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Abstrakt

Latentná sémantická analýza môže zlyhávať pri klasifikačných úlohách, lebo vy-
berá črty dokumentov, ktoré sú najreprezentatívnejšie, ale nie najdiskriminatívne-
jšie. V tejto práci predstavujeme novú metódu eLSA, ktorá prináša ďalšiu vrstvu
váh w′, ktoré sú trénované pomocou metódy najväčšieho vzostupu. Experimentálne
sme ukázali, že proces učenia eLSA konverguje, a že eLSA dosahuje väčšiu presnosť ako
LSA. Taktiež využívame eLSA na analyzovanie bežne používaných váhových schém a
identifikujeme slová, ktoré tieto schémy podhodnocujú alebo nadhodnocujú.

Kľúčové slová: spracovanie prirodzeného jazyka, klasifikácia dokumentov, gradient
descent, LSA
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Abstract

Latent semantic analysis may perform poorly on document classification tasks, be-
cause it selects the most representative, but not the most discriminative features. We
propose a new method eLSA, which introduces another layer of weights w′ that are
trained with gradient descent. We experimentally show, that learning of eLSA con-
verges, and that it achieves higher accuracy than LSA. We also use eLSA to analyze
common weighting schemes and identify words, which are underweight or overweight
in these schemes.

Keywords: natural language processing, document classification, gradient descent,
LSA
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Introduction

The problem of document classification attracted a lot of attention recently. The
most popular approaches are based on neural networks and neural word embeddings.
We revisit famous co-occurrence-based approach, the Latent Semantic Analysis. This
approach may perform poorly on document classification tasks, because it selects the
most representative features and not the most discriminative ones. There was a number
of attempts to add the supervised information into LSA and into its SVD part. We
build on the top of one of these approaches – supervised weighting schemes.

Our goals are to propose a novel approach for learning task-specific word weights,
explore performance of this approach and compare it with commonly used weighting
schemes.

The main part of this thesis introduces the design of eLSA, approach that employs
gradient descent technique to learn task specific supervised weights. Further, we present
thorough performance evaluation of eLSA on multiple datasets. Finally, we use eLSA
to gain a valuable insight about the classification tasks we want to solve and about
commonly used weighting schemes.

In the first chapter, we introduce the problem of document classification and we
describe some of the commonly used approaches to this problem. In the second chapter,
we present an overview of published literature about introducing supervision into the
LSA. In the third chapter, we introduce our novel approach eLSA, which builds on the
top of supervised weights and LSA. In the fourth chapter, we present results achieved
by the eLSA and possible ways how to extract insight from its parameters.

1



Chapter 1

Document Classification

In this chapter, we introduce a problem of document classification and commonly
used approaches that are used to solve this problem.

Our approach is based on unsupervised learning, which we later enhance by incor-
porating a few tricks from supervised machine learning.

1.1 Problem description and motivation

Thanks to digitization of books and texts, almost all human knowledge is now easily
accessible to algorithms. With rapid growth of social media platforms and electronic
communication, we see a new type of documents. These documents are not tradi-
tional books, but user generated content. Websites, blogs, Facebook posts, tweets,
G+ posts contain vast amounts of information that can be very valuable. Moreover,
companies customer centers usually receive large amounts of questions and requests
from customers that could be automatically processed.

Automatic text categorization and classification is therefore a very important and
fundamental task. A major objective of text classification system is to semantically
assign one or more predefined categories to documents.

Is this document a positive review? Is this question about a person? Is this customer
ticket related to a software bug? All of the questions above are instances of the text
classification problem.

Usually, machine learning, statistical pattern recognition, or neural networks are
used to construct classifiers automatically.

1.1.1 Sentiment analysis

One of the most popular instances of document classification is a sentiment analysis
– SA. SA is a process of determining whether a piece of writing is positive, negative
or neutral [27]. It is also known as opinion mining, deriving the opinion or attitude

2



CHAPTER 1. DOCUMENT CLASSIFICATION 3

of a speaker. A common use case for this technology is to discover how people feel
about a particular topic. SA is widely applied to customer materials such as reviews
or online and social media. It can answer questions like: “Does this review suggests,
that Eat&Meet is a good place to eat (and meet)?”, “Does the person like his dog?”.

There is a lot of ways how to approach document classification problem. The most
important things that we consider about those methods are accuracy and interpretabil-
ity. Further, we consider also the speed of required preprocessing, the speed of actual
classification, the amount of required data, and other memory requirements.

In this thesis, we revisit one of the older approaches called LSA and try to address
some of its shortcomings.

1.2 Notation

In this section we provide a concise reference describing the notation and terms
used in this thesis.

◦ Hadamard product.
α Learning rate.
dj j-th document in our corpus.
D Vocabulary. Denotes set (dictionary) of all used words in our dataset.
|D| Size of the vocabulary.
E Loss function such as L2.
N Number of documents in the corpus.
nw Number of times word w appears in the whole corpus.
Q Cost function, very similar to loss function.
Θ Model parameters.
tfw,s Number of times word w appears in sentence s.

Our math notation is mostly influenced by programming practice. In this thesis
we assume all vectors to be row vectors. We also assume natural broadcasting of some
operations, like ◦ for the Hadamard product.

Throughout this thesis we try to illustrate things with examples. For consistency,
we will use following sample corpus of sentences and labels:

This is an example "pet sentiment dataset". Labels denote, if the sentiment of the
statement was positive (1) or not (0).

There are |D| = 11 distinct words in the vocabulary D of this corpus:

a, bad, cat, charlie, dog, good, is, max, nice, oscar, tiger

Later we will refer to them in this ordering, indexing from 1. Hence D4 = charlie.
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charlie is a good dog 1
tiger is a bad cat 0
oscar is a nice cat 1
max is a bad dog 0

Table 1.1: Example dataset

1.3 Machine learning

Machine learning explores the study and construction of algorithms that can learn
from data and make predictions based on them. More pragmatic description of machine
learning is, that it is a magic process of fiddling with some numbers, until results look
fine [9]. Being able to let algorithms automatically learn from data proved to be
extremely important. Nowadays, almost any task can be improved or automatized
thanks to such algorithms. However, to use machine learning for some task, we usually
need to specify the task in machine learning friendly way. In this chapter, we introduce
some of machine learning concepts in details.

1.3.1 Supervised machine learning

Supervised learning is the most common approach in machine learning. Supervised
algorithms learn to predict the best outputs for a given input. We denote the collection
of input data, features, as X and the corresponding expected outputs, labels, as Y . X
is usually a matrix of real values where rows of this matrix are individual samples. Y
is usually a vector of real values or integers. Inside mathematical expression we usually
denote labels as y, We refer to the pair of features and labels (X, Y ) as a dataset. In
practice we usually have three such datasets: train, validation and test. For the sake
of this introduction we ignore this fact and we explain it in section 3.3.3.1.

In machine learning, we want to find a function f such that for given sample xi the
functions output ŷi = f(xi) is very close to the real label yi.

This is usually done by optimizing parameters Θ of a parametrized function fΘ,
with regards to a loss function Ey(ŷ). We refer to function fθ as a model. Common
loss is an L2 loss function

Ey(ŷ) =
1

2
(y − ŷ)2 =

1

2

n∑
i=1

(yi − ŷi)2 =
1

2

n∑
i=1

(yi − fΘ(x))2

Formally we want to find parameter Θ̂ such that Θ̂ = argminΘ (Ey(fΘ(x)). This
equation is usually not solved directly, but through an optimization process called
learning [19].
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Figure 1.1: Gradient descent [14]

1.3.1.1 Gradient descent

Gradient descent method finds local minima of a usually multivariate function. This
is a well suited approach to use in context of supervised machine learning.

We use an observation, that if we follow the opposite direction of the gradient in a
given point, we arrive in a local minima. Example is on the picture 1.1.

In the context of machine learning, we optimize a cost function Q of parameters Θ,

Q(Θ) = Ey(fΘ(x))

We follow the opposite direction of gradient of the cost function Q in respect to
parameters Θ. We initialize Θ0 to small random numbers and perform a gradient
descent step

Θt+1 = Θt − α∂Q(Θt)

∂Θt
= Θt − α∇Q(Θt) (1.1)

α denotes the size of the step we will make and is commonly known as a learn-
ing rate. We perform the gradient descent step until it stops improving the results.
Formally we stop, when |Θt+1 −Θt| < ε for a given ε [8].

This process is also sometimes referred to as a batch gradient descent.

1.3.1.2 Stochastic gradient descent

During each gradient descent step, we need to evaluate the gradient of the loss
function over the whole dataset. This is usually not feasible for larger datasets.

We can exploit that the cost function Q can usually be rewritten as a sum of costs
Qi for each data point xi.
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Q(Θ) =
n∑
i=1

Qi(Θ)

Qi(Θ) denotes the cost function computed on only the i-th element. Instead of
performing the gradient step on the whole Q, we can perform a gradient step for each
Qi.

Θt+1 = Θt − α∂Qi(Θ
t)

∂Θt
= Θt − α∇Q(Θ

t) (1.2)

For appropriate α we usually see a much faster convergence than for gradient de-
scent.

1.3.2 Feed forward neural network

There is a lot of ways how to construct function fθ that we want to optimize. One
of the most popular ones is roughly inspired by the human brain and is called a feed
forward neural network.

Neural network consists of small interconnected computational units (neurons) that
are usually organized into a layers. Each unit takes some inputs, produces an output
based on input and sends it to other units. In a feed forward neural network, the signal
is always moving forward, hence unit on the k-th layer can only take its input from
previous layers [19].

By adjusting the connections and theirs strengths, the network can learn to produce
a specific output for a specific input.

A simple neural network is shown in figure 1.2.

Figure 1.2: Simple neural network with 2 layers, 3 inputs, 4 hidden neurons and 2
outputs

The simplest realization of a unit is a weighted sum and application of activation
function g. Formally the unit receives a vector of inputs x and computes output
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g(
∑n

i=1 θixi), where θi is a connection strength to the i-th input. This one unit can be
viewed as a simple one layer neural network with one output.

Common realizations of function g are:

• logistic function g(x) = 1
1+e−x

• hyperbolic tangent g(x) = ex−e−x

ex+e−x

• relu g(x) = max(0, x)

• leaky relu g(x) = log(1 + exp(x))

One layer of such units can be compactly described thanks to matrix notation as

y = g(XΘ)

X represents the input matrix (number of samples n times number of features k)
and Θ is the matrix of weights (number of features k × number of units u). Note that
function g is applied element-wise.

1.3.2.1 Logistic regression

One of the simplest classifiers and one of the simplest neural networks is the logistic
regression. It is an one layer neural network with nonlinearity realized by the logistic
(sigmoid) function g(x) = 1

1+e−x . This classifier has a few nice properties. Derivation of
its activation function can be very nicely expressed as g′(x) = g(x)(1− g(x)). Sigmoid
outputs values in interval [0, 1] that can be directly viewed as a probability for given
class. Because of these properties, the logistic regression is one of the most used
classifiers and serves as a benchmark to great number of problems.

1.3.2.2 Multilayer neural networks

The important observation about neural networks is, that we can chain such layers
to form a deeper neural network.

y = g2(g1(XΘ1)Θ2)

W1 are weight of hidden neurons (first layer) and W2 are weight of output neurons
(second layer). Note that g2 (usually sigmoid) can be a different function than g1

(usually relu). There is no consensus in the community about how to count the layers.
For example the simple network on picture 1.2 could be seen as a 3 layer neural network,
because it has input units, hidden units and output units. In this thesis we will use
the number of matrices W that are in the model.

In general, such multilayer feed forward neural networks represent very broad family
of functions. They are in fact an universal approximator and can approximate any other
function [16]. However, we need to train them first.
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1.3.2.3 Backpropagation

Backpropagation is a method for efficient computation of the gradient of a neural
network. It relies on the fact, that neural networks are just simple compositions of ma-
trix multiplications and function applications. It also relies on the fact, that functions
used in the units are differentiable (almost everywhere).

Backpropagation works in two steps, forward pass and backward pass. In the for-
ward pass we feed input to the network, compute activations of each layer and compute
the final output. In the second pass, we use the chain rule and incrementally compute
gradient with respect to each layer of the network.

Finally we use the gradient descent according to equation 1.1 and optimize the
parameters [55].

1.4 Word and sentence representation

In order to apply machine learning techniques to a text classification, we need to
represent the text in a machine learning friendly way. Most machine learning algorithms
expect the input in a form of vectors of numbers.

Because of this, we need a system to translate string sentences s into vectors of
numbers e. Such vector is usually called an embedding.

In other words, we need to project words, sentences and documents into a vector
space. We consider the sentences to be basically identical to documents as they both
can be considered to be sequences of words.

1.4.1 Local representation

The simplest vector space is based on a local representation. In this representation,
we use a vector space with |D| dimensions, one for each word in the vocabulary. Value
vi at the i-th position of the vector v corresponds to a presence or an absence of
the i-th word Di from the vocabulary D. Note that |D| in real applications easily
exceeds 100 000 or even 1 000 000. This may make this representation unusable for
some applications (classification with SVM).

One of the simplest local representations is a bag of words (BOW) representation.
In this representation, values in vectors are binary, where 1 means that the word was
present in the text and 0 means it was not. This can also be viewed as a simple one
hot encoding. Optionally we can extend this to a term vector, where the number is
not binary, but it expresses the real count of given word in the sentence.

Looking at our example corpus, our vector space would have 11 dimensions and the
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first sentence would be represented as a vector

e = (1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0)

.
This representation allows for simple sentence comparison. Sentences s1 and s2 can

be compared by comparing cosine similarity of their BOW embeddings e1 and e2.

sim(s1, s2) = sim(e1, e2) =
e1e2

||e1||.||e2||

For technical reasons we can also define a cosine distance.

dist(s1, s2) = dist(e1, e2) = 1− sim(e1, e2) = 1− e1e2

||e1||.||e2||

However, this representation does not consider, that two words can be similar, even
though they are not the same. For example words nice and good are considered to be
completely different, even though they have similar meaning.

Second problem is, that this representation forgets the initial ordering of the words.
We can address this problem by using pairs of words instead of single words. Pairs of
words are called bigrams. For example, the first sentence in our example dataset can
be represented as bag of bigrams:

e = ((4, 7), (7, 1), (1, 6), (6, 5))

Third problem is, that this representation assigns the same weight to each word.
The fact that two sentences both have a meaningless word a has the same effect on
the similarity as if they both have semantically meaningful word bad. This problem is
partially solved by introducing term weights.

1.4.1.1 Term-weighting schemes

To emphasize that some words in the corpus are more important than others we
introduce a term-weighting schemes. The idea is, that words like prepositions (a, an)
and other words that are not very informative or redundant (is, do, by) should have
smaller weights. In practice, a list of stop words is used to completely filter such words.

Also words, that are to common in the dataset should have lower weights. If each
sample is about a dog, we probably do not care about the word dog, because it is
somehow redundant.

However words, that appear multiple times in a sentence are probably important
for this sentence and should have higher weights.

Based on these observations, a number of term-weighting schemes was proposed [56].
A term-weighting scheme assigns a weight to a word w in a sentence s as term weight
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tw,s. These weights usually consist of two parts, term frequency and inverse document
frequency.

Term frequency part TFw,s reflects how important is a given word w for sentence
s. Common choices are:

• sign(tfw,s), binary presence of the word in sentence. Also known as BOW.

• tfw,s, number of appearances.

• tfw,s

|s| , number of appearances normalized by length of the sentence.

• 1 + log(tfw,s).

Inverse document frequency part IDFw, reflects how important is the word w for
the whole corpus. Common choices are:

• 1, unary.

• log
(
N
nw

)
, inverse document frequency.

• log
(

1 + N
nw

)
, smoothed inverse document frequency.

• log
(
maxw′nw′

nw

)
, max inverse document frequency.

• log
(
N−nw

nw

)
, probabilistic inverse document frequency.

Combination of such parts is called TF-IDF. Note that these choices for TFw,s and
IDFw,s are probabilistically grounded [2].

Another popular weighting scheme that is usually used in document retrieval is
BM25.

BM25 w,s = log

(
N − nw + 0.5

nw + 0.5

)
tfw,s(1.2 + 1)

tfw,s + 1.2
(

1− 0.75 + 0.75 · N
avgdl

)
This representation performs better than BOW and usually works the best for large

documents in document retrieval [36].
Term weights can help to describe that different words have different importance.

However, they still cannot take into account, that two different words should have
similar representation.

1.4.1.2 Supervised weighting schemes

Number of researchers recognized supervised weighting schemes as an elegant form
of feature engineering for document classification problem. We try to build upon these
results and upon interesting schemes they proposed.
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Our work is mainly based on schemes described by Wu et al.[61], Lan et al. [29],
and Deng et al. [18].

We will use schemes tfchi2, tfig, tfgr, tfor, and tfrf. The exact formulas for
these weights are not relevant to our work and we refer the reader to cited articles. The
important part is, that these weighs consider how many times the given word appeared
in each category as a contrast to unsupervised weights.

1.4.2 Distributed representation

To address the problem of high dimensionality and to allow different words to have
high cosine similarity, we employ distributed representation. In this representation,
dimensions do not correspond directly to words, but rather to some features of these
words. In this representation the ”meaning“ of a word is split across multiple different
dimensions. We can view each dimension as if it holds some form of an abstract
meaning [31].

Simple example of distributed representation is a binary representation of a number.
To acquire a distributed representation, algorithms commonly make use of the dis-

tributional hypothesis.

1.4.2.1 Distributional hypothesis

Distributional hypothesis states, that words which appear in similar contexts tend
to have similar meaning, even though they do not appear directly together [21] [53].
For example we can exchange words dog and cat in each sentence in our example
corpus 1.1 and all sentences will still make sense. The positive correlation between
the words appearing in similar contexts and words having similar meaning was in fact
empirically confirmed.

Because of this, distributional hypothesis is used as a foundation for a lot of methods
that try to capture the word semantic similarity [54].

1.4.3 Prediction based distributed representation

Number of researchers used neural networks to create a good, dense, distributed
word representations [48] [32] [52]. These representations are also commonly called
neural embeddings or just word vectors. We will call these representations word vectors.
Word vectors proved to be very useful in broad range of natural language processing
tasks.

Moreover, they manifest interesting algebraic properties.

v(king)− v(man) + v(woman) = v(queen)
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v(better)− v(good) + v(small) = v(smaller)

v denotes the word vector for given word.
There are two main approaches for training word vectors with neural networks:

skip-gram model and continuous bag of words model. Based on an embedding of an
input word x, the skip-gram model predicts words from the context of x . On the other
hand, the continuous bag of words model tries to predict the word based on its context.

These methods can be computationally intensive, and they require a lot of training
data. Moreover their training usually requires a lot of well chosen hyper-parameters
and tricks [41] [58].

1.4.4 Count based distributed representation

Count based methods create co-occurrence matrix and try to extract its underlying
structure. These approaches are very popular before the raise of neural networks and
neural embeddings.

There is multiple ways how to extract some structure out of the Co-occurrence
matrix. For example, latent Dirichlet allocation (LDA) [7] constructs a probabilistic
model of each document. It assumes, that each document is created as a mixture of
topics and that each topic is just a distribution over words.

Second popular class of approaches relies on performing some matrix factorization
on the co-occurrence matrix. In this thesis we build on one of these factorization
approaches.

1.4.4.1 Latent semantic analysis

For the purposes of this thesis we consider the latent semantic indexing (LSI) to
be the same as latent semantic analysis (LSA) [17]. For simplicity, we will refer only
to the LSA.

Latent semantic analysis is one of the standard approaches to identify hidden vari-
ables describing the data. In the context of natural language classification it extracts
and infers relations of expected contextual usage of words in documents. It does so
without any humanly constructed dictionaries, knowledge bases, semantic networks,
grammars or syntactic parsers.

This property proves to be extremely useful and is not specific only to the LSA.
Machine learning algorithms that rely only on data X and do not need any form of
labels Y are commonly called unsupervised. The problem is, that data is usually very
easy to acquire (just set of some documents), but labels Y are very hard and costly,
because they may require human annotation.

LSA starts with a co-occurrence matrix M ′. Each cell M ′
i,j of this matrix contains

number representing the frequency with which the word Di appears in the document
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dj. Afterwards each cell entry is weighted by a function that expresses both the words
importance in the particular document and the word importance in the general corpus.
A weighting scheme such as TF-IDF can be used. We denote the reweighted matrix
M .

Next, LSA applies singular value decomposition (SVD) to the matrix. In principle,
SVD achieves a two-mode factor analysis and positions both terms and documents
in a single space defined over the extracted dimensions. In case a different matrix
factorization is used such as non negative matrix factorization, we would arrive to
probabilistic latent semantic analysis.

SVD breaks down the document matrix M into three matrices U , Σ, V ,[46] [37]
[60] [30] such that

M = UΣV T

U and V are orthogonal matrices and Σ is a diagonal matrix.

M U Σ V T

dTi
↓

x1,1 . . . x1,N

... . . . ...
xj,1 . . . xj,N
... . . . ...

x|D|,1 . . . x|D|,N


= uj →


[

u1

]
...[

u|D|
]
 ·


σ1 . . . 0
... . . . ...
0 . . . σk

 ·



v
T
1

 . . .
v

T
N





U describes the original row entities (words) as vectors of derived orthogonal factor
values. V describes the original column entities (documents) in the same way. Σ

contains scaling values such that when the three components are matrix multiplied,
the original matrix is reconstructed.

It was shown that any matrix can be decomposed perfectly in a such way, using no
more factors than the smallest dimension of the original matrix.

Moreover we can construct an approximation with reduced rank by setting all but
the k biggest entries in Σ to zero. This effectively reduces the number of columns of
U to k and similarly number of rows of V T . The thesis behind LSI is that those less
important dimensions correspond to “noise” due to word-choice variability.

Note that due to this reduction we inevitably loose some of the information. We
can see this as forgetting some of the less often words.

An interesting property of SVD is that the generated approximation is the closest
matrix of its rank to the original in the least-squares sense [5].
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In practice, computing the full SVD decomposition would be time and memory
demanding and even unfeasible. Because of that, we directly compute the lower rank
approximation with k dimensions, such that M ' UkΣV

T
k [20]. Moreover, we do not

even need to have access to the full matrix M and we can compute the decomposition
in an incremental manner [10].

We can incrementally adjust the decomposition when adding a new document into
the corpus, moreover we can remove a document as well. Incremental SVD could in
theory be used in the stochastic gradient descent setting.

From now on, we drop the subscript k and matrices U , Σ and V are assumed to
have only k dimensions in the later text.

1.4.4.2 LSA for document classification

In the context of document classification, we first construct our vocabulary D from
our training data. We can filter out words that we know are not relevant, or the ones
that appeared only few times in the corpus.

Now we can transform sentences into their BOW representations. Afterwards, we
compute all necessary statistics required by our chosen weighting scheme. In case
of TF-IDF, we compute the number of appearances of each word in our text nw.
This can be done efficiently by making use of fast matrix operations and libraries
implementing linear algebra. Having these statistics, we can reweigh all words with
them and construct the term matrix M .

Then we factorizeM an compute the matrices U , Σ, V . In theory, we could directly
read the document embeddings v from the matrix V . For practical purposes, the matrix
Vk is usually not stored and sometimes not even computed.

To compute the embedding, we take the document term vector di and employ a
relationship

dTi = UΣvTi

Because U is orthogonal and Σ is diagonal, we get

Σ−1UTdTi = vTi

vi = diUΣ−1

Note that Σ−1 is easy to compute, because Σ is a diagonal. We just need to invert
each number on the diagonal.

It was experimentally shown in my bachelor thesis [38] and by other researchers [35]
that Σ may not reflect the importance of each feature very well. Because of that,
a simpler relationship is usually employed
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vi = diU

This process can have a different interpretation. Each entry in matrix U is the
distributed representation for one word. The matrix multiplication selects words, that
are present in the document and computes a weighted sum of them.

Important part is, that we can compute such embedding even for unseen documents.
The problem is, that we have to filter all words that are not present in D. However,
because this method is fully unsupervised, we can make use of any unlabeled data.
Factorized matrix M can contain documents, that we do not have the label for.

Finally, we perform the classification. Matrix of embeddings vi are considered to
be the document features and are used as an input X to some classifier. A popular
choices for classifier are a SVM or neural networks. First we train the classifier on
some training set of documents and ther labels. Then we can easily predict labels for
unseen documents.

We can break down the whole process into three parts: weighting, decomposition
and classification. We denote the weighting part as W , the decomposition part as S
(SVD) and the classification part as C.

1.4.4.3 LSA pitfalls

Even though LSA was shown to perform well in document retrieval applications
and it can capture some basic semantic properties of words, it has certain limitations
when applied to classification tasks.

The problem is, that LSA does not incorporate the information about document
classes. It finds the most representative features and not the most discriminative
ones [5]. In other words, it finds embedding that is the best for reconstructing the
documents. Because of that, infrequent words that have high discriminatory power
(are important for the task), may be filtered out.

For example, LSA computed on our example corpus 1.1 would focus on capturing
the words a, is, dog and cat, event though they are completely irrelevant to our
prediction task.

1.4.5 Prediction vs. count based representations

LSA and other count based techniques used to be very popular alternative to local
representations. However, after the raise of neural networks, they were soon overshad-
owed by neural word embeddings.

Prediction based models achieved much better performance across multiple word
relatedness tasks, categorization tasks, synonym tasks and analogy tasks [4].
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During these evaluations, they obtained the word representations by training on
a big monolingual dataset, like wikipedia. Afterwards they used prepared pairs of
related words (synonyms or words from the same category) and tested how similar are
the vector representations of related words. They measured how well the word vector
similarity correlates with the actual relatedness. They report that count based methods
achieved Pearson correlation coefficient 0.74 and were outperformed by prediction based
methods which achieved 0.84 [4].

This and the hype around neural networks led to recent extreme popularity of
prediction based embeddings, even though they were much less understood and less
”mathematically grounded“.

Later it was shown, that these two approaches are in fact very similar. It was proven,
that a prediction based model skip-gram with negative-sampling (SGNS) is implicitly
factorizing a word-context matrixM , whose cells are the point-wise mutual information
(PMI) of the respective word and context pairs, shifted by a global constant [34].

These results suggest, that these two approaches are somehow equivalent and with
proper weights the LSA should achieve similar results as skip-gram model. However,
this was not the case in practice.

Prediction based models require a lot of hyperparameters, that cannot be learned
and need to be set up manually, or through excessive search. On the other hand,
count based models usually do not require a lot of parameters, besides the number of
dimensions of the resulting embedding.

Levy et al. [35] showed, that much of the performance gains of neural embeddings
are due to such hyperparameters and certain system design choices, rather than the
embedding algorithms themselves. Furthermore they showed that traditional (count
based) distributional models can also benefit from such hyperparameters and design
choices.

After incorporating these insights into the count based methods, they observed
mostly local or insignificant performance differences between quality of count based
embeddings and prediction based embeddings.

Note that these experiments were done on a large bodies of text like English
Wikipedia. On small datasets it was empirically shown, that count based methods
actually outperform the neural networks[3].



Chapter 2

Similar work

From studying the literature, we identified 3 ways how to address shortcomings of
LSA for document classification. In this chapter we discuss these approaches in more
details.

We can modify the term matrix M so that weight of each word represents how
important is this word for the actual classification task and use supervised term weights.
This is a contrast to the classical approach, where the weight of the word represents
how important is it for the document reconstruction.

Besides that, we can introduce some form of supervision directly into the matrix de-
composition process. Sun et al. [57] propose supervised latent semantic indexing (sLSI)
and they employ the supervision while choosing the most relevant dimensions of the
embedding. Chakraborti et al. [12] propose to add class dependent terms (supervised
terms) into the term matrix and proceed with standard factorization.

Finally, we can fully employ advances made in artificial neural networks and use
LSA just as a module into these networks.

In this chapter, we introduce each of these approaches in more details.

2.1 LSA with class knowledge

2.1.1 Supervised LSI

Recall (from section 1.4.4.1) that we consider LSI and LSA to refer to the same
method.

Sun et al. [57] also recognized that LSI is not optimal for document categorization
tasks because it finds the most representative features and not the most discriminative
ones. To address this problem, they incorporate the available information about the
classification of documents into c categories and propose supervised latent semantic
indexing (sLSI).

17
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To introduce their approach we will recapitulate the classical LSI first. LSI selects
the eigenvector of the term matrix M with the biggest eigenvalues. The effect of this
basis vector is then removed from the original document vector and we iterate this
process.

SLSI algorithm employs the class information to guide the selection of the basis
vectors. For each category they perform standard SVD on the matrix M . Then they
collect eigenvectors with the highest eigenvalues into a collection of candidate vectors.

For each of these candidate vectors gs they project all documents onto this vector.
They compute centroids (average position of documents from given class) of each class

vps =
1

|Cp|
∑
d∈Cp

gsd
T (2.1)

where Cp denotes all documents belonging to class p. Note that because they project
onto one vector, this centroid is a scalar. Then they compute distances between such
centroids for each pair of classes fpqs = |vps − vqs |.

Finally, they select the most discriminative vector as vector that separates some
pair of classes the best

b = arggi∈G{max
pq

fpqi } (2.2)

and proceed to select the next one.
They report that this algorithm generates better representations than standard LSI

and can achieve higher dimensionality reduction without reducing the classification
accuracy.

2.1.2 Sprinkling

Chakraborti et al. propose another way how to incorporate class information into
LSI [12][13]. They propose to add the label directly to the term matrix M resulting
into a “sprinkled” matrix M ′.

Label related terms yi,k, the sprinkled terms, have value 1 if the document di belongs
to the class k and 0 otherwise. These terms are added as normal words into each
document. Note that Chakraborti et al. use transposed form of M (documents are
rows of M). We decided to use this variant to be consistent with the rest of the thesis
(section 3.2.

After obtaining the matrixM ′, they perform standard SVD. Then they “unsprinkle”
the matrix by removing word vectors associated with sprinkled terms.

This approach reports 1% improvement over LSI without sprinkling.
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M

dTi
↓

x1,1 . . . x1,N

... . . . ...
xj,1 . . . xj,N
... . . . ...

x|D|,1 . . . x|D|,N



M ′

dTi
↓

x1,1 . . . x1,N

... . . . ...
xj,1 . . . xj,N
... . . . ...

x|D|,1 . . . x|D|,N

y1,1 . . . yN,1
... . . . ...
y1,k . . . yN,k



Figure 2.1: Effect of sprinkling on term matrix

2.1.2.1 Why does it work?

Work of Kontostathis et al. [28] reveals close correspondence between LSI and higher
order associations between terms. We say that word w1 has a first order association with
another word w2, if they co-occur in at least one document. We say that words w1 and
w2 share a second order association if there is at least one term w3 that co-occurs with
w1 and w2 in distinct documents. Kontostathis et al. provide experimental evidence
to show that LSI boosts similarity between terms sharing higher order associations.
Sprinkled terms create such higher order associations between terms related to the
same class/category.

2.2 Supervised weights

Term weighting is a strategy that tries to improve the performance of sentiment
analysis or text mining tasks by assigning weights to words. If the reweighted vectors
are used for some form of classification, we can enhance the weighting scheme by the
class information.

There is a number of ways, how to design such supervised term weights. In this
thesis, we will build on upon of some of those schemes, because we believe that super-
vised weighting schemes are a good approach to combat the shortcomings of LSA for
document classification.

In this chapter we introduce an interesting use of LSA with supervised weights for
the problem of semantic relatedness.
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2.2.1 TF-KLD

Ji and Eisenstein [26] studied the performance of LSA for semantic relatedness task.
In semantic relatedness task we have two documents d1

i , d
2
i and we want to determine,

whether they are semantically similar or not. Example of semantic relatedness task
can be to determine, if two questions asked on some forum are the same (and should
be deduplicated) or not 1.

For this task, Ji and Eisenstein proposed to compute the LSA embeddings of both
texts v1

i and v2
i and train classifier on features based on these embeddings. In the paper

they used [v1 + v2, ‖v1 − v2‖].
They recognized, that LSA with term matrix M , containing term frequencies, per-

forms poorly. They designed novel supervised weighting scheme called TF-KLD (term
frequency, Kullback-Leibler divergence). This weighting scheme has classical term fre-
quency part and second novel KLD part.

KLD part describes, how important is given word for the task. They compute
probabilities

pj = P (s1
ij|s2

ij, yi = 1)

qj = P (s1
ij|s2

ij, yi = 0)
(2.3)

In other words, what is the probability that word wj is in the first sentence if it is the
second one and the sentences are (not) related.

KLD for word j is

KL(pj||qj) =
∑
x

pj(x) log
pj(x)

qj(x)
(2.4)

, where KL denotes the divergence. This can be seen as an amount of information
that presence of the word tells us about similarity of this pair of sentences.

This approach with TF-KLD weights can perform even better than recurrent neural
networks [15]. This result shows, that with proper supervised weights, we can even
outperform complicated neural network approaches.

2.3 SVD in neural networks

Ionescu et al. [25] proposed a very interesting method of how to use good properties
of SVD inside a neural network. They researched the field of computer vision, that is
currently dominated by convolutional neural networks (CNNs) [33].

They argue, that CNNs specialize at local computations while on the other hand
SVD can perform global computations.

1https://www.kaggle.com/c/quora-question-pairs

https://www.kaggle.com/c/quora-question-pairs
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They propose to use matrix factorization as a module inside the neural network.
They also proposed a matrix backpropagation methodology to train these networks.
They compare their approach against widely used convolutional architectures VGG
and Alexnet and report that addition of such structured layer significantly improved
the segmentation accuracy.

They compute the exact update that is necessary to perform on matrices U , σ, V
that describe the SVD. However, this computation is only possible, because they use
the full SVD (not only the top k dimensions). Because of this we cannot directly use
their approach. However, their results show, that it is possible to “flow the gradient
through SVD”. Hence gradient descent can be used to update parameters that are used
before the SVD.



Chapter 3

eLSA

In this chapter we introduce our novel approach eLSA: error boosted LSA. We
describe our motivations, the design of eLSA and some implementation details.

3.1 Goals and motivation

The root of LSA’s problems is the dimensionality reduction. It will inevitably throw
away some information. However, this information may be vital to the classification
task. It is clear, that we need to address this problem and introduce some form of
supervision, that precedes the SVD.

To some extend, this can be done by the supervised word weights described in
section 1.4.1.2. However, we consider this supervision to be rather weak, as it only
computes simple statistics over the words and labels.

In the end, we want to train some classifier C on top of the document embeddings.
We would like to find a way, how to use the knowledge about the classifiers error
and incorporate it before the SVD. We achieve it by training our own word weighting
scheme.

We propose a novel approach for learning task-specific word weights. We experimen-
tally evaluate the performance of this approach and compare it with other (commonly
used) weighting schemes. Finally we use its properties to acquire new insights about
the dataset.

As a side goal, we would like to introduce as few new hyperparameters as possible,
because they may cause a “false improvement” of our approach over the baseline. We
also would like our approach to be at least slightly interpretable. It would be nice, if
it could produce some insight to the dataset.

Because of the supervised weights, we know that supervision helps. The only prob-
lem is, how to achieve it. Here we take the inspiration from neural networks, and the
insight that we can easily optimize parameters of rather complex system, as long as

22
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each part of this system is differentiable.

3.2 Design overview

First, recall how does the LSA works in the context of document classification.
We start with a sentence si and we represent it as a bag of words vector d′i. Then we
transform it with a weighting scheme into a term vector di. Afterwards we compute the
lower dimensional embedding of the document vi = diU . Finally we use this embedding
vi as an input xi to the classifier C (logistic regression, neural network or SVM). This
classifier predicts label ŷi that can be compared to the true labels yi.

Our contribution is to introduce another layer of reweighting. Instead of using the
term vector di, we introduce weights w′ and use reweighted vector di ◦ w′1. This is
equivalent to multiplying the vector di by diagonal matrix with diagonal w′. Then we
perform the SVD decomposition on the reweighted matrix M ◦w′. Here, we employ a
few conventions from popular linear algebra library NumPy [43], where such operation
is automatically broadcasted through the matrix.

We initialize the w′ to be a vector of ones (this effectively does not change the
matrix at first). For fixed decomposition M ◦ w′ = UΣV T and some classifier C (like
a neural network), we compute ŷ = C(M ◦ w′U). Then we want to optimize w′ to
minimize the error function Ey(ŷ). The only question is, how to do it.

The natural choice is to employ the gradient descent algorithm. However to use it,
we need to be able to compute the gradient of error with regards to the weights ∂Ey(ŷ)

∂w′
.

3.2.1 Gradient computation

To compute the gradient efficiently, we use the backpropagation method mentioned
in section 1.3.2.3. We can compute the derivation ∂Ey(ŷ)

∂w′
thanks to the chain rule

∂Ey(ŷ)

∂w′
=
∂Ey(ŷ)

∂ŷ

∂c(x)

∂x

∂x

∂w′
(3.1)

The first part of expression 3.1 is dependent on the chosen error function. For L2
error we get

∂Ey(ŷ)

∂ŷ
=
∂ 1

2
(ŷ − y)2

∂ŷ
= ŷ − y (3.2)

The second part is dependent on the classifier that we use. In case we use logistic
regression ŷ = σ(xΘ + b), the expression becomes

∂c(x)

∂x
= ŷ(1− ŷ)Θ (3.3)

1Recall, that ◦ means Hadamard product (pointwise multiplication).
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Note that it is possible to compute this expression even for more complicated classifiers.
Some libraries can even compute this automatically [1]. However we need the classifier
to be differentiable so we cannot easily use SVM as the classifier.

The third and last part is tied to the computation of the LSA embedding. Because
x = d ◦ w′U , we can compute

∂xj
∂′wi

= diUi,j (3.4)

This can be rewritten in more concise notation as

∂x

∂′w
= U ◦ dT (3.5)

We again employ the convention that the ◦ operation is broadcasted across all columns
of the matrix.

Once we know how to compute the gradient, we need to decide on what optimization
routine we will employ.

3.3 Optimization routines

Inspired by gradient descent algorithm, we perform the gradient step

w′ = w′ − β∂Ey(ŷ)

∂w′
(3.6)

The parameter β determines the size of the gradient step that we will perform. We will
call this parameter w′-learning rate. Note that the classifier C may have its of learning
rate α, and these two learning rates are completely independent.

The problem is, that equation 3.1 holds only for fixed classifier C and for fixed
decomposition S. We ignore the fact, that S is actually a function of reweighted
matrix and hence it is a function of w′. It is probably possible to compute the exact
gradient (refer to section 2.3), but we will not do that.

It is not clear, how often we want to recompute the SVD and how often (and how
much) we want to retrain the classifier. We propose two main approaches inspired by
neural network training and by expectation minimization algorithm.

We use the notation introduced in section 1.4.4.1. However, our parts W , S and C
are going to be updated through the time. We denote them with superscripts, e.g. W t,
referring to weighting part W at time t.

3.3.1 Batch gradient descent

We need to find weights w′ for the part W , such that the decomposition S captures
the most information and hence the classifier C has access to all the important features
of the document. However, the decomposition S is dependent on the reweighted matrix
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produced by W . Because of this, after each update of w′ we need to fully recompute
the decomposition S and retrain the classifier C. The first optimization routine is
described in the algorithm 1.

Data: M
Result: trained W , S, C
w′0 = 1, t = 1;
while performance is improving on validation dataset, t+ + do

recompute St from M ◦ w′t−1;
compute embeddings vt from M ◦ w′t−1 with St;
fully train Ct on vt and labels y;
update W t: w′t = w′t−1 − β ∂E(C(S(Mw′t−1))

∂w′t−1 ;

end
Algorithm 1: stochastic training of w′

We took inspiration from expectation maximization algorithm. Note that it is not
essential in any way for the reader to know this algorithm for further reading.

We name the algorithm 1 eLSA, because it uses error of the classifier to produce
boosted (improved) weight w′.

This algorithm needs to do a lot of computations for one update of the weights w′.
To address this, we can increase the number of gradient steps performed on w′ in each
step of the while loop. We recall the same problem in neural networks was solved by
stochastic gradient descent. We explore such solution as well.

3.3.2 Stochastic gradient descent

We take the inspiration from stochastic gradient descent step from neural networks.
Instead of computing the full gradient, we just compute the gradient related to one
example

∂Eyi(ŷi)

∂w′

Because the document vector di is sparse, we will only update a few values from w′,
hence we can easily update part W .

Because we updated w′, the entry in matrix M corresponding to the document di
has changed. We know, that SVD can be build incrementally and that we can add
new documents to the matrix M [10]. We just use the adding routine and add the
new representation di ◦ w′t to the decomposition. Because we changed the reweighted
document and the decomposition matrices, the embedding of this document should
also change to

xti = vti = diw
′tU t (3.7)

We update C in the similar manner. We perform the stochastic gradient step for
example xt+1

i and threat it as a new example in the dataset. Pseudocode is available
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in algorithm 2.
Data: M
Result: trained W , S, C
w′0 = 1, t = 1;
compute S0 on M ◦ w′0;
compute embeddings v0 from M ◦ w′0 with S0;
fully train C0 on v0 and labels y;
while performance is improving on validation dataset do

for document di ∈M , i+ +, t+ + do
add di to St−1 and get St;
compute embedding vti from di ◦ w′t−1 with St;
perform gradient step on Ct−1 with vti to get Ct;
update W t, w′t = w′t−1 − β ∂E(C(S(di◦w′t−1))

∂w′t−1 ;

end

end
Algorithm 2: Batch training of w′

We done a few preliminary experiments and this optimization routine showed to
be very unstable. It also introduced a lot of new decisions that would have had been
made and a lot of new hyperparameters. We do not explore it further.

3.3.3 eLSA explanation

We need to address a few things that are no apparent from the description provided
above. We do it here to not clutter the notation and so that the previous sections are
a bit cleaner.

3.3.3.1 Train test split

Motivated by good practice from neural network training, we split our dataset into
3 parts: train, validation, and test. Train set is 80% of our samples, validation and
test are both 10%. We make sure that all those sets have percentage of positive and
negative labels that is similar to the whole dataset.

We use the train dataset for gradient evaluations and overall training. We use
the validation dataset to keep track of our performance on unseen data. Based on this
performance, we decide if the model is still improving, or if it started to overfit. Finally
we report the performance on the test set, that was never seen by the model.

Because our datasets are not very big, we stabilize our results by employing the
crossvalidation technique. However because we need to run a lot of experiments, we
only use 3 fold crossvalidation.
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3.3.3.2 Stopping conditions

In both optimization routines we iteratively update parameters w′ and we do so
while our performance on validation set is increasing. This needs more clarification.

In each time step t we evaluate the loss Et
valid on the validation dataset. By conver-

gence we mean, that the Evalid stopped improving. In the final solution we track the
mean of this errors in last few time steps. When this mean does not increase for long
enough, we stop the training. Formally we track MEt

10 = 1
10

∑
0≤i<10E

t−i
valid (mean for

last 10 iterations) and MEt
10,20 = 1

10

∑
10≤i<20E

t−i
valid (mean for previous 10 iterations).

We stop the training in time t if MEt
10 > MEt

10,20, which means our validation
error started to increase and we need to stop.

3.3.3.3 Weighting schemes

An important properly of eLSA algorithm is, that we do not need to start from
basic co-occurrence matrix M . We can apply some weighted scheme, such as TF-IDF
on this matrix first and then run eLSA. What weighting scheme we starts from is
actually one of the important hyperparameters.

Afterwards, we can examine the found w′ and see, which words had high value w′i.
This means, they were underweighted by the weighting scheme.

3.3.3.4 Parameters

eLSA on its own has only three hyperparameters and that is the w′-learning rate
β and the initial weighting scheme. Second hyperparameter is the dimensionality of
the embedding. This hyperparameter is not specific to eLSA. However eLSA can be
viewed as a tool for analyzing weighting schemes so it is actually no a hyperparameter.

In fact the SVD decomposition (part S) and the classifier (C) may have a lot of
hyperparameters on their own. Exploring the space of those hyperparameters would
be extremely computationally demanding and could be subject to further research.
Instead we leave this parameters to reasonable defaults suggested by implementations
we use. We can do this, because we are not interested in pushing the state of the art in
document classification problem, we just want to see a relative improvement over the
LSA baseline.

3.4 Implementation

In this section we go through some implementation details and decisions. The whole
thesis, including experiment evaluations, is implemented in Python3. For code, please
refer to appendix A
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3.4.1 Libraries

While implementing our approach, we made use of multiple tools and libraries that
deserves to be mentioned.

3.4.1.1 Scikit-learn

Scikit-learn (or sklearn) is a free machine learning library for Python programming
language [47]. It features wide range of state-of-the-art machine learning algorithms
for medium-scale supervised and unsupervised problems. It is extensible and provides
very nice and clean APIs [11].

In this thesis, we used it for multiple purposes. We used base classes for weighting
schemes TfidfTransformer, BaseEstimator, TransformerMixin. We also use this
library to generate training and test splits.

Lastly, we used scikits implementation of LogisticRegression. However, in our
approach we need to compute a derivative of our classifiers. This implementation does
not provide an API for this computation and we had to use its internal variables coef_
and intercept_ that corresponds to the weights and bias of the classifier.

3.4.1.2 Gensim

Gensim is a robust open-source vector space modeling and topic modeling toolkit
implemented in Python [50]. It is an efficient and hassle-free software to realize unsu-
pervised semantic modelling from plain text [6]. It is specifically designed to handle
large text collections, using data streaming and efficient incremental algorithms.

We made use of multiple tools from this library. We used Dictionary object for
vocabulary filtering and embedding into the BOW representation and we used its TF-
IDF implementations. We also used its API to train word vectors.

Most important for us was gensims implementation of the probabilistic algorithm
for constructing approximate matrix decomposition [20]. This provides fast and easy
to use incremental SVD decomposition.

3.4.1.3 Numpy

NumPy is a library for Python, adding support for large, multi-dimensional arrays
and matrices [43]. We used this library for result evaluation and to implement our own
logistic regression.

3.4.1.4 TensorFlow

TensorFlow is an open source software library for high performance numerical com-
putation developed by Google Brain team [1]. It provides simple interface to matrix
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computations on GPUs and CPUs.
One of the most important capabilities of this library is automatic differentiation.

We can create symbolic expression representing the desired computation ŷ = g(XΘ)

and this library can automatically compute the gradient

∂ŷ

Θ

Because of this, TensorFlow is very popular among machine learning researchers.
We wanted to implement our whole approach in TensorFlow. It even contains

implementation of SVD, however that implementation does not have all the properties
that we require.

3.4.2 Other tools

During the development of required code we worked in Jupyter Notebook. It is an
interactive environment the offers very easy prototyping and data visualization [49]. For
data visualization we used the Matplotlib library [24]. Finally, for data manipulation
and presentation we used the Pandas [40].

Last important mention belongs to Aysen Tatarinov, his blog and his repository 2,
where he implemented a number of supervised weight schemes [37].

3.4.2.1 Cloud

Because we want to test multiple parameters on multiple datasets, the number of
experiments we need to perform explodes. Running all those experiments on one PC
would be unfeasible.

We made use of the Google Cloud service 3. We choose Google cloud mainly because
it is easy to use and it provides a free trial with 300$ of credit that can be spend on
computation. This credit equals to approximately 6 moths of compute time on PC
with 2 CPUs and with 7.5GB of memory (n1-standard2).

Thanks to a good experiment design and a few bash scripts, we were able to run
experiments on 10 machines at parallel.

In the end, our experiments costed approximately 40$ worth of computation time.

2https://github.com/aysent/supervised-term-weighting
3https://cloud.google.com/

https://github.com/aysent/supervised-term-weighting
https://cloud.google.com/
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Experiments

In this chapter, we present our experimental results and compare them to baseline
solutions. The most important baseline that we would like to improve upon is the
standard LSA. Further, we present the bag of words baseline and a baseline based on
neural embeddings.

To make our evaluation more robust, we evaluate all baselines and approaches on
multiple classification datasets and multiple classification tasks.

4.1 Classification datasets

To evaluate the performance of different approaches, we make use of multiple pop-
ular datasets. In this section, we describe these datasets in more detail.

4.1.1 Overview

We use datasets from SentEval1 repository. SentEval is a library for evaluating
the quality of unsupervised sentence embeddings [15]. We do not directly use any
code from this library, because we were not able to modify its API in a maintainable
way to fit our needs. In the end, we just use it as a guideline for dataset acquisition.
Specifically, we only use the get_transfer_data.bash script.

This repository contains multiple different datasets, but we only use those related
to binary classification tasks. Namely, we use:

• Movie review sentiment analysis dataset – MR.
• Product review dataset – CR.
• Subjectivity/objectivity dataset – SUBJ.
• Question-type dataset – TREC.
• Opinion polarity dataset – MPQA.

1https://github.com/facebookresearch/SentEval
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CR MPQA MR SUBJ TREC

#examples 3775 10606 10662 10000 5952
#unique words 5674 6238 20325 22636 8968
#words 75932 32779 230162 246015 58468
#words with
1 appearance

2714 3117 10160 11152 5338

avg sentence
length

20.11 3.09 21.59 24.60 9.82

max sentence
length

106 44 62 122 37

median sentence
length

18 2 21 23 9

bias 0.64 0.69 0.50 0.50 NaN

Table 4.1: Dataset characteristics

In table 4.1, we present a few basic statistics for each dataset. Column bias denotes
percentage of the majority class in the dataset. It also presents a baseline accuracy
which a naive algorithm could achieve by making constant predictions. Bias for TREC
dataset is not applicable because this dataset is not binary and we address this in the
section 4.1.1.4.

We introduce each of these datasets in more detail and we provide some example
sentences from these datasets. Note that these examples are displayed in a very genuine
way (they do not contain mistakes!). We see these examples as they really are and as
they are presented to our algorithms. The actual preprocessing will be discussed later
in this section.

4.1.1.1 Movie review – MR

The rise of internet forums and critique websites gave birth to the problem of
sentiment classification.

This dataset contains movie reviews from the site Rotten Tomatoes collected by
Bo Pang and Lillian Lee [45]. Originally, each comment is accompanied by categorical
rating with values “fresh” (good movie) to “rotten” (bad movie). These labels were
transformed into this freely available dataset2.

Example of positive review in this dataset is: the rock is destined to be the 21st
century ’s new conan and that he ’s going to make a splash even greater than arnold

2http://www.cs.cornell.edu/people/pabo/movie-review-data/

http://www.cs.cornell.edu/people/pabo/movie-review-data/
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schwarzenegger , jean-claud van damme or steven segal .
An example of a negative review is: simplistic , silly and tedious .

4.1.1.2 Product review – CR

This dataset was introduced by Hu and Liu [22] as a part of a customer review
summarization task. They created a summarization pipeline with multiple steps and
addressed a lot of different problems.

We are only interested in the sentiment prediction part, where they present a novel
product review dataset.

Example of a positive review: im a more happier person after discovering the i/p
button ! .

Example of a negative review: weaknesses are minor : the feel and layout of the
remote control are only so-so ; . it does n ’t show the complete file names of mp3s with
really long names ; . you must cycle through every zoom setting ( 2x , 3x , 4x , 1/2x ,
etc . ) before getting back to normal size [ sorry if i ’m just ignorant of a way to get
back to 1x quickly ] .

4.1.1.3 Opinion polarity – MPQA

Another sentiment dataset was collected by Wiebe [59]. Its focus is to capture not
only the overall tone of the document, but also strength of the tone. However, we
will use only the binary positive-negative classification. Wiebe designed a fine grained
annotation scheme and employed it on the sentence corpus of articles from the world
press.

Example of a positive sentence: are also being encouraged.
Example of a negative sentence: failing to support.

4.1.1.4 Question-type – TREC

An important step in question answering and other dialog systems is to classify the
question to the anticipated type of the answer. For example, the question of Who is a
good boy? should be classified into the type of animal (entity), because the question
probably refers to some dog. This information would narrow down the search space to
identify the correct answer string [23].

This dataset contains questions and their labels in such classification. There are 6

labels:

• abbreviation (ABBR): what is the full form of .com?

• description (DESC): how did serfdom develop in and then leave russia?
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• entity (ENTY): what films featured the character popeye doyle?

• human (HUM): what contemptible scoundrel stole the cork from my lunch?

• location (LOC): what sprawling u.s. state boasts the most airports?

• numeric (NUM): when was ozzy osbourne born?

As you can see, this dataset is not binary. For our purposes, we create 6 different
binary datasets out of this one. To do so we employ one-vs-all strategy (one-vs-the-
rest) used mainly to train prediction models. This strategy consists on fitting one
classifier per class. For each classifier, the class is fitted against all the other classes.
Hence, new dataset TREC-ABBR will contain the same samples, but labels will be
binary – 1 if the sentence was originally in class ABBR and 0 otherwise.

ABBR DESC ENTY HUM LOC NUM

bias 0.98 0.78 0.77 0.78 0.85 0.83

Table 4.2: TREC tasks characteristics

4.1.1.5 Subjectivity/objectivity, SUBJ

There is number of sub-tasks that can help in context of sentiment prediction. One
such task is to decide whether the text was subjective or objective.

Pang and Lee were able to mine the Web and create a large, automatically labeled
sentence corpus. To gather subjective sentences, they collected movie review snippets
from website www.rottentomatoes.com. To obtain objective data, they took sentences
from plot summaries available from the Internet Movie Database www.imdb.com3 [44].

Example of a objective review: the movie begins in the past where a young boy
named sam attempts to save celebi from a hunter .

Example of a subjective review: smart and alert , thirteen conversations about one
thing is a small gem .

4.1.1.6 Preprocessing

Examples provided for each dataset could be slightly strange at the first glance. We
deliberately do only minimal processing in terms of word filtering and normalization.
The datasets are already tokenized, we only set text to lower-case. We do not filter

3We personally think, that this technique is rather questionable at best, because the labels are
probably very noisy.

www.rottentomatoes.com
www.imdb.com
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any stop words (the) or non token characters (like question marks ?). Not filtering
words that are generally filtered showed to be an important decision that allowed us
to get a new insight about data.

LSA is commonly accompanied by heavy filtering and it is known that stop words
removal helps the performance. Our rational behind minimal filtering is that we would
like the weighting scheme to understand which words are important. Hence, we hope
that if the stop word is really not important, its weight will be reduced.

4.1.2 Evaluation metrics

Because we deal with binary classification tasks, our metric of choice is the accuracy.
Accuracy of p predictions in a vector ŷ, given the true labels in a vector y is

computed as:

accy(ŷ) =
1

p

p∑
i=1

yi = ŷi

Note that this metric can have problems with unbalanced datasets. We just need to
remember that what is a good accuracy depends on the dataset. For example accuracy
0.69 on MPQA dataset is really bad, because it can be achieved by constant classifier.
To address this issue, we usually subtract this baseline from our results and look only
on the relative improvement.

We will compute accuracy on three subsets of the dataset. acctrain on the train
set, accvalid on the validation set and acctest on the test set. Note that acctrain is not
very interesting on its own, but if we compare it with accvalid and acctest we can get an
insight about whether our model is overfitting or underfitting.

4.2 Baselines

There is a number of baselines that we consider. They are commonly used ap-
proaches, such as pretrained neural embeddings, or very naive baselines, such as a
constant classifier.

To address the problems of accuracy as a metric, we report relative improvements
over the bias of each dataset. This can be viewed as an improvement over the accuracy
of the constant classifier. For absolute accuracies refer to the appendix B.

The most important baseline we want to improve upon is in section 4.2.3, and it is
the standard LSA.

4.2.1 Constant baseline

As discussed in the section 4.1.1, some of our datasets are biased. They may contain
substantially more examples belonging to one label than belonging to the other. We
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can exploit this property and “train” a very simple constant classifier. This classifier
counts the number of samples in each class in the training set and then always outputs
the majority class.

We do not include the result table for this classifier, it is almost identical to the bias
of given dataset. There are minor differences (on 3rd or 4th decimal place) because of
the random data split.

4.2.2 Bag of word baselines

First, we evaluate baselines that work with local word representation (section 1.4.1).
These baselines have no knowledge about semantic properties of words and usually only
capture some basic word statistic. They are usually the first pick for any task, because
they are simple and easy to use.

4.2.2.1 Logistic regression

First commonly used baseline is a BOW representation with logistic regression as
a classifier. We test multiple different supervised and unsupervised word weighting
schemes.

It could be argued that using term weights is not necessary when using logistic
regression as a classifier. The argument is that the term weighs could in theory be
absorbed into the weights of the classifier. This argument is actually true, if we only
consider the TF part of the weighting scheme.

However, this argument only holds for the optimal solution. The problem is that
even though an equivalent solution exists, it may not be found by the learning algo-
rithm. In practice, it is useful to add the weighting scheme, as it introduces some
form of knowledge (a bias), because then we can tell the algorithm which words are
(probably) more important. Because of that, we may employ more strict regularization
techniques without significant decrease in the performance.
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scheme CR MPQA MR SUBJ

None test 0.150 0.150 0.261 0.407
train 0.333 0.224 0.477 0.495

tfchi2 test 0.114 0.119 0.184 0.336
train 0.151 0.167 0.206 0.345

tfgr test 0.109 0.125 0.168 0.340
train 0.151 0.168 0.209 0.345

tfidf test 0.134 0.150 0.247 0.404
train 0.362 0.291 0.500 0.500

tfig test 0.131 0.127 0.175 0.339
train 0.152 0.167 0.212 0.347

tfor test 0.154 0.150 0.269 0.408
train 0.255 0.198 0.403 0.436

tfrf test 0.125 0.139 0.228 0.384
train 0.200 0.181 0.323 0.419

Table 4.3: Accuracy improvements for BOW baseline

scheme ABBR DESC ENTY HUM LOC NUM

None test 0.011 0.144 0.100 0.137 0.114 0.128
train 0.011 0.199 0.209 0.203 0.141 0.159

tfchi2 test 0.009 0.097 0.014 0.115 0.099 0.093
train 0.009 0.091 0.013 0.112 0.103 0.088

tfgr test 0.007 0.085 0.009 0.105 0.096 0.094
train 0.007 0.096 0.013 0.112 0.100 0.095

tfidf test 0.007 0.144 0.110 0.146 0.120 0.138
train 0.016 0.218 0.226 0.216 0.154 0.170

tfig test 0.007 0.091 0.009 0.104 0.103 0.092
train 0.007 0.096 0.014 0.112 0.101 0.093

tfor test 0.006 0.082 0.077 0.146 0.106 0.118
train 0.007 0.172 0.166 0.185 0.123 0.141

tfrf test 0.005 0.074 0.062 0.125 0.084 0.113
train 0.007 0.144 0.132 0.159 0.105 0.126

Table 4.4: Accuracy improvements for BOW baseline on TREC datasets
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According to tables 4.3 and 4.4, the best weighting schemes are None, tfidf, and
tfor. We expect the other supervised schemes to perform much better. It is interesting,
that TREC dataset is dominated by the unsupervised schemes.

4.2.3 LSA baselines

The most important baseline that we need to consider is the standard LSA. In this
baseline we construct the term matrix M , reweight it with weighting scheme, train
the LSA embedding and train the classifier. We try multiple weighting schemes and
multiple classifiers.

See tables B.7 and B.8 (and others) in appendix B for results for dimensions
300 and 400.

CR MPQA MR SUBJ
scheme

None test 0.116 0.056 0.162 0.371
train 0.160 0.069 0.196 0.387

tfchi2 test 0.111 0.082 0.166 0.333
train 0.147 0.099 0.187 0.343

tfgr test 0.117 0.084 0.171 0.331
train 0.149 0.098 0.190 0.345

tfidf test 0.115 0.063 0.183 0.390
train 0.164 0.073 0.210 0.400

tfig test 0.120 0.085 0.158 0.337
train 0.148 0.098 0.192 0.345

tfor test 0.142 0.088 0.229 0.378
train 0.207 0.099 0.273 0.399

tfrf test 0.115 0.094 0.176 0.374
train 0.165 0.099 0.216 0.389

Table 4.5: Accuracy improvements for LSA baseline with 200 dimensions

Slightly unfortunate observation is that LSA performs worse than the BOW base-
line. The problem is that in fact, we do not use the full potential of LSA in this
baseline. The power of LSA comes from the fact that it can be trained on documents
that we do not have labels for.
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ABBR DESC ENTY HUM LOC NUM
scheme

None test 0.008 0.119 0.067 0.129 0.100 0.119
train 0.008 0.127 0.098 0.147 0.110 0.124

tfchi2 test 0.008 0.085 0.010 0.105 0.102 0.085
train 0.010 0.094 0.013 0.113 0.103 0.088

tfgr test 0.007 0.096 0.013 0.111 0.096 0.102
train 0.007 0.098 0.013 0.112 0.101 0.095

tfidf test 0.008 0.108 0.078 0.131 0.103 0.117
train 0.011 0.125 0.103 0.153 0.115 0.135

tfig test 0.005 0.091 0.012 0.108 0.093 0.093
train 0.007 0.100 0.014 0.109 0.101 0.091

tfor test 0.008 0.083 0.076 0.133 0.102 0.126
train 0.006 0.159 0.152 0.179 0.117 0.138

tfrf test 0.006 0.074 0.057 0.120 0.095 0.113
train 0.007 0.117 0.105 0.148 0.102 0.122

Table 4.6: Accuracy improvements for LSA baseline with 200 dimensions on TREC
datasets

4.2.4 Neural embedding baselines

Thanks to results of Levy et al.[34] discussed in the section 1.4.5 we know that
LSA is, to some extent, equivalent to neural embeddings. Because of that, we consider
neural embeddings as one of our baselines. There are two possible setups: we can train
our own word vectors on each dataset, or we can use pretrained embeddings that were
trained on huge volumes of data.

We expect the trained embeddings to perform worse than pretrained and worst
than LSA.

4.2.4.1 Trained neural embeddings

In this baseline, we train word2vec neural embeddings on the dataset we want to
classify on. We use implementation gensim.models.Word2Vec from gensim. We train
embeddings with dimensions 200, 300 and 400. Than we compute embedding for each
word and sum them into a sentence embedding. Finally, we train the classifier (SVM
or logistic regression) and present the accuracy. We refer to SVM as SVC (support
vector classifier). Note that we train embeddings for each dataset separately.
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CR MPQA MR SUBJ

logistic 200 test 0.03 0.0 0.10 0.31
train 0.03 0.0 0.11 0.31

300 test 0.01 0.0 0.09 0.31
train 0.02 0.0 0.11 0.31

400 test 0.01 0.0 0.09 0.32
train 0.02 0.0 0.11 0.31

svc 200 test -0.00 0.0 0.05 0.17
train 0.00 0.0 0.08 0.19

300 test -0.00 0.0 0.05 0.16
train 0.00 0.0 0.08 0.18

400 test -0.00 0.0 0.05 0.14
train 0.00 0.0 0.08 0.16

Table 4.7: Accuracy improvements for trained word vectors

ABBR DESC ENTY HUM LOC NUM

logistic 200 test -0.0 0.00 -0.0 0.03 0.0 0.06
train -0.0 0.01 -0.0 0.02 0.0 0.05

300 test -0.0 0.01 -0.0 0.01 -0.0 0.05
train -0.0 0.00 -0.0 0.01 -0.0 0.04

400 test -0.0 0.00 -0.0 0.00 -0.0 0.04
train -0.0 0.00 -0.0 0.01 -0.0 0.03

svc 200 test -0.0 0.00 -0.0 -0.00 -0.0 0.00
train -0.0 -0.00 0.0 0.00 -0.0 0.00

300 test -0.0 0.00 -0.0 -0.00 -0.0 0.00
train -0.0 -0.00 0.0 0.00 -0.0 0.00

400 test -0.0 0.00 -0.0 -0.00 -0.0 0.00
train -0.0 -0.00 0.0 0.00 -0.0 0.00

Table 4.8: Accuracy improvements for trained word vectors on TREC dataset

Tables 4.7 and 4.8 contain our results. We see zero improvement of SVM classifier
for TREC datasets for all embedding sizes. TREC dataset seems to be overall very
challenging dataset. Interesting observation is that accuracy on this dataset decreases
as we increase the embedding dimensions. The highest accuracy increase (5%) on
TREC dataset is achieved by logistic regression and embeddings size 200.
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We see the biggest improvement on the SUBJ dataset (31%), with no notable
dependency on embedding dimension size.

However, compared to the LSA baseline, these results are significantly worse. This
is consistent with findings of Altszyler et al. [3].

We also conclude that we have not observed any overfitting, as train and test
accuracies are very similar.

4.2.4.2 Pretrained neural embeddings

In this experiment, we use pretrained word embeddings. We use Python library
spacy which provides easy interface for obtaining such embeddings.

We use spacy.load(’en_vectors_web_lg’) command, which returns a pretrained
model that we can query with words. Embedding obtained in this way have 300

dimensions and is trained on a large web corpus (large collection of websites). Note
that because these vectors are trained on much bigger datasets, it is not a very fair
comparison to other methods presented here.

CR MPQA MR SUBJ

logistic test 0.18 0.20 0.29 0.43
train 0.19 0.20 0.29 0.42

svc test -0.00 0.17 0.24 0.40
train 0.00 0.18 0.24 0.40

Table 4.9: Accuracy improvements for pretrained word vectors

ABBR DESC ENTY HUM LOC NUM

logistic test 0.01 0.08 0.07 0.14 0.10 0.07
train 0.01 0.11 0.09 0.14 0.10 0.10

svc test -0.00 0.02 -0.00 0.09 0.00 0.00
train -0.00 0.03 0.00 0.09 0.01 0.00

Table 4.10: Accuracy improvements for pretrained word vectors on TREC dataset

We see, that these embeddings perform much better than the trained ones. We
even see a significant improvements on the TREC dataset (absolute accuracy over
0.90). Interesting observation is that logistic regression performs much better than
SVM. Because we are more interested in comparative and qualitative results than
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quantitative results, we do not spend much time on fine tuning of hyperparameters.
We think that such fine tuning could increase the accuracy of each approach, but it
should not change which one is better.

We also see that pretrained word vectors perform better than LSA. However, keep in
mind that these representations were pretrained on huge volumes of documents. Even
though LSA achieves better results than pretrained embeddings on TREC-DESC and
TREC-NUM datasets. We think, that it is because these datasets are sparse and may
contain a lot of words for what we do not have the pretrained embeddings.

4.3 eLSA

In this section, we present accuracy achieved by our approach.
Note that because we test on multiple datasets and we test multiple parameters,

we witness a small combinatorial explosion.

4.3.1 Parameters

As mentioned in the section 3.3.3.4, there is a number of potential hyperparame-
ters. However, we consider only the w′-learning rate β and the number of dimensions.
Instead of performing an exhaustive hyperparameter search, we test multiple com-
binations of weighting schemes described in sections 1.4.1.2 and 1.4.1.1 on multiple
datasets.

weighting schemes tfidf, tfchi2, tfig, tfgr, tfor, tfrf, None
embedding size 200, 300, 400

w′-learning rates β 0.1, 0.01, 0.001

Table 4.11: Table of experiment parameters

We perform experiments with all combinations of parameters from table 4.11 on all
of the 10 datasets described in section 4.1.1. We chose these values for β and embedding
size, because they they are reasonable defaults commonly used in literature.

Together we need to perform and evaluate around 630 experiments.
We compare our results against LSA baseline (LSA with given weights, but without

training) and report relative improvements. Results for this baseline are in section 4.2.3.
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4.3.2 Batch gradient descent

We evaluate the performance of batch gradient descent optimization routine. We
perform experiments for different weighting schemes, different sizes of embeddings and
different learning rates on all datasets.

Our results are in the table 4.12 and 4.13. We present only results for β = 0.1, as
this learning rate shows to be the best. Experiments for other learning rates can be
found in appendix B.

CR MPQA MR SUBJ
scheme lsa

None 200 0.01 0.02 0.06 0.02
300 0.02 0.02 0.05 -0.0
400 0.03 0.01 0.04 0.01

tfchi2 200 0.01 0.0 0.01 0.01
300 0.0 -0.0 0.02 0.01
400 0.01 0.0 0.03 0.02

tfgr 200 0.01 -0.0 0.01 0.02
300 0.01 -0.0 0.01 0.01
400 0.03 0.01 0.01 0.02

tfidf 200 0.04 0.06 0.07 0.01
300 -0.0 0.05 0.05 0.0
400 -0.01 0.03 0.02 0.01

tfig 200 0.0 0.01 0.01 -0.0
300 0.0 0.01 0.01 0.01
400 0.03 0.0 0.02 0.01

tfor 200 0.01 0.0 0.0 0.01
300 0.0 0.0 -0.0 0.0
400 -0.0 0.02 -0.03 0.01

tfrf 200 0.03 -0.0 0.0 -0.01
300 -0.04 0.01 0.01 0.0
400 -0.01 0.01 -0.01 0.0

Table 4.12: Accuracy increase over LSA
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ABBR DESC ENTY HUM LOC NUM
scheme lsa

None 200 0.0 0.01 0.01 -0.0 0.01 -0.0
300 0.0 0.01 0.01 0.01 0.01 -0.0
400 -0.0 0.01 -0.01 0.01 0.02 0.0

tfchi2 200 0.0 0.03 0.03 0.02 -0.01 0.02
300 -0.0 0.01 0.01 -0.0 0.01 0.03
400 0.0 -0.01 0.02 0.01 0.01 0.02

tfgr 200 0.0 -0.01 0.01 0.02 0.0 0.01
300 -0.0 0.01 0.01 0.02 0.01 0.02
400 0.0 0.03 0.01 0.02 0.0 0.01

tfidf 200 0.0 0.02 0.0 0.01 0.01 0.01
300 0.0 0.01 0.02 0.0 0.01 0.01
400 -0.0 0.02 0.02 -0.0 0.01 0.01

tfig 200 0.0 0.02 0.01 0.01 0.01 0.01
300 0.0 0.01 0.01 0.01 0.01 0.02
400 0.0 -0.0 0.01 0.0 0.01 0.02

tfor 200 0.0 0.02 0.0 0.02 0.01 0.0
300 0.0 0.03 0.01 0.0 0.01 0.01
400 0.0 0.03 -0.0 -0.01 0.01 -0.0

tfrf 200 0.0 0.04 0.03 0.02 0.02 0.02
300 -0.0 0.04 0.02 0.02 0.02 0.0
400 0.0 0.05 0.04 0.01 0.01 0.0

Table 4.13: Accuracy increase over LSA on TREC datasets

In tables 4.13 and 4.12 we see consistent improvements of eLSA over LSA. Moreover,
we see that no scheme is actually locally optimal, and each scheme can be improved by
performing the eLSA. There is only one dataset that we do not improve on and that is
TREC-ABBR. We explain it by the fact that this dataset is extremely hard and very
biased.

These results mean that all weighting schemes have some shortcomings that may
manifest on some specific tasks. We try to explain this effect in the section 4.4.

During the training, we observed an interesting behaviour for tfchi2 weighting
scheme on TREC datasets. When we computed the 400 dimensional LSA embedding,
it produced only 398 dimensions. This means that the original matrix was in fact just
398 dimensional, which means that the weighting scheme already filtered out a lot of
information (hopefully noise) from the data.
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Figure 4.1: Learning curve for eLSA with tfidf weights on MR dataset

4.3.2.1 Learning curves

We examine learning curves for eLSA. In each epoch, we evaluate accuracy on
training, validation and testing set.

On figure 4.1 we see a standard progress of accuracy through epochs. We observe
that these curves are not entirely smooth as in batch gradient descent in neural net-
works. This is because we are not performing the exact gradient descent. The SVD
part of eLSA is not deterministic and can be influenced by the weight w′.

Recall from section 3.3.3.2 that we monitor the validation accuracy and stop the
learning process when it plateaus.

In general we observe, the number of required epochs to be between 30 and 70.
The number of epochs looks to be more dependant on the dataset then on the initially
weighting scheme.
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4.3.2.2 Multiple gradient steps

We perform an experiment, where we do multiple gradient steps on w′ for each
loop. This optimization routine is illustrated by algorithm 3.

Data: M
Result: trained W , S, C
w′0 = 1, t = 1;
while performance is improving on validation dataset, t++ do

recompute St from M ◦ w′t−1;
compute embeddings vt from M ◦ w′t−1 with St;
fully train Ct on vt and labels y;
for 0 ≤ i < m do

update W t: w′t = w′t−1 − β ∂E(C(S(Mw′t−1))
∂w′t−1

end

end
Algorithm 3: stochastic training of w′

However, this introduces another hyperparameter: number of performed w′ steps.
We would like to avoid new hyperparameters, so we do not spend too much resources
on this experiment. Second problem with this approach is that if we perform m steps,
the algorithm may be m times slower. This is a serious issue for m > 5. We perform
experiments only for weighting scheme None with 200 dimensional embedding and
learning rate 0.1. We perform m = 2 and m = 5 gradient steps and we present results
in tables 4.14, 4.15,4.16 and 4.17.

CR MPQA MR SUBJ

test -0.01 0.00 0.01 0.01
train 0.02 0.00 0.01 -0.00
valid -0.02 0.01 -0.01 0.00

Table 4.14: Accuracy increase for 2 steps compared to 1 step

ABBR DESC ENTY HUM LOC NUM

test 0.0 -0.01 -0.01 0.00 -0.01 0.01
train 0.0 0.00 0.01 0.00 0.00 0.00
valid -0.0 0.02 -0.00 0.01 0.00 -0.01

Table 4.15: Accuracy increase for 2 steps compared to 1 step on TREC dataset
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CR MPQA MR SUBJ

test -0.01 0.01 0.02 0.01
train 0.03 0.01 0.01 0.01
valid -0.02 0.01 0.00 -0.01

Table 4.16: Accuracy increase for 5 steps compared to 1 step

ABBR DESC ENTY HUM LOC NUM

test 0.0 -0.01 -0.00 -0.00 0.00 0.01
train 0.0 0.01 0.01 0.00 0.01 0.01
valid 0.0 0.00 0.02 -0.01 -0.00 0.01

Table 4.17: Accuracy increase for 5 steps compared to 1 step on TREC dataset

We conclude that making multiple gradient steps on w′ does not significantly nor
consistently improve the accuracy and only makes the training process slower. The
intuition that multiple gradient steps on w′ may decrease the convergence time also
shows to be wrong.

CR MPQA MR SUBJ
$m$

1 33 52 57 37
2 32 43 45 46
3 32 56 48 36
4 33 68 63 39
5 35 53 48 41

Table 4.18: Number of needed training steps for different m
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ABBR DESC ENTY HUM LOC NUM
$m$

1 32 38 38 72 38 48
2 32 39 40 45 38 36
3 32 48 35 38 32 38
4 32 34 45 40 33 47
5 32 37 36 32 37 52

Table 4.19: Number of needed training steps for different m on TREC dataset

The only relevant decrease in the number of required learning steps in tables 4.18
and 4.19 can be seen for TREC-HUM. However this direction does not look very promising
and we do not explore it further.

4.4 Weights analysis

Most machine learning algorithm are primarily used as black box approaches [51].
It is hard, to justify their predictions or to extract some insight from them.

We designed eLSA with interpretability in mind. Because eLSA just re-weights
words, we argue that it is more easily interpretable and we can extract important
insight about our data from it. In this section, we present such insight.

4.4.1 Effect of reweighting

The core of our approach it to reweight the co-occurrence matrix M with weights
w′. These weights effectively change importance of some words with regards to the
classification task. We can directly examine them and see, what words were boosted
and what words were inhibited.

Note that high word importance still does not tell us anything about the label.
We do not know (at least not from w′ alone), if the word is important for positive
(1, positive sentiment) or negative label (0, negative sentiment).

Values in w′ tell us which words are underweighted by the original weighting schemes
and which are overweighted. We examine mostly the CR dataset and the TREC-DESC
dataset, as eLSA shows some interesting insights particularly into these two datasets.

4.4.1.1 Most reweighted words

First, we examine the words that our approach reweighted the most (most ex-
treme w′). We present the 10 most originally underweighted and the 10 most originally
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overweighted words for combinations of CR and TREC-DESC datasets and weighting
schemes None (no scheme was used), tfidf (basic unsupervised scheme) and tfig

(supervised scheme).

words w′

slow 3.06
happy 2.65
you 2.60
works 2.51
good 2.50
bad 2.46
and 2.45
expect 2.38
pictures 2.38
highly 2.34

(a) Words with highest w′

words w′

that 0.25
am 0.23
down 0.22
two 0.21
then 0.21
3 0.20
give 0.15
is 0.14
n 0.07
diaper 0.02

(b) Words with lowest w′

Table 4.20: Most reweighted words on CR dataset for scheme None

In table 4.20 we see that if we use weighting scheme None (term vector), we under-
weight some words that are obviously important such as good and bad. Our approach
can correctly identify these words and boost their weights. In the same time, our
approach can inhibit unrelated words like: is, am, or that. We see that using this
weighting scheme (not using weighting scheme at all) is definitely not locally optimal.

In table 4.21 we display results for tfidf. Recall from section 1.4.1.1 that tfidf
decreases importance of words that are common in the dataset. However, we see (and
already know) that such words may be very important for the classification task. This is
exactly what eLSA can find out. Our approach boosted words like good and worst that
are very common and very discriminative. Moreover, our approach boosted the word
not that is usually completely removed from the datasets, because it is considered to
be a stop word. Last, but not least, eLSA almost completely inhibited the preposition
a that almost certainly does not hold any importance for any classification task.
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words w′

not 3.25
price 2.92
good 2.57
love 2.40
if 2.34
would 2.21
worst 2.08
works 2.08
to 2.07
i 2.01

(a) Words with highest w′

words w′

light 0.18
problems 0.17
camera 0.11
few 0.10
their 0.08
quality 0.06
battery 0.01
a 0.00
n 0.00
be 0.00

(b) Words with lowest w′

Table 4.21: Most reweighted words on CR dataset for scheme tfidf

words w′

features 3.33
symantec 3.05
perfect 2.96
the 2.94
flaw 2.87
bit 2.83
slow 2.71
awesome 2.69
process 2.66
useless 2.64

(a) Words with highest w′

words w′

that 0.92
is 0.88
great 0.83
’t 0.83
not 0.72
very 0.62
, 0.59
and 0.52
camera 0.43
this 0.25

(b) Words with lowest w′

Table 4.22: Most reweighted words on CR dataset for scheme tfig

In table 4.22, we see results for a supervised weighting scheme tfig. When we look
at the table b, we see that only a few fords were really overweighted by the scheme. For
some reason, words: this, ,, and have high weights and our approach identified them
as not important. We see that other words are not penalized very much (0.8 or 0.9).
On the other hand, it looks like this scheme undervalues some rather interesting words
like awesome or slow. Interesting is a word the, what is always considered to be a stop
word and is usually removed. However, according to our approach, it is underweighted.
We think that it is because it can signify some form of superlative and hence indicate
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sentiment polarity.
Now we look at the TREC-DESC dataset. Recall from section 4.1.1 that in this task

we have some question, and we need to predict, whether the answer to this question is
a some form of a description (in contrary to some numerical answer for example).

words w′

what 13.20
is 9.89
how 8.39
are 5.08
mean 4.86
long 4.60
why 3.96
big 3.93
reason 2.95
origin 2.89

(a) Words with highest w′

words w′

form 0.57
name 0.55
where 0.52
language 0.51
does 0.48
of 0.46
when 0.45
and 0.20
the 0.15
, 0.07

(b) Words with lowest w′

Table 4.23: Most reweighted words on DESC dataset for scheme None

If we use just the term vectors (scheme None), there are again typical words that
we underweight. The answer obviously depends on the interrogative pronoun such as:
who or what. Also, words like origin, mean, and reason probably associate with some
desired explanation. On the other hand, words like does, of, and and were identified
like not important. We also see interesting decrease for words like when and where. We
hypothesize that even though these words are interrogative pronouns, they are usually
used to form dependent clauses that do not tell anything about the type of the desired
answer. Our approach even correctly inhibited the token ,.

Because we know that interrogative pronouns are important and abundant, we know
that tfidf will underweight them. eLSA correctly compensated weight of these words.
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words w′

is 6.25
how 5.87
what 3.73
in 3.60
mean 3.51
of 3.10
come 3.09
long 2.96
for 2.94
the 2.39

(a) Words with highest w′

words w′

from 0.42
its 0.41
nickname 0.38
address 0.34
abbreviation 0.32
fast 0.32
term 0.25
word 0.24
between 0.04
? 0.00

(b) Words with lowest w′

Table 4.24: Most reweighted words on DESC dataset for scheme tfidf

words w′

is 7.69
are 4.52
what 3.52
mean 3.44
origin 3.42
difference 3.20
much 2.91
long 2.79
where 2.72
definition 2.71

(a) Words with highest w′

words w′

out 1.00
name 0.98
you 0.97
does 0.93
in 0.90
who 0.83
do 0.71
? 0.59
was 0.46
the 0.00

(b) Words with lowest w′

Table 4.25: Most reweighted words on DESC dataset for scheme tfig

In table 4.25 we see that even supervised weighting scheme tfig underweights some
interrogative pronouns like what. We see that it almost never overweights any word as
only 5 words have w′ lover than 0.9 and only 9 words have w′ less than 1.
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Figure 4.2: Histogram of weights w′ on s CR dataset

Figure 4.3: Histogram of weights w′ on s TREC-DESC dataset

4.4.1.2 Weight histograms

We can look on the overall distribution of weights w′ for given dataset and weighting
scheme. We present histograms of values in w′. Because these values seems to be
exponentially distributed, with set the y axis to logarithmic scale. This gives us an
idea, whether the scheme generally underweights or overweights words. If the mass of
the histogram is around 1, we know that parameters w′ do not change the matrix M
very much. If the mass is on the right of the 1, it means the scheme is underweighting
and w′ needs to compensate that. On the other hand, if the histogram is skewed to
the left, it means the scheme is overweighting.

On graph 4.2 we see that tfidf and None schemes generally overweight on the CR
dataset. We see tfig produces low values of w′ less times than None and tfidf.
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4.4.1.3 Possible further directions for analysis

There is a number of other interesting analysis that can be performed on parameters
w′ and may be subject to future work.

We think that the most interesting, and possibly the hardest task, would be to find
the analytic formula for such weighted scheme that incorporates the learned parameters
w′. This could lead to a design of a new supervised weighting scheme with better
performance than current ones.

To learn such analytic formula, we recommend to use symbolic regression.

4.5 Discussion

We conclude that eLSA can improve performance of all tested schemes. For some
combination of schemes and datasets we saw a major increase (tfidf on MR dataset
gained 7%), and for some (ftrf on CR dataset lost 4%) we see a decrease in the
achieved accuracy. We have to say, that eLSA can overfit the training dataset. This is
naturally caused by the number of trainable parameters w′ that we introduce. Size of
w′ is the same as size of the vocabulary |V |, and it ranges from 32, 000 to 240, 000 in
our datasets.

Because eLSA introduces only one hyperparameter (w′-learning rate β), it is super
easy to use. However, running eLSA is much more time consuming compared to stan-
dard LSA. The problem is, that we in fact perform one whole LSA for each epoch of
eLSA. From our observations the number of required epochs ranges from 30 to 70 with
some outliers reaching as much as 97. This can make eLSA unsuitable for some use
cases, but we think that it can always be used as a diagnostic tool.

Indeed we successfully used eLSA to diagnose problems of given weighting schemes.
Words that eLSA boosted seemed to be reasonable and we were able to gain insight
into the datasets. We found, that the word the may be very important for certain
tasks, even though it is almost always removed as a part of the data preprocessing.
Furthermore eLSA showed us how important interrogative pronouns can be on TREC
dataset.

We need to point out, that we explored only a small subspace of eLSA hyperpa-
rameters. Despite that, we achieved significant improvements in accuracy. More effort
can be put into exploring this hyperparameter space in the future work.



Conclusion

In this thesis, we revisited a famous co-occurrence-based approach called LSA. First,
we experimentally confirmed that using LSA yields higher accuracy than using word
vectors (word2vec) trained on the same corpus.

To improve the LSA even further, we described a novel way of how to incorporate
the supervised information into the LSA. We designed eLSA, method that incorporates
knowledge of the classifier’s error directly to the weighting scheme. eLSA introduces
a new layer of reweighting that is applied before the SVD decomposition. This layer
allows the unsupervised SVD process to become supervised. We have experimentally
shown, that it is possible to train eLSA with batch gradient descent and that the
training error nicely converges to local optima.

We evaluated eLSA for combinations of 10 classification datasets and 7 weighting
schemes. In the most of these experiments, eLSA consistently achieved higher accuracy
than the LSA baseline. We have confirmed that none of the used schemes is optimal on
all datasets and hence their design can be further improved. eLSA was able to improve
the accuracy achieved by these schemes by up to 7%.

Very important and useful property of eLSA is its interpretability. We analyzed
parameters w′ learned by eLSA and showed that they can be used to gain insight into
the dataset. Based on that we identified multiple groups of words that are commonly
underweighted by the weighting schemes. Words such as interrogative pronoun showed
to be usually underweighted in the question classification task (TREC-DESC), even
by supervised weighting schemes. We do not want to underweight such important
words, because we do not want the SVD to filer them as a noise. To our surprise,
words that are considered to be stop words (like the or not) and are usually entirely
removed from the dataset, also showed to be underweighted. We hypothesize that this
word is actually really important, because it may signal superlatives and hence opinion
polarity.

To conclude, we fulfilled all our goals.
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Appendix A

Source code

Source code to this diploma thesis with installation guide is available on GitHub:
https://github.com/vlejd/eLSA

Documentation also contains guide for extending the evaluation for further datasets,
test different weighting schemes or different classifiers.
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Appendix B

Detailed results

CR MPQA MR SUBJ
scheme

None test 0.787 0.838 0.761 0.907
train 0.971 0.912 0.977 0.995

tfchi2 test 0.751 0.806 0.684 0.836
train 0.789 0.854 0.706 0.845

tfgr test 0.747 0.813 0.668 0.840
train 0.789 0.856 0.709 0.845

tfidf test 0.771 0.838 0.747 0.904
train 0.999 0.979 1.000 1.000

tfig test 0.769 0.815 0.675 0.839
train 0.790 0.854 0.712 0.847

tfor test 0.792 0.838 0.769 0.908
train 0.893 0.886 0.903 0.936

tfrf test 0.762 0.827 0.728 0.884
train 0.837 0.869 0.823 0.919

Table B.1: Accuracy for BOW baseline
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scheme ABBR DESC ENTY HUM LOC NUM

None test 0.995 0.925 0.874 0.920 0.960 0.959
train 0.995 0.981 0.983 0.986 0.987 0.990

tfchi2 test 0.993 0.878 0.789 0.899 0.945 0.923
train 0.993 0.872 0.787 0.895 0.949 0.919

tfgr test 0.991 0.866 0.784 0.889 0.942 0.924
train 0.991 0.878 0.788 0.896 0.946 0.926

tfidf test 0.991 0.925 0.885 0.930 0.966 0.968
train 1.000 1.000 1.000 1.000 1.000 1.000

tfig test 0.991 0.872 0.784 0.887 0.949 0.922
train 0.991 0.878 0.788 0.896 0.947 0.924

tfor test 0.990 0.864 0.852 0.930 0.952 0.948
train 0.991 0.954 0.940 0.969 0.969 0.971

tfrf test 0.989 0.855 0.837 0.908 0.930 0.943
train 0.991 0.926 0.906 0.942 0.951 0.957

Table B.2: Accuracy for BOW baseline on TREC datasets

CR MPQA MR SUBJ
scheme

None test 0.753 0.744 0.662 0.871
train 0.798 0.757 0.696 0.887

tfchi2 test 0.749 0.770 0.666 0.833
train 0.784 0.787 0.687 0.843

tfgr test 0.754 0.772 0.671 0.831
train 0.787 0.785 0.690 0.845

tfidf test 0.753 0.750 0.683 0.890
train 0.801 0.761 0.710 0.900

tfig test 0.758 0.772 0.658 0.837
train 0.785 0.785 0.692 0.845

tfor test 0.780 0.776 0.729 0.878
train 0.844 0.787 0.773 0.899

tfrf test 0.753 0.782 0.676 0.874
train 0.802 0.787 0.716 0.889

Table B.3: Accuracy for LSA baseline with 200 dimensions
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CR MPQA MR SUBJ
scheme

None test 0.760 0.763 0.692 0.893
train 0.822 0.783 0.721 0.900

tfchi2 test 0.763 0.785 0.679 0.829
train 0.786 0.803 0.696 0.843

tfgr test 0.765 0.788 0.666 0.842
train 0.787 0.802 0.698 0.845

tfidf test 0.778 0.763 0.703 0.890
train 0.831 0.788 0.739 0.912

tfig test 0.751 0.780 0.668 0.839
train 0.789 0.804 0.698 0.847

tfor test 0.798 0.781 0.744 0.892
train 0.854 0.805 0.792 0.906

tfrf test 0.776 0.783 0.691 0.867
train 0.809 0.802 0.733 0.895

Table B.4: Accuracy for LSA baseline with 300 dimensions

CR MPQA MR SUBJ
scheme

None test 0.752 0.775 0.712 0.887
train 0.845 0.799 0.747 0.911

tfchi2 test 0.760 0.791 0.680 0.834
train 0.788 0.813 0.699 0.846

tfgr test 0.754 0.790 0.680 0.827
train 0.790 0.815 0.702 0.848

tfidf test 0.767 0.784 0.731 0.892
train 0.851 0.802 0.758 0.918

tfig test 0.742 0.789 0.676 0.838
train 0.790 0.813 0.702 0.846

tfor test 0.793 0.792 0.756 0.879
train 0.863 0.820 0.803 0.912

tfrf test 0.765 0.795 0.706 0.871
train 0.815 0.814 0.747 0.901

Table B.5: Accuracy for LSA baseline with 400 dimensions



APPENDIX B. DETAILED RESULTS 65

CR MPQA MR SUBJ
scheme

None test 0.116 0.056 0.162 0.371
train 0.160 0.069 0.196 0.387

tfchi2 test 0.111 0.082 0.166 0.333
train 0.147 0.099 0.187 0.343

tfgr test 0.117 0.084 0.171 0.331
train 0.149 0.098 0.190 0.345

tfidf test 0.115 0.063 0.183 0.390
train 0.164 0.073 0.210 0.400

tfig test 0.120 0.085 0.158 0.337
train 0.148 0.098 0.192 0.345

tfor test 0.142 0.088 0.229 0.378
train 0.207 0.099 0.273 0.399

tfrf test 0.115 0.094 0.176 0.374
train 0.165 0.099 0.216 0.389

Table B.6: Accuracy improvements for LSA baseline with 200 dimensions

CR MPQA MR SUBJ
scheme

None test 0.122 0.075 0.192 0.393
train 0.185 0.095 0.221 0.400

tfchi2 test 0.125 0.097 0.179 0.329
train 0.149 0.115 0.196 0.343

tfgr test 0.127 0.100 0.166 0.342
train 0.149 0.114 0.198 0.345

tfidf test 0.141 0.075 0.203 0.390
train 0.193 0.100 0.239 0.412

tfig test 0.113 0.092 0.168 0.339
train 0.151 0.116 0.198 0.347

tfor test 0.160 0.094 0.244 0.392
train 0.216 0.117 0.292 0.406

tfrf test 0.138 0.095 0.191 0.367
train 0.172 0.114 0.233 0.395

Table B.7: Accuracy improvements for LSA baseline with 300 dimensions



APPENDIX B. DETAILED RESULTS 66

CR MPQA MR SUBJ
scheme

None test 0.114 0.088 0.212 0.387
train 0.207 0.111 0.247 0.411

tfchi2 test 0.123 0.103 0.180 0.334
train 0.150 0.125 0.199 0.346

tfgr test 0.116 0.102 0.180 0.327
train 0.152 0.127 0.202 0.348

tfidf test 0.129 0.096 0.231 0.392
train 0.213 0.114 0.258 0.418

tfig test 0.105 0.102 0.176 0.338
train 0.152 0.125 0.202 0.346

tfor test 0.156 0.104 0.256 0.379
train 0.226 0.132 0.303 0.412

tfrf test 0.127 0.107 0.206 0.371
train 0.178 0.127 0.247 0.401

Table B.8: Accuracy improvements for LSA baseline with 400 dimensions

ABBR DESC ENTY HUM LOC NUM
scheme

None test 0.992 0.900 0.841 0.912 0.946 0.949
train 0.992 0.909 0.872 0.930 0.956 0.954

tfchi2 test 0.992 0.866 0.785 0.889 0.948 0.915
train 0.994 0.875 0.787 0.897 0.949 0.919

tfgr test 0.991 0.877 0.787 0.895 0.942 0.933
train 0.991 0.879 0.787 0.895 0.947 0.926

tfidf test 0.992 0.890 0.853 0.914 0.949 0.948
train 0.995 0.906 0.877 0.936 0.961 0.966

tfig test 0.989 0.872 0.787 0.891 0.939 0.923
train 0.991 0.881 0.788 0.893 0.947 0.921

tfor test 0.992 0.864 0.850 0.916 0.948 0.956
train 0.990 0.941 0.926 0.963 0.963 0.968

tfrf test 0.990 0.856 0.831 0.903 0.941 0.943
train 0.991 0.899 0.880 0.932 0.948 0.952

Table B.9: Accuracy for LSA baseline with 200 dimensions on TREC datasets
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ABBR DESC ENTY HUM LOC NUM
scheme

None test 0.992 0.906 0.847 0.917 0.953 0.955
train 0.993 0.922 0.885 0.944 0.959 0.963

tfchi2 test 0.994 0.884 0.787 0.895 0.944 0.921
train 0.992 0.879 0.789 0.896 0.949 0.918

tfgr test 0.992 0.869 0.786 0.886 0.944 0.926
train 0.991 0.880 0.787 0.896 0.949 0.923

tfidf test 0.993 0.903 0.859 0.925 0.951 0.954
train 0.995 0.923 0.896 0.954 0.970 0.975

tfig test 0.990 0.876 0.787 0.886 0.941 0.925
train 0.991 0.879 0.787 0.895 0.948 0.930

tfor test 0.990 0.865 0.857 0.924 0.955 0.957
train 0.991 0.943 0.931 0.966 0.965 0.971

tfrf test 0.990 0.865 0.832 0.910 0.942 0.949
train 0.991 0.906 0.887 0.935 0.949 0.953

Table B.10: Accuracy for LSA baseline with 300 dimensions on TREC datasets

ABBR DESC ENTY HUM LOC NUM
scheme

None test 0.992 0.913 0.865 0.920 0.943 0.956
train 0.994 0.932 0.900 0.948 0.965 0.967

tfchi2 test 0.993 0.879 0.785 0.895 0.945 0.915
train 0.993 0.879 0.787 0.898 0.948 0.917

tfgr test 0.987 0.875 0.786 0.891 0.945 0.925
train 0.992 0.881 0.787 0.896 0.948 0.928

tfidf test 0.994 0.905 0.859 0.923 0.953 0.957
train 0.995 0.933 0.909 0.965 0.980 0.985

tfig test 0.990 0.878 0.785 0.895 0.944 0.922
train 0.991 0.880 0.787 0.896 0.947 0.923

tfor test 0.993 0.867 0.847 0.928 0.949 0.959
train 0.991 0.946 0.934 0.965 0.965 0.970

tfrf test 0.991 0.863 0.832 0.917 0.944 0.946
train 0.991 0.906 0.887 0.936 0.950 0.954

Table B.11: Accuracy for LSA baseline with 400 dimensions on TREC datasets
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scheme ABBR DESC ENTY HUM LOC NUM

None test 0.008 0.119 0.067 0.129 0.100 0.119
train 0.008 0.127 0.098 0.147 0.110 0.124

tfchi2 test 0.008 0.085 0.010 0.105 0.102 0.085
train 0.010 0.094 0.013 0.113 0.103 0.088

tfgr test 0.007 0.096 0.013 0.111 0.096 0.102
train 0.007 0.098 0.013 0.112 0.101 0.095

tfidf test 0.008 0.108 0.078 0.131 0.103 0.117
train 0.011 0.125 0.103 0.153 0.115 0.135

tfig test 0.005 0.091 0.012 0.108 0.093 0.093
train 0.007 0.100 0.014 0.109 0.101 0.091

tfor test 0.008 0.083 0.076 0.133 0.102 0.126
train 0.006 0.159 0.152 0.179 0.117 0.138

tfrf test 0.006 0.074 0.057 0.120 0.095 0.113
train 0.007 0.117 0.105 0.148 0.102 0.122

Table B.12: Accuracy improvements for LSA baseline with 200 dimensions on TREC
datasets

scheme ABBR DESC ENTY HUM LOC NUM

None test 0.008 0.124 0.073 0.134 0.107 0.124
train 0.009 0.140 0.110 0.160 0.113 0.132

tfchi2 test 0.010 0.103 0.012 0.111 0.098 0.091
train 0.008 0.098 0.015 0.112 0.103 0.087

tfgr test 0.008 0.088 0.012 0.102 0.098 0.096
train 0.007 0.098 0.012 0.113 0.103 0.093

tfidf test 0.009 0.121 0.085 0.142 0.105 0.123
train 0.011 0.142 0.121 0.170 0.124 0.144

tfig test 0.006 0.095 0.013 0.102 0.095 0.094
train 0.007 0.097 0.012 0.112 0.102 0.099

tfor test 0.006 0.084 0.083 0.140 0.109 0.127
train 0.007 0.162 0.156 0.182 0.119 0.140

tfrf test 0.006 0.084 0.058 0.127 0.096 0.119
train 0.007 0.124 0.113 0.151 0.103 0.122

Table B.13: Accuracy improvements for LSA baseline with 300 dimensions on TREC
datasets
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scheme ABBR DESC ENTY HUM LOC NUM

None test 0.008 0.132 0.091 0.136 0.097 0.125
train 0.010 0.150 0.126 0.165 0.118 0.137

tfchi2 test 0.009 0.097 0.010 0.111 0.099 0.084
train 0.009 0.097 0.013 0.114 0.102 0.086

tfgr test 0.003 0.094 0.012 0.107 0.099 0.094
train 0.007 0.099 0.013 0.113 0.102 0.098

tfidf test 0.010 0.124 0.085 0.140 0.107 0.127
train 0.011 0.151 0.135 0.181 0.134 0.155

tfig test 0.006 0.096 0.010 0.111 0.098 0.091
train 0.007 0.098 0.013 0.112 0.101 0.093

tfor test 0.009 0.086 0.073 0.144 0.103 0.129
train 0.007 0.165 0.159 0.182 0.119 0.139

tfrf test 0.007 0.082 0.058 0.134 0.098 0.115
train 0.007 0.124 0.113 0.152 0.104 0.124

Table B.14: Accuracy improvements for LSA baseline with 400 dimensions on TREC
datasets
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scheme lsa CR MPQA MR SUBJ

None 200 -0.01 0.01 0.03 0.01
300 0.02 -0.0 0.03 -0.01
400 0.01 0.01 0.02 -0.0

tfchi2 200 -0.01 0.0 0.0 0.01
300 -0.02 0.0 -0.0 0.01
400 -0.01 0.01 -0.0 0.0

tfgr 200 0.02 -0.0 0.02 0.01
300 -0.02 -0.0 0.03 0.01
400 0.0 0.01 -0.01 0.01

tfidf 200 0.0 0.01 0.05 0.0
300 -0.01 0.02 0.03 0.01
400 0.0 0.01 0.02 0.01

tfig 200 0.02 -0.01 0.02 0.01
300 -0.0 0.0 0.01 -0.0
400 0.02 0.01 0.01 0.0

tfor 200 0.0 -0.0 0.01 0.01
300 -0.02 0.02 -0.02 0.0
400 -0.01 0.0 -0.01 0.02

tfrf 200 -0.01 -0.01 0.0 -0.0
300 -0.0 0.0 -0.0 0.0
400 -0.0 0.01 0.0 0.0

Table B.15: Accuracy increase over LSA for β = 0.01
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ABBR DESC ENTY HUM LOC NUM
scheme lsa

None 200 -0.0 0.02 0.01 0.0 0.01 -0.0
300 0.0 -0.0 0.01 -0.01 0.0 -0.0
400 -0.0 0.0 -0.0 -0.01 0.02 -0.01

tfchi2 200 0.0 0.01 0.0 0.01 0.01 0.01
300 -0.0 -0.0 0.01 0.0 0.0 0.01
400 0.0 -0.01 0.01 0.01 0.0 0.01

tfgr 200 -0.0 0.0 0.0 -0.0 0.01 0.01
300 -0.0 0.03 -0.0 0.01 -0.0 0.0
400 0.01 0.01 -0.0 0.01 0.01 0.0

tfidf 200 0.0 0.01 -0.0 0.02 0.0 0.01
300 0.0 -0.01 0.01 -0.01 0.0 0.01
400 -0.0 -0.0 -0.01 0.0 0.01 -0.0

tfig 200 0.0 0.02 0.0 0.01 0.0 0.0
300 0.0 0.0 0.0 0.01 -0.0 -0.0
400 0.0 -0.01 -0.0 -0.0 -0.0 0.01

tfor 200 0.0 0.01 -0.0 0.01 0.0 -0.0
300 0.0 0.02 -0.0 -0.0 0.0 -0.01
400 0.0 0.05 0.01 -0.0 0.01 -0.01

tfrf 200 0.0 0.04 0.01 0.01 0.0 0.01
300 0.0 0.05 0.01 0.0 -0.0 -0.0
400 0.0 0.04 0.02 0.0 0.01 -0.0

Table B.16: Accuracy increase over LSA for β = 0.01 on TREC datasets
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CR MPQA MR SUBJ
scheme lsa

None 200 -0.01 0.01 0.02 0.0
300 0.0 0.0 -0.01 -0.01
400 0.01 -0.01 0.01 0.01

tfchi2 200 0.02 0.0 -0.02 0.0
300 -0.01 0.0 -0.01 0.0
400 -0.01 -0.0 -0.02 0.0

tfgr 200 -0.01 0.01 -0.01 0.0
300 -0.0 0.0 0.01 -0.01
400 0.0 0.0 -0.01 0.02

tfidf 200 0.01 0.01 0.0 0.0
300 -0.01 0.01 0.01 -0.01
400 0.01 0.0 -0.01 0.01

tfig 200 0.01 0.01 -0.01 -0.0
300 -0.0 0.0 0.01 0.01
400 0.02 -0.0 0.0 -0.02

tfor 200 0.01 -0.0 -0.0 0.0
300 -0.02 0.0 -0.01 -0.01
400 0.0 0.0 -0.01 0.02

tfrf 200 0.02 -0.0 -0.01 0.0
300 0.0 0.0 0.0 0.0
400 -0.01 -0.0 -0.0 0.0

Table B.17: Accuracy increase over LSA for β = 0.001
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ABBR DESC ENTY HUM LOC NUM
scheme lsa

None 200 -0.0 -0.01 0.0 0.0 -0.0 -0.01
300 0.0 -0.01 0.0 -0.0 0.0 -0.01
400 0.0 0.01 -0.01 0.0 0.0 -0.0

tfchi2 200 0.0 0.01 -0.0 0.01 0.0 0.02
300 -0.0 -0.01 -0.0 0.0 -0.0 0.0
400 -0.0 0.0 0.0 0.0 0.01 0.01

tfgr 200 -0.0 -0.01 -0.0 0.0 -0.0 -0.0
300 0.0 0.01 -0.0 0.01 0.0 -0.01
400 0.0 -0.01 -0.0 -0.01 0.01 -0.01

tfidf 200 -0.0 -0.0 -0.0 0.0 0.0 0.0
300 0.0 -0.0 0.01 -0.01 -0.01 0.0
400 -0.0 -0.0 0.01 -0.0 -0.0 0.0

tfig 200 0.0 -0.0 -0.0 -0.0 0.01 0.01
300 0.0 -0.0 -0.0 0.01 0.0 -0.0
400 -0.0 -0.01 0.0 -0.01 -0.0 -0.0

tfor 200 -0.0 -0.0 0.0 0.01 0.0 -0.01
300 0.0 -0.0 0.0 -0.01 -0.0 -0.01
400 -0.0 0.0 0.01 -0.0 0.0 -0.01

tfrf 200 0.0 0.05 0.01 0.01 -0.01 0.01
300 0.0 0.03 -0.0 0.0 0.0 0.0
400 0.0 0.03 0.02 0.0 -0.01 -0.0

Table B.18: Accuracy increase over LSA for β = 0.001 on TREC datasets
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