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Abstrakt

Jeden z problémov samoorganizujúcich sa máp je výskyt mŕtvych neurónov, ktoré
spôsobujú, že kapacita siete nie je plne využitá. Tento problém zväčša spôsobuje zlá
náhodná inicializácia váh siete, ktorá spôsobí, že niektoré neuróny budú mať váhy
ďaleko od ktoréhokoľvek vstupu. Toto spôsobí, že tieto neuróny nikdy nevyhrajú súťaž
a s veľkou pravdepodobnosťou ani nebudú adaptované vítazovou susedskou funkciou.

V tejto práci navrhneme a otestujeme niekoľkých modifikácií učiaceho algoritmu
samoorganizujúcich sa máp, ktoré by mali pomôcť pri prevencii mŕtvych neurónov, a
zároveň preskúmame priestor parametrov navhrnutých metód a ich vplyv na výsledky.

Kľúčové slová: mŕtve neuróny, samoorganizácia, samoorganizujúce sa mapy, neurónové
siete
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Abstract

One of the problems of self-organizing maps is occurrence of so-called dead units, which
cause the map to not be fully utilized. A bad initialization of weights can cause some
neurons to have their weights far from any input data, rendering them useless, because
they will never win the competition and, most likely, will not be in close proximity of
winners neighborhood to be adapted by the neighborhood function.

In this thesis, we propose several modifications to self-organizing maps training
algorithm aimed at preventing the occurrence of dead units, along with exploring their
parameter space and how the parameter values influence the outcome.

Keywords: dead units, dead neurons, self-organization, self-organizing map, SOM,
neural networks
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Chapter 1

Introduction

1.1 Motivation

In this thesis, we will deal with self-organizing maps [3]. One of the main characteristics
of self-organizing maps is that neurons remember information about available data in
their weights. When the map is small, each neuron is forced to represent more different
data, harming quality of clustering. When the map is bigger, neurons can represent
the input data more precisely. However, just training a big self-organizing map is not
enough, because unused neurons, called dead units, might occur.

In this thesis, we will experiment with different methods for preventing dead units
in self-organizing maps. Dead units are not a very well explored field, therefore we will
try several methods minimizing occurrence of dead units across various parameters.

This thesis is structured as follows: in the 1st chapter, we will formally and in
detail describe self-organizing maps. In the 2nd chapter, we will show related work to
the problem of dead units. In the 3rd chapter, we will describe methods we will be
using to reduce the number of dead units in SOM. In the 4th chapter, we will show
results of these methods and compare them. The final chapter will be the discussion.

1.2 Self-organizing map

A self-organizing map is a type of artificial neural network that is trained using unsu-
pervised learning to produce a typically two-dimensional, representation of the input
space, called a map. SOM is therefore a method of dimensionality reduction. The
main difference between SOM and other artificial neural networks is that SOM utilizes
competitive learning instead of error-correction learning (e.g. backpropagation with
gradient descent). To preserve the topological properties of the input space, they use
a neighborhood function [4].

1
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Neuron arrangement represents input space in which the distance between two
neurons is usually given by Euclidean distance of vectors of its coordinates. This
topology preserving representation, created after SOM is fully trained, has important
attribute: randomly chosen samples which are close to each other in input space also
evoke responses on neurons that are physically close to each other on the map (output
space).

1.2.1 Biological inspiration

Topological feature mapping has distinctive representation in biological neural networks—
more specifically in brains of primates and humans. Topological maps introduce an
effective way of representing important parameters of input data. It is experimen-
tally proven that topological maps in brains are not fully developed after birth, but
are formed during early stages of development. Further, it is proven that the pro-
cess of modification takes place based on impulses coming from outside environments,
therefore from the learning perspective, it is self-organized [5].

1.2.2 Structure of SOM

Self-organizing map consists of neurons, which create the map space. The map space
is defined first and usually is a finite two-dimensional region with nodes arranged in
a regular hexagonal or rectangular grid. Each node has its own weight vector, which
represents a position in the input space; meaning it has the same dimension as each
input vector. During training, neurons are fixed in the map space and their weight
vectors are moved towards the input data, whilst topology stays preserved. SOM then
describes a mapping from a higher-dimensional input space to a lower-dimensional map
space. After training, SOM can be used to classify a vector from the input data by
finding the winner neuron - neuron, whose weights vector is closest to the input datum.

1.2.3 Learning

The goal of learning in the SOM is to create similar responses to input patterns from
each different part of the network. This is partly motivated by how visual, auditory
or other sensory information is handled in separate parts of the cerebral cortex in the
human brain [6].

There are two ways to initialize weights of neurons - either randomly to small
values, or evenly from the subspace spanned by the two largest principal component
eigenvectors of the dataset. When using the second way of initialization, learning
becomes faster, because the initial weights of neurons are already good approximation
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of SOM weights [7]. The network needs a large number of training input data to better
approximate the vectors during the mapping. These are usually trained over several
iterations.

The training utilizes competitive learning. Competitive learning is a form of un-
supervised learning in artificial neural networks, where neurons compete between each
other for the right to respond to the input datum. For each input datum fed to the net-
work, Euclidean distance between this datum and all weights of neurons is computed.
The neuron with weights closest, or the most similar, to the input datum is called the
winner neuron, or the best matching unit (BMU). The weights of the winner neuron
and weights of neurons within its neighborhood are then adapted towards the input
vector. The amount of adaptation decreases with time and distance from the winner
neuron.

i∗ = arg mini(dE(~x, ~wi)) (1.1)

dE(~x, ~w) = ||~x− ~w|| (1.2)

~wi = α · (~x− ~wi) · h(i, i∗) (1.3)

h(i, i∗) = e
− dE

2(i∗,i)
λ2(t) (1.4)

i∗ is the winner neuron, dE is the Euclidean distance between neuron i and input
datum and α is learning rate. Neighborhood function always returns 1 for i = i∗.
Equation 1.1 is used to find the winner neuron, 1.2 is used to calculate the Euclidean
distance between input datum and neuron weights and 1.3 is used to adjust all neurons.

The neighborhood function h(i, i∗) depends on the grid-distance between the BMU
(neuron i∗) and neuron i. Most commonly, Gaussian function 1.4 is used to calculate
neighborhood function. Neighborhood function shrinks with time - at the beginning of
training, the neighborhood is big and self-organizing happens on a bigger scale. When
the neighborhood is small enough to only affect some neurons, weights of neurons
converge to local estimates. Usually, the learning rate α and the neighborhood function
h decrease relative to number of current epoch.
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Figure 1.1: Neighborhood of a given winner unit1.

This process repeats for each input datum for a number of epochs. The network
ends up connecting output neurons with patterns from the input data.

During learning (or mapping), for each datum there is one winning neuron. This
neurons weight vector is closest to the input vector. The distance between input datum
and each neurons is calculated using the Euclidean distance.

Figure 1.2: Updating the best matching unit and its neighbors2.

1Taken from https://users.ics.aalto.fi/jhollmen/dippa/node9.html
2Taken from https://users.ics.aalto.fi/jhollmen/dippa/node19.html
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Algorithm

1. Randomly initialize weights of neurons.

2. Select one data point (randomly or systematically cycle through dataset).

3. Find the neuron that is closest to the chosen data point (BMU).

4. Move the BMU closer to that data point.

5. Move the BMU’s neighbor neurons closer to that data point with neighborhood
function.

6. Update the learning rate and neighborhood function.

7. Iterate from step 2 until positions of neurons have been stabilized.

Initialization

Selection of a good initial approximation is a well-known problem for all iterative
methods of learning neural networks. Kohonen used random initiation of SOM weights
[8]. We will do the same.

1.3 Dead units

One of the problems of self-organizing maps is occurrence of “dead” units. Dead units
are units whose randomly initialized weight vectors are so far from any data point,
that they never get chosen as BMU, hence are never adapted to move closer to data
(assuming that they are neither adapted because of being in the neighbourhood of
another BMU). These dead units cause the network to not be fully utilized.

1.3.1 Causes

Dead neurons are usually caused by badly initialized weights in the SOM. Some neurons
will have weights far from the input data, therefore they will not be adapted at all or
will be adapted too little, if they are at the edge of the winner neurons neighborhood
to be adapted by its neighborhood function.
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Figure 1.3: SOM (40x40) with dead units ( 38% of the map) trained on MNIST dataset.



Chapter 2

Related work

There are not many works focusing specifically on the problem of dead units. Most
works mentioning dead units deal with them specifically for their own agenda and only
briefly mention the method used. The following papers show methods that adjust
parameters according to the input space and we can see that dead units are closely
related to the neighborhood size and other SOM parameters.

2.1 PLSOM

In 2003 Berglund and Sitte proposed the parameters and update function should de-
pend on maps conditions instead of external variables, like learning rate. As internal
condition for scaling these variables, they selected the Euclidean distance from the
current input to the closest weight vector, normalized (divided) by the maximum Eu-
clidean distance from any input seen so far to its closest weight vector. If the normalized
Euclidean distance is large, the map needs to change more to fit future inputs, and
small, the fit is good already and map does not need to change much. The idea behind
PLSOM is that parameters should not be determined by the number of epoch, but by
how good the topological representation of the input state is [1].

2.1.1 Algorithm

ε is scaling variable depending on how good the fit of the weight vector of the winning
neuron is to the last input.

ε(t) =
‖x(t)− wc(t)‖2

ρ(t)

ρ(t) = max(‖x(t)− wc(t)‖2, ρ(t− 1)),

ρ(0) = ‖x(0)− wc(0)‖2

7
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ε(t) represents Euclidean distance between the input datum and winner neuron at
time t. If ε is too big, the map needs to readjust, since it is not fitting the data
well and when the ε is small, input already fits the map well. In PLSOM algorithm,
traditional annealing of the neighborhood is replaced with β(t) =constant ∀t, because
neighborhood size is determined by ε [1]. Equation for neighborhood function:

hci(t) = e
−d(i,c)2

Θ(t)2

Equation for weight updates:

wi(t+ 1) = wi(t) + ε(t)hci(t)[x(t)− wi(t)]

The learning rate has been eliminated and replaced by ε(t) In Figure 2.1 is the per-
formance comparison of standard SOM algorithm, PLSOM and Matlab-implemented
SOM algorithm from the paper.

(a) SOM weight vector position in input
space after training for 50000 iterations
with uniformly distributed pseudo-random 2-
dimensional input, ranging from 0 to 0.5.

(b) Same SOM as in figure (a) after 20000 fur-
ther training steps with inputs ranging from 0
to 1.0.

(c) PLSOM weight vector position in in-
put space after training for 50000 iterations
with uniformly distributed pseudo-random 2-
dimensional input, ranging from 0 to 0.5.

(d) Same PLSOM as in figure (c) after 20000
further training steps with inputs ranging from
0 to 1.0. Note the difference between this figure
and figure (b).

Figure 2.1: Comparison of SOM and PLSOM [1].
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2.2 PLSOM2

The earlier modification, PLSOM, solved some problems of SOM, but introduced
other. One of them is overreaction to extreme outliers, which happens even when
the SOM trains for a longer time period. This causes problems, since any standard,
non-normalized dataset of acceptable size will most probably have outliers. Another
problem PLSOM introduced is that initial weights can affect the amount of adaptation
if the weights are initialized too far from the input space, causing training examples
to cluster on the edges. PLSOM2, introduced in /cite, tries to fix these problems.
PLSOM2, instead of using size of the error relative to the maximum error to change
the scaling of the update, uses the range of observed inputs.

Even though the PLSOM was an overall improvement over standard SOM, the
success of the SOM is heavily dependent on initial weights and the number of outliers
in the dataset. Scaling of the update in PLSOM is based on err(t) relative to the
largest error seen up to that point. When weights are initialized far from input space,
the initial error (err(0)) is very large and all further adaptations will be very small,
causing the map to not be ordered at all and overreact to extreme outliers. PLSOM2
does not scale error as PLSOM does, instead it scales it relative to the diameter of the
union of observed inputs /cite. This means that no activation map is stored, therefore
the initial weight distribution does not get to influence the map after several epochs.

2.2.1 Algorithm

Algorithm performs two main steps for each input. The first step is determining the
size of the input space (S), the second one is updating the weights. The weight update
depends on the input space, since these operations run sequentially. The input space
size is defined as the diameter of the dataset:

St = max
i,j

(‖xi − xj‖2), i, j ≤ t

where xi ∈ Rn is the input at time i, t is the current time. The weight update is defined
as:

d(t) = min
(err(t)

S
, 1
)

where d(t) is scaling variable representing the fit and S is the input space. Neighborhood
size is determined by d(t) and

Θ(d(t)) = β ln(1 + d(t)(e− 1))

where (e− 1) is the scaling factor, which is chosen to ensure the range of d(t) = [0, 1]

maps into range of Θ = [0, β] and β = constant ∀t is neighborhood range. Neigh-
borhood range does not change during training (unlike neighborhood size in SOM),
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instead it is used indirectly in calculating the neighborhood size. The value of Θ is
then used in the neighborhood function:

hc,i(t) = e
−D(i,c)2

Θ(d(t))2

where D(i, c) is a distance in output space from the winning node c to node i, which
is the node currently being updated. This gives a value for hc,i(t) that decreases with
increased distance from c, and the rate of decrease is determined by d(t). Results from
[2] use Euclidean distance for D(i, c). The weight update functions are:

wi(t+ 1) = wi(t) + ∆wi(t)

∆wi(t) = d(t)hc,i(t)[x(t)− wi(t)]

(e) SOM before outlier. (f) SOM after outlier. (g) PLSOM before outlier.

(h) PLSOM after outlier. (i) PLSOM2 before outlier. (j) PLSOM2 after outlier.

Figure 2.2: Comparison of response to outlier of SOM, PLSOM and PLSOM2 from [2]
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Method

A standard SOM presents two types of problems: convergence and dead units. A well
initialized SOM might already fit the data well, therefore saving computational time
as a result. A bad initialization can cause some neurons to never be adapted or be
adapted insignificantly, causing the map to not be fully utilized, therefore degrading
the quality of data representation. These neurons are called dead units.

To get a better idea, how to reduce occurrence of dead units in self-organizing maps,
we created a set of experiments.

3.1 General setup

We use self-organizing maps of size 20x20. As a training set we use the digits dataset 1

which is made up of 1797 hand written 8x8 images of digits. Input is then normalized
by 3.1.

data = data/data.argmax() (3.1)

We did some preliminary experiments in which the error does not drop much after
30 epochs, therefore we will be training for 30 epochs in all experiments. In each epoch,
the SOM will train all 1797 data samples.

3.2 Neighborhood size and learning rate annealing

This method represents more of a standard approach to training self-organizing maps.
Most methods utilize parameter annealing. The first phase of annealing, called initial

organization phase, is to start off with a bigger neighborhood and quickly, within few
epochs, get to a small neighborhood size. For neighborhood function, we use Gaussian

1http://scikit-learn.org/stable/auto_examples/datasets/plot_digits_last_image.html

11
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neighborhood (Equation 1.4). The σ will be used in further text as a parameter rep-
resenting neighborhood size. Bigger values of σ mean bigger neighborhood sizes of the
winner neuron i∗. The second phase, called fine-tuning phase, is used for fine-tuning
the neuron weights.

Figure 3.1: Annealing.

In Figure 3.1, the red line represents initial organization phase and the green line
represents fine-tuning phase. xA is the first epoch and will always be 0, yA is the
initial neighborhood size (and initial learning rate). xB is the number of epochs after
which the breaking point occurs and yB is the neighborhood size (or learning rate) at
this point. xC is always equal to maximum number of epochs. yC is the value of the
neighborhood size (or learning rate) at the end of the training.

In our experiment, we fixed the following parameters for learning rate:

alpha_yA = 1.0 (3.2)

alpha_yC = 0.1 (3.3)

and for neighborhood size:
sigma_yB = 1.0 (3.4)

sigma_yC = 0.5 (3.5)

Both alpha_xA, sigma_xA are 0 and alpha_xB, sigma_xB are set to the breaking
point.

Decay function used was:

decay = yA+
(t− xA) ∗ (yB − yA)

(xB − xA)
(3.6)
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where t is the number of sample. The formula represents linear decay from (xA, yA)
to (xB, yB).

We explored all combinations of breaking point learning rates {0.1, 0.2, 0.5}, initial
neighborhood sizes {2.0, 5.0, 10.0, 20.0, 50.0, 100.0} and breaking points {1, 3, 7, 12,
20}. Our hypothesis is that starting with larger neighborhood sizes can help minimize
the number of dead units. We also explore the parameter space of learning rate, because
annealing the learning rate is the usual way of SOM training, but our main focus is on
the influence of neighborhood size annealing scheme on the number of dead units.

3.3 Training random dead unit

In [9], the authors create an algorithm with two steps to prevent dead units occurrence.
The algorithm starts off with a (usual) direct adaptation: the SOM is trained on
a datum and the winning neuron and its neighborhood adapts. The proposed new
step, inverted adaptation, randomly picks a dead neuron, finds the closest datum for
the chosen neuron and adapts its weights towards the chosen datum. This creates a
possibility that potential outliers that would otherwise never be adapted (not even by
neighborhood function of other winner) will be adapted.

The authors, however, do not explore how much the method affects the occurrence
of dead units; they rather focus on using this method to represent a 3D space in 2D.
This is why we decided to re-implement this method, explore it deeper and compare
to other methods.

Our method is a modified version of the method proposed in [9]. In standard
training steps, we train the SOM on the dataset, whilst keeping a map of all neurons
that have not been trained yet. After each standard step, we randomly choose a dead
unit, find the closest input datum and then adapt its weights and weights of neurons
within the winner neurons neighborhood with this datum.

We tested two variations of this method. One, where we remove the dead unit from
the list of dead units after it gets trained and the other, where we do not remove the
dead unit from the list.

3.4 Training dead units for novel inputs

The basic idea of the third method is that if the winner neuron has its weights similar
enough to the input datum, the input is most probably an instance of the same category
and the winner can be adapted. If not, rather than overwriting the winner, it is better
to choose a different unused neuron and adapt that one (and its neighborhood) instead.
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To do so, we find the closest dead unit to the datum and adapt it.
For this method, we needed to determine a threshold on the input–winner distance

that would distinguish digits within the same category from digits across categories.
We quickly faced the problem of data separability, which is the property of the data
we are using to train the SOM. Reasonable threshold values to experiment with turned
out to be within the approximate range 0.4-0.6, so we chose 0.4, 0.5, and 0.6 (more on
how we calculated these thresholds in Section 4.3).

We decided to experiment with two variants of this method. In the first variant,
dead units are adapted with a learning rate according to the annealing scheme. In the
second variant, dead units are adapted with a constant learning rate 1.0.

3.5 Implementation

3.5.1 Programming language

We used Python as our primary programming language. We chose this language be-
cause of its ease of use and the large variety of libraries supporting machine learning
and neural networks training.

Python

Python is dynamic, high-level programming language. It is meant to be an easily
readable language, which uses whitespace indentation, rather than curly brackets or
keywords, to delimit blocks.

Python is an open-source project and its interpreters are available for many operat-
ing systems. It supports multiple programming paradigms, including object-oriented,
imperative, functional and procedural, and has a large and comprehensive standard
library.

3.5.2 Libraries

We used variety of libraries. The most important are listed below.

NumPy

NumPy is a library for the Python programming language, adding support for large,
multi-dimensional arrays and matrices, along with a large collection of high-level math-
ematical functions to operate on these arrays.
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NumPy targets the CPython reference implementation of Python, which is a non-
optimizing bytecode interpreter. Mathematical algorithms written for this version of
Python often run much slower than compiled equivalents. NumPy addresses the slow-
ness problem partly by providing multidimensional arrays and functions and operators
that operate efficiently on arrays

Matplotlib

Matplotlib is a Python 2D plotting library which produces publication quality figures
in a variety of hardcopy formats and interactive environments across platforms.

scikit-learn

Scikit-learn is a free software machine learning library for the Python programming
language. It features various classification, regression and clustering algorithms in-
cluding support vector machines, random forests, gradient boosting, k-means and
DBSCAN, and is designed to interoperate with the Python numerical and scientific
libraries NumPy and SciPy.



Chapter 4

Experiments

4.1 Neighbourhood size and learning rate annealing

A well selected scheme for neighborhood size and learning rate annealing as well as the
right combination of parameters can significantly influence the outcome of training.
Therefore we decided to explore the parameter space, explained in more detail in
Section 3.2.

(a) 0.1 learning rate at breaking point (b) 0.2 learning rate at breaking point

(c) 0.5 learning rate at breaking point

Figure 4.1: Results for parameter combinations on standard SOM.

All schemes and parameter combinations resulted in 7-13% dead units after 30
epochs, with the best results having 0.2 learning rate at breaking point. We had
expected a bigger initial sigma to have better results, but we disproved this hypothesis.
Initial sigma of 50.0 and 100.0 for 20x20 SOM seems to be, on average, too big.

We can observe an interaction between initial sigma and breaking point approxi-
mately in the form of a diagonal (from bottom left to top right). This means the bigger

16
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sigma, the sooner the breaking point should be. We think it is because when sigma is
too big, it overrides a big part of the map, which is good, but not for too many epochs.

(a) The worst result for 0.1 breaking point
alpha (13.5% dead units)

(b) Best result (7% of dead units)

(c) The worst result for 0.5 breaking point
alpha (12.5% dead units)

(d) Quantization error

Figure 4.2: Winmaps and quantization error for the best and the worst combinations
of parameters.

As we can see in Figure 4.2a-c, all three runs ended up with a good topographical
organization, so in this sense there are no important differences. When we look at the
quantization error graph (Figure 4.2d) we can see that all the methods ended up with
approximately the same error, however there is a difference in how fast the quantization
error decays.

As we can further see in Figure 4.2d, “breaking points” of the curves in which the
error drops coincide with the breaking points of the used annealing schema: for the
red line it is 1 (its sigma is 1 after the first epoch). The green line gets to that same
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point after the 7th epoch and the blue line after the 20th epoch. We conclude that,
no matter how many dead units there are, the error is big as long as the sigma is big.
This is most likely happening, because different input data keep overwriting a part of
the map representing other data.

4.2 Train random dead unit

In this method, after a normal training step, we choose a random dead unit from the
set of dead units, find the closest datum to this neuron and adapt its weights towards
this datum.

We decided to execute two versions of this experiment. The first version keeps the
updated unit in the set of dead units, the second version removes it.

(a) 0.1 learning rate at breaking point (b) 0.1 learning rate at breaking point

(c) 0.2 learning rate at breaking point (d) 0.2 learning rate at breaking point

(e) 0.5 learning rate at breaking point (f) 0.5 learning rate at breaking point

Figure 4.3: Results for parameter combinations. On the left side, removing the dead
unit from set of dead units technique was used. On the right side, keeping the dead
unit in the dead units set technique was used.

The results, again, show no significant differences. All parameter combinations
resulted in 8.25-13.75% dead units when the dead unit was removed from the set of
dead units after its adaptation and 7-13% when the dead unit was kept in the set. By
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visual inspection of the tables it seems that keeping the dead units in the set achieved
slightly better results.

We observe that the best results come from parameter combinations in the middle
of the tables (see Figure 4.3), although it is not as consistent as for the first method.

(a) Remove DU from DU set (8.25% dead
units)

(b) Keep DU in DU set (7% dead units)

(c) Quantization error

Figure 4.4: Comparison of the best results from two sub-experiments of train random
dead unit experiment.

In Figure 4.4c we can see, that in terms of quantization error, both variants of the
method end up with a similar error, but the one that keeps the trained dead units in
the dead units set stabilizes the map more quickly.

However, this may have been caused by different initial sigmas in the two runs: the
variant with removing DU had the initial sigma of 10.0, while the other one had the
initial sigma of 2.0. The graph shows a similar trend to that on Figure 4.2d, so, by the
same reasoning, when the training starts with sigma = 10.0, it takes sigma a longer
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time to drop reasonably small values than in the run starting with sigma = 2.0, hence
the error drops more slowly.

In comparison with the baseline experiment (neighborhood size annealing scheme),
training dead units does not seem to be a significant improvement, both in terms of
number of dead units and the quantization error.

4.3 Train dead units for novel inputs

In this method, during training we check whether the Euclidean distance of the winner
neuron is greater or equal to a preset threshold (if not, it suggests novelty and a
dead unit is trained instead of the found winner). We tested two variants: The first
one trained the chosen dead unit with the learning rate according to the annealing
scheme, the second one with learning rate 1.0. In our hypothesis, we wanted to find out
whether it is effective to temporarily increase the learning rate to increase the learning
capabilities of the chosen dead unit in case of a novel input (one-shot learning).

This method has proven to be quite sensitive to the novelty threshold, which should
be set to a value that can distinguish digits within the same category from digits across
categories.

Thus we experimentally measured Euclidean distances within and across some
categories—we chose digits 3 and 8 for these estimations, since these two numbers
look similar enough to confuse the network. Mean value of Euclidean distances be-
tween digits 3 was 0.45, between digits 8 was 0.49. Mean value of Euclidean distances
between digits 3 and 8 was 0.58.

Reasonable threshold values to experiment with turned out to be within the ap-
proximate range 0.4-0.6, so we chose 0.4, 0.5, and 0.6.
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(a) Threshold set to 0.4 (b) Threshold set to 0.4

(c) Threshold set to 0.5 (d) Threshold set to 0.5

(e) Threshold set to 0.6 (f) Threshold set to 0.6

Figure 4.5: Results for parameter combinations for 0.1 learning rate at breaking point.
On the left side, decayed learning rate to update dead unit was used. On the right
side, dead unit was updated using 1.0 learning rate.
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(a) Threshold set to 0.4 (b) Threshold set to 0.4

(c) Threshold set to 0.5 (d) Threshold set to 0.5

(e) Threshold set to 0.6 (f) Threshold set to 0.6

Figure 4.6: Results for parameter combinations for 0.2 learning rate at breaking point.
On the left side, decayed learning rate to update dead unit was used. On the right
side, dead unit was updated using 1.0 learning rate.

The comparison between using annealed learning rate versus constant 1.0 for novel
inputs shows that the constant 1.0 gives much worse results in terms of dead units
(the right column in Figures 4.5, 4.6, and 4.7), where in extreme case it reaches values
over 60% (except for novelty threshold 0.4 where the results are only slightly worse or
comparable). As for novelty threshold, the values of 0.4 and 0.5 are slightly better than
0.6. As for the influence of learning rate value in the breaking point, the differences are
minimal. The variability of results is very high for bad combinations (learning rate 1.0
for novel input, novelty threshold 0.5 and 0.6), where the range is 8.8-65%. For good
combinations (the rest) the range is 7.5-13%.
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(a) Threshold set to 0.4 (b) Threshold set to 0.4

(c) Threshold set to 0.5 (d) Threshold set to 0.5

(e) Threshold set to 0.6 (f) Threshold set to 0.6

Figure 4.7: Results for parameter combinations for 0.5 learning rate at breaking point.
On the left side, decayed learning rate to update dead unit was used. On the right
side, dead unit was updated using 1.0 learning rate.

In terms of dead units, the best version of this method with novel input learning
rate adjusting according to annealing scheme (threshold 0.4 and learning rate in the
breaking point 0.1, or threshold 0.5 and learning rate 0.5) is comparable to the other
two methods (Sections 4.1 and 4.2). We will return to across-method comparison in
the next section.
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4.4 Across method comparison

Because of a great number of parameter combinations, in all previous simulations we
only did one run per combination to get an approximate idea about the parameter
space. For a direct comparison of the three methods, we chose the best combination of
parameters for each of them, run it five times with different random weight initialization
and average the results to eliminate the influence of random factors.

We explored the following parameter combinations that gave the best results in
pretests:

• Neighbourhood size and learning rate annealing

– Initial sigma = 10.0

– Breaking point = 7

– Learning rate at breaking point = 0.2

• Train random dead unit

– Variant: Keeping dead unit in dead units set

– Initial sigma = 2.0

– Breaking point = 12

– Learning rate at breaking point = 0.2

• Train dead units for novel inputs

– Threshold = 0.5

– Initial sigma = 50.0

– Breaking point = 12

– Learning rate at breaking point = 0.5
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Figure 4.8: Error and standard deviation across all methods. Each bar represents the
average of 5 runs with different random initial weights of each method trained with the
best parameter combination.

Figure 4.9: Number of dead units in final SOM across all methods. Each bar represents
the average of 5 runs with different random initial weights of each method trained with
the best parameter combination.
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Figure 4.10: Quantization error during training.

We can see in Figure 4.8 that there are minimal differences relative to big variance
overlap, therefore there is no clear winner method. This is also true for quantization
error and dead units.

Finally, Figure 4.10 shows the quantization error during training. Although all the
methods finally converge to similar value, the first method seem to be slower.

4.4.1 Complexity analysis

SOM has three input parameters: SOM size N, input dimension d and training set size
T. Which for our case is: N = 20x20 = 400, d = 8x8 = 64 and T = 1797.

To update weights, we need N ∗d space and O(d) for Euclidean distance and O(N)

to find the winner, by comparing the input datum with weights of each neuron. This
gives us time complexity O(N ∗ d ∗ T ) for each epoch.

In addition to the standard training step, the second method also needs to choose
a random dead unit (O(1)) and compare it to each datum in the training set (O(T )),
times O(d) for each Euclidean distance calculated. This method then gives us O(T ∗
(d ∗N + d ∗T )) instead of O(T ∗ d ∗N) in the first method. This is still linear in d and
N , but quadratic in T . Therefore, before using this method, it should be considered
on what data it is going to be used. If there is going to be a lot of data (T ), it might
not be the wisest choice, but it should run well on big vectors (d), e.g. camera images,
or self-organizing maps with big sizes (N).
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The third method compares the Euclidean distance between the input and the
found winner to a threshold in each epoch and, in case of novelty input, it compares
this input datum to each dead unit from set of dead units. The size of the dead units
set can be N at most. This gives us (in addition to O(N ∗ d) for the standard case)
another at most O(N ∗ d) operations in case of novelty. Thus the third method still
runs in O(T ∗N ∗ d) time.

This means the second method is slower than both first and third method and
should be used with caution in case of large data sets.
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Discussion

The goal of this thesis was to create and experiment with different methods for pre-
venting dead units in self-organizing maps. We explored several methods across many
parameters.

First was Neighborhood size and learning rate annealing, which is more of
a standard approach to training SOM and we used it as a baseline.

Second was Training random dead unit, where after each standard step, we
randomly chose a dead unit, found the closest input datum and then adapted its
weights and weights of neurons withing the winner neurons neighborhood with this
datum. We tested two variants of this approach - in the first variant, we removed the
dead unit from the list of dead units after it got trained, and in the second variant, we
did not remove the dead unit from the list.

The third method, Training dead units for novel inputs we tested, whether
neurons weights were similar enough to the input datum, for which created a threshold
variable. We had hoped, this approach would let inputs of the same category to be
clustered better together and novelty inputs would be mapped to unused neurons.
Since we introduced a new threshold variable, we had to determine, what would be
the correct value to distinguish inputs within the same category from the ones across
categories. We calculated the mean Euclidean distance for inputs of the same category
as well as mean of cross-category Euclidean distances. We also decided to experiment
with two variances of this method. The first variant adapted dead units with a learning
rate according to the annealing scheme. The second variant adapted dead units with
a constant learning rate of 1.0.

28
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5.1 Results

From quantitative point of view, there were no significant differences in the final count
of dead units, nor quantization error across methods except for the rate at which the
quantization error converged. That is it why we will compare the methods based on
what we believe they need to improve them.

In the first method, suitable values of initial sigma might depend on the size of
SOM (the bigger map, the bigger initial sigma). Because of this, second methods looks
the most promising.

The third method in its current state does not seem to be very reliable, since it
requires to experimentally find out the correct threshold, which is extremely data-
dependent.

For the third method, we have come up with another experiment, but time did not
allow us to test it properly. The idea behind it was to remember, for each neuron, how
much training it got. If the winner neuron did not satisfy threshold, we would choose a
neuron with the least training received. Early results of this method have shown that
this approach might not be very good for self-organizing maps as the under-trained
neurons seemed to be disrupting clustering property of SOM.

5.1.1 Limitations

After seeing the final results, we consider the biggest limitation of this thesis was not
trying to explore different SOM sizes, in addition to other parameters we explored and
using only one dataset to test our hypotheses. The main reason was the computational
and time demands of running that many different combinations of parameters.

In the future, we would definitely like to explore more SOM sizes, which have more
neurons than training examples and see whether the bigger map gets fully utilized with
quantization error dropping below current 0.31 (ideally close to 0).

Since all methods we tried ended up with very similar results, we would like to find
a problem where differences would be more prominent.

In the future, a finer exploration of space of threshold values in 3rd might help this
method to be substantially better. Also, seeing limitations of the approaches we used
for this method, making sure the choice of dead unit does not disrupt the existing
topographic organization will be quite important. An improvement in this direction
can consist in choosing a unit to be trained on novel inputs based on a criterion function
combining the similarity between the weights and input with the amount of training
the unit received.
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Appendix A

Attached CD contains source code for all experiments as well as all results.
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