
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Efficient Construction of a Compressed
Index for Large Text Collections

Master Thesis

2024
Bc. Klára Sládečková

ii

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Efficient Construction of a Compressed
Index for Large Text Collections

Master Thesis

Study Programme: Informatics
Field of Study: Computer Science and Biology
Department: Department of Computer Science
Supervisor: doc. Mgr. Bronislava Brejová, PhD.
Consultant: Andrej Baláž, MSc.

Bratislava, 2024
Bc. Klára Sládečková

iv

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Klára Sládečková
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Efficient Construction of a Compressed Index for Large Text Collections
Efektívna konštrukcia komprimovaného indexu pre veľké zbierky textov

Anotácia: Indexovanie textu hrá kľúčovú úlohu v rôznych oblastiach, ako je
bioinformatika, softvérová bezpečnosť a spracovanie prirodzeného jazyka,
kde je nevyhnutné spracovávať veľké objemy textových údajov. Mnoho
aplikácií sa spolieha na transformáciu Burrows-Wheeler na rýchle
vyhľadávanie konkrétnych vzorov v texte. Pokrok v tejto oblasti viedol
k vývoju Wheelerových grafov, zovšeobecnenej formy Burrows-Wheelerovej
transformácie. Wheelerove grafy ponúkajú znížené pamäťové nároky indexu,
ale ich optimálna konštrukcia je NP-ťažká. Výsledkom je, že na konštrukciu
Wheelerovho grafu sa používajú heuristické algoritmy, čo ponecháva priestor
na ďalšie vylepšenia.
Primárnym cieľom tejto práce je preskúmať, navrhnúť a implementovať nový
algoritmus na vytváranie Wheelerových grafov. Navrhnutý algoritmus bude
zameraný na prekonanie súčasných obmedzení tým, že umožní vytvorenie
vnorených tunelov v rámci štruktúry Wheelerovho grafu. Študentka navrhne
efektívny algoritmus schopný zostaviť Wheelerove grafy s vnorenými tunelmi,
implementuje navrhnutý algoritmus pomocou vhodného programovacieho
jazyka a vyhodnotí výkon algoritmu a kvalitu výsledných Wheelerových grafov
na reálnych pangenomických dátach.

Vedúci: doc. Mgr. Bronislava Brejová, PhD.
Konzultant: Andrej Baláž
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 16.12.2022

Dátum schválenia: 16.12.2022 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce

vi

vii

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Klára Sládečková
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Efficient Construction of a Compressed Index for Large Text Collections

Annotation: Text indexing plays a crucial role in various domains such as bioinformatics,
software security, and natural language processing, where handling large
volumes of textual data is essential. Many applications rely on the Burrows-
Wheeler transform to quickly search for specific patterns within the text.
Advancements in this field have led to the development of Wheeler graphs,
a generalised form of the Burrows-Wheeler transform. Wheeler graphs offer
reduced space requirements of the index, but their optimal construction is NP-
hard. As a result, heuristic algorithms are used for Wheeler graph construction,
leaving room for further improvements.
The primary objective of this thesis is to explore, design, and implement a novel
algorithm for constructing Wheeler graphs. The proposed algorithm will aim to
overcome current limitations by allowing the creation of nested tunnels within
the Wheeler graph structure. The student will design an efficient algorithm
capable of constructing Wheeler graphs with nested tunnels, implement the
designed algorithm using appropriate programming language, and evaluate
algorithm’s performance and the quality of resulting Wheeler graphs on real
pangenomic datasets.

Supervisor: doc. Mgr. Bronislava Brejová, PhD.
Consultant: Andrej Baláž
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 16.12.2022

Approved: 16.12.2022 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor

viii

i

Abstrakt

Wheelerove grafy sú dôležitou súčasťou komprimovaných textových indexov, meno-
vane FM-indexu, prvýkrát opísaného v súvislosti s Burrows-Wheelerovou transformá-
ciou. Výpočet Wheelerovho grafu pre textové kolekcie je ľahký, avšak dosiahnutie
komprimovanej verzie Wheelerovho grafu je značne náročnejšie. V predošlých prácach
bol tento problém riešený rôznymi pažravými algoritmami a heuristikami. Najlepšie
z týchto prístupov však neuvažovali dôležitú výhodu komprimácie - tunelovanie kom-
penzovateľných kolízií. V tejto práci uvádzame inovatívny prístup, ktorý túto výhodu
využíva, čím dosahuje lepšie výsledky v kompresii.

Kľúčové slová: Wheelerov graf, blok, tunelovanie, kolízia

ii

Abstract

Wheeler graphs play an important role in compressed text indexing, namely FM-index,
first described for the Burrows-Wheeler transform. Computation of Wheeler graphs
for text collections is easy, however, achieving a compressed version of the Wheeler
graph is considerably harder. In previous works, this problem was approached using
different greedy algorithms and heuristics, which neglected a specific convenience of
the compression - tunnelling of compensable collisions. We introduce a novel approach
utilizing this convenience and thus providing better compression rates.

Keywords: Wheeler graph, block, tunneling, collision

Contents

Introduction 1

1 Preliminaries 3
1.1 Wheeler Graph . 4
1.2 Tunneling . 7
1.3 The Block choice problem . 11
1.4 Current state of the problem . 12

2 Description of the heuristics 15
2.1 Critical collisions . 16

2.1.1 Aligned collisions . 18
2.1.2 Corner collisions . 21
2.1.3 Statistics . 23
2.1.4 Selected combination . 24

2.2 Heuristics overhead . 25

3 Implementation 29
3.1 Enumeration of the blocks . 30

3.1.1 Maximal blocks . 30
3.1.2 One-column overlappings . 31

3.2 Right-aligned collisions . 33
3.2.1 Vertical division . 33
3.2.2 Self-colliding blocks . 37

3.3 Left-aligned collisions . 37
3.4 Tunneling . 38

3.4.1 Compression of nodes . 40
3.4.2 Compression of edges . 40

3.5 Reconstruction . 42

4 Experimental results 45

Conclusion 53

iii

iv CONTENTS

Appendix A 57

List of Figures

1.1 Wheeler graph . 5
1.2 Graph from a text . 6
1.3 Burrows-Wheeler matrix . 9
1.4 The process of tunneling in arrays L and F , LF-mapping 10
1.5 Block collisions . 11
1.6 Tunneling compensable collision . 12

2.1 Possibilities of critical collisions . 16
2.2 Structure of corner critical collisions . 18
2.3 Vertical division . 19
2.4 Horizontal division . 20
2.5 Shortening . 20
2.6 Solution of corner collision . 22
2.7 Comparison of vertical, and horizontal division and shortening on ran-

dom data of various lengths. 23
2.8 Comparison of vertical, horizontal division and shortening on biological

data. 24
2.9 Comparison of vertical, horizontal division and shortening on pange-

nomic data. 24
2.10 Process of the heuristics. 27

3.1 LCS-array . 31
3.2 Block tree . 34
3.3 Reason of the merging for height-maximality insurance. 35
3.4 Tunneling in the Wheeler graph . 38
3.5 Inverse walk in the tunnelled Wheeler graph G̃ 42

4.1 Compression rates on coronavirus sequences 49
4.2 Computation time of coronavirus sequences 49
4.3 Compression rates on yellow fever virus sequences 50
4.4 Computation time of yellow fever virus sequences 50

v

vi LIST OF FIGURES

4.5 Compression rates on salmonella sequences 51
4.6 Computation time of salmonella sequences 51

Introduction

In 1994, David J. Wheeler and Michael Burrows introduced a novel text transformation,
nowadays recognized as the Burrows-Wheeler transform (BWT). This transformation
offers several advantages: it is reversible, can be indexed in a way that is space effi-
cient and allows for fast traversal and, on top of that, possesses the trait of compact
representation. Consequently, over the last years, BWT has become popular and indis-
pensable across various domains, extending its utility from data compression to areas
like sequence analysis and bioinformatics.

In 2017, Gagie et al. expanded on the BWT concept by introducing Wheeler graphs,
providing a versatile framework for various BWT-based data structures. This develop-
ment highlighted the adaptability and broad applicability of the BWT approach.

Given the popularity and effectiveness of the BWT in compression applications, nu-
merous attempts have been undertaken to enhance the compressibility of BWT-based
compressors. Many of these approaches involve applying additional text transforma-
tions to the BWT before employing entropy encoding techniques to achieve compres-
sion. In 2018, Uwe Baier introduced a compression technique known as "tunnelling,"
which focuses on compressing the BWT prior to subsequent transformations. Notably,
tunnelling on Wheeler graphs preserves the structure’s compatibility with efficient in-
dexing without the need for decompression - a highly valued attribute, mainly when
indexing enormously large datasets. This innovation is applicable to all index struc-
tures that can be explained in terms of Wheeler graphs.

This compression is mostly useful for repetitive data, such as pan-genomic data -
our main focus. In the field of genetics, a genome is the complete genetic material of a
single organism, and a pan-genome describes a collection of such genomes within one
species. Therefore, these data are often highly repetitive, since the genomes within a
pan-genome are usually very similar and even a single genome can be quite repetitive.

However, a year after introducing the tunnelling technique, U. Baier and K. Dede
proved it to be NP-complete, in the general case. Several approaches were since pro-
posed, aiming to find a reasonable compression in a short time. While most of these
methods deprive themselves of a certain advantage in the compression, potentially
leading to worse compression rates in order to minimize the time, our work takes a
divergent approach. Our aim is to exploit this advantage in order to find more com-

1

2 Introduction

pressed versions while increasing the time complexity minimally.

Chapter 1

Preliminaries

The purpose of this chapter is to introduce necessary concepts and outline the core
challenges related to our study. In the first section, we present the concept of the
Wheeler graphs (WG), a generalized structure of the Burrows-Wheeler transform. This
structure supports a specific compression technique discussed in the second section of
this chapter. This compression, however, poses a challenge as it is generally an NP-
hard problem, further described in the third section of this chapter. In the final section
of this chapter, we delve into various greedy algorithms and heuristics proposed in
the past. Among these, the most efficient ones have sacrificed a convenient property
of compression, explained in the third section. In this work, we introduce a novel
heuristics capable of preserving this property.

Throughout this work, logarithms are assumed to be of base two. Additionally,
let alphabet Σ denote a set of totally ordered characters with relation ≺ representing
the order between two characters, such that the character $ ∈ Σ is considered the
lowest ordered character in Σ. Each string S over the alphabet Σ is in this thesis
null-terminated, meaning the character $ appears at the end of S and nowhere else in
the string.

Let S be a string of length n ∈ N over the alphabet Σ, and i be an integer in the
interval [0, 1, ..., n− 1]. We denote:

• S[i]: the i-th character in S.

• S[i..]: the suffix of S starting at position i, defined as S[i..] = S[i]S[i+1]...S[n−1].

• S[..i]: the prefix of S ending at position i−1, defined as S[..i] = S[0]S[i]...S[i−1].

• S ≺lex S ′: S is lexicographically smaller than S ′ (similarly defined for ≻lex).

• |S| := n: the length of the string S.

3

4 CHAPTER 1. PRELIMINARIES

1.1 Wheeler Graph

The concept of Wheeler graphs was first introduced in 2017 by T. Gagie, G. Manzini,
and J. Sirén [12]. The idea was based on the Burrows-Wheeler transform, a signifi-
cant data structure in stringology used for compressed text representations. BWT’s
convenience is based on its ability to effectively perform queries directly on the com-
pressed transformation. Such a space-efficient compressed index is highly beneficial in
bioinformatics fields, where multiple genome files of large size need to be stored and
queried. In order to generalize this data structure and its variants, Wheeler graphs
were introduced.

Formally, a directed graph G is defined as a pair of sets (V,E), where V represents
a finite set of vertices and E ⊆ V × V denotes a set of edges.

Definition 1.1.1 (Wheeler Graph). Let G = (V,E) be a directed, labelled graph,
with the function λ : E −→ Σ defining the label of each edge. We call the graph G

a Wheeler graph if and only if there exists a total order of the vertices, satisfying the
following conditions:

• Vertices with zero in-degree precede those with a non-empty set of incoming
edges.

• For any (u1, v1), (u2, v2) ∈ E, if λ((u1, v1)) ≺ λ((u2, v2)), then v1 < v2.

• For any (u1, v1), (u2, v2) ∈ E, if λ((u1, v1)) = λ((u2, v2)) and u1 < u2, then
v1 ≤ v2.

This order is called the Wheeler order.

The concept of the Wheeler order can be approached more straightforwardly as
follows. When visually representing the graph with two copies of each node, sorted
according to the Wheeler order, certain properties become apparent. The nodes with a
zero in-degree form a consecutive interval at the beginning of the order, due to the first
condition. The second condition ensures that the labels of incoming edges are arranged
by the lexicographic order of the alphabet. Lastly, the third condition implies that
edges sharing the same label do not intersect in this depiction of the Wheeler graph.
All of these observations are depicted in Figure 1.1.

The authors [12] observed several convenient properties of this data structure.
Firstly, it is possible to create a Wheeler graph from a text in linear time if the al-
phabet is constant (in contrast, it is an NP-hard problem to decide whether a graph
has the Wheeler graph properties [13]). Secondly, Wheeler graphs can be compactly
represented and traversed using no more than three arrays with additional data struc-
tures supporting efficient rank and select operations (these arrays then coincide with

1.1. WHEELER GRAPH 5

0

1

2

3

4

5

6

7

8

9

$

A

G

C

C

G

G G

T

T

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

$

A

G

C

C

G

G

G T

T

Figure 1.1: An example of a Wheeler graph. Left: Wheeler graph with nodes numbered
in the Wheeler order. Right: The same graph with two copies of each node, where
edges are going from the right copy of a node to the left one. Labels of incoming edges
are ordered alphabetically and no two edges of the same label cross.

the output of many BWT variants). Thirdly, FM-index [11] (usually associated with
BWT) can be applicable to Wheeler graphs as well, which leads to the generalization of
the BWT concept while preserving its advantages. And, lastly, the property of Wheeler
graphs called path coherence, useful for a specific compression that preserves all the
previously mentioned properties, which we present in the next section.

Notably, any null-terminated string of length n can be represented as a graph with
n nodes, with edges creating a cycle labelled by the reverse of the text, as shown in
Figure 1.2. So starting from the node with an incoming edge labelled $, by following
the single path, the original text is created. While it is generally NP-hard to determine
whether a graph satisfies the conditions of being a Wheeler graph, the process of finding
a Wheeler order in a graph representing a text is relatively straightforward. The idea
is inspired by the mentioned graphical observations of Wheeler graphs, which leads to
computation of the Burrows-Wheeler matrix of a string.

Definition 1.1.2 (Burrows-Wheeler matrix). Let S be a string over the alphabet Σ,
with |S| = n. The Burrows-Wheeler matrix (BW matrix) M consists of lexicographi-
cally ordered cyclic rotations of the string S as its rows, i.e. two conditions for such a

6 CHAPTER 1. PRELIMINARIES

readysteadygo$

$

r

e

a

d y s t

e

a

d

ygo

Figure 1.2: The process of constructing a graph from a text. The graph is a cycle and
by following the path starting with the edge labelled $, the reverse of the original string
can be reconstructed, by concatenating the labels encountered on the path.

matrix must hold:

• For every i ∈ {0, ..., n − 1}, there exists j ∈ {0, ..., n − 1} such that M [i] =

S[j..]S[..j]

• For every i ∈ {1, ..., n− 1}, M [i− 1] ≺lex M [i].

We denote the last column of the matrix by L and its first column by F .

The first condition ensures that every row of the Burrows-Wheeler matrix represents
a cyclic permutation of the original string. The second condition ensures that the rows
are lexicographically ordered from top to bottom and are distinct. An illustration of
the Burrows-Wheeler matrix is provided in 1.3.

The BW matrix of a string offers several conveniences, as shown throughout the
work. Most notable is its last column L, which represents the Wheeler order of nodes
of the graph representing the string. This column is known as the Burrows-Wheeler
transform (BWT), first described in 1994 by M. Burrows and D. J. Wheeler [9], and
later expanded to the concept of Wheeler graphs. Since we operate on biological
data, which are represented as text, we focus mainly on this class of Wheeler graphs
throughout the work.

It is worth noting that the F column of the BW matrix is simply the sorted version
of the L column and, therefore can be derived from the BWT. Moreover, with just the
BWT of a string S, its original form can be reconstructed, and consequently the entire
BW matrix. This reconstruction process relies on a technique called LF-mapping,
which enables the identification and mapping of each position of a character in L to
its corresponding position in F [1]. To present this method, we first introduce some
notation.

We employ the notation selectS(c, i) to denote the position of the i-th occurrence of
character c in string S, rankS(c, i) to represent the number of occurrences of character

1.2. TUNNELING 7

c in the prefix S[..i], and CS[c] to signify the number of characters in S ordered lower
than c, defined as CS[c] := |{i ∈ {0, ..., n− 1}|S[i] ≺ c}| .

Definition 1.1.3 (LF-mapping [3]). Let S be a string over the alphabet Σ, with
|S| = n, and L be its BWT. The LF-mapping LF is a permutation of integers 0, ..., n−1
such that for any i ∈ {0, ..., n − 1}, LF [i] = CL[L[i]] + rankL(L[i], i). We denote by
LF−1 the inverse of this permutation.

In other words, for each i ∈ {0, ..., n − 1}, LF [i] gives the position of the ocur-
rance of character L[i] in column F . A noteworthy aspect underlying this definition
is the inherent ordering consistency between equal characters in both strings L and
F . This arises from the fact that L references to suffixes shifted one character to the
left compared to those represented by F . For instance, consider BW matrix M and
two positions i and j in L where i < j and L[i] = L[j]. Since i < j, it follows that
M [i] ≺lex M [j], resulting in M [LF [i]] ≺lex M [LF [j]] due to the equality L[i] = L[j]

(note that M [LF [k]] = L[k]M [k][0]...M [k][n − 2]). Consequently, the corresponding
position to L[i] in F is smaller than the corresponding position to L[j] in F , thereby
ensuring uniformity in precedence order. An example of this observation is depicted
in Figure 1.4, where, on the left, no grey edges going from equally labelled characters
cross. This property of the BWT is known as path coherence in terms of the Wheeler
graph, explained in the next section.

Given that the rows of the BW matrix represent cyclic permutations of the initial
string, the position of any character in column F is the position of the preceding char-
acter (in the sense of the initial string) in column L. Therefore, the LF-mapping serves
as a fundamental tool for identifying the position in the L column where the preceding
character appears. Consequently, by initiating from the position of the character $ in
L and following the LF-mapping, the reverse of the initial string can be computed.
This implies a great feature of the BWT (and WG) - its invertibility. In the subse-
quent section, we explore another crucial property of the Wheeler graph: its capacity
for compression while preserving convenient characteristics such as invertibility and
efficient indexing.

1.2 Tunneling

The rationale behind our focus on the Wheeler graph lies in its ability to cluster the
vertices with equally labelled incoming and outgoing edges. This characteristic - called
path coherence [12] - was the base idea for the compression technique applicable to
BWTs (and later to Wheeler graphs) called tunnelling. The path coherence is presented
in the WG by grouped occurrence of nodes in the Wheeler order, when the nodes are
reached by equally labelled paths from nodes that form a consecutive range in the

8 CHAPTER 1. PRELIMINARIES

Wheeler order themself. Therefore, remembering only the size of the group and the
labels of the path is sufficient, and thus the storage requirements of the Wheeler graph
are reduced. Given the repetitive nature of biological data and the frequent need for
their indexing, this approach is quite significant in bioinformatics, especially concerning
the pan-genomic sequences.

Before delving into the tunnelling method, we first introduce the definition of a
block within a Wheeler graph, for the block serves as the fundamental unit in this
compression technique.

Definition 1.2.1 (Block). Let G = (V,E) be a Wheeler graph with label function
λ and w, h ∈ N, w ≥ 4, h ≥ 2. Furthermore, let P = (v0,0, v1,0, ..., vw−1,0), ...,

(v0,h−1, v1,h−1, ..., vw−1,h−1) be a set of acyclic paths in the graph. We call the sub-
set (v1,0, ..., vw−1,0), ..., (v1,h−1, ..., vw−1,h−1) ⊆ P a block of height h and width w − 2

(number of edges in one path) if the following conditions are fulfilled:

• all nodes in P except v0,0, ..., v0,h−1 have in-degree equal to one and all nodes
except vw−1,0, ..., vw−1,h−1 have out-degreee equal to one

• the paths are parallel, that is ∀i ∈ {1, ..., w − 1}, ∀j ∈ {0, ..., h − 2} the node
vi,j+1 is the immediate successor of the node vi,j in terms of the Wheeler order

• ∀i ∈ {0, ..., w − 2},∀j ∈ {0, ..., h − 2} λ((vi,j, vi+1,j)) = λ((vi,j+1, vi+1,j+1)) (the
paths are equally labeled)

We call each path of the block a row, and the set of edges {(vi,0, vi+1,0), ...,
(vi,h−1, vi+1,h−1)} is called column of the block, for each i ∈ {1, ..., w − 2}. If
i = 1 we say the column is right-most, and, analogously, if i = w − 2 we say the
column is left-most.

Notably, the definition requires that the incoming edges to the first vertices within
the block paths must be equally labelled, regardless of whether the originating nodes
of these edges form a consecutive sequence in the Wheeler order. This condition distin-
guishes our definition from previously published ones [7, 2], where the incoming labels
of the nodes in the right-most column are permitted to vary. This alternation of the
definition was inspired by Baier’s de Bruijn graph edge minimization heuristics [5],
which is able to tunnel such blocks.

In the context of BW matrices, the block is simply a rectangle in the BW matrix
with identical rows (ensuring the third condition), whose last column is aligned with the
L column (ensuring the second condition). The first condition is held inherently, as the
nodes in the graph have exactly one incoming and one outgoing edge. Our additional
condition ensures that the characters in F column at positions of the alignment of
the block to the L column are labelled the same. Notably, all blocks according to

1.2. TUNNELING 9

the original definition are also computed upon this definition, only mapped to the L-
column shifted one-column to the right, if they do not fit the alternative definition.
Thereby, the extra condition ensures enhancing compression opportunities, without
compromising any essential criteria for the blocks - their compression ability.

We say the block is height maximal (resp. width maximal) if it cannot be extended
to height (resp. width) while preserving the block conditions, and maximal if it is both
height and width maximal. An example of a maximal block within the WG and BW
matrix is depicted in Figure 1.3.

readysteadygo$

F L

$ r e a d y s t e a d y g o
a d y g o $ r e a d y s t e
a d y s t e a d y g o $ r e
d y g o $ r e a d y s t e a
d y s t e a d y g o $ r e a
e a d y g o $ r e a d y s t
e a d y s t e a d y g o $ r
g o $ r e a d y s t e a d y
o $ r e a d y s t e a d y g
r e a d y s t e a d y g o $
s t e a d y g o $ r e a d y
t e a d y g o $ r e a d y s
y g o $ r e a d y s t e a d
y s t e a d y g o $ r e a d

9

6

2

4

13

10 11 5

1

3

12

7

80
$

r

e

a

d

y

s t

e

a

d

y

g

o

Figure 1.3: In the middle is the Burrows-Wheeler matrix for string S =

readysteadygo$. The rightmost column is the BWT L of the initial string, and the
leftmost column denotes the F -column. Cyclic permutations of the initial string are
ordered lexicographically, creating the BW matrix. Above, one maximal block is de-
picted aligned to both L and F columns. Our additional condition is depicted by the
red-marked y in the F column, with the same block marked in red. The right-most
picture depicts the WG created from the original string. The nodes are marked by the
Wheeler order, achieved from the BW matrix. The same block is marked by red color.

Note that rectangles of blocks occur in the BW matrix more than once. Their
appearance may be aligned to the F column as well since the rows are equal and
strings preceding them form a continual interval in the BW matrix. However, this does
not hold conversely (as shown in the Figure, where a greater rectangle of equal rows
is aligned to the F column), therefore we restrict the definition to blocks that can be
aligned to the L column solely.

The following definition underlines the significance of a block in a Wheeler graph
in terms of compression.

Definition 1.2.2 (Tunneling [2]). Let G = (V,E) be a Wheeler graph with a label
function λ, and let (v0,0, v1,0, ..., vw−1,0), ..., (v0,h, v1,h, ..., vw−1,h−1) be the paths of a block

10 CHAPTER 1. PRELIMINARIES

b of graph G. The tunnelling process on b is defined as merging the set of nodes
vi,0, ..., vi,h−1 into a new node vi for 0 < i < w − 1, where the new edge labels are
inherited from the original (equal) edge labels. The newly generated graph is called a
tunnelled Wheeler graph.

L F
o
e
e
a
a

t
r
y
g

$
y

s

d
d

$
a
a

d
d
e
e
g

o
r
s

t
y
y

L F
o
e

a

t
r
y
g

$
y

s

d

$
a

d

e

g

o
r
s

t
y
y

Figure 1.4: The process of tunneling. Above, the block from Figure 1.3 of string
readysteadygo$ is tunnelled. Arrows coloured grey show parts of the LF-mapping.

An example of the tunnelling process is illustrated in Figure 1.4. It was proven
that a tunnelled Wheeler graph remains a Wheeler graph [3]. Hence, the process of
tunnelling could be iteratively repeated, leading to increased compression benefits with
each iteration. However, the blocks must be carefully and deliberately selected, a task
more complex than initially apparent, as we discuss in the next section.

Notably, tunnelling of a bigger block is generally more beneficial than tunnelling
of a smaller block, as the compression increases with the block size. For a block b,
we define its profit by the difference in Wheeler graph size (i.e. number of edges)
before and after tunnelling, denoted as |G| − ˜|G|, where |G| represents the size of the
graph before tunnelling and |G̃| represents the size of the graph after tunnelling block
b. Analogously, we define the profit of a set of blocks B, as the difference |G| − |G̃|.

The profit of a single block b with height h and width w can be calculated as
w · (h − 1), as the first row remains preserved in the G̃. Note that the profit would
change to (w− 1) · (h− 1) in some cases, if not of our additional condition in the block
definition. Such a case is illustrated in the Figure 1.3. Under the original definition,
the same block would still be computed, however, during the tunnelling process, the
right-most column would remain uncontracted, due to the lack of information about
the nodes accessible from this column.

1.3. THE BLOCK CHOICE PROBLEM 11

The computation of the profit of a set of blocks is, in contrast, not so straight-
forward, as the blocks may share some nodes and edges. Even though the nodes and
edges may be present in multiple blocks, they can be removed only once, and therefore
the profit of a set of blocks may differ from the sum of profits of the blocks within the
set. Moreover, not every block collision is suitable for tunnelling, which brings us to
the Block choice problem.

1.3 The Block choice problem

As mentioned in the preceding section, we permit blocks to overlap. Based on the
outcome of tunnelling, we distinguish two types of such overlappings [3]. Tunnelling
overlapping blocks may sometimes lead to a non-reversible Wheeler graph, a scenario
we aim to avoid.

Definition 1.3.1 (Colliding blocks). Let G = (V,E) be a Wheeler graph with a label
function λ. Blocks b and b′ of G are colliding if there exists node v ∈ V such that v ∈ b

and v ∈ b′. Furthermore, let bin and bout be two colliding blocks in G, with bin being
higher than bout. We denote the collision of blocks bin and bout as compensable if the
following conditions are met:

• The rightmost and leftmost columns of block bout do not intersect with bin

• At least one row of bin does not intersect with bout.

• The intersection forms a block of width wbin and height hbout , where wbin is the
width of block bin and hbout is the height of block bout.

If bin = bout and v is present in multiple locations of the block, we call the collision
a self-collision. If at least one of these conditions is not met, or if the collision is a
self-collision, we classify the collision as critical.

Figure 1.5: Visualization of all types of block collisions. Shared regions of blocks are
marked with blue diagonal stripes. A similar image was already published in [3].

Figure 1.5 illustrates examples of these collision types. This categorization of colli-
sions is intended to determine which blocks are suitable for tunnelling. When tunnelling

12 CHAPTER 1. PRELIMINARIES

a critical collision, the reversibility of the tunnelled Wheeler graph is compromised, re-
sulting in an ambiguous compressed version, as will be explained throughout the work.
On the contrary, compensably colliding blocks can be tunnelled without violating this
valuable property, as shown in Figure 1.6. Hence, we introduce the following problem.

kcolbb

kcolbd

kcolbe

cole

cold

kb
kcolbd

ke

cole

cold

kb
kcolbd

ke

c

e c

d

Figure 1.6: The process of iterative tunneling of a compensable collision. Left: two
blocks colliding in a compensable manner. Middle: the wider block is tunnelled, the
higher block is not yet tunnelled. Right: Both of the blocks are tunnelled, sequentially.

Definition 1.3.2 (The Block choice problem). The Block choice problem entails de-
termining an optimal set of blocks M from a Wheeler graph G which does not involve a
critical collision, and the advantage of tunnelling is maximized, meaning that no other
set of non-critically colliding blocks of G offers better compression rates (larger profit).

The Block choice problem has been proven to be NP-complete [7]. Several ap-
proaches aiming for a polynomial time solution have been proposed in the past, some
of which are detailed in the next section.

1.4 Current state of the problem

In 2018, Baier introduced a greedy algorithm for selecting blocks [3], demonstrating
a time complexity of O(n log |RB|), where RB denotes the set of so-called "width-
maximal run-blocks" and n signifies the length of the Burrows-Wheeler transform. This
algorithm is based on the selection of a block from the set of width-maximal run-blocks,
aiming to identify the block with the highest compression rate. Upon selecting a block,
it is removed from the set and the algorithm undergoes iterations wherein it adjusts
the profits of the remaining blocks, depending on their type of collision with the chosen
block, thus ensuring that the relative information is considered in subsequent rounds.
While this method serves as a foundational approach, Baier himself acknowledged
many instances where the greedy strategy may not yield the optimal solution. Due
to its complicated nature and resource-intensive demands, this approach is deemed
somewhat impractical.

1.4. CURRENT STATE OF THE PROBLEM 13

In another publication by Baier and Dede in 2019 [7], a simple heuristics was
presented, outperforming existing solutions for the Tunnel-planning problem in terms
of both resource requirements and compression rate. Utilizing Baier’s concept of width-
maximal run-blocks, the authors adapted the cost model to a single block. Tunnelling
a block brings a profit to the compression, because of the number of edges removed
from the BWT, but also a cost due to additional markings of the beginning and the end
of the tunnel. They estimated the upper bound for the cost and the lower bound for
the profit associated with tunnelling a block. By computing a minimal threshold based
on statistics derived from the normal Burrows-Wheeler transform, they exclusively
selected blocks with a score equal to or greater than this predefined threshold. In an
environment devoid of collisions, this approach ensured that only blocks contributing to
data compression were tunnelled. Despite its practical efficacy in minimizing resource
requirements during encoding, the authors acknowledged that this estimation method
may not be optimal in terms of compression.

In contrast to these approaches, a recent publication [8] has shifted focus towards
addressing space complexity concerns when constructing large FM-indexes, particularly
with respect to biological data, known for their high levels of repetition. The authors
proposed a preprocessing algorithm termed prefix-free parsing, which operates on an
input string S and efficiently generates two data structures called a dictionary D and
parse P of S in a single pass. Leveraging this algorithm, the construction of the
BWT of S from P and D requires a workspace proportional to their size and O(|S|)
time. Notably, in practical scenarios, especially when dealing with repetitive texts,
the combined size of the parse and dictionary is substantially smaller than that of
the original text S, allowing them to fit comfortably within internal memory even for
sizable S. Consequently, this representation of the text facilitates quicker computation
of the compressed version without necessitating frequent disk access.

Furthermore, the utility of the prefix-free parsing method extends to Wheeler
graphs, as demonstrated by Baláž and Goga in 2022 [14]. Incorporating prefix-free
parsing into the preprocessing algorithm for addressing the block choice problem ac-
celerates the process, given the significantly reduced input size. Additionally, this
approach offers the advantage of diminishing space complexity, which is particularly
beneficial for handling collections of pangenomic sequences. Consequently, it enables
the utilization of Wheeler graphs as pangenomic references for real-world pangenomic
datasets. However, despite these advantages, this method did not significantly improve
compression efficacy.

In his thesis [5], Uwe Baier introduced various tunnelling strategies, including
the Hirsh strategy, the Greedy strategy without considering negative side effects, the
Greedy strategy that takes negative side effects into account, and the tunnelling strat-
egy utilizing de Bruijn graph edge minimization. The Hirsh strategy adopts a pragmatic

14 CHAPTER 1. PRELIMINARIES

approach, focusing on tunnelling only profitable blocks, akin to the earlier 2018 work.
The other greedy strategies build upon previous approaches with some enhancements.
The last strategy is of the greatest interest.

The de Bruijn graph edge minimization strategy, initially proposed by Uwe Baier
in 2020 [6], was specifically optimized for sequence analysis. This strategy addresses
the de Bruijn graph edge minimization problem, which aims to find the order-k de
Bruijn graph with the minimum edge count among all orders. The paper describes
an efficient algorithm to solve this problem, establishing a direct connection between
the edge minimization problem and the BWT tunnelling problem. Consequently, this
strategy offers a means to minimize the length of a tunnelled BWT while preserving
essential properties for sequence analysis. Notably, this state-of-the-art strategy op-
erates in O(n log σ) time, where n represents the size of the graph and σ denotes the
alphabet size. Given its superior time and compression capabilities, our approach will
be compared solely to this strategy.

However, most of these approaches including the last one considered non-colliding
blocks only, thereby limiting the potential compression. In contrast, our approach
takes collisions into account and can generate sets of blocks containing compensable
collisions among them, representing a significant advancement in solving the tunnelling
problem.

Chapter 2

Description of the heuristics

In this chapter, we provide the theoretical foundation for our new approach to address-
ing the tunnelling problem. We explain the rationale behind our methodology and offer
a high-level overview of the algorithm, with detailed explanations to follow in the next
chapter.

As discussed previously, it is essential to ensure that the final set of blocks selected
for tunnelling does not include critical collisions, as that would compromise the re-
versibility of the tunnelled Wheeler graph. To address this concern, the initial segment
of this chapter analyses critical collisions and the time needed to find them aiming to
find efficient heuristic solutions. In the next two sections, various approaches to re-
solving collisions between two critically colliding blocks are presented, accompanied by
an assessment of their potential impact on the compression rate. Initially, the possible
solutions are analysed theoretically, followed by validation through statistical analy-
sis using both simulated and real-world data. The final part of this chapter presents
an overview of the heuristics and illustrates its process on a complicated structure
comprised of colliding blocks.

Since tunnelling compensable collisions does not affect the reversibility of the result-
ing Wheeler graph, we do not search for such collisions, i.e. the final set of blocks will
be tunnelled without the additional information about compensable collisions within
this set.

Before delving into the examination of the critical collisions, let us assume the
set of maximal blocks B over a Wheeler graph G has been computed. Each block is
represented as a triplet of numbers (w, s, e), where

• w denotes the width of the block,

• s signifies the first edge in the last column of the block,

• e denotes the last edge of the last column of the block.

15

16 CHAPTER 2. DESCRIPTION OF THE HEURISTICS

In other words, s and e represent the start and end positions (in an inclusive range)
of the block within the last column of the Burrows-Wheeler matrix. Such representation
allows efficient storage and retrieval of the information about the block, enabling further
analysis and processing of the Wheeler graph G with ease.

2.1 Critical collisions

Figure 2.1: Possibilities of critical collisions for two blocks. The size and shape of
blocks may differ. The grey division is based on the computation time of the collisions.

The full spectrum of critical collisions between two blocks is depicted in Figure 2.1.
Given that the blocks are represented via their right-most columns, the computational
complexity of determining the first three possibilities is O(N logN + m), where N

represents the number of maximal blocks in the precomputed set and m denotes the
number of reported collisions. This is achieved by traversing the sorted sets of start
and end positions, maintaining a memorized record of blocks overlapping the current

2.1. CRITICAL COLLISIONS 17

position (i.e. blocks whose end positions were not yet encountered but whose start
positions were). Upon encountering a start position of a block, collisions between that
block and others in the memorized set are reported, and the block is subsequently
added to the set. Conversely, encountering an end position prompts the removal of
the block from the set. The time complexity is the consequence of sorting the start
and end positions and reporting all collisions. Notably, assessing the collision of this
manner between two blocks is of constant time complexity, as it requires no more than
comparing their start and end positions.

A similar strategy is applied to compute the next three categories of critical col-
lisions after transposing the blocks to the left column of the BW matrix, given their
alignment flexibility within the matrix. Mapping the blocks to the left-most column
is done by applying the LF-mapping to the start position of the block a number of
times equal to the block width, therefore it takes O(Nwmax) time, where wmax repre-
sents the maximal width of the blocks. Consequently, the cumulative time complexity
is O(N logN + m + Nwmax). Similarly to the previous case, the time complexity of
identifying block collision in this manner remains constant when the blocks in question
are mapped to the left column of the BW matrix.

However, the computational efficiency diminishes notably for the last two types of
critical collisions, diverging from the straightforward assessment of the other collisions.
Here, the computational time increases to Ω(Nwmax log(Nwmax)), due to the necessity
for an examination across all block columns, rather than focusing on just one column as
in the case with the other types of critical collisions. Furthermore, the determination of
this type of collision between two blocks is not constant but depends on the width of the
blocks. Each block column requires an inspection to accurately report the occurrence
of the collisions since the blocks can overlap in many possible ways, where the number
depends on their width.

Because of the variety of computation, we introduce terms for the three types of
critical collision.

Definition 2.1.1 (Aligned and corner collision). Let b1 and b2 be two critically-
colliding blocks in the Wheeler graph G. We say these blocks create critical right-
aligned collision (resp. critical left-aligned collision) if their right-most (resp. most
left) columns overlap. If blocks b1 and b2 do not create an aligned collision, we say they
create critical corner collision.

Figure 2.1 depicts in the first row right-aligned collisions, in the second row left-
aligned collisions and in the last row corner collisions. The aim is to avoid computing
the corner collisions, in order to achieve higher efficiency. The idea of our approach
lies in examining the blocks involved in these collisions, as illustrated by grey stripes
in Figure 2.2. From now on we refer to these blocks as the inner blocks of the cor-

18 CHAPTER 2. DESCRIPTION OF THE HEURISTICS

ner collisions. Inner blocks inherently overlap with the initial blocks in terms of the
aligned collisions. Therefore, resolving the right and left-aligned collisions in a manner
that simultaneously addresses the corner collisions would lead to an algorithm free of
additional computational overhead.

Notably, the maximal version of the inner blocks may be self-colliding or possess
larger dimensions, with the higher block potentially being higher and the wider block
being wider (and thus destroying aligned collision with the red block). To avoid com-
plications, we assume the inner blocks can not be further extended. However, such
assumptions will not undermine the fundamental concept of the heuristic approach, in
contrast, addressing these speculations can be accomplished with relative ease, as will
be demonstrated in the final section.

Figure 2.2: Structure of corner collisions. The corner collisions of the red blocks include
two other blocks depicted with grey lines - the inner blocks. These blocks collide with
both red blocks in a manner of aligned collisions. The grey blocks may extend beyond
the indicated collision boundaries in a way the dotted lines imply.

In the next sections, we examine solutions addressing aligned collisions and evaluate
their effect on corner collisions. Our objective is to find efficient strategies for resolving
right-aligned and left-aligned collisions while minimizing the effect on the ultimate
compression outcome, with a primary focus on the potential elimination of corner
collisions.

2.1.1 Aligned collisions

In this section, three optimal strategies for addressing critical aligned collisions of two
blocks are presented. The resulting profit of each strategy is compared with the profit
gained by tunneling the entire collision, giving a lower bound of the optimal solution.

In the first chapter, we have shown the evaluation of the profit of a single block.
Consider two height-maximal blocks in a Wheeler graph G, b1 and b2, with heights
h1 and h2, and widths w1 and w2, respectively, where h1 > h2 . Assuming these

2.1. CRITICAL COLLISIONS 19

blocks collide in an aligned manner, the profit derived from tunnelling such a collision
is calculated as the sum of the profits of both blocks minus the intersecting positions,
that were "tunnelled twice", i.e.:

w1 · (h1 − 1) + w2 · (h2 − 1) − w1 · (h2 − 1)

= w1 · (h1 − 1) + (h2 − 1) · (w2 − w1)

= w1 · (h1 − h2) + w2 · (h2 − 1).

In the subsequent sections, we delve into how this profit fluctuates for right-aligned
collisions based on different solution methodologies. Notably, the profit of critical
aligned collisions remains the same for both left-aligned and right-aligned collisions, as
the preserved number of the positions in the first rows within the tunnelled Wheeler
graph G does not vary. Consequently, the following analysis primarily focuses on right-
aligned collisions, given their symmetry with left-aligned collisions.

Handling critically aligned collisions can result in three possibly optimal solutions,
depending on the dimensions (width and height) of the blocks. A collision can be
divided into two non-overlapping blocks either vertically or horizontally, or a compens-
able collision can be achieved by properly shortening the higher block. Illustrations
showcasing these approaches are provided in Figures 2.3, 2.4, and 2.5.

Vertical division

The vertical division of two blocks colliding in terms of aligned collision comprises
preserving the taller block while eliminating all positions shared with the taller block
from the shorter, wider block.

−h2

b1

b2

−h2 −h2

b1

b2

b1

b2

Figure 2.3: Vertical division depicted on all types of right-aligned critical collisions.
The vertical division results in two non-colliding blocks. The change in profit made by
the solutions is depicted below the solutions.

The profit derived from tunnelling vertically divided aligned collisions undergoes
the same change for each type of right-aligned collision, as illustrated in Figure 2.3. As
indicated, the right column of block b2 remains in the tunnelled graph G. Consequently,

20 CHAPTER 2. DESCRIPTION OF THE HEURISTICS

it is expected and indeed confirmed through computation, that the size of the tunnelled
graph increases by the height h2 of block b2, compared to the size of the graph arising
from tunnelling the whole collision.

Horizontal division

The horizontal division mirrors vertical division in principle but inverts the preservation
process. Here, the wider block remains intact, while shared positions are removed from
the taller block, potentially resulting in the taller block being fragmented into multiple
blocks.

−w1

b1

b2

−2w1 −w1

b1

b2

b1

b2

Figure 2.4: Horizontal division depicted on all types of right-aligned critical collisions.
The horizontal division results in two or three non-colliding blocks. The change in
profit made by the solutions is depicted below the solutions.

Unlike vertical division, the profit of this solution varies depending on the type
of right-aligned (or left-aligned) collision. If the division yields two blocks, the profit
decreases in the width of the taller block w1. However, if the division generates three
non-colliding blocks, the size of the tunnelled graph increases by 2w1.

Shortening

−(h1 − h2)

b1

b2

−(h1 − h2) −(h1 − h2)

b1

b2

b1

b2

Figure 2.5: Shortening depicted on all types of right-aligned critical collisions. Short-
ening creates a compensable collision of blocks. The change in profit made by the
solutions is depicted below the solutions.

2.1. CRITICAL COLLISIONS 21

The shortening involves the removal of one column from the taller block, either
the right-most in right-aligned collisions or the left-most in left-aligned collisions. In
contrast to divisions, shortening the taller block results in a compensable collision.
Similar to vertical division, the profit derived from such a solution changes in the same
way for each type of aligned collision. Notably, the size of the tunnelled graph increases
by the difference between the heights of the blocks, h1 − h2.

Note that these solutions are optimal only when considering two colliding blocks.
In scenarios involving larger colliding hierarchies, alternative solutions such as omitting
an entire block may lead to an optimal set. This means our heuristics will approach the
tunnelling problem with a limited perspective, yet this approach ultimately enhances
the efficiency of the final algorithm.

2.1.2 Corner collisions

In this section, we show how corner collisions can be addressed through various combi-
nations of solutions for aligned collisions. The outcome is contingent upon the selection
of solution types for both right-aligned and left-aligned collisions, as well as the order
in which they are addressed.

Notably, each combination necessarily involves at least one division. Attempting to
resolve both right-aligned and left-aligned collisions solely through shortening would
not solve the corner collisions, since the shortening has no effect on the blocks that
create the corner collision.

Additionally, in order to resolve all corner collisions, consistent handling of either
right-aligned or left-aligned collisions is required, either through vertical or horizontal
division. Combining the approaches is counterproductive and would necessitate addi-
tional information about corner collisions, which we assume is unavailable and seek to
avoid computing. The second type of aligned collisions may, in contrast, be addressed
using a combination of solutions.

Let us consider two blocks that con the contraryreate corner collision b1 and b2 with
height h1 and h2, and widths w1 and w2, respectively. Furthermore, we denote h3 the
height of the shared area and w3 the width of the shared area.

The possible combinations and their differences in the profit compared to tunnelling
the whole collision are as follows:

• Horizontal division + horizontal division → (w1 + w2)

• Horizontal division + vertical division → (w1 + h3) or (w2 + h3) or
. (h1 + w3) or (h2 + w3)

• Horizontal division + shortening → (w1 + h2 − h3) or (w2 + h1 − h3)

22 CHAPTER 2. DESCRIPTION OF THE HEURISTICS

• Vertical division + vertical division → (h1 + h2)

• Vertical division + shortening → (2h1 − h3) or (2h2 − h3)

An example of the process when the combination of vertical and horizontal division
is applied is depicted in Figure 2.6. The variability in the profit difference within the
combinations arises from the various permutations of their application. It depends
on which solution type is used for each aligned collision, and the order in which they
are applied. These factors collectively contribute to the divergence in profitability
considering one combination.

Figure 2.6: Solving corner collision with vertical and horizontal division. First picture:
right-aligned collision solved first with vertical division, left-aligned collisions solved
with horizontal division afterwards. Second picture: right-aligned collision solved first
with horizontal division, left-aligned collisions solved with vertical division afterwards.
Third picture: vertical division applied to left-aligned collisions first, then horizontal
division used for left-aligned collisions. Fourth picture: left-aligned collision solved with
horizontal division, and afterwards, right-aligned collision solved with vertical division.

Given the difference in profits, relying exclusively on vertical division for both
aligned collisions is suboptimal, as an appropriate combination of vertical division
and shortening can yield higher profits.

2.1. CRITICAL COLLISIONS 23

2.1.3 Statistics

In order to select the most suitable solution for aligned collisions (as corner collisions
are addressed implicitly), we performed a comparative analysis of the solutions using
both artificial and real data.

Initially, we measured the length of the tunnelled Wheeler graph without resolving
any critical collisions. Such a graph has minimal size, however, is useless in practice,
due to the tunnelling of critical collisions. Subsequently, all right-aligned collisions were
solved using one of the solutions and the resulting increase in the size of the Wheeler
graph was evaluated.

Figure 2.7: Comparision of vertical, and horizontal division and shortening on random
data of various lengths. The x-axis depicts the length of the random sequences (with
4 samples for each value of length) and the y-axis shows the increase in length of
the tunnelled Wheeler graph when solving the right-aligned collision with a specific
solution.

For the first analysis, random sequences of varying lengths over the alphabet {a, c, g, t}
were generated. This analysis aimed to evaluate the general effectiveness of the solu-
tions when applied to Wheeler graphs generated from sequences not coming from a
specific distribution. The results are shown in Figure 2.7.

In the second analysis, we assessed the impact of the solutions on biological data
consisting of a single sequence. Biological data inherently exhibit more repetition
compared to random sequences, leading to slightly different outcomes compared to the
previous analysis. The results are depicted in Figure 2.8.

Lastly, we compared the solutions using pan-genomic data. This analysis provides
the most insightful results as this type of data is the primary focus of our research.
The achievements of this analysis are shown in Figure 2.9.

24 CHAPTER 2. DESCRIPTION OF THE HEURISTICS

Figure 2.8: Comparision of vertical, horizontal division and shortening on biological
data. The x-axis depicts the names of the data files and the y-axis shows the increase
in length of the tunnelled Wheeler graph when solving the right-aligned collision with
a specific solution.

Figure 2.9: Comparision of vertical, horizontal division and shortening on pangenomic
data. The x-axis depicts the names of the data files and the y-axis shows the increase
in length of the tunnelled Wheeler graph when solving the right-aligned collision with
a specific solution.

2.1.4 Selected combination

Given our focus on pangenomic sequences, the choice of combinations is affected by the
latest statistics mainly. Analysis of the pangenomic dataset indicates that shortening
appears as the most favourable solution type. To incorporate it into a combination,

2.2. HEURISTICS OVERHEAD 25

the second type of solution must involve a division of any nature.

Upon observation, horizontal division generally exhibits lower success rates com-
pared to vertical division. This holds for the pangenomic data as well as for any
biological data or random sequences. The cause of this observation has been revealed
by the theoretical analysis. The profit of the horizontal division fluctuates depending
on the unique pattern of the collision, and its loss can potentially be twice as significant,
unlike for the other types of solutions.

Ultimately, the chosen combination for the heuristic approach is vertical division
paired with shortening. Indeed, the first two statistics suggest that the selected com-
bination for the heuristics should yield favourable outcomes not only on pangenomic
data but also on any text data.

While exploring the performance of the heuristics on non-biological data could pro-
vide valuable insights into its performance, we currently choose not to pursue such anal-
ysis. Nonetheless, we will compare its effectiveness on both biological non-pangenomic
and pangenomic data in the last chapters to evaluate its versatility and applicability
across different domains.

2.2 Heuristics overhead

The heuristics can be divided into four main steps. Initially, all maximal blocks,
including self-colliding ones, are enumerated. Subsequently, they are sorted according
to their start and end positions in the BWT, and right-aligned collisions are addressed
through vertical division. Notably, this process may repeat, as one division can create a
new right-aligned collision that necessitates resolution. By the end of this step, no two
blocks overlap in any part of their right columns, and all critical corner collisions are
thus effectively eliminated from the block set. In the third step, left-aligned collisions
are handled by shortening the taller block. Similar to the previous step, this process
must take into account the potential emergence of new left-aligned collisions.

The removal of self-colliding blocks from the set is also a crucial step in the process,
and it must be performed at the appropriate time rather than at the beginning. To
understand why timing is essential, we can reflect on the previous notion regarding
the resolution of corner collisions. To effectively solve corner collisions, it is necessary
to include the inner blocks within the collisions. However, these inner blocks may
themselves be self-colliding. If all self-colliding blocks were removed from the set too
early in the process, there would be no guarantee of the resolution of all corner collisions.
Therefore, this step must be delayed. However, postponing the process too long could
lead to worse compression results, as the self-colliding blocks could cause unnecessary
reduction of other blocks. Therefore, all self-colliding blocks are removed from the set

26 CHAPTER 2. DESCRIPTION OF THE HEURISTICS

between the second and third steps of the algorithm. Consequently, before handling
left-aligned collisions, the set is free of corner collisions, and after the shortening, all
critical collisions are entirely resolved within the block set, paving the way for the
tunnelling process.

Although it is mentioned that all corner collisions are eliminated after the fourth
step, this is not entirely accurate yet. It holds for corner collisions that overlap in at
least two columns, considering each maximal block has a width of at least two. However,
resolving corner collisions overlapping solely in one column presents a challenge.

To address this issue, before the second step of the algorithm, collisions in the first
and last columns of the blocks must be computed, if any, and added to the block set
as blocks of width one. This ensures that one-column overlaps are addressed as well.
This computation is efficient, requiring O(n) time if the blocks are aligned to both the
last and first columns of the BW matrix and are sorted. By merging intervals occupied
by the blocks in both columns into non-overlapping intervals in both columns and
comparing them with intervals from the other column, the one-column corner collision
can be identified. Whenever two intervals overlap, the entire interval merged from the
overlapping intervals is added to the block set as a block of width one. Thus, the
one-column corner collisions can be solved by the heuristics, as the block of width one
divides the colliding blocks into non-overlapping blocks in the second step. Afterwards,
this block is removed from the set. Detailed explanation and pseudo-code of this process
are explained in the next chapter.

Previously, we discussed the possibility that the inner blocks within a corner col-
lision may have dimensions larger than what the collision indicates. However, these
larger dimensions have no effect on the heuristics and its correctness. The increased
height of the higher block has no impact on the process and the result remains similar.
If the wider block is of the smallest width, it will be removed from the set of blocks in
the second step, where right-aligned collisions are handled. If it is wider to the right,
it will remain in the set, and in the third step, one of the blocks within the corner
collision is shortened. If it is stretched to the left, the second step ensures that only
the non-overlapping area of the block remains. If the wider block is prolonged in both
ways, the block collides with each block within the collision in a manner of compensable
collision, therefore it remains untouchable.

The entire heuristics process is illustrated in Figure 2.10. The first image depicts
all maximal blocks within one fictive input, with blocks involved in corner collisions
depicted with grey stripes and one-column blocks highlighted in red. The second
image showcases the blocks after addressing all right-aligned collisions with vertical
division. Notably, no corner collisions are present. The third image displays the set
after shortening is applied to all left-aligned collisions. This block set contains only
compensable collisions, thus enabling safe tunnelling.

2.2. HEURISTICS OVERHEAD 27

Figure 2.10: Process of the heuristics shown on a hierarchy of colliding blocks. The
steps illustrate the process of the heuristic and its final output. Firstly, all maximal
blocks are computed. The inner blocks within corner collisions are depicted with grey
lines. Secondly, the one-width inner blocks in corner collisions are computed, depicted
with red lines. After that, the right-aligned critical collisions are vertically divided.
In the last step, the left-aligned collisions are handled in a manner of shortening. All
changes in steps are depicted in red colour.

28 CHAPTER 2. DESCRIPTION OF THE HEURISTICS

Chapter 3

Implementation

In this chapter, we delve into the details of the heuristics and provide pseudo-code for
the main components of the heuristics. The code was originally implemented in Rust
and can be found at https://gitlab.com/wheeler_graphs/wglib.

The chapter is divided into five main sections. The first part explains how the
maximal blocks are enumerated. To enhance the understanding, we provide an overview
of the calculation, however, we will not delve into deep details, as the process has been
extensively covered in existing literature [5, 16, 10]. In addition to these blocks, the
inner blocks of width one are necessary to be computed, to ensure all right-aligned
collisions are addressed in the following part. Both of these parts run in linear time
with the size of the graph.

The next section handles right-aligned collisions. Collisions of this type are solved
using vertical division. After handling the right-aligned collisions, all self-colliding
blocks and blocks of width one are removed from the set in this section. This com-
putation requires O(N logNwmax), where N is the number of input blocks and wmax

denotes the maximal width of the blocks.

The third part of this chapter focuses on resolving left-aligned collisions using short-
ening. All critical collisions are ultimately removed from the set of blocks, making the
result set a feasible solution. The time complexity of the algorithm in this section is
also O(N logNwmax).

In the fourth stage, the tunnelling is briefly explained. This topic has been covered
by previous works [6, 2, 5], therefore the aim is to introduce just a simple overview,
instead of diving deeply into the problematics. This part takes O(Nwmaxhmax) time,
where hmax is the maximal height of the final blocks. Since the tunnelling process is not
part of the heuristics, this computation is not included in the overall time complexity
of the heuristics.

The last section is devoted to the linear reconstruction of the tunnelled Wheeler
graph, an essential part of the decompression. This part may illustrate the process of

29

https://gitlab.com/wheeler_graphs/wglib

30 CHAPTER 3. IMPLEMENTATION

traversing the tunnelled graph and extracting information from it. It also may shed
light on the problem behind tunnelling two critically colliding blocks. Whilst many
other useful queries can be efficiently performed on the tunnelled Wheeler graph, we
will not display or implement them in this work, as they have been explored in previous
research [11, 13].

3.1 Enumeration of the blocks

This section is dedicated to the enumeration of all maximal blocks, accompanied by one-
width overlappings. The second computation necessitates the first one for an efficient
implementation, thus we explain the enumerations in this order.

3.1.1 Maximal blocks

To efficiently enumerate all maximal blocks with a width and height of at least two,
we employ the Longest Common Suffix (LCS) array [5, 15]. This array encapsulates
the information about the longest common suffix of two adjacent rows within the BW
matrix, hence inheriting its nomenclature. We cease from showing the computation
of this array, since comprehensive discussions regarding its efficient implementation
are available in existing literature [5]. Notably, our implementation includes these
methodologies to ensure computational efficacy.

Due to the slightly modified definition of the blocks, a different version of the LCS
array will be employed, where the values will take into account the first column of the
BW matrix as well. An example of the original and modified version of the LCS array
can be found in Figure 3.1. The computation of the alternative version varies from
the original only slightly. When determining the value of the LCS array at a certain
position, the value is changed according to the letters at the same positions in the
F -column. If they are equal, the value is incremented, otherwise it is set to zero.

Using a stack-based approach, the process of enumerating all maximal blocks, as
depicted in Algorithm 1, takes O(n) time, for a Wheeler graph of size n. This algorithm
traverses the nodes of the Wheeler graph in the Wheeler order while checking the LCS
array. A possible start of a block of a certain width (which is given by the LCS array)
is stacked when a wider part of the LCS array is encountered. Conversely, should the
potential block width exceed the current position in the LCS array, the block has to end
here. If the potential block satisfies minimal size properties and is right maximal, it can
be reported. The right maximality of the block is proved using inverse LF-mapping.
If the positions to the right of the right-most column do not form a continuous part
in the Wheeler order, with all incoming edges of the nodes labelled equally, then the
block is right-maximal and can be reported. Otherwise, it is omitted, since it can be

3.1. ENUMERATION OF THE BLOCKS 31

readysteadyro$

F L LCS L̃CS

$ r e a d y s t e a d y r o
a d y r o $ r e a d y s t e
a d y s t e a d y r o $ r e
d y r o $ r e a d y s t e a
d y s t e a d y r o $ r e a
e a d y r o $ r e a d y s t
e a d y s t e a d y r o $ r
o $ r e a d y s t e a d y r
r e a d y s t e a d y r o $
r o $ r e a d y s t e a d y
s t e a d y r o $ r e a d y
t e a d y r o $ r e a d y s
y r o $ r e a d y s t e a d
y s t e a d y r o $ r e a d

0
0
1
0
2
0
0
1
0
0
4
0
0
3

0
0
2
0
3
0
1
0
0
1
0
0
0
4

Figure 3.1: Original LCS-array and the modified version L̃CS shown on a wheeler
matrix for string S = readysteadygo$. The modified version is one unit larger than
the original when the rows are equivalent in the F column. If not, it is equivalent to
zero.

extended by at least one column to the right.

3.1.2 One-column overlappings

Once the set of all maximal blocks has been computed, we advance to identify one-
column corner collisions. These collisions indicate an overlap between the first column
of one block and the last column of another block. In order to efficiently identify and
report such overlaps, we establish two sets of intervals.

The first set represents intervals in the last column of the Burrows-Wheeler matrix
occupied by the blocks while the second set determines the occupied intervals in the
first column of the BW matrix. The construction of these sets involves similar, yet
slightly different methodologies.

The first set utilizes the precomputed blocks without additional information about
their widths. Conversely, the second set is generated by mapping each block to the
first column of the BW matrix. This mapping is achieved by applying the LF-mapping
to the start position of the block a number of times equivalent to the block width,
determining its position in the first column. The end position of the block is computed
using the height of the block.

Once we obtain these sets of intervals, we advance to sort them prioritly according to
their start positions, incrementally and secondarily in a decremental order according
to their end positions. After that, the intervals are merged by traversing the sets
separately and comparing adjacent intervals. During this process, we track the lowest

32 CHAPTER 3. IMPLEMENTATION

Algorithm 1: Algorithm enumerating all maximal blocks as triplets of width,
start position and end position in the bwt.
Data: LCS array LCS of size n

Result: All maximal blocks in the form (w, s, e), where w is the width of the
block and s, e are the start and end position of the interval of the
right-most column.

1 begin
2 initialize an empty stack s

3 push (1, 0) on s

4 for i←− 1 to n do
5 (b, w)← top of stack s

6 while w > LCS[i] do // end of block of width w

7 pop topmost element of s
8

9 block ←− (w, b, i− 1)
10 if block is right-maximal and w > 1 and i− b > 1 then
11 report block

12

13 (b′, w′)←− top of stack s

14 if LCS[i] > 1 and LCS[i] < w′ then
15 push (b, LCS[i]) on s // assurance of the height-maximality

16

17 (b, w)←− top of stack s

18 if w < LCS[i] then // possible start of a block of width w

19 push {i− 1, LCS[i]} on s

20

// make sure to report all possible block saved in the stack

21 while s is not empty do
22 (b, w)←− top of stack s

23 block ←− (w, b, n− 1)
24 if block is right-maximal and w > 1 and n− b > 1 then
25 report block

26 pop topmost element of s

3.2. RIGHT-ALIGNED COLLISIONS 33

start and highest end positions covering two adjacent overlapping intervals. When
encountering a non-overlapping adjacent pair, a new interval is pushed to the result set
using the remembered start and end positions. After that, these positions are updated
according to the newly encountered interval.

After merging the interval sets, they are compared in order to identify any overlap-
ping intervals. Such overlaps indicate the presence of blocks creating corner collisions
with one-column overlapping. These overlappings are computed by traversing both
interval sets, and comparing potentially overlapping intervals. If one interval starts
after the end of the other, the index in the set of the foregoing interval is increased.
However, if the intervals overlap, we create a new block of width one with its start
position set to the minimum of the start positions of the intervals and its end position
set to the maximum of the end positions. This newly formed block is then added to
the set of blocks, and the index in the set of the interval that started earlier is incre-
mented. As the traversal holds only once for both sets, the algorithm runs in linear
time, assuming the mapping of the blocks has been precomputed. If not, the time
complexity is O(Nwmax), where N is the number of maximal blocks and wmax denotes
the maximal width of the maximal blocks.

3.2 Right-aligned collisions

In this section, we address two issues within the heuristics, in order to achieve a corner
collisions-free block set. The first challenge covers handling right-aligned collisions
in the manner of vertical division, and the second part focuses on eliminating self-
colliding blocks. These computations are independent and are thus split into separate
subsections for clarity and coherence.

3.2.1 Vertical division

It becomes evident that resolving one right-aligned collision may introduce another
right-aligned collision, leading to a cyclical process. Such a scenario is illustrated
by the widest block in Figure 2.10. Furthermore, in instances where multiple right-
aligned collisions exist, as depicted by the left-aligned collisions in the middle of Figure
2.10, an inefficient algorithm would proceed in several cycles to resolve them. This
inefficiency arises from the inappropriate order of addressing the right-aligned collisions.
For instance, prematurely dividing the collision of the highest and the second-highest
block would result in the third-highest block being initially compared with the highest
block and then, in a subsequent cycle, with the block created from the division, even
though the same result could be achieved by one comparison of the third and second
highest blocks in the beginning. As the hierarchy of collisions grows, so does the

34 CHAPTER 3. IMPLEMENTATION

inefficiency of such an algorithm.
To circumvent this inefficiency, we introduce the concept of a block tree. The block

tree is based on the observation that height-maximal blocks form nested intervals in
both the last and first columns of the BW matrix.

Theorem 1 (Nested intervals of height-maximal blocks). Let B be the set of height-
maximal blocks in the Wheeler graph G. Then the start and end positions of the blocks
in the last column of the Burrows-Wheeler matrix form nested intervals.

To prove the theorem, let us assume all blocks are maximal in height but there exists
a non-nested right-aligned collision. If the collision is not nested, then the thinner block
can be extended to height and, therefore, is not height-maximal. This observation forms
the basis of our approach however, before delving into its practical implications, we
first present the underlying idea.

Definition 3.2.1 (Block tree). Let B be the set of height-maximal blocks. Let T be
a tree, where each node belongs to a block except for the root, any block node in its
last-column interval obtains the intervals of its children, and the sum of the node depth
(length of the shortest path to the root) is maximized. We call such tree a block tree.

b1b3

b2

b4
b5

b6

root

b1

b3

b2

b4

b5 b6

Figure 3.2: Block tree of a group of blocks. Left: group of height-maximal blocks
colliding in an aligned manner. Right: block tree od this structure. Each child is
entirely overlaped by its parent, in the sense of their right-most columns.

An example of a block tree for a group of aligned blocks is depicted in Figure 3.2.
To ensure the blocks are still height-maximal after one round of the vertical divisions,
it is necessary to merge aligned colliding blocks of the same width. The importance
of merging aligned blocks of the same width to ensure height maximality is shown in
Figure 3.3.

The introduction of the block tree offers an efficient solution to resolving right-
aligned collisions. To minimize the number of cycles required by the process, it is

3.2. RIGHT-ALIGNED COLLISIONS 35

Figure 3.3: Reason of the merging for height-maximality insurance. In the first picture,
all blocks are height maximal. The grey block indicates the inner block of the corner
collision. The second picture shows the blocks after one round of vertical division. Red
blocks do not form nested intervals, and the thinner block is not height-maximal. After
merging aligned blocks of the same width, as shown in the last picture, all blocks are
height-maximal and form nested intervals.

necessary to select the proper set of aligned collisions to be addressed. Specifically,
if a shorter block collides with multiple higher blocks, it is most efficient to remove
the positions shared with the widest higher block it overlaps. Deviating from this
approach would result in unnecessary repetition of the algorithm. Hence, it is crucial
to compute the largest area that needs to be removed from the shorter block to resolve
the right-aligned collisions effectively. This information can be evaluated for each block
by utilizing the block tree, as it corresponds to the width of the parent block, with the
root block having zero width.

Another convenient feature of the block tree is its straightforward implementation.
By sorting the blocks in increasing order of start positions and decreasing order of end
positions, with priority given to start positions in the ordering, traversing such a sorted
set aligns with traversing the block tree depth-first. Consequently, the algorithm can
traverse the sorted set while keeping track of the ancestors. For each block, the width of
its parent is chosen to create a thinner block. Subsequently, all blocks with a non-root
parent are removed from the set, and the new blocks formed by their vertical division
are added to a temporary set. After the traversal of the block tree, the temporary
set of blocks is sorted and merged with the leftover set. This process is iterated until
right-aligned collisions are no longer present. The number of iterations is bounded
by the maximal width of blocks wmax. Therefore the overall time complexity of the
vertical division algorithm is O(wmaxN logN), for N blocks. The number of repetitions
of the algorithm is bounded by wmax, alternation of the blocks can happen at most
Nwmax times and in each repetition, the blocks are sorted, which indicates the overall
complexity. The pseudo-code for the algorithm is depicted in Algorithm 2.

36 CHAPTER 3. IMPLEMENTATION

Algorithm 2: Algorithm solving right-aligned collisions in the block set by
vertical division.
Data: Set of blocks B as triplets (width, start position, end position), all

mapped to the last column of the Wheeler matrix
Result: Set of blocks reduced from right-aligned collisions.

1 begin
2 do
3 changed ←− False
4 initialize an empty vector tmp

5 initialize an empty stack s

6

7 foreach b ∈ B do
8 t ←− top of stack s

// update the path to the root

9 while s is not empty and t.end < b.start do
10 pop topmost element of s
11 t ←− top of stack s

12 if s is not empty then // if block has non-root parent change it

13 changed ←− True
14 t ←− top of stack s

15 new_start←− b.start

16 for i←− 0 to t.width do // divide the block

17 new_start←− LF [newstart]

18 push (b.width− t.width, new_start, new_start+ (b.end− b.start)))

on top of tmp

19 remove b from the B

20 push b on top of s

21 sort tmp

22 B ←− merge(tmp,B)

23 while changed
24 return B

3.3. LEFT-ALIGNED COLLISIONS 37

3.2.2 Self-colliding blocks

After resolving the right-aligned collisions, the blocks of width one and self-colliding
blocks are no longer important, thus their removal from the set is in place. While these
blocks could be removed at the end of the process, reducing them as soon as possible
is beneficial in two ways. Firstly, the amount of input data for the next computations
is reduced, and so is the computation time. Secondly, retaining such blocks in the set
potentially compromises the compression results, as some may lead to an unreasonable
shortening of valuable blocks.

Identifying self-colliding blocks is straightforward: a block is self-colliding if and
only if there exist nodes in its first row, that are closer in the Wheeler order than
the height of the block. Given that the columns of the block form intervals of length
equal to the height of the block, the absence of such a pair indicates that the block
cannot overlap with itself. Thus, to select self-colliding blocks from the set, we sort
the positions in their first row, obtained using the LF-mapping, and compare adjacent
pairs. This operation runs in O(Nwmax logwmax) time, where N indicates the number
of blocks in the set and wmax denotes the maximal width of the blocks in the set.

3.3 Left-aligned collisions

The left-aligned collisions are solved by employing the shortening technique, wherein
the higher block is shortened by one column. Firstly, all blocks resulting from the
previous reduction are mapped to the first column of the BW matrix, so any collisions
of this type are easily detected. After that, the process closely resembles the one solving
the right-aligned collisions, with a slight difference.

In this scenario, we also use the block tree to determine the maximum number of
columns to be removed from the blocks, thereby minimizing the number of algorithm
repetitions. In contrast to the right-aligned collisions, this number corresponds to the
height of the node in the block tree, which is the length of the longest path to any of its
descendants. Consequently, the height of the node represents the maximal minimum of
columns to be removed from the block during the algorithm. Computing this maximum
is particularly crucial for algorithmic efficiency, as it enables the removal of columns
in a single step rather than multiple steps. In contrast with traversing the block tree
for right-aligned collisions, here the removal values are set after searching the whole
subtree of the node, not when the node is first encountered.

When the block is to be shortened, it is removed from the original set, and its altered
form is added to a temporary set. This transformation is achieved using inverse LF-
mapping, as the block is intended to be mapped to the first column of the BW matrix.
Following the traversal of the block tree, the temporary set is sorted and merged with

38 CHAPTER 3. IMPLEMENTATION

the leftover set, akin to the previous process. This iterative process continues until
no left-aligned collisions (and consequently, no critical collisions) remain. Similarly to
the right-aligned collisions, the time complexity of handling the left-aligned collisions
is O(wmaxN logN). The detailed algorithmic steps are depicted in Algorithm 3.

3.4 Tunneling

After obtaining the final set of blocks earmarked for tunnelling by the heuristics, we
proceed to the final phase - compression. This process is held in two stages.

y

d

a

e

t

y

d

a

e

r

yy

d

a

e

tr

yy

d

a

e

tr

d

a

e

Figure 3.4: The process of tunneling in a Wheeler graph. The leftmost picture shows
part of the initial Wheeler graph. In the middle, a multi-graph is depicted after the
fusion of inner nodes. All redundant edges are coloured grey. On the right, after the
removal of redundant paths, a tunnelled part of the Wheeler graph is shown.

Firstly, all positions in the blocks are marked depending on their positioning in
the blocks. This represents fusing all inner nodes of the blocks, thereby yielding a
multigraph. Secondly, all marked positions (i.e., positions that are neither the start
nor the end of a tunnel) are removed. This step means eliminating redundant edges
between inner nodes, resulting in a graph free from multi-edges. The two-stage process
of tunnelling is depicted in Figure 3.4.

It is worth noting that tunnelling the blocks sequentially might end up in complex
computation. The positions of the blocks in the tunnelled Wheeler graph may change
as the graph shortens, hereby the sequential algorithm would necessitate remapping
the blocks after each tunnelling. Therefore, we opt to tunnel the blocks in parallel.
This entails executing the first stage for all blocks simultaneously, followed by the

3.4. TUNNELING 39

Algorithm 3: Algorithm solving left-aligned collisions in the block set by
shortening method.
Data: Set of blocks B in the form of triplets, (width, start position, end

position), mapped to the first column of the Wheeler matrix
Result: Set of blocks reduced from left-aligned collisions

1 begin
2 do
3 changed ←− False
4 initialize an empty vector tmp

5 initialize an empty stack s

6 initialize a vector of zeros shorten of length N

7 i←− 0

8 while i < B.length do
9 i ←− i+ 1

10 while B[i].start < B[i− 1].end do // check a path to descendant

11 push i on stack s

12 i←− i+ 1

13 depth←− 0

14 t←− top of stack s

// go from bottom to top in the path and update the values of

shortening

15 while B[i].start > B[t].end do
16 shorten[t]←− max(depth, shorten[t])

17 depth←− depth+ 1

18 pop topmost element of s
19 t←− top of stack s

20 for k ←− s.length to 0 do
21 shorten[k]←− max(depth, shorten[k])

22 depth←− depth+ 1

23 for j ←− 0 to B.length do // update all blocks

24 if shorten[j] > 0 then
25 changed←− True
26 new_block ←− B[j] shortened of shorten[j] columns
27 push new_block on top of tmp

28 remove B[j] from B

29 sort tmp

30 B ←− merge(tmp,B)

31 while changed
32 return B

40 CHAPTER 3. IMPLEMENTATION

eliminating phase. This parallel approach ensures a more streamlined and efficient
compression process.

3.4.1 Compression of nodes

For the tunnel marking process, we utilize two bit-vectors, din and dout, each of length
n + 1, where n represents the length of the original Wheeler graph G. Initially, these
vectors are comprised of positive bits only.

To mark a tunnel of a block, we traverse from its last column to its first using
LF-mapping. During this process, all positions in each column, are set to negative bits
in the bit vectors. However, the rightmost (last) column is exclusively marked in the
bit vector din, while the leftmost (first) column is marked solely in the bit vector dout.
This inconsistency in the marking of the bit vectors indicates the beginning or end of
a tunnel, depending on the context.

In essence, these arrays serve to denote the indegrees and outdegrees of the nodes
in a Wheeler graph. Initially, all nodes possess an indegree and outdegree of one.
When a block is marked for tunnelling, the inner column nodes are merged into one
node. Consequently, the indegrees of all nodes, except those in the leftmost column,
and the outdegrees of all nodes, except those in the rightmost column, become equal
to the height of the block. This fusion results in a multigraph prepared for the final
compression, where redundant paths with a common start and end node are eliminated.
[5], see the first part of the Algorithm 4.

3.4.2 Compression of edges

Once the tunnels have been marked in the bit-vectors din and dout, the construction
of the tunnelled BWT can proceed. It is crucial to note that if any critical collision
were present the marking stage would yield contradictory markings in the bit-vectors,
leading the process to abort. Therefore, ensuring the absence of critical collisions is
essential before proceeding with the tunnelling process.

To compress the Wheeler graph G and derive the tunnelled Wheeler graph G̃, it
is necessary to reduce the arrays din and dout of the redundant edges and retain only
essential positions in G̃. In essence, the outdegrees of all nodes except the last one, and
the indegrees of all nodes except the first one, must be reduced to one. This reduction
is achieved through a traversal of both arrays, whereby din, dout, and G are trimmed
accordingly.

The positions marked zero in dout correspond to the entries to be removed from
din. Similarly, the positions marked zero in din correspond to the entries to be removed
from dout, as well as from G. Therefore, by scanning the marked bit-vectors, the desired
tunnelled Wheeler graph can be obtained by determining whether to retain an entry

3.4. TUNNELING 41

Algorithm 4: Computation of tunneled Wheeler graph G̃. First, the to-be-
tunneled positions are marked in the bit-vectors din and dout. After that they
are removed from the bit-vectors din, dout and G̃.
Data: Wheeler graph G of size n, set of to be tunneled blocks B and

LF-mapping LF

Result: tunneled Wheeler graph G̃ and corresponding bit-vectors din and dout

1 begin
2 initialize vectors din and dout of size n+ 1 with ones

// mark all positions for tunneling in the bit-vectors din and dout

3 foreach (w, s, e) ∈ B do
4 s′ ←− s

5 h←− e− s

6 for i←− 0 to w − 1 do
7 for j ←− 1 to h− 1 do
8 din[s

′ + j]←− 0

9 s′ ←− LF [s′]

10 for j ←− 1 to h− 1 do
11 dout[s

′ + j]←− 0

12

// remove all the positions according the markings in the

bit-vectors

13 initialize empty vectors G̃, new_din, new_dout

14 for i←− 0 to n do
15 if din = 1 then
16 push G[i] on top of G̃
17 push dout[i] on top of new_dout

18 if dout = 1 then
19 push din[i] on top of new_din

20 push 1 on top of new_din

21 push 1 on top of new_dout

22 return G̃, new_din, new_dout

42 CHAPTER 3. IMPLEMENTATION

i G[i] dout din F [i]

0 o 1 1 $
1 e 1 1 a
2 e 1 1 a
3 a 1 1 d
4 a 1 1 d
5 t 1 1 e
6 r 1 1 e
7 y 1 1 g
8 g 1 1 o
9 $ 1 1 r
10 y 1 1 s
11 s 1 1 t
12 d 1 1 y
13 d 1 1 y
14 1 1

G̃[i] dout din F [i]

o 1 1 $
e 1 1 a

a 1 1 d

t 1 1 e
r 0
y 1 1 g
g 1 1 o
$ 1 1 r
y 1 1 s
s 1 1 t
d 1 1 y

0 y

1 1

Figure 3.5: Inverse walk in the tunnelled Wheeler graph G̃ of string readysteadygo$.
Above, Wheeler graph G, its sorted form F and bit-vectors din and dout are captured
before and after tunneling block (4, 5, 7). Starting from a position of $, using LF-
mapping, the inverse walk leads to building the original string. When encountering the
end of the tunnel (marked in the din vector), an offset is saved and then used when the
beginning of the tunnel (marked in the array dout) is reached.

based on the zero markings in both arrays [5], see also the second part of the Algorithm
4.

3.5 Reconstruction

In this section, we elucidate the process of reconstructing the original string Wheeler
graph from its tunnelled version. The process closely resembles the one described
in Baier’s thesis [5], though with a slight modification, due to possible tunnelling of
compensable collisions.

To rebuild the reverse of the primary string of length n in O(n) time, we employ
the backward-step function. This function navigates through the tunnelled Wheeler
graph, moving one step backwards to visit the previous edge (previous letter in the
context of the strings) of the initial graph.

The process of the reverse walk in a tunnelled WG closely resembles that in an

3.5. RECONSTRUCTION 43

unmodified Wheeler graph, with one notable difference: we need to remember the
offsets to the uppermost row when entering a tunnel, ensuring that when exiting that
tunnel, we jump to the correct position in the WG.

In scenarios where no collisions are permitted, only one additional number would
be required to remember - the current offset. However, when overlapping blocks are
considered, it is possible to enter another tunnel before leaving the first, necessitating
the storage of a potentially large number of offset values. Consequently, when exiting
a tunnel, we must appropriately select from all saved offsets. This would rise to a com-
plex problem if critical collisions were considered, whereas dealing with compensable
collisions is straightforward.

By definition, two compensably colliding blocks form a cross, resulting in the starts
and ends of the tunnels forming a well-parenthesized expression. When encountering
a tunnel end, it logically belongs to the tunnel most recently entered and not yet
exited. Therefore, a stack-based approach proves sufficient and easily implemented.
This approach ensures efficient management of offset values, facilitating the accurate
reconstruction of the original Wheeler graph from the tunnelled graph.

Using the backward-step function as outlined in Algorithm 5, we can construct
the reverse of the original graph as follows. Let n be the length of the original graph
G, G̃ be its tunnelled version, s represent an empty set and i denote the position in G

where the character $ occurs. Then, by executing the following commands repeatedly
for n times,

1. Output G̃[i]

2. i, s ←− backward-step(i, s)

we generate G in reverse order.
Figure 3.5 illustrates the initial Wheeler graph G, arrays din and dout for the string

readysteadygo$, and the final tunnelled version of each. The arrows between the bit
arrays signify the reverse walk through the tunnelled BWT, implicitly demonstrating
the functionality of Algorithm 5.

44 CHAPTER 3. IMPLEMENTATION

Algorithm 5: Backward-step function for computing the reversed original
string from a tunneled BWT. Similar algorithm was published in [5].
Data: Succinct representation of a tunneled BWT as computed in algorithm 4

DIN , DOUT and L′, index i of na edge in DOUT and stack s with tunnel
offsets

Result: Index i of the next edge in DOUT and stack s with updated tunnel
offsets

1 Function backward-step(i, s):
2 i←− CL′ [L′[i]] + rankL′(L′[i], i) // follow i-th edge

3 nr ←− rankDIN
(1, i) // determine node rank

4

// check if a tunnel starts and save offset to the uppermost

entry edge

5 if DIN [i] = 0 or DIN [i+ 1] = 0 then
6 o←− i− selectDIN

(1, nr)

7 push o on s

8

9 i←− selectDOUT
(1, nr) // swith to outgoing edges of node nr

10

// check for the end of a tunnel and jump to the right edge

using saved offset

11 if DOUT [i+ 1] = 0 then
12 o←− top of s
13 i←− i+ o

14 pop topmost element of s

15 return {i, s}

Chapter 4

Experimental results

In this chapter, the proposed algorithm’s time and compression performance are ana-
lyzed through experiments. The experiments were conducted using a computer equipped
with an Intel Core i5-1035G1 processor and 16GB of RAM.

To achieve the results, a diverse set of biological sequences, including those of a
pan-genomic nature, were employed as input data. The algorithm was executed on
these inputs to evaluate its runtime and compression efficacy. Subsequently, these
observations were compared with the outcomes obtained from the state-of-the-art de
Bruijn graph edge minimization (dBGEM) algorithm by Baier [4], introduced in the
initial chapter. It is noteworthy that while Baier’s algorithm was coded in C++, our
implementation was coded using the RUST programming language.

The expectation is that the heuristics employed in the proposed algorithm yields
more compressed outcomes, due to its power to tunnel compensable collisions. How-
ever, considerations regarding time complexity arise. The overall time complexity of
the heuristics is denoted as O(Nwmax logN + n), where n is the size of the initial
graph, N represents the number of maximal blocks, and wmax indicates the maximal
width of the blocks. Although N and wmax are theoretically upper-bounded by the
size of the initial graph (or string) n, in practical scenarios, they often exhibit signif-
icantly smaller magnitudes. On the contrary, the time complexity of Baier’s dBGEM
algorithm is O(n log σ), where σ is the size of the alphabet.

To illustrate the compression power of the heuristics, consider the example sequence
easypeasybpeasyb$. This sequence comprises two (maximal) blocks: one of height
three labelled eas and the other of height two labelled peasy. These blocks collide
in a compensable manner, indicating that the optimal compressed version would be
of length 10 (18 − (5 + 6 − 3)). Indeed, this length aligns with the output of our
algorithm, whereas the dBGEM algorithm yields a result of size 12, as it fails to tunnel
compensable collisions.

Further analysis is provided through a comparison of the algorithms on two distinct

45

46 CHAPTER 4. EXPERIMENTAL RESULTS

types of biological data: first, non-pan-genomic, followed by pan-genomic. The data
were sourced from https://www.ncbi.nlm.nih.gov/, a reputable repository in bioin-
formatics. These analyses aim to underscore the full potential of our novel approach.
Some of the files can be found attached to the implementation, in a package named
data.

Table 4.1 provides a comparison of the algorithms applied to biological non-pan-
genomic data, however, two rows highlighted in grey represent non-biological data.
Specifically, the example.txt file contains the sequence easypeasybpeasyb$, while the
repetitive.txt file comprises an artificially generated sequence over the alphabet
{a, c, g, t}, containing numerous compensable collisions. This file serves to show the
potential power of the heuristics, particularly when dealing with highly repetitive data.

The second Table 4.2 offers insights into the algorithm’s performance on pan-
genomic data. As expected, the heuristics demonstrates superior compression rates.
However, in some instances, it requires more time than the dBGEM algorithm, as in-
dicated by the red markings. The repetitiveness of pan-genomic data is noticeable, as
in most cases, the size of the compressed version is at most 38% of the original size.

To examine the effect of increasing the number of sequences in pan-genomic data on
compression and computational time, we conducted additional experiments. Employ-
ing three distinct types of data — coronavirus, yellow fever, and salmonella genomes
— we executed both algorithms across varying numbers of input sequences to observe
their outcomes.

For coronavirus genome data, comprising 10 to 100 sequences, we examined the
compression results, as depicted in Figure 4.1, and watched computational time changes,
shown in Figure 4.2. Notably, the largest gap in compressed output sizes was 37533
characters. Furthermore, Figure 4.2 indicates a linear trend in the time complexity of
the heuristics.

The second two experiments illustrated in Figures 4.3 and 4.4 were conducted sim-
ilarly to the previous ones, only using sequences of yellow fever virus. In this case, the
gap between compressed versions is more significant, and the time complexity of the
heuristics seems non-linear.

Lastly, we performed the analysis using salmonella sequences, as shown in Figure 4.5
and 4.6. One sequence of salmonella consists of approximately 3,000,000 characters,
thus we were able to perform the algorithms on twenty sequences at most. Despite
limitations allowing a maximum of twenty sequences, the heuristics required three hours
for computation, whereas dBGEM was completed within one minute. Nevertheless, the
time complexity of the heuristics appeared linear in this case.

https://www.ncbi.nlm.nih.gov/

47

Input file Initial size Tunneled size Size ratio Time Strategy

example.txt 18
12 0.67 0.1 dBGEM
10 0.56 0.001 heuristics

repetitive.txt 3019
1881 0.62 0.06 dBGEM
1306 0.43 0.005 heuristics

protein.fasta 5109
5076 0.99 0.06 dBGEM
4753 0.99 0.02 heuristics

zinc_fingers.fa 10345
10029 0.97 0.10 dBGEM
8724 0.84 0.03 heuristics

bacteriophage.fasta 34041
33343 0.98 0.10 dBGEM
28965 0.85 0.10 heuristics

S-cereale.fasta 6837
6288 0.92 0.06 dBGEM
5359 0.78 0.02 heuristics

huYchr.fasta 3693
3518 0.95 0.06 dBGEM
2979 0.81 0.01 heuristics

yellow_fever1.fasta 11128
10833 0.97 0.08 dBGEM
9438 0.85 0.03 heuristics

HIV1.txt 28060
9400 0.33 0.08 dBGEM
8026 0.29 0.07 heuristics

C_alpha1.fasta 16841
16348 0.97 0.09 dBGEM
14345 0.85 0.03 heuristics

corona_virus1.fasta 30592
29895 0.98 0.11 dBGEM
26105 0.85 0.09 heuristics

ecoli_plasmid1.fasta 33854
32891 0.97 0.11 dBGEM
28635 0.85 0.08 heuristics

salmonicida1.fasta 20578
19893 0.97 0.10 dBGEM
17318 0.84 0.06 heuristics

Table 4.1: Comparison of the heuristics and the de Bruijn graph edge minimization
(dBGEM) strategy launched on the same input data of non-pan-genomic character.
The sizes are given by lengths of the strings, and the time is given in seconds. The
size ratio is generated as the tunnelled size divided by the initial size. The grey rows
indicate non-biological data.

48 CHAPTER 4. EXPERIMENTAL RESULTS

Input file Initial size # seq
Tunneled

Size ratio Time Strategy
size

corona_virus.fasta 275303 9
58294 0.21 0.21 dBGEM
40668 0.15 0.67 heuristic

prion_protein.fasta 15614 6
5881 0.38 0.10 dBGEM
4622 0.30 0.04 heuristic

drosophila_protein.fasta 23134 9
9600 0.41 0.90 dBGEM
7504 0.32 0.06 heuristic

ecoli_plasmid.fasta 190975 5
114653 0.60 0.30 dBGEM
94965 0.50 0.55 heuristic

HIV.fasta 19706 7
9027 0.46 0.08 dBGEM
6675 0.34 0.05 heuristic

Calpha.fasta 94119 7
42034 0.45 0.15 dBGEM
35263 0.37 0.24 heuristic

G_suppressor.fasta 14048 7
5379 0.38 0.07 dBGEM
4587 0.33 0.04 heuristic

penicilium.fasta 8640 11
3292 0.38 0.06 dBGEM
2208 0.26 0.02 heuristic

zinc_fingers.fasta 22981 5
9305 0.40 0.08 dBGEM
7551 0.33 0.06 heuristic

nematocida.fasta 39134 23
35735 0.91 0.13 dBGEM
30249 0.77 0.10 heuristic

stachybotris.fasta 23348 30
10353 0.44 0.08 dBGEM
7669 0.33 0.05 heuristic

Table 4.2: Comparison of the heuristics and the de Bruijn graph edge minimization
(dBGEM) strategy launched on pan-genomic data. The sizes are given by the lengths
of the strings, and the time is given in seconds. The size ratio is generated as the
tunnelled size divided by the initial size. The column labelled #seq indicates the
number of sequences present in the files. Worse results of the heuristics are depicted
in red.

49

Figure 4.1: Compression rates of the heuristics and dBGEM algorithm on different
numbers of input sequences of coronavirus. The x-axis depicts the number of sequences
used for the input, and the y-axis depicts the length of either the tunnelled or the
original version.

Figure 4.2: Computation time of the heuristics and dBGEM algorithm on different
numbers of input sequences of coronavirus. The x-axis depicts the number of sequences
used for the input, and the y-axis depicts the time in seconds required by the algorithms.

50 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.3: Compression rates of the heuristics and dBGEM algorithm on different
numbers of input sequences of yellow fever virus. The x-axis depicts the number of
sequences used for the input, and the y-axis depicts the length of either the tunnelled
or the original version.

Figure 4.4: Computation time of the heuristics and dBGEM algorithm on different
numbers of input sequences of yellow fever virus. The x-axis depicts the number of
sequences used for the input, and the y-axis depicts the time in seconds required by
the algorithms.

51

Figure 4.5: Compression rates of the heuristics and dBGEM algorithm on different
numbers of input sequences of salmonella. The x-axis depicts the number of sequences
used for the input, and the y-axis depicts the length of either the tunnelled or the
original version.

Figure 4.6: Computation time of the heuristics and dBGEM algorithm on different
numbers of input sequences of salmonella. The x-axis depicts the number of sequences
used for the input, and the y-axis depicts the time in seconds required by the algorithms.

52 CHAPTER 4. EXPERIMENTAL RESULTS

Conclusion

This study introduced a novel algorithm for tunnelling the Burrows-Wheeler Transform,
a procedure widely applicable in bioinformatics and other domains. As illustrated in the
previous chapter, our algorithm consistently surpasses the state-of-the-art method in
terms of compression rates. However, this enhancement is accompanied by an increase
in computational time compared to Baier’s algorithm. Addressing this time complexity
challenge presents an opportunity for future improvement.

One potential approach involves leveraging the prefix-free parsing method discussed
in the first chapter. This preprocessing technique condenses input data into a smaller
representation while retaining some of the repetitive patterns. Consequently, the input
size for tunnelling is often reduced by orders of magnitude, resulting in notable time
savings during computation.

The second strategy entails setting a lower bound on the height of blocks. It’s
worth noting that limiting the width may compromise heuristic accuracy by omitting
too thin inner blocks. However, constraining block height is safe (when the solutions
do not involve horizontal division), as the valuable higher inner block is inherently at
least as tall as the blocks generating the corner collision. By reducing the input size
through this limitation, computation time will be correspondingly improved.

Another idea comprises alternating at least one of the aligned solutions with hori-
zontal division. Horizontal division, if implemented properly, requires only one itera-
tion, as all collisions can be addressed in one round, without the introduction of new
aligned collisions. However, if this solution is paired with the shortening, i.e. reso-
lution of all corner collisions depends on it, one-row overlappings between blocks are
necessary to be computed. This computation is not as straightforward as the compu-
tation of one-column overlappings, as the rows are not represented by intervals. Thus,
we recommend pairing this solution with vertical division, with the vertical division
applied first.

All of these approaches, however, come at the expense of compression efficacy, as
they may exclude valuable information necessary for constructing an optimal block set.

Conversely, enhancing compression rates may be achieved at the cost of increased
computation time. As discussed in the theoretical analysis, various methods can be
applied to address one of the aligned collisions. Opting for the most optimal solu-

53

54 Conclusion

tion for a certain scenario typically requires additional computation time, making the
improvement suitable only for smaller instances where such precision is feasible.

In summary, for a large group of inputs, this approach outperforms the state-of-the-
art algorithm in both time and compression rates. For larger instances, the increase in
computation time should be carefully weighed against the potential benefits, although
the time complexity of the heuristics appears to be close to linear. Nonetheless, employ-
ment of our heuristics is highly recommended, particularly in cases where compression
rates take precedence over time considerations.

Bibliography

[1] Donald Adjeroh, Timothy Bell, and Amar Mukherjee. The Burrows-Wheeler
Transform:: Data Compression, Suffix Arrays, and Pattern Matching. Springer
Science & Business Media, 2008.

[2] Jarno Alanko, Travis Gagie, Gonzalo Navarro, and Louisa Seelbach Benkner. Tun-
neling on wheeler graphs. In 2019 Data Compression Conference (DCC), pages
122–131. IEEE, 2019.

[3] Uwe Baier. On undetected redundancy in the burrows-wheeler transform. arXiv
preprint arXiv:1804.01937, 2018.

[4] Uwe Baier. Bwt-tunneling. https://github.com/waYne1337/BWT-Tunneling.

git, 2020.

[5] Uwe Baier. BWT tunneling. PhD thesis, Universität Ulm, 2021.

[6] Uwe Baier, Thomas Büchler, Enno Ohlebusch, and Pascal Weber. Edge minimiza-
tion in de bruijn graphs. CoRR, abs/1911.00044, 2019.

[7] Uwe Baier and Kadir Dede. Bwt tunnel planning is hard but manageable. In 2019
Data Compression Conference (DCC), pages 142–151. IEEE, 2019.

[8] Christina Boucher, Travis Gagie, Alan Kuhnle, Ben Langmead, Giovanni Manzini,
and Taher Mun. Prefix-free parsing for building big bwts. Algorithms for Molecular
Biology, 14(1):1–15, 2019.

[9] Wheeler Burrows. A block-sorting lossless data compression algorithm. SRS Re-
search Report, 124, 1994.

[10] Diego Díaz-Domínguez and Gonzalo Navarro. Efficient construction of the bwt for
repetitive text using string compression. arXiv preprint arXiv:2204.05969, 2022.

[11] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the
ACM (JACM), 52(4):552–581, 2005.

55

https://github.com/waYne1337/BWT-Tunneling.git
https://github.com/waYne1337/BWT-Tunneling.git

56 BIBLIOGRAPHY

[12] Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A framework
for bwt-based data structures. Theoretical computer science, 698:67–78, 2017.

[13] Daniel Gibney and Sharma V Thankachan. On the hardness and inapproximability
of recognizing wheeler graphs. arXiv preprint arXiv:1902.01960, 2019.

[14] Adrián Goga and Andrej Baláž. Prefix-free parsing for building large tunnelled
wheeler graphs. arXiv preprint arXiv:2206.15097, 2022.

[15] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park.
Linear-time longest-common-prefix computation in suffix arrays and its applica-
tions. In Annual Symposium on Combinatorial Pattern Matching, pages 181–192.
Springer, 2001.

[16] Ge Nong, Sen Zhang, and Wai Hong Chan. Linear suffix array construction by
almost pure induced-sorting. In 2009 data compression conference, pages 193–202.
IEEE, 2009.

Appendix A

The electronic attachment accompanying this work includes the source code and some
of the input files used in the final chapter. The source code is also accessible at
https://gitlab.com/wheeler_graphs/wglib within the src/lib.rs package.

The attachment comprises two folders. The testdata folder covers some of the
input files employed in the previous chapter, while the src folder contains the program
responsible for constructing the BWT, implementing the heuristics for tunnelling the
BWT, functions facilitating the reconstruction of the original text, and various tests.

Following the download, it is essential to verify that all paths are correctly config-
ured.

To execute all tests within the program, simply invoke cargo test. To observe the
results of the heuristics applied to the provided data, modify the input in the lib.rs

file within the test_heuristics function, then execute
cargo test test_heuristics -- --nocapture.

57

https://gitlab.com/wheeler_graphs/wglib

	Introduction
	Preliminaries
	Wheeler Graph
	Tunneling
	The Block choice problem
	Current state of the problem

	Description of the heuristics
	Critical collisions
	Aligned collisions
	Corner collisions
	Statistics
	Selected combination

	Heuristics overhead

	Implementation
	Enumeration of the blocks
	Maximal blocks
	One-column overlappings

	Right-aligned collisions
	Vertical division
	Self-colliding blocks

	Left-aligned collisions
	Tunneling
	Compression of nodes
	Compression of edges

	Reconstruction

	Experimental results
	Conclusion
	Appendix A

