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Abstrakt

Veta o štyroch farbách sa dá preformulovať na problém hľadania tokov nad grupou
(Z2 × Z2,+) v kubických planárnych grafoch. Pre multipóly (grafy s trčiacimi hranami)
je s využitím rekurzívneho vzťahu pre tokový polynóm možné vyjadriť počet tokov ako
lineárnu kombináciu počtov tokov v malých, základných multipóloch. V práci skúmame
vlastnosti planárnych multipólov z hľadiska koeficientov tohto výrazu. Venujeme sa
najmä multipólovej súvislosti a počtom tokov s danou hranicou; tieto vlastnosti úzko
súvisia s Vetou o štyroch farbách. V práci tiež prezentujeme algoritmus na výpočet
koeficientov a výsledky výpočtov na kubických planárnych multipóloch do približne
30 vrcholov. Na základe týchto výsledkov odpozorujeme a vyslovíme hypotézu o hra-
nových 3-farbeniach kubických planárnych 5-pólov: Aspoň štvrtina všetkých farbení
každého 5-pólu má tri po sebe idúce trčiace hrany rovnakej farby. Napokon skúmame
vlastnosti prípadného protipríkladu k tejto hypotéze.

Kľúčové slová: multipól, tokový polynóm, planárny graf, Veta o štyroch farbách
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Abstract

The Four color theorem can be reformulated as the problem of finding flows over
the group (Z2 × Z2,+) in cubic planar graphs. Using the recursive relation for the
flow polynomial, it is possible to express the number of flows in a multipole (a graph
with dangling edges) as a linear combination of flow counts in small, basic multipoles.
In this thesis, we study the properties of planar multipoles from the perspective of
the coefficients in this expression. We focus on multipole connectivity and the number
of flows with given boundary values; these properties are closely related to the Four
color theorem. We also present an algorithm for computing the coefficients and the
results of computations on cubic planar multipoles up to approximately 30 vertices.
Based on these results, we observe and formulate a hypothesis about 3-edge-colorings
of cubic planar 5-poles: At least one-quarter of all colorings of each 5-pole contain three
consecutive dangling edges of the same color. Finally, we investigate the properties
of a potential counterexample to this hypothesis.

Keywords: multipole, flow polynomial, planar graph, Four color theorem
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Introduction

Among the vast field of graph theory, the Four color theorem is one of the most famous
and intriguing results. Although proven, there is still much to be studied about the
properties of planar graphs and their colorings. One could even speculate about different,
not yet discovered approaches to proving the theorem. The aim of this thesis is to study
one of such potentially interesting devices.

In the first chapter, we introduce the most important concepts related to our work.
We present the multipole polynomial—the central idea that our work builds upon: the
number of flows expressed as a linear combination of the flow counts in basic multipoles.
We establish the necessary terminology and show a motivational example that illustrates
the utility of the multipole polynomial coefficients.

In the second chapter, we exhibit the effectiveness of the coefficients in capturing
information about the flow counts with given boundary values in a multipole. The
focus of the third chapter is on determining the relationship between coefficient values
and the connectivity properties of multipoles.

To learn more about the empirical values of the coefficients, we present a trivial as
well as an advanced algorithm for computing them in the fourth chapter. We briefly
describe some of the interesting implementation aspects. Thanks to the computation
being efficient in practice, we analyze the computed values in the fifth chapter. We
compare the theoretical constraints on the possible values with those observed in the
computations. We examine the implications of the more strict observed constraints.
Throughout the thesis, we continuously demonstrate the deep connections between our
object of study and the Four color theorem.

1





Chapter 1

Preliminaries

In this chapter, we will introduce the basic terminology and definitions used throughout
this work. We will also present the widely known results that are crucial for our research
and provide a motivational example to justify the usefulness of the introduced concepts.

1.1 Graphs and multipoles

Unless stated otherwise, graphs may contain loops and parallel edges. Graphs that
can contain dangling edges are called multipoles—we will formalize such edges using
special degree-one vertices. Let H = (V,E) be a graph and T be an ordered k-tuple of
distinct degree-one vertices in H. Then the pair G = (H,T ) is called a k-pole. Vertices
in T are called outer vertices, and the remaining vertices are called inner vertices.
Outer edge is an edge incident to an outer vertex and inner edge is an edge incident
to two inner vertices. Note that under this definition, the common notion of a graph
without dangling edges corresponds to a 0-pole (H, ∅). Many terms and operations
that are defined for the underlying graph H can be naturally introduced for the k-pole
G = (H,T ). For instance, the symbol G− e denotes the k-pole obtained by removing
an inner edge e from G. Similarly, G/e denotes the k-pole obtained by contracting an
inner edge e (that is not a loop) in G.

If G = (H,T ) has a planar embedding such that all vertices in T are on the outer
face and their order on the face matches their order in T , then we call the embedding
a planar k-pole. If every inner vertex in a k-pole G has degree 3, then G is called a cubic
k-pole. The importance of cubic planar k-poles will become evident in the following
sections when discussing the Four color theorem.

3
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1.2 Colorings

Under the term m-coloring of a planar graph, we understand an assignment of at
most m distinct colors to the vertices of the graph such that no two adjacent vertices
have the same assigned color. An m-edge-coloring and an m-face-coloring are defined
analogously.

One of the most fundamental results in graph theory is the following [1, ch. 5]:

Theorem 1.1 (Four color theorem). Every bridgeless planar graph admits a 4-face-
coloring.

If we consider the dual graph of a planar graph, we can see that the Four color
theorem is equivalent to the statement that every planar graph without loops admits
a 4-coloring of its vertices.

For any planar graph without loops, adding more edges while preserving planarity
makes the vertex colorability of the graph even more difficult. If a graph has a face with
four or more edges, we can add a diagonal to the face. That implies that if a counterex-
ample to the dual formulation of the Four color theorem (where we are coloring vertices)
existed, we could construct a counterexample that is also a triangulation. The dual
graph to such a counterexample would be a bridgeless cubic planar graph, implying
that proving Theorem 1.1 for bridgeless cubic planar graphs is sufficient to prove the
entire theorem.

It can be shown [1, ch. 6.5] that the existence of a 4-face-coloring of a cubic planar
graph is equivalent to the existence of its 3-edge-coloring. The idea is that if we assign
an orientation to each edge and an element of a 4-element abelian group to each face
color, each edge can be assigned the difference of the two group elements of the faces it
separates (and vice versa; the edge orientation serves to determine which face should
be subtracted from which). Since the adjacent faces have different colors, all edges
obtain a non-zero value, forming a 3-edge-coloring. Favorably, we can use the 4-element
group (Z2 × Z2,+) which has the property that every element is its own inverse. This
renders the orientation of edges irrelevant, as reversing an edge orientation is equivalent
to replacing the assigned group element with its inverse.

All in all, this means that the Four color theorem is equivalent to the statement that
every bridgeless cubic planar graph admits a 3-edge-coloring. Bridgeless cubic graphs
that are not 3-edge-colorable are called snarks, so a Four color theorem counterexample
would be a planar snark.

We can view a part of a larger graph as a k-pole, so the 3-edge-colorability of cubic
planar k-poles is closely tied to the 3-edge-colorability of cubic planar graphs.

An example of these ideas is shown in Figure 1.1. In the following section, we will
introduce the concept of (Z2 × Z2)-flows, which can be considered a generalization of
3-edge-colorings to non-cubic k-poles that we will use throughout this work.
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(0, 0) (1, 1)

(0, 1)

(1, 0)

(1, 1)

(0, 1)

(1, 1) (1, 1)

(1, 0)

(1, 0)

(0, 1)

(1, 0)

(0, 1)

(1, 1)

Figure 1.1: A 3-edge-coloring corresponding to a 4-face-coloring of a cubic planar 3-pole.
Each edge color is obtained as a difference of the two adjacent face colors. Since we
structure the colors as the group (Z2 ×Z2,+) where every element is an involution, the
order in which we subtract the face colors is irrelevant.

1.3 Flows

In general, the term flow network often refers to a directed graph with edge capacities
and an assignment of non-negative real values to the edges that do not exceed the
capacities. In contrast to this, we will focus on a slightly different concept. Instead
of real values, we consider values from a finite abelian group assigned to the edges.
Since assigning the value 0 to an edge effectively ignores it, only the non-zero values
are allowed.

Let G be a finite abelian group. An assignment of orientations and non-zero values
from G to the edges of G = (H,T ) is called a G-chain in G. For a G-chain ϕ in G, the
difference between the sum of values on the edges entering a vertex v and the sum of
values on the edges leaving v is called the boundary of vertex v.

A G-chain ϕ is called a G-flow if every vertex in G that is not in T has a boundary
of 0. The boundary of the G-flow ϕ is a k-tuple whose i-th element is equal to the
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boundary of the i-th vertex in T for all i ∈ {1, . . . , k}. This concept is often referred to
as a nowhere-zero flow, but for simplicity, we will use only the term flow.

As we hinted in the previous section, 3-edge-colorings coincide with (Z2 × Z2)-flows
in cubic graphs, because three Z2×Z2 group elements sum to zero if and only if they are
precisely the elements (0, 1), (1, 0), (1, 1). Throughout this work, we will therefore focus
on (Z2 × Z2)-flows in cubic k-poles, which also allows us to ignore the edge orientation.
Nevertheless, we will point out which parts of our work are also meaningful for other
groups and k-pole classes.

Lemma 1.1 (k-pole boundary sum). Let G be a finite abelian group, G be a k-pole,
and ϕ be a G-flow in G. Then the sum of the k-pole boundary is zero.

Proof. This follows from the fact that the sum s of all inner vertex boundaries is,
by definition, zero. Each inner edge is added to as well as subtracted from s, so it
contributes zero to the sum. Each outer edge is accounted for only once in s. Let t be
the k-pole boundary sum. This gives us t = −s = 0.

123

1111 1122 1221 1212

11123 11231 12311 23111 31112

11213 12131 21311 13112 31121

Figure 1.2: All admisssible boundaries of 3-, 4-, and 5-poles. The color permutations
are not considered.
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For instance, Lemma 1.1 implies that:

• no 1-pole has a (Z2 × Z2)-flow (this also holds for any abelian group G),

• every (Z2 × Z2)-flow in a 2-pole assigns the same value to the two outer edges,

• every (Z2 ×Z2)-flow in a 3-pole assigns exactly the three different non-zero values
to the three outer edges.

We will call k-tuples of non-zero elements from G that sum to zero admissible
boundaries—these are the k-tuples that satisfy Lemma 1.1. All admissible boundaries
for k ∈ {3, 4, 5} are depicted in Figure 1.2. For simplicity, we will refer to the three
edge colors (or the non-zero elements of Z2 × Z2, respectively) as 1, 2, and 3. As the
color permutation is arbitrary, we will usually refer to the class of boundaries equivalent
under color permutation. We will denote the number of admissible boundaries for
a k-pole as σ(k) and the i-th such boundary as β

(k)
i .

1.4 Multipole polynomial

Studying the edge 3-colorability of cubic planar k-poles is effectively equivalent to
studying the number of (Z2 × Z2)-flows in cubic planar k-poles. Let fβ(G) denote the
number of G-flows in a given k-pole G with a given boundary β.

A loop in a G can be assigned any non-zero value. A non-loop edge can be contracted
in G; the resulting k-pole has exactly the same flows as G—the value of the contracted
edge is simply the difference of the two incident vertex boundaries (when undoing the
contraction). There is an exception though—the flows where this difference is zero.
Luckily, these are exactly the flows in a k-pole obtained from G by removing the edge.
This gives us the following well-known formula [1, ch. 6.3]:

Theorem 1.2 (flow polynomial formula). Let G be a k-pole, β its boundary, and e

its inner edge. Then the number of flows fβ(G) over an abelian group G of order m

satisfies the following:

• fβ(G) = (m− 1) · fβ(G− e) if e is a loop,

• fβ(G) = fβ(G/e)− fβ(G− e) otherwise.

This formula naturally translates to a recursive algorithm—each step computes the
numbers of flows in smaller k-poles and combines them accordingly. The base cases
of the recursion are the numbers of flows in k-poles with no inner edges, where outer
edges are gathered in groups of edges incident to a common inner vertex.

Definition 1.1 (basic k-pole). A k-pole G is called basic if it has no inner edges.
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The number of flows is traditionally computed for graphs (i.e. 0-poles), where the
base case is a graph with no edges, which has trivially a single empty flow. If we
consider the value m a parameter, the resulting expression given by the recursion in
Theorem 1.2 is a polynomial in m. This polynomial is commonly known as the flow
polynomial. It can also be extended to a general concept called Tutte polynomial [2, 3].

However, if we fix m to a specific value (4 in our case) and consider the basic k-poles
as symbols, the recursive computation results in fβ(G) being expressed as a linear
combination of the symbols (since this holds for both the base case and the recursive
step).1

Given that each step of the recursion operates on a single edge, it should be obvious
that the coefficients of the linear combination are unique irrespective of the order in
which the edges are processed. The boundary β then determines the numbers of flows
in the basic k-poles—each one is either 0 or 1, depending on whether β is compatible
with the basic k-pole according to Lemma 1.1 for each group of adjacent outer edges.

The recursive formula gives the same linear combination of symbols for any admis-
sible boundary β. Selecting a specific boundary thus means transforming the linear
combination of basic k-poles into a single numeric constant (the number of flows with
the given boundary).

Let us call k-poles with no degree-one inner vertices proper k-poles. Since a non-
proper basic k-pole is not compatible with any boundary, its coefficient is irrelevant.
We can, therefore, restrict our attention to proper basic k-poles only. Furthermore, the
recursion preserves planarity. Even though these observations hold in general, we will
focus on the planar case. The proper planar basic k-poles for small values of k are
shown in Figure 1.3. Since in the group Z2 × Z2, a degree-two vertex can be smoothed
out (the two incident edges must be assigned the same value in every flow), we will
consider only basic k-poles with no degree-two inner vertices to eliminate representing
the same basic k-pole in several different ways.

We will denote the number of proper planar basic k-poles as π(k) and the i-th such
k-pole as P (k)

i . For small values of k, we introduced unique names for the basic k-poles,
as shown in Figure 1.3.

1At this point, it should be clear why introducing flows instead of discussing plain edge colorings is
useful: the recursive formula does not hold for edge colorings. Since we are interested in the coefficients
of basic k-poles, flows serve as a good generalization of edge colorings, because they behave well under
the recursive formula, down to the base case.
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A(3)

A(4) B
(4)
1 B

(4)
2

A(5) B
(5)
1 B

(5)
2 B

(5)
3 B

(5)
4 B

(5)
5

A(6)

B
(6)
1 B

(6)
2 B

(6)
3 B

(6)
4 B

(6)
5 B

(6)
6

C
(6)
1 C

(6)
2 C

(6)
3

D
(6)
1 D

(6)
2 D

(6)
3

E
(6)
1 E

(6)
2

Figure 1.3: All proper planar basic 3-, 4-, 5-, and 6-poles.
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Let us now condense the above observations in a more formal way.

Definition 1.2 (multipole polynomial). Let G be a planar k-pole. If we recursively
apply Theorem 1.2 until we reach the basic k-poles and combine the results, we obtain
a linear combination of the proper planar basic k-poles P

(k)
i for i ∈ {1, . . . , π(k)} with

integer coefficients. We will call this expression the multipole polynomial of G and the
tuple of coefficients the multipole polynomial coefficients of G.

Theorem 1.3. Let G be a planar k-pole and (c1, . . . , cπ(k)) be its multipole polynomial
coefficients. Then for every admissible boundary β, the number of flows fβ(G) over the
group (Z2 × Z2,+) is equal to

π(k)∑
i=1

ci · fβ(P (k)
i )

where fβ(P
(k)
i ) is either 0 or 1 depending on whether β is compatible with the basic

k-pole P
(k)
i .

Example 1.1. An illustration of this concept for β = 1221 is shown in Figure 1.4. The
multipole polynomial coefficients of the example 4-pole are (0, 1, 1).

= 0 · + 1 · + 1 ·

= 0 · + 1 · + 1 ·

= 0 · 1 + 1 · 1 + 1 · 0 = 1

Figure 1.4: An illustration of the multipole polynomial.

According to our knowledge, the idea of the multipole polynomial was first described
and utilized by Kochol [4] and subsequently used in several more papers [5, 6, 7] or
touched upon indirectly [8, lem. 4.2]. Similar methods were also applied in a slightly
different context during the study of chromatic polynomials [9, 10].

Kochol used the multipole polynomial with the group (Z5,+) to determine some
properties of a counterexample to the 5-flow conjecture—another famous problem
in graph theory. In our work, we will study the power of the multipole polynomial
coefficients in relation to the Four color theorem.
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1.5 Motivation

Let us illustrate the usefulness of the multipole polynomial. Consider the following
example. Let G be a cubic planar 4-pole which has:

an unknown number of 1111 colorings: 0 ≤ f1111(G) (1.1)

no 1221 colorings: 0 = f1221(G) (1.2)

no 1122 colorings: 0 = f1122(G) (1.3)

a non-zero number of 1212 colorings: 0 < f1212(G) (1.4)

As we observed in the previous chapter, there exist constants a, b1, b2 such that the
following equation holds for every boundary β of G:

fβ(G) = a · fβ(A(4)) + b1 · fβ(B(4)
1 ) + b2 · fβ(B(4)

2 )

For each boundary β, we can evaluate fβ for each of the basic 4-poles like in
Example 1.1—its value is either 0 or 1, depending on whether the boundary is compatible
with the basic 4-pole. Combined with eqs. (1.1) to (1.4), this gives us the following
system of constraints on the constants a, b1, b2:

β = 1111 : 0 ≤ a+ b1 + b2 (1.5)

β = 1221 : 0 = a+ b1 (1.6)

β = 1122 : 0 = a+ b2 (1.7)

β = 1212 : 0 < a (1.8)

From eqs. (1.6) and (1.7) we have b1 = b2 = −a, which gives a+b1+b2 = a−a−a =

−a < 0, from eq. (1.8). However, this contradicts eq. (1.5). As a result, the system of
constraints is inconsistent, which means that no 4-pole with properties (1.1) to (1.4)
exists.

The same conclusion can be reached by a different argument, which uses the concept
of Kempe chains. Let G be a 3-edge-colored cubic planar 4-pole with outer vertices
u and v. A 1-2 Kempe chain between u and v is a path that starts at u, ends at v, and
alternates between colors 1 and 2.

Let v1, v2, v3, v4 be the outer vertices of a cubic planar 4-pole G that satisfies eqs. (1.1)
to (1.4). Suppose that it is colored by one of the 1212 colorings. If we start at v1 and
follow edges of color 1 and 2 alternately, we will eventually reach another outer vertex,
since each inner vertex has exactly one edge of each color, so we can always continue
the path until we reach a different outer vertex. The resulting path is a 1-2 Kempe
chain p.

Suppose that the ending vertex of p is v2. In that case, we can flip the colors of p
and obtain a valid 2112 coloring (that is, a coloring of type 1221), which contradicts
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eq. (1.2). Similarly, if the ending vertex of p is v4, we can flip the colors of p and obtain
a valid 2211 coloring (that is, a coloring of type 1122), which contradicts eq. (1.3).
Therefore, p has to end at v3. Equivalently, if we construct a 1-2 Kempe chain q starting
at v2, we arrive at the conclusion that q has to end at v4.

Given the order of vertices v1, v2, v3, v4 in the outer face of G, paths p and q must
intersect. As G is planar, no two edges can cross each other, so p and q must share a
vertex. However, this contradicts a simple observation that apart from the edges in p,
the vertices of p are incident only with edges of color 3, so no edge in q can be incident
with a vertex in p, and therefore p and q cannot share a vertex. This contradiction
shows that no cubic planar 4-pole with properties (1.1) to (1.4) exists.

The multipole polynomial method results in the same outcome but does not require
the use of such a powerful structural concept as Kempe chains. This demonstrates that
the multipole polynomial coefficients carry significant information about the structure
of a k-pole.



Chapter 2

Coefficient counts

In the previous chapter, we examined four constraints on the flow counts for the four
admissible boundaries (not taking color permutation into account) of a cubic planar
4-pole. These four expressions utilized only three variables—the coefficients a, b1, b2.
A natural question arises: Can the numbers of flows for all admissible boundaries of
a k-pole be condensed into a smaller number of coefficients for all possible values of k?
Let us answer this question in this chapter by inspecting the values of the two quantities.

The admissible boundaries of a k-pole can be matched to 4-edge-colorings of a
k-cycle: We can construct an admissible boundary by choosing elements equal to the
difference of the adjacent edge colors in any given 4-edge-coloring of a k-cycle, and
vice-versa. If we consider the classes of admissible boundaries and 4-edge-colorings up
to color permutation, we can see that this mapping is bijective. The number σ(k) of
the admissible boundaries is thus equal to the number of 4-edge-colorings of a k-cycle,
which corresponds to the OEIS sequence A006342 [11]. It can be shown [12] that

σ(k) =


3k−1+5

8
if k is even,

3k−1−1
8

if k is odd.

Asymptotically, σ(k) ∼ 3k

24
.

On the other hand, proper planar basic k-poles correspond to non-crossing partitions
of k that contain no singletons. Their counts π(k), also known as Riordan numbers, were
studied in several different contexts and are assigned the OEIS sequence A005043 [13].
Even though the sequence has no explicit formula, it can be described [14] by the
recurrent relation

π(k + 1) =
k

k + 2

(
2π(k) + 3π(k − 1)

)
.

The sequence’s asymptotical behavior [13] is π(k) ∼ 3k

k3/2 8
9

√
3π

. This shows that π(k)
is asymptotically smaller than σ(k). It is also smaller even for small values of k, as
shown in Table 2.1.

13
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k σ(k) π(k)

2 1 1
3 1 1
4 4 3
5 10 6
6 31 15
7 91 36
8 274 91
9 820 232

10 2461 603
11 7381 1585
12 22144 4213
13 66430 11298
14 199291 30537

Table 2.1: Comparison of the number σ(k) of admissible boundaries of k-poles and the
number π(k) of proper planar basic k-poles for small values of k [11, 13].

It is not difficult to prove the strict inequality between the two quantities:

Theorem 2.1. For all k ≥ 4, the number of admissible boundaries of a k-pole is strictly
greater than the number of proper planar basic k-poles, σ(k) > π(k).

Proof. Given the formula for σ(k), we see that σ(k) ≥ 3k

24
− 1

8
.

For π(k), we will prove the following pair of inequalities for k ≥ 3 by induction:

3
k

k + 2
π(k) ≤ π(k + 1) ≤ 3π(k)

This holds for the base case k = 3, as 9
5
≤ 3 ≤ 3. Let us prove the induction step for

k ≥ 4, while assuming the inequalities for k − 1:

3
k − 1

k + 1
π(k − 1) ≤ π(k) ≤ 3π(k − 1)

Using the recurrent relation for π(k), the induction hypothesis can be written as:

3 k
k+2

π(k) ≤ k
k+2

(
2π(k) + 3π(k − 1)

)
≤ 3π(k)

3kπ(k) ≤ 2kπ(k) + 3kπ(k − 1) ≤ (3k + 6)π(k)

π(k) ≤ 3π(k − 1) ≤ k+6
k
π(k)

The left inequality is satisfied by the induction assumption. The induction assumption
also gives us 3π(k − 1) ≤ k+1

k−1
π(k), so showing that k+1

k−1
π(k) ≤ k+6

k
π(k) is sufficient to
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prove the induction step. This is equivalent to k(k + 1) ≤ (k + 6)(k − 1) and simplifies
to 6 ≤ 4k, which is of course true for all k ≥ 4.

This grants π(k + 1) ≤ 3π(k) for all k ≥ 3. When applied i times consecutively,
this translates to π(k + i) ≤ 3iπ(k) for all i ≥ 1. Specifically, π(k) ≤ 3k−3π(3) = 3k

27
for

k ≥ 4. Putting together with the inequality for σ(k), we get:

π(k) ≤ 3k

27
<

3k

24
− 1

8
≤ σ(k)

The central inequality is equivalent to 27 < 3k, which holds for all k ≥ 4.

The presented result can be rephrased as follows: If we think of the vector
(f

β
(k)
1
(G), . . . , f

β
(k)
σ(k)

(G)) as coordinates of a planar k-pole G in a σ(k)-dimensional

space, the subspace of all planar k-poles is actually of lower dimension π(k), since
each value fβ(G) =

∑π(k)
i=1 cifβ(P

(k)
i ) is entirely determined by a subset of the π(k)

coefficients ci.
However, it is important to note that this is only true for planar k-poles. The number

of all (not necessarily planar) proper basic k-poles grows superexponentially [15], so the
coefficients are not an efficient way to represent the flow counts for given boundaries in
general. The property is, therefore, an interesting feature arising from planarity.

Since the flow counts for the admissible boundaries are determined by a smaller
number of coefficients, we could ask whether the transformation is reversible, i.e.
whether the coefficients can be unambiguously reconstructed from the flow counts. Let
us assemble a matrix M (k) with σ(k) rows and π(k) columns, where the element M (k)

i,j

is either 0 or 1, depending on whether the boundary β
(k)
i is compatible with the basic

k-pole P
(k)
j . Our question can then be equivalently stated as whether the matrix M (k)

has the full rank, π(k). We did not manage to prove this property for all values of k,
but we verified it for k ≤ 13 by directly evaluating the matrix rank. The SageMath
code used for the verification is available in Appendix A. For k = 14, the matrix has
σ(14) · π(14) > 6 · 109 elements, hitting the memory limit of a personal computer.





Chapter 3

Multipole connectivity

In this chapter, we will investigate the relationship between the multipole polynomial
coefficient values and the connectivity properties of a cubic planar multipole.

Let p, r be non-negative integers and let G = (H,T ) be a planar (p + r)-pole
such that T = (u1, u2, . . . , up, v1, v2, . . . , vr). If there exists a path in G connecting a
vertex from {u1, . . . , up} to a vertex from {v1, . . . , vr}, we say that the multipole G is
(p, r)-connected. Otherwise, it is (p, r)-disconnected.

Suppose that G is a (p, r)-connected (p + r)-pole. Let U, V be a partition of the
vertices such that {u1, . . . , up} ⊆ U and {v1, . . . , vr} ⊆ V . Let C be the set of edges
that have one endpoint in U and the other in V . Clearly, there is no path from U to V

in G− C. If the set C contains only inner edges, it is called a (p, r)-c-cut of G where
c = |C|. A (p, r)-1-cut C is called a (p, r)-bridge. A (p+ r)-pole is (p, r)-2-connected if
it is (p, r)-connected and has no (p, r)-bridge.

Note that a (0, k)-disconnected k-pole G is not interesting: It consists of a 0-
pole Z disconnected from the rest of the k-pole, G′. The flows in Z and G′ are
independent. Let cZ be the number of flows in Z and (c′1, . . . , c

′
π(k)) be the multipole

polynomial coefficients of G′. Thanks to independence, the coefficients of G must be
(cZ · c′1, . . . , cZ · c′π(k)). The component Z thus poses only as a multiplicative factor to
the coefficients of G′.

If a k-pole G contains a (0, k)-bridge e, then e separates two parts of G: let Z be
the one with no outer edges. If we consider e an outer edge of Z, then Z forms a 1-pole,
which does not contain a flow (by Lemma 1.1). In other words, if we process all inner
edges in Z according to Theorem 1.2, then focus our attention on any single of the
resulting computation branches, and finally process the edge e in the remaining G′, the
result of fβ(G′/e)− fβ(G

′ − e) will be a zero polynomial (because G′/e and G′ − e are
equivalent with respect to the rest of the computation). Therefore, the coefficients of G
must all be zeros. We will call such a bridge (i.e. an inner edge separating a part of the
k-pole with no outer vertices) a trivial bridge.

17
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Similarly to the (0, k)-disconnected k-poles, a k-pole G with a (1, k − 1)-bridge is
not interesting: The bridge separates a 2-pole Z from a smaller k-pole G′. Lemma 1.1
grants that any flow in G assigns the same value to the two outer edges in Z. The flows
in Z and G′ are independent (apart from the choice of the bridge value). Again, the
number of flows in Z (for a fixed bridge value) poses only as a multiplicative factor to
the coefficients of G′.

Finally, let e1, . . . , ep, h1, . . . , hr be the outer edges incident with the outer vertices
u1, . . . , up, v1, . . . , vr. We will call a boundary (p, r)-balanced if the values assigned to
e1, . . . , ep sum to zero (thanks to Lemma 1.1, this is equivalent to the values assigned
to h1, . . . , hr summing to zero). Otherwise, the boundary is (p, r)-unbalanced. A flow is
(p, r)-balanced if its boundary is (p, r)-balanced.

We are now equipped to formulate the main results of this chapter.

3.1 (p, r)-connectedness indicator

Theorem 3.1. Let p, r be positive integers and G be a cubic planar (p+ r)-pole without
a trivial bridge. Then G is (p, r)-connected if and only if the sum I of flow counts fβ(G)

over all (p, r)-unbalanced admissible boundaries β is non-zero.

Proof. Assume that p, r ≥ 2. We will prove both implications by contradiction. Suppose
that G is (p, r)-connected and I = 0. Let e1, . . . , ep, h1, . . . , hr be the outer edges incident
with the outer vertices u1, . . . , up, v1, . . . , vr. Let us add two vertices u, v to G and the
following edges, together forming a cubic planar graph H ′:

{(u1, u2), (u2, u3), . . . , (up−1, up)}

∪ {(v1, v2), (v2, v3), . . . , (vr−1, vr)}

∪ {(u1, u), (up, u), (v1, v), (vr, v), (u, v)}

u v

u1 u2 u3 v1 v2 v3 v4

G

Figure 3.1: An illustration of the (3, 4)-connectedness extension. The original 7-pole is
labeled G; the vertices and the edges of the extension are in blue.

The multipole extension is illustrated in Figure 3.1. Assume that there exists a
flow ϕ in the extended planar graph H ′ and let s and t be the sums of values assigned
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to the edges e1, . . . , ep and h1, . . . , hr, respectively. Since I = 0, the flow ϕ must be
(p, r)-balanced in the original G, i.e. s = t = 0. If x is the flow value assigned to the
edge (u, v), we can restrict our focus to the (p+1)-pole formed by the cycle u1, . . . , up, u

with the outer edges e1, . . . , ep, (u, v). Lemma 1.1 then implies that s + x = 0 (and
similarly, t+ x = 0). Combined with s = 0, we get x = 0, which is a contradiction with
the definition of a flow. In other words, the extension admits only (p, r)-unbalanced
flows, whereas G admits only (p, r)-balanced flows.

This means that no flow ϕ exists in H ′. We know that G contains no trivial bridge.
Any other bridge in G must be in a path connecting two outer vertices. If the two
vertices are ui, vj , then they are connected also by the path ui, . . . , up, u, v, v1, . . . , vj in
the extension, thus the bridge is no longer a bridge in H ′. Similarly, if the two outer
vertices are ui, uj (or vi, vj , respectively), they are connected also by the path ui, . . . , uj

in the extension. Therefore, H ′ is a bridgeless cubic planar graph with no flows, which
contradicts the Four color theorem.

On the other hand, suppose that G is (p, r)-disconnected and I > 0. Then G can
be regarded as the union of a separated p-pole G1 and r-pole G2. Lemma 1.1 then tells
us that the G1 boundary must sum to zero, and the G2 boundary must sum to zero as
well. Every flow in G is thus (p, r)-balanced, which contradicts I > 0.

Finally, let us deal with the small cases. If p = 1, we can identify u with u1 in
the extension and the rest of the argumentation holds as before. The r = 1 case is
equivalent.

Theorem 3.1 is interesting in our context because each value fβ(G) is a sum of
a subset of multipole polynomial coefficients (the ones that correspond to the basic
k-poles compatible with β), as stated in Theorem 1.3 and illustrated in Section 1.5. For
the given values p, r, the indicator I is thus a fixed linear combination of the multipole
polynomial coefficients.

Example 3.1. Let us provide an example for p = r = 2. As shown in Section 1.5, the
numbers of flows with the boundaries 1111, 1221, 1122, and 1212 in a cubic planar
4-pole G with the multipole polynomial coefficients a, b1, b2 are as follows:

f1111(G) = a+ b1 + b2

f1221(G) = a+ b1

f1122(G) = a+ b2

f1212(G) = a

Only the boundaries 1221 and 1212 are (2, 2)-unbalanced. The indicator value can
therefore be expressed as I = f1221(G) + f1212(G) = 2a + b1. The result is that G is
(2, 2)-connected if and only if 2a+ b1 > 0.
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Corollary 3.2. The Four color theorem is equivalent to the non-existence of a (2, 2)-
connected cubic planar 4-pole without a trivial bridge that has 2a+ b1 = 0.

Proof. If the Four color theorem holds, then the other statement is true by Theorem 3.1.
If we had a planar snark (a counterexample to the Four color theorem), we could

select any edge (u, v), remove it together with the vertices u and v, and consider the
adjacent edges the outer edges of the remaining 4-pole. Since (u, v) could not be a
bridge in the snark, the resulting 4-pole must be (2, 2)-connected. The value of 2a+ b1

would have to be zero, because otherwise, the 4-pole would have a (2, 2)-unbalanced
flow, which contradicts the uncolorability of the snark.

Our proof of Theorem 3.1 relies on the Four color theorem. However, Corollary 3.2
shows that managing to prove Theorem 3.1 without relying on the Four color theorem
would result in an alternative proof of the Four color theorem.

Theorem 3.1 can also be refined into another, perhaps even more interesting state-
ment:

Theorem 3.3. Let p, r be positive integers and G be a cubic planar (p+ r)-pole without
a trivial bridge. Then G is (p, r)-connected if and only if at least one of its multipole
polynomial coefficients corresponding to (p, r)-connected basic (p+ r)-poles is non-zero.

Proof. If G is (p, r)-connected, then according to Theorem 3.1, there must be at least
one (p, r)-unbalanced boundary β that yields non-zero fβ(G). Let B be the set of basic
(p+ r)-poles that are compatible with β. The value of fβ(G) is a sum of the coefficients
corresponding to the elements of B, so at least one of these coefficients must be non-zero.
Furthermore, none of the basic (p+ r)-poles in B can be (p, r)-disconnected, since it
would only be compatible with (p, r)-balanced boundaries, as per Lemma 1.1. Therefore,
it can be concluded that one of the coefficients corresponding to (p, r)-connected basic
(p+ r)-poles in B must be non-zero.

On the other hand, if G is (p, r)-disconnected, the recursive computation defined by
Theorem 1.2 can never reach a (p, r)-connected basic (p+ r)-pole, resulting in all the
corresponding coefficients being zero.

In the context of Example 3.1, the (2, 2)-connected basic 4-poles are A(4) and B
(4)
1

(note that in Figure 1.3, the outer edges e1, e2 correspond to the upper ones and the
outer edges h1, h2 correspond to the lower ones). Theorem 3.3 then states that a cubic
planar 4-pole G without trivial bridges is (2, 2)-connected if and only if one of the
coefficients a, b1 is non-zero.

Planarity is, however, necessary for these results to hold: Let us consider a Petersen
graph where an edge is removed, and the four adjacent edges are considered the outer
edges of a 4-pole, like in Figure 3.2. The coefficients of this 4-pole are a = 0, b1 = 0, b2 = 2
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(note that there is also one non-planar basic 4-pole, but its coefficient is 0 in this case).
This 4-pole is (2, 2)-connected, but the indicator I = 2a+ b1 is zero, so Theorem 3.1
does not hold (and neither does Theorem 3.3). This example shows that the indicator
is indeed valid only for planar multipoles.

Figure 3.2: A non-planar counterexample to Theorem 3.1.

3.2 (p, r)-2-connectedness indicator

Theorem 3.4. Let p, r be integers greater than one and G be a cubic planar (p, r)-
connected (p+ r)-pole without a trivial bridge. Then G is (p, r)-2-connected if and only
if the sum J of flow counts fβ(G) over all (p, r)-balanced admissible boundaries β is
non-zero.

Proof. Suppose that G is (p, r)-2-connected and J = 0. Let e1, . . . , ep, h1, . . . , hr be
the outer edges incident with the outer vertices u1, . . . , up, v1, . . . , vr. Let us add the
following edges to G, forming a cubic planar graph H ′:

{(u1, u2), (u2, u3), . . . , (up−1, up), (up, u1)}

∪ {(v1, v2), (v2, v3), . . . , (vr−1, vr), (vr, v1)}

u1 u2 u3 v1 v2 v3 v4

G

Figure 3.3: An illustration of the (3, 4)-2-connectedness extension. The original 7-pole
is labeled G; the edges of the extension are in blue.

The extension corresponds to a p-cycle and an r-cycle, as illustrated in Figure 3.3.
Assume that there exists a flow ϕ in the extended planar graph H ′ and let s and t be
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the sums of values assigned to the edges e1, . . . , ep and h1, . . . , hr, respectively. Since
J = 0, the flow ϕ must be (p, r)-unbalanced in the original G, i.e. s ̸= 0. If we consider
the added p-cycle a p-pole with outer edges e1, . . . , ep, Lemma 1.1 implies that s = 0,
which is a contradiction (similar reasoning can be applied to t). In other words, the
extension admits only (p, r)-balanced flows, whereas G admits only (p, r)-unbalanced
flows.

This means that no flow ϕ exists in H ′. We know that G contains no trivial bridge
and no (p, r)-bridge. Any other bridge in G must be in a path connecting two outer
vertices ui, uj (or symmetrically, vi, vj). Then they are connected in H ′ also by the path
ui, . . . , uj in the extension. Therefore, H ′ is a bridgeless cubic planar graph with no
flows, which contradicts the Four color theorem.

On the other hand, suppose that G is not (p, r)-2-connected and J > 0. Then G

contains a (p, r)-bridge e, where e separates a (p+ 1)-pole G1 from an (r + 1)-pole G2.
Let ϕ be a (p, r)-balanced flow in G, x the value it assigns to e and s the sum of the
values assigned to the edges e1, . . . , ep. Lemma 1.1 for G1 implies that s+ x = 0, but
since ϕ is (p, r)-balanced, s = 0, which results in x = 0, a contradiction.

Like in the previous section, the indicator J can be expressed as a fixed linear
combination of the multipole polynomial coefficients for given values p, r. Continuing
the Example 3.1, the only (2, 2)-balanced boundaries are 1111 and 1122. The indicator
value is therefore J = f1111(G) + f1122(G) = 2a+ b1 + 2b2, so a (2, 2)-connected cubic
planar 4-pole G without trivial bridges is (2, 2)-2-connected if and only if 2a+b1+2b2 > 0.

Unfortunately, an equivalent of Theorem 3.3 for (p, r)-2-connectedness cannot be
formulated, since the fact that a boundary is (p, r)-balanced does not identify a property
of basic (p+ r)-poles, in contrast to the case of Theorem 3.3.



Chapter 4

Computation

As a part of this work, we will explore the computational aspect of determining the
multipole polynomial coefficients. We will describe basic recursion with memoization,
as well as a more advanced general approach that exploits the multipole structure to
enable more efficient computation. We will also briefly compare the performance of
both algorithms on cubic planar multipoles.

4.1 Naive algorithm

The simplest solution is computing the coefficients recursively, utilizing the recursive
formula laid out in Theorem 1.2 directly. This would, unfortunately, result in an
exponential number of recursive calls, which is infeasible even for a few tens of inner
edges, regardless of the k-pole structure. As a remedy, we can utilize memoization to
store the coefficients for smaller k-poles during the computation to reuse them later.
This may be very efficient if the smaller k-poles that appear during the recursion are
often repeated. On the other hand, if repetition is rare, we gain little from this approach
and introduce an increased memory consumption.

4.2 Sequential algorithm

If we want to avoid the exponential branching of the naive algorithm, we can compute
the coefficients in a sequential manner—one vertex at a time. The algorithm computes
the coefficients of a k-pole G in several steps. In each step, the following procedure is
performed:

1. A single inner vertex v is selected.

2. The vertex v is cut off from the rest of the k-pole by removing all its incident
outer edges Ov and converting all its incident inner edges Iv to new outer edges.
This way, a smaller k′-pole G′ is created.

23
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3. The multipole polynomial of G′ is computed recursively.

4. The vertex v is attached to the basic k′-poles in the multipole polynomial of G′,
transforming them into small (possibly non-basic) k-poles.

5. The multipole polynomials of the small k-poles are computed by applying Theo-
rem 1.2 to the edges Iv. Putting them together, we obtain the multipole polynomial
of G.

An example of the sequential algorithm computation step is illustrated in Figure 4.1.
The last step computes the final coefficients as a = 2a′ + b′1, b1 = 0, and b2 = a′ + 3b′2.

v

2.−→ 3.
= a′ · + b′1 · + b′2 ·

↓ 4.

a′ · + b′1 · + b′2 ·

= 5.

2a′ · + a′ · + b′1 · + 3b′2 ·

=

(2a′+b′1) · + 0 · + (a′+3b′2) ·

Figure 4.1: An illustration of the sequential algorithm computation step.

There are several aspects of the algorithm we need to comment on. Most importantly,
the time complexity is not necessarily subexponential, despite the sequential nature
of the algorithm. The reason is that if |Iv| > |Ov|, we obtain k′ > k, and since the
number of basic k-poles grows exponentially with k (see Chapter 2), the recursive call
may return many different basic k′-poles (in general, exponential in the number of outer
edges), and processing them may be the time complexity bottleneck.

However, this property is also the strength of the algorithm. We can utilize the
value |Iv| − |Ov| as a vertex selection heuristic. Selecting the vertex with the lowest
|Iv| − |Ov| value in each step, we can expect that k will grow slowly (or even decrease)
during the computation, restricting the time complexity greatly. This is particularly
true if we consider only cubic k-poles: If we assume that there is at least a single outer
edge, cutting off its incident inner vertex will either decrease k by 1 (if the vertex is



4.2. SEQUENTIAL ALGORITHM 25

incident with two outer edges) or increase k by 1 (if the vertex is incident with a single
outer edge). It is reasonable to expect that we will typically encounter the former case
often enough to observe a satisfactory performance.

We can view the sequential approach as an improved version of the naive algorithm,
where we are contracting and deleting a batch of adjacent inner edges at each step,
instead of a single edge. Note that the sequential algorithm principle is also applicable
to other commutative groups, not only Z2 × Z2.

In the rest of this section, we will describe some of the further improvements to the
sequential algorithm.

Vertex selection heuristic refinement

We stated that we select the vertex that contributes the least outer edges when cut
off, i.e. the vertex v with the lowest |Iv| − |Ov| value. However, for general graphs
that may contain parallel edges, this is not completely accurate. If |Ov| outer edges
are incident with v in a k-pole and |Ov| > 0, then the basic k-poles that we can reach
during the computation are the same as if we had only a (k − |Ov| + 1)-pole with a
single outer edge incident with v, since edges in Ov will be adjacent in all reachable
basic k-poles. In other words, we can ignore the edge multiplicities when selecting
the vertex v. Let v1, v2, . . . , vp be the distinct inner neighbors of v and m1,m2, . . . ,mp

be the edge multiplicities of the corresponding edge groups between v and its inner
neighbors. Even though separating v from G formally adds m1 + · · ·+mp outer edges,
each group of edges between v and a single inner neighbor is adjacent in all reachable
basic k-poles, so we can treat them as a single edge. Similarly, let q be 1 if |Ov| > 0

and 0 otherwise. We can then select the vertex v with the lowest value of p− q, as that
is the value that truly reflects the possible growth of the multipole polynomial length.
An example of this idea is shown in Figure 4.2.

v

v1 v2 v3

Figure 4.2: An example of edge groups. The outer edges are the upper ones; vertices
v1, v2, v3 are the inner neighbors of v. The edge group counts are p = 3 and q = 1 in
this case, despite the edge counts being |Iv| = 7 and |Ov| = 2.
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Computation of small k-pole polynomials

In the algorithm description above, we reattach the vertex v to the basic k′-poles in
phase 4 and then compute the multipole polynomials of the small k-poles in phase 5
(assembling these multipole polynomials results in the multipole polynomial of G). This
can be done easily by directly using the recursive formula from Theorem 1.2 (effectively,
applying the naive algorithm). There is, however, an elegant shortcut that can be taken.
Let S be one of the small k-poles that emerge when reattaching the vertex v to the
basic k′-poles. We want to compute the multipole polynomial of S. We know that
the only inner edges of S are the edges Iv, arranged in p groups of parallel edges with
multiplicities m1, . . . ,mp. Each basic k-pole that could be reached from S during the
recursive computation according to Theorem 1.2 is identified by assigning contraction
or deletion to each group of parallel edges: in each branch of the naive recursion, either
all edges in the group are deleted, or at least one of them is contracted (thus contracting
the entire group).

Let M ⊆ {1, 2, . . . , p} be the indices of the groups that are contracted in a particular
basic k-pole. We would like to quickly compute the coefficient cM that corresponds to
the basic k-pole PM identified by M that is contributed to the final multipole polynomial
when processing S.

Suppose that the naive recursion processes the edges in a fixed order in each group.
Groups i /∈ M have all their edges deleted; in groups i ∈ M , there are some edges deleted
first, then a single one is contracted, and the rest are treated as loops, i.e. they multiply
the emerging coefficient value by 3 each (as per the first case in Theorem 1.2). Each
branch of the naive recursion that reaches PM is thus identified by a sequence of values
ℓi for i ∈ M such that 0 ≤ ℓi < mi, where ℓi is the number of loops created by the edges
in the group i. If L =

∑
i∈M ℓi, then the branch contributes to the coefficient cM by 3L.

However, we must also account for the sign of the contribution, which is determined by
the parity of the number of deletions. If the number of deletions is even, the branch is
counted as positive; otherwise, it is negative (because the branch is reached by hitting
the negative term in Theorem 1.2 an odd number of times). So the sign is determined by
the parity of D+D′, where D =

∑
i∈M mi−1−ℓi is the number of deletions in the groups

that are contracted, and D′ =
∑

i/∈M mi is the number of deletions in the groups that
are deleted entirely. Note that L+D +D′ = (

∑
i∈M mi − 1) + (

∑
i/∈M mi) = |Iv| − |M |

is not dependent on the specific branch.

All in all, the value of cM can be expressed as:

cM =
∑

0≤ℓi<mi
∀i∈M

(−1)D+D′
3L =

∑
0≤ℓi<mi
∀i∈M

(−1)L+D+D′
(−3)L = (−1)|Iv |−|M |

∑
0≤ℓi<mi
∀i∈M

(−3)L

We can notice that the sum can be gradually rearranged by always selecting an index
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j ∈ M and factoring out the terms corresponding to j according to the rule

∑
0≤ℓi<mi
∀i∈M

(−3)L =

mj−1∑
ℓj=0

(−3)ℓj

 ∑
0≤ℓi<mi
∀i∈M−{j}

(−3)L
′
,

where L′ =
∑

i∈M−{j} ℓi. This can be repeated until all terms are factored out, and we
obtain:

cM = (−1)|Iv |−|M |
∏
j∈M

mj−1∑
ℓj=0

(−3)ℓj

 = (−1)|Iv |−|M |
∏
j∈M

1− (−3)mj

1− (−3)

Therefore, the value cM that S contributes to the coefficient of PM in the final multipole
polynomial of G for the given M can be computed in time roughly linear in |M |. Given
that computing the basic k-pole PM is linear in |M | anyway, we can consider this
method optimal. If there are many parallel edges, this is significantly faster than
iterating over all possible branches of the naive recursion. Of course, this improvement
is not advantageous for cubic planar multipoles without parallel edges, but it shows
that the algorithm can benefit from advanced optimizations in general.

Early return

Moreover, there are several situations where we can eliminate unnecessary computation:
As we observed several times already, a non-proper multipole (a multipole with a
degree-one inner vertex) has all coefficients equal to zero. In the sequential as well as
the naive algorithm, there are situations where we can detect this easily and return zero
without further computation. This can be the case for the k-pole G several steps into
the algorithm execution, but also for the basic k-poles that emerge as the computation’s
base cases.

4.3 Implementation

We implemented both algorithms in the C++ programming language. The source code
can be found in Appendix A. We strived for a clean object-oriented implementation,
with a reasonable focus on performance. Given the exponential nature of the problem,
we focused on the algorithmic aspect of the computation over linear performance
optimizations. Our implementation is able to handle also non-cubic and non-planar
multipoles, but we will focus on cubic planar multipoles in the performance comparison.

In our implementation, we represent the outer vertices by negative integers and
the inner vertices by non-negative integers. Edges incident to a vertex are stored as
a multiset of neighbor vertices. The whole k-pole is then represented as an adjacency
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list—in a map from vertices to their incident edges. This representation is efficient for
our use case (sparse multipoles) and allows for easy local manipulation of a multipole,
such as contracting or deleting an edge.

A basic k-pole can be elegantly represented as a set of sets of integers, where each
set represents a group of adjacent outer vertices. For example, the basic 5-pole B

(5)
1

can be represented uniquely as {{−5,−1}, {−2,−3,−4}}. A multipole polynomial is
thus represented as a map from such basic k-poles to integer coefficients.

Regarding the data structures, set and map from the C++ standard library can be
used. However, since we are working with relatively small collections (sparse multipoles
with up to a few tens of vertices), storing the data in flat arrays may be slightly
more efficient. The boost::container::flat_set (and others) from the Boost library
can be utilized for this purpose. We organized the source code so that it is easy to
switch between the different container types. Our experimentation showed that there
are indeed some measurable performance differences, but they are not great and not
conclusive (for example, one container type may slightly speed up the computation at
the expense of higher memory consumption). We selected reasonable default containers
for each data structure in the final version of the implementation.

We also added basic integration tests: Randomly generated dense multipoles, as well
as many cubic planar multipoles, are fed to both algorithms and compared against each
other, and also against our reference implementation of the naive algorithm in Python.
Given that the multipole polynomial coefficients may have a large magnitude, there
is a risk that we could encounter an integer overflow during the computation, which
would lead to incorrect results. We used the -fsanitize=signed-integer-overflow

compiler option that aborts the computation if an overflow is detected. This option is
inexpensive performance-wise and if the computation finishes without an error, we can
be decently confident that the results are correct.

The implementation supports two input formats—either a list of vertex number
pairs representing the edges (enumerated on the standard input in text form); or the
binary planar code used by the plantri software described in the following section.
Our tool can provide several different outputs, most notably a string representation
of the multipole polynomial, and a condensed sequence of coefficient values for small
values of k.

4.4 Cubic planar multipole generation

To compare the performance of the algorithms as well as to compute the coefficient
values for the analysis in Chapter 5, generating all cubic planar multipoles of a given
size is critical. Fortunately, there is an efficient tool plantri [16] capable of generating
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several different classes of planar graphs. When provided the option -P, plantri
generates triangulations of a disk. When the option -d is added, the dual graphs are
returned instead. The outer face of the disk corresponds to a vertex in the dual graph.
If we interpret this vertex as a union of the outer vertices of a multipole, the dual graph
to a disk triangulation with the perimeter containing k vertices exactly corresponds to
a cubic planar k-pole. We can specify the total number of vertices and optionally the
number of outer vertices k to generate. We will denote the number of inner vertices n

and the total number of vertices v = n+ k. Since every edge is shared by two vertices
and each vertex in a cubic multipole has an odd degree, v has to be even.

In the primal context, all non-isomorphic disk triangulations without loops, without
parallel edges and with each inner vertex degree of at least 3 are generated by plantri.
What cubic planar multipoles are we omitting by these restrictions? A loop corresponds
to a trivial bridge in the dual multipole, so no trivial bridges will be present. A pair of
parallel edges in a triangulation determines a portion of the dual multipole that forms
a smaller 2-pole. As noted in Chapter 3, such a 2-pole poses only as a multiplicative
constant to all multipole polynomial coefficients of the rest of the multipole (where the
2-pole is replaced by a regular inner edge). We are therefore free to ignore the omission
of such multipoles by plantri. Similarly, if an inner vertex in the primal triangulation
had a degree of 2, it would correspond to a pair of parallel edges in the dual cubic
multipole, which can be ignored for the same reason.

By default, plantri generates only triangulations without chords and without
degree-two vertices on the disk perimeter. Chords correspond to non-trivial bridges
in the multipole, which means that if we want to allow them, we need to provide the
option -c2. A degree-two vertex on the disk perimeter translates to a pair of adjacent
outer edges in the cubic multipole; we can allow them by the option -m2. A pair of
adjacent outer edges also necessitates a non-trivial bridge (the single inner edge incident
with the pair). For that reason, -m2 requires also the -c2 option.

Since the primal graph is a triangulation of the disk, the dual graph is connected.
Supplying the options -c2m2dP thus generates all connected cubic planar multipoles
without trivial bridges and the non-interesting embedded 2-poles. Adding the option -u

instructs plantri to return only the count of the multipoles that would otherwise be
generated. This way, we determined the numbers of the generated k-poles for small
values of k and v, as shown in Table 4.1 and Table 4.2. We can see that the number of
multipoles grows exponentially with the number of vertices, as one would expect.

Finally, plantri provides the res/mod functionality: If we supply integer values for
the res and mod parameters, the program will split all the graphs into mod classes in
a roughly uniform manner and generate only the res-th class. This is useful for easy
parallelization of the computation if we want to compute the multipole polynomial
coefficients for a large number of multipoles.
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v k = 3 k = 4 k = 5 k = 6 k = 7 all

4 0 0
6 1 0 1
8 1 1 0 2

10 4 2 1 0 7
12 16 8 2 1 0 27
14 78 38 12 3 1 132
16 457 219 73 20 3 773
18 2938 1404 503 140 27 5017
20 20118 9714 3661 1089 235 34861
22 144113 70454 27715 8796 2149 253676
24 1065328 527235 214664 72204 19419 1903584
26 8068332 4037671 1691049 596906 173779 14616442
28 62297808 31477887 13494718 4958736 1538221 114254053
30 488755938 249026400 108864742 41365110 13516342 906266345
32 3886672165 1994599707 886520081 346477770 118196961 7277665889
34 31269417102 16147744792 7279644889 2914165157 1030817669 59066524810

Table 4.1: Numbers of k-poles generated by plantri -dP.

v k = 3 k = 4 k = 5 k = 6 k = 7 all

4 1 1
6 1 1 2
8 1 2 1 4

10 4 5 4 3 16
12 16 18 14 11 4 63
14 78 88 69 53 28 328
16 457 489 396 295 178 1933
18 2938 3071 2503 1867 1196 12633
20 20118 20667 16905 12560 8385 87466
22 144113 146381 119571 89038 60736 633015
24 1065328 1072760 874771 652198 451613 4717745
26 8068332 8071728 6567181 4903955 3429943 35980100
28 62297808 61990477 50329363 37627699 26513787 279418926
30 488755938 484182622 392328944 293607612 208049054 2202903618
32 3886672165 3835654678 3102523829 2323604832 1653791089 17590599410
34 31269417102 30757242535 24839151315 18614121391 13295553654 142025760202

Table 4.2: Numbers of k-poles generated by plantri -c2m2dP.
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4.5 Performance comparison

We evaluated the performance of both algorithms on all cubic planar multipoles gen-
erated by plantri -c2m2dP for 16 ≤ v ≤ 24 on a personal computer. We performed
five measurements for each v and algorithm; they turned out to be very consistent (the
standard deviation always being within a few percent). The mean values across the
five runs are reported in Table 4.3. For each value v and algorithm, we list the total
computation time for all the multipoles of the given size; the average time for a single
multipole; and the maximum memory consumption for the given set of multipoles.

naive algorithm sequential algorithm

v multipoles total time avg. time max mem. total time avg. time max mem.

16 1933 1.07 s 0.554 ms 2720 kB 0.08 s 0.041 ms 2048 kB
18 12633 12.04 s 0.953 ms 3968 kB 0.75 s 0.059 ms 2080 kB
20 87466 140.72 s 1.609 ms 6592 kB 7.45 s 0.085 ms 2080 kB
22 633015 1639.39 s 2.590 ms 12512 kB 75.59 s 0.119 ms 2080 kB
24 4717745 19212.53 s 4.072 ms 26104 kB 780.46 s 0.165 ms 2112 kB

Table 4.3: Comparison of computation time and required memory for both algorithms.
Each row is the average of five (rather similar) measurements.

The base memory allocated by any execution of our program was usually 2080 kilo-
bytes. It makes sense to subtract the base memory from the total memory consumption
when extrapolating the memory requirements for larger multipoles. This adjusted
memory consumption as well as the multipole count and total computation time is
displayed on a logarithmic scale in Figure 4.3. We also calculated the exponential
regression for the data points, displayed in the plots as well. We can observe that with
each step of v, the multipole count grows by a factor of approximately 7.54, the total
computation time of the naive algorithm by a factor of approximately 15.1, and the total
computation time of the sequential algorithm by a factor of approximately 11.7—the
sequential algorithm thus appears to be asymptotically faster than the naive algorithm.
Moreover, the adjusted maximum memory consumption of the naive algorithm grows
by a factor of approximately 2.39, which means that for v somewhere between 30 and
40, there will likely be multipoles that require several gigabytes of memory to process.
On the other hand, the maximum memory consumption of the sequential algorithm was
hardly distinguishable from the base memory (therefore not displayed in the plot). Even
though it is very likely that the memory consumption would increase with higher values
of v, we believe it is reasonable to conclude that one might encounter multipole classes
that are difficult to process with the naive algorithm, while the sequential algorithm
should be able to handle them more easily.
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16 18 20 22 24 26 28 30

10−1

100
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102

103

104

105

106

107

108

109

number of vertices v

multipole count (1.98 · 10−4) · 7.54v/2

naive total time (s) (3.23 · 10−9) · 15.1v/2

naive adj. memory (kB) (5.44 · 10−1) · 2.39v/2

seq. total time (s) (7.99 · 10−10) · 11.7v/2

Figure 4.3: Algorithm performance comparison on a logarithmic scale. The lines show
the exponential regression for the data points. The sequential algorithm memory
consumption is not displayed due to its minuscule magnitude.

Although this brief comparison does not aim to provide an exhaustive performance
analysis, it is evident that significant performance improvements can be achieved
by employing more sophisticated methods, such as the sequential approach. It is
worth noting that removing the vertex selection heuristic described in Section 4.2
does significantly decrease the algorithm’s performance, so it is indeed crucial to the
algorithm’s effectiveness.



Chapter 5

Empirical value constraints

Utilizing the C++ implementation of the sequential algorithm described in Chapter 4,
we computed the multipole polynomial coefficients for small k-poles for k ∈ {4, 5, 6}.
The computed data are attached in Appendix A. We will analyze them in the following
sections.

5.1 4-pole constraints

As described multiple times in this work, we know that every cubic planar 4-pole must
obey the following constraints corresponding to the non-negativity of flow counts with
a given boundary:

a+ b1 + b2 ≥ 0 (T1)

a+ b1 ≥ 0 (T2)

a + b2 ≥ 0 (T3)

a ≥ 0 (T4)

We will call these constraints theoretical. We aim to find out whether the real
4-poles satisfy them tightly, or whether there are some more strict linear constraints
that the real 4-poles obey—we will call those empirical constraints. For this purpose,
we computed the coefficients for all 4-poles generated by plantri -c2m2dP for v ≤ 30.
Each 4-pole can be thought of as a point in the three-dimensional space spanned by the
coefficients a, b1, b2. Since the coefficients b1 and b2 are symmetric to an extent, we can
plot the value of b1 + b2 against a for each 4-pole. The resulting scatter plot is shown
in Figure 5.1. Constraints T4 and T1 are displayed in cyan and magenta, respectively.
The sum of constraints T2 and T3, 2a+ (b1 + b2) ≥ 0, could be displayed as well, but it
is dominated by T1 and T4 which are more strict than the combination of T2 and T3.

An elegant way to discover empirical constraints in general higher-dimensional spaces
is to use the convex hull: If we compute the convex hull of the points corresponding to

33
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a ≥ 0

a+ b1 + b2 ≥ 0

Figure 5.1: Empirical constraints for 4-poles.

the 4-poles and select the facets of the hull that contain the origin, we obtain the linear
inequalities that are satisfied by all 4-poles. We did this for the 4-poles with v ≤ 30

and the resulting empirical constraints turned out to exactly match the theoretical
constraints T1 to T4. The same result is obtained if we limit ourselves to 4-poles
without any bridges, generated by plantri -dP. The code used for this computation is
available in Appendix A.

Finally, we can briefly observe some of the classes of 4-poles that secure the tightness
of the theoretical constraints. The two points in Figure 5.1 near the cyan and magenta
lines far away from the origin correspond to the ladder 4-pole and the modified ladder
4-pole, as illustrated in Figure 5.2.

a = 0, b1 = 21, b2 = 1 a = 21, b1 = −21, b2 = 2

Figure 5.2: The ladder and the modified ladder 4-poles.

By determining the flow counts fβ(G) for these two 4-poles, it can be shown that for
v divisible by four, the ladder has a = 0, b2 = 1, and b1 growing exponentially with v.
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This means that with increasing v, the point (a, b1, b2) gets arbitrarily far from the
origin while still having a = 0 and a+ b2 = 1, thus making the constraints T4 and T3
(and T2 by rotation) tight. Similarly, for v of the form 4v′ + 2, the modified ladder has
b2 = 2, and a = −b1 growing exponentially with v. The point thus gets arbitrarily far
from the origin while having a+ b1 + b2 = 2 (i.e. in a constant distance from the plane
a+ b1 + b2 = 0), making the constraint T1 tight.

The same 4-poles serve as examples of the tightness of the constraints for the (2, 2)-
connectivity and (2, 2)-2-connectivity examined in Chapter 3. The rotated ladder is (2, 2)-
connected, but it has the indicator value I = 2a+b1 = 2·0+1 = 1, being ultimately close
to the I > 0 criterion for (2, 2)-connectedness. Similarly, the rotated modified ladder is
(2, 2)-2-connected and yet has the indicator value J = 2a+b1+2b2 = 2a+2+2 ·(−a) = 2

rather close to the J > 0 criterion. If we project the points to the coordinates given by
the indicators I and J , the two 4-poles then reside in the immediate vicinity of the two
inequalities I > 0 and J > 0 backed by the Four color theorem, as shown in Figure 5.3,
thus satisfying the constraints tightly.

Figure 5.3: Projection of the 4-pole coefficients to the base given by I and J .
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5.2 5-pole constraints

There are 10 admissible boundaries for planar 5-poles, as listed in Figure 1.2. The
boundary 11213 is compatible with basic 5-poles A(6) and B

(6)
2 . The boundary 11123

is compatible with A(6), B(6)
2 and B

(6)
3 . Therefore, the five rotations of 11213 yield the

theoretical constraints T1 to T5, and the five rotations of 11123 are responsible for the
theoretical constraints T6 to T10:

a+ b1 ≥ 0 (T1) a+ b1 + b2 ≥ 0 (T6)

a+ b2 ≥ 0 (T2) a+ b2 + b3 ≥ 0 (T7)

a+ b3 ≥ 0 (T3) a+ b3 + b4 ≥ 0 (T8)

a+ b4 ≥ 0 (T4) a+ b4 + b5 ≥ 0 (T9)

a+ b5 ≥ 0 (T5) a+ b1 + b5 ≥ 0 (T10)

For the sake of brevity, we will denote b = b1 + b2 + b3 + b4 + b5. By summing the
constraints T1 to T5 and T6 to T10, respectively, we obtain the following summary
theoretical constraints:

5a+ b ≥ 0 (T1′) 5a+ 2b ≥ 0 (T2′)

Similarly to the previous section, we computed the coefficients for all 5-poles
generated by plantri -c2m2dP for v ≤ 30. The scatter plot of b against a is shown in
Figure 5.4. The constraints T1′ and T2′ are displayed in cyan and magenta, respectively.
In contrast to the 4-pole case, the points here appear to be restricted also by an
additional constraint, 2a + b ≥ 0, displayed in yellow (rendering the constraint T2′

superfluous).
Utilizing the convex hull method to discover the empirical constraints for the points

in the original, six-dimensional space, we found that eleven linear inequalities are
satisfied by all 5-poles: Ten of them match the theoretical constraints T1 to T10, and
the additional constraint E1 is 2a+ b1 + b2 + b3 + b4 + b5 ≥ 0, indeed. Furthermore, we
computationally verified that this constraint is satisfied by all more than 2.4·1010 5-poles
with v ≤ 34 generated by plantri -c2m2dP. Again, the same empirical constraints are
obtained for 5-poles without bridges, generated by plantri -dP. This leads us to the
following hypothesis:

Hypothesis 5.1. Every cubic planar 5-pole satisfies 2a+ b ≥ 0.

Note that this hypothesis can be reformulated as follows: Denote f⟳
11213(G) the

sum of fβ(G) over the rotations β of the boundary 11213, and f⟳
11123(G) the sum

of fβ(G) over the rotations β of the boundary 11123. Then f⟳
11213(G) = 5a + b and
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⟳ 5a+ b ≥ 0

⟳ 5a+ 2b ≥ 0

2a+ b
?

≥ 0

Figure 5.4: Empirical constraints for 5-poles.

f⟳
11123(G) = 5a+ 2b. It can be noticed that

5a+ 2b =
1

3
(5a+ b) +

5

3
(2a+ b)︸ ︷︷ ︸

?
≥0

,

so if the hypothesis holds, then f⟳
11123(G) ≥ 1

3
f⟳
11213(G) for every 5-pole G.

The angle between constraints E1 and T2′ in Figure 5.4 thus translates to a statement
about colorings count ratio: At least a quarter of the total number of colorings of a
5-pole must have the boundary 11123 or its rotation. In a sense, this can be viewed as
a somewhat stronger statement than the Four color theorem: If a cubic planar 5-pole
G without trivial bridges had no colorings with one of the 11123 boundaries, we could
extend it by a 5-cycle to a bridgeless cubic planar graph H ′ (like in Chapter 3) and
since the extension is only compatible with 11123 boundaries, H ′ would be a planar
snark. The Four color theorem thus implies that if G has flows, it has at least one flow
of the 11123 type. On the other hand, Hypothesis 5.1 states that the number of such
flows is at least a quarter of the total number of flows.

5-pole hypothesis counterexample properties

In order to examine the plausibility of Hypothesis 5.1, we will investigate the properties
that an eventual counterexample would have to possess, in addition to the computations
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for small 5-poles performed above. Let G be the smallest cubic planar 5-pole that does
not satisfy Hypothesis 5.1.

Lemma 5.1. G is connected.

Proof. Suppose that G is disconnected. There must exist a rotation of G and numbers
p, r such that the rotation is (p, r)-disconnected. Then (p, r) equals either (0, 5),
(1, 4), or (2, 3). As we showed in Chapter 3, if G is (0, 5)-disconnected, the 0-pole
component serves only as a multiplicative factor to the coefficients of the other part G′.
Therefore, G′ would also be a counterexample to the hypothesis, which contradicts
the minimality of G. If G is (1, 4)-disconnected instead, the 1-pole component does
not contain a flow by Lemma 1.1, so the entire G does not contain a flow. Because
of this, f⟳

11123(G) = f⟳
11213(G) = 0, and f⟳

11123(G) ≥ 1
3
f⟳
11213(G) holds, so G satisfies the

hypothesis.
Finally, suppose that G is (2, 3)-disconnected. The flows in the 2-pole G′ and

3-pole G′′ (that form the components of G) are independent, so let a′ · fβ′(A(2)) and
a′′ ·fβ′′(A(3)) be the multipole polynomials of G′ and G′′, respectively. As per Lemma 1.1,
each flow in G must assign the same value to the two outer edges of G′ and the three
different values to the outer edges of G′′. Therefore, we can directly enumerate the flow
counts of G:

f11213(G) = a′a′′ f11123(G) = a′a′′

f12131(G) = 0 f11231(G) = a′a′′

f21311(G) = 0 f12311(G) = 0

f13112(G) = 0 f23111(G) = 0

f31121(G) = 0 f31112(G) = 0

In total, f⟳
11213(G) = a′a′′ and f⟳

11123(G) = 2·a′a′′, so f⟳
11123(G) = 2f⟳

11213(G) ≥ 1
3
f⟳
11213(G)

and G satisfies the hypothesis, which is again a contradiction.

Lemma 5.2. G contains no inner edge that is a bridge.

Proof. Suppose that G contains an inner edge that is a bridge. By the same logic as
above, the bridge is either a (0, 5)-bridge, a (1, 4)-bridge, or a (2, 3)-bridge in one of
the rotations of G. In the first case, we showed in Chapter 3 that G would have all
coefficients equal to zero, which satisfies the hypothesis. We also showed that a (1, 4)-
bridge separates a 2-pole from a 5-pole, and the 2-pole serves only as a multiplicative
factor to the coefficients of the 5-pole, which contradicts the minimality of G.

In the last case, the bridge separates a 3-pole G′ from a 4-pole G′′. Let their
multipole polynomials be a′ · fβ′(A(3)) and a′′ · fβ′′(A(4)) + b′′1 · fβ′′(B

(4)
1 ) + b′′2 · fβ′′(B

(4)
2 ),

respectively. Each flow in G must assign exactly the three different values to the outer
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edges of G′, so we can deduct the value assigned to the bridge for any given boundary
of G (if one exists). Therefore, the flow counts of G are:

f11213(G) = 0 f11123(G) = 0

f12131(G) = a′ · f3131(G′′) = a′a′′ f11231(G) = 0

f21311(G) = a′ · f3311(G′′) = a′(a′′ + b′′2) f12311(G) = a′ · f3311(G′′) = a′(a′′ + b′′2)

f13112(G) = a′ · f2112(G′′) = a′(a′′ + b′′1) f23111(G) = a′ · f1111(G′′) = a′(a′′ + b′′1 + b′′2)

f31121(G) = a′ · f2121(G′′) = a′a′′ f31112(G) = a′ · f2112(G′′) = a′(a′′ + b′′1)

This gives us f⟳
11213(G) = a′(4a′′+ b′′1 + b′′2) and f⟳

11123(G) = a′(3a′′+2b′′1 +2b′′2). We know
that G′ satisfies a′ ≥ 0 and G′′ satisifies a′′ + b′′1 + b′′2 ≥ 0. Thus we get 3f⟳

11123(G) =

a′(9a′′ + 6b′′1 + 6b′′2) ≥ a′(9a′′ + 6b′′1 + 6b′′2) − 5a′(a′′ + b′′1 + b′′2) = a′(4a′′ + b′′1 + b′′2) =

f⟳
11213(G). As a result, f⟳

11123(G) ≥ 1
3
f⟳
11213(G) and G satisfies the hypothesis, which is a

contradiction.

Lemma 5.3. If G contains a pair of inner edges e1, e2 that would make G disconnected
if removed, then both e1 and e2 are adjacent to the same outer edge.

Proof. Suppose that G contains a pair of inner edges e1, e2 that would make G discon-
nected if removed, such that they are not adjacent to the same outer edge. The edges
e1, e2 form either a (0, 5)-2-cut, a (1, 4)-2-cut, or a (2, 3)-2-cut in one of the rotations
of G. If they form a (0, 5)-2-cut, they separate a 2-pole portion of G that poses only as
a multiplicative factor, contradicting the minimality of G.

Suppose that e1, e2 form a (1, 4)-2-cut, separating a 3-pole G′ from a 6-pole G′′. If
G′ consisted only of a single inner vertex, e1 and e2 would be adjacent to a common
outer edge. Therefore, G′ must be larger. Let us construct G1: a smaller version of G
where G′ is replaced by a single inner vertex. By minimality of G, we know that G1

must satisfy the hypothesis. However, if a′ · fβ′(A(3)) is the multipole polynomial of G′,
then the coefficients of G are a′-multiples of the coefficients of G1 (because the flows
inside G′ for a given boundary of G′ are independent of the rest of G), which implies
that G satisfies the hypothesis, contradicting the premise.

G′

G′′

Figure 5.5: A diagram of a (2, 3)-2-cut in a 5-pole.

Finally, suppose that e1, e2 form a (2, 3)-2-cut, separating a 4-pole G′ from a 5-
pole G′′, like in Figure 5.5. This is the most challenging case, and for the sake of
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demonstration, we will take a slightly different approach—systematically computing
the coefficients (a, b1, b2, b3, b4, b5) of G. Let (a′, b′1, b

′
2) and (a′′, b′′1, b

′′
2, b

′′
3, b

′′
4, b

′′
5) be the

coefficients of G′ and G′′, respectively. Imagine the recursive computation of the
multipole polynomial of G where only the inner edges of G′ are taken into account and
G′′ is not processed. We can see that the multipole polynomial of G is then equal to:

a′ ·
G′′ + b′1 · G′′ + b′2 · G′′

Subsequently, we can ignore the attached basic 4-poles and process only the inner
edges of G′′. This way, we will arrive at 18 small 5-poles (consisting of a basic 4-pole
attached to a basic 5-pole), each multiplied by one coefficient of G′ and one coefficient
of G′′. These small 5-poles can then be processed as usual:

a′a′′ : = 2 · +

a′b′′1 : = −

a′b′′2 : = 3 ·

a′b′′3 : = −

a′b′′4 : = 2 ·

a′b′′5 : = 2 ·

b′1a
′′ : = b′2a

′′ : = 3 ·

b′1b
′′
1 : = b′2b

′′
1 : =

b′1b
′′
2 : = b′2b

′′
2 : = 3 ·

b′1b
′′
3 : = b′2b

′′
3 : =

b′1b
′′
4 : = b′2b

′′
4 : = 0

b′1b
′′
5 : = b′2b

′′
5 : = 0
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We can now assemble the coefficients of G:

a = 2a′a′′ + a′b′′1 + a′b′′3 + b′1a
′′

b1 = b′1b
′′
1

b2 = a′a′′ + 3a′b′′2 + b′1b
′′
2 + 3b′2a

′′ + b′2b
′′
1 + 3b′2b

′′
2 + b′2b

′′
3

b3 = b′1b
′′
3

b4 = −a′b′′1 + 2a′b′′4 + b′1b
′′
4

b5 = −a′b′′3 + 2a′b′′5 + b′1b
′′
5

To reach a contradiction with the assumption that G is a counterexample to the
hypothesis, we would like to prove that 2a+ b ≥ 0. We have:

2a+ b1 + b2 + b3 + b4 + b5 =

= 5a′a′′ + a′b′′1 + 3a′b′′2 + a′b′′3 + 2a′b′′4 + 2a′b′′5

+ 2b′1a
′′ + b′1b

′′
1 + b′1b

′′
2 + b′1b

′′
3 + b′1b

′′
4 + b′1b

′′
5

+ 3b′2a
′′ + b′2b

′′
1 + 3b′2b

′′
2 + b′2b

′′
3 (5.1)

Suppose first that b′2 ≥ 0. The expression in eq. (5.1) can be rearranged as follows:

a′
(
2(a′′ + b′′2) + (a′′ + b′′4 + b′′5)

)
+ (a′ + b′1)

(
2a′′ + b′′1 + b′′2 + b′′3 + b′′4 + b′′5

)
+ b′2

(
(a′′ + b′′1 + b′′2) + (a′′ + b′′2 + b′′3) + (a′′ + b′′2)

)
By the minimality of G, the smaller 5-pole G′′ must satisfy the hypothesis, i.e.

2a′′ + b′′ ≥ 0. All the remaining terms are non-negative since they are equal to the
theoretical constraints for 4-poles and 5-poles. Therefore, 2a+ b ≥ 0 in this case, as
desired.

On the other hand, suppose that −b′2 ≥ 0. Combined with the theoretical constraint
a′ ≥ 0, we get a− b′2 ≥ 0. We can then rearrange the expression in eq. (5.1) as follows
instead:

(a′ + b′1 + b′2)(2a
′′ + b′′1 + b′′2 + b′′3 + b′′4 + b′′5)

+ 2(a′ + b′2)(a
′′ + b′′2)

+ (a′ − b′2)(a
′′ + b′′4 + b′′5)

Again, all the terms are non-negative, hence the entire expression is. This concludes
the proof.

Note that if we managed to prove the previous lemma even for pairs of edges adjacent
to an outer edge, the hypothesis would obviously be proven as a whole, since every
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outer edge is either adjacent to such a pair of inner edges, or to another outer edge and
a (2, 3)-bridge.

Putting together with the fact that we computationally verified the hypothesis for
v ≤ 34, we obtain the following result:

Theorem 5.1. If Hypothesis 5.1 does not hold and G is its smallest counterexample,
then for every p, r such that p + r = 5, every rotation of G is (p, r)-2-connected and
contains no (p, r)-2-cuts except possibly the (1, 4)-2-cuts consisting of a pair of inner
edges adjacent to the same outer edge. Moreover, G has at least 36 vertices.

At least some of the results in this section could alternatively be proven using Kempe
chains, similarly to the motivational example in Section 1.5. However, our approach
highlights that the multipole polynomial coefficients are a powerful and natural tool for
a task such as this.

5.3 6-pole constraints

Let us finish this chapter by examining the constraints for 6-poles. There are 31
admissible boundaries for 6-poles and 15 basic 6-poles (as shown in Figure 1.3). There
are two issues with the growing numbers: The list of constraints becomes impractically
long, and the 15 dimensions become too many for the standard convex hull algorithm
to handle when discovering the empirical constraints. For these reasons, we will limit
ourselves to the reduced space where we sum the coefficients that are equivalent under
rotation. Let us denote b = b1+b2+b3+b4+b5+b6, c = c1+c2+c3, d = d1+d2+d3, and
e = e1+e2. If we compute the coordinates a, b, c, d, e of each 6-pole in the 5-dimensional
space, we see that the same coordinates are obtained for all rotations of the 6-pole.
Alternatively, we can view this dimension reduction as summing the original coefficient
values over the 6 rotations of the 6-pole—this way, all coefficient values corresponding
to basic 6-poles that are equivalent under rotation will reach the same value, serving as
a single coordinate in the reduced space.

We have computed the coordinates in the reduced space for all 6-poles generated
by plantri -c2m2dP for v ≤ 34. The 9 theoretical constraints given by the admissible
boundaries as well as the 10 discovered empirical constraints are listed in Table 5.1.
Analogously to the constraints listed in the previous sections, each row corresponds to
a linear inequality given by the non-negativeness of the flow count for a given boundary
and its rotations. For example, the second row states that every 6-pole G must satisfy
f⟳
111212(G) = 6a+ 2b ≥ 0.

The seven theoretical constraints T1 to T7 match the seven empirical constraints
E1 to E7. Theoretical constraints T8 and T9 were not discovered as empirical; instead,
three more empirical constraints E8 to E10 were found. The reason why T8 and T9
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⟳ β a b c d e constraint

111111 1 1 0 1 1 T1 = E1
111212 6 2 0 0 0 T2 = E2
112112 3 1 0 1 0 T3 = E3
112233 2 1 0 0 1 T4 = E4
112332 3 1 1 1 0 T5 = E5
121323 3 0 2 0 0 T6 = E6
123123 1 0 1 0 0 T7 = E7
111122 6 4 0 2 3 T8
112323 6 1 2 0 0 T9

4 2 0 0 1 E8
4 2 1 1 1 E9
9 3 2 1 3 E10

Table 5.1: Theoretical and empirical constraints for 6-poles.

were not discovered is that they can be expressed as a combination of other empirical
constraints—E1 and E8, or E2 and E6, respectively:

(6, 4, 0, 2, 3) = 2 · (1, 1, 0, 1, 1) + 1 · (4, 2, 0, 0, 1)

(6, 1, 2, 0, 0) =
1

2
· (6, 2, 0, 0, 0) + 1 · (3, 0, 2, 0, 0)

This shows that the constraints T8 and T9 are redundant, and the empirical constraints
form a more strict set of restrictions. On the other hand, the empirical constraints
are linearly independent given they are the facets of a convex hull. We have therefore
encountered a similar situation as in the 5-pole case: The theoretical constraints are
not tight due to the supposed existence of more strict empirical constraints.

Like in the 5-pole case, if we consider the boundaries compatible with the 6-cycle
extension of G, the total number of flows with these boundaries must be positive,
otherwise the extended G would form a planar snark. The boundaries compatible with
the 6-cycle extension are 111111, 112332, 123123, and 111122. In contrast to the
5-pole case, there is one boundary that contains only a single color, thus we cannot
ignore the color permutation. The total number of flows with the given boundaries
(also taking the color permutation into account) is therefore equal to

x = 3 · f⟳
111111(G) + 6 · f⟳

112332(G) + 6 · f⟳
123123(G) + 6 · f⟳

111122(G) =

= 63a+ 33b+ 12c+ 21d+ 21e.

We can calculate the total number of flows in G in a similar manner, which gives us the
value t = 183a+ 63b+ 36c+ 27d+ 27e. Analogously to the result for 5-poles, where
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the empirical constraint implies that the number of flows compatible with the 5-cycle
extension is at least a quarter of the total number of flows, the empirical constraints
E1 and E9 for 6-poles imply that the number of flows compatible with the 6-cycle
extension is at least one-eighth of the total number of flows. Specifically, if the empirical
constraint E9 really holds, we get

0 ≤ 81 · (a+ b+ d+ e) + 60 · (4a+ 2b+ c+ d+ e) =

= 321a+ 201b+ 60c+ 141d+ 141e,

which can be reorganized to

504a+ 264b+ 96c+ 168d+ 168e ≥ 183a+ 63b+ 36c+ 27d+ 27e

8 · (63a+ 33b+ 12c+ 21d+ 21e) ≥ 183a+ 63b+ 36c+ 27d+ 27e

x ≥ 1

8
t,

as desired. This indicates that for k ≥ 6, we could formulate similar hypotheses for the
flows compatible with different extension shapes. We could also attempt to use the
5-pole hypothesis directly to derive more inequalities about 6-poles by connecting two
outer edges of a 6-pole G and stating the 5-pole hypothesis for the resulting 5-pole in
terms of the coefficients of G. This however requires using all the 15 coefficients, since
the relation is not symmetric under rotation and the reduced dimensions are thus not
sufficient. This direction of research quickly becomes tedious and impractical, but a
systematic search might yield insight into the relationship between the theoretical and
empirical constraints for k-poles with different values of k.

Finally, we also computed the reduced coefficients of the 1.3 · 1010 7-poles for v ≤ 34.
Unfortunately, the growing dimensionality makes even such a large number of 7-poles
insufficient to reliably conclude on the empirical constraints.



Conclusion

In this thesis, we studied the properties of the multipole polynomial coefficients over
the group (Z2 × Z2,+). We described the connection between the Four color theorem
and flows in cubic planar multipoles and used the multipole polynomial coefficients to
study the properties of multipoles.

Our research shows that the multipole polynomial coefficients are powerful enough
to capture non-trivial structural properties of planar multipoles: If we rely on the Four
color theorem, it is possible to determine the connectedness and 2-connectedness of
multipole parts solely from its coefficient values. If we omit the Four color theorem
assumption, this result becomes an equivalent way of stating the Four color theorem
itself.

We also demonstrated that the coefficients can be practically computed for small
multipoles quickly despite the exponential nature of the computation. We devised
an improved algorithm for this purpose and implemented features that make it more
efficient also for multipoles that are not planar and cubic. When utilizing a computer
with many CPU cores, it is possible to compute the coefficients of all cubic planar
multipoles with up to approximately 30 vertices in the order of hours.

We analyzed the coefficient values for 4-, 5-, and 6-poles. In the case of 4-poles,
the values behave as expected—they tightly satisfy the theoretical constraints given
by the non-negativeness of the numbers of flows with a given boundary. However, in
the case of 5-poles and 6-poles, the coefficient values appear to be more restricted than
the theoretical constraints suggest. We formulated a hypothesis about the observed
constraint for 5-poles and also restated it in terms of coloring counts: We hypothesize
that for each cubic planar 5-pole, the colorings of the type 11123 represent at least
one-quarter of the total number of colorings. We also showed that if the hypothesis
is false, the smallest counterexample must be connected, contain no bridge or 2-cut
(except the pairs of edges adjacent to the same dangling edge), and have at least 36
vertices.

The multipole polynomial coefficients thus proved to be a useful tool for studying
the properties of planar multipoles. In the future, it would be interesting to attempt to
prove the 5-pole hypothesis and to explore the empirical constraints systematically, as
they seem to exhibit intricate connections to each other and the Four color theorem.
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Appendix A

Source code and computed data

The electronic attachment contains the source code of the C++ implementation of the
coefficient computation algorithms described in Chapter 4, as well as the computed
values for small cubic planar multipoles. The code used to analyze the data is located in
the analysis.ipynb SageMath Jupyter notebook, which is also rendered in the HTML
format for easier viewing in the analysis.html file. The contents of the attachment
are also published on https://github.com/davidmisiak/flow-polynomials.
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