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Abstrakt

Cirkulárny chromatický index grafu G dáva podrobnejšie informácie ako bežný chro-

matický index. Problém určenia cirkulárneho chromatického indexu grafu patrí medzi

NP-úplné problémy. Cirkulárny chromatický index grafu G je najmenšie racionálne číslo

r také, že graf G je r-cirkulárne hranovo ofarbiteľný. V tejto práci sa zameriavame na

špeciálnu triedu grafov –snarky.

V práci navrhneme a implementujeme metódy určujúce cirkulárnu hranovú ofarbiteľ-

nosť grafu G daným racionálny číslom r. Tieto metódy budú využité pri identifiko-

vaní cirkulárneho chromatického indexu z množiny potenciálnych cirkulárnych indexov.

Porovnáme metódy z pohľadu teoretickej časovej zložitosti ako aj experimentálne určeného

času behu algoritmov. Na základe výsledkov vyberieme najlepšiu metódu, ktorá bude

následne použitá pri výpočte cirkulárnych chromatických indexov malých snarkov.

Kľúčové slová: snark, cirkulárny chromatický index, cirkulárna hranová ofarbiteľnosť
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Abstract

The circular chromatic index of a graph G is a refinement of a ordinary chromatic

index of a graph. The problem of determining circular chromatic index of a graph belongs

to class of a NP-complete problems. The circular chromatic index of a graph G is the

smallest rational number r such that G is r-circular edge colorable. In this work we will

focus on determining circular chromatic index of class of graphs – snarks.

We design and implemented methods determining circular edge colorability. Those

methods are then used to compute circular chromatic index of a graph from given potential

indices. We compare those methods based on theoretical time complexity as well as their

running time. Based on the results we choose the most successful one that will be used to

determine circular chromatic indices of small snarks.

Keywords: snark, circular chromatic index, circular edge colorability
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Introduction

The circular chromatic index provides a more refined measure of colorability of graphs

than does the ordinary chromatic index. Determining circular chromatic index of a graph

is a NP-Compete problem. The circular chromatic index of a graph G, denoted as χ′c(G)

is a smallest ratio p/q of positive integers p and q for which there exists a mapping

c : E(G)→ {0, 1, . . . , p− 1} such that q ≤ |c(e)− c(f)| ≤ p− q for edges e, f ∈ E(G) that

are incident with the same vertex.

In this work we are interested in special group of graphs – snarks that are connected

bridgeless cubic graphs with chromatic index four. Unlike for 3-colorable cubic graphs for

snarks the number of colors is proportional to number of edges.

In the first chapter we present brief introduction to problem of determining the circular

chromatic index of a graph. We present some known results regarding computation and

bounds for circular chromatic index. This bounds are later used in algorithms determining

χ′c(G) of a given graph.

Since the circular chromatic index is the smallest rational number r such that given

graph G is r-circular edge colorable the second chapter provides two methods for finding

the smallest number r from a given potential indices such that G is r-circular edge col-

orable. Also we compare those two methods based on the number of inspected potential

indices as well as time complexity.

In the third chapter we introduce methods for determining whether a given graph G

is r-circular colorable for a given rational number r. Then those methods can be used in

algorithms presented in the second chapter for determining circular chromatic index. The

algorithm description and theoretical time complexities are given. Backtrack algorithm

for this problem is described. We explain how we can transform problem of determining

1



INTRODUCTION 2

circular edge colorability into SAT instance. Two approaches of SAT instance versions are

described.

Fourth chapter presents the algorithm that not only determines for a given rational

number r and graph G whether G is r-circular edge colorable but also resolves whether

r = χ′c(G) without inspecting other potential indices. This is practical for the graphs with

circular chromatic index characterized with fraction p/q such that p is small and therefore

less colors are used.

The last fifth chapter is dedicated to results of implemented algorithms. We compare

algorithms based on theoretical time complexities as well as experimental running time.

We present circular chromatic indices that are attained by snarks of order up to 30.

Source code can be found on https://bitbucket.org/kucierka/diploma_code

https://bitbucket.org/kucierka/diploma_code


Chapter 1

A Brief Overview of Circular Coloring

Circular coloring is a refinement of ordinary coloring. In this chapter equivalent for-

mulations of circular coloring and basic observations of circular coloring number will be

presented. Detailed information about circular colorings can be found in [15] and [16]

1.1 Circular Coloring

Let C be a circle of (euclidean) length r. We identify the circle C point by point with

interval [0, r) such that 0 ≡ r. For any x, y ∈ [0, r), the r-circular distance between x and

y is described as

|x, y|r = min{|x− y|, r − |x− y|}.

In other words |x, y|r is a shortest distance of x and y on the circle C. For every

x, y ∈ [0, r), the r-circular interval is defined as follows

[x, y]r =

[x, y] if x ≤ y,

[x, r) ∪ [0, y] if x > y.

Definition 1.1. Suppose G = (V,E) is a graph and C is a circle of (euclidean) length r.

Let c be a mapping, assigning to each vertex x from the vertex set V an open unit length

arc c(x) of C. Moreover if the mapping is satisfying the condition that c(x) ∩ c(y) = ∅

for every edge e = (x, y) ∈ E, we call this mapping a r-circular coloring. A graph G is

3



CHAPTER 1. A BRIEF OVERVIEW OF CIRCULAR COLORING 4

r-circular colorable if there is an r-circular coloring of G. The circular chromatic number

χc(G) of a graph G is defined as

χc(G) = inf{r : G is r-circular colorable.}

Equivalently, the r-circular coloring of a graph G is a mapping f : V → [0, r) such that

1 ≤ |f(x)− f(y)| ≤ r − 1 for every edge (x, y) ∈ E.

We can obtain an interval of length r by cutting the circle C at an arbitrary point.

This interval can be identified point by point with an interval [0, r). We define a mapping

c′ such that for each arc c(x) of circle C, c′(x) is the initial point of the arc c(x). The

arc c(x) is considered going around the circle C in the clockwise direction. Therefore c′ is

a mapping from V to [0, r) such that for every edge (x, y) ∈ E : 1 ≤ |c′(x)− c′(y)| ≤ r−1.

Consequently, the r-circular coloring can be presented as a mapping c′ : V → [0, r) such

that 1 ≤ |c′(x)− c′(y)| ≤ r − 1 for every edge (x, y) ∈ E.

Similarly to the r-circular coloring, the r-interval coloring of a graph G can be defined

as a mapping g, which assigns an open unit length sub-interval g(x) of interval [0, r]

to each vertex from vertex set V such that g(x) ∩ g(y) = ∅ for every edge (x, y) ∈ E.

Then the chromatic number χ(G) of G is the least real number r such that there is an

r-interval coloring of graph G. Also the r-interval coloring can be identified with mapping

f from V to [0, r). This mapping needs to satisfy following condition that for each edge

(x, y)1 ≤ |f(x) − f(y)| ≤ r − 1. Furthermore for each vertex x ∈ V : f(x) ≤ r − 1. So

any r-interval coloring of G corresponds to an r-circular coloring of G. Also let c′ be an

r′-circular coloring from V to [0, r). We denote s = max{c′(x) : x ∈ V }, then c′ is an

(s+ 1)-interval coloring of G. This leads to following result from [15]

Theorem 1.1. For any finite graph G, χ(G)− 1 < χc(G) ≤ χ(G).

In this work we are interested in coloring of edges. Suppose G = (V,E) is a graph. The

line graph of the graph G is denoted as L(G), which has vertex set E(G). Two edges e and

f are adjacent if they are incident with common vertex. The chromatic index χ′(G) of the

graph G is defined as χ′(G) = χ(L(G)). Also circular chromatic index χ′c(G) of graph G

can be defined as χ′c(G) = χc(L(G)). So from the Theorem 1.1 we obtain following result

χ′(G)− 1 < χ′c(G) ≤ χ′(G).
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1.2 Computational Methods

This section presents methods for computation of circular chromatic number. The

methods were developed in the last two decades [15, 16] and are nicely summarized in the

thesis [8].

Tight Cycles

Let G = (V,E) be a graph with an r-circular coloring c. An edge (x, y) is called a

tight edge with regard to c, if |c(x)− c(y)|r = 1.

The infimum in Definition 1.1 is attained for every finite graph G and the circular

chromatic numbers χc(G) are always rational. To prove these statements, it is useful to

define a directed graph Dc(G).

Definition 1.2. Let c be a circular coloring of a graph G. Then directed graph Dc(G) is

defined, such that V (Dc(G)) = V (G). Let x, y be two vertices. There is an edge from x to

y in graph Dc(G), if there is an edge (x, y) ∈ E(G) and terminating point of interval c(x)

is equal to starting point of interval c(y). Intervals c(v) are considered as going around

circle C in the clockwise direction.

Theorem 1.2 ([15]). Suppose G is finite graph and c is r-circular coloring of a graph G.

If Dc(G) is acyclic, then there is an r′-circular coloring c′ of the graph G, such that r′ < r

and Dc′(G) contains a directed cycle.

Proof. Let Dc(G) be acyclic and l is mapping from vertex set V to N. A mapping l assigns

each vertex v a level, which is a length of the longest path, which ends at vertex v. Since

Dc(G) is acyclic, such a path exists. We denote x0 vertex, which has a maximum level.

Then the interval c(x0) can be shifted by a small distance in clockwise direction, such

that disjoint intervals are assigned to adjacent vertices. We obtained r1-circular coloring

c1 of graph G. In directed graph Dc1(G) vertex x0 is isolated vertex. By repeating this

process we can obtain circular coloring c′′ of graph G, such that directed graph Dc′′(G)

has only isolated vertices. Now we can extend each interval c′′(x) to a longer interval of

length s > 1 and adjacent vertices are still assigned disjoint intervals. Now circle C can
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be shrunk to a circle C ′ of length r/s. We obtained an r/s-circular coloring of graph G.

This process can be repeated to obtain an r′-circular coloring c′ of the graph G, such that

r′ < r and Dc′ contains a directed (tight) cycle.

Let c be an r-circular coloring of G, such that (x0x1x2 . . . xp−1x0) is a directed cycle

in Dc(G). From the definition, the union of the intervals c(x0), c(x1), . . . , c(xp−1) winds

around the circle C exactly q times for some integer q. Since the length of the circle C is

r, the sum of the lengths of these intervals is qr. Also each interval c(xi) has a length 1,

thus the sum of lengths of intervals c(xi) is equal to an integer p. Therefore the length of

the circle C is r = p/q, for some integers p and q.

Theorem 1.3 ([15]). If χc(G) = p
q
, then G has a cycle C of length kp, for some integer

k. Moreover G has an independent set of size kq, which is contained in C.

From Theorem 1.2, if G has an r-circular coloring c, G has r′-circular coloring, such

that r′ ≤ r and r′ = p/q for some integers p and q. Moreover p is at most the circumference

(the length of a longest cycle) of G and q is at most the independence number (the size of

a maximum independent set) of G.

Circumference and independence number of graph G is at most V (G). There is only a

finite number of rational numbers p/q, such that p and q are bounded. Thus the infimum

is always attained. To determine circular chromatic number, it has to be checked, if G is

r-colorable for those rational numbers. Following theorem can be obtained from theorem

1.2.

Theorem 1.4 ([15]). If G is r-circular colorable and for every r-circular coloring c, Dc(G)

contains directed (tight) cycle, then χc(G) = r. Therefore a graph G has a χc(G) = r,

if and only if G is r-circular colorable and for every r-circular coloring c of G, Dc(G)

contains a directed cycle.

Although there is only a finite set of possible circular chromatic numbers for a given

graph, checking each potential candidate may be a time consuming computation. This

problem is NP-hard.

Suppose r1 < r2 < . . . < rn are all potential values for χc(G) and for every ri, there

is pi, qi, such that ri = pi
qi
. If graph G is r1-colorable, χc(G) = r1 and from theorem 1.4,
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each r1-coloring contains tight cycle. To find coloring, one can precolor cycle as tight

cycle and try to extend this coloring. If p1 is big, many vertices were precolored. If no

r1-coloring is found, χc(G) ≥ r2. Now the same process can be repeated with r2 in place

of r1. Continuing with this procedure, it can be eventually found ri ≤ rn, such that there

is ri-coloring and χc(G) = ri. More about this method is written in section 2.

Tight Colorings

Definition 1.1 of circular chromatic number from paper [15] is equivalent to original

definition of Vince, which was also mentioned in paper [15].

Definition 1.3. For two integers 1 ≤ q ≤ p, a (p, q)-coloring of a graph G is a coloring c

of the vertices of G with colors {0, 1, . . . , p− 1}, such that

(x, y) ∈ E(G)⇒ p ≤ |c(x)− c(y)| ≤ p− q.

The circular chromatic number of G, denoted by χc(G), is defined as

χc(G) = inf{k/d : there is a (k, d)-coloring of G.}

For any integer p and (p, 1)-coloring c of graph G, c is an ordinary p-coloring of G.

Let c be a (p, q)-coloring and mapping c′ : V (G) → [0, p/q) defined as c′(x) = c(x)/q.

Then condition from Definition 1.3 can be formulated as

(x, y) ∈ E(G)⇒ 1 ≤ |c(x)/q − c(y)/q| ≤ p/q − 1.

So (p, q)-coloring corresponds to a p/q-circular coloring of a graph G. Similarly if p/q

is c′-circular coloring of a graph and mapping c defined as c(x) = bc′(x)qc, then c is a

(p, q)-coloring of a graph G. Therefore Vince definition corresponds to Definition 1.1 and

both definitions are equivalent.

If graph has an r-circular coloring c, which has no tight cycle, we will call it loose

coloring. If a graph has an r-circular coloring c, which has tight cycle, we will call this

tight coloring. According to the Theorem 1.2, there is an r′-coloring of graph G, such

that r′ < r. This method starts with acyclic (p, q)-coloring, where p is small, so it can be
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computed exhaustively. That coloring can be improved and iteratively gain actual circular

chromatic number. The following theorem describes an algorithm for improving colorings

of a graph G.

Theorem 1.5 ([15]). Let c be a (p, q)-coloring of a graph G such that every directed walk

in Dc(G) contains fewer than n vertices v with p − q ≤ c(v) ≤ p − 1. Then G has an

(np− 1, nq)-coloring of graph G.

Proof. For each x ∈ V (G) let γ(x) be the maximum number of vertices y 6= x on a directed

path in Dc(G) ending at x with p − q ≤ c(y) ≤ p − 1. Let c′(x) = nc(x) + γ(x). c′ is an

(np− 1, nq)-coloring of G.

From Definition 1.3 for each vertex x ∈ V (G) : 0 ≤ c(x) ≤ p − 1 and from definition

of γ(x), 0 ≤ γ(x) ≤ n− 1. As a result 0 ≤ c′(x) ≤ pn− 2 for every vertex x.

Now an edge (x, y) ∈ E(G) is considered. If xy is not a tight edge, then q < |c(x) −

c(y)| < p− q. Since |γ(x)−γ(y)| ≤ n−1, nq ≤ |c′(x)− c′(y)| ≤ np−1−nq as required. If

xy is a tight edge, −→xy ∈ E(Dc(G)). Since every directed path ending at x can be extended

to a path ending at y, then γ(y) ≥ γ(x). Now there are two cases:

1) c(x) ≤ p− q − 1 – c(y) = c(x) + q and since 0 ≤ γ(y)− γ(x) ≤ n− 1 and p
q
> 2, then

nq ≤ c′(y)− c′(x) ≤ nq + n− 1 ≤ np− 1− nq.

2) c(x) ≥ p− q – c(y) = c(x) + q− p and γ(y) ≥ γ(x) + 1. Therefore n(p− q)− (n− 1) ≤

c′(x)− c′(y) = n(p− q) + γ(x)− γ(y) ≤ n(p− q)− 1. Now since p
q
> 2, p−1

q
≥ 2. Thus

n(p− q)− (n− 1) ≥ nq.

So c′ is an (np− 1, nq)-coloring of G.

Applying this algorithm to an loose (p, q)-coloring c of graph G, yields the improved

coloring c′ is an (np − 1, nq)-coloring for some integer n. If c′ is loose, the algorithm can

be applied again to improve c′-coloring. This results in sequence ci of (pi, qi)-colorings of

G. Typically, after some iteration of the algorithm, pi becomes larger than |V (G)|, which

usually implies, that tight cycle can not exist. According to the Theorem 1.4 for none of

the pi/qi : χc(G) = pi/qi. Now let k/d be the largest valid candidate for χc(G) (according

to Theorem 1.3). Then χc(G) ≤ k/d. Now for each v ∈ V (G) let ψi(v) be the rounding
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of k
pi
ci(v) to the nearest integer. If ψi is a proper (k, d)-coloring of G then it is equal to

χc(G). Otherwise algorithm from theorem 1.5 is applied and this process is repeated with

better approximation.

Greedy Circular Coloring

Greedy coloring is the simplest graph coloring algorithm. It requires a permutation of

the vertices of graph. Now every vertex is sequentially colored as follows. Current vertex

is assigned the smallest available integer. If we have permutation x0, x1, . . . , xn−1, the

algorithm colors vertex x0 as 0 and for every i > 0:

c(xi) = min(N\{c(xj) : j < i and xjxi ∈ E(G)})

This greedy algorithm doesn’t always yield an optimal solution, which can be seen in

the figure 1.1. Although the graph is bipartite, the algorithm uses three colors.

x0 x1 x2

y0 y1 y2

0 1 2

0 1 2

Figure 1.1: Suppose following ordering – x0, y0, x1, y1, x2, y2 for a graph

on the left. Algorithm yields coloring on the right.

But there always exists permutation of vertices, for which the algorithm uses exactly

χ(G) colors. Suppose any χ(G)-coloring c of G : |V (G| = n with the colors 0, 1, . . . , χ(G)−

1, such a permutation is x0, x1, . . . , xn−1, such that:

c(x0) ≤ c(x1) ≤ · · · ≤ c(xn−1)

In order to compute χ(G), we need to find the permutation of vertices, for which

the greedy algorithm uses minimal number of colors. This minimal number of colors is

chromatic number. For this are used randomized search methods or metaheuristics.
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1.3 Snarks

In this work, we are interested in snarks, that is connected bridgeless cubic graphs with

chromatic index four.

By Vizing’s theorem, chromatic index of cubic graphs is either three or four. In order

to avoid trivial cases, snarks are restricted to be cyclically 4-edge connected with girth ≥ 5.

Girth is the length of a shortest cycle. A graph is cyclically k-edge connected, if at least

k-edges must be removed to disconnect it into two components, that each contains a cycle.

Table 1.1 contains numbers of snarks and general connected cubic graphs with given

order. Underlined can be found in databases on websites [4] and [2]

Vertices Snarks Connected cubic graphs

4 0 1

6 0 2

8 0 5

10 1 19

12 0 85

14 0 509

16 0 4060

18 2 41301

20 6 510489

22 20 7319447

24 38 117940535

26 280 2094480864

28 2900 40497138011

30 28399 845480228069

32 293059 18941522184590

34 3833587 453090162062723

36 60167732 11523392072541432

Table 1.1: Table of snarks vs. general connected cubic graphs
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Lower and Upper Bounds on Circular Chromatic Index of Snarks

The problem of determining circular chromatic index of a specific graph is NP-hard

[15]. In order to determine the circular chromatic index of a given graph G, we need to

identify bounds to all possible values that can be the circular chromatic index of G. To

find an upper bound for χ′c(G) means to find a circular edge coloring of G. To find a lower

bound, it is necessary to prove that there is no such r′ < r, such that there is r′-edge

coloring.

Following Propositions concerning lower bounds were given in article [12]. We will use

them to restrict number of potential indices for circular chromatic index.

Definition 1.4. Suppose c is a (p, q)-edge coloring. A set of r consecutive colors will be

called a segment of length r.

For example the set {p− 1, p, 1, 2} is a segment of length 4. Segment colors m edges if

there are exactly m edges that have colors from segment. The following propositions with

proofs can be found in [12].

Proposition 1.6. Let G be a cubic graph with 2k vertices, chromatic index 4 and a

(3v + u, v)-edge-coloring. Let t and m be positive integers. If any segment of length tu

colors at least m edges, then
u

v
≥ 3m

3tk −m
.

Then χ′c(G) > 3 +m/tk.

Next is a lower bound for snarks with girth at least five.

Proposition 1.7. Let G be a snark on 2k vertices with girth at least five. Then

χ′c(G) > 3 +
2.5

k
.

According to paper [6], the following proposition holds for cubic graphs.

Proposition 1.8. There is no graph G with 11
3
< χ′c(G) < 4.
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Graph Database

Graphs in database [2] and [4] are stored in graph6 format. The following definitions

are taken from McKay’s website [13].

There is one object per line except optional header. All bytes are values between 63

and 126 (which are all printable ASCII characters). A file of objects is a text file.

First a representation of a bit vector needs to be described. For better comprehension

Example 1.1 is given.

Example 1.1. A bit vector x (1000101100011100) of length k can be represented as fol-

lows.

a) Pad on the right with 0 to make the length divisible by 6.

x = 100010110001110000

b) Split vector into groups of 6 bits.

x = 100010 110001 110000

c) Each group is bigendian binary number. Add 63 to each group.

x = 97 112 111

These values are stored one per byte. Number of bytes is dk
6
e. R(x) denotes this

representation as a string of bytes of a bit vector x.

Next we will give a representation of small nonnegative integers. The order of graph

will be represented by this. Example 1.2 shows how representation of small nonnegative

integer is created.

Example 1.2. Let n be an integer in between 0 and 236 − 1 (68719476735). There are 3

cases, which may arise.

a) 0 ≤ n ≤ 62 – N(n) is a single byte n+ 63

b) 63 ≤ n ≤ 258047 – N(n) is a four bytes 126 R(x), where x is the bigendian 18-bit

binary form of n.
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c) 258048 ≥ n ≥ 68719476735 – N(n) is a eight bytes 126 126 R(x), where x is the

bigendian 36-bit form of n.

Examples:

a) N(30) = 93

b) N(12345) = N(000011 000000 111001) = 126 66 63 120

c) N(460175067) = N(000000 011011 011011 011011 011011) = 126 126 63 90 90 90 90 90

Now we can describe graph6 format of graphs. Simple undirected graphs of order

between 0 and 68719476735 can be represented in graph6 format. There can be optional

header (»graph6«) in a file with file extension – .g6. We give Example 1.3 for better

comprehension.

Example 1.3. Suppose G is of order n. The upper triangle of adjacency matrix of graph

G is represented as a bit vector x of length n(n−1)
2

. The following ordering of edges is used

– (0, 1), (0, 2), (1, 2), (0, 3), (1, 3), (2, 3), . . . , (n− 1, n).

Then the graph is represented as N(n) R(x).

Suppose G has a 5 vertices with edges: (0, 2), (0, 4), (1, 3) and (3, 4). Bit vector repre-

sentation of upper triangle of adjacency matrix of G is x = 0 10 010 1001.

Then N(n) is 68 and R(x) = R(010010 100100) = 81 99. So the representation of

graph G in graph6 format is 68 81 99 = DQc.



Chapter 2

A Circular Chromatic Index

The main goal of this work is a computation of the circular chromatic index of a given

snark. In this chapter we will show fundamentals of several approaches that we used for

finding the circular chromatic index.

2.1 Motivation

Determining if χc(G) ≤ r for any r ≥ 2 is NP-Complete. As mentioned in [16]

it is a consequence of the fact proved in [9] that if H is non-bipartite, then it is NP-

complete to decide if an arbitrary Graph G admits a homomorphism to H. As a result a

computation of the circular chromatic index χ′c(G) of a given graph G is also NP-complete

as χ′c(G) = χc(L(G)).

An exhaustive search for finding circular chromatic index is not sufficient for graphs

of modest size. Exhaustive search examines all possible color assignments to edges to find

valid edge coloring. Therefore for (p, q)-coloring it means to check pm edge colorings, where

p is the number of colors and m is the number of edges. In our case for a snark G of order

n, number of edges m = 3n/2. As mentioned in section 1.2 for circular chromatic number

of a graph G, integers p and q are bounded by |V (G)|. In case of circular chromatic index,

integers p and q for G are bounded by |E(G)|. This means that unlike for 3-colorable

graphs, for snarks number of colors is proportional to its size. As consequence guesstimate

is mm edge colorings.

14



CHAPTER 2. A CIRCULAR CHROMATIC INDEX 15

To prove that χ′c(G) = r, for a given graph G, we need to show that G is r-circular

edge colorable and for all r′ < r graph G is not r′-circular edge colorable. We will describe

determining index in the following section, regardless of method used for deciding whether

G is r-circular edge colorable for given rational number r.

2.2 Determining circular chromatic index from poten-

tial indices

Suppose we have method for deciding whether graph G is r-circular edge colorable for

given rational number r. Let S be the set of potential indices and s its size. For given

graph G, we would like to decide which rational number r from given potential indices is

circular chromatic index of G. In other words we need to find minimal rational number r

such that G is r-circular edge colorable.

It is possible to do this by ordering potential indices by size such that we obtain

sequence r0 < r1 < . . . < rs−1 of s potential indices. Now the first rational number r, from

this sequence, for which is proved that G is r-circular edge colorable, is circular chromatic

index. As no smaller number r′ from sequence does not exists that G is r′-circular edge

colorable, r is the smallest such number and the search can be terminated with result r.

This encounters problem resulting from the fact that in this ordering we try fractions

that have bigger numerators first. It means that we try colorings that uses more colors.

And as with increasing number of colors, computation, whether graph is circular edge

colorable for a given coloring, is becoming more demanding. Thus it is desirable to avoid

checking as many fractions with high numerators as possible.

Consider following ordering of potential indices

r0, r1, . . . , rs−1 ri =
pi
qi
∧ ∀i, j i < j : pi ≤ pj.

This is ordering by size of numerator. In this ordering we try potential indices with

smaller numerators first, therefore colorings with smaller number of colors. To this or-

dering we can apply secondary sorting either by denominator or fraction. In figure 2.1 is

comparison of fractions for two orderings.
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Figure 2.1: Ordering of potential indices for graph of order 24

This ordering is used for determining circular chromatic index as can be seen in algo-

rithm 1.

Algorithm 1 Determining index
1: Set lower, upper bound to 3 and 4 respectively

2: while Next potential index exists do

3: Choose next potential index r that is in lower and upper bound

4: Determine whether G is circular edge r-colorable

5: if G is circular edge r-colorable then set upper bound to r

6: if G is not circular edge r-colorable then set lower bound to r

7: Circular chromatic index χ′c(G) is an upper bound.

Comparison of potential indices ordering

In this subsection we will compare both orderings given in section 2.2. These orderings

will be compared based on how many potential indices need to be examined whether graph

G is colorable by this potential index.

First we will determine how many indices are taken to consideration for an arbitrary

snark of order n with m = 3n/2 edges. Following expression describes number of potential
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indices sm from range [3, 4] with bounded numerator and denominator by m.

sm =
m∑
i=3

b i
3
c∑

j=d i
4
e

1 =
m∑
i=3

(b i
3
c − d i

4
e+ 1) = (m− 2) +

m∑
i=3

b i
3
c −

m∑
i=3

d i
4
e =

= (m− 2) +

(
3

(
bm

3
c − 1

) (
bm

3
c
)

2
+ (m mod 3 + 1) bm

3
c

)
−

−

(
4

(
bm

4
c
(
bm

4
c+ 1

)
2

− 1

)
+ 2 + (m mod 4)

(
bm

4
c+ 1

))
(2.1)

For better intelligibility we assign values to a, b, c and d as follows.

a = bm
3
c

b = m mod 3 + 1

c = bm
4
c

d = m mod 4

Now we can substitute these into equation 2.1.

sm = (m− 2) +

(
3

(a− 1) a

2
+ ab

)
−
(

4

(
c (c+ 1)

2
− 1

)
+ 2 + d (c+ 1)

)
=

= (m− 2) +

(
3a2 − 3a

2
+ ab

)
−
(

4
c2 + c− 2

2
+ 2 + cd+ d

)
=

=

(
2m− 4 + 3a2 − 3a+ 2ab

2

)
−
(
2c2 + 2c− 4 + 2 + cd+ d

)
=

=
1

2

(
2m− 4 + 3a2 + a (2b− 3)

)
−
(
2c2 + c (d+ 2)− 2 + d

)
(2.2)

With back substitution we will get resulting equation for number of potential indices.

sm =
1

2

(
2m− 4 + 3bm

3
c2 + bm

3
c (2 (m mod 3 + 1)− 3)

)
−

−
(

2bm
4
c2 + bm

4
c ((m mod 4) + 2)− 2 + (m mod 4)

)
It can be seen that number of potential indices is in O(m2). As this number also

includes fractions that are not reduced fractions, we need to look at the number of potential
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indices s′m that are represented by reduced fractions. We will show that the number of

reduced fractions are also in O(m2).

s′m =

∣∣∣∣{pq | p, q ∈ N p, q ≤ m ∧ 3 ≤ p

q
≤ 4 ∧ gcd(p, q) = 1

}∣∣∣∣
In other words, we need to determine how many pairs of coprime numbers (p, q) are

there such that p, q ≤ m and 3 ≤ p/q ≤ 4.

Euler’s totient function φ determines the number of positive integers up to given integer

n that are relatively prime to the n. For example φ(15) = 8. Coprime numbers to 15 that

are less than 15 are {1, 2, 4, 7, 8, 11, 13, 14}. Sometimes coprime numbers to some integer

n that are less than n are referred to as totatives of n.

φ(n) not only determines the number of coprime integers up to n but also number of

positive coprime integers to n from interval [kn + 1, (k + 1)n] for non negative integer k.

As we can add kn to its totatives and we will get φ(n) coprime integers to n, such that

they are from interval [kn+ 1, (k + 1)n]. Therefore the number of reduced fractions from

interval [3, 4] with denominator q is equal to the number of totatives of q. As a result

1 +

dm
3
e−1∑

i=1

φ(i) ≥ s′m ≥ 1 +

bm
4
c∑

i=1

φ(i) (2.3)

In order to prove that s′m is in Ω(m2) we will show that lower bound for s′m from

equation 2.3 is also in Ω(m2).

Φ(n) = 1 +
n∑
i=1

φ(i) (2.4)

The asymptotic behaviour Φ(n) can be expressed as follows [14]:

Φ(n) ∼ 3n2

π2
(2.5)

From equations 2.3 and 2.5 we will get following result

s′m ≥ 1 +

bm
4
c∑

i=1

φ(i) = Φ(bm
4
c) ∼

3bm
4
c2

π2
(2.6)
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Since sm ≥ s′m and both sm and lower bound for s′m are in Ω(m2), the number of

reduced fractions s′m is in Θ(m2). There are number of both all fractions and reduced

fraction in the table 2.1.

n m # fractions # reduced fractions

10 15 14 7

18 27 39 21

20 30 47 24

22 33 56 29

24 36 66 34

26 39 76 40

28 42 87 47

30 45 99 54

Table 2.1: Potential indices for graphs of order n with m edges

If potential indices are ordered by size in the worst case all reduced fractions need to

be inspected. As the number of potential indices that are represented by reduced fractions

is in Ω(m2), the number of inspected potential indices is in Ω(m2).

In the second case where potential indices are ordered by size of the numerator, the

number of inspected potential indices is in O(m). As the numerator is being increased the

interval [3, 4] is being split into more subintervals. This can lead to sequence of inspected

fractions such that after each fraction smaller sub interval is cut off. There exists sequence

of s fractions r0 = p0/q0, r1 = p1/q1, . . . , rs−1 = ps−1/qs−1 such that

p0 ≤ p1 ≤ . . . ≤ ps−1 ∧ r0 > r1 > . . . > rs−1 ∧ r0 − r1 > r1 − r2 > . . . > rs−2 − rs−1.

To maximize the length of this sequence we need to make consecutive fractions differ-

ences to be as small as possible. This means that as the algorithm 1 inspects each of this

indices the smaller and smaller part of the interval is cut off. Suppose fraction a/b. The

next fraction, that is in interval [3, 4] that is smaller than a/b is (a+ 3)/(b+ 1). Then for
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consecutive fractions the difference is

a

b
− a+ 3

b+ 1
=
a(b+ 1)− b(a+ 3)

b(b+ 1)
=

a− 3b

b(b+ 1)
(2.7)

Equation 2.7 attains minimal positive value when a = 3b+1. As a consequence we can

define i-th fraction of a sequence as ri = (3i+ 4)/(i+ 1). Figures 2.2 shows a sequence of

fractions that lead to worst case of algorithm 1. i-th fraction of a sequence shrinks previous

interval to its i/(i + 1) of previous interval length. Length of a sequence is bm/3c − 1,

which is in O(m).

4/1 7/2 10/3 13/4 16/5 19/6 22/7 25/8 28/9 31/10 34/11 37/12 40/13 43/14
3.0

3.2

3.4

3.6

3.8

4.0

4.2
Fractions sequence

Figure 2.2: Sequence of potential indices

Based on the number of potential indices, that need to be inspected in order to deter-

mine circular chromatic index of a given graph, ordering of potential indices by numerator

appears to be better than the ordering by fraction size. However in this analysis the run-

ning time of a method determining whether a given graph is circular edge colorable for a

given fraction is the same for an arbitrary fraction.

We are going to analyze those orderings based on the running time of a method for
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determining circular colorability of a given graph. Suppose a method that for a given

graph with m edges and fraction p/q runs in a O(pm) time. We added binary search

and binary search for finding circular chromatic index from potential indices with optimal

medians. For a given order of graph we determine the optimal ordering of potential indices

by dynamic programming. Graph describing time complexity of different algorithms can

be seen in the figure 2.3. Results show that in the worst case algorithm which uses ordering

of potential indices by size has the worst time complexity. Also ordinary binary search

seems to be worse than the binary search with optimal medians and algorithm 1. The last

two algorithms seems to have equal time complexity. Therefore we chose to use algorithm

1 to determine the circular chromatic index of a given graph.
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Figure 2.3: Time complexity of determining circular colorability



Chapter 3

Determining graph r-circular edge

colorability

We showed that if there is a method for determining whether graph G is r-circular

colorable, we can compute circular chromatic index χ′c(G) of graph G. In this chapter we

discuss few methods which decides r-circular colorability of a given graph.

3.1 Backtrack

The main idea for a backtrack algorithm is that for a particular edge the algorithm

tries only colors that are not covered by its neighbours. In this section we will give detailed

information about our backtrack algorithm.

Algorithm description

The input of the algorithm is a graph G and rational number r. The rational number

r can be represented as a reduced fraction p/q. Algorithm uses p colors (0, 1, . . . , p− 1) to

color edges. Two colors ce and cf can be assigned to edge neighbours e and f respectively,

if and only if following the condition is met

q ≤ |ce − cf | ≤ p− q.

Our algorithm is a recursive algorithm, which depth represents how many edges have

22
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been already colored. Each edge stores an information about how many neighbours of the

edge covers particular color. Feasible colors are those colors, that are covered by none

of the edge’s neighbours. These colors can be assigned to the edge. Before recursion we

determine ordering of the edges, which they will be colored in. In each step we will choose

edge that has currently the biggest number of colored neighbours.

In one step algorithm tries to assign one of the possible colors to a current edge and

then moves to the next edge. If one of the colors c is assigned to a particular edge, all

neighbours need to update color coverage for each color c′ that does not meet the condition

q ≤ |c− c′| ≤ p− q. For those colors the coverage is increased by 1.

In case of a color change of the current edge, it is necessary to cope with previous color

coverages first. All neighbours of the current edge need to decrease a coverage for each

color that is influenced by previous color of the current edge. Now the current edge is not

colored and new color can be assigned to it.

In case the recursion is in a depth equal to the number of edges, we found a correct

(p, q)-coloring and graph G is r-circular edge colorable. If the recursion never reaches such

depth, it means that given graph G is not r-circular edge colorable.

Algorithm complexity

In the worst case G is not r-circular edge colorable and in order to prove that we need

to inspect all possible colorings. In the previous subsection we constructed ordering of

edges, that they are colored in. Now for this ordering we are going to show how many

colors are tried at most for each edge.

Given graph G is connected cubic graph therefore each edge has 4 edge neighbours.

For each edge the number of colored edge neighbours can be from 0 to 4 as can be seen in

the figure 3.1.

As we are dealing with connected graphs only first edge has no colored edge neighbours

at the time when it is chosen to be next edge in the ordering. All the other edges have at

least 1 colored neighbour. Since girth of input graphs is at least 5, first three edges are

incident with the same vertex.
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e e e
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Figure 3.1: For edge e number of colored edge neighbours

• For the first edge we need to try all p colors as none of the edge neighbours is colored

and therefore the number of feasible colors is equal to p.

• The second edge of ordering has one colored neighbour. As a result 2q− 1 colors are

covered by this edge neighbour. Therefore the number of feasible colors for second

edge is exactly p− 2q + 1 colors.

• Third edge has 2 colored edge neighbours. The first colored edge covers 2q−1 colors.

In the worst case the second edge covers only q colors that are not covered by the

first edge. Therefore the number of feasible colors for the third edge is at most

p− 3q + 1 colors.

Number of possible colors for an edge is proportional to number of colored neighbours.

In the worst case scenario this pattern is repeated through whole ordering. A part of such

ordering can be seen in the figure 3.2. We denote this ordering O.

Suppose arbitrary ordering o of edges (e0e1 . . . em−1). Let Lo = (l0l1 . . . lm−1) be the

sequence such that li is the number of colored edge neighbours of the edge ei at the time

that ei was chosen to the ordering.

For ordering O approximate sequence L′O = (0, 1, 2, 1, 2, . . . , 1, 2). Approximate se-
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Figure 3.2: Edge ordering

quence L′O is worse than real sequence LO. If edge e has k colored neighbours and edge

f has k + 1 colored neighbours then e has q more possible colors than f . Let a, b, c and

d be the number of 1s, 2s, 3s and 4s in sequence L. Suppose A is the sum of the number

of potential colors for each edge when we consider all colors for each edge. Suppose B

is the sum of number of potential colors for each edge considering ordering and colored

neighbours. Then the equation 3.1 is a difference between A and B.

s =a(2q − 1) + b(3q − 1) + c(4q − 1) + d(5q − 1) =

=2aq − a+ 3bq − b+ 4cq − c+ 5dq − d =

=q((a+ b+ c+ d) + (a+ 2b+ 3c+ 4d))− (a+ b+ c+ d) =

=(q − 1)(a+ b+ c+ d) + q(a+ 2b+ 3c+ 4d)

(3.1)

The bigger the difference A − B is the less colors are tried. For a given number of

edges (a + b + c + d) is a constant. On the other hand (a + 2b + 3c + 4d) is the sum of

members of the sequence L. It can be seen from the equation 3.1 that the difference A−B

depends on the sum of members of the sequence L. This means that the smaller the sum

of members of the sequence L the more colors are tried.

Now we need to show that sum of the L′O is the smallest possible. Sequence L′O contains

only 1s and 2s beside one 0. Sequence L′0 has the biggest number of 1s from all possible

sequences. If ordering is constructed as described, after each 1 follows at least a number

2. Suppose there is a edge e that has 1 colored edge neighbour. Then there is a vertex v

incident with edge e and vertex v has exactly 1 edge colored. After the edge e is colored,

there is third edge incident with v and now it has 2 colored edge neighbours. Which
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means that this edge is better candidate than any other edge that has only one colored

neighbour.

As a result we have one edge that has p potential colors, (m− 1)/2 edges that have at

most p−2q+1 potential colors and (m−1)/2 edges that have at most p−3q+1 potential

colors. Since we consider only indices from interval [3, 4] the following condition is met

p− 3q + 1 <= q <=
p

3
∧ p− 2q + 1 ≤ 2q ≤ 2p

3

p

q
/∈ {3, 4}.

This results in total complexity of

p((p− 2q + 1)(p− 3q + 1))
m−1

2 ≤ p

(
2p

3

p

3

)m−1
2

∈ O

(√2

3

)m−1

pm


Algorithm improvements

Theorem 3.1. Suppose G is a graph, r = p/q is rational number and O = (e0e1 . . . em−1)

is the ordering of the edges of G. Let Mc be the set of all correct r-circular edge colorings

of G. Let R be a equivalence relation on Mc and c1, c2 ∈Mc then c1Rc2 ⇔ c1(e0) = c2(e0).

Let Mc,i where i ∈ [0, . . .], p − 1 be a decomposition of Mc into equivalence classes such

that coloring c ∈Mc,i ⇔ c(e0) = i. Then ∀i, j ∈ [0, . . . , p− 1]∃fi,j : Mc,i →Mc,j, such that

fi,j is a bijection.

Proof. Suppose Mc,i and Mc,j are two equivalence classes. We will find bijection fi,j. Let

ki,j = (j − i) mod p. Then fi,j is defined as follows

fi,j(c) = c′ ⇔ c′(e) = (c(e) + ki,j) mod p.

To prove that fi,j is a bijection, we need to show that fi,j is both an injective and a

surjective function.

Mapping fi,j is injective. Let c, c′ ∈Mc,i then

fi,j(c) = fi,j(c
′)⇒ ∀e ∈ E(G)fi,j(c)(e) = fi,j(c

′)(e)⇒

⇒ ∀e ∈ E(G)(c(e) + ki,j) mod p = (c′(e) + ki,j) mod p⇒

⇒ ∀e ∈ E(G)c(e) = c′(e) => c = c′
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Mapping fi,j is surjective. We need to show that ∀c′ ∈ Mc,j∃c ∈ Mc,i : fi,j(c) = c′.

We will prove this by contradiction. Suppose there is coloring c′ ∈ Mc,j such that 6 ∃c ∈

Mc,i : fi,j(c) = c′. Let c1 be the coloring such that ∀e ∈ E(G) c1(e) = (c′(e)− ki,j) mod p.

Moreover c1(e0) = (c′(e0) − ki,j) mod p = (j − ki,j) mod p = i and therefore c1 ∈ Mc,i.

But fi,j(c1) = c′ as

∀e ∈ E(G) fi,j(c1)(e) =(c1(e) + ki,j) mod p =

=((c′(e)− ki,j) mod p+ ki,j) mod p =

=(c′(e)− ki,j + ki,j) mod p = c′(e)

This is a contradiction with a proposition that such a coloring does not exists.

As a result of Theorem 3.1 in order to determine if a given Graph G is r-circular edge

colorable, we need to inspect all correct colorings from only one equivalence class. This

means that we can precolor one edge with one of the colors. Without loss of generality it

can be the edge e0.

We can go even further. As we showed for the second edge e1 in the ordering 0, there

is a p− 2q + 1 potential colors. But we need to inspect only d(p− 2q + 1)/2e.

Similarly as in Theorem 3.1 let R0 be a equivalence relation on Mc,0, such that for

c1, c2 ∈ Mc,0 : c1R0c2 ⇔ c1(e1) = c1(e1). Then Mc,0,i where i ∈ [q, . . . , p − q] is a

decomposition of Mc,0 into equivalence classes such that coloring c ∈ Mc,0,i ⇔ c(e1) = i.

Colors x and (−x mod p) are the same, which means that we only need to inspect colorings

from one equivalence class from pair of the classes Mc,0,x and Mc,0,−x mod p.

Now as a result we have one edge that is precolored, one edge that has d(p−2q+1)/2e

potential colors, ((m− 1)/2)− 1 edges that have at most p− 2q + 1 potential colors and

(m−1)/2 edges that have at most p−3q+1 potential colors. This gives as total complexity

t =dp− 2q + 1

2
e(p− 3q + 1)((p− 2q + 1)(p− 3q + 1))

m−1
2
−1 ≤

≤p
3

p

3

(√
(2)

3
p

)2(m−1
2
−1)

∈ O
(√

(2)m−3
(p

3

)m−1)



CHAPTER 3. DETERMINING GRAPH R-CIRCULAR EDGE COLORABILITY 28

3.2 SAT solvers

An another approach that we tried was that we transformed our problem to SAT

instance and let SAT solvers to decide whether a given graph is r-circular edge colorable

for given rational number r. In this section we will describe details of this process.

Satisfiability problem (SAT)

The classic satisfiability problem is to determine whether there exists boolean assign-

ment to the variables x1, x2, . . . , xn, of a given boolean formula Φ = f(x1, . . . , xn) such

that formula evaluates to true.

SAT was the first problem proved to be NP-Complete. The proof, Cook’s Theorem,

was published in a 1971 paper [7]. The proof of SAT’s NP-Completness was independently

observed by Leonid Levin. Therefore the Theorem is referred to as Cook-Levin Theorem.

SAT problem instances are usually formulated in standard conjuctive normal form

CNF. This means that a SAT problem is represented as conjuction of clauses. Each clause

is a disjunction of literals where literal is a variable or its negation.

Examples of a SAT problem instance are

Φ1 =(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1) (3.2)

Φ2 =(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2) ∧ (¬x1) ∧ (x1 ∨ x3) (3.3)

The formula 3.2 contains three clauses, first two consist of a disjunction of three literals

and the third one is a single literal. This formula is satisfiable as there exists a assignment

to the variables such that formula evaluates to true. Such as assignment is x1, x2 and x3

are all set to true. By setting x1 to true first and third clause is satisfied. By setting x2

to true the second one is satisfied.

The formula 3.3 is unsatisfiable because there is no assignment such that Φ2 would

evaluate to true. Since x1 needs to be assigned to false because of the third clause. This

leads to the assignment of false and true to x2 and x3 respectively, because of the second

and the forth clause. However the first clause is now unsatisfied because of this assignment.

If a restriction to number of literals in clauses are introduced, the SAT problem is
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referred to as k-SAT problem. k-SAT problems means that the input formula is restricted

in a way that each its clause consist of at most k literals.

DIMACS file format

If we can transform our problem into SAT instance, we can let SAT solver to decide

whether G is r-circular edge colorable for a given graph G and rational number r.

Input file for the most SAT solvers is in DIMACS format described in [1].

i) The file may begin with comment lines. Each comment line starts with lower case

letter c

ii) The comment lines are followed by the problem line, which begins with lower case

letter p. Then problem type follows, which in our case is cnf and finally size of a

problem, characterized by number of variables nbvar and number of clauses nbclauses.

iii) The rest of the file defines the clauses one by one

iv) Each line represent one clause

v) A clause is represented as a list of indices, positive index for positive literal and

negative index for negative literal. Indices are 1-based.

vi) The representation of a clause is terminated by a final value of 0.

The formula 3.2 would be represented in DIMACS format as follows

p cnf 3 3

1 2 −3 0

−1 2 3 0

1 0

SAT instance for circular edge coloring

Suppose G is a graph of order n with m edges. Let c be the circular edge coloring

represented by rational number r such that r = p/q and p/q is a reduced fraction. The
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task is to create SAT instance such that it is satisfiable if and only if G is r-circular edge

colorable.

We will create SAT instance formula with mp variables and two types of clauses as

follows

1. Variables – ∀e ∈ E(G) let Pe,y ⇔ c(e) = y

2. Clause type 1 – ∀e ∈ E(G)
∨
Pe,y y ∈ {0, 1, . . . , p− 1}

3. Clause type 2 – ∀e, f ∈ E(G) (e and f are incident) – ¬Pe,y ∧ Pf,z |y − z|r < q

Variable Pe,y means that color y is assigned to edge e. Clauses of the type 1 describe

that at least one color is assigned to each edge. And clauses of the type 2 describe that

colors y and z satisfying the condition |y− z|r < q (in other words y and z are too close),

can not be assigned to edges e and f that are incident.

Therefore if the SAT formula is satisfiable, there exists boolean assignment to the

variables, such that proper coloring can be constructed.

Now we will look at the size of a SAT instance for a cubic graph G with m edges and

rational number r = p/q. This potential coloring uses p colors, therefore we need

mp variables. (3.4)

There are m clauses of the first type as there is one for each edge.

For the number of clauses of the second type we need to determine, how many pairs

of colors contradict correct circular edge coloring for two edges that are incident with the

same vertex. If a one color has been already assigned to one of the edge neighbours this

color eliminates 2q − 1 colors that could be assigned to the other edge. So for each color,

there are 2q−1 clauses for each pair of neighbour edges. However this would leave as with

pair duplications. Therefore for each color we will go maximum into q − 1 distance from

assigned color in clockwise direction. This will leave each color with q clauses. Therefore

there is pq clauses for each pair of neighbour edges.
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As we are dealing with cubic graphs, each edge has four neighbours. This means that

there are 4m/2 = 2m pairs of edge neighbours. The total number of clauses is

nbclauses = 2mpq +m. (3.5)

Similarly to backtrack algorithm, we can also precolor one of the edges and the second

leave with half of the possible colors. We denote them as e and f . If we choose those two

edges such that they are neighbours, our SAT instance will consist of

1 + dp− 2q + 1

2
e+ p(m− 2) variables. (3.6)

The number of clauses of the first type is the same as before but the number of clauses

of the second type is different. Each edge that is incident with the edge e except edge f ,

results in 2q − 1 clauses. Edge e and f do not produce any clauses, because we already

restricted possible colors for edge f based on color assigned to the edge e. Each edge that

is incident with the edge f except edge e result in qd(p− 2q+ 1)/2e+ (q− 1) clauses. The

pairs of edges that do not contains either edge e nor f result in pq clauses as previous SAT

representation. Therefore total number of clauses for this representation is

nbclauses = m+ 3(2q − 1) + 3

(
qdp− 2q + 1

2
e+ q − 1

)
+ pq(2m− 7) (3.7)

This new representation has d less clauses than previous representation, where

d = 7pq − 9q + 6− 3dp− 2q + 1

2
e.

It can be easily seen that there is at most m clauses that consist of more than two

literals. Also there is at most 2mpq clauses that consist of exactly two literals.

Vertex SAT representation

Instead of variables for edge colors, we can try to create SAT instance where its vari-

ables represents colors in vertices. Consider colors in a node. For a 3-coloring color of

a third edge is determined by the colors of first two edges. However for the (3k + l, k)-

coloring, where l > 0 color of a third edge is ambiguous. As can be seen in a figure 3.3 for

there are two possible colors that can be assigned to a third edge for a (3k+1, k)-colorings.
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2k 2k+1

00 k k

Figure 3.3: Colors in node for (3k+1, k)-coloring

Starting point 0 can be arbitrary color from {0, . . . , 3k}. From representant triplet

(a, b, c) and starting point d, we can obtain possible colors in node as follows. From

representant triplet (a, b, c), we will get triplet of colors

((a+ d) mod (3k + 1), (b+ d) mod (3k + 1), (c+ d) mod (3k + 1)).

In order not to duplicate triplets, we will take only 1 triplet as representant. Without loss

of generality we will choose triplet (0, k, 2k) as a representant. For example let (3k+1, k)-

coloring be 10, 3-coloring. If we chose both triplets as representants, we can get triplet

of colors (0, 3, 7) by two ways. The first one is that this triplet is representant, so by

choosing starting point as 0 we will get this triplet. The second one is that we will take

representant triplet (0, 3, 6) and starting point 7. Therefore we transform representant

triplet into triplet of colors (7, 0, 3).

This observation can be generalized to (3k + l, k)-colorings, for an arbitrary l > 0.

Representant triplets can be constructed from color differences. For example for (3k+1, k)-

coloring, colors 0 and k have a difference 0 and colors 0 and k + 1 have a difference 1.

Suppose (3k + l, k)-coloring and triplet of differences (d0, d1, d2) such that d0 + d1 + d2 =

l than color triplet constructed from differences is (0, k + d0, 2k + d0 + d1. Moreover

3k + d0 + d1 + d2 mod (3k + l) = 0.

Therefore in order to find triplet representants for a (3k + l, k)-coloring, we need to

find all unique triplet differences. Let j = bl/3c, then total number of difference triplets t
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is

t =

j∑
i=0

(l − 3i) + (l mod 3 ≡ 0) = l(j + 1)− 3
j(j + 1)

2
+ (l mod 3 ≡ 0) =

=
2l(j + 1)− 3j(j + 1)

2
+ (l mod 3 ≡ 0) =

(j + 1)(2l − 3j)

2
+ (l mod 3 ≡ 0)

(3.8)

One triplet of colors produces multiple node colorings. Consider arbitrary edge ordering

of a given vertex. In order to construct all colorings from a given triplet, we need to create

all permutations of a given triplet. The number of permutations for one triplet is at most

6. As a result a total number of node colors for a given (p, k) = (3k + l, k)-coloring is at

most 6t. Moreover each coloring can be started with p = 3k + l colors, which leads to

total of node_nbvar variables for one node and nbvar variables for whole SAT instance.

node_nbvar =6t(3k + l) = 3(j + 1)(2l − 3j)(3k + l) + 6(3k + l)(l mod 3 ≡ 0) =

=3(j + 1)(2l − 3j)p+ 6p(l mod 3 ≡ 0) ≥

≥3(j + 1)lp+ 6p(l mod 3 ≡ 0) ≥ (l + 1)lp+ 6p(l mod 3 ≡ 0) =

=pl2 + pl + 6p(l mod 3 ≡ 0) = p(l2 + l + 6(l mod 3 ≡ 0))

(3.9)

nbvar =n× node_nbvar =
2m

3
node_nbvar =

2m

3
p(l2 + l + 6(l mod 3 ≡ 0)) =

=mp

(
2

3

(
l2 + l + 6(l mod 3 ≡ 0)

)) (3.10)

Since l < q total number of variables is less than mp
[
2
3
(q2 + q) + 4

]
.

When we compare the number of variables of SAT instance for coloring edges 3.4 versus

the number of variables of SAT instance for coloring vertices 3.10, we can see that SAT

instance for vertex coloring uses more variables ∀l > 0.

mp <mp

(
2

3

(
l2 + l + 6(l mod 3 ≡ 0)

))
1 <

2

3

(
l2 + l + 6(l mod 3 ≡ 0)

) (3.11)

Although this alternative SAT representation uses more variables, we can still look at

the number of clauses of this representation. This type of SAT instance has also two types

of clauses.
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1. Variables – ∀e ∈ V (G) let Pv,t ⇔ c(v) = t

2. Clause type 1 – ∀v ∈ V (G)
∨
Pv,t t ∈ {all possible triplets of colors}

3. Clause type 2 – ∀u, v ∈ V (G)∧ (u, v) ∈ E(G) – ¬Pu,t1 ∧ Pv,t2 if not he same color is

assigned to the edge (u, v) by triplets t1 and t2.

Clauses of the first type describe that at least one of the possible triplets is assigned

to the vertex. Clauses of the second type describe that if two vertices are incident with

the same edge, then triplets assigned to those vertices should be compatible based on the

color of this edge.

Therefore for each edge (u, v) the following equation represents the number of clauses

of the second type nbcl_edge.

nbcl_edge =p
[
l2 + l + 6(l mod 3 ≡ 0)

] [
(p− 1)(l2 + l + 6(l mod 3 ≡ 0))

]
=

=p(p− 1)(l2 + l + 6(l mod 3 ≡ 0))
(3.12)

Therefore total number of clauses for this alternative representation of SAT is

nbclauses = m(p2 − p)(l2 + l + 6(l mod 3 ≡ 0)) +m.

This alternative representation has more clauses than original SAT representation

as the difference d between nbclauses of alternative SAT instance representation and

nbclauses of the original SAT instance representation 3.5 is positive.

d =m(p2 − p)(l2 + l + 6(l mod 3 ≡ 0)) +m− 2mpq +m =

=mp2(l2 + l + 6(l mod 3 ≡ 0))−mp(l2 + l + 6(l mod 3 ≡ 0))− 2mpq =

=mp(p(l2 + l + 6(l mod 3 ≡ 0))− (l2 + l + 6(l mod 3 ≡ 0))− 2q) =

=mp
[
(p− 1)(l2 + l + 6(l mod 3 ≡ 0))− 2q

]
≥ mp(2p− 2− 2q) ∈ Ω(mp2)

(3.13)

This alternative representation uses both more variables and more number of clauses

than original SAT representation.

Complexity of SAT solvers

According to [10] the upper bound for 3-SAT is in O(1.32065n). We can transform our

general SAT instance representation into 3-SAT in order to obtain complexity.
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Transforming clause into clauses containing 3 literals

In order to reduce unredtricted SAT instance into 3-SAT, we need to transform each

clause l1 ∨ l2 . . . ∨ ln for n > 3 into conjuction of following n− 2 clauses

(l1 ∨ l2 ∨ x2)∧

(¬x2 ∨ l3 ∨ x3)∧

(¬x3 ∨ l4 ∨ x4)∧
...

(¬xn−3 ∨ ln−2 ∨ xn−2)∧

(¬xn−2 ∨ ln−1 ∨ ln)

where x2x3 . . . xn−2 are fresh variables that are not used anywhere else. Therefore for each

unrestricted clause of length n, there are new n − 3 variables. Although those formulas

are not logically equivalent, they are equisatisfiable, which means that both formulas are

satisfiable or not. However they can disagree for a particular choice of variables.

Transformed SAT instances

SAT instance formula for coloring edges introduced in section 3.2 for a given snark G

of order n and rational number r = p/q has following size

nbvar = 1 + dp− 2q + 1

2
e+ p(m− 2)

nbclauses = m+ 3(2q − 1) + 3

(
qdp− 2q + 1

2
e+ q − 1

)
+ pq(2m− 7)

At least 3(2q − 1) + 3
(
qdp−2q+1

2
e+ q − 1

)
+ pq(2m− 7) clauses contains 2 literals and at

most m − 1 clauses contains p literals. Therefore in order to reduce this SAT instance

into 3-SAT we need to replace m−1 clauses into their corresponding 3-SAT formulas. For

each of this m clauses there will be p− 3 new variables and instead of 1 clause there will



CHAPTER 3. DETERMINING GRAPH R-CIRCULAR EDGE COLORABILITY 36

be p− 2 clauses. Thus our new instance will have following size

nbvar =dp− 2q + 1

2
e+ p(m− 2) + (m− 2)(p− 3) + dp

2
e − 2

=dp− 2q + 1

2
e+ (m− 2)(2p− 3) + dp

2
e − 2 <

<2mp− 3m− 19p

6
+ 5 = mp

(
2− 3

p
− 19

6m
+

5

mp

)
nbclauses =3(2q − 1) + 3

(
qdp− 2q + 1

2
e+ q − 1

)
+ pq(2m− 7) + 1 + dp

2
e − 2+

+ (m− 2)(p− 2)

The second SAT instance formula that we introduced in a section 3.2 that represented

coloring of vertices has for a given snark G of order n and rational number r = p/q has

following size

nbvar = mp

(
2

3

(
l2 + l + 6(l mod 3 ≡ 0)

))
nbclauses = m(p2 − p)(l2 + l + 6(l mod 3 ≡ 0)) +m

There is alsom unrestricted clauses as in previous SAT instance representation. There-

fore there will be also p − 3 new variables for each of the m clauses and that results in

total of m(p− 3) new variables. Instead of 1 clause there will be p− 2 there will be p− 2

clauses for each one of the m unrestricted clauses. This results in new size of SAT instance

representation as follows

nbvar =mp

(
2

3

(
l2 + l + 6(l mod 3 ≡ 0)

))
+m(p− 3) <

<mp

[
2

3
(q2 + q) + 4

]
+m(p− 3) = mp

[
2

3
(q2 + q) + 5

]
− 3m =

=m

(
p

[
2

3
(q2 + q) + 5

]
− 3

)
nbclauses =m(p2 − p)(l2 + l + 6(l mod 3 ≡ 0)) +m(p− 2)

3.3 Graph partitioning

In this work, we are focused on cyclically 4-edge connected snarks. Therefore we

decided to find such 4-cuts and precolor them. Both components will be colored separately,
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however they need to be color compatible on the edge cut. Many snarks are a dot product

of cubic graphs G and H. Given two cubic graphs G and H a dot product G.H is defined

as follows.

Definition 3.1. Choose two edges e = ab and f = cd in G and two adjacent vertices u

and v in H. Let a′, b′ and v be neighbours of u and let c′, d′ and u be neighbours of v.

Remove the edges e and f in G and vertices u and v in H. Now connect a to a′, b to b′,

c to c′ and d to d′. Result graph is called a dot product G.H.

Process of creating dot product of two graphs can be seen in figure 3.4

G H G H

e

f

u

v

Figure 3.4: Process of creating a dot product of two cubic graphs G and H

For the given graph G and potential index r = p/q, method works as follows. It finds

a 4-cut of a given graph, which partitions vertices of graph into 2 sets A and B and edges

into 3. First edge set Ae contains edges that their both end vertices belong to set A, the

second one Be contains edges that their both end vertices belong to set B. The third edge

set Ce contains cut edges.

Then 2 subgraphs are created. The first one GA contains vertices from set A and edges

both from set Ae and Ce. The second subgraph GB contains vertices from set B and edges

both from set Be and Ce.

In each step algorithm precolors cut edges with respect to a given potential index.

Those colors are assigned to respective edges both in a subgraph GA and GB. Subsequently

it is determined if both subgraphs that has 4 edges precolored are r-circular edge colorable.

If both subraphs are r-circular edge colorable in the same step of the algorithm then a

graph G is also r-circular edge colorable.
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Complexity

In the worst case we need to try all possible colorings for cut edges. Moreover none of

the pairs of cut edges are incident with the same vertex. Therefore coloring one of the edges

does not influence possible colors that can be assigned to any other cut edge. This results

in p4 possible edge colorings of a 4-cut. However similarly to backtrack improvements

mentioned in section3.1, we could also precolor one of the cut edges and for the second

one tried only half of the possible colorings. Therefore total number of colorings of cut

edges and the maximum number of steps is

p3

2
∈ O(p3).

Let t be a function G×Q→ N that represents time complexity of determining whether

a given graph is a r-circular edge colorable for a rational number r. Then time complexity

of our method can be express as follows

p3

2
(t(GA, r) + t(Gb, r)) .

3.4 Precoloring of a tight cycle

According to Theorem 1.3 for a given potential index r = p/q, if r is the circular

chromatic index of a given graph G then G has a cycle of a length kp for an integer k.

Our next approach is based on this observation. If a χ′c(G) = r then at least one of these

cycles is tight cycle in Dc(G).

Suppose G is a graph of order n with m edges and L(G) is its line graph. For a given

potential index r = p/q we will generate all cycles of L(G) of length {p, 2p, . . . , kp} such

that kp ≤ m. In each step algorithm precolors one of the cycles as a tight cycle. After

cycle vertices are precolored we will color the rest of the vertices. If exists correct coloring

the line graph L(G) is r-circular colorable and therefore G is r-circular edge colorable.

Otherwise we move to the next step of the algorithm. We implemented an algorithm to

enumerate cycles according to paper [11].

Two kinds of methods have been introduced for enumerating all cycles in a graph. One

method depends on the cycle vector space, which is formed by all cycles and edge-disjoint
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union of cycles. The dimension of the cycle vector space is µ = e − n + 1, where e is

the number of edges and n is the number of vertices. In our case for snark of order n

with m = 3n/2 edges line graph of order m = 3n/2 and 4m/2 = 3n edges. Therefore

µ = 3n− 3n/2 + 1 = 3n/2 + 1. The basis of a vector space can be obtained from spanning

tree and all cycles with the ring-sum operations int he vector space. However only small

part of a 2µ − 1 vectors can be cycles. Therefore this method is very slow.

Another one is a search method. Backtracking is used to find cycles. Known upper

bound for algorithm of this class is O((n + e)(c + 1)) = O((9n/2)(c + 1)), where c is

the number of cycles. This is much faster than cycle space. Yet the process of pruning

is complicated. Therefore a new way of enumerating cycles in graph was introduced in

paper [11]. It can be used detect given length cycles without enumerating all cycles in the

graph.

Following terms are used in algorithm description. A path is a alternating sequence of

vertices and edges that its beginning and end are vertices, v0e0v1e1 . . . en−2vn−1 such that

every consecutive pair of vertices vi and vi+1 are adjacent and incident with an edge ei.

The beginning of a path is called head and ending tail. A simple path is a path such that

all vertices and edges except head and tail are distinct. If the head and tail are equal the

simple path is called cycle. An open path is a simple path that is not cycle.

The main idea of the algorithm is that any k-cycle is composed of k − 1 length open

path and an edge from tail to head of this open path. Therefore if all k − 1 length open

path are generated, we can generate all cycles of length k ass well as all open paths of

length k.

We made few changes in the algorithm described in paper, such that we do not generate

all open paths of length k− 1 first and then from them all cycles of length k. We generate

cycles sequentially, therefore we generate only one open path of a length k − 1 which we

generate cycle of a length k from. Then we generate second open path of a length k − 1

and so on. We chose this approach of generating, because in case given graph is r-circular

edge colorable for given r, we may not have to generate all cycles. But in a worst case

scenario the last one is a tight cycle or a given graph is not r-circular edge colorable and

therefore we need to generate all cycles of given length.
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Our method uses cycle generating. In each step of the algorithm one cycle of a length kp

for an integer k is generated such that C = v0e0v1e1 . . . vkp−1ekp−1v0. Algorithm precolors

vertices such that c(vi) = iq mod p. Then it tries to create correct coloring for the rest

of the vertices. If one is found then G is r-circular edge colorable. Otherwise algorithm

moves to the next step with another generated cycle.



Chapter 4

Tight cycles

Since for the graphs that have more edges, their potential indices have bigger numer-

ators. This means that more fractions with bigger numerators are inspected by method

determining graph circular edge colorability. Therefore it would be useful to avoid this for

graphs that have circular chromatic index that its numerator is small.

According to the Theorem 1.4 in order to prove that r = χ′c(G) for a given graph G

and rational number r it is not necessary to use method for determining graph circular

colorability to prove that for no rational number r′ < r the graph G is r′-circular edge

colorable. We need to prove that for each r-circular edge coloring c the given graph G

contains tight cycle. Otherwise according to Theorem 1.2, there is r′ < r circular edge

coloring of the graph G.

4.1 Generationg all circular colorings

For a given rational number r and a snark G we are going to generate all r-circular

edge colorings of the graph G. We tried following methods for generating r-circular edge

colorings such as

i) Backtrack – we alternated algorithm described in sectionbacktrack. Instead of termi-

nating search after finding one solution, we add this solution to set of correct r-circular

edge colorings.
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ii) SAT solvers – if a SAT instance created from a given graph G and rational number

r is satisfiable, sat solver yields a feasible solution. This solution can be transformed

back to correct coloring. Therefore all colorings can be generate by following process

2.

iii) All solution SAT solvers – When SAT solver is looking for a solution, it learns a lot

about the problem, but it doesn’t return all that information. It just gives the solution

it found. When we run the solver again, it has to re-learn all the information that

was thrown away. This means that previous approach throws away useful information

over and over again. Therefore using all solution SAT solvers, which give all solutions

at once is more efficient.

Algorithm 2 Generate all r-circular colorings
1: Set variable generate_solution to True

2: Set variable result_clauses to empty vector.

3: while generate_solution do

4: Create SAT instance for a given graph G and a potential index r

5: for clause in result_clauses do

6: Add negation of a clause into SAT instance

7: Let SAT solver to decide if SAT instance formula is satisfiable

8: if SAT instance formula is satisfiable then

9: Add solution to result_clauses

10: if SAT instance formula is unsatisfiable then

11: Set generate_solution to False

12: Generate solutions from result_clauses.

4.2 Tight cycle check

We have generated all solutions for a given graph G and potential index r. Each one of

them needs to be checked whether contains tight cycle. For each solution we create from
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G a directed graph Dc(G) with respect to a given coloring c as described in definition 1.2.

An example of this process can be seen in figure 4.1. First graph G with coloring c such

that r = 2.5 is transformed into a digraph that contains cycle and second graph H with

coloring c′ such that r = 3 to digraph that does not contain a cycle.
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G D (G)c

H D (H)c

Figure 4.1: Transformation of a graph into digraph with respect to coloring c represented

by rational number r

The last step is to check whether created digraph for G and coloring c contains cycle.

We used depth first search to determine whether oriented graph contains cycle. Complexity

of a depth first search for graph represented by adjacency list is in O(m+ n). Line graph

of a snark contains m nodes and 2m edges. Therefore digraph constructed from line graph

has also m nodes and at most 2m edges. As a result time complexity of depth first search

on a directed graph created from line graph of a snark is in O(3m) ∼ O(m).



Chapter 5

Results

In this chapter we present results of our work. Computed circular chromatic indices

of snarks will be given as well as comparison of different algorithms. We also give a

comparison of theoretical and experimental time complexity.

In the table 5.1 theoretical time complexity can be seen. Backtrack algorithm is the

best one of the algorithms given in the table.

Algorithm Complexity

Exhaustive search O(pm)

Backtrack O
(√

(2)m−3
(
p
3

)m−1)
SAT instance edges O

((
1.32065p(2−

3
p
− 19

6m
+ 5

mp)
)m)

SAT instance vertices O
((

1.32065p(
2
3
(q2+q)+5)−3

)m)
Table 5.1: Time complexity of method determining (p, q)-circular edge colorability of a

given graph

In the following results we chose few graphs randomly and let our implemented algo-

rithms to solve the problem. For snarks with lower order chosen graphs may repeat. For

example snark of order 10 is only one, therefore we repeated computation for this graph

many times. We used SAT solver [3], which won many competitions. We can see in the

figure 5.1 backtrack is more efficient. However this holds only for snark of order 10. For

snark of order 18 backtrack runs for several minutes although for SAT solver it takes few
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seconds. The time graph for sat solver running on snarks of order 18 is in the figure 5.2

and of order 28 int the figure 5.3.
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Figure 5.1: Time for snark of order 10
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Figure 5.2: Time for snark of order 18 for a sat solver
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Figure 5.3: Time for snark of order 28 for a sat solver

Our backtrack algorithm has better theoretical time complexity than algorithm us-

ing SAT solver but experimental results shows that it has worse time complexity than

algorithm using SAT solver.

We also compared running time of two SAT instance representations. Comparison on

snark of order 10 can be seen in the figure 5.4 and of order 18 in the figure 5.5.
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Figure 5.4: Time for snark of order 10 for two SAT instance representations
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Figure 5.5: Time for snark of order 18 for two SAT instance representations

As SAT solver with instance for coloring edges has a best performance from basic

algorithms. we chose this one to be the algorithm that other composed algorithms such

as graph partitioning method and tight cycle method will use. And also we will use

this algorithm as reference algorithm for others. The following algorithm comparison is

of graph partitioning method and algorithm using SAT solvers. Figure 5.6 shows this

comparison on graph of order 10.
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Figure 5.6: Time for snark of order 10 for two methods

Figure 5.7 shows how running time changes according to graph order. For each order
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there were randomly chosen graphs. We computed average of their running times.
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Figure 5.7: Time for snark depending on a given order

Table 5.2 shows running time of backtrack algorithm and SAT solver on snarks of order

up to 30. Table 5.3 shows running time of backtrack algorithm and all solution sat with

tight cycle checking on snarks of order up to 26.

Order # snarks Backtrack SAT solver [3]

10 1 0m0.023s 0m0.089s

18 2 0m5.974s

20 6 0m47.081s

22 20 3m26.190s

24 38 8m27.986s

26 280 33m39.601s

28 2900 2966m27.673s

30 28399 12262m42.816s

Table 5.2: Backtrack and SAT solver comparison
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Order # snarks (10, 3)-index Backtrack All solution sat[5]

10 1 0 0m0.054s 0m0.212s

18 2 1 0m11.682s 0m7.208s

20 6 5 0m33.807s 0m11.676s

22 20 18 8m14.479s 1m48.013s

24 38 37 47m11.869s 9m47.508s

26 280 211 331m7.530s

Table 5.3: (10, 3)-index of graphs of order less than 28

We determined indices for graphs of order up to 30 by algorithm using SAT instance

representation. In the table 5.4 there are numbers of graphs with given indices.

Order 10 18 20 22 24 26 28 30

#snarks
1 2 6 20 38 280 2900 28399

Index

(29, 9) 3.22 0 0 0 0 0 1 0 8

(13, 4) 3.25 0 0 0 0 0 13 314 4130

(23, 7) 3.29 0 0 0 0 1 55 1076 12775

(33, 10) 3.30 0 0 0 0 0 0 0 1

(10, 3) 3.33 0 1 5 18 37 211 1509 11483

(17, 5) 3.40 0 0 1 2 0 0 1 2

(7, 2) 3.50 0 1 0 0 0 0 0 0

(11, 3) 3.66 1 0 0 0 0 0 0 0

Table 5.4: Results for graphs of order less than or equal to 30



Conclusion

In this work we dealt with the problem of determining circular chromatic index. The

circular chromatic index provides a more refined measure of colorability of graphs than does

the ordinary chromatic index. This problem belongs to class of NP-Compete problems. In

order to determine the circular chromatic index χ′c(G) of a given graph G it is necessary

to find the smallest fraction r = p/q of positive integers p and q for which G is r-circular

edge colorable.

We focused on special class of graphs – snarks, connected bridgeless cubic graphs with

chromatic index four.

We presented methods for finding smallest rational number r such that given graph G

is r-circular edge colorable providing we are able to decide if G is circular edge colorable

for a given potential index. We designed several methods for determining circular edge

colorability of graphs. Those methods were compared based on theoretical time complexity

as well as experimental running time.

We also implemented method that not only determines if a given graph G is circular

edge colorable for a given potential index but also decides if this potential index is circular

chromatic index of G without inspecting other potential indices.

The results of methods are also presented. Based on the results the most successful

method in practise was one that transforms problem of r-circular edge colorability of a

given graph G and potential index r into SAT instance and than SAT solver is used to

decide satisfiability of this formula.

All circular chromatic indices of snarks of order up to 30 that are presented in the

results chapter were computed by this method.
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