task
over individual pixels of the output mask and tried to classify if each pixel represents a
pedestrian or not across all future frames. For the first approach we tested two models.
First, a simple encoder where an input volume is first encoded into some representation
and then through the deconvolution operation the output mask of sizeM ′×Hp×Wp is
constructed where M ′ is the number of future frames predicted and Wp, Hp are width
and height of extracted patches, respectively.

Second, we used a column stack encoder which is similar to previously mentioned
simple encoder but its first layers are stacked in column wise fashion as in [3], each
having different size of filters. These stacked layers are separate and do not share
weights with each other. For the classification task we tested only column stack con-
volution neural network where output of the network is a probability that a pedestrian
is located in this position over M ′ pixels. Input to both encoders and classifier was
the same - volume of raw previous frames of size M ×Hp ×Wp where M is the num-
ber of previously seen frames and Wp, Hp are width and height of extracted patches,
respectively, as described in Chapter 4. For implementation of our models we used a
deep learning framework Keras [48]. Each training of the network was monitored with
early stopping script that had patience set to 3. This stops the training of the network
when the validation loss increases during the training 3 times. We also used 10% of the
training set for validation. Each model was optimized with binary cross-entropy but
we also ran experiments with mean square error or logcosh losses. Each loss performed
similarly and there were no significant differences in the performance of the models.
Due to the sparsity of the output we also tested architectures were the model was
regularized on the sparsity of the hidden representations as defined in Section 3.6. By
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adding a sparsity penalty Ω(h) expressed as a sum of absolute value penalty

Ω(h) = λ
∑
i

|hi|

where λ is a hyper-parameter and h is the encoded hidden representation. Another
regularization technique that we tested was adding a penalty Ω(D,D′) for miss-placed
pixels, in other words, for false positive and negatives or pixels with low probability.
Since we have only binary output for each pixel this can be done by simply subtracting
the predicted output mask from true mask

Ω(D,D′) = λ
1

N

∑
i

∑
j

M ′∑
m

(Dm
ij −D′mij )2

where λ is a hyper-parameter adjusting a strength of the regularization, N is the
number of pixels in output volume and D is true output volume representing pedestrian
mask in each time frame M ′, D′ is the predicted volume representing pedestrian mask
in each time frame M ′. Results for these regularized models are provided in Section
6.2.

5.1 Simple convolutional encoder

As mentioned before first model architecture we tested was simple encoder (Table 5.1)
that gets the input volume of M = 5 previous frames of video split into small patches
and tries to construct a pedestrian mask of sizeM ′×Hp×Wp. From Table 5.1, showing
the architecture of this model, we can see that the first convolutional layer with ReLU
nonlinearity consists of 16 filters each of spatial size of 5 × 5 spanning across all M
time frames. This layers is followed by dropout layer which drops 20% of units. We
also tested networks without any dropout layers but we were able to train networks
with dropout layers for more epochs and therefore these networks performed better.
This layer is then followed by another 3D convolutional layer consisting of 32 filters
each of spatial size of 3 × 3 spanning 5 time frames. This layer has more filters and
each filter has a smaller spatial size, which is common in convolutional neural networks
where with increasing depth the number of filter increases and spatial size of these
filters decreases. This block of layers is ended by max pooling layer with filter size
of 2 × 3 × 2. Next, another block of convolutional layers with ReLU nonlinearities
follows with number of filter 64 and 128. Each filter has spatial size of 3× 3 and time
dimension spanning across 3 time frames. This then produces encoded representation
of the input from which pedestrian mask is constructed. This is done by running two
sets of convolutions and upsampling layers. Each convolution layer consists of 64 filters
of spatial size 3× 3 and spanning across 3 and 5 time frames respectively. After final
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Layer Type Shape
0 Input M ×Hp ×Wp

1 Convolution + ReLU 16 filters, each M × 5× 5

2 Dropout of 20%
3 Convolution + ReLU 32 filters, each 5× 3× 3

4 Max Pooling 2× 3× 2

5 Convolution + ReLU 64 filters, each 3× 3× 3

6 Dropout of 20%
7 Convolution + ReLU 128 filters, each 3× 3× 3

8 Encoded Output
9 Convolution + ReLU 64 filters, each 3× 3× 3

10 Upsampling 1× 3× 2

11 Convolution + ReLU 64 filters, each 5× 3× 3

12 Upsampling M ′ × 3× 2

13 Convolution 1 filter, each 5× 3× 3

14 Sigmoid Nonlinearity output of size M ′ ×Hp ×Wp

Table 5.1: Architecture of a simple convolutional encoder.

upsampling layer a final convolutional layer is applied to produce output of desired
size.

5.2 Column stack convolutional encoder

The second model architecture we tested was based on architecture proposed in [3]
where first layers of the network are separate and run in parallel each with different
sizes of the filters. The weights in these layers are not shared. This should help the
network with perception of the scene. Since many of the scenes shown in videos from
public surveillance cameras have in some form warped perspective where pedestrian
in the bottom of the frame (closest to the camera) appear larger than pedestrians on
the top of the frame (furthest from the camera). Column architecture of the models
tries to address this discrepancy with filters of different spatial sizes. Larger filters can
better detect larger pedestrians since their receptive field is larger. On the other hand,
smaller filters are better at detecting pedestrians that appear smaller. Each layer then
extracts these low-level features on different scales which should help the network to
compensate for perspective of the scene.

From Table 5.2, showing the architecture of our model, we can see that our first
column layer consists of 3 single convolutional layers each having 16 filters. For these
first layers we used filter size of spatial size 7×7, 5×5 and 3×3 each spanning across all
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Layer Type Shape
0 Input M ×Hp ×Wp

1.1 Convolution + ReLU 16 filters, each M × 7× 7

1.2 Convolution + ReLU 16 filters, each M × 5× 5

1.3 Convolution + ReLU 16 filters, each M × 3× 3

2 Concatenation [layer 1.1, layer 1.2, layer 1.3]
3 Convolution + ReLU 32 filters, each 5× 3× 3

4 Dropout of 20%
5 Convolution + ReLU 32 filters, each 5× 3× 3

6 Max Pooling 2× 3× 2

7 Convolution + ReLU 64 filters, each 3× 3× 3

8 Dropout of 20%
9 Convolution + ReLU 128 filters, each 3× 3× 3

10 Encoded Output
11 Convolution + ReLU 64 filters, each 3× 3× 3

12 Upsampling 1× 3× 2

13 Convolution + ReLU 64 filters, each 5× 3× 3

14 Upsampling M ′ × 3× 2

15 Convolution 1 filter, each 5× 3× 3

16 Sigmoid Nonlinearity output of size M ′ ×Hp ×Wp

Table 5.2: Architecture of column stack convolutional encoder.



CHAPTER 5. MODEL ARCHITECTURES 46

depth of the given volume. The low-level features are then concatenated into one single
representation followed by convolutional block with ReLU nonlinearities consisting of
two convolutional layers of 32 filters of size 5× 3× 3 and dropout layer with drop rate
of 20%. We also tested different merging techniques, such as addition but this did not
provide any significant performance improvement, therefore we decided for the simplest
merging method. First column of layers consists of only one convolutional layer per row
extracting only low-level features from the images. We also tested a model architecture
with additional convolutional layers in each row. These layers where accompanied by
a dropout layer with drop rate of 50% which should extract more mid-level features.
This model neither showed any significant performance improvement and therefore
we again decided to keep the simpler model. Merging layer, is followed with another
block of convolutions with 64 and 128 filters each of size 3 × 3 × 3. This produced
encoded output from which a pedestrian mask was constructed by running the same
convolutional and upsampling scheme as in simple encoder (Section 5.1). We tested
this model architecture without any dropout layers but again we were able to train
models with dropout layers for longer without any significant overfitting. We also
tested an ensemble version of this model where instead of predicting entire output
volume representing pedestrian mask for each of M ′ future time frames. We trained
M ′ column convolutional encoders each predicting only one mask of size 1×Hp×Wp for
each future time frame. The first model predicted a mask of the first frame ahead (0.8
seconds), the second model predicted a mask of the second frame ahead (1.6 seconds)
and so on.

5.3 Column stack convolutional classifier

Last but not least, the model architecture we tested was similar to that of column
stack convolutional encoder. However this model architecture was optimized for binary
classification objective. We tried to classify each pixel of the output mask along entire
depth (time dimension) of the output volume, as described in Section 4. The model
consists of the same architecture as column stack convolution encoder (Section 5.2)
except after the encoding part we flatten the output of last convolution and two fully
connected layers follow, as shown in Table 5.3, the first one having 128 neurons and the
second one having M ′ number of neurons. In other words, we are trying to predict the
probability of the pedestrian currently being located on this particular pixel at each
time frame. We choose this architecture as it was shown before [44, 45] that similar
classification models perform well on prediction of image masks. Similarly to column
stack convolutional encoder, described in Section 5.2, we also tested a ensemble version
of this model where rather than predicting M ′ pixels at the output layer we had M ′
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Layer Type Shape
0 Input M ×Hp ×Wp

1.1 Convolution + ReLU 16 filters, each M × 7× 7

1.2 Convolution + ReLU 16 filters, each M × 5× 5

1.3 Convolution + ReLU 16 filters, each M × 3× 3

2 Concatenation [layer 1.1, layer 1.2, layer 1.3]
3 Convolution + ReLU 32 filters, each 5× 3× 3

4 Dropout of 20%
5 Convolution + ReLU 32 filters, each 5× 3× 3

6 Max Pooling 2× 3× 2

7 Convolution + ReLU 64 filters, each 3× 3× 3

8 Dropout of 20%
9 Convolution + ReLU 128 filters, each 3× 3× 3

10 Encoded Output Flatten encoded output
11 Dense 128 neurons
15 Dense M ′ neurons
16 Sigmoid Nonlinearity output of size M ′

Table 5.3: Architecture of column stack convolutional classifier.

models each predicting pixels for different time frame. Results for both single model
and ensemble are reported in Section 6.2.



Chapter 6

Results

In this chapter we provide and analyze results for proposed models in Chapter 5 as well
as provide a more detailed error analysis of the proposed approaches. Mean squared
error (MSE) is adopted as evaluation metrics, similar to [5] to make results comparable.
The [5] defines a mean square error as follows

MSE =
1

NM ′

N∑
i

M ′∑
j

||Iji − I
′j
i ||2 × 100%

where N is the number of samples, M ′ is the number of predicted frames, I is the vol-
ume containing normalized annotated positions of each pedestrian and I ′ is predicted
volume of normalized pedestrian locations. Since we are predicting a mask of pedes-
trians in future time frames and not exact locations, a postprocessing step is needed
to extract pedestrian locations and construct prediction volume I ′. In order to extract
coordinates of each pedestrian, in the image, we thresholded a predicted probability
mask with a binary threshold function together with Otsu’s Binarization [49]. Next,
we searched for contours in the prediction mask. Each found contour (patch of pixels)
represents one pedestrian. From each contour we kept top and left most coordinates
to represent a location of pedestrians. This process is illustrated in Figure 6.1. We im-
plemented these steps with help of a computer vision library called OpenCV [50]. We
performed various experiments for different cutting windows sizes in data preparation
step, pedestrian representations, as mentioned in Chapter 4, and also performed a grid
search for optimal hyper-parameters of the each network. In this section we present

Figure 6.1: Posprocessing step needed to extract exact pedestrian coordinates.
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9x8 18x16 9x16 18x8
simple encoder 12.446 14.247 14.997 13.879
column encoder 10.348 11.152 12.432 12.795
column classifier 10.732 12.678 12.485 11.485

Table 6.1: Average MSE of different window sizes in preprocessing step for each model
predicting 1, 3 and 5 frames ahead.

Figure 6.2: Average MSE for different sizes of pedestrian patch representations.

only the most relevant results. Lastly, we present sample predictions of our best model.

6.1 Preprocessing

In this section we provide results for hyper-parameters chosen in our preprocessing
steps - the size of a cutting window and the size of pedestrian representation.

First, we needed to find the best size of cutting window in a preprocessing step.
We performed grid search through various combinations of windows on various models
trained with different hyper-parameters. We report average MSE for models that were
predicting 1, 3 and 5 frames ahead. As we can see from Table 6.1, window size 9 × 8

performed the best. This fact is surprising since we would expect that large windows
would provide more information for the network and therefore should perform better.
But this was not the case in our setting and smaller windows generally performed
better than large ones. This could be caused by sparsity of the output, because we are
predicting a pedestrian mask of the same size as input patch.

Due to the sparsity of the output we also tested different sizes of the pedestrian
patch representations. From values in Figure 6.2 we can see that we achieve best
performance of the networks with representation of size 6 × 6. We were unable to
train networks with smaller representations, since the sparsity of the output was too
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Figure 6.3: Different size of individual pedestrian representation with original image.

1 frame 2 frame 3 frame 4 frame 5 frame
simple encoder 5.805 13.112 13.899 14.010 15.472
column encoder 3.946 11.766 12.101 12.002 12.621
simple encoder + sparsity 4.900 13.761 14.189 14.510 15.706
column encoder + sparsity 3.401 11.102 11.336 11.919 12.803
simple encoder + penalization 4.605 12.779 13.860 14.217 15.873
column encoder + penalization 4.070 11.690 12.093 12.370 12.110
column classifier 3.245 11.042 11.711 11.893 12.829
column encoder ensemble 3.103 11.983 12.622 12.891 13.209
column classifier ensemble 3.015 10.814 11.519 11.978 12.780

Table 6.2: Final MSE for various types of tested model architectures predicting 1 to 5

frames ahead.

large and networks in our experiments set all their weights to zero after first the few
epochs and training stopped. Further analysis of this fact is provided in Section 6.3.
As we can see from Figure 6.2 with increasing size of the pedestrian representation the
average MSE is also increasing. This is due to the fact that in our dataset, or generally
in similar public spaces, individual scenes are crowded and pedestrians are close to
each other. Therefore with larger representations we often merge multiple pedestrians
into one big “blob”, as shown in Figure 6.3. Similar blobs of pedestrians are then also
predicted and we are unable to distinguish individual pedestrians present in these blobs
and therefore unable to extract each pedestrian coordinates.

6.2 Model results

We tested various model architectures mentioned in Chapter 5 and in this section
we provide basic analyses and results for these model architectures. As discussed in
Section 6.1 we report results for models that were trained on the data that had cutting
window of size set to 9× 8 and patch representing each pedestrian of size 6× 6.

From results shown in Table 6.2 we can see that ensemble of column classifiers
achieved best results for prediction of 1, 2 and 5 frames ahead. For prediction of 3 and 4
frames ahead it achieved second best score where difference from best score is minimal.
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precision recall accuracy F1 score
simple encoder 75.579 18.224 77.215 29.366
simple encoder + sparsity 75.153 18.557 77.147 29.764
simple encoder + penalization 74.918 19.489 76.809 30.931
column encoder 80.832 25.366 88.095 38.157
column encoder + sparsity 81.051 24.998 87.887 38.210
column encoder + penalization 80.601 26.310 88.105 39.670

Table 6.3: Precision, recall, accuracy and F1 score metrics reported for simple and
column encoders. Note the minimal difference in reported metrics for models with no
regularization and models with regularization.

We can see that single column classifier achieved best results from models that predict
entire volume of frames and are not ensemble of individual networks. This is not a
very surprising result, since in [44] and [45] similar classification models where used for
solving similar problems of predicting a sparse mask of given image and show better
performance than encoder models. This can be attributed to the nature of the problem
where it is inherently more difficult to approach the problem from the regression stand
point and predict how entire image or segment of the image will look like (predict exact
value of each pixel) than a binary classification of individual pixels of the given image.
We can also see that column encoder performs generally better than simple encoder.
This is expected since column encoder model is larger in size and therefore has larger
capacity and can extract more information. Also, by utilizing filters with receptive
fields of different sizes, the features learned by each column are adaptive to variations
in pedestrian body sizes due to perspective effect, as mentioned in Section 5.2.

Values in Table 6.3 also show that regularizing a sparsity of an encoded vector or
penalization of false positive and negatives does not help models to make more accurate
prediction which can be also seen in Table 6.2 where there is no significant improvement
in error rate for models with regularization.

From Table 6.3 we can see that best precision achieved column encoder with sparsity
regularization but the difference in values for other column encoders where minimal.
This suggests that this type of regularization had almost no effect on performance of
our models. This can be seen also from values for simple encoder that are shown in
Table 6.3. Main reason for this fact can be the capacity of the models or large sparsity
of the output and consequent inadequate pedestrian representation.

We can also see from Table 6.2 that the error increases roughly three times when
predicting more than one frame ahead. This suggests that our models can predict
one frame ahead (0.8 seconds) but are unable to extract enough positional information
from raw frames to predict pedestrian coordinates more than one steps ahead. This
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Figure 6.4: Sample prediction of our best model with extracted pedestrian locations.
Each row represents one step ahead in prediction. Note, the huge cluster in later steps
where models predict rough map of possible location of pedestrians.

can be attributed to many factors with probably the main one being that our models
are too shallow and have not enough capacity to extract information about pedestrian
positions in given frames and also predict future walking patterns of every pedestrian
in the frame. This can also be seen in Figure 6.4 revealing that for frames 2 . . . 5 the
model collapses to failure state where it is uncertain where each pedestrian will be
located and rather predicts very rough estimate of all possible locations. This estimate
can be interpreted as a probability map of the scene where pedestrians are likely to
move. For prediction of second frame ahead we can also see that this fact is not that
strong and a many pedestrian locations still can be extracted (Figure 6.4). More detail
analysis is provided in Section 6.3.

From Figure 6.4 we can see that our ensemble model can make prediction for one
and two frames ahead (0.8 and 1.6 seconds). The model likely learned to differentiate
given frames from each other and then extract some basic information about changing
pixels through convolutional operation. This is also suggested by the these probability
maps shown in Figure 6.4 for prediction of 3, 4 and 5 frames ahead since difference
between 5 frames will result in similar indistinguishable map of pedestrians.

6.3 Error analyses

In this section we provide analysis of our approach and reasoning behind high error
rates and failure states of the models. We can see from results provided in Section 6.2
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that our models are able to accurately predict individual pedestrian locations in more
than two step ahead (1.6+ seconds ahead). Reported errors increased from first step
(0.8 seconds) to second step (1.6 seconds) roughly three times. From Figure 6.4 we
can see that in steps 3, 4 and 5 models end up in some failure state where they are not
able to conclusively decide where each individual pedestrian will be in the next steps.
Models prediction can be thought of as a map highlighting often taken pedestrian
trajectories through the scene and how these trajectories will change in future steps.
In [5] authors report best MSE of 2.421 on dataset used in this work for prediction of
5 frames ahead. Constant velocity model which predicts future pedestrian coordinates
as if pedestrian will walk in the same direction with constant velocity achieves a MSE
of 6.091 on prediction of 5 frames ahead. Our best model achieves a MSE of 3.015

for prediction of 1 frame ahead and 12.780 for prediction of 5 frames ahead which is
almost 6 times higher.

However, this high difference between results can be expected since most of pre-
viously mentioned methods get as whole or part of the input exact coordinates of a
pedestrian in the last M frames of video. These locations then form a time series
and this problem can then be treated as time series prediction. This approach poses
a problem during test time where we do not have labels for each pedestrian location.
During test time we first in the preprocessing step need to extract individual pedes-
trian coordinates. This can be done for example with some head-and-shoulders tracker
or as in [5] authors use a KLT tracker. Extraction of exact pedestrian locations is
difficult problem on itself since there are a lot of factors which influence the success
rate of these methods, for instance, a perspective effect, resolution, lighting conditions
and assignment of all coordinates in every given frame to the same pedestrian. In our
settings models do not get this information and are force to extract these pedestrian
trajectories from raw frames of the video and then from this extracted representation
predict future state of the scene.

Our models are therefore trying to solve two problems at once. First one being
extraction of individual pedestrian in given frames and connecting these coordinate in
each frame to represent pedestrians prior movement. Second, from pedestrian repre-
sentation try to predict future states of the scene where each pedestrian will be located
in these future frames. This is inherently a more complex problem which requires that
the model is able to form a representation of the scene, parts where it is possible to
walk and is capable of extracting pedestrian locations given previous frames and is also
able to capture in some cases a complex walking patterns of pedestrians. This would
require a very large and complex model and therefore it is not surprising that our
considerably shallow models fail to capture such complex information and accurately
predict pedestrian movement.

Another issue is the before mentioned sparsity of the output. Our representation
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Figure 6.5: Ratio between zero pixels and pixels representing pedestrian in relation to
increasing size of pedestrian representation.

of the each pedestrian by patch of white pixels of size 6 × 6 on average leaves more
than 94.75% of pixels empty, as shown in Figure 6.5. This is not a very desired
property due to the fact that model can set its weights to zero and predict zeros and
will be 94% correct. As discussed in Section 6.2 we were unable to train models with
smaller pedestrian representations due to this fact. As shown in Figure 6.5, one pixel
representation of each pedestrian sets only 0.18% of pixels to some non-zero value
therefore it is expected that our models would predict only the most common value.
This fact also imposes a constraint on model architecture. A more complex model
would be more susceptible to such a behaviour where it would set all the weights to
zero and effectively stop training. To be able to accurately predict more frames ahead
we need more complex models but due to the sparsity we are constrained by the depth
of the model. This suggests that we need better pedestrian representation than a
entire mask of the output where each pedestrian location is marked. This can also
be seen from Table 6.3 where the models were not able to benefit from regularizing
sparsity of hidden representation or by regularizing a false positive and negative which
in theory should force the model to make more accurate predictions. With an increasing
size of pedestrian representation, sparsity of the output becomes more manageable but
merging of these individual representations into bigger blobs occur, as can be seen from
Figure 6.6. To accurately predict each pedestrian location, models would have to be
able to recognize a size of given blobs and infer how many pedestrians are represented
by this blob and from previous information where each of them is located and where is
heading. This increases complexity of the problem and would require a deeper model.

One solution to this problem is to use high dimensional variational auto-encoder
which could be able to represent pedestrian locations and complex pattern through a
probability distribution. Another, more complex solution is to use a convolutional neu-
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Figure 6.6: Column encoder predictions of future frames with pedestrian representation
of size 10 × 10. Each row represents prediction of next time frame. Note, predictions
images are shown after thresholding operations.

ral network to represent current scene and each pedestrian in this given scene and then
use a recurrent neural network to predict pedestrian movement as a sequence. This
would eliminate high sparsity of the output and could potentially yield a better pre-
diction performance but would increase the size of the models and their computational
and memory cost would also increase.

As mentioned in Chapter 5 we trained ensemble of models where each was used
separate to predict each future frame. We can see from Figure 6.4 that even when we
split this problem into separate models and each is given a task to predict only one
frame the models that predict latter frames collapse to the same failure state. This
fact alone strongly suggests that prediction of pedestrians in more than two frames
ahead is very a complex problem. This can also be caused by the dynamic of the scene,
i.e., in the similar public scene people do tend to walk straight from their entry point
to the point of their interest. This means that in 4 seconds, which is our prediction
window, a many new people will enter or leave the scene. For people entering the scene
our model did not have any prior information about their movement and therefore
could not predict with high certainty where their next locations are going to be. This
consequently leads to predicting a highly dispersed probability map of likely pedestrian
locations based on given input as can be seen in last rows of Figure 6.4.



Chapter 7

Conclusion and future work

In our work we tried to predict human behaviour in a public space, such as bus or train
station from surveillance video with convolutional neural networks. Our approach is
mainly based of work [5] where a deep convolutional neural network was used for
prediction of human behavior on the dataset that was released as part of the work and
used also in our thesis. This dataset contains 12684 annotated pedestrians in hour long
video taken from Grand Central Train Station of New York. The images present in
the dataset were sampled every 20 frames (0.8 seconds) and contain annotation errors.
In our work, we provided detail analysis of the proposed dataset in Chapter 4. We
also provide a description of our data preparation process in the same chapter. Due
to our memory constrains we resized each image to size of 90 × 180. We used stacks
of 5 frames per sample that was then split into smaller patches. These patches were
then fed into our models. We tested different sizes of these patches. We achieved the
best performance with a patch of size 9× 8. Other results for different patch sizes are
provided in Section 6.1.

The main difference and novelty of our approach to that proposed in [5] is that our
models did not receive any information about previous pedestrian location, since this
information is usually hard to obtain in the real world scenario. Often other technique
needs to be used to extract exact pedestrian locations, such as KLT tracker or head-
and-shoulders detectors. These technique usually were not designed for such a task and
therefore often contain errors, for example, prediction of many more pedestrians then
are currently located in the image or in case of head-and-shoulder detectors failing to
predict any pedestrians in the image.

Our models were trained to extract individual pedestrian locations from raw frames
of the video and then predict each pedestrian movement in the given scene. We tested
several convolutional models whose detailed description can be found in Chapter 5.
We achieved the best performance with our convolution column stack classifier en-
semble, where the MSE for single frame prediction was 3.015 and for prediction of 5
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frames ahead (4 seconds) 12.780. This model consisted of multiple convolution column
classifiers each predicting a pedestrian mask for different time frame ahead. More de-
tailed results for the other model with error analyses can be found in Section 6.2. We
achieved satisfactory results for prediction of 1 and 2 frames ahead. For 3 to 5 frames
our models failed to predict pedestrian locations to satisfactory degree. This could
have been caused by many factors from which a capacity of our models and improper
representation of the output are most probably the main contributors. Further analysis
of these factors is provided in Section 6.3.

We also propose the improvements to our current approach, such as new model -
variational encoder where each pedestrian and its trajectory would be modeled by some
probability distribution. This should provide easier learning objective and therefore
improve our results. Also, to better represent the final output, rather than predicting
entire mask where each pedestrian is going to be located we can combine our convo-
lutional encoders with recurrent neural networks. We could train a encoder to learn
to find pedestrians in the current image. Its hidden representation can then be used
as input to the recurrent neural network which should treat a pedestrian trajectory as
time series prediction problem. This would eliminate the high sparsity of the output
and also should provide improvement in performance.
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Appendix A

Attached CD contains a zip file containing all training and testing scripts used in this
thesis.

• train.py - A script used for model training

• model.py - Module containing definitions of the models

• predict.py - A script used for evaluation, prediction and displaying results

• predict_ens.py - A script used for evaluation, prediction and displaying results.
This script was used for ensemble models

• load_data.py - Module containing helper functions for data preparation and
loading

• eval.py - A script used for MSE evaluation of the models

• show.py - A script used for displaying the results

• analyze.py - A script used for analyzing the dataset

• resized - A directory containg a resized version of original dataset used in this
work

• models - A directory containing trained ensemble model

• Original dataset can be found at https://www.dropbox.com/s/7y90xsxq0l0yv8d/
cvpr2015_pedestrianWalkingPathDataset.rar?dl=0
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