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Abstrakt

Napadnutí softvéroví klienti skladajúci kryptomenové transakcie sú hrozbou pre aktíva
používateľov, kvôli čomu existujú hardvérové peňaženky. Jednou z nich je Ledger Nano
S. Vyznačuje sa obmedzenými zdrojmi. Aplikácie pre túto peňaženku preto nemôžu
zaberať priveľa miesta, a na ich fungovanie musia stačiť iba jednotky kilobajtov RAM.
V našej predchádzajúcej práci sme nadizajnovali aplikáciu pre Ledger Nano S, ktorá
pre pridanie podpory pre nový typ transakcie vyžaduje iba pridanie jedného hešu do
zdrojového kódu. Overenie integrity transakcie sa však dialo až na konci, tesne pred
vytvorením podpisu, čo umožnilo napadnutému softvérovému klientovi zobraziť počas
komunikácie používateľovi na displeji zavádzajúce údaje. V tejto práci predstavujeme
dva rôzne dizajny aplikácie, z ktorých každý ukončuje interakciu s klientom okamžite
po prijatí neočakávaných údajov. Pridanie podpory pre nový typ transakcie v oboch
týchto dizajnoch pozostáva zo zmeny jedného hešu v kóde aplikácie. Prvý z dizajnov je
založený na Merkleho stromoch, druhý je založený na hešovacích funkciách. Uvádzame
aj dôkaz bezpečnosti druhého z týchto prístupov. Okrem toho prezentujeme efektívny
spôsob pre umožnenie vykonávania krokov späť a dopredu pre prípad, že sa používateľ
rozhodne vrátiť k dátam, ktoré už skôr potvrdil.

Kľúčové slová: hardvérová peňaženka, hešovacia funkcia, hešovacie stromy
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Abstract

Compromised software clients that assemble cryptocurrency transactions are a threat
to users’ funds, which is why hardware wallets exist. One of them is called Ledger Nano
S. This hardware wallet only has limited resources available. Therefore, applications
for it cannot take up too much space and they have to work with few kilobytes of
RAM. In our previous work, we designed an application that only requires an addition
of a single hash to the source code in order to add support for a new transaction type.
However, the validation of the integrity of the transaction only happened at the end,
right before signing, which allowed a compromised client to show malicious data to
the user during the communication process. In this thesis, we propose two application
designs that terminate the signing process immediately upon receiving suspicious data
while offering the convenience of only having to change a single hash in the source code
to add support for a new transaction type. The first design is based on Merkle trees,
and the second is based on hash functions. We also present proof of the security of the
latter one. An efficient approach for allowing undo and redo actions is also described.
Such actions are useful if the user decides to return to data they have already confirmed.

Keywords: hardware wallet, hash function, hash trees
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Introduction

Managing secrets securely is a notable task. There are multiple ways of storing keys.
Some of them are more secure than others, and some are more convenient. A hardware
wallet is a device that is popular for storing secret keys and signing cryptocurrency
transactions. Besides managing secrets, its purpose is to protect the user from signing
a transaction different from the one they intended to sign. A transaction is typically
assembled by a software client and sent into the hardware wallet for signature creation.
Parts of the transaction should be displayed to the user for confirmation.

Multiple transaction types could exist for a specific cryptocurrency. Supporting a
new type of transaction usually requires additions to the source code of the application
running on the device. This could be problematic for hardware wallets with limited
storage.

In our previous work, we proposed and implemented an approach for transaction
validation that only required adding a single hash to the source code to support a
new transaction type. However, the validation only happened at the very end. This
allowed a compromised client to force the hardware wallet to show malicious data
on the display during the process. Even though this could not have led to signing a
malicious transaction, the user could have been tricked by seeing misleading data.

In this thesis, we propose an approach for transaction validation that stops imme-
diately after it receives malicious data while having the convenience of only needing to
change a single hash in the source code for adding support for a new transaction type.
As we have already implemented a similar, even though subjectively less interesting
approach in our previous work, this thesis is purely theoretical.

In chapter 1, we characterize the hardware wallet targeted by our design. Besides
that, we describe the approach from our previous work in more detail, as we will be
extending some parts of it. Lastly, we list our goals for this thesis. Chapter 2 contains
a description of known vector commitment schemes, together with arguments about
their suitability for our use case. In chapter 3, multiple newly proposed designs are
described. The chapter captures our design decisions in detail. A design using a hash
tree and a design that is not based on hash trees are characterized there. A way to
perform undo and redo operations is also presented. Chapter 4 contains a proof that
using the design that is not based on hash trees is secure for validating transactions.

1



2 Introduction



Chapter 1

Overview and motivation

1.1 Signing secrets

Creating a digital signature of some data is a common task in today’s world. In order
for a person to create such a signature, they usually need a secret key. Storing a secret
key has to be performed wisely, as anyone who accesses it can act on behalf of the key’s
owner. Because of this, hardware wallets came into existence.

A hardware wallet is a physical device specifically designed for storing keys and
signing data using them. In this thesis, we are interested in a hardware wallet for
signing cryptocurrency transactions. This is a common use case, and multiple types of
hardware wallets with many applications exist. Usually, there is a single application
for each cryptocurrency for every hardware wallet that supports this cryptocurrency.

The purpose of an application for a hardware wallet is to verify that the transaction
to be signed is indeed valid. Besides that, it shows all essential parts of the transaction
on the device’s display, and the user has to confirm such data. Typical examples of such
parts of a transaction are the receiver’s address and the amount of tokens being sent.
Thanks to this, if the client assembling the transaction is compromised and assembles
transactions different from those the user intended to assemble, the user can detect
that.

1.2 Ledger Nano S

The exact model of a hardware wallet we are designing our approach for is Ledger
Nano S [11]. There are many applications for various cryptocurrencies supported by
this hardware wallet model. This device is connected to a computer using a USB cable
and communicates with a software client using a series of application protocol data
units (APDUs). Each APDU has a size of at most 256 bytes. As a typical serialized
transaction is larger than 256 bytes, multiple APDUs would need to be used. A single

3



4 CHAPTER 1. OVERVIEW AND MOTIVATION

APDU that the client sends to the device is usually called an instruction.
The software client can send the whole transaction into the hardware wallet in

chunks. The hardware wallet could save all these chunks into its flash memory. Once
the whole transaction is stored on the device, the application running on it can parse
the transaction from its flash memory, show essential parts to the user for confirmation,
and validate the transaction format. This approach is used in practice, for example
in the application for Flow [9]. It has a few shortcomings as well as advantages. A
positive aspect is that the client-side code responsible for sending the transaction to
the device is stable regardless of the specific transaction. One of the negative aspects is
that the transaction size is limited by the space available in the flash memory. Another
negative aspect is that using flash memory with a limited number of read and write
cycles shortens the device’s lifespan. This should not be a security issue because the
user can access their funds using a new device as long as they have their keys stored
elsewhere, which should be the case. However, keeping the device functional as long
as possible is desirable. Another disadvantage of this approach is that the application
running on the device has to parse the whole transaction. Serializing incoming data
that are already parsed is simpler, which is why an approach presented in the next
paragraph exists.

The client can help the application on the device with parsing the transaction.
More specifically, the client can send the transaction in chunks so that each chunk
contains a single field of the transaction, such as the receiver or the amount. Once the
application receives such a chunk, it does not have to be stored in the flash memory
anymore. The application can directly show it to the user and perform validations on
it. The simplest transactions do not have any parts of variable length. Therefore, an
application that only supports such simple transactions could be implemented in the
following way. First, we must decide how to divide the transaction data so that each
part fits into a single APDU. Then, we would define instructions for sending each part.
For example, if the transaction consists of a sender, a receiver, and an amount,
then it can be straightforwardly divided into three APDUs. Instructions to accomplish
the sending could be called SEND_SENDER, SEND_RECEIVER, and SEND_AMOUNT.
After the division and instructions are determined, we will implement a handler for
each instruction in the application. The application would remember an internal state.
Therefore, it would always know which part of transaction data it expects to receive
next. In other words, the application will expect a specific instruction as the next one
at every point in time. When an instruction is received, the application will check
if the length and the format of the received data are as expected. This includes the
validation of an instruction type. Such type is specified as a part of the instruction’s
APDU. If the correct instruction with the correct data arrived, the application would
display the data to the user for confirmation. After the application reaches the final
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state, it signs the transaction and returns the signature. This approach can be found
in the application for Cardano [7].

Only a hash of the serialized transaction is being signed. Therefore, the application
needs to calculate a rolling hash of the serialized transaction as individual APDUs
arrive one by one.

There are some issues with this frequently used approach. The biggest one is that
for each transaction type, the application needs to remember a form of a finite state
automaton. Each state needs to have its own handler, which bloats the application’s
size. With only 160 kB of flash memory available on Ledger Nano S, this could be a
serious issue. In fact, a complex application, such as the one for Cardano, uses almost
all of the available space. It might also be problematic to fit a debug build of such
an extensive application into the device’s memory. This leads to developers having to
comment some parts of the code before loading the application into the actual device
for testing [12].

Another disadvantage of this approach is that performing an undo step is not easy.
At every moment, the application expects a specific instruction with data in a specific
format as the next one. Once new data are received, the application discards data from
the previous instruction. If an undo step was to be performed, a previous instruction
would need to be repeated. However, the application would need to have a way of
verifying that the repeated instruction is the same as before. Not supporting undo and
redo operations can be considered a security issue. If the user accidentally confirms
some data and wants to return back to them, their only option is to terminate the
process and start the new one from scratch. It can be expected that there are many
users who would rather take the risk and not reset the process.

An advantage of this approach is security. Most of the computation happens inside
the secure device. It can thoroughly verify the received data format. This is due to the
internal state that the application remembers. The application always expects some
data format before these data are actually received.

1.3 Previous work

In our previous work [15], we have already proposed and implemented an approach
that moves the need to remember the current automaton state to the client side. The
application accepts a set of general instructions, such as SEND_DATA(header, data,
display_to_user). This is in contrast with the previously described classical ap-
proach, where individual instructions are tied to the data they carry. The application
from our previous work does not check the correctness of received data upon receiving
them immediately. Instead, it calculates one more hash besides the transaction one.
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We call this hash an integrity hash. It is affected by all constant parts of received
APDUs. For instance, in case the application receives a SEND_DATA("Amount",

216, true) instruction, it adds "SEND_DATA", "Amount" and true into the in-
tegrity hash and adds 216 into the transaction hash. In this case, the constant header
"Amount" should not be a part of the serialized transaction. However, it has a mean-
ing for the user who sees this header on the display together with the value itself.
The main idea is to compare the calculated integrity hash against a hardcoded one
at the end. This ensures that the client has to send the correct instructions with the
correct constant parameters in the correct order to get the signature. Also, displaying
all sensitive data to the user for confirmation is ensured.

If we needed to support multiple different transaction structures, we would need to
have multiple hardcoded hashes inside the application, one for each allowed transaction
type. In our previous work, we only demonstrated this capability on two different
transaction structures.

Some transaction types are more complex than others. The most significant ex-
ample of this is an array. Some transaction structures may contain arrays of variable
length. A naive way of computing an integrity hash for some transaction could yield
different hashes for different array lengths. We could not afford to store a single hash
for each possible array length in the device due to space limitations. Also, a code of
such an application would be difficult to maintain well. Another complication is that
individual elements of an array could be of different types.

To solve this issue, we introduced for-loops. The idea is to allow the client to send
an arbitrary number of array elements. The client would send a single array element per
iteration. The goal of the application is to validate each element individually. Besides
that, the application counts how many elements have already arrived. After the last
element is received, the application could validate whether the total number of received
elements falls into some specified range. This limits the number of iterations allowed.
For example, it is possible to enforce an array to have between 6 and 11 elements.

An instruction for starting a for-loop exists. A client sends a list of allowed iteration
integrity hashes as a part of this instruction. The idea is that each iteration could be
different as long as its integrity hash is a part of the list received at the start of the
loop. The top-level integrity hash depends on the list of allowed iteration integrity
hashes for the loop.

This has not yet allowed us to limit the number of iterations of the loop. Therefore,
a minimal and maximal number of iterations are also sent as a part of the START_FOR
instruction and are added to the integrity hash of the whole transaction. After the
START_FOR instruction is sent by the client, individual iterations are performed.
Each iteration is started by a START_ITERATION instruction and ended using an
END_ITERATION instruction. Between those two instructions, any other instructions
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can be received, all of which contribute to the current iteration integrity hash. The
END_ITERATION instruction checks whether the computed iteration integrity hash
is included in the list of allowed iteration integrity hashes previously received in the
START_FOR instruction. After the last iteration is ended, an END_FOR instruction
has to be sent by the client. This instruction is responsible for modifying a transaction
integrity hash so that it is affected by allowed iteration types and the number of allowed
iterations.

Some transaction structures contain nested arrays as well. The application from
our previous work supports nesting up to 5 for-loops, which was sufficient for most use
cases. This limitation comes from the need to store parent iteration integrity hash for
each child iteration and from the limited amount of RAM.

This application design offloads most of the computations to the client side. Cal-
culated integrity hashes ensure that the client could not misbehave.

1.4 Goals

Although the implementation of an application using our previous approach is us-
able [8], it can only reject the transaction at the end. Therefore, it lets the client
display anything they want on the screen. Even though this could not lead to straight-
forward abuse, it possibly allows for some phishing attacks. It might be more secure if
the application was able to reject the transaction right at the moment the client sends
unexpected data.

A naive modification of our previous application to support validation after each
step leads to inefficiency. To validate that a step is correct, the client would need to
also send all remaining instructions to the application. This way, the application would
be able to calculate the final integrity hash and compare it to the hardcoded one. If
the original instruction sequence was of length n, then this modified application would
need to receive Θ(n2) instructions. This is clearly inefficient. In this thesis, we want
to describe more efficient approaches for validation after each step.

Our previous application did not support undo and redo operations. It can be
expected that the user might want to see some already confirmed data again. Exploring
various design options for this feature is also one of the goals of this thesis. We are
interested in solutions that do not require the whole transaction to be remembered by
the device at once.

Reasoning about the security of our proposed approach is also one of our goals.
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Chapter 2

Vector commitment schemes

Committing to a vector of values is useful in multiple parts of our proposed solutions.
Vector commitment schemes allow us to calculate a commitment for a vector of values.
Later, a prover can prove a knowledge of a single element of the committed vector.
The verifier should be able to verify the proof without knowing the rest of the vector.
Access to the commitment and the proof should be sufficient for the verification. In
this chapter, we present an overview of already existing vector commitment schemes
and their properties.

Different vector commitment schemes have different advantages and disadvantages.
As we are limited by the number of APDUs we can afford to transfer, we prefer small
proof sizes. At the same time, we are limited by the computational capabilities of
the Ledger Nano S hardware wallet. With the available 60 MHz processor and 4 kB
of RAM, we might not be able to perform cryptographic computations that are too
complex while maintaining a reasonable user experience. Therefore, the proof verifica-
tion should also not be too expensive. On the other hand, calculating proof and the
commitment can be computationally more expensive, as those tasks do not happen
inside the device. Instead, they happen on some external machine belonging to the
user. We are interested in commitment sizes as well because they need to be stored on
the hardware wallet with limited storage and memory.

2.1 Merkle tree

A Merkle tree [14] is the simplest vector commitment scheme that we will present in
this chapter. If we want to commit to a vector of values using a Merkle tree, we have
to calculate a hash of each element of the vector. Those hashes will be leaves of the
tree. After all leaves are constructed, a k-ary tree is built over them. A value in the
parent node will be a hash of the concatenation of values in child nodes. In order to
make the tree simpler, padding leaf nodes could be added so that the total number of

9



10 CHAPTER 2. VECTOR COMMITMENT SCHEMES

leaves is a power of k.
A commitment in the case of a Merkle tree is the hash from the root node. There-

fore, its size is constant. If we use ordinary 32-byte hashes, such as in the case of
sha256 hash function, this commitment can be easily stored on the device.

To prove knowledge of an element of the vector, the element has to be provided
by the prover. This element is hashed by the verifier. Then, a hash in the root of
the tree has to be calculated from the hash of the provided element. In order to do
this, all sibling nodes on the path from the corresponding leaf node to the root also
have to be provided by the prover. The resulting hash is compared to the commitment
stored on the device. The security of this approach comes from the collision resistance
of cryptographic hash functions. If the committed vector consists of n elements, then
a proof for a single element consists of log2(n) hashes and the element itself in case of
k = 2.

A Merkle tree with k = 2 is optimal in terms of proof sizes. This is due to the fact
that a proof for a leaf in a tree with degree k contains k− 1 hashes for each tree level.
The decreased depth of the tree for higher k does not outmatch this. More specifically,
the size of a Merkle proof is O(k logk(n)) [6]. Therefore, in this thesis, we will only
focus on binary Merkle trees.

Overall, this vector commitment scheme seems usable for us, even though the log-
arithmic proof size could sometimes be too large to fit in a single APDU.

2.2 KZG commitments

KZG commitments, introduced by Kate, Zeverucha, and Goldberg [5], are an instance
of a polynomial commitment scheme. It allows us to commit to a polynomial. Af-
terwards, it enables a prover to prove evaluations of the polynomial. If we want to
commit to a vector of values using this scheme, we first need to encode our vector as
a polynomial.

In order to encode our vector as a polynomial, we first encode all elements of the
vector as integers. Once we do that, we have a vector of integers (x1, . . . , xn). Then,
we must find a polynomial p, such that p(i) = xi. Such a polynomial can be found
using Lagrange interpolation.

A KZG polynomial commitment scheme can be used to commit to this polynomial
afterward. Detailed inner workings of this scheme are not of much interest to us, but
we would like to highlight issues that we would need to overcome if we wanted to apply
this scheme in our environment.

This scheme is based on a pairing. A pairing is a function e : G1 × G2 → GT on
groups. This scheme requires a trusted setup. A random trapdoor element t has to
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be generated first. Then, some values based on t and generators of G1 and G2 are
computed. Those values are publicly revealed, and t has to be discarded. If anyone
was able to access t, they would be able to produce fake proofs.

The first issue lies in the need for a trusted setup. The trapdoor element t can be
generated by the manufacturer of the Ledger Nano S hardware wallet. This solution
should be feasible, as the manufacturer is already trusted by the hardware wallet
users in other areas. Another solution to the secret generation is using a form of a
secure multiparty computation ceremony. Although this is a trustless solution, it is
less manageable for the manufacturer. The manufacturer would have to be involved in
the ceremony, as they currently are the only point of trust in this ecosystem.

A more problematic issue is the need to calculate pairings. Applications for Ledger
Nano S have to use a cryptographic library provided by the manufacturer [10]. The
problem is the absence of any form of pairings in this library. Furthermore, computing
a pairing on the available processor with the available RAM could be infeasible if the
user experience was to be kept at a reasonable level. Computing one type of pairing,
a Tate pairing, can take around 100 ms on a machine with 1 GHz CPU and 256 MB
of RAM [4]. The Ledger Nano S has more than 16 times lower processor speed and
64 000-times less RAM. In this case, using multiple APDUs for a Merkle proof would
be faster than computing a pairing to verify a single proof. In later chapters, we show
that an average APDU transfer time is ∼ 160 ms.

The size of a proof is constant regardless of the size of the committed vector. Using
40 bytes for a single group element as the proof is very manageable for our use case. In
fact, this is the most efficient general commitment scheme regarding proof sizes that we
were able to find. However, the long verification time and complexity make it hardly
usable for a Ledger Nano S application.

2.3 Catalano-Fiore commitments

In the previous section, we have shown a vector commitment scheme based on pairings.
The scheme we describe in this section is based on RSA. More specifically, it uses an
RSA accumulator. Proof sizes are constant in this scheme. The constant depends on
the required security. If we wanted to work with groups of order 1024, we would need
∼ 150 B for a proof, according to [2]. This is worse than KZG, which only required
40 B. However, 150 B still fits into an APDU and also leaves some space for data.

There are multiple issues with Catalano-Fiore commitments in regard to usage in
Ledger Nano S. According to Catalano and Fiore, a collision-resistant hash function
that maps set elements to primes is required [3]. They state that such mapping is
expensive. Another aspect of this scheme that could be problematic for the use on
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Ledger Nano S is the proof verification time. The time complexity of verifying a single
proof is O(k + λ) group operations, as stated in [2]. Here, k is the maximum possible
number of bits of a single element of the vector we are committing to, and λ is a security
parameter. In our presented example, this security parameter is 1024. Performing such
a number of group operations on Ledger Nano S is infeasible for groups of this size.

2.4 Other schemes

Multiple other vector commitment schemes exist. However, they usually have non-
constant proof sizes and are typically much less convenient for us than Merkle trees.
Merkle trees are computationally simple, which makes them a good fit for Ledger Nano
S. Also, they only require ordinary cryptographically secure hash functions, which
are available in the cryptographic library for Ledger Nano S. Other cryptographic
primitives mentioned in this chapter, such as pairings, are not available in this library.
Therefore, even if they were computationally feasible, the device vendor support would
be required first.



Chapter 3

Design

In this chapter, we first describe our design goals. After that, we describe an initial
design that is a straightforward transformation of the application from our previous
work into one that at least partially fulfills our design goals. Then, we incrementally
improve this approach until we arrive at our final solution. We depict our design deci-
sions in detail. Some of the presented approaches are only illustrated to demonstrate
problems that need to be solved. The final solution that does not have most of the
issues we mention in this chapter is only described in section 3.6.

3.1 Design goals

Before describing the design itself, we present several goals that guided our decisions.

Code size

In our previous work, we managed to transfer a finite state automaton from the hard-
ware wallet to the client side. This enables us to add features to the hardware wallet
application without bloating its size. Due to flash storage limitations on Ledger Nano
S, we want to keep most of the code on the client side. The goal of the hardware
wallet application should only be verifying the integrity of data received by the client.
Therefore, the hardware wallet application code should be general and should not be
specific to any transaction type. It should provide a set of primitives (instructions) suf-
ficient for receiving any reasonable transaction structure. The only transaction-specific
parts of the application should be commitments stored on the device. On the hardware
wallet application side, adding support for a new transaction type should only consist
of inserting a new commitment into the application code. All other work required to
support this transaction type should happen on the client side.

13
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User experience

A typical interaction between the user and Ledger Nano S consists of reading data
from the display and confirming them. If the time gap between the confirmation and
receiving new data is too big, the user could be unsatisfied. Our goal is to come up
with a design that is, at most, negligibly slower than the state-of-the-art applications.

Security

It should be infeasible to sign a transaction that has a structure that does not conform
to any of the allowed structures. This was also the goal of the application from our
previous work. In addition to this, we want our application to perform validations after
each step. This means that if the the application receives data that could not lead to
a successful signature creation, the process immediately terminates. This way, the
compromised client cannot display any data they want on the device, which prevents
some phishing attacks.

Undo and redo

As we have already mentioned in chapter 1, not giving the user an option to perform
a step back is a security issue. We would like to incorporate undo and redo steps into
our proposed designs. We are mostly interested in approaches that do not require the
application to remember the whole transaction or the history of instructions.

3.2 Parameters to optimize

There are two actions that have to be performed that slow the whole signing process
down. The first is communication using APDUs, and the second is the calculation of
hashes. Typically, more hash operations need to be performed than APDUs transferred.
It can be expected that performing a single hash operation is faster than performing
a single APDU. However, the question is, how much faster hashing is. We want to
optimize our design based on that.

We performed a series of experiments on the hardware wallet. There are three types
of hash operations that we need to perform: initializing a hash, appending data to a
hash, and finalizing a hash. We used sha256 hash function.

In the first experiment, we tried to initialize a hash, append 32 bytes to it, and
then finalize it. In order to be able to measure times accurately enough, we performed
this series of three operations 10 000 times and calculated the average. There is some
time overhead in running the application. Therefore, not all of the time spent by the
application run was used on calculating hashes. We also measured this overhead so
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Hash: initialize 0.108ms
Hash: append 32B 0.770ms
Hash: finalize 1.573ms
APDU transfer 168.625ms

Table 3.1: Average duration of hash operations and an APDU transfer.

that we are able to calculate only the time needed for hash operations. The result is
that this series of three hash operations takes 1.67ms.

In the second experiment, we first measured initializing the hash. Then we also
added appending. Lastly, we added finalizing the hash. We also used 10 000 measure-
ments and calculated the average for each operation. After that, we also measured the
time needed for a single APDU transfer. The results are summarized in table 3.1.

These results show that hash operations are negligible against APDU transfers.
Therefore, we will focus on minimizing the number of APDUs needed for our system.

3.3 High level approach

The core of the idea from our previous work stays the same. We are interested in
computing a commitment, or a set of commitments, that will be stored in the Ledger
Nano S device. All data the software client sends should be validated against these
hardcoded commitments.

One of our goals is to design a system that will prohibit receiving data that are not
expected. We want the client to prove, after each step, that the sequence of instructions
they sent so far is a prefix of some allowed instruction sequence. If the client is not
able to provide such proof, the application will terminate and not produce a signature.
These additional proofs cannot make the user experience too much worse. Otherwise,
such an application would not be usable in practice.

As we have experimentally shown in the previous section, proof sizes will greatly
interest us. With growing proof sizes, the number of APDUs needed to transfer these
proofs also grows. In an ideal case, the whole proof should fit in the same APDU as
the sent data. This would clearly impose a restriction on the maximum allowed size
of data being sent at once. However, we consider such a restriction acceptable, as a
chunk of data being sent at once is generally not too large. This is due to the fact
that it usually needs to be displayed on the small device screen for user confirmation.
Therefore, we consider an APDU structure where the first half is reserved for data
and the second half is reserved for a proof reasonable. Sending more extensive proofs
using additional APDUs is also tolerable, as long as the amount of these APDUs is
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very small, such as one or two per proof.
Computing commitments that allow for such small proofs is one of our main design

focuses.

3.4 Design using a tree structure

A way of letting the client perform proofs for each instruction is using a hash tree. A
sequence of instructions can be stored in the leaves of the hash tree. In the simplest
case, the client would send data that are stored in the leaves sequentially. For each
leaf data corresponding to an instruction, a Merkle proof would need to be sent by the
software client as well.

The root of the tree is the commitment that is stored inside the application. In our
previous work, the client always sent an instruction inside an APDU and then moved on
to sending the next instruction in the next APDU, without proving anything. This does
not comply with our requirement of verification after each step. If verification after each
step was to be added to the application from our previous work in a straightforward
way, proofs would be linear with respect to the total number of sent instructions. A
tree structure was, in fact, used there, but the tree was very deep and almost linear.
Different tree structures could be explored to accomplish the requirement of verification
after each step in a more efficient manner. As we already mentioned in chapter 2, binary
Merkle trees are optimal in regards to proof sizes and we will therefore only consider
the binary case.

Later in this chapter, we present an approach that does not use hash trees and is
more efficient than the design based on trees. The more efficient design is described in
section 3.6.

3.4.1 Tree shape

If we only had simple instructions, such as SEND_DATA, a balanced binary tree would
possibly be the only reasonable solution regarding the tree shape. A sequence of
SEND_DATA instructions would form a sequence of leaves of the tree. However, we also
have for-loops. They consist of START_FOR, START_ITERATION, END_ITERATION
and END_FOR instructions in the application from our previous work, as described in
chapter 1. We need to decide how to incorporate these instructions into the new design.

Recall that the START_FOR instruction also contained a list of allowed iteration
integrity hashes in the design from our previous work. This was, in fact, a list of
commitments to allowed iteration types. The old application was validating whether
each iteration was from the allowed list. This means that we need to make all allowed
iterations part of the tree so that these iterations affect the root node. The reason
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COMMITMENT

INIT START FOR
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ITERATION
SEND DATA

END

ITERATION
END FOR SEND DATA END

Figure 3.1: Balanced tree with a single for-loop with a single allowed iteration type.

for sending the list of commitments to allowed iteration types in START_FOR was so
that each possible sequence of allowed iterations does not need a separate commitment
hardcoded in the application. Instead, a single hardcoded commitment is enough if we
validate loop iterations this way.

Balanced binary tree

Let us consider a balanced binary Merkle tree, where a sequence of leaves is formed by
a sequence of instructions.

A complication here is that for-loops also need to be part of this instruction se-
quence. As we are working with a transaction structure that needs to be general and
usable for all particular transactions, we can only include allowed iteration types in the
tree. This means that in case the client wanted to perform multiple iterations of the
same allowed type, they would need to prove the same leaves multiple times. If they
wanted to perform three iterations of the for-loop, they would need to prove nodes
marked in red in figure 3.1 three times. From this, we can see that algorithms for
efficient Merkle tree traversal are not of much interest to us.

There could be transaction structures that need nested for-loops as well. Such
transaction structure could be serialized in a straightforward manner. A START_FOR

instruction and an END_FOR instruction of the inner for-loop would be surrounded,
not necessarily directly, by START_ITERATION and END_ITERATION of an iteration
from the outer for-loop. A disadvantage of this tree structure is that navigating it is
difficult. A serialized nature of for-loops, in this case, makes it complicated for the
client to determine which node they need to send next. Possibly large jumps could
occur, which makes it more difficult for the application to validate whether the current
instruction was expected or not. This is closely related to the problem of not proving
nodes and just skipping them instead by the client that we describe in more detail in
section 3.4.2.

In the next section, we present a tree layout that we consider simpler to implement
and more efficient as well.
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Figure 3.2: Binary hash tree with a single for-loop, which has its own subtree.

For-loops as subtrees

In the case of a balanced binary hash tree described in the previous section, all in-
structions in the transaction structure affect the depth of leaves corresponding to other
instructions. If the transaction has a for-loop with many different allowed iteration
types that are rarely actually a part of the transaction, proofs for proving leaves out-
side this for-loop could be larger than if this for-loop was not present. This is because,
with the increasing number of leaves of the tree, its depth can only grow. A realization
of this fact naturally brings us to the idea of a tree that is not balanced but instead
has a separate subtree for each for-loop. This way, the depth of leaves that are not a
part of any for-loop does not depend on the structure and size of for-loops unrelated to
them. An example of this tree structure can be seen in figure 3.2. Note that the nested
subtree, representing a for-loop, could have had another nested subtree or multiple
subtrees suspended below. Each of them would represent a single nested for-loop. A
subtree can only be under a node marked with START_FOR.

In the example in figure 3.2, there is a for-loop with two allowed iteration types.
The first is marked in red, and the second is marked in blue. This tree is deeper than
it would be in the case of a balanced tree with the same instructions. However, in
the case of using subtrees for for-loops, it is not necessary to prove the whole path
from leaf to the root every time. Once the client sends the START_FOR instruction,
they also send a proof. This proof is for the path from the START_FOR node to the
root. After this, the client should start sending iterations. An iteration consists of
a START_ITERATION instruction, some other instructions that form a body of that
iteration, and an END_ITERATION instruction. None of these instructions need to be
proved all the way to the root. As the START_FOR node has already been proven, it
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is sufficient to only prove iteration leaves to the START_FOR node. This requires the
application to remember the hash stored in the START_FOR node in memory, from the
beginning to the end of the for-loop. Otherwise, the application would not be able to
verify proofs against it.

Nested for-loops do not need any special approach. A nested for-loop has its own
START_FOR instruction. Once the client sends this instruction, they also have to send
a proof for a path from this START_FOR node to the START_FOR node of the parent.
This means that proof sizes for instructions inside a for-loop only depend on the size
of that for-loop itself. The size of a for-loop is the total number of instructions across
all allowed iteration types.

One difference between this tree shape and a balanced tree is that not all instruc-
tions are represented by leaves anymore. Specifically, START_FOR instructions are
represented by internal nodes. However, START_FOR instructions have to carry more
data besides allowed iteration types, which are represented using a subtree. An al-
lowed range of iterations also has to be included so that we can limit the iteration
count. Therefore, the hash for the START_FOR node has to not only depend on the
hashes of its two children. A hash of such a node can be computed by hashing the
concatenation of the left child’s hash and the right child’s hash, as well as a minimal
and maximal allowed number of iterations. This is a special case of computing a hash
stored in a hash tree and, therefore a slight complication and disadvantage against a
balanced tree structure. Overall, we consider a structure with for-loops represented as
subtrees simpler to navigate and more efficient regarding proof sizes.

3.4.2 Detecting skipped nodes and repetitive proving

An issue affecting both presented tree shapes is that the client could send any instruc-
tion that is a part of the tree with valid proof. This is because there is no mechanism
to force the client to send instructions from the tree nodes sequentially. This allows
the client to skip multiple instructions or to send the same instruction multiple times.
Sending the same instruction multiple times could be needed in the case of for-loop
iterations. If the client wants to send multiple iterations of the same allowed type,
they have to prove the same allowed iteration nodes multiple times. However, this is
the only use case where repeating proofs is needed. In this section, we introduce a
mechanism for validating the order of nodes that the client proves. We will only focus
on the tree shape that uses subtrees for for-loops, as we described this tree shape as
more efficient in the previous section. These issues affect all other hash tree structures
as well, and solutions to these issues presented here should be applicable to other tree
structures in a similar fashion.

If the tree did not include for-loops, a simple sequential numbering of leaves would
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lead to a solution. An identification number id would be a parameter of each in-
struction. Each APDU that the client sends would contain an appropriate id. The
application could check whether the first instruction it received is an INIT instruction
with id = 1. The application would also remember the id of the last instruction that
was received. If the last instruction was the i-th one, the application would remember
idi. Once the instruction number i+ 1 arrives, the application would be able to check
whether idi+1 = idi+1. This numbering has to affect hashes in the tree as well. In leaf
nodes, the node’s id is hashed together with the instruction to obtain the corresponding
hash.

Such simple numbering is only sufficient if for-loops are not present. As we men-
tioned earlier, for-loops can require some nodes to be proved multiple times. The
approach described in the previous paragraph does not allow this. Let us extend the
numbering. In order to do that, we first need to define what an instruction node and
an instruction level are.

An instruction node is a node of a tree that represents an instruction. All leaves
except padding ones are instruction nodes. Besides that, only nodes representing
START_FOR instructions are instruction nodes.

An instruction level of a node of a tree is the number of instruction nodes on a
path from the root to that node. In the case of a tree with no for-loops, all leaves
are instruction nodes, and all of them have an instruction level of 1. We will use an
instruction level to determine in how many for-loops a node is.

In the extended numbering, instruction nodes on the same instruction level are
numbered sequentially from 1 from left to right. An id of an instruction node is a pair
(instruction level, sequential number). For example, an id of a third
instruction node on the second instruction level would be (2, 3). We call this a BFS
numbering, and an example is shown in figure 3.3. It has to affect hashes in the tree
like the previous, simpler numbering did. We only described how hashes of leaf nodes
will be computed there. For START_FOR nodes, the node’s id is hashed together with
hashes in child nodes and minimal and maximal allowed number of iterations.

While describing a tree structure with for-loops as subtrees, we mentioned that the
application has to remember the hash corresponding to the START_FOR instruction,
so that the client only needs to provide shorter proofs. To validate that an instruction
with an allowed id came from the client, the application will also remember ids of all
START_FOR instructions besides their corresponding hashes.

Validating that instructions from correct tree locations arrived is more complex than
it was in the case of the simple numbering on the simple tree with no for-loops. The
application still has to remember the id of the previous instruction that has arrived.
If the INIT instruction arrives, the application has to make sure that the id of this
instruction is (1, 1).
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If an END_ITERATION with an id of (level, seq) was the last instruction that
came from the client, there are up to 2 options for the next instruction so that it will
be valid. We will describe 3 possible cases.

If the current number of iterations is less than the minimal allowed number of
iterations for the corresponding for-loop, the next iteration has to start. This means
that a START_ITERATION instruction with an id of (level, any) has to come,
where any can be any sequential number. The client can start any allowed iteration
as the next one, which is the reason for any sequential number being valid. Only the
level has to be the same. Validating that the next instruction is START_ITERATION
can easily be performed by the application. Ensuring that the next instruction comes
from the correct subtree is done by a Merkle proof to the commitment of the current
for-loop.

If the current number of iterations equals the maximum number of allowed iter-
ations, the client cannot start a new one. In fact, the only option that the client
has is to send an END_FOR instruction with an id of (level - 1, parent loop

sequential number + 1). As we mentioned earlier in this section, the level and
the sequential number are remembered for each START_FOR instruction. This is the
reason why the application needs them.

The last case is that the current number of iterations falls within the allowed range
but is less than the maximal allowed number of iterations. In this case, the client can
either start a new iteration or end the for-loop. Therefore, the application lets the
client do either of the two options described in two previous cases.

So far, we only described how the application validates instruction ids if the previous
instruction was END_ITERATION and if the current instruction is START_ITERATION.
In this paragraph, we describe how the application should behave for other instruc-
tions. If the previous instruction was START_FOR, with an id of (level, seq),
then the next instruction could either be END_FOR with an id of (level, seq +

1), or START_ITERATION with an id of (level + 1, any), where any is any
sequential number. Lastly, if the previous instruction was neither END_ITERATION
nor START_FOR and it had an id of (level, seq), then the next instruction has
to have an id of (level, seq + 1).

Commitment switching

Using BFS numbering described in this section ensures that no instructions can be
skipped and that no instructions can be proved multiple times except for those that
require it. In the case of for-loops, it is important that the application only considers the
latest START_FOR node as the commitment to validate instructions against. Imagine
an implementation of the application that allows the client to prove the next instruction
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(1, 1) (1, 2) (1, 3)

(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(2,7)(2,8)

(1, 4) (1, 5) (1, 6)

(2,9) (2,10) (2,11) (2,12)

(1, 7) (1, 8)

Figure 3.3: BFS numbering in a tree for transaction with two for-loops.

against any START_FOR node that is a predecessor of the proved node or against the
root node. This would give the client an opportunity to choose against which of these
commitments they want to assemble the proof. For example, instead of proving the
current instruction against the latest START_FOR node, the client could send a longer
proof that would prove the current node against the root. This leads to an attack
vector.

The issue lies in the application allowing any sequential number as a start of the
next iteration, as long as the provided START_ITERATION instruction is on the correct
level. Let us consider an example tree from figure 3.3. There are two different for-
loops having their instructions on the same instruction level. After the client sends
a START_FOR instruction with an id (1,6), they can send START_ITERATION

with an id of (2,1), which is from a different subtree. The client can prove this
instruction against the root. This passes all validations in the application because the
START_ITERATION instruction is on the allowed level. After the client finishes the
whole iteration, they can end the for-loop by sending the END_FOR instruction with
an id of (1,7).

For this reason, it is important that the application only allows proofs against the
latest commitment available. The application can have a stack of available commit-
ments. At first, only the root commitment hardcoded in the application is on this
stack. Every time a START_FOR instruction arrives, the hash from the corresponding
START_FOR node is pushed onto the stack. Every time a valid END_FOR instruction
arrives, a single commitment is popped from the stack. Each proof has to be performed
against the top of the commitment stack.
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3.4.3 Small optimizations on the number of APDUs

There are some places that might not seem optimized in our design using a tree struc-
ture. For example, every two iterations of a for-loop are divided by START_ITERATION
and END_ITERATION instructions. That is, two instructions are used only to divide
two iterations, resulting in two Merkle proofs for such a small task. We would like to
explore the possibility of reducing the total number of APDUs needed. In this part, we
are interested in small improvements that do not change the principle of our tree-based
design.

A straightforward idea of reducing the number of instructions needed to separate
two iterations of a for-loop is merging START_ITERATION and END_ITERATION

instructions into an ITERATION_SEPARATOR instruction. The problem with this
approach is that after the client sends an ITERATION_SEPARATOR instruction, they
can immediately start performing the next iteration. This iteration can be started
by almost any instruction from the respective for-loop subtree. The application does
not have a way to verify that the instruction received from the client is indeed the
start of an iteration. The BFS numbering ensures that once the client sends the first
instruction of an iteration, they have to finish it sequentially. However, the client can
send an instruction in the middle of an iteration and only pretend that it is actually
the first instruction of one of the allowed iterations.

Instead of merging START_ITERATION and END_ITERATION instructions, one
might consider sending them both in the same APDU instead. However, this would still
require two Merkle proofs because these START_ITERATION and END_ITERATION

instructions might not be siblings in the tree. In case they are siblings, a single Merkle
proof would indeed suffice. All the observations that we just described lead us to the
following solution that works in general and can only decrease the number of APDUs
required.

Iterations as subtrees

We already have a separate subtree for each for-loop. The root of such subtree corre-
sponds to a START_FOR instruction. This idea can be repeated for allowed iteration
types. There would be a subtree below a START_FOR node. Some number of the
topmost levels of this subtree would form a balanced binary tree with k leaves. If there
are i allowed iteration types in this for-loop, then k would be chosen as the smallest
power of 2, such that i ≤ k. Under these leaves, subtrees for allowed iteration types
would be suspended. One iteration per subtree. An example of such a tree is shown in
figure 3.4.

The issue with the ability to validate whether the client really sent a start of an
iteration persists. However, this tree structure gives us an opportunity to solve it
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Figure 3.4: Iterations as subtrees. There are two allowed iteration types.

using another kind of numbering. Besides BFS numbering, we introduce DFS num-
bering. First, we assign natural numbers from 1 to all leaves of the tree. In the
DFS numbering, each node has a pair of numbers (min, max) assigned. In this
DFS label for a node, min marks the minimum number assigned to a leaf in the sub-
tree, of this node. Similarly, the max value in a node marks the maximum number
assigned to a leaf in the subtree of this node. Using this numbering, we can easily
determine whether a node is the leftmost leaf of an iteration subtree. If the iteration
root node has a DFS number of (min, max), then the leftmost leaf of this subtree
has to have a DFS number of (min, min). The DFS numbering also has to be
part of instructions, and therefore, it affects hashes in the hash tree. Such number-
ing also allows the application to check whether an instruction from the client is in a
specific subtree. If the iteration root node has a DFS label of (iteration_min,
iteration_max) and the DFS label of an instruction from the client has a DFS
label of (client_min, client_max), then the application can validate whether
iteration_min ≤ client_min ≤ client_max ≤ iteration_max. This is
another tool that can be used to avoid the mixing of iterations that we described
earlier.

Even though we solved the issue of validating that the client sent an actual start
of an iteration, we still need a way of validating that the client managed to send the
whole iteration. In other words, the application needs to be able to detect that the
client has sent the last instruction of that iteration. For this purpose, we can reserve
a single bit in each instruction. This bit will say whether that instruction is or is not
the last instruction in an iteration.
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We only use DFS numbering to check whether an instruction received from the client
is indeed the first instruction of that iteration. This seems to be too complicated. Each
instruction has to carry its DFS label. Instead, a single bit can be used for marking
the start of an iteration, just like we did with the end of an iteration. Hashes in the
hash tree would be affected by these two bits as well.

An advantage of this solution is that the depths of subtrees for allowed iteration
types are not affected by each other. Therefore, subtrees for iterations are not deeper
than in the case of the previous design, where all allowed iteration types were a part
of the same balanced subtree. Proving an iteration in this new design means that the
client first has to prove a path from the root node of the respective iteration to the
root node of the for-loop. Such a path is entirely contained in the green region in
figure 3.4. In this proving instruction, a commitment to the iteration would be sent.
This commitment can be stored in the memory and used to validate instructions for
the iteration itself in the next phase. Then, the client would need to send and prove
each non-padding leaf of the iteration subtree using a path to the iteration root node.
In the case of shallower trees, the client would be able to prove the whole path from
the leaf to the for-loop root node in a single APDU. Now, this path is split into two
shorter proofs in case of the first instruction of an iteration. However, this is still not
worse than using separate START_ITERATION and END_ITERATION instructions.

Replacing instructions with bits

Note that in the design with iterations as subtrees, we replaced START_ITERATION

and END_ITERATION with a single bit each in every instruction. This leads us to mod-
ifying the original design, where all allowed iteration types were in the same balanced
subtree using this idea. Proofs will not be shorter than in the case of using separate
subtrees for iterations because all iterations will be in the same balanced subtree. How-
ever, the need for another type of internal node in the tree – the ITERATION node
complicates the previous design, and therefore, having an optimized design without it
could be useful.

The structure of the tree will be the same as before, meaning that top-level in-
structions of allowed iteration types of a for-loop will be described by a single balanced
subtree. In this subtree, instructions for allowed iteration types will be stored se-
quentially in leaves, with one exception. This exception is a START_FOR instruction,
which is an internal node with its own subtree. However, no START_ITERATION nor
END_ITERATION nodes will be present. Instead, two bits are added to each instruc-
tion. The first one marks the instruction as the first one in some iteration, and the
second one marks an instruction as the last one in some iteration.

This approach could be extended to other instruction types that might be needed.
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In case an instruction is small enough, meaning it does not carry any data, it can be
represented by a bit in every other instruction instead. This could lead to allocating a
single byte to store flags in each APDU. We do not expand on this idea further, as we
currently do not need any other short instructions besides START_ITERATION and
END_ITERATION.

3.4.4 Checkpointing

Nodes of the described hash tree are being proved in a sequential manner. Jumps occur
frequently in the case of for-loops. However, even in the case of for-loops, instructions
belonging to a single iteration type are being proved sequentially. If we consider Merkle
proofs for two different nodes that are on the same level and next to each other at the
same time, it can be expected that some parts of these proofs may overlap. More
specifically, parts representing the path from the lowest common ancestor of these
nodes to the root of the tree will be the same in both proofs.

This observation can be useful for deep hash trees. If the whole Merkle proof does
not fit in a single APDU and multiple APDUs are needed, we might pre-prove a part
of the path. If we can fit h hashes in a single APDU, we can pre-prove a path of length
h. By this, the client can prove knowledge of an internal node, and the application can
store the hash from this node in memory. This hash will be used as a commitment to
prove actual instructions against. All instructions that are in a subtree of this node
can be proved against it.

This idea can be generalized. If we are working with very deep trees, where the
proof from a leaf to a pre-proved node in depth h does not fit in a single APDU, we can
pre-prove another node in depth 2h before proceeding to proving leaf nodes against it.
Analogically, we can pre-prove nodes in depth ph for any p ∈ N.

3.5 Undo and redo

A description of the way the user interacts with the hardware wallet was provided
in chapter 1. We would like to recall that all essential data is displayed on a small
screen on the device, and the user has to confirm it before the process moves on to
subsequent data. However, the user might either confirm some data accidentally or can
later realize that they did not check some data properly sooner in the process. In this
case, they would appreciate an option to return several steps back, validate these data
again, and continue the process. This is what we mean by performing undo and redo
operations. Some applications implement this by loading the whole transaction into
the flash memory first and only displaying data to the user for confirmation afterward.
We would like to propose an approach that does not do this, as flash memory has a
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limited lifespan. The whole transaction is often too big to fit into RAM at once, and
we, therefore, are not interested in this approach either. In this section, we present
ideas that will later lead us to an application design that is more efficient than the one
using a tree structure.

3.5.1 Naive approaches

When performing an undo step, the client wants to return to the previous instruction.
However, the device does not have this instruction stored in memory anymore. There-
fore, the client has to send this previous instruction again. The job of the application
running on the hardware wallet is to ensure that this instruction is indeed the same
as before. Considering the tree-based design described in the previous section, one
might simply try to prove the previous node in the tree again. This would validate the
instruction structure, but only validating the structure of the instruction is not enough
in this case. Validating the structure of an instruction means only validating its con-
stant parts. Yet, when performing an undo step, variable data need to be validated
as well in order to ensure that the instruction is exactly the same as before. There is
no information about variable data stored in the hash tree. Due to that, a separate
technique has to be designed.

Possibly, the most straightforward way to perform the needed checks is to store the
instruction history on the device. Preferably, only hashes of whole instructions should
be stored due to space limitations. This has a linear space complexity with respect
to the number of instructions. Without using flash memory, only tens of hashes could
be remembered at once, allowing only a limited number of undo steps. Besides the
history of instructions, the application would only need to remember a single pointer.
This history pointer would point to the last instruction that has been sent. Performing
redo steps with possible undo and redo nesting is very simple in this case. Each step
only requires an increment or decrement of the history pointer. We can use this naive
approach as a reference for evaluating more efficient approaches.

3.5.2 Merkle forest

The main issue with the naive approach was that it only supported a limited number
of undo steps. With the amount of RAM that is available on Ledger Nano S, it can
be expected that this limit would be small. Considering that RAM is also needed for
other features, this limit could be so small that it could be frustrating for the user.
In case the user wanted to go back too many steps, the application would not allow
that, and the user would have to restart the whole signing process again. Therefore,
our main goal is to increase this limit or even to remove it completely.
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In the naive approach, the device had to remember hashes of all instructions that
were received from the client. An idea that we have already used sooner in this thesis
is to only remember a commitment or a set of commitments to this sequence on the
device. Recall that we assume that the client has significantly more memory than the
device itself. Therefore, the client could remember the whole sequence themselves and
only prove this knowledge online while performing undo and redo steps. A possible
problem is that the sequence is dynamic. It grows as new instructions arrive into

the device. Another potential issue arises from the fact that the commitment would
need to depend on variable instruction data as well, unlike in the case of our tree-based
design described earlier, which only depends on constant parts of instructions. This
means that we cannot pre-compute a single commitment, or even a set of commitments,
that will be the same for all transactions. The device has to compute such commitments
on the fly, depending on individual values of variable data.

When we talk about commitments in this case, we mean commitments for undo
and redo steps. These should not be confused with commitments for checking the
transaction structure itself stored in the device. Computing a set of commitments
for undo and redo on the fly while not needing to remember the whole history of
instructions is a task we solve using a set of Merkle trees. Let us show an example to
demonstrate the whole process.

Initially, there is no commitment stored on the device. Once the first instruction
arrives, the first Merkle tree is computed. This first Merkle tree will only consist of
a single vertex. This vertex will contain the hash of the first instruction. The whole
instruction with both constant and variable parts is hashed. The root of this trivial
tree gets stored in the device’s memory. Note that in this case, the root is the same as
the whole tree.

Then, the second instruction arrives. The application computes a bigger Merkle
tree, having two leaves and a root. The leftmost leaf will be a hash of the first instruc-
tion. This hash is already stored on the device. It is the root of the first trivial Merkle
tree. The rightmost leaf of the new tree will be a hash of the second instruction that
has just arrived. The root of this tree will be computed in an ordinary way from its
children. Then, the old, trivial Merkle tree that only represented the first instruction
can be deleted from memory. All data that were represented by this tree are also
represented in the new, slightly bigger tree. Now, the application only stores a single
root of a Merkle tree again. If the user decides to perform an undo step, they need
to send the first instruction one more time. Together with this instruction, they need
to send a Merkle proof in the corresponding Merkle tree on three vertices. Using this
information, the device can verify that the client has indeed sent the same first instruc-
tion as initially. When sending the first instruction for the second time, the client does
not need to prove this instruction fits correctly into the transaction structure. This is



3.5. UNDO AND REDO 29

because they have already proved it when they were sending this instruction for the
first time, and the application can be sure that the repeated instruction is the same
as the initial one because the client also provided proof for the new tree. After this,
the user can verify data from the first instruction again on the display if they wish
to. If they do that, the client has to send the second instruction for the second time,
performing a redo step. This instruction gets validated against the same Merkle tree,
which contains information about first two instructions together. If this validation suc-
ceeds as well, then the redo step was successful and the signing process can continue
with new instructions.

Once the third instruction arrives a new trivial Merkle tree is computed. At this
point, the application remembers the root of the first Merkle tree, representing the
first two instructions, and the root of the second Merkle tree, representing the third
instruction.

Then, when the fourth instruction arrives, a root of a new Merkle tree, representing
all four instructions that have arrived so far, can be computed on the device. For this
computation, only the two previously stored roots and the fourth instruction itself are
needed. Once the root of the Merkle tree for all four instructions is computed, previous
roots can be discarded from the device’s memory. Now the device only remembers a
single root again. Recall that the client stores whole trees, while the application running
on the device only remembers their roots. Due to this, the client is able to send proofs,
and the application is able to verify them.

Let us compare this solution with the naive one. If there are n instructions in total,
the naive solution needs to remember n hashes. In the solution using a Merkle forest,
the device has to remember at most log2 n hashes. This is because each larger tree
represents at least twice as many instructions as the smaller one, and there exists at
most one Merkle tree of the same size at once. With the available RAM, we expect
that the limit on allowed undo steps is around 106. This should clearly be sufficient
for ordinary usage.

3.5.3 Hash pulling

A method for performing undo and redo with only constant memory requirements
exists. We will describe the ideas that lead to such a solution. At first, we will talk
about a simple approach with multiple shortcomings, and we will iteratively improve it
so that we get to an approach that is both efficient and not too difficult to implement.

Forward hashes

In the solution using a Merkle forest, we were calculating hashes of whole instructions.
We will perform a similar task here. The application will only compute an iterative
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hash of all instructions that arrived already. Let us call this hash a forward hash and
denote it as Ft, where t is the number of instructions that have already arrived. Let It
be the t-th instruction that arrived. If h is the hash function we use, then we compute
forward hashes the following way:

F0 = h(0x00)

Ft+1 = h(Ft ∥ h(It+1))

Just like in the case of the Merkle forest solution, the application only remembers the
latest Ft, while the client remembers all Fi for i ∈ {0, . . . , t}. If the user decides to
perform some undo steps, the application counts them. With each undo step performed,
the application increases this counter by one. During undo steps, no data are displayed
to the user. They will only be shown during the redo process. Once the user starts
the redo process after k undo steps, the client also sends Ft−k to the device. The
application remembers this hash. Once the user performs the first redo step, the
application obtains an instruction It−k and calculates F ′

t−k+1 := h(Ft−k ∥ h(It−k)), just
like when it was computing forward hashes for the first time. Then, for the next redo
step, the application obtains an instruction It−k+1 and calculates F ′

t−k+2 := h(F ′
t−k+1 ∥

h(It−k+1)). This continues in a similar manner for all k redo steps. After all k redo
steps are performed, the application has a value of F ′

t . If the client did indeed send the
exact same sequence of last k instructions as before, then F ′

t = Ft. The application
can verify this because it stores Ft in memory.

Note that this solution has shortcomings. One of them is that during the undo
phase, the application cannot afford to display variable data on the display. This
is because there is no way of verifying that the data that is repetitively sent is the
same as before. The application can only perform validation on constant parts of
the instruction, similar to what it normally does when receiving instructions. Then,
only after the user arrives at the constant header they wish to review again, does the
application start to display variable data as well during redo steps. However, they
are not validated immediately, but only after the whole redo process is done. This
essentially allows a compromised client to exploit the undo feature to show any data
they want on the display without being stopped immediately.

Another shortcoming is that nesting multiple undo and redo processes is not possible
in a simple manner. With each started redo process, the client has to send some older
forward hash. The application would need to remember multiple of these in case of
undo nesting and recomputing multiple hashes at the same time, which seems too
complicated.
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Two-way hash pulling

The main issue with the previous method was the fact that the application was not
able to verify instructions during the undo and redo processes. The undo process
was not validated at all, which is why data were not displayed to the user. The whole
verification of the redo process happened after the user returned back to the point from
which the undo process initially started. This does not fulfill our goal of stopping the
procedure immediately at the moment a successful finalization is not possible anymore.
The idea of using a hash as a commitment can, however be expanded on so that this
goal is achieved.

The application will be computing forward hash just like it did in the previous
method. It will still only store the latest one, while the client will store all intermediate
forward hashes. The difference is that now both undo and redo processes will be verified
and can be stopped right when the client provides an instruction that is different from
the one they should have provided. Let us now describe how undo and redo will be
verified, starting with undo.

To verify the undo process, the application does not need to compute any new val-
ues. Forward hashes are sufficient for this. The only aspect that needs to be changed
is the set of values provided by the client for each undo step. In the previous solution,
the client was only providing instructions themselves. Now, the client will be sending
older forward hashes with instructions during undo. More specifically, with instruc-
tion Im, they also have to provide a forward hash Fm−1. From these two values, the
application is able to calculate F ′

m := h(Fm−1 ∥ h(Im)) and verify whether F ′
m = Fm.

Here, Fm has to already be remembered by the application beforehand. Initially, this
will be Ft, which is the latest forward hash, which is the only forward hash that the
application remembers. Once the first undo step is done, the application can discard
Ft and remember the newly obtained Ft−1 instead. It will use this value to verify the
next undo step. During this process, all constant and variable data can be displayed
to the user as needed because the application can be sure that all repeatedly received
instructions are the same as before.

An issue appears when we try to also verify the redo process using only forward
hashes. After the undo process is done, the application remembers the forward hash
Ft−k. In a redo step, the client provides an instruction It−k+1. The application is able
to compute F ′′

t−k+1 := h(Ft−k ∥ h(It−k+1)). However, it does not possess a commitment
to verify whether the computed value F ′′

t−k+1 is correct. This is caused by the one-way
nature of forward hashes. Nevertheless, the idea of using forward hashes to verify the
undo process can be repeated by adding other hashes to verify redo steps. We call
them undo hashes, denote them as Uu for u undo steps and define them the following
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way:

U0 = h(0x01)

Uu = h(Uu−1 ∥ h(It−u))

The idea is that while performing undo steps, undo hashes are computed. They are
similar to forward hashes, with the difference that undo hashes are affected by in-
structions from latest to oldest while forward hashes are affected by instructions from
oldest to newest. The goal for the application is to have a commitment to validate redo
steps against after the undo process is finished. An undo hash Uk, meaning the last
undo hash, will become such a commitment. Again, the application only remembers
the latest undo hash, while the client remembers them all. Once the user performs
the first redo step, the application obtains an instruction It−k+1 and undo hash Uk−1

from the client. It is then able to compute U ′
k := h(Uk−1 ∥ It−k+1) and verify whether

U ′
k = Uk. If they are equal, the application can be sure that the client provided the

same instruction as they did during the undo process. Therefore, the application can
display the instruction to the user for confirmation, discard Uk and only remember
Uk−1 as a commitment for validating the next redo instruction against.

It is important to note one small change that we described incorrectly in previous
paragraphs for the sake of simplicity. We said that the value of Ft, meaning the latest
forward hash, is discarded by the application once the undo process begins and that
the value Ft−1 takes its place, as Ft is not needed anymore. The value of Ft is a value,
which is not discarded, as it is needed for computing future forward hashes. However,
Ft is only such value, and all of the values Ft−1, . . . , Ft−k can safely be discarded once
they serve their purpose during the undo process. As the application counts how many
undo and redo steps have happened already, it knows when these processes end, and
therefore it knows when it should start computing new forward hashes, such as Ft+1.
Knowing whether there is an undo or redo process running is also important because
data from repeatedly sent instructions should not be added to the transaction hash.

Note that during undo and redo steps, validation of instruction structures is not
needed anymore. This validation was already done once the client sent instructions
for the first time. Validations during the undo process ensure that the instruction
received in an undo step is the same as the corresponding instruction received initially.
Similarly, validations during the redo process ensure that the instruction received in a
redo step is the same as the corresponding instruction received sooner during the undo
process.

An interesting aspect of this method is that nesting undo and redo processes is very
natural. Imagine the user performed k undo steps and less than k redo steps, meaning
the redo process is not finished yet. What should happen if the user asks to perform
another undo step before the redo process is finished? At this moment, the application
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has a value of some undo hash. It can use this as a starting value to compute undo
hashes during the next undo steps. However, a validation against a correct forward
hash needs to be done, but the application does currently not remember such value.
A solution to this issue is to simply also recompute the forward hash during the redo
steps and only remember the latest one of them. Such recomputation can happen
because after the last undo step was performed, the application received the value of
Ft−k from the client and verified it the way we described earlier. Now, when the client
performs a redo step, sending an instruction It−k+1, the application can simply compute
Ft−k+1 = h(Ft−k ∥ h(It−k+1)). No explicit verification of this value is needed because
Ft−k was verified by the application already, and the instruction is verified against an
undo hash in this redo step. Therefore, Ft−k+1 is only computed from verified values.

This approach is memory efficient. At any moment, only a constant number of
hashes needs to be remembered. During the process, the application only needs to
know the globally latest forward hash, one forward hash from the past that is being
recomputed with each step and one undo hash that is also being recomputed with each
step. It is also time efficient, as for each step, only a small constant number of hashes
have to be computed. Communication complexity is low as well because, for each step,
the client only has to send a single hash besides the instruction itself. We call this
method two-way hash pulling because at each step, the client sends an untrusted hash,
which pulls the currently processed position by one towards the newer instructions,
or by one towards the older ones. Pulling to older instructions is done using forward
hashes, and pulling toward newer ones is done using undo hashes. All instructions can
be displayed to the user for confirmation.

A notable fact that holds true for both the Merkle forest undo solution and the
two-way hash pulling undo solution is that they work well even with for-loops and
nested for-loops. This is because they only verify that repeatedly received instructions
from the client are the same as they were the first time the client sent them.

3.6 Design using hash pulling

In this section, we characterize a design that is more efficient than the one based on
hash trees from section 3.4. Some ideas from tree-based designs will be repeated here
as well. This design is the main result of this thesis, together with a proof of its security
shown later in chapter 4.

In the previous section 3.5, we described a method we call two-way hash pulling
for supporting undo and redo operations. The idea of hash pulling can be modified to
accomplish transaction structure checks. The difference is that during undo and redo,
both constant and variable parts of instructions have to be validated. When checking
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the transaction structure, we are only interested in constant parts. In one of the pre-
vious sections, we proposed a solution using Merkle trees. In this chapter, we describe
a solution that is more efficient than that, both time-wise and communication-wise. If
we talk about instructions in this section, we only mean their constant parts. Variable
parts are irrelevant for this use case. To be more precise, we define an instruction the
following way. Note that no variable parts are a part of this definition.

Definition 3.6.1. An instruction is a sequence of values of one of the following formats:

1. (INIT)

2. (SEND_DATA, header)

3. (START_FOR, min, max, iterations_commitments)

4. (START_ITERATION, iteration_index)

5. (END_ITERATION)

6. (END_FOR)

7. (END)

In the above definition 3.6.1, iterations_commitments is a list of allowed
iteration commitments. Each of these commitments is a single hash. The first element
of an instruction, such as SEND_DATA or END_FOR is called an instruction type. We
will be using I for a set of all possible instructions. As we will be working with
sequences of instructions, we define the term instruction sequence next.

Definition 3.6.2. An instruction sequence is any finite sequence of instructions.

3.6.1 Instruction serialization

Instructions will need to be serialized in the following definitions so that they can be
used as a part of an input to the hash function. Each instruction type has its own
constant 3 < c < 255 assigned. A serialized instruction starts with a single byte
containing this constant. The constant is greater than 3 to avoid any conflicts with
other definitions, where constants less than 3 are used. We denote this constant for an
instruction of type T as c(T ). For example, the constant identifying the START_FOR
instruction is denoted by T (START_FOR).

For the SEND_DATA instruction, the header is serialized as xy, where x is a 4-byte
value containing the length of the header in bytes and y is the header itself.

In the START_FOR instruction, min and max are both serialized as 4-byte integers.
The array iterations_commitments is serialized as xy, where x is a 4-byte value
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representing the total number of hashes in the list and y is a concatenation of all the
hashes in the list.

The START_ITERATION instruction only carries one 4-byte index as data, so the
serialization is straightforward.

Other instructions do not carry any data, and therefore, their serialized represen-
tation only consists of a single byte c(T ) for an instruction of type T .

The important aspect of instruction serialization is that parsing a serialized value
has to be unambiguous. Any serialization satisfying this requirement is usable as long
as serialized values are not unnecessarily long. If an instruction appears as an input
to a hash function or as a part of the input, the serialized instruction is meant. For
example if I is an instruction, h(a ∥ I) denotes a hash of some value a concatenated
with serialized I.

3.6.2 Commitment calculation without loops

Recall that a high-level idea of validating a transaction structure is to have a com-
mitment to validate the structure against hardcoded in the device. In chapter 2 we
described multiple vector-commitment schemes for calculating such a commitment.
Our conclusion was that none of them, except Merkle trees, is easily usable for our
use case. In this section, we describe a way of calculating a commitment that is not
as general as methods described in chapter 2, but is sufficient for us. For simplicity,
we do not consider for-loops now and will describe how to support them later in this
section.

In order to use hash pulling, we need hashes to pull against. Let us introduce such
hashes now. The first type of hash that is needed is a forward hash, which is similar to
forward hashes from section 3.5. The difference is that now, forward hashes will only
be computed from constant parts of instructions. In this section, we denote forward
hashes as H0, . . . , Hn if there are n instructions. The H0 forward hash is computed
as a hash of a constant of our choice. If we know the transaction structure, we can
pre-compute all forward hashes. These will be needed to calculate the commitment
that will be hardcoded in the application. If we denote instructions as I1, . . . , In, then
forward hashes can be computed as follows. Let h be the used hash function. Let
(I1, . . . , In) be an instruction sequence with no for-loops. The sequence of forward
hashes H0, . . . , Hn for this instruction sequence is calculated as

H0 = h(0x03)

Ht+1 = h(Ht ∥ h(It+1)) ∀t ∈ {0, . . . , n− 1}

We will define forward hashes for instruction sequences that can also contain for-
loops later in the final definition of forward hash.
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The second type of hashes that are needed are calculated from forward hashes in
a backward fashion. We call them reverse hashes and denote them as R0, . . . , Rn if
there are n instructions in the transaction structure. Reverse hashes are computed
the following way for sequences with no for-loops. Let H0, . . . , Hn be a sequence of
forward hashes for an instruction sequence. A sequence of reverse hashes R0, . . . , Rn is
calculated as

Rn = h(0x02)

Ri−1 = h(Ri ∥ Hi) ∀i ∈ {1, . . . , n}

Note that in order to calculate reverse hashes, one needs to have forward hashes
already calculated. The commitment that will be hardcoded in the application’s code is
R0. It can be seen that this commitment is affected by all forward hashes and, therefore,
by all instructions and their order as well. Next, we will demonstrate why this way
of calculating reverse hashes and storing R0 in the device is useful for validating the
transaction structure using the hash pulling method.

Example of validation without loops

Assume that the application developer already computed forward and reverse hashes
for an allowed transaction structure. They hardcoded the resulting R0 commitment
into the application’s code afterward. Now the user of this application wants to sign a
transaction using it. The user’s software client assembles the transaction. The client
knows what the allowed transaction structure looks like. This knowledge is enough for
the client to compute all forward and reverse hashes as well. The client only needs
to hash a specific constant to obtain H0 and another specific constant to obtain Rn.
Based on these, the client is able to compute all of H1, . . . , Hn and Rn−1, . . . , R0 after
that. Recall that all of these hashes are only affected by constant parts of instructions.

Once the client has all forward and reverse hashes available, they can start sending
instructions to the device. Let the first instruction be I1. Initially, the client sends
I1 and R1 to the device. The application running on the device can compute H0 by
hashing a specific constant. From these values, the application can calculate H1 =

h(H0 ∥ h(I1)). Then, the application is able to calculate R′
0 = h(H1 ∥ R1). This value

is compared with R0, which is hardcoded in the application. If R′
0 = R0, then both H1

and R1 had to be correct, meaning the client had to send allowed instruction I1 and a
valid reverse hash R1. This way, all values provided by the client are validated against
R0. The process of calculating H1 and the validation are shown in figure 3.5. Values
marked in red are received from the client.

After the validation of the first instruction is done, the application does not need
values of R0 and H0 anymore. Instead, it remembers values of R1 and H1. Note that
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I1 I2 I3 I4

H0 H1 H2 H3 H4

R0 R1 R2 R3 R4R′
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?
=

Figure 3.5: Validation when the client sends instruction I1 and reverse hash R1.

I1 I2 I3 I4

H0 H1 H2 H3 H4

R0 R1 R2 R3 R4R′
3

?
=

Figure 3.6: Validation when the client sends the last instruction and reverse hash.

both of these new values were validated against R0 already and can therefore be trusted.
Next, the client can send the second instruction, which is I2 and a corresponding
reverse hash R2. These values are validated in the same manner as I1 and R1 were.
First, the application calculates H2 = h(H1 ∥ I2). Then, the application can compute
R′

1 = h(H2 ∥ R2) and verify whether R′
1 = R1.

The application can detect the moment when the client sends the last instruction.
It can be done by checking whether the value of a reverse hash provided by the client is
equal to a hash of a specific constant. This is because we always define Rn = h(0x02).
Validation of the last instruction can be seen in figure 3.6.

3.6.3 Commitment calculation with loops

So far, we have only considered transaction structures without for-loops. However,
extending our design to support for-loops is desired. The main idea of this is similar to
how we were validating for-loops in our previous work. Each for-loop iteration should be
validated separately without affecting the calculation of top-level forward hashes, which
also implies not affecting top-level reverse hashes. The reason for this is that the client
can send any number of various iterations as long as each iteration itself is of an allowed
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type and the total number of sent iterations is from a range specified by the transaction
structure. The forward hash corresponding to an END_FOR instruction should be
calculated from a forward hash of a corresponding START_FOR instruction. In order
to make allowed iteration types affect forward and reverse hashes, the START_FOR

instruction has to contain some form of a commitment to these allowed iteration types.
Iterations themselves should be validated against a commitment provided by the client
in the START_FOR instruction.

Each iteration can be validated by the hash pulling technique, similar to how top-
level instructions are validated. The difference is that each iteration might be validated
against a different commitment. The commitment for a single iteration type can be
calculated from the iteration structure the same way as we described in subsection 3.6.2.
Therefore, each iteration will have its own R0. To avoid confusion with the top-level R0

hardcoded in the code, we denote the commitment to the i-th iteration of the current
for-loop as Ri

0. These iteration commitments will not be stored in the application’s
code. Instead, they will be provided by the client and verified against the hardcoded
R0. A perhaps natural way of passing these iteration commitments to the device is
using the START_FOR instruction. Besides the minimum and maximum number of
allowed iterations, the START_FOR instruction can contain a list of allowed iteration
commitments Ri

0 for all i ∈ {0, . . . ,m}, where m is the number of different allowed
iteration types for the respective for-loop. These iteration commitments will affect the
computation of top-level forward and reverse hashes, and therefore, the validity of the
whole for-loop can be assured against R0.

Let us extend the definition of forward hashes to support instruction sequences
that can contain for-loops as well, so that for-loop iterations can be validated in the
described fashion. For that, we first need to define what a depth of an instruction is.

Definition 3.6.3. Let s = (I1, . . . , In) be an instruction sequence. The depth of the
i-th instruction is the number of instructions of START_FOR type in (I1, . . . , Ii−1)

minus the number of instructions of END_FOR type in (I1, . . . , Ii). The depth of the
i-th instruction in s is denoted by d(s, i).

Informally, the depth of an instruction says in how many nested for-loops that in-
struction is. Instructions outside for-loops have a depth of 0. A depth of an instruction
sequence s is the maximum depth among all instructions in s. We denote it by d(s).

Now, we can define forward hashes for instruction sequences that can contain for-
loops.

Definition 3.6.4. Let h be the used hash function. Let s = (I1, . . . , Im) be a sequence
of instructions. Let (J1, . . . , Jn) be a sequence of instructions obtained from s by
removing all instructions that are in depth greater than 0. The sequence of forward
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hashes H0, . . . , Hn for s is calculated as

H0 = h(0x03)

Ht+1 = h(Ht ∥ h(Jt+1)) ∀t ∈ {0, . . . , n− 1}

Informally, forward hashes are not directly affected by iterations of for-loops. They
are only affected indirectly by the list of allowed iteration commitments, which is a
part of the START_FOR instruction.

As we have the definition of forward hashes for instruction sequences that can
contain for-loops already prepared, we can also provide the final definition of reverse
hashes.

Definition 3.6.5. Let h be the used hash function. Let H0, . . . , Hn be a sequence
of forward hashes calculated using the definition 3.6.4. A sequence of reverse hashes
R0, . . . , Rn is calculated as

Rn = h(0x02)

Ri−1 = h(Ri ∥ Hi) ∀i ∈ {1, . . . , n}

A reasonable question is, how should the application know against which of the
provided iteration commitments the current iteration should be validated? The appli-
cation can perform hash pulling on all available iteration commitments with each step.
If at least one of these m parallel validations succeeds, then the application can be sure
that the provided iteration is of an allowed type. This clearly seems inefficient and
complicated. Instead, one can make use of the following fact. Iteration commitments
are provided as a list in the START_FOR instruction and, therefore, have a specific
order, which is known. This order has to always be the same. Otherwise, a different
R0 would be obtained. The order of allowed iteration commitments naturally assigns
identification numbers to iteration types. An identification number of an iteration type
would be the index of its commitment in the corresponding list. This identification
number can then become a part of the START_ITERATION instruction, which has been
empty until now. Once the application obtains such an identification number from the
START_ITERATION instruction, it knows against which of the iteration commitments
should the current one be validated. This identification number should not affect the
computation of forward hashes. Instead, the application should only check whether
it is from the 0 to m − 1 range. The security does not depend on this identification
number. The client provides it so that the application does not have to validate against
all available commitments, but only against the correct one.

The problematic part about sending a list of iteration commitments in an instruc-
tion of START_FOR type is the APDU space limitation. With the START_FOR instruc-
tion itself, a reverse hash has to be sent as well because we use the hash pulling tech-
nique. This only leaves enough space for 6 iteration commitments, meaning 6 allowed
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iteration types. This might not be enough in some cases. If we wanted to support more
allowed iteration types, an additional APDU would be needed. Building a Merkle tree
over allowed iteration commitments might be beneficial in this case. The START_FOR
instruction would carry the root of this Merkle tree instead of the list of all commit-
ments. Then, every START_ITERATION instruction would carry a Merkle proof for
a specific allowed iteration commitment. So far, the START_ITERATION instruction
only contained the identification number of the iteration commitment belonging to the
iteration being started. Due to that, the APDU for START_ITERATION instruction is
mostly empty, and a small Merkle proof can fit in this space. The START_ITERATION
instruction will no longer need to contain an identification number. Instead, it will con-
tain Ri

0, a path description in the Merkle tree, and hashes from the sibling nodes on
that path. The path to be proved is the one from the corresponding leaf to the for-loop
root, which is the corresponding START_FOR node. It can be expected that 6 hashes
for proving the path can fit in the START_ITERATION instruction. This is sufficient
for a Merkle tree of depth 6, which has 26 = 64 leaves, meaning 64 allowed iteration
types. We expect this to be enough in most use cases. However, if it was not, an ad-
ditional APDU after the START_ITERATION one can increase the number of allowed
iteration types to roughly 213 ≈ 8 000.

3.6.4 More small optimizations

We already described some optimizations for the design using a tree structure in sec-
tion 3.4.3. The illustrated design using hash pulling provides different optimization
opportunities. We would like to describe them in this section.

We already mentioned a method of using two bits in every instruction as a re-
placement for START_ITERATION and END_ITERATION instructions in section 3.4.3.
Using this method for eliminating END_ITERATION is feasible in this design as well.
However, the START_ITERATION instruction now carries Ri

0 and possibly a proof for
Ri

0 as well if the client only sends a Merkle tree root in the START_FOR instruction.
Therefore, a STAR_ITERATION instruction is needed. Even though the bit used for
replacing END_ITERATION instruction is usable in this case, it is not needed. The
application can detect the last instruction in the for-loop by checking the provided Ri

x

reverse hash because the last reverse hash is computed by hashing a specific constant.
For this reason, the client does not even have to provide any reverse hash with the last
instruction in the iteration. The application running on the device can easily detect
that and use the correct constant for validation.

Another instruction that is not needed anymore is END_FOR. The application can
easily detect the end of an iteration, as described in the previous paragraph. It knows
that after an iteration is finished, another START_ITERATION instruction has to arrive
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to start a new iteration. If a different instruction arrives instead, the application can
deduce that the client is not interested in starting a new iteration and wants to end
the for-loop instead. If this happens, the application performs everything it would
perform if it received the END_FOR instruction and only then moves on to processing
the actually received instruction.

This leaves us with START_FOR and START_ITERATION instructions for handling
for-loops. It is possible to eliminate START_FOR instruction as well. For this, the client
would have to send all data that would normally be a part of a START_FOR APDU a
different way. The client can fit all such data into every START_ITERATION instruc-
tion if there is enough space left. This means that the client would have to send the root
of the Merkle tree for iterations, the minimum and the maximum number of allowed
iterations, Ri

0 for the currently performed iteration, and a proof for Ri
0. Therefore, only

the Merkle tree root of 32 bytes and the minimum and maximum number of allowed
iterations taking 4-8 bytes each would be added to each START_ITERATION instruc-
tion. This still leaves enough space for 5 hashes for the Merkle proof and the description
of the proved path. With 5 hashes, there can be 32 allowed iteration types without any
additional APDUs. We consider this sufficient for most use cases. Using an additional
APDU is still an option if that is not enough. Nonetheless, this approach imposes a
new requirement for the application regarding handling START_ITERATION instruc-
tions. The application has to ensure that the data sent in every START_ITERATION

APDU are the same across all of them. Sending these data repeatedly is unneces-
sary. A more elegant approach is to send the instruction of START_FOR type together
with the first START_ITERATION instruction of the for-loop in the same APDU. This
way, the START_FOR instruction is essentially eliminated by merging it with the first
START_ITERATION instruction.

3.6.5 Stack hashing

The application from our previous work only supported nesting up to 5 for-loops. The
maximum for-loop nesting depth would also have to be limited in the designs described
in this chapter. Only keeping the hash of data in the application and proving the client’s
knowledge of such data is frequently used in our designs. This idea can also be used
to support unlimited for-loop nesting.

For a single for-loop, the application remembers the minimum and the maximum
number of allowed iterations and a root of a Merkle tree for allowed iteration com-
mitments. If a nested for-loop is started, another Merkle tree root and minimum and
maximum number of iterations have to be remembered by the application. This way,
the client can fill a portion of RAM only by starting new for-loops and overwhelming
the device as a result. Limiting the number of nested for-loops is a straightforward
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solution to this problem. However, the nesting depth does not have to be limited.
Instead, the application can only remember data for the innermost for-loop and a hash
affected by all other for-loops. This hash can be computed similarly to forward hashes
we described in section 3.5.3. Let this hash in time t be St. If an instruction of type
other than START_FOR arrives, then St+1 = St. When a new for-loop is started us-
ing I = (START_FOR, min, max, iterations_commitments) instruction, then
St+1 = h(St ∥ h(I)). In this case, the application also remembers min, max and
iterations_commitments as the new for-loop management data instead of the
management data of the parent for-loop.

When ending an inner for-loop, the client has to send the management data for
the parent for-loop together with a correct hash. The management data of the parent
for-loop are sent as a part of END_FOR instruction. The hash that the client provides
is St′ for the correct time t′, which should be the time when the current for-loop was
started. The application rebuilds the START_FOR instruction Ip, that was used for
starting the parent for-loop. Such an instruction can be rebuilt due to the management
data provided in the END_FOR instruction for the current for-loop. The application
calculates S ′ = h(St′ ∥ h(Ip)) and checks, whether S ′ = St, where t is the current time.
If this equality holds, then the application considers data provided by the client to be
correct, sets St+1 = St′ and stores the management data from the END_FOR instruction
as the current ones.

Only a constant space is needed for the support of unlimited for-loop nesting,
because only a constant number of hashes and a single instance of for-loop management
data are stored in memory at once.

3.7 Other designs

We have already described a design based on hash trees in section 3.4 and a more effi-
cient design based on hash pulling in section 3.6. We believe there are other techniques
that a design might be based on. One of the ideas we explored was to base the design
on regular languages.

A set of sequences of instructions can be a regular language over an alphabet con-
sisting of instructions. Let us consider a language L that consists of all valid prefixes
of a sequence that conforms to a specific transaction structure. As instructions are
coming into the device, the application can try to determine whether the prefix of the
instruction sequence that has been received so far is from L. If it is, then the process
can continue. If not, then the received instruction is considered malicious by the appli-
cation, and the process is terminated. The application can not remember the history of
instructions, as that would be inefficient compared to other designs we have presented.
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Only some form of an accumulator of received instructions can be kept on the device.
This led us to explore zero-knowledge proofs for language membership. However,

the known approaches to such zero-knowledge proofs do not seem to be usable on
Ledger Nano S. One of the known approaches uses KZG commitments internally [17].
We already described that using KZG commitments is likely infeasible in our case in
section 2.2.

A paper by Luo et al. contains a comparison of multiple secure-regex protocols [13].
All of them are interactive and require multiple rounds. This is not desirable in our
case, as that would force us to use multiple APDUs per instruction.

We conclude that zero-knowledge proofs for language membership are likely not
an efficient tool for transaction validation on Ledger Nano S. This is mostly due to
computational complexity. However, as an accumulator of incoming instructions can be
kept on the device, proofs do not have to be completely zero-knowledge. An approach
exploiting this fact might exist, but we did not manage to find one, and we leave this
for future research.
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Chapter 4

Security

In this chapter, we aim to show arguments why our proposed approach using the
hash pulling technique described in section 3.6 is secure. We will focus on the basic
design without optimizations mentioned in section 3.6.4 and prove that tricking the
application into signing a transaction that does not conform to a specified format is
infeasible. Showing that it is infeasible to force the application to display malicious
data during the process will not be a part of this proof.

Some of the described checks are easily performed by the application. For example,
counting the number of performed iterations of a for-loop and checking whether that
number is from a specified range is not of much interest to us in this section because
such a check is trivial for the application. We only want to show that a valid proof of
data that were not allowed is not possible to produce.

When talking about instructions in this chapter, we only mean their constant parts,
not variable ones. This is because variable parts of instructions are either validated
by the application based on the specific instruction type or validated manually by the
user. The instruction in the form used in this chapter is described in definition 3.6.1.

We want to show that using our approach, only allowed sequences of instructions
can lead to a successful creation of a signature. We will formally define what this
means later in this chapter.

4.1 Assumptions

In order for our approach to be secure, some basic cryptographic assumptions have to
hold. We present them in this section. The hash pulling design uses a deterministic
hash function. We assume that the used hash function h is collision resistant, meaning
that it is computationally infeasible to calculate two inputs s1 ̸= s2, such that h(s1) =
h(s2) [16]. Furthermore, we assume that h has a fixed-sized output of B > 1 bytes.

An attacker that we want our design to be secure against has polynomial computa-
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tional capabilities. Therefore, in our context, we assume that it is infeasible to find a
collision in the used hash function using an algorithm with polynomial time and space
complexity. We will refer to the used hash function as h. In previous chapters, we
assumed that the output of h consists of 32 bytes. An example of a hash function that
is sufficient in this case is sha256 [1].

Another assumption is that the R0 commitment stored in the application’s code is
trusted. This can be ensured by the device vendor. Trusting the vendor is already a
part of the security model of Ledger hardware wallets, and the vendor can validate the
R0 commitment, just like they validate the application’s code itself.

4.2 Proof

To simplify the proof, we only consider the case when a single transaction structure is
allowed and its R0 commitment is directly stored in the code. Recall that if multiple
transaction structures were to be supported by the application, each of them would need
to have its own R0 hardcoded in the code. An alternative approach that we described
was to build a Merkle tree over those allowed R0 commitments and only store the root
of this Merkle tree in the code. The correct R0 for the respective transaction structure
with the Merkle proof would be sent in the INIT instruction in this case. This step
only consists of a single proof in a Merkle tree, and therefore, we consider it secure.

We do not include instructions of INIT and END types in the proof. The instruction
of INIT type can only come as the first instruction from the client. Similarly, the
instruction of END type can only come as the last instruction. None of these instructions
carry any data in the design that we will show proof for in this chapter. Adding them
to the proof would be simple but would unnecessarily decrease the readability of some
definitions.

4.2.1 Core definitions and notation

Hashing an instruction is a frequent task in hash pulling. For the sake of simplicity, we
will denote a hash of instruction I as h(I). The true meaning behind this notation is
that the instruction I is serialized first, and the resulting sequence of bytes is hashed
afterward. Any serialization that can be unambiguously deserialized is viable.

We will refer to the R0 commitment of a specific instruction sequence s as R0(s).
The length of the instruction sequence s, meaning the number of instructions in it,
is denoted by |s|. Forward hashes will also be mentioned later, and therefore we also
introduce a notation for them. If s is an instruction sequence, then Hi(s) denotes the
i-th forward hash of s. As defined in 3.6.4, H0(s) is always calculated as a hash of a
constant 0x03.
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An instruction sequence can describe a transaction structure. Besides that, the
client will be sending a series of instructions to the device. In both cases, the instruction
sequence should not contain anomalies, such as having an instruction of START_FOR
type but not including an instruction of END_FOR type at the same time. The desired
structure of instruction sequences that we will be working with is described in the
following definition.

Definition 4.2.1. An instruction sequence is considered good if it has a format defined
by the following rules.

1. An empty sequence () is good.

2. A sequence ((SEND_DATA, header)), where header is an arbitrary value is
good.

3. If a1 and a2 are good sequences, then their concatenation a1 ∥ a2 is a good
sequence.

4. If n ∈ N, a1, . . . , an are good sequences, i1, . . . , in ∈ {1, . . . , n}, min and max

are arbitrary integers and iterations_commitments is an arbitrary array of
outputs of h hash function, then the following sequence is good.

(

(START_FOR,min,max,iterations_commitments),

(START_ITERATION, i1), a1, (END_ITERATION),

. . . ,

(START_ITERATION, in), an, (END_ITERATION),

(END_FOR)

)

5. No other good sequences exist.

Informally, a good sequence is a sequence that intuitively makes sense. Each iter-
ation of a for-loop has to start with an instruction of START_ITERATION type and
end with an instruction of END_ITERATION type. Furthermore, each iteration has to
happen inside a for-loop. We say that an instruction sequence a forms a good prefix if
an instruction sequence b exists, such that a ∥ b is a good sequence. The application
can easily validate whether the incoming sequence forms a good prefix so far. As a
result, we can assume that all instruction sequences received from the client are good.
At the moment the application detects that the instruction sequence that has been
received so far does not form a good prefix anymore, the process is terminated.
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Instruction sequences that are used for calculating R0 commitments are created by
developers and validated by the device vendor. There are some specifics about such
sequences. To highlight those specifics and summarize them in a single definition, let
us first define what a for-sequence and an iteration-sequence are.

Definition 4.2.2. Let i ∈ N and a be a good sequence. Then ((START_ITERATION,
i), a, (END_ITERATION)) is called an iteration-sequence.

Definition 4.2.3. An instruction sequence in the format of ((START_FOR, min, max,
iterations_commitments)) ∥ (it1) ∥ . . . ∥ (itn) ∥ ((END_FOR)), where each of
it1, . . . , itn is an iteration-sequence is called a for-sequence. For this for-sequence, each
of it1, . . . , itn is called a child-iteration.

If an instruction sequence should be used for calculating an R0 commitment for
later validation of other sequences, then values of iterations_commitments in
each instruction of START_FOR type have to reflect actual allowed iterations. For
that, we introduce a property of honesty. First, we only define it for for-sequences.

Definition 4.2.4. Let f = ((START_FOR, min, max, iterations_commitments))
∥ (it1) ∥ . . . ∥ (itn) ∥ ((END_FOR)) be a for-sequence. Let iti = ((START_ITERATION,
i), ai, (END_ITERATION)), where ai is a good sequence. We say that f is honest if
iterations_commitments = [R0(a1), . . . , R0(an)].

Now, we can finally define what an instruction sequence has to satisfy in order to
be considered secure for calculating R0 commitment that should be used for validating
instruction sequences from clients.

Definition 4.2.5. If t is a good instruction sequence, it is considered a template. If
each contiguous subsequence of t which forms a for-sequence is honest, then t is an
honest template.

The developer defines an honest template and calculates an R0 commitment from it.
This commitment is later used to validate sequences from the client. These sequences
from the client are also required to have a specific structure. This is similar to rules
for honest templates. However, some differences are noteworthy. Let us talk about
them now. The instruction of START_FOR type also carries min and max values for
specifying the allowed range for the number of iterations that can happen during that
for-loop. In the case of honest templates, these values are not used for any validations
of the template itself. They affect the resulting R0 commitment for an honest template.
The idea is that due to them affecting the R0 commitment, the client has to send the
same min and max values in the corresponding instruction of START_FOR type. Once
that happens, the application uses them to make sure that the number of iterations
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that the client sent during that for-loop is within allowed limits. If the developer wants
to allow n different iteration types in a for-loop using an honest template, then they
have to put n different iteration-sequences between the corresponding START_FOR and
END_FOR instructions of that template. Regardless of whether n < min or n ≥ min,
such a template is considered valid. An aspect that we will rely on is that honest
templates are reviewed by the device vendor and can, therefore, be trusted in this
setup.

The values of min and max have a direct meaning for instruction sequences received
from the client. If the client starts a for-loop with min and max parameters, they have
to send at least min and at most max iteration-sequences afterward. This is easily
enforceable by the application by keeping track of how many iterations have already
happened and comparing this counter with min and max. Assuming that the client has
sent an allowed number of iterations in total is therefore possible during our reasoning.
This is why we will not include any checks for the number of iterations in our definitions.
In order to comply with the definition of instruction 3.6.1, we will still include min

and max parameters to instructions of START_FOR type. However, we consider them
arbitrary values, and they are not used throughout the proof.

Checking whether an instruction sequence is a good sequence is easily performed
by the application as well, and we will therefore assume that all sequences coming from
the client are good. We consider any good sequence to be a valid client sequence, which
is an instruction sequence that could come from a client. Note that we did not include
a restriction on the number of iteration-sequences of a for-loop being at least min and
at most max. This will be convenient for us later.

As there can be multiple views of what security means for us, we define it here. We
consider an approach to transaction structure validation secure if it is infeasible for the
attacker to compute a client sequence that passes all validations against R0 commitment
obtained from an honest template but does not conform to such template. An exact
definition of what passing all validations against R0 means, as well as a definition of
conformity, will be provided later in this chapter.

The application developer calculates an R0 commitment and stores it in the appli-
cation’s code. They calculate R0 using an approach described in section 3.6.3. The
R0 commitment is calculated from an honest template corresponding to a transaction
structure that should be supported and validated. Due to the way how this com-
mitment is calculated, it is unambiguous. This unambiguity means that for a fixed
template, only a single R0 commitment is obtainable.
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4.2.2 Security of hash pulling

Recall that when a template contains a top-level for-loop, then none of the instructions
between the respective START_FOR and END_FOR directly affect R0. This is a result of
how forward hash is defined in 3.6.4. The R0 commitment is only affected by constant
data carried by the START_FOR instruction.

When allowing non-empty for-loops, the client sequence could be different from
the respective honest template even if the client sequence passes all checks against
that honest template. A typical case is when there is a for-loop with multiple allowed
iteration types in an honest template. The client could decide to only use some of them.
However, as long as the client only sends these allowed iterations, the process should
finish successfully. For this reason, it makes sense to define when a client sequence
is valid for a specific template. We will use the term conformity for that. In order
to define the conformity of a client sequence to a template, we need multiple helper
definitions first.

As the application remembers a commitment at every moment and recalculates it
before receiving the next instructions from the client, defining a concept of application
state is useful. We say that after receiving t instructions, the application is at time t.

Definition 4.2.6. The application state at time t is a triple (Ht,Rt,Ft), where Ht is
a stack of forward hashes, Rt is a stack of reverse hashes and Ft is a stack of lists of
reverse hashes.

In definition 4.2.6 above, the currently innermost for-loop has a list of allowed
iteration commitments at the top of the Ft stack. When a for-loop is started by
a START_FOR instruction, the list of allowed iteration commitments passed in this
instruction is added to F . Similarly, when a for-loop is ended using an END_FOR in-
struction, an item is popped from F . Forward and reverse hashes are pushed to and
popped from their stacks when START_ITERATION and END_ITERATION instruc-
tions arrive, respectively. This is because each iteration should be validated separately.
However, forward and reverse hashes on top of their respective stacks are being modi-
fied as other instructions arrive. The i-th value from the list on the top of F stack is
pushed to the R stack when a (START_ITERATION, i) instruction arrives. Similarly,
the topmost value is popped from R when an instruction of an END_ITERATION type
is received. The application always only checks the topmost value of individual stacks.
The initial application state is ([H0], [R0], []). The H0 forward hash is calculated by the
application according to definition 3.6.4. The value of R0 is hardcoded in the applica-
tion’s code. We denote an empty stack by []. The top of the stack is at the rightmost
position. The set of all possible application states is denoted by S.

As instructions and reverse hashes except the initial R0 one are coming from the
client, they are validated as described in section 3.6. Such validation is shown in figure
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3.5. When the client sends an instruction I and the corresponding reverse hash Rt, the
application first calculates Ht = h(Ht−1 ∥ h(It)), then calculates R′

t−1 = h(Ht ∥ Rt)

and finally makes sure that the obtained R′
t−1 is equal to Rt−1, which is stored in

the memory. Both Ht−1 and Rt−1 are taken from the tops of corresponding stacks
stored in the application state. How the content of these stacks changes based on
the received instruction is described in the definition of the instruction processing
function that we will introduce next. Because the instruction processing function will
also perform some validations, we first define a helper function for these. We define a
function validate : S ×I ×R → {true,false}. If the application is in state x =

(H,R,F) and the client sends an instruction I and a corresponding reverse hash Rt,
then the value of validate(x, I, Rt) is equal to true if the validation described above
succeeds. This means that for instructions of type other than START_ITERATION and
END_ITERATION, the equality h(h(Ht−1 ∥ h(It)) ∥ Rt) = Rt−1 has to hold in order
for validate(x, I, Rt) to be true. For I = (START_ITERATION, i), it is only
validated that there are at least i elements on the F stack. If so, no other validations
are performed and the value of validate(x, I, Rt) is true. If there are less than i

elements, the value of validate(x, I, Rt) is false. For I = (END_ITERATION), the
provided reverse hash Rt is validated like before, meaning h(h(Ht−1 ∥ h(It)) ∥ Rt)

?
=

Rt−1. Besides that, Rt has to be equal to h(0x02) from definition 3.6.5. If both of
these validations succeed, then the value of validate(x, I, Rt) is true. In all other
cases, the value of validate(x, I, Rt) is false.

Now that we have defined validate, we can proceed to define the function for
processing instructions itself. Its responsibilities are performing validations on the
incoming instruction and modifying the application state appropriately. Recall that
we use I for a set of all possible instructions. For better readability, if H is a forward
hash and I is an instruction, we will use next_forward(H, I) as a substitute for
h(H ∥ h(I)), which is the calculation of the next forward hash based on definition 3.6.4.
Besides the instruction itself, the client also has to provide the next reverse hash, as
described in section 3.6. This can be seen in figure 3.6. We will denote the reverse hash
currently provided by the client by Rnext. Let the set of all possible reverse hashes be R.
Note that in the following definition, the size of the stack for forward hashes is the same
as the size of the stack for reverse hashes, but they can differ from the size of the stack
for allowed iteration commitments. This is because the instruction of START_FOR
type only recalculates the tops of stacks for forward and reverse hashes but pushes a
new value to the stack of allowed iteration commitments. Similar imbalanced changes
happen during instructions of END_FOR, START_ITERATION and END_ITERATION

types.

Definition 4.2.7. An instruction processing function is a function p : S×I×R → S.
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Let xt = (Ht,Rt,Ft) = ([H1, . . . , Hk], [R1, . . . , Rk], [F 1, . . . , Fm]) be an application
state at time t. The value of p(xt, I, Rnext) is not defined if validate(xt, I, Rnext) =

false. Otherwise, it is defined the following way for individual instruction types:

1. If I = (START_FOR, min, max, iterations_commitments):

p(xt, I, Rnext) = (

[H1, . . . , Hk−1,next_forward(Hk, I)], // Recalculate top.

[R1, . . . , Rk−1, Rnext], // Pop the last reverse hash and push Rnext.

[F 1, . . . , Fm,iterations_commitments] // Push allowed commitments.

)

2. If I = (END_FOR):

p(xt, I, Rnext) = (

[H1, . . . , Hk−1,next_forward(Hk)], // Recalculate top.

[R1, . . . , Rk−1, Rnext] // Pop the last reverse hash and push Rnext.

[F 1, . . . , Fm−1] // Pop commitments of allowed iterations for this for-loop.

)

3. If I = (START_ITERATION,index):

p(xt, I, Rnext) = (

[H1, . . . , Hk, H0], // Push new H0 for validation of this iteration.

[R1, . . . , Rk, Fm[index]] // Push iteration commitment, discard Rnext.

[F 1, . . . , Fm] // No change.

)

4. If I = (END_ITERATION):

p(xt, I, Rnext) = (

[H1, . . . , Hk−1], // Pop the top.

[R1, . . . , Rk−1] // Pop the top.

[F 1, . . . , Fm] // No change.

)

5. Otherwise:

p(xt, I, Rnext) = (

[H1, . . . , Hk−1,next_forward(Hk, I), // Recalculate the top.
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[R1, . . . , Rk−1, Rnext] // Pop the top and push Rnext.

[F 1, . . . , Fm] // No change.

)

In order for the state change to happen, all validations have to pass successfully.
The client always provides an instruction with the next reverse hash. This reverse hash
has to be validated against the one that the application already remembers. These
validations are reflected in the above definition 4.2.7 by requiring validate(x, I, Rt)

to be true. If an initial state is x0, then the application state after receiving an
instruction sequence s is denoted by state(x0, s).

Next, we define the conformity of a client sequence to a template. The goal is to
define conformity as structural equality.

Definition 4.2.8. Conformity of a client sequence sc to a template sv is defined in
the following way:

1. An empty client sequence () conforms to an empty template ().

2. A client sequence ((SEND_DATA,header)), where header is an arbitrary value,
conforms to a template ((SEND_DATA,header)).

3. If sc1 conforms to sv1 and sc2 conforms to sv2, then sc1 ∥ sc2 conforms to sv1 ∥ sv2.

4. If a client sequence sc conforms to a template sv, then ((START_ITERATION,
i1)) ∥ sc ∥ ((END_ITERATION)) conforms to ((START_ITERATION, i1)) ∥ sv ∥
((END_ITERATION)).

5. Let siv,inner be an arbitrary template for all i ∈ {1, . . . , n} for some n ∈ N. Let
siv,iteration = ((START_ITERATION, i)) ∥ siv,inner ∥ ((END_ITERATION)) be a
template for all i ∈ {1, . . . , n}. Let

sv =

((START_FOR,min,max,iterations_commitments)) ∥

s1v,iteration ∥,

. . .

snv,iteration ∥,

((END_FOR))

be a template.

Let sic,inner be an arbitrary client sequence for all i ∈ {1, . . . ,m}, where m ∈ N.
Let sic,iteration = ((START_ITERATION, indexj)) ∥ sic,inner ∥ ((END_ITERATION))
be a client sequence for all i ∈ {1, . . . ,m}, where indexj ∈ {1, . . . , n}. Let
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sc =

((START_FOR,min,max,iterations_commitments)) ∥

s1c,iteration ∥,

. . .

smc,iteration ∥,

((END_FOR))

be a client sequence.

The client sequence sc conforms to a template sv if and only if for all i ∈
{1, . . . ,m}, an index j ∈ {1, . . . , n} exists, such that sic,iteration conforms to
sjv,iteration.

6. No other client sequence conforms to any other template.

It is worth noting that in the above definition of conformity, all of min, max and
iterations_commitments are arbitrary values and are not used there, besides
being parameters for START_FOR instructions and having to be equal between a tem-
plate and a client sequence in order for the client sequence to conform to the template.
This is because our goal was to define conformity intuitively without using forward
and reverse hashes. The most complicated part of the definition 4.2.8 is for-loops.
Informally, a client sequence consisting of a for-loop with some iterations conforms to
a template as long as all iterations in the client sequence are among iterations of the
template. Note that the client sequence can contain the same iteration multiple times,
and it can also not contain some of the allowed iteration types at all. On the other
side, if a template does not contain some iteration, then this iteration is not allowed.

Now, we will define what hash-conformity means. Intuitively, a client sequence sc

hash-conforms to a template sv, if the validation of sc against the R0(sv) commitment
is successful. Hash-conformity is the way how incoming instructions are validated in
the application design using hash pulling. The main goal of this chapter is to show
that using hash-conformity to determine conformity is secure.

Definition 4.2.9. Let sc be a client sequence and sv a template. Let initial application
state be x0 = ([h(0x03)], [R0(sv)], []). Let (H,R,F) = state(x0, sc). Then sc hash-
conforms to sv if H = [H], where H is any hash, R = [h(0x02)] and F = [].

In other words, a client sequence sc hash-conforms to a template sv, if the applica-
tion starts in an initial state with R0 commitment belonging to sv and after receiving
sc gets to a state where h(0x02) is the only remembered commitment, as defined in
3.6.5. Note that the value of h(0x03) in the initial state comes from definition 3.6.4.



4.2. PROOF 55

It is not difficult to see that for templates and client sequences of depth 0, conformity
means equality. The only part of the definition of conformity that allows non-equality
are for-sequences. In order for a client sequence sc to conform to a template sv, each
iteration of sc has to be among corresponding allowed iterations in sv. However, in
the case of sequences with no iterations, only equality is allowed for conformity. We
formulate this observation in the following lemma. Note that the honesty property is
not required for sv.

Lemma 4.2.1. Let sv be a template of depth 0 and sc a client sequence of depth 0.
Then, conformity of sc to sv is equivalent to their equality.

Proof. We will show the equivalence of conformity of sc to sv with their equality using
2 implications.

⇐: Conformity of sc to sv if sc = sv is trivial by definition 4.2.8.

⇒: As d(sv) = 0 and sv is a template and, therefore, a good sequence, there are no
iteration-sequences in it. Multiple for-sequences could be present, but none of
them could have any child-iterations. Because sc also has a depth of 0 and sc

conforms to sv, an equality sc = sv has to hold by the definition 4.2.8.

The next lemma says that removing iterations from a client sequence does not break
hash-conformity to a template. The honesty requirement for a template is not needed
in it.

Lemma 4.2.2. Let sv be a template. Let sc be a client sequence with d(sc) > 0, such
that sc hash-conforms to sv. Let s′c be a client sequence obtained from sc by removing
a valid iteration-sequence. Then, s′c hash-conforms to sv.

Proof. As we assume that d(sc) > 0, the client sequence s′c is non-empty. No iteration-
sequence is present in depth 0 of sc, because sc is a client sequence and, therefore, a
good sequence. The iteration that was removed from sc in order to obtain s′c, therefore,
only consisted of instructions in depth greater than 0. This means that the sequence
of instructions in depth 0 in sc is the same as the sequence of instructions in depth 0
in s′c. Due to the way the instruction processing function is defined, s′c also conforms
to sv.

A series of lemmas that lead to showing that using hash-conformity instead of
conformity is secure follows. As a first step, we would like to show this for client
sequences and templates of depth 0. Note that the template in the following lemma
does not have to be honest.
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Lemma 4.2.3. Let sv be a template of depth 0. It is infeasible to compute a client
sequence sc of depth 0, such that sc hash-conforms to sv, but does not conform to sv.

Proof. Let sv = (I1, . . . , In). Let sc = (J1, . . . , Jm). By Lemma 4.2.1 sv ̸= sc, otherwise
sc would conform to sv. Let i be the smallest index such that Ii ̸= Ji. There are 2
possible cases regarding the existence of such index i:

1. Such i exists. After processing the first i − 1 instructions of sc by the instruc-
tion processing function, there is a value Hi−1 on top of the stack of forward
hashes in the state, and the value Ri−1 on top of the stack of reverse hashes in
the state. By definition of reverse hash, Ri−1(sv) = h(Ri(sv) ∥ Hi(sv)), where
Hi(sv) = h(Hi−1(sv) ∥ h(Ii)). By definition of instruction-processing function,
when processing the instruction Ji, the value R′

i−1 = h(Ri ∥ Hi) is computed,
where Hi = h(Hi−1 ∥ h(Ji)) and Ri is provided by the client. The equality
Ri−1(sv) = R′

i−1 has to hold in order for the validation to succeed. By expanding
this equation, we get that h(Ri(sv) ∥ Hi(sv)) = h(Ri ∥ Hi) is required for suc-
cessful validation. All of Ri(sv), Hi(sv), Ri and Hi have the same size, as they
are hashes. Therefore, Ri(sv) = Ri and Hi(sv) = Hi have to hold. Otherwise,
Ri(sv) ∥ Hi(sv) and Ri ∥ Hi would form a collision in h. Computing Ri such
that this is a collision is infeasible, as h is collision-resistant. By expanding the
requirement of Hi(sv) = Hi, we get that h(Hi−1(sv) ∥ h(Ii)) = h(Hi−1 ∥ h(Ji))

is also required. From this, also h(Ii) = h(Ji), otherwise Hi−1(sv) ∥ h(Ii) and
Hi−1 ∥ h(Ji) would form a collision in h. If Ii ̸= Ji, then Ii and Ij would form a
collision in h. Finding such a collision is infeasible due to the collision-resistance
of h. Therefore, computing such sc client sequence is infeasible.

2. Such i does not exist. This means that one of sc and sv is a prefix of the other one.
Consider the client provided Ri ̸= Ri(sv) for the first time with the instruction Ji,
meaning for all j < i, they provided Rj = Rj(sv). Then R′

i−1 = h(Ri ∥ Hi), where
Hi = h(Hi−1 ∥ h(Ji)), would have to be equal to Ri−1(sv) for the validation to
succeed. Recall that Ri−1(sv) = h(Ri(sv) ∥ Hi(sv)), where Hi(sv) = h(Hi−1(sv) ∥
h(Ji)) as Ii = Ji. The required equality R′

i−1 = Ri−1(sv) would mean that
h(Ri ∥ Hi) = h(Ri(sv) ∥ Hi(sv)). As Ri ̸= Ri(sv) and hashes have fixed sizes,
Ri ∥ Hi and Ri(sv) ∥ Hi(sv) would form a collision in h. As h is collision-
resistant, computing such Ri ̸= Ri(sv) is infeasible. We can therefore assume all
of R1, . . . , Rk provided by the client are equal to R1(sv), . . . , Rk(sv) respectively,
where k = min(n,m). Recall that sc ̸= sv, which means that n ̸= m in this case.
Therefore, two cases for the relation of n and m exist. We will show that in both
of them, computing sc is infeasible.

If n < m, then Rn = h(0x02) by definition 3.6.5. When processing the instruc-
tion Jn+1, the client also has to provide Rn+1. A value of Hn+1 = h(Hn ∥ h(Jn+1))
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is computed first. Then a value of R′
n = h(Rn+1 ∥ Hn+1) is computed. This

value of R′
n has to be equal to Rn for the validation to succeed, meaning that

h(Rn+1 ∥ Hn+1) = h(0x02) has to hold. The value hashed on the left side of this
equation is a concatenation of two hashes, and therefore, it has more than one
byte, as opposed to the 1-byte value of 0x02 that is being hashed on the right
side. If this equation holds, then Rn+1 ∥ Hn+1 and 0x02 would form a collision
in h. Computing the value of Rn+1 and Jn+1 such that validations in instruction
processing function pass is therefore infeasible.

If n > m, then after processing of sc by the instruction processing function, the
application state contains Rm = Rm(sv) on top of the stack of reverse hashes
due to the assumption of Ri = Ri(sv) for all i ≤ k. The client sequence sc hash-
conforms to sv if Rm = h(0x02), as stated in definition 4.2.9. From definition
of reverse hash, Rm(sv) = h(Rm+1(sv) ∥ Hm+1(sv)). From these, in order for
sc to hash-conform to sv, the equality h(Rm+1(sv) ∥ Hm+1(sv)) = h(0x02) has
to hold. Like in the previous case, a value that is longer than 1 byte is hashed
on the left side of this equation, and a 1-byte value is hashed on the right side.
Therefore, Rm+1(sv) ∥ Hm+1(sv) and 0x02 would have to form a collision in h.
Finding such a collision is infeasible.

In both cases n < m and n > m, we have shown that computing sc of depth 0
that hash-conforms to sv of depth 0 and does not conform to it is infeasible.

As a corollary of Lemma 4.2.3 that we have just formulated, it is secure to consider
hash-conformity to be equality as long as both the client sequence and the template
have a depth of 0.

Corollary 4.2.4. Let sv be a template of depth 0. It is infeasible to compute a client
sequence sc of depth 0, such that sc hash-conforms to sv, but sc ̸= sv.

Proof. According to Lemma 4.2.3, it is infeasible to compute a client sequence sc of
depth 0 for a template sv of depth 0, such that sc hash-conforms to sv, but does not
conform to sv. By Lemma 4.2.1, conformity of a client sequence sc of depth 0 to a
template sv of depth 0 is equivalent to sc = sv. By combining these 2 results, we get
that given a template sv of depth 0, it is infeasible to compute a client sequence sc of
depth 0 such that sc hash-conforms to sv, but sc ̸= sv.

We have already shown that removing iterations from a client sequence does not
break hash-conformity to a template in Lemma 4.2.2. Reverse hashes are calculated
from forward hashes, which are only calculated from instructions in depth 0, as stated
in definition 3.6.4. From that, it should not be difficult to see that the R0 commitment
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for a template sv is the same as R0 commitment for the sequence of instructions in
depth 0 of sv. Intuitively, the equality of R0 commitment of templates should mean
that if a client sequence hash-conforms to one of them, it also hash-conforms to the
other one. This is the next corollary of Lemma 4.2.3.

Corollary 4.2.5. Let sv be a template. Let sc be a client sequence, such that sc

hash-conforms to sv. Let s′c be a client sequence obtained from sc by removing all
instructions in depth greater than 0. Let s′v be a template obtained from sv by removing
all instructions in depth greater than 0. Computing sc such that s′c ̸= s′v is infeasible.

Proof. From Lemma 4.2.2, the client sequence s′c hash-conforms to sv, because all
instructions in depth greater than 0 in sc are a part of some iteration-sequence. From
definition 3.6.5, R0(sv) = R0(s

′
v). From that and the definition of hash-conformity

and instruction processing function, s′c hash-conforms to s′v. As d(s′c) = d(s′v) = 0,
computing sc such that s′c ̸= s′v is infeasible by Lemma 4.2.4.

As a next step in proving that using hash-conformity is sufficient for ensuring con-
formity, we formulate the following lemma. It is an extension of Lemma 4.2.3 that still
requires the template to have a depth of 0, but allows the client sequence to have a
greater depth. However, the honesty property of a template is required now.

Lemma 4.2.6. Let sv be an honest template of depth 0. Computing a client sequence
sc, such that sc hash-conforms to sv, but does not conform to sv is infeasible.

Proof. Let sc be a client sequence that hash-conforms to sv, but does not conform to
sv. An honest template sv of depth 0 may contain for-sequences. However, none
of them can have any child-iterations. As sv is an honest template, the value of
iterations_commitments in each instruction of START_FOR type is an empty
array. The client sequence sc may contain for-sequences as well. However, we can not
assume anything about them. They could have multiple child-iterations. Let s′c be a
client sequence obtained from sc by removing all instructions in depth greater than
0. Let us analyze two possible cases. In each case, we show that s′c ̸= sv and that s′c

hash-conforms to sv.

1. In this case, sc contains a child iteration child in depth 1. The iteration-sequence
child consists of an instruction of START_ITERATION type, followed by a good
sequence child_inner, followed by an instruction of END_FOR type. As sc is a
good sequence, child is a part of some for-sequence f starting with (START_FOR,
min, max, iterations_commitments) instruction. Due to how the instruc-
tion processing function is defined, child_inner has to hash-conform to some
unknown template allowed. The R0(allowed) commitment has to be a part of
iterations_commitments. Otherwise, sc would not hash-conform to sv, due
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to validations performed by the instruction processing function. Therefore, an
instruction of START_FOR type with non-empty iterations_commitments

exists in depth 0 of sc. As we have already shown, no such instruction could exist
in sv. This means that there exists an instruction in depth 0 in sc, which is not
equal to any instruction in sv. From that, s′c ̸= sv. Furthermore, s′c hash-conforms
to sv according to Lemma 4.2.2, because sc hash-conforms to sv.

2. In this case, sc does not contain any child iteration. Due to that, s′c = sc.
Because sc does not conform to sv, s′c also does not conform to sv. By Lemma
4.2.1, s′c ̸= sv. Besides that, s′c hash-conforms to sv because it is equal to sc,
which hash-conforms to sv.

We have shown that s′c ̸= sv and that s′c hash-conforms to sv in all cases. According
to Corollary 4.2.5, computing such s′c is infeasible, because d(s′c) = d(sv) = 0. From
that, computing sc of any depth that hash-conforms to sv of depth 0, but does not
conform to it is infeasible. Otherwise, one could compute such sc and trivially obtain
s′c of depth 0 by removing all instructions in depth greater than 0 from sc. This s′c

would hash-conform to sv according to Lemma 4.2.2, but would not conform to sv due
to Lemma 4.2.1, as we have shown that s′c ̸= sv and both s′c and sv have a depth of
0.

A term i-th top-level for-sequence will be used in the proof of the following theorem,
so we define it before moving on to the theorem formulation and proof itself.

Definition 4.2.10. Let s = (I1, . . . , In) be a good sequence. Let Ia be the i-th instruc-
tion of START_FOR type in depth 0 in s. Let Ib be the i-th instruction of END_FOR
type in depth 0 in s. The sequence of instructions Ia, Ia+1, . . . , Ib−1, Ib is called i-th
top-level for-sequence.

Finally, we can formulate and prove the main result regarding the relation of hash-
conformity to conformity.

Theorem 4.2.7. Let sv be an honest template. It is infeasible to compute a client
sequence sc that does not conform to sv but hash-conforms to sv.

Proof. Let sc be a client sequence that does not conform to sv, but hash-conforms to
sv. Let D = d(sv). This theorem can be proved by strong mathematical induction on
D.

1◦: D = 0 Computing a client sequence sc that does not conform to sv of depth 0,
but hash-conforms to it is infeasible according to Lemma 4.2.6.



60 CHAPTER 4. SECURITY

2◦: 0, . . . , D
?
⇝ D + 1 Let s′c be a client sequence obtained from sc by removing

all instructions in depth greater than 0. Let s′v be a template obtained from
sv by removing all instructions in depth greater than 0. From Corollary 4.2.5,
computing sc such that s′c ̸= s′v is infeasible due to hash-conformity of sc to sv.
We can, therefore, assume that s′c = s′v.

Equality of s′c and s′v means that instructions in depth 0 of sc are equal to in-
structions in depth 0 of sv. Therefore, a correspondence between for-sequences
of sc and sv can be established. The i-th top-level for-sequence of sc corresponds
to the i-th top-level for-sequence of sv.

Let the i-th top-level for-sequence of sc consist of iteration-sequences iteration1,
. . . , iterationk. For all j, the iterationj iteration-sequence consists of an instruc-
tion of START_ITERATION type followed by a good sequence xj, followed by
an instruction of END_ITERATION type. Let the i-th top-level for-sequence of
sv consist of iteration-sequences allowed1, . . . , allowedt. For all j, the allowedj

iteration-sequence consists of an instruction of START_ITERATION type fol-
lowed by a good sequence yj, followed by an instruction of END_ITERATION
type.

As sc hash-conforms to sv, each of x1, . . . , xk has to hash-conform to one of
y1, . . . , yt, due to the definition of instruction processing function and the defi-
nition of hash-conformity. Clearly, d(yj) ≤ D and yj is an honest template for
all j ∈ {1, . . . , t}, because sv is an honest template. By induction assumption,
computing a client sequence x′ that hash-conforms to at least one of y1, . . . , yt,
but does not comform to any of y1, . . . , yt is infeasible. From that, computing a
for-sequence that hash-conforms to the i-th top-level for-sequence of sv, but does
not conform to it is infeasible for all plausible i.

As computing an i-th top-level for-sequence for sc that hash-conforms to the i-th
top-level for-sequence in sv, but does not conform to it is infeasible and computing
s′c that hash-conforms to s′v, but is not equal to it and therefore does not conform
to it is also infeasible, we can conclude that computing a client sequence sc that
hash-conforms to an honest template sv, but does not conform to it is infeasible.

Theorem 4.2.7 shows that using an R0 commitment calculated from an honest
template sv and the hash pulling method are secure for validating client sequences.
The security means that it is infeasible for the client to compute a client sequence that
does not conform to sv, but passes all validations in the application.



Conclusion

In our previous work, we designed an application that only requires adding a single
hash to the source code when the developer wants to implement support for a new
transaction type. However, the validation of the whole transaction only happened
at the very end. In this thesis, we defined a goal of improving this design so that
the transaction is rejected immediately after suspicious data are received. A perhaps
natural way of performing a validity check after each instruction arrival is forcing the
client to also include proof that they will be able to send remaining instructions so that
the signing process could end successfully.

Sequences of instructions can be seen as vectors of values that the developer will
commit to and store the commitment in the application. The client would then provide
proof against the stored commitment with each instruction they send. That is why we
explored known vector commitment schemes. However, most of them were unsuitable
for use in Ledger Nano S. The lack of computational resources on the device and
large proof sizes were the most commonly encountered issues in regard to individual
schemes. The only vector commitment scheme we found to be usable for Ledger Nano
S is a Merkle tree.

We proceeded to design an approach for transaction validation that is based on
Merkle trees. A significant part of designing this approach consisted of comparing
multiple tree structures that could accommodate for-loops. As there are multiple pa-
rameters that could affect the tree shape, we performed experiments with a physical
device. The results of these experiments were that as few APDU exchanges should be
required, while the time needed to compute a hash is negligible in comparison. The
tree shape that we consider to be the most efficient can be deep if the transaction struc-
ture requires multiple nested for-loops, but this depth does not increase proof sizes in
comparison to an ordinary perfectly balanced Merkle tree.

We realized we do not need all the properties that general vector commitment
schemes provide. Designing our own commitment scheme for this specific use case was,
therefore, our next step. We call this a hash pulling scheme. Proof sizes are constant,
which is a significant improvement against the design based on Merkle trees, which
required proofs logarithmic in the total length of the instruction sequence. A proof in
the hash pulling scheme only consists of a single hash. We consider this very efficient
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and do not see much space for improvement.
Undo and redo are features that allow users to return to data they have already

confirmed. We also explored ways to implement support for those. We came up with
two different designs. The first and less efficient one is based on a forest of Merkle trees.
The more efficient and simpler design is based on hash pulling. Using this approach
undoing and redoing only introduces a constant space overhead in the form of a single
hash that has to be provided by the client with each undo and redo operation.

The security of using the hash pulling scheme for transaction validation was our
subsequent interest. We defined a model of an application and proved that using hash
pulling to verify the sequence of instructions coming from the client has a specific format
is secure. This proof is based on the collision-resistance of the used hash function. We
did not prove that it is infeasible to display any malicious data to the user. We have
only proved that obtaining a signature of malicious data from the device is infeasible
for the attacker. However, we believe that extending the proof to include validations
after each step should be fairly straightforward and the final proof would be similar to
the one we formulated in this thesis.

We did not impelement a working application, as we do not consider that interesting
enough. However, we believe that the user experience should not become worse than
in case of our previous work. In fact, the overhead is so low that the user experience
should be the same as it is for the application from our previous work, which offered
a user experience comparable to traditional applications. Adding support for a new
transaction type only requires a change of a single hash in the source code. There-
fore, the application is less prone to the introduction of new bugs than traditional
applications.

We did not manage to explore other use cases of hash pulling. It was designed
specifically for validation of transactions in an environment with low computational
resources. However, we believe there may be use cases in other areas as well and we
leave the theoretical formulation of the problem that hash pulling scheme solves for
future work. Analyzing how our design using hash pulling would need to be extended
in order to be usable for cryptocurrencies that require more complex validations can
also be interesting.
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