
Comenius University in Bratislava

Faculty of mathematics, physics and informatics

Longest Shortest Words in Regular
Languages
Master’s Thesis

2021
Bc. Matúš Juran

ii

Comenius University in Bratislava

Faculty of mathematics, physics and informatics

Longest Shortest Words in Regular
Languages
Master’s Thesis

Study programme: Computer Science
Field of study: Computer Science
Department: Department of Computer Science
Supervisor: RNDr. Peter Kostolányi, PhD.

Bratislava, 2021
Bc. Matúš Juran

iv

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Matúš Juran
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Longest Shortest Words in Regular Languages

Annotation: Let C be some class of finite automata (such as, e.g., two-way nondeterministic)
and A an automaton from this class. Denote by s(A) the length of a shortest
word recognised by A and by L(C,n) the maximum value of s(A) over all n-state
automata A from C recognising non-empty languages. Asymptotic properties
of the function L(C,n) have already been studied for several classes of finite
automata and other descriptional mechanisms for regular languages. The thesis
will provide a survey of results known in this area and initiate the study of basic
properties of L(C,n) for some classes of finite automata yet unexplored in this
aspect.

Supervisor: RNDr. Peter Kostolányi, PhD.
Department: FMFI.KI - Department of Computer Science
Head of
department:

prof. RNDr. Martin Škoviera, PhD.

Assigned: 05.11.2019

Approved: 21.11.2019 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Matúš Juran
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Longest Shortest Words in Regular Languages
Najdlhšie najkratšie slová v regulárnych jazykoch

Anotácia: Nech C je trieda konečných automatov (ako napríklad dvojsmerné
nedeterministické automaty) a A je automat z tejto triedy. Označme ako s(A)
dĺžku najkratšieho slova rozoznávaného automatom A a ako L(C,n) maximálnu
hodnotu s(A) cez všetky n-stavové automaty A z C rozoznávajúce neprázdny
jazyk. Asymptotické vlastnosti funkcie L(C,n) sa už skúmali pre viaceré triedy
konečných automatov a ďalších popisných mechanizmov pre regulárne jazyky.
V práci bude podaný prehľad známych výsledkov v tejto oblasti a bude v nej
započatý výskum základných vlastností funkcie L(C,n) pre niektoré triedy
konečných automatov doposiaľ v tomto aspekte nepreskúmané.

Vedúci: RNDr. Peter Kostolányi, PhD.
Katedra: FMFI.KI - Katedra informatiky
Vedúci katedry: prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 05.11.2019

Dátum schválenia: 21.11.2019 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce

iii

Acknowledgement: I would like to thank all those who directly or indirectly
helped me finish this thesis.

iv

Abstract

In this thesis, we study the following problem: given an automaton with a given number
of states, how long can the shortest accepted word potentially be? This problem
was studied in the past in the case of nondeterministic finite automata and two-way
automata. We provide an overview of relevant previous results and define the function
lsw which generalizes this problem to sequences of finite sets of languages. Then, we
study the problem with rotating finite automata and alternating finite automata as
models of choice. We describe lower and upper bounds for accepted languages, their
intersections and complements for alphabets of various sizes. Lastly, we compare the
values that the function lsw attains for sequences defined by certain models.

Keywords: shortest word, rotating finite automaton, alternating finite automaton

v

Abstrakt

V tejto práci sa zaoberáme nasledujúcim problémom: aké dlhé môže byť najkratšie
slovo akceptované automatom s daným počtom stavov? Tento problém bol už skú-
maný pre nedeterministické konečné automaty a dvojsmerné automaty. Poskytujeme
prehľad relevantných doterajších výsledkov a definujeme funkciu lsw, ktorá daný prob-
lém zovšeobecňuje na postupnosti konečných množín jazykov. Následne daný problém
skúmame pre rotujúce konečné automaty a alternujúce konečné automaty. Popisujeme
dolné a horné odhady pre akceptované jazyky, ich prieniky a komplementy pre abecedy
rôznych veľkostí. Na záver porovnávame hodnoty, ktoré funkcia lsw nadobúda pre
postupnosti definované vybranými modelmi.

Kľúčové slová: najkratšie slovo, rotujúci konečný automat, alternujúci konečný au-
tomat

vi

Contents

Introduction 1

1 Preliminaries 3
1.1 Models of Finite Automata . 3
1.2 Descriptional Complexity . 6
1.3 Mathematical Preliminaries . 8

2 A Survey of Known Results 9
2.1 Formalization of the Problem . 9
2.2 Results for Finite Automata . 11
2.3 Results for Two-Way Automata . 13
2.4 Results for Regular Expressions . 16

3 Rotating Automata 17
3.1 Basic Results . 17
3.2 Results for Larger Alphabets . 19
3.3 Intersection . 26

4 Alternating Finite Automata 29
4.1 Basic Results . 29
4.2 Results for Larger Alphabets . 30
4.3 Similarity with RNFAs . 32
4.4 Intersection . 33

5 Comparison of Models 37

Conclusion 41

vii

viii CONTENTS

Introduction

When compared to other families studied in the theory of formal languages, regular
languages are a relatively simple one. This makes them particularly suitable for study-
ing novel problems which would be much more difficult to tract in more complex cases,
such as context-free languages. The results discovered and the techniques developed
when studying regular languages may serve as a baseline for further research.
The research in this thesis stems from the following simple problem: how long is the
shortest word in a given language? In some cases, the solution is trivial - for example,
when the language is finite and all the words are enumerated. It is also trivial to con-
struct a singleton language where the only word is arbitrarily long. The complexity
arises from the fact that the language may be infinite, but still has to be described in
a finite way. To achieve this, models such as nondeterministic finite-state automata,
regular grammars or regular expressions can be used. For these models, we may also
measure their descriptional complexity - for example, the number of states of an au-
tomaton. This gives rise to a related problem: how long may the shortest word be if
the model’s descriptional complexity is limited by some parameter? While primarily of
theoretical interest, there is also one possible application of the solutions. If we cannot
test the emptiness of a language directly (which is possible in the case of regular lan-
guages), but it is still possible to test whether the language contains a specific word,
knowing how long the shortest word may be allows us to stop as soon as it is known
that the language contains no word that is short enough.
The problem of longest shortest words was previously studied in the case of nondeter-
ministic finite automata (see [1]) and in the case of two-way automata (see [6] and [14]).
While exact values were obtained in the former case, only lower and upper bounds are
known in the latter case. It was also shown that for two-way automata, the length
of the shortest word may also depend on the size of the alphabet, since certain lower
bounds require alphabets whose size grows with the descriptional complexity. In this
thesis, we study the length of the shortest words accepted by two other models: rotat-
ing automata and alternating finite automata.
In Chapter 1, we present the definitions of the models we shall be studying, as well as
the notion of descriptional complexity and some mathematical preliminaries.
In Chapter 2, we summarize the results from earlier works and define the function

1

2 Introduction

lsw which generalizes the notion of longest shortest word from models of automata to
sequences of finite sets of languages.
In Chapter 3, we study the length of the shortest words accepted by rotating automata.
Additionally, we examine the shortest words in the intersection of two languages ac-
cepted by rotating automata.
In Chapter 4, we study the same problems in the case of alternating finite automata.
We also study the shortest words in complements of languages accepted by alternating
automata.
In Chapter 5, we compare some bounds obtained by conversions between models with
results obtained by studying the individual models.

Chapter 1

Preliminaries

In this chapter, we shall present the necessary definitions, mathematical preliminaries
and some of the known results about descriptional complexity of models describing
regular languages.

1.1 Models of Finite Automata

The simplest computational model for which the longest shortest words were studied
is the deterministic finite automaton.

Definition 1. A deterministic finite automaton (DFA) is a 5-tuple A “ pQ,Σ, δ, q0, F q
where Q is a finite set of states, Σ is a finite, nonempty alphabet, δ : Q ˆ Σ Ñ Q is
a complete transition function, q0 P Q is the initial state and F Ď Q is the set of
accepting states.

A configuration of a DFA is a pair pq, wq where q P Q and w P Σ˚. The word w

represents the remaining unread input, while the state q represents the current state
of the automaton. A computation step is a relation $ on the configurations such that
pq1, cwq $ pq2, wq if δpq1, cq “ q2. The language accepted by a DFA A “ pQ,Σ, δ, q0, F q

is the set of words w such that pq0, wq $˚ pqF , εq for some qF P F . It is denoted by
LpAq.

Definition 2. A language is called regular if it is recognized by some deterministic
finite automaton.

We shall denote the family of regular languages as R.
Using this definition of a DFA, the computation always has exactly one possible con-

tinuation. If we did not require the δ-function to be complete, there would be at most
one possible continuation at any point instead. The modified model is still determinis-
tic, but such a definition is less common. However, allowing multiple continuations as
well results in a different model - the nondeterministic finite automaton.

3

4 CHAPTER 1. PRELIMINARIES

Definition 3. A nondeterministic finite automaton (NFA) is a 5-tuple A “ pQ,Σ, δ, q0, F q
where Q is a finite set of states, Σ is a finite, nonempty alphabet, δ : QˆpΣYtεuq Ñ 2Q

is a transition function, q0 P Q is the initial state and F Ď Q is the set of accepting
states.

The configurations can be defined the same way as for DFAs. Since the δ-function
returns a set of states, the definition of a computation step is slightly modified; for
q1, q2 P Q, c P ΣYtεu and w P Σ˚, it holds that pq1, cwq $ pq2, wq if q2 P δpq1, cq. Then,
we can define the accepted language as LpAq “ tw P Σ˚ | DqF P F : pq0, wq $

˚ pqF , εqu.

Next, we shall define the models for which the longest shortest words were studied
by Dobronravov et al. [6].

Definition 4. A nondeterministic two-way finite automaton (2NFA) is a 5-tuple A “
pQ,Σ, δ, q0, F q, where Q is the finite set of states, Σ is an alphabet which does not
contain special symbols ¢ and $, q0 P Q is the initial state, F Ď Q is the set of
accepting states and δ : Q

Ś

pΣY t¢, $uq Ñ 2Q
Ś

t`1,´1u is the transition function.

The automaton starts the computation at the left endmarker ¢ and at every step
changes the state and moves the head either to the left or to the right based on the
function δ. A configuration of a 2NFA is a triple pq, ¢w$, iq where q P Q, w P Σ˚

and i P t0, . . . , |w| ` 1u. A computation step is a relation on the configurations such
that pq1, ¢w$, iq $ pq2, ¢w$, jq if either j “ i ` 1 and pq2,`1q P δpq1, cq where c is the
i-th symbol on the tape (the left endmarker is considered to be the 0-th symbol) or
j “ i ´ 1 and pq2,´1q P δpq1, cq where c is the i-th symbol on the tape. The input
w P Σ˚ is accepted if pq0, ¢w$, 0q $˚ pqF , ¢w$, |w| ` 1q for some qF P F . Note that the
right endmarker must be reached in order to accept the word.

Definition 5. A 2NFA is called sweeping if it only changes its direction on the end-
markers.

The concept of direction-determinate automata is described in [15].

Definition 6. Let q, q1 and q2 be some states of a 2NFA, let c1 and c2 be symbols on a
tape and let d1 and d2 be ˘1. A 2NFA is called direction-determinate if it always holds
that if pq, d1q P δpq1, c1q and pq, d2q P δpq2, c2q, then d1 “ d2.

Informally, every state can only be entered from the left or from the right. Ev-
ery sweeping automaton without redundant states and transitions is also direction-
determinate, but not vice versa [6].
Deterministic two-way automata (2DFA) can be defined analogously. The variant of
2DFAs considered in [6] allowed for an incomplete δ-function.

1.1. MODELS OF FINITE AUTOMATA 5

Finally, we shall define the models which we shall study in our research.
Rotating automata can only move the head to the right, but when the right endmarker
is reached, the head can return to the left endmarker. The concept was first introduced
by Sakoda and Sipser in [21] as series machines. The state complexity of rotating
automata was studied in [13].

Definition 7. A rotating nondeterministic finite automaton (RNFA) is a 5-tuple A “
pQ,Σ, δ, q0, F q where Q is the finite set of states, Σ is an alphabet which does not contain
special symbols ¢ and $, q0 P Q is the initial state, F Ď Q is the set of accepting states
and δ : Q

Ś

pΣY t¢, $uq Ñ 2Q is the transition function.

A configuration of a RNFA is a triple pq, ¢w$, iq where q P Q, w P Σ˚ and i P

t0, . . . , |w| ` 1u. A computation step is a relation on the configurations such that
pq1, ¢w$, iq $ pq2, ¢w$, jq if j ” i` 1 pmod |w| ` 2q and q2 P δpq1, cq where c is the i-th
symbol on the tape. A word w P Σ˚ is accepted if pq0, ¢w$, 0q $˚ pqF , ¢w$, |w| ` 1q for
some qF P F .

The automaton starts the computation at the left endmarker ¢. When any symbol
except for the right endmarker $ is read, the state changes based on the function δ and
the head moves to the right. If the right endmarker is reached in an accepting state,
the computation is accepting. If it is reached in a non-accepting state instead, the state
shall change according to the δ-function, the head shall move to the left endmarker
and the computation shall continue.
As in the 2NFA case, rotating deterministic automata (RDFA) can be defined analo-
gously.

Alternating automata present a way of modelling parallel computations. This model
was originally introduced by Chandra, Kozen and Stockmeyer. [4]. The computation
can branch out and parallelly continue from several states. Acceptance of the input is
then determined by the result of a boolean function which takes the results of all the
branches as input. We shall work with a modified version of alternating automata which
allows only two types of boolean functions: the logical disjunction of all the branches
and the logical conjunction of all the branches. The states to which the disjunction
is assigned are referred to as existential, while the remaining states are referred to as
universal.

Definition 8. An alternating finite automaton (AFA) is a 6-tuple A “ pQD, Q@,Σ, δ, q0, F q
where QD is the finite set of existential states, Q@ is the finite set of universal states,
Σ is the alphabet, q0 P QD YQ@ is the initial state, F Ď QD YQ@ is the set of accepting
states and δ : pQD YQ@q

Ś

pΣY tεuq Ñ 2QDYQ@ is the transition function. There must
not exits a sequence of states q1, q2 . . . , qk such that q2 P δpq1, εq, . . . qk P δpqk´1, εq and
q1 P δpqk, εq (in other words, there must be no ε-cycle).

6 CHAPTER 1. PRELIMINARIES

Let us denote the set QDYQ@ as Q. A configuration of an AFA is a pair pq, wq, where
q P Q and w P Σ˚. The computation step relation is defined as pq1, cwq $ pq2, wq if
q2 P δpq1, cq. An accepting computation can be defined recursively; for any state qF P F ,
the configuration pqF , εq is accepting. If q is an existential state, the computation
starting from pq, wq is accepting if there is some w1 P Σ˚ and some q1 P Q such that
pq, wq $ pq1, w1q and the computation starting from pq1, w1q is accepting. If q is a
universal state, every computation starting from pq1, w1q where pq, wq $ pq1, w1q must be
accepting; the computation starting from pq, wq is rejecting otherwise. Note that we do
not define a deterministic variant of AFAs since it becomes unnecessary to differentiate
between universal and existential states if at most one transition is possible at any
point of computation. Therefore, the resulting model would be practically identical
with a DFA. Alternation can also be viewed as a combination of nondeterminism and
parallelism.

1.2 Descriptional Complexity

For every model, we can define some measure of complexity based on its formal de-
scription which can be used to compare the complexity of different instances. In the
case of automata, the most usual measure is the number of states. Since this measure
is independent from the actual computation and depends solely on the properties of the
automaton and its description, it is referred to as descriptional complexity. Note that
we can also measure the descriptional complexity of other models, such as grammars
and regular expressions. For instance, in the case of grammars, one possible measure
is the sum of lengths of all the right hand sides, while in the case of regular expressions
the complexity can be measured by the number of occurrences of alphabetic symbols.

In our work, we shall focus on variants of automata described in the previous
section. For any type of automaton A with a finite set of states Q, we can define its
state complexity as the size of the set Q and denote it by scpAq.

We can also define the complexity of a language as the minimal descriptional com-
plexity of a model which recognizes it.

Definition 9. Let L be a language, let C be some class of models and let dc be a function
measuring the descriptional complexity (such as the state complexity of automata).
Then the descriptional complexity of the language L with regard to the given class of
models and the complexity function is defined as dcpLq “ mintdcpMq | M P C,LpMq “

Lu, with the minimum of an empty set defined as 8.

Next, we shall present the results regarding the equivalence of the models described
in the previous section and the effects of conversions on the descriptional complexity.

1.2. DESCRIPTIONAL COMPLEXITY 7

Proposition 1. For every NFA A with n states, there exists a DFA A1 such that
LpAq “ LpA1q and scpA1q ď 2n.

Proof. To construct an equivalent DFA, we can use the subset construction from [11].
Thus, 2n states are always sufficient.

It is also known that the bound from the previous proposition is tight.

Proposition 2. For every n ě 1, there exists an NFA A such that every equivalent
DFA requires 2n states.

Proof. The proof is presented as a corollary in [18].

Proposition 3. For every 2NFA A with n states, there exists an NFA A1 such that
LpAq “ LpA1q and scpA1q ď

`

2n
n`1

˘

. For every integer n, there also exists an alphabet
Σ with Θpnnq symbols and an n-state 2DFA (and thus also a 2NFA) such that every
equivalent NFA requires

`

2n
n`1

˘

states.

Proof. It was proved by Kapoutsis [12] that
`

2n
n`1

˘

states are necessary and sufficient
to simulate a 2NFA by a one-way nondeterministic automaton.

Proposition 4. For every direction-determinate 2NFA A with n states, there exists
an NFA A1 such that LpAq “ LpA1q and scpA1q ď

`

n
tn
2

u

˘

.

Proof. The proof can be found in [10].

Proposition 5. For every RNFA A with n states, there exists a 2NFA A1 such that
LpAq “ LpA1q and scpA1q ď 2n.

Proof. For every state q of the automaton A, the automaton A1 can use two states
pq,Ñq and pq,Ðq. In the state pq,Ñq A1 shall simulate A. However, if the right
endmarker is reached, A1 can not return to the left endmarker directly. Thus, it shall
switch to the state pq,Ðq and move the head to the left until the left endmarker is
reached. Then, A1 shall move its head one step to the right, change its state to pq,Ñq
and continue its computation.

Proposition 6. For every AFA A with n states, there exists an NFA A1 such that
LpAq “ LpA1q and scpA1q ď 2n.

Proof. In [9], a construction of an NFA from an AFA is presented. It is also shown
that 2n states are both necessary and sufficient.

To determine the complexity of a language, we need to show that the complexity
of some automaton recognizing it is minimal. A technique attributed to Birget [2] also
called the extended fooling set technique, can be used to obtain a (not necessarily tight)
lower bound on the number of states of an NFA.

8 CHAPTER 1. PRELIMINARIES

Proposition 7. Let L be a regular language, let P “ tpx1, y1q, . . . , pxn, ynqu be a set
of pairs of words such that xiyj P L if i “ j and either xiyj R L or xjyi R L if i ‰ j.
Then any NFA accepting L must have at least n states.

Proof. For the sake of contradiction, let us suppose that an NFA A accepting L with
fewer than n states exists. By pigeonhole principle, there must exist i, j such that A
finishes reading both xi and xj in the same state q. Without loss of generality, let
xiyj R L. Then A must not finish in an accepting state after starting in q and reading
yj. However, since xjyj P L, after starting in q and reading yj, A must finish in an
accepting state. Thus, A must not have fewer than n states.

1.3 Mathematical Preliminaries

In this section, we shall present the definition of the Landau’s function gpnq and some
of its properties.

Definition 10. Let lcmpp1, . . . , pkq denote the least common multiple of numbers. For
every n, the Landau’s function is defined as maxtlcmpp1, . . . , pkq | p1 ` . . .` pk ď nu.

Without loss of generality, we can assume that
řk

i“1 pi “ n - even though the sum
can be lower for some choices of n, the least common multiple shall not decrease if
some additional number is added to the sequence.
This function is closely related to unary languages (see [5]). The value gpnq is approx-
imately equal to ep1`op1qq

?
n logn.

The following lemma was proved by Nicolas in [19].

Lemma 1. Let gpnq denote the Landau’s function. It holds that limnÑ8
gpn`1q
gpnq

“ 1.

This immediately gives rise to the following corollary.

Corollary 1. Let gpnq denote the Landau’s function. For any constant k P N, it holds
that limnÑ8

gpn`kq
gpnq

“ 1.

Proof. Let us consider the relation „ defined as fpnq „ gpnq Ø limnÑ8
fpnq
gpnq

“ 1.
This relation is commonly used in asymptotic analysis. It follows from Lemma 1 that
gpnq „ gpn ` 1q, . . . , gpn ` k ´ 1q „ gpn ` kq. Since the relation „ is known to be an
equivalence relation and thus transitive, it holds that gpnq „ gpn` kq.

Chapter 2

A Survey of Known Results

In this chapter, we shall formalize the problem of longest shortest words in regular
languages and present the key results from [1], [6], [14] and [8], as well as a lemma from
[16].

2.1 Formalization of the Problem

For every non-empty language, there exists some integer n such that the language
contains no word shorter than n and the language contains a word w of length n.
Thus, n is the length of the shortest word in the language. We can define a function
which returns such length.

Definition 11. Let L be a non-empty language. Then, we shall define the shortest
word function as swpLq “ mint|w| | w P Lu.

We shall leave the function undefined for the empty language. In other works, this
function has also been called the length of the shortest string, or lsspLq

Next, we shall present some examples of the sw-function, with an NFA, a context-
free grammar and a regular expression as models of choice.

Example 1. Let A be an NFA given by the following diagram.

q0 q1 q2
a

a

b

a

Figure 2.1: The nondeterministic automaton A

Then the shortest words in LpAq are a2 and ab and thus swpLpAqq “ 2.

9

10 CHAPTER 2. A SURVEY OF KNOWN RESULTS

Example 2. Let G “ pN, T, P, σq be a context-free grammar where N “ tσu, T “

ta, au and P “ tσ Ñ aa, σ Ñ aσa, σ Ñ σσu. Then the shortest word in LpGq is aa
and thus swpLpGqq “ 2.

Example 3. Let E “ p0˚p01˚qn0q be a regular expression. Then the shortest word in
LpEq is 0n`1 and thus swpLpEqq “ n` 1.

It can be easily seen that by considering an automaton A which accepts a singleton
language twu, we can make the value swpAq arbitrarily large by choosing a long enough
word w. The state complexity of such an automaton would be necessarily high.

Therefore, we shall define the following function which computes the maximum
possible length of the shortest word among all languages that can be accepted by
automata with a given number of states. The function’s definition is based on the
following idea: if the number of states is bounded by a constant, there exist only
finitely many automata and corresponding languages. All of those languages (with
the exception of the empty one) contain a shortest word and since the number of
languages is finite, it is possible to assign a maximum possible length of the shortest
word to every bound on the number of states. A similar measure, called the rational
index, was introduced by Boasson, Courcelle and Nivat [3]. The definition shall be
more general to make it possible to describe more complex settings such as language
intersections as well.

Definition 12. Let L be a sequence of finite sets of languages over a fixed alphabet
and let I be an index set. For i P I , we shall denote the i-th set in the sequence
by Li. The longest shortest word function lswL : I Ñ N is a function such that
lswL piq “ maxtswpLq | L P Li, L ‰ Hu for all i P I . In the cases when the language
sequence is clear from the context, we shall omit the subscript and simply denote the
function by lswpiq.

In the following, we shall almost exclusively use either Nzt0u or pNzt0uq ˆ pNzt0uq
as the index set. In the former case, we can choose an alphabet Σ, a class of automata
C, a measure of descriptional complexity dc and some unary operation f applied to
languages (possibly the identity). Then, we can define Li as tfpLq | L Ď Σ˚, DA P C :

dcpAq ď i, LpAq “ Lu. In the latter case, the sequence L can be defined analogously
using a binary operation: Li,j “ tfpL1, L2q | L1 Ď Σ˚, L2 Ď Σ˚, DA1 P C : dc1pA1q ď

i, LpA1q “ L1, DA2 P C : dc2pA2q ď j, LpA2q “ L2u.
Note that the descriptional complexity of the two automata may be different.
In the following example, we shall examine the lsw-function in the NFA case.

Example 4. Let us consider all the languages accepted by some NFA with at most n
states. In this case, Ln “ tL | D NFA A : LpAq “ L, scpAq ď nu. The length of the

2.2. RESULTS FOR FINITE AUTOMATA 11

shortest word accepted by an NFA is equal to the length of the shortest path (measured
by the number of transitions) from the initial state to some of the accepting states and
the accepted language is non-empty iff at least one such path exists. Clearly, the length
of such path can be at most n´1. To recognize the language tan´1u, n states are clearly
sufficient. Thus, lswpnq “ n´ 1 for all n P Nzt0u.

The problem of shortest words accepted by NFAs was originally studied by Alpoge
et al. [1].

Instead of simply measuring the length of the longest shortest accepted word, we
may also be interested in the length of the longest shortest not accepted word. This
is equivalent to considering the complements of all languages accepted by models with
low enough descriptional complexity. We could also apply different unary operations
or even binary operations such as intersection. These problems were studied by Alpoge
et al. [1] and the key results shall be presented in the following section. However, in
the settings that are more complex than the simple NFA case, it may be much more
difficult to find the exact values of the lsw-function and we may only achieve some not
necessarily tight lower and upper bounds.

2.2 Results for Finite Automata

Alpoge et al. [1] have studied the bounds on the length of the shortest word in the
intersection of the languages accepted by finite automata, both in the deterministic
and nondeterministic case. We shall now present their findings.

Proposition 8. Let A1 and A2 be an n-state and an m-state NFA, respectively. Then
swpLpA1q X LpA2qq ă mn (assuming the intersection is non-empty).

Proof. An mn-state automaton accepting LpA1qXLpA2q can be constructed using the
standard construction for intersection. If the intersection is not empty, the length of
the shortest word in it is at most mn´ 1, as shown in Example 4.

Proposition 9. For all coprime integers n and m, there exists an n-state NFA A1 and
an m-state NFA A2 such that swpLpA1q X LpA2qq “ mn´ 1.

Proof. Let LpA1q “ panq˚an´1 and LpA2q “ pamq˚am´1. The word amn´1 is in the
intersection. For every word in the intersection, there must exist non-negative integers
k and k1 such that the length of the word equals both mk`m´1 and nk1`n´1. This
can be rewritten as mpk ` 1q ´ 1 “ npk1 ` 1q ´ 1, which implies mpk ` 1q “ npk1 ` 1q.
Since mpk ` 1q must be divisible by n but at the same time m and n are coprime, it
must hold that k ` 1 is divisible by n. Thus, k ` 1 ě n and the length of any word in
the intersection must be at least mn ´ 1. Since the word amn´1 is in the intersection,
swpLpA1q X LpA2qq “ mn´ 1.

12 CHAPTER 2. A SURVEY OF KNOWN RESULTS

The technique can be applied even if m and n have a common factor, but then the
shortest word contains only lcmpn,mq ´ 1 symbols. However, the authors have also
shown that for binary and larger alphabets, the upper bound is achievable even if m
and n are not coprime.

Proposition 10. For all pairs of integers n ě 1 and m ě 1, there exists an n-state
DFA A1 and an m-state DFA A2 such that swpLpA1q X LpA2qq “ mn´ 1.

Proof. Without loss of generality, let m ě n. Let Q1 “ tp0, . . . , pn´1u, let Q2 “

tq0, . . . , qm´1u and let LpA1q “ tw P t0, 1u
˚ | |w|1 ” 0 pmod nqu. The function δ2 is

defined as follows: if a ă n´ 1, δ2pqa, cq “ qa`c, otherwise δ2pqa, 0q “ qpa`1q pmod mq and
δ2pqa, 1q “ q0. Let q0 be the initial state of A2 and let qm´1 be its only accepting state.
An accepting computation of the automaton A2 always consists of several cycles start-
ing and ending in q0 and a path from q0 to qm´1. In order to return to q0, the automa-
ton must first reach the state qn´1, which requires reading n´ 1 1’s. Then, the initial
state can be reached either by reading pm ´ n ` 1q consecutive 0’s or by reading at
most pm ´ nq consecutive 0’s and then an additional symbol 1. Thus, for every word
w P LpA2q, there exist integers i ě 0 and j ą 0 such that |w|1 “ in ` jpn ´ 1q and
|w|0 ě jpm´ n` 1q ´ 1. The choice of i corresponds with number of cycles containing
n 1’s in the accepting computation, while j corresponds with the number of paths from
q0 to q0 containing n ´ 1 1’s and the additional path which ends in qm´1. Moreover,
for all such i, j there exists a word w P LpA2q such that |w|0 “ jpm´ n` 1q ´ 1. This
bound can be reached if none of the i cycles with n 1’s contains any 0. Thus, there are
j ´ 1 paths containing n ´ 1 1’s and m ´ pn ´ 1q 0’s and a path which ends in qm´1
and contains m´ pn´ 1q ´ 1 0’s.
For a word w in the intersection, it must hold that |w|1 “ in ` jpn ´ 1q, |w|1 ” 0

pmod nq and |w|0 ď jpm ´ n ` 1q ´ 1. For the shortest such word w, we can set i
to 0, since the choice of i shall not affect any of the condition. The smallest j ě 1

such that jpn ´ 1q ” 0 pmod nq is n. Therefore |w|1 “ npn ´ 1q “ n2 ´ n and
|w|0 “ npm´ n` 1q ´ 1 “ mn´ n2` n´ 1 and after adding the number of 1’s and 0’s
together, we get mn´ 1.

Alpoge et al. have also studied the length of the shortest word in the complement
of a language accepted by an NFA and reached the following result.

Proposition 11. Let A be an n-state NFA, let L “ LpAq. If LC ‰ H, then swpLCq ă

2n and there exists a constant c (0 ă c ď 1) and an infinite NFA family such that all the
words shorter than 2cn are accepted by an n-state NFA. The lower bound is achievable
even for binary alphabets.

Proof. An equivalent DFA with at most 2n states can be constructed using the subset
construction. Then, a DFA accepting LC with the same state complexity can be

2.3. RESULTS FOR TWO-WAY AUTOMATA 13

constructed by swapping the accepting and non-accepting states. The length of the
shortest word in LC corresponds with the shortest path from the initial state to some
of the accepting state and by the pigeonhole principle, its length is less than 2n. The
lower bound follows from the research of regular expressions by Ellul et al. [8]. The
full proof is outside of the scope of this text, but its main idea is presented in Lemma
5.

2.3 Results for Two-Way Automata

The maximal possible length of the shortest words accepted by two-way automata was
studied by Dobronravov et al. [6]. In this section, we shall present the key results
from the article. First, we shall present the way in which a simple upper bound on the
length of the shortest word accepted by a 2NFA was obtained in [6].

Lemma 2. Let A be an n-state 2NFA. Then swpAq ď
`

2n
n`1

˘

´ 1.

Proof. By Proposition 3, an NFA A1 such that LpAq “ LpA1q and scpA1q ď
`

2n
n`1

˘

exists. The upper bound in question can be thus obtained by applying the results of
the Example 4 to the automaton A1.

While Kapoutsis [12] has shown that for every n, there exists a language accepted
by an n-state 2NFA which can not be accepted by any NFA with fewer than

`

2n
n`1

˘

states, it can not be used to obtain a lower bound in a similar way. This is caused by
the fact that every word in this language is of length 4.

Dobronravov et al. have also shown that as long as the alphabet size is not bounded,
we do not need to distinguish between 2NFA and 2DFA.

Lemma 3. For every n-state 2NFA A, there exists an n-state 2DFA A1 such that
swpA1q “ swpAq.

Proof. For every symbol a P Σ, there are at most 2n possible transitions for A - it can
either move its head to the left or to the right and end up in one of the n states. Let Σ1

contain the symbols from Σ marked with every possible choice of the transitions. Then
|Σ1| ď p2nqn|Σ|. The 2DFA A1 shall process the input deterministically and simulate
the 2NFA A based on the marks on the symbols. Thus, the 2NFA A accepts some
word over the alphabet Σ iff the 2DFA A1 accepts a word of the same length over the
alphabet Σ1 with appropriate symbol markings.

As a result, Dobronravov et al. limited themselves to studying deterministic two-
way automata. Note that in the cases when the 2NFA A is sweeping, the 2DFA A1

obtained by this construction is sweeping as well.
For unary alphabets, they reached the following lower bound.

14 CHAPTER 2. A SURVEY OF KNOWN RESULTS

Proposition 12. For every n ě 2, there exists an n-state 2DFA A such that swpLpAqq “
gpn´ 1q ´ 1, where g denotes the Landau’s function.

Proof. Let p1` . . .` pk “ n´ 1, let lcmpp1, . . . , pkq “ gpn´ 1q and let w be the input.
As shown in [5], a sweeping 2DFA can verify that for every 1 ď i ď k, |w| ” pi ´ 1

pmod piq. Then, it holds that swpLpAqq “ gpn ´ 1q ´ 1. If k is even, the head is on
the left endmarker after the k-th pass. Because of this, one additional state is needed
to reach the right endmarker and accept the input.

Considering alphabets of size linear in the number of states allows us to achieve
the following simple lower bound [6]. Note that the transition function of the 2DFA
variant considered by the authors is not necessarily complete and thus the automaton
may halt in some configuration.

Proposition 13. For every odd integer m ě 1, there exists a sweeping 2m-state 2DFA
A over an m-symbol alphabet and a word w of length 2m ´ 1 such that LpAq “ twu.

Proof. Without loss of generality, let Σ “ ta1, . . . , amu. The automaton A shall per-
form m passes. During the i-th pass, the 2DFA shall check whether every substring of
symbols from ta1, . . . , aiu delimited by symbols from t¢, $, ai`1, . . . , amu contains ex-
actly one symbol ai. The set of states shall be Q “ tqij | i P t1, . . . ,mu, j P t0, 1uu - in
every state, the automaton needs to know whether it has encountered ai in the current
substring and which pass it is currently performing. The initial state shall be q10 and
the accepting state shall be qm1 . Let us consider the i-th pass. During this pass, the
only available states shall be qi0 and qi1. If the automaton encounters some symbol aj
such that j ă i, the state shall remain unchanged and the automaton shall continue
the scan in the appropriate direction. If it encounters the symbol ai in the state qi0, the
state shall change to qi1 and the computation shall continue, but if the automaton reads
this symbol in the state qi1, the computation shall halt and the input word shall not be
accepted. Finally, if the automaton encounters some symbol aj such that j ą i, it shall
reset its state to qi0 if the current state is qi1 and halt otherwise. Once an endmarker is
reached, it is checked once again whether the state is qi1. Then (unless the accepting
state qm1 has been reached) the state shall change to qi`10 and the automaton shall start
a new pass in the opposite direction; the computation shall halt otherwise.
Next, it is necessary to prove that the automaton accepts a single word of length
2m ´ 1. Let us define the words w0, . . . , wm as follows: let w0 “ ε and if i ě 1, let
wi “ wi´1aiwi´1. Note that it always holds that |wi| “ 2i´1. We shall now prove that
LpAq “ twmu.
Let w P LpAq. For i P t0, . . . ,mu, let buc be a substring of ¢w$ such that b P
t¢, ai`1, . . . , amu, c P t$, ai`1, . . . , amu and u P ta1, . . . , aiu

˚. It can be proven by
induction that u “ wi.

2.3. RESULTS FOR TWO-WAY AUTOMATA 15

The basis for i “ 0 trivially holds since in this case the word u must be empty.
During the i-th phase, the automaton must pass through the substring buc (either from
left to right or from right to left). When the substring is entered, the state must be
qi0, since either an endmarker or a symbol with index greater than i is read. As the
other end of this substring also contains such symbol, this end must be reached in the
state qi1. Thus, u must contain the symbol ai exactly once and can be written as xaiz
where x, z P ta1, . . . , ai´1u. By induction, it must hold that x “ wi´1 “ z and therefore
u “ wi.
If we set i “ m, then it must hold that w “ wm and thus LpAq “ twmu.

Thus, for every n, there exists an n-state 2DFA A such that swpLpAqq “ 2
n
2 ´ 1 «

1.414n if n ” 2 pmod 4q and swpLpAqq ě 2tn´1
2

u´1 « 1.414n´1 in general. The authors
have also noted that the lower bound can be improved by using the same construction,
but counting to 3 rather than to 2 (setting wi`1 as wiai`1wiai`1wi). The detailed proof
was not provided in the original article. In that case, the length of the shortest word
shall be 3

n
3 « 1.442n if n ” 3 pmod 6q.

In [6], an improved lower bound was presented as well.

Proposition 14. For every n ě 1, there exists an n-state 2DFA An such that swpLpAnqq «

1.475n.

Proof. The proof can be found in [6]; we shall only present its key idea. In the article,
a subclass of 2DFAs with additional restrictions on the δ-function was considered. Let
A be such a 2DFA with n states over an alphabet Σ. The authors constructed a 2DFA
A1 with mn states and an alphabet of size m|Σ|, which worked as follows. The new
alphabet Σ1 consisted of m disjoint copies of the alphabet Σ, denoted by Σ1, . . . ,Σm.
In total, m passes over the input were performed. During the i-th pass, the input can
be viewed as words w1, . . . , wk from the language pΣ1Y . . .YΣiq

˚, delimited by ¢, $ and
symbols from Σ1zpΣ1Y . . .YΣiq. If i is odd, it is possible to simulate a modified version
of the 2DFA A on every block w1, . . . , wk. This modified version ignores the symbols
from Σ1Y . . .YΣi´1 and treats symbols from Σi as the corresponding symbols from Σ.
For an even i, the simulation is done on the reverses of w1, . . . , wk since the main pass
is performed from right to left. It was also shown that swpLpA1qq “ swpLpAqqm ´ 1.
The bound 1.475n was obtained by using a 2DFA with 5 states and shortest accepted
word of length 7 as the base automaton.

This technique requires the alphabet to be of size Θpnq. For n-state automata
over an m-symbol alphabet, a lower bound approximately equal to e1`op1q

?
mn log n

m was
obtained. The lower bound was further improved by Krymski and Okhotin in [14] to
1.626n if the alphabet’s size is exponential in n and to 1.275n for alphabets with fixed
size.

16 CHAPTER 2. A SURVEY OF KNOWN RESULTS

2.4 Results for Regular Expressions

The length of the shortest words described by regular expressions was studied in [8].
In this section, we shall present the results relevant for our research. The first one is
concerned with the conversion of regular expression to nondeterministic automata.

Lemma 4. Let E be a regular expression containing n alphabetical symbols. There
exists an NFA A with n` 1 states such that LpAq “ LpEq.

Proof. The proof is inductive and it utilizes NFAs which never return to the initial state.
For atomic regular expressions, we can construct such automata with the desired num-
ber of states. Otherwise, the NFA can be obtained by applying union, concatenation
or closure to the automata corresponding to the subexpressions. The details of the
proof can be found in [16].

The second result shows that there exist regular expressions such that the length
of the shortest word in the complement of the language is exponential.

Lemma 5. For every n ě 3, there exists a regular expression E containing 25n` 110

symbols over a 5-symbol alphabet such that the length of the shortest word in LpEqC “
p2n ´ 1qpn` 1q ` 1.

Proof. Let us consider the alphabet Σ “ t#,
`

0
0

˘

,
`

0
1

˘

,
`

1
0

˘

,
`

1
1

˘

u and an encoded sequence
of numbers 1, 2, . . . , 2n ´ 2. For n “ 3, the encoding would be
#
`

0
0

˘`

0
0

˘`

0
1

˘

#
`

0
0

˘`

0
1

˘`

1
0

˘

#
`

0
0

˘`

1
1

˘`

0
1

˘

#
`

0
1

˘`

1
0

˘`

1
0

˘

#
`

1
1

˘`

0
0

˘`

0
1

˘

#
`

1
1

˘`

0
1

˘`

1
0

˘

#
`

1
1

˘`

1
1

˘`

0
1

˘

#

We can construct regular expressions which check whether the conditions of syntactic
correctness are violated: the first or the last n ` 2 symbols are incorrect, a block of
digits does not contain exactly n symbols, there are two consecutive symbols #, the
lower binary number in a block does not equal the upper number plus one or the upper
number in a block does not equal the lower number in the previous one. The expression
E containing 25n ` 110 symbols can be constructed as a union of those expressions.
Then, the encoded sequence is the shortest word which does not violate any of those
conditions and its length is p2n ´ 1qpn` 1q ` 1. The details of the proof can be found
in [8].

As a corollary of Lemmas 4 and 5, we can construct an NFA A with 25n ` 111

states such that swpLpAqCq “ p2n ´ 1qpn ` 1q ` 1. This way, the lower bound from
Proposition 11 can be obtained.

Chapter 3

Rotating Automata

In this chapter, we shall present our results for the case of rotating automata. We
shall consider unary alphabets, fixed size alphabets and alphabets of size proportional
to the automaton’s number of states. We shall also examine the shortest words in
intersections of languages.

3.1 Basic Results

A trivial upper bound on the length of the shortest word may be obtained by simulating
the RNFA by a 2NFA and applying the upper bound found by Dobronravov et al. on
the resulting automaton. The transformation of RNFAs into 2NFAs is mentioned in
[20].

Theorem 1. Let A be an n-state RNFA. Then swpAq ď
`

2n
n

˘

´ 1.

Proof. The proof is based on the following observation: we can simulate a rotating
automaton by a sweeping automaton by returning to the left endmarker instead of
utilizing the rotation. This can be achieved by adding a state qÐ for every state q.
In this state, the head moves to the left until the endmarker is reached, then the
state changes back to q and the computation continues. This construction results in
a sweeping (and therefore also direction-determinate) 2NFA with 2n states and the
upper bound thus follows from Lemma 4.

A simple lower bound can be obtained the same way as in the case of ordinary finite
automata.

Theorem 2. Let A be an n-state RNFA. Then swpAq ě n´ 1.

Proof. Let L “ tak | k ě n ´ 1u. It is trivial to construct an n-state RNFA that
recognizes the language L.

17

18 CHAPTER 3. ROTATING AUTOMATA

However, this bound is not tight. In the following example, we shall demonstrate
that given two sufficiently large coprime numbers n and m (7 and 11 in that particular
case), we can construct an RNFA with only m`n states which recognizes a non-empty
language L such that swpLq “ mn´ 1.

Example 5. Let L “ tak | k ” 76 pmod 77qu. Clearly, the language L is non-empty
and the shortest word is of length 76. The key observation is that L may be obtained
as the intersection of two regular languages. Let L1 “ ta

k | k ” 6 pmod 7qu and let
L2 “ tak | k ” 10 pmod 11qu. It can be easily seen that L “ L1 X L2. In the case
of rotating automata, we can use this to our advantage by verifying whether each of
the respective languages contains the word in two separate sweeps. This allows us to
construct an automaton which requires only 7` 11 “ 18 states, but swpLpAqq “ 76.

Dobronravov et al. [6] have also studied the length of accepted words over an
alphabet consisting of a single symbol. Their result was presented in Proposal 12.
We shall show that a similar bound can be achieved in the case of rotating automata
by generalizing the technique from Example 5. It was shown by Chrobak [5] that a
language similar to the one from the following theorem can be accepted by an n-state
sweeping 2DFA. For words over an unary alphabet, it does not matter whether the
automaton reads them from the left or from the right. Thus, the same idea can be
applied to rotating automata.

Theorem 3. Let gpnq denote the Landau’s function. For every n, there exists an
n-state RNFA A over the alphabet Σ “ tau such that LpAq “ agpnq´1pagpnqq˚. Thus,
swpLpAqq “ gpnq ´ 1.

Proof. Let p1, . . . , pk be numbers such that lcmpp1, . . . , pkq “ gpnq. It follows from
the definition of the Landau’s function that such numbers have to exist. The key
observation is that for every pi in the partition of n, we can construct a one-way
automaton Ai which accepts the language Li “ tam | m ” pi ´ 1 pmod piqu. To
accept such language, pi states are clearly sufficient. In the i´th pass of the rotating
automaton, we can verify that the language Li contains the input word. If the right
endmarker is reached in an accepting state of the one-way automaton, the rotating
automaton returns to the left endmarker and performs the next pass. Otherwise, the
computation is halted and the input is not accepted. Finally, the input is accepted if the
right endmarker is reached in an accepting state during the last pass (and therefore
during all of the previous passes as well). It follows from the construction of the
automaton A that LpAq “ Xk

i“1Li.
Now, let w be a word from the language L. Its length is therefore l “ gpnq´1`mgpnq

for some m ě 0. For every pi, it holds that l ” pi ´ 1 pmod piq, since l ` 1 is divisible
by gpnq and therefore also by pi. Thus, w P LpAq.

3.2. RESULTS FOR LARGER ALPHABETS 19

If w is a word from the language LpAq of length l, it must hold that l ” pi´1 pmod piq

for every i. As a result, l` 1 ” 0 pmod piq for every i as well. Therefore, l` 1 must be
some multiple of gpnq and l ” gpnq ´ 1 pmod gpnqq. We have shown that LpAq “ L.
It follows that the length of the shortest word in LpAq is gpnq ´ 1.

Note that in the case of two-way automata, the proven bound was only gpn´1q´1.
This is caused by the fact that the accepting states of a two-way automaton are effec-
tive only at the right endmarker. In the cases when the partition of n contains an even
number of numbers, the computation ends at the left endmarker and an additional
state is needed to move the head to the end of the input.

3.2 Results for Larger Alphabets

Let us consider the case when the alphabet is not unary, but still bounded by some
constant k independent from the state complexity. In the case of two-way automata,
the lower bound was improved in [6] using the technique from Proposal 14. However,
we can not apply this exact technique to rotating automata. The reason is that while
a 2DFA may treat chosen symbols as endmarkers and simulate a different 2DFA on a
part of the input, an RNFA can return to the left endmarker only after reaching the
real right endmarker. Instead of attempting to find an analogous technique for RNFAs
directly, we shall improve the lower bound in several steps.
We can use the property of Landau’s function from Lemma 1 and Corollary 1 to achieve
a bound that is better than the one from Theorem 3 for sufficiently large n - it is possible
to increase the length of the shortest word k-fold at the cost of k additional states.
To our knowledge, this technique was not used by other automata theory researchers
before. We shall demonstrate the idea in the following example.

Example 6. The RNFA shall check whether the input is of the form pabkq˚ during the
first pass and count the number of symbols a during the later passes the same way as
in Theorem 3. The diagram of such automaton is given in Figure 3.1.

20 CHAPTER 3. ROTATING AUTOMATA

q0 q1 q2 q3

q4 q5 q6

q7 q8 q9

q11 q10

¢

a b b

b

$

¢

b

b b

a a

a

$

¢

b b b

b

b

a a

a

a

a

Figure 3.1: The RNFA from Example 6

In this case, the accepted language is L “ tpab3q˚u X tw | |w|a ” 14 pmod 15qu.
The shortest accepted word is therefore pab3q14 and swpLq “ 56.

We can generalize the demonstrated technique in the following theorem.

Theorem 4. For every pair of integers n and k such that k ă n, there exists an RNFA

3.2. RESULTS FOR LARGER ALPHABETS 21

A such that scpAq “ n and LpAq “ pabk´1q˚Xtw | |w|a ” gpn´kq´1 pmod gpn´kqqu.
It holds that swpLpAqq “ pgpn´ kq ´ 1qk and that limnÑ8

pgpn´kq´1qk
pgpnq´1qk

“ 1.

Proof. The construction is similar to the one in Example 6. During the first pass, we
can use k states to verify that the input is of the form pabk´1q˚. Then, the remaining
n´k states can be used to verify the number of symbols a is congruent with gpn´kq´1

modulo gpn ´ kq. The shortest accepted word contains gpn ´ kq ´ 1 symbols a, each
followed by k ´ 1 symbols b. It is therefore of length pgpn ´ kq ´ 1qk. The fact that
limnÑ8

pgpn´kq´1qk
pgpnq´1qk

“ 1 follows from Corollary 1.

Note that a binary alphabet is sufficient to achieve an arbitrarily large constant
factor. While this technique is applicable to two-way automata as well, it does not
result in an improvement over the results from [6] and [14].

This technique can also be viewed in the following way: we are given two languages
over disjoint alphabets Σ1 and Σ2. In our case, L1 “ tam | m ” 14 pmod 15qu and
L2 “ tb

3u. We can construct a new language which is the same as L1 if symbols from
Σ2 are omitted, but every symbol from Σ1 is followed by a word from L2. Formally,
let h be a homomorphism such that hpcq “ c if c P Σ1 and hpcq “ ε otherwise. Then
the new language is h´1pL1q X tpcwq

˚ | c P Σ1, w P L2u. Could the bound for binary
alphabets be improved further if we chose a different language L2? For simplicity, let
us consider some integer n and languages L1 “ ta

m | m ” gpnq ´ 1 pmod gpnqqu and
L2 “ tb

m | m ” gpnq ´ 1 pmod gpnqqu. The new RNFA shall work in three phases:

1. Verify the input is of the form pab`q˚.

2. Verify the number of symbols a is correct. This can be done by computing the
remainder modulo each number in the optimal partition of n and ignoring the
symbols b as in Figure 3.2.

3. Verify the number of symbols b after every symbol a is correct. Let p1 ` . . . `

pk be the optimal partition of n. For each number in this partition, one pass
is performed. During the i-th pass, we need to verify that for every block of
symbols b, the remainder of its length modulo pi is pi´ 1. If the symbol a or the
right endmarker is encountered in an incorrect state, the computation is halted.
However, the input is accepted if the length of each block is correct.

The shortest accepted word is of length gpnqpgpnq´ 1q. The automaton An in the case
when n “ 8 is shown in the Figure 3.2.

22 CHAPTER 3. ROTATING AUTOMATA

q0 q1

q2 q3 q4

q5 q6 q7 q8 q9

q10q11q12

q13q14q15q16q17

¢
a

b

b

$

¢

b

b

b

a a

a

$

¢

b

b

b b b

a a
a

a

a $

¢
a, bb

b

$

¢
a, bbbb

b

Figure 3.2: The RNFA A8

However, the given construction requires 2n ` 2 states. Let us consider an RNFA
A1n which only calculates the remainder modulo Landau’s function as in Theorem
3. In that case, swpLpA1nqq “ gp2n ` 2q ´ 1 « e

?
p2n`2q ln p2n`2q. Using the same

approximation, it holds that swpLpAnqq « e2
?
n lnn. It can be shown that for n ě 5,

e2
?
n lnn ą e

?
p2n`2q ln p2n`2q. The new bound is therefore an improvement indeed.

Let us consider the case where the length of every block of symbols b is congruent with
gpmq ´ 1 modulo gpmq for some integer m, not necessarily equal to n. In the following
theorem, we shall generalize the previous result.

Theorem 5. For every pair of integers n and m, there exists a RNFA A over a binary
alphabet such that scpAq “ n`m and swpLpAqq “ gpmqpgpnq ´ 1q.

3.2. RESULTS FOR LARGER ALPHABETS 23

Proof. Our goal is to accept the language L “ tw | w P ta, bu˚, |w|a ” gpnq ´ 1

pmod gpnqquX ppapbgpmqq˚bgpmq´1q˚Ypbgpmqq˚bgpmq´1papbgpmqq˚bgpmq´1q˚q. We can accept
the languages in the intersection using n and m states, respectively. The shortest word
in the resulting language is pabgpmq´1qgpnq´1.

Note that the resulting automaton works correctly due to the fact that during each
pass, the state in which each block of symbols b is entered is uniquely determined and
the same number of passes is necessary and sufficient to recognize every word from
the language L2. Thus, this technique is not necessarily applicable to any choice of
languages. Still, a lower bound approximately equal to pgpnqqk can be achieved for
k-symbol alphabets. To prove this, we shall use the following lemma.

Lemma 6. Let L1 and L2 be languages over an alphabet Σ, let c be a symbol such that
c R Σ and let L1 X L2 “ L. Then pLcq˚ “ pL1cq

˚ X pL2cq
˚.

Proof. Let w be a word from pL1cq
˚XpL2cq

˚. Then, w can be rewritten as v1cv2c . . . vnc
where for every i, it holds that vi P Σ˚. Since c R Σ, it must also hold that vi P L1 and
vi P L2 and thus vi P L1 X L2. Therefore, pL1cq

˚ X pL2cq
˚ Ď pLcq˚.

If w is a word from pLcq˚ instead, it can be rewritten as v1cv2c . . . vnc. Since vi P L “
L1 X L2, it also holds that vi P L1 and vi P L2. Thus, w P pL1cq

˚ and w P pL2cq
˚ and

therefore pLcq˚ Ď pL1cq
˚ X pL2cq

˚.

Furthermore, this lemma can be trivially generalized to intersections of more than
two languages. Note the importance of the symbol c R Σ. In general, it does not hold
that pL1 X L2q

˚ “ L˚1 X L˚2 - consider the case where L1 “ tau and L2 “ taau. Then,
pL1 X L2q “ H, but aa P L˚1 X L˚2 .

Theorem 6. Let n be a fixed integer. For every integer i such that 1 ď i ď n, let
Σi “ ta1, . . . , aiu. Let L1 “ ta

k
1 | k ” gpnq ´ 1 pmod gpnqqu and for every i such that

2 ď i ď n, let Li`1 “ pLiai`1q
˚Li X tw | w P Σ˚i`1, |w|ai`1

” gpnq ´ 1 pmod gpnqqu. Let
us set x “ gpnq. Then for every i such that 1 ď i ď n, swpLiq “ xi´1 and there exists
an RNFA with in states accepting Li.

Proof. We shall use mathematical induction to prove the first part. Clearly, swpL1q “

gpnq´ 1 “ x´ 1 and thus the basis step holds. For the induction step, we may assume
that swpLiq “ xi ´ 1. By the definition of Li`1, we can split any accepted word w

into words from Li separated by individual symbols ai`1. Assuming w is the shortest
word in Li`1, it must contain exactly x ´ 1 symbols ai`1, since a shorter accepted
word would exist otherwise. Thus, w contains exactly x words from Li. Each of those
words must be of length xi ´ 1, or else we could replace it by a shorter word from Li

and obtain a word from Li`1 that is shorter than w. Therefore, the word w contains
xpxi ´ 1q ` x´ 1 “ xi`1 ´ 1 symbols.

24 CHAPTER 3. ROTATING AUTOMATA

In the second part of the proof, we need to show that each language Li can be accepted
by an RNFA with no more than in states. We shall prove this by mathematical induc-
tion as well. In the case of the language L1, n states are clearly sufficient. Thus, the
basis holds. Moreover, we can represent the language L1 as the intersection of several
simpler regular languages which can be accepted by NFAs with n states in total, with
each NFA computing the remainder modulo one of the numbers in the optimal parti-
tion of n. For the induction step, we may assume that Li “ L11 X . . . X L1m and that
the languages L11, . . . , L1m can be accepted by NFAs with in states in total. For each
j such that 1 ď j ď m, let Aj “ pQ,Σi, δ, q0, F q be the NFA accepting the language
L1j. We can modify this automaton by changing its alphabet to Σi`1 and adding the
transitions q0 P δpqF , ai`1q for every qF P F . The modified automaton shall accept
the language pL1jai`1q˚L1j. This holds since the symbol ai`1 can only be read in an
accepting state and the initial state has to be reached immediately afterwards. Note
that the automaton’s number of states remained the same.
It follows from Lemma 6 that pLiai`1q

˚Li “ pL
1
1ai`1q

˚L11X . . .XpL
1
mai`1q

˚L1m. The lan-
guage Li`1 was defined as pLiai`1q

˚LiXtw | w P Σ˚i`1, |w|ai`1
” gpnq´ 1 pmod gpnqqu.

We have already shown that the language pLiai`1q
˚Li is the intersection of languages

accepted by NFAs with in states in total. The language tw | w P Σ˚i`1, |w|ai`1
” gpnq´1

pmod gpnqqu can be represented as the intersection of several regular languages, sim-
ilarly to L1. The difference is that the NFAs count the symbols ai`1 and ignore
the remaining ones. In total, these NFAs require n states. Thus, we can represent
the language Li`1 as the intersection of languages accepted by NFAs A1, . . . Ak with
in` n “ pi` 1qn states in total. We can simulate these NFAs by an RNFA A. During
the j-th pass, we shall simulate the NFA Aj “ pQj,Σi`1, δ, q0, Fjq. If the right end-
marker is reached in a state from Fj, the RNFA shall accept the input if j “ k and
return to the left endmarker and simulate the next NFA if j ă k. If the right endmarker
is reached in a state from QjzFj, the RNFA shall halt and the input is rejected. To
construct the RNFA A, pi` 1qn states are therefore sufficient.

We have ultimately reached a bound similar to the improved one from [6]. The key
difference was that we could not simulate a different RNFA on a part of the input tape.
However, we were able to represent the used languages as the intersections of simpler
regular languages instead. This allowed us to process the blocks “simultaneously”.

Next, we shall study the length of words accepted by rotating automata without a
strict bound on the alphabet size. It turns out that the idea used for 2DFAs in [6] and
presented as Proposition 13 is applicable to RNFAs as well.

Theorem 7. For every m ě 1, there exists an 2m´state RNFA A such that LpAq “
twu and |w| “ 2m ´ 1.

3.2. RESULTS FOR LARGER ALPHABETS 25

Proof. The proof is almost identical to the proof for such lower bound in the two-way
automata case. Let Σ “ ta1, . . . , amu. Let Q “ tqpiqj | i P t1, . . . ,mu, j P t1, 2uu. The
transition function is defined as follows:

δpq, ¢q “ tqu for every q P Q

δpq
piq
0 , aiq “ tq

piq
1 u

δpq
piq
1 , ai`kq “ tq

piq
0 u for every k such that k ą 0 and i` k ď m

δpq
piq
1 , $q “ tq

pi`1q
0 u for every i ă m

δpq
piq
j , ai´kq “ tq

piq
j u for every k such that k ą 0 and i´ k ě 1 and for every j P t1, 2u

The transition function returns an empty set for all the remaining combinations of
states and symbols. The only accepting state shall be qpmq1 . During the i-th pass, the
automaton checks that whenever a symbol ai`k for some k ą 0 or the right endmarker
is encountered, exactly one symbol ai was read since the last greater symbol was read.
Let w0 “ ε and let wi “ wi´1aiwi´1 for all 1 ď i ď m. We can use induction to show
that |wi| “ 2i ´ 1. The base case for w0 clearly holds. Now, if |wk| “ 2k ´ 1, then
|wk`1| “ 2|wk| ` 1 “ 2k`1 ´ 2` 1 “ 2k`1 ´ 1. Next, we shall prove that LpAq “ twmu.
First, we shall show that either LpAq “ H or LpAq “ twmu.
Let w “ cud be a substring of some word from LpAq such that c P t¢, ai`1, . . . , amu,
d P t$, ai`1, . . . , amu and u P ta1, . . . , aiu˚. It can be shown by induction that u “ wi.
This clearly holds when i “ 0. If the computation is accepting, both the symbol c and
the symbol d must be entered in the state qpiq1 during the i-th pass - otherwise, the
transition function would return an empty set of states and the computation would
halt without accepting. This means that u must contain exactly one symbol ai, which
allows us to split u into two substrings over ta1, . . . , ai´1u separated by the symbol
ai and apply the induction hypothesis to them. Since u “ wi´1aiwi´1, it is equal
to wi by its definition. If we set i “ m, then c and d must be the left and right
endmarker, respectively. This implies that wm is the only accepted word. Now, we
need to show that wm P LpAq. For any i, we can use induction to show that wm

can be split into several words wi, separated by symbols greater than ai. Since we wi

contains exactly one symbol ai, the word wm shall be accepted. Thus, LpAq “ twmu

and swpLpAqq “ 2m ´ 1.

Note that the analogous theorem in [6] additionally required m to be odd. The
reason for this is technical: a two-way automaton may accept the input only if its head
is on the right endmarker. In total, m passes are performed and after an even number
of passes, the head is on the left endmarker instead. Since rotating automata perform
each of the passes from left to right, m may be even in our case. As in the 2NFA case,

26 CHAPTER 3. ROTATING AUTOMATA

this yields a lower bound 2tn
2

u ´ 1 « 1.41n for an n-state RNFA. As in [6], this bound
can be slightly improved.

Theorem 8. For every m ě 1, there exists an 3m´state RNFA A such that LpAq “
twu and |w| “ 3m ´ 1.

Proof. The idea of the proof is the same as in Theorem 7, but we set wi as wi´1aiwi´1aiwi´1

and modify the δ-function accordingly.

For n-state automata, the new bound is 3tn
3

u ´ 1 « 1.44n.

3.3 Intersection

Up to this point, we were interested in the length of the shortest word accepted by a sin-
gle automaton. In this section, we shall study a related problem: if A1 is some n-state
RNFA and A2 is somem-state RNFA, how long may the shortest word in LpA1qXLpA2q

be? Note that if the two automata use the same alphabet Σ and LpA2q “ Σ˚, then
LpA1q X LpA2q “ LpA1q and swpLpA1q X LpA2qq “ swpLpA1q. Is it possible to achieve
a lower bound that grows relative to both n and m?
Let us consider the languages L1 “ pa

gpnq
1 q˚a

gpnq´1
1 and L2 “ pL1a2q

˚L1Xtw P ta1, a2u
˚ | |w|a2 ”

gpnq ´ 1 pmod gpnqq from Theorem 6. As shown in the theorem’s proof, we can con-
struct an n-state RNFA A1 such that LpA1q “ pL1a2q

˚L1 and an n-state RNFA A2 such
that LpA2q “ tw P ta1, a2u

˚ | |w|a1 ” gpnq ´ 1 pmod gpnqq. Thus, L2 “ LpA1q XLpA2q

and swpL2q “ gpnq2´1. We can generalize this result to the cases where the automata
have a different number of states.

Theorem 9. For every pair of integers n and m, there exists an n-state RNFA A1 and
an m-state RNFA A2 such that swpLpA1q X LpA2qq “ gpmqgpnq ´ 1.

Proof. Let L1 “ pa
gpnq
1 q˚a

gpnq´1
1 and let L2 “ pL1a2q

˚L1 X tw P ta1, a2u
˚ | |w|a2 ”

gpmq´1 pmod gpmqq. Then, swpL1q “ gpnq´1 and swpL2q “ gpmq´1`gpmqpgpnq´

1q “ gpmqgpnq ´ 1. The language tw P ta1, a2u
˚ | |w|a2 ” gpmq ´ 1 pmod gpmqq

can be accepted by an m-state RNFA. Since the language L1 can be represented as
the intersection of languages accepted by NFAs with n states in total, the language
pL1a2q

˚L1 can be accepted by an n-state RNFA.

If the size of the alphabet is not restricted, this technique can also be applied to
the languages from the Theorem 7 and their modifications from Theorem 8.

Theorem 10. For every pair of integers n and m, there exists an 3n-state RNFA A1

and an RNFA A2 with 3m states such that swpLpA1q X LpA2qq “ 3n`m ´ 1.

3.3. INTERSECTION 27

Proof. Two disjoint alphabets Σ1 and Σ2 are considered. We shall define a homomor-
phism h2 such that h2pcq “ ε for every c P Σ1 and h2pcq “ c for every c P Σ2. Due
to Theorem 8, there exists a singleton language L1 P Σ˚1 such that swpL1q “ 3n ´ 1,
accepted by an RNFA with 3n states. We can accept the language h´12 pL1q by an
RNFA A1 with 3n states as well.
There also exists a singleton language L2 P Σ˚2 such that swpL2q “ 3m ´ 1, also due to
Theorem 8. Moreover, we can represent L2 as the intersection of languages accepted
by NFAs with 3m states in total. Therefore, we can accept the language pL2Σ1q

˚L2

by an RNFA A2 with 3m states. Then, swpLpA1q X LpA2qq “ p3
nqp3m ´ 1q ` 3n ´ 1 “

3n`m ´ 1.

If we set 3n “ n1 and 3m “ m1, we can also construct a single RNFA An,m with
n1 `m1 states such that LpAn.mq “ LpA1q X LpA2q. Then, swpLpAn,mqq « 1.44n1`m1 ,
which is not an improvement compared to Theorem 8.

28 CHAPTER 3. ROTATING AUTOMATA

Chapter 4

Alternating Finite Automata

In this chapter, we shall present our results for the case of alternating automata. As in
the previous chapter, we shall consider both unary and larger alphabets. Afterwards,
we shall compare these results with those achieved for rotating automata. Lastly,
we shall study the length of the shortest words in intersections and complements of
languages recognized by alternating automata.

4.1 Basic Results

First, we shall show a simple way to construct an AFA that accepts the intersection of
two languages accepted by two AFAs.

Lemma 7. Let A1 and A2 be alternating automata with n and m states, respectively.
There exists an alternating automaton A3 with n ` m ` 1 states such that LpA3q “

LpA1q X LpA2q.

Proof. The automaton A3 shall consist of copies of A1 and A2 and an initial non-
accepting universal state. From this state, transitions on ε shall lead to the initial
states of both A1 and A2. Since the new initial state is universal, it follows that A3

accepts the input iff both A1 and A2 accept it.

It can be easily seen that the same construction can be used to describe the in-
tersection of an arbitrary number of languages with the use of only one additional
state.

The Landau’s function appeared in the lower bounds for two-way and rotating au-
tomata over unary alphabets. We shall show that an analogous bound can be achieved
in the case of alternating automata.

Theorem 11. Let n ě 6. There exists an AFA A over a unary alphabet with n states
such that swpAq “ gpn´ 1q ´ 1, where g denotes the Landau’s function.

29

30 CHAPTER 4. ALTERNATING FINITE AUTOMATA

Proof. The idea of the construction is similar to the ones in the settings of two-way
and rotating automata. However, instead of verifying that the input belongs to the
intersection by reading it multiple times, an AFA can do so parallelly. In Figure 4.1,
we show the construction for n “ 9. It holds that gp8q “ 15, which can be achieved
as the least common multiple of 3 and 5. In general, let p1 ` . . .` pk be the partition
of n ´ 1 for which the maximum possible least common multiple is achieved and let
Li “ ta

k | k ” pi ´ 1 pmod piqu. It follows from Lemma 7 that we can construct an
AFA accepting the language Xk

i“1Li with n states.

@

D D D D D D D D

ε

ε

a a

a

a a a a

a

Figure 4.1: The AFA accepting the language L “ ta3n´1 | n ě 1u X ta5n´1 | n ě 1u

Note that the Landau’s function is asymptoticaly equal to ep1`op1qq
?
n lnn.

4.2 Results for Larger Alphabets

A lower bound similar to those achieved for two-way and rotating automata can be
obtained over alphabets of linear size as well. The technique is based on the simple
lower bound described in [6] and Proposition 14.

Theorem 12. For every m ě 1, there exists an AFA A with 3m ` 3 states such that
LpAq “ twu and |w| “ 3m.

Proof. Let Σ “ ta1, . . . , amu Y tbu. The symbol b serves as an endmarker. Let w0 “ ε

and let wi “ wi´1aiwi´1aiwi´1. The AFAA shall accept the intersection ofm languages.
The i-th sub-automaton checks whether whenever a symbol greater than ai or b is
encountered, exactly two symbols ai were read since the last such symbol. Each sub-
automaton needs 3 states to count the symbols. Apart from those 3m states and the
initial state, we also require one accepting state which can be entered if the “endmarker”
b is read in a correct state and a trash state which is entered if any symbol is read after
b. The accepting and trash states can be shared and therefore 3m` 3 states are used

4.2. RESULTS FOR LARGER ALPHABETS 31

in total, including the initial one. The proof that LpAq “ twmbu is analogous to the
ones in [6] and Theorem 7. It can be proved by induction that the length of wi is equal
to 3i ´ 1, since it holds that the length of w0 is 0 “ 30 ´ 1 and then the length of wi

is 3p3i´1 ´ 1q ´ 1 “ 3i ´ 1. The length of the shortest and only accepted word wmb is
thus exactly 3m.

For an n-state AFA, Theorem 12 yields a bound equal to 3tn´3
3

u, which is approxi-
mately 1.44n´3. Note that this technique can not be generalized for counting to num-
bers larger than 3, since the increased state complexity would overweigh the greater
length of the only and thus shortest accepted word. In general, the bound would be
xtn´3

x
u if each word contained x copies of the previous one. However, the maximum of

the function x
1
x is reached when x “ e and the function is decreasing on the interval

pe,8q.

We are also interested in the following problem: how long can the shortest accepted
word be if the alphabet is bounded by some constant, but not unary? In the next
theorem, we shall show that we can achieve a better lower bound than in the case of
unary alphabets. However, this result does not depend on alternation between universal
and existential states; it suffices that succint AFAs can accept the complements of
languages accepted by NFAs.

Theorem 13. Let Σ be an alphabet with 5 symbols. There exists an AFA A over the
alphabet Σ with 25n` 112 states such that the shortest word accepted by A is of length
p2n ´ 1qpn` 1q ` 1.

Proof. Based on Lemma 5, there exists a regular expression E with 25n` 110 symbols
over the alphabet Σ such that the shortest word not recognized by E is of length
p2n ´ 1qpn ` 1q ` 1. We can construct an NFA which accepts the language LpEq
with 25n ` 111 states [17]. Then, we can convert the NFA into an AFA by making
every of its states existential. Finally, we can convert the AFA into another AFA with
state complexity equal to 25n ` 112 which accepts the complement of LpEq. The
final conversion can be achieved by adding an additional trash state to assure the AFA
always reads the entire input, exchaning existential and universal states and exchanging
accepting and non-accepting states.

For an n-state AFA, the bound is thus approximately pn´112q1.028n

25
. For sufficiently

large n, the bound is higher than the one achieved for unary alphabets. We attempted
to improve the lower bound for larger (but still bounded by some constant) alphabets
by generalizing the technique from [8]. The idea was to use k-ary encoding instead of
binary encoding. The resulting alphabet would therefore be of size k2 ` 1. However,
we found out that the number of states of the resulting AFA was too high and the

32 CHAPTER 4. ALTERNATING FINITE AUTOMATA

shortest word would be longer if the additional symbols were ignored. The reason is
that the regular expression on which the AFA is based on is in fact a union of seven
other expressions and the descriptional complexity of some of them grows for larger
alphabets. If the alphabet Z2

k Y t#u was used instead of Z2
2 Y t#u, the complexity of

the resulting expression would be 1
2
pk3p2n` 2q ` k2p4n` 39q ` kp2n` 3q ` 14pn` 3qq

and the length of the shortest word in the complement would be pkn ´ 1qpn` 1q ` 1.
To obtain a simple upper bound on the length of the shortest word, we can convert

the AFA into an NFA and apply the bound from [1] to the resulting automaton.

Theorem 14. For every AFA A with n states accepting a non-empty language, it holds
that swpAq ď 2n ´ 1.

Proof. This upper bound follows from the fact that an equivalent NFA with 2n states
exists. If the accepted language is non-empty, the shortest word can not be longer than
2n ´ 1.

In the case of nondeterministic finite automata, the length of the shortest accepted
word had to be linear, but the length of the shortest word not accepted by the automa-
ton could be exponential with regard to the state complexity. We have already shown
that in the AFA case even the shortest word can be of length ep1`op1qq

?
n lnn. However,

it turns out that if the complement is non-empty, the length of its shortest word is still
only exponential in the worst case.

Theorem 15. Let A be an AFA with n states. If LpAqC is non-empty, then swpLpAqCq ď
2n ´ 1.

Proof. We can construct an n-state AFA accepting the language LpAqC by making
every existential state of the automaton A universal and vice versa and by making its
accepting states non-accepting and vice versa. The upper bound then follows from the
previous theorem.

4.3 Similarity with RNFAs

We have shown that similar bounds can be achieved for both rotating and alternat-
ing automata, despite the differences between these models. The reason is that both
of these models can read the input multiple times, either sequentially or parallelly.
This results in efficient (compared to NFAs) constructions for intersections of multiple
languages and allows us to accept certain languages with relatively few states. The
following two theorems describe the sufficient conditions for both unary and larger
alphabets.

4.4. INTERSECTION 33

Theorem 16. Let M be a formal model and let dc be its measure of descriptional
complexity. Let us assume that for every DFA ADFA, there exists an instance AM

from M such that LpAMq “ LpADFAq and dcpAMq ď scpADFAq. Let A1, . . . , Ak be a
sequence of the model’s instances and let us set

řk
i“1 dcpAiq “ n. Let us assume that

there exists a constant c such that for any choice of A1, . . . , Ak, there exists an instance
A1 such that LpA1q “

Şk
i“1 LpAiq and dcpA1q “ n` c. Then for every integer m, there

also exists an instance A such that dcpAq “ m` c and LpAq “ pagpmqq˚agpmq´1.

Proof. Let p1` . . .`pk “ m be the optimal partition of m from Landau’s function. For
every 1 ď i ď k, we can construct an instance Ai such that dcpAiq “ pi and LpAiq “

papiq˚api´1. Then, we can construct the instance A such that LpAq “
Şk

i“1 LpAiq “

pagpmqq˚agpmq´1 and dcpAq “ m` c.

Theorem 17. Let M be a formal model and let dc be its measure of descriptional
complexity. Let us assume that for every DFA ADFA, there exists an instance AM

from M such that LpAMq “ LpADFAq and dcpAMq ď scpADFAq. Let A1, . . . , Ak be a
sequence of the model’s instances and let us set

řk
i“1 dcpAiq “ n. Let us assume that

there exists a constant c such that for any choice of A1, . . . , Ak, there exists an instance
A1 such that LpA1q “

Şk
i“1 LpAiq and dcpA1q “ n` c. Then for every integer m, there

also exists an instance A such that dcpAq “ m ` c and swpLpAqq “ 3tm´c
3

u, assuming
the size of the alphabet is not bounded.

Proof. If the size of the alphabet is not bounded, the technique from Theorem 12 can
be applied.

4.4 Intersection

In the previous chapter, we studied the potential length of the shortest word in the
intersection of two languages recognized by rotating automata. In this section, we shall
study this problem in the alternating automata case.

We have obtained some basic bounds on the length of the shortest word earlier in
this chapter and presented a way to construct an AFA that accepts the intersection
of two languages in Lemma 7. In combination, these results can be used to obtain
a simple upper bound on the length of the shortest word in the intersection of two
languages.

Theorem 18. Let A1 and A2 be alternating automata with n and m states, respectively.
If their intersection is non-empty, then swpLpA1q X LpA2qq ď 2m`n`1 ´ 1.

34 CHAPTER 4. ALTERNATING FINITE AUTOMATA

Proof. It is possible to construct an AFA with m`n` 1 states accepting the language
LpA1q X LpA2q. This automaton can be subsequently converted into an NFA with
2m`n`1 states.

However, our approach was quite straightforward and several questions remain
open. For example, we could still attempt to find pairs of languages such that the
shortest words in their intersections are close to this bound. The following theorem
holds even if we consider binary alphabets only.

Theorem 19. For every pair of integers n ě 5 and m ě 5, there exists an AFA A1

with n ` 1 states and an AFA A2 with m ` 1 states such that swpLpA1q X LpA2qq “

gpmqpgpnq ´ 1q.

Proof. We can construct an AFA A1 with n ` 1 states such that LpA1q “ tw P

ta, bu˚ | |w|a ” gpnq ´ 1 pmod gpnqqu as in Theorem 11. Similarly, we can construct
an AFA A2 accepting the language papbgpmqq˚bgpmq´1q` with m` 1 states, as shown in
the figure for m “ 8.

@

D D D D D D D D

a

a

b b

a, b

b b b b

a, b

Figure 4.2: The AFA accepting the language L “ papb15q˚b14q`

This result is similar to the one achieved for rotating automata. If we consider the
results of Theorem 13 and use an alphabet of size 6, this bound can be improved.

Theorem 20. For every pair of integers n ě 5 and m ě 5, there exists an AFA A1

with 25n`112 states and an AFA A2 with m`3 states such that swpLpA1qXLpA2qq “

gpmqpp2n ´ 1qpn` 1q ` 1q.

Proof. Let us consider the alphabets Σ1 “ ta, b, c, d, eu and Σ2 “ tfu. The automaton
A1 can be constructed the same way as the automaton from Theorem 13 over the
alphabet Σ1, with additional transitions δpq, fq “ q for every state q. The automaton
A2 can be constructed the same way as the automaton A2 from theorem 19, but with
different alphabets. Then, the shortest word in the intersection contains p2n ´ 1qpn `

1q ` 1 symbols from Σ1, each of them followed by gpmq ´ 1 symbols from Σ2.

4.4. INTERSECTION 35

By encoding the alphabet Σ1 as in [8], a weaker bound can be obtained for ternary
alphabets as well.

A higher bound can be achieved if we consider alphabets of linear sizes.

Theorem 21. For every pair of integers n and m, there exists an AFA A1 with 3n` 3

states and an AFA A2 with 3m` 5 states such that swpLpA1q X LpA2qq “ 3np1` 3mq.

Proof. By combining the technique from Theorem 19 with the languages from Theorem
12, an intersection with the shortest word of length 3np1` 3mq can be obtained.

If we consider an n-state and an m-state automaton instead, the bound is approx-
imately 1.44n`m.
Naturally, the following question arises: is it possible to achieve a bound that is ex-
ponential with regard to both parameters for alphabets of constant size? It can be
shown that this is possible indeed; the key observation is that the AFA obtained by
complementing an NFA uses universal states exclusively.

Theorem 22. For every pair of integers n and m and a 10-symbol alphabet Σ, there
exists an AFA A1 with 25n ` 112 states and an AFA A2 with 25m ` 113 states such
that swpLpA1q X LpA2qq “ pp2

n ´ 1qpn` 1q ` 1qpp2m ´ 1qpm` 1q ` 2q.

Proof. There must exist two alphabets Σ1 and Σ2 such that |Σ1| “ |Σ2| “ 5 and
Σ “ Σ1 Y Σ2. Let h be a homomorphism such that hpcq “ c for every c P Σ1 and
hpcq “ ε for every c P Σ2.
It follows from Theorem 13 that there exists an AFA with 25n` 112 states accepting
a language over Σ1 such that its shortest word is of length p2n ´ 1qpn ` 1q ` 1. Let
us denote this language by L1. There must also exist a language L2 Ď Σ˚2 such that
swpL2q “ p2

m´1qpm`1q`1 which can be accepted by an AFA with 25m`112 states.
Then, we can construct an AFA A1 with 25n` 112 states such that LpA1q “ h´1pL1q

by taking the AFA accepting the language L1 and adding transitions q P δpq, cq for
every state q and every symbol c P Σ2. The automaton A2 shall accept the language
pΣ1L2q

˚. Let A12 “ pQ1D, Q1@,Σ2, δ
1, q10, F

1q be the AFA accepting the language L2. In
Theorem 13, it was shown that 25m ` 112 states are sufficient. Since it was obtained
as the complement of some NFA, it holds that all of its states are universal and thus
Q1D “ H. We can obtain the automaton A2 by certain modifications. First, a new initial
state q0 is added. This state is universal and also accepting. Then, the new transition
function δ is defined based on the function δ1. All existing transitions are preserved,
but new ones are added. For every symbol c P Σ1 and every accepting state q P F 1, it
holds that q10 P δpq0, cq and that q10 P δpq, cq. Thus, the new AFA A2 can be formally
defined as pH, Q1@Ytq0u,Σ1YΣ2, δ, q0, F q where F “ F 1Ytq0u. We need to prove that
LpA2q “ pΣ1L2q

˚. By induction, we can show that every run of the AFA A2 on any

36 CHAPTER 4. ALTERNATING FINITE AUTOMATA

word w from the language pΣ1L2q
˚ finishes succesfully in some accepting state. Since

q0 P F , the basis ε P LpA2q holds. Let w “ w1w2, where w1 P pΣ1L2q
˚ and w2 P Σ1L2.

Suppose that every possible run on the input w1 ends in some accepting state qF . The
first symbol of the word w2 must be a symbol from Σ1. The function δ was constructed
in such a way that the automaton must read the first symbol and change its state to
q10. (While ε-transitions may be possible as well, they may only lead to other accepting
states, otherwise some run on w1 would not be accepting.) The computation therefore
continues from the configuration pq10, w12q, where w12 P L2. It follows from the definition
of the automaton A12 that every possible run ends in an accepting state.
We must also prove that LpA2q Ď pΣ1L2q

˚. Let us consider a word w P LpA2q. If
w ‰ ε, its first symbol must be from Σ1, since no other transitions from q0 are defined.
Thus, if w contains exactly one symbol from Σ1, it must be the first symbol and the
remaining input must be a word from the language L2. Otherwise, a non-accepting
run would exist due to the properties of the AFA A12. We have shown earlier that if
w “ w1w2 and w1 P pΣ1L2q

˚, the AFA A2 must finish each run on the word w1 in
an accepting state. For the sake of contradiction, let us assume that w2 R pΣ1L2q

˚.
Without loss of generality, we may also assume that w1 is the longest prefix of w from
the language pΣ12q

˚. If the first symbol of the suffix w2 is not from Σ1, some possible
run shall not be accepting - otherwise, the prefix w1 would not be the longest one with
the given property. After reading the symbol from Σ1, the state q10 must be reached.
Consider the part of input between the read symbol from Σ1 and either the next such
symbol or the end of the input if the remaining input contains no more symbols from
Σ1. Let us denote this part of input by v. It holds that v P Σ˚2 . However, it must
also hold that v R L2, otherwise we could extend the prefix w1. Then, some run on v
must finish in a non-accepting state. If no symbol from Σ1 follows, this means that it
is possible to read the entire input without finishing in an accepting state. Otherwise,
it holds that δpq, cq “ H and the computation halts unsuccessfuly. In either case, it is
impossible that w P LpA2q and thus a contradiction has been reached. The AFA A2

therefore accepts the language pΣ1L2q
˚.

In the intersection LpA1q X LpA2q, there must be at least p2n ´ 1qpn` 1q ` 1 symbols
from Σ1 and each of those symbols must be followed by a word from L2 of length
p2m ´ 1qpm ` 1q ` 1. Thus, it holds that swpLpA1q X LpA2qq “ pp2n ´ 1qpn ` 1q `

1qpp2m ´ 1qpm` 1q ` 2q.

Chapter 5

Comparison of Models

In this chapter, we shall compare the values that the lsw-function from Definition
12 attains for some sequences based on models. Up to this point, we were primarily
concerned with finding some lower and upper bounds on the length of the shortest
accepted word. However, it is also possible to study the relationships between the (not
necessarily known) optimal values using the various model conversions. Consider the
following example:

Example 7. Let us consider the index set I “ N, an alphabet Σ and two sequences
of finite sets of languages L1 and L2. The n-th set of L1 shall contain exactly the
languages which can be accepted by some RNFA over the alphabet Σ with n states
and the n-th set of L2 shall contain exactly the languages which can be accepted by
some 2NFA over the alphabet Σ with n states. Due to Lemma 5, it must hold that
lswL1pnq ď lswL2p2nq.

Note that this result does not depend on the size of the alphabet Σ - the size can
be unary, bounded by some constant or proportional to the number of states.
We have shown that we can use an upper bound for 2NFAs to obtain an upper bound
for RNFAs and that we can also use a lower bound for RNFAs to obtain a lower bound
for 2NFAs. For this pair of models, the conversion-based bounds are not tighter than
those obtained in Chapters 2 and 3. For unary alphabets, it is known that bounds
based on Landau’s function are achievable for both RNFAs and 2NFAs (see Theorem
3 and [6]). Given n states, the respective lower bounds are gpnq ´ 1 and gpn´ 1q ´ 1.
Although it follows from the conversion-based bound that there exists a 2n-state 2NFA
A1 such that swpLpA1qq ě gpnq ´ 1, there also exists a 2n-state 2NFA A2 such that
swpLpA1qq ě gp2n´1q´1. For alphabets of linear sizes, the approximate lower bound
1.44n is achievable for both types of automata. Thus, the conversion-based bound
does not lead to an improvement either. In the case when the size of the alphabet is
bounded by a constant k, we have shown that an RNFA with kn states can achieve a
lower bound which is a polynomial of degree k with regard to gpnq (see Theorem 6).

37

38 CHAPTER 5. COMPARISON OF MODELS

The conversion-based bound implies that a 2NFA with 2kn states can accept the same
language with the same shortest word. However, it was shown in [6] that kn-state
2DFA can accept the same language and in [14] that an exponential lower bound is
achievable with fixed alphabets.

Next, we shall compare RNFAs and NFAs. The index set I “ N shall be used
throughout the chapter.

Proposition 15. Let LRNFA and LNFA be sequences of finite sets of languages over an
alphabet Σ, with n-th set of LRNFA containing languages accepted by n-state RNFAs
and with n-th set of LNFA containing languages accepted by n-state NFAs. Then
lswLRNFA

pnq ď lswLNFA
p
`

2n
n

˘

q.

Since it is known that lswLNFA
pnq “ n´ 1 regardless of the choice of Σ, this yields

the upper bound for RNFAs from Theorem 1. The function
`

2n
n

˘

´ 1 also grows faster
than the function 1.44n.

Similarly, 2NFAs and NFAs can be compared.

Proposition 16. Let L2NFA and LNFA be sequences of finite sets of languages over
an alphabet Σ, with n-th set of L2NFA containing languages accepted by n-state 2NFAs
and with n-th set of LNFA containing languages accepted by n-state NFAs. Then
lswL2NFA

pnq ď lswLNFA
p
`

n
tn
2

u

˘

q.

The obtained lower bound for NFAs is weaker than the known one for any choice
of alphabet Σ, while the upper bound for 2NFAs is the one from [6].

The AFAs can be compared to NFAs as well.

Proposition 17. Let LAFA and LNFA be sequences of finite sets of languages over
an alphabet Σ, with n-th set of LAFA containing languages accepted by n-state AFAs
and with n-th set of LNFA containing languages accepted by n-state NFAs. Then
lswLAFA

pnq ď lswLNFA
p2nq.

Similarly to previous cases, the upper bound is a known one (see Theorem 14).
It is also possible to compare non-equivalent models, such as NFAs and context-

free grammars. Although context-free grammars are strictly more powerful than finite
automata, it is possible to construct a grammar equivalent with a given NFA. This
way, we can obtain a lower bound on the length of the longest shortest word, although
not necessarily a tight one. We shall make use of the following lemma.

Lemma 8. For every n-state NFA A over a unary alphabet, there exists a context-
free grammar in Chomsky normal form (CNF) with Opn

2
3 q nonterminals such that

LpGq “ LpAqztεu.

39

Proof. The proof can be found in [7].

The definition of CNF in [7] does not allow grammars to produce the empty word.
We may also consider the definition where the initial nonterminal σ does not appear
on the right-hand side of any rule, but the rule σ Ñ ε may be included. Then, we can
construct a grammar G in CNF with pOn

2
3 q nonterminals such that LpGq “ LpAq

Proposition 18. Let LNFA and LCFG be sequences of finite sets of languages over an
alphabet Σ “ tau, with n-th set of LNFA containing languages accepted by n-state NFAs
and with n-th set of LCFG containing languages described by context-free grammars in
CNF with n nonterminals. Then there exists an integer N and a constant c such that
for every n ě N , lswLNFA

pnq ď lswLCFG
prcn

2
3 sq.

Thus, for every sufficiently large n, there exists a grammar G in CNF with rcn
2
3 s

nonterminals such that LpGq “ tan´1u and therefore swpLpGqq “ n´ 1.

40 CHAPTER 5. COMPARISON OF MODELS

Conclusion

In this thesis, we studied how long may the shortest word in a regular language be
with regard to the model’s descriptional complexity. Other researchers have studied
this problem in the cases of nondeterministic finite automata and two-way automata.
Our models of choice were rotating nondeterministic finite automata and alternating
finite automata.
First, we presented the necessary definitions and other preliminaries. Then, we sum-
marized the known results and defined the function lsw. The said function generalizes
the problem to all sequences of finite sets of languages, while still allowing the original
approach based on automata and their number of states. The results of our research
were presented in the latter chapters.
For rotating automata, we achieved lower bounds similar to those known for two-way
automata. If the chosen alphabet is unary, the shortest word may be of length gpnq´1,
where g denotes Landau’s function known from number theory and n denotes the au-
tomaton’s number of states. If an alphabet’s size grows proportionally with the number
of states, the length of the shortest word can be approximately 1.44n. For alphabets
of size k, we achieved a lower bound approximately equal to pgpnqqk by modifying a
technique used for two-way automata in [6]. We have also extended these lower bounds
to the intersection of two languages. We were only able to obtain a simple upper bound
by converting the RNFA into an NFA.
For alternating automata, we largely studied the same problems. We were able to ob-
tain an exponential lower bound even for alphabets with limited size by constructing
an AFA which accepts the complement of a specific regular expression described in
[8]. However, the lower bounds for unary and unbounded alphabets were quite similar
to those obtained for two-way and rotating automata despite the seeming differences
between these models. We were also able to find the explanation for this: these models
are able to process the input multiple times, either sequentially or parallelly. This
makes it possible to accept the languages which can be expressed as the intersection of
several simpler languages with relatively low descriptional complexity.
In the last chapter, we compared several models using the lsw function. In the last
chapter, we obtain some lower bounds using transformations between models. The
resulting bounds were generally weaker than those obtained by studying the individual

41

42 Conclusion

models. This suggests that using the models’ specific properties is necessary in order
to reach optimal results.

Bibliography

[1] Levent Alpoge, Thomas Ang, Luke Schaeffer, and Jeffrey Shallit. Decidability
and shortest strings in formal languages. In Descriptional Complexity of Formal
Systems, 2011.

[2] Jean-Camille Birget. Intersection and union of regular languages and state com-
plexity. Information Processing Letters, 43:185–190, 1992.

[3] Luc Boasson, Bruno Courcelle, and Maurice Nivat. The rational index: A com-
plexity measure for languages. SIAM Journal on Computing, 10:284–296, 1981.

[4] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation.
Journal of the ACM, 28:114–133, 1981.

[5] Marek Chrobak. Finite automata and unary languages. Theoretical Computer
Science, 47:149–158, 1986.

[6] Egor Dobronravov, Nikita Dobronravov, and Alexander Okhotin. On the length
of shortest strings accepted by two-way finite automata. In Developments in Lan-
guage Theory, 2019.

[7] Michael Domaratzki, Giovanni Pighizzini, and Jeffrey Shallit. Simulating finite
automata with context-free grammars. Information Processing Letters, 84:339–
344, 2002.

[8] Keith Ellul, Bryan Krawetz, Jeffrey Shallit, and Ming-Wei Wang. Regular ex-
pressions: New results and open problems. Journal of Automata, Languages and
Combinatorics, 10:407–437, 2005.

[9] A. Fellah, H. Jürgensen, and S. Yu. Constructions for alternating finite automata.
International Journal of Computer Mathematics, 35(1-4):117–132, 1990.

[10] Viliam Geffert and Alexander Okhotin. One-way simulation of two-way finite
automata over small alphabets. In Non-Classical Models of Automata and Appli-
cations, 2013.

43

44 BIBLIOGRAPHY

[11] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages and Computation (2nd ed.). Addison-Wesley, 2000.

[12] Christos Kapoutsis. Removing bidirectionality from nondeterministic finite au-
tomata. In Mathematical Foundations of Computer Science, 2005.

[13] Christos Kapoutsis, Richard Královič, and Tobias Mömke. Size complexity of ro-
tating and sweeping automata. Journal of Computer and System Sciences, 78:537–
558, 2012.

[14] Stanislav Krymski and Alexander Okhotin. Longer shortest strings in two-way
finite automata. In Descriptional Complexity of Formal Systems, 2020.

[15] Michal Kunc and Alexander Okhotin. Reversibility of computations in graph-
walking automata. In Mathematical Foundations of Computer Science, 2013.

[16] Ernst Leiss. The complexity of restricted regular expressions and the synthesis
problem for finite automata. Journal of Computer and System Sciences, 23:348–
354, 1980.

[17] Ernst Leiss. Constructing a finite automaton for a given regular expression.
SIGACT News, 12:81–87, 1980.

[18] Ernst Leiss. Succint representation of regular languages by boolean automata.
Theoretical Computer Science, 13:323–330, 1981.

[19] Jean-Louis Nicolas. Ordre maximal d’un élément d’un groupe de permutations.
Comptes rendus de l’Académie des Sciences, 270:1473–1476, 1970.

[20] Giovanni Pighizzini. Two-way finite automata: Old and recent results. Funda-
menta Informaticae, 126:225–246, 2013.

[21] William J. Sakoda and Michael Sipser. Nondeterminism and the size of two way
finite automata. In Tenth Annual ACM Symposium on Theory of Computing,
1978.

	Introduction
	Preliminaries
	Models of Finite Automata
	Descriptional Complexity
	Mathematical Preliminaries

	A Survey of Known Results
	Formalization of the Problem
	Results for Finite Automata
	Results for Two-Way Automata
	Results for Regular Expressions

	Rotating Automata
	Basic Results
	Results for Larger Alphabets
	Intersection

	Alternating Finite Automata
	Basic Results
	Results for Larger Alphabets
	Similarity with RNFAs
	Intersection

	Comparison of Models
	Conclusion

