
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Prevention of occurrence of dead units
in self-organizing maps

Master thesis

2019
Bc. Jakub Novák

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Prevention of occurrence of dead units
in self-organizing maps

Master thesis

Study program: Informatics
Field of study: 2508 Informatics
Department: Department of Informatics
Supervisor: doc. RNDr. Martin Takáč, PhD.

Bratislava, 2019
Bc. Jakub Novák

44960014

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Jakub Novák
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science, Informatics
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Prevention of occurrence of dead units in self-organizing maps

Annotation: One of the problems of self-organizing maps (SOM) is occurrence of so-called
"dead units" that effectively lower the capacity of the SOM. Usually due to
random weight initialization, some neurons have weights far from any data,
hence never win the competition and rarely get any training that would pull
them out of bad regions, hence they become "dead". The goal of this thesis is to
review existing approaches to the problem, suggest several SOM modifications,
implement simulations and analyse to what extent the proposed modifications
succeed in eliminating dead units. This also includes exploring the space of free
parameters of these modifications and finding the best values.

Literature: M. Van Hulle (2000): Self-organizing Maps. In: Handbook of Natural
Computing, pp 585-622.
T. Villmann et al (2014): Advances in Self-Organizing Maps and Learning
Vector Quantization. Proceedings of the 10th International Workshop WSOM.

Supervisor: doc. RNDr. Martin Takáč, PhD.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, Dr.

Assigned: 14.12.2016

Approved: 19.12.2016 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor

iii

Acknowledgement: First and foremost, I would like to thank my supervisor,
Martin Takáč, for all the hours spent in conversation and endless e-mail chains about
everything relevant to the topic of this thesis. I am very grateful to Marek Šuppa,
Ondrej Jariabka and Peter Poláčik, for patiently answering all the technical and non-
technical questions I have came up with over the course of writing this thesis. Special
thanks belongs to Pavol Námer and John O’Donoghue for their comments, insights
and knowledge sharing that contributed to finishing this thesis, and Diana Valková for
her moral support.

iv

Abstrakt

Jeden z problémov samoorganizujúcich sa máp je výskyt mŕtvych neurónov, ktoré
spôsobujú, že kapacita siete nie je plne využitá. Tento problém zväčša spôsobuje zlá
náhodná inicializácia váh siete, ktorá spôsobí, že niektoré neuróny budú mať váhy
ďaleko od ktoréhokoľvek vstupu. Toto spôsobí, že tieto neuróny nikdy nevyhrajú súťaž
a s veľkou pravdepodobnosťou ani nebudú dostatočne adaptované vítazovou susedskou
funkciou.

V tejto práci navrhneme a otestujeme niekoľkých modifikácií učiaceho algoritmu
samoorganizujúcich sa máp, ktoré by mali pomôcť pri prevencii mŕtvych neurónov, a
zároveň preskúmame priestor parametrov navhrnutých metód a ich vplyv na výsledky.

Kľúčové slová: mŕtve neuróny, samoorganizácia, samoorganizujúce sa mapy, neurónové
siete

v

Abstract

One of the problems of self-organizing maps is the occurrence of so-called dead units,
which cause the map to not be fully utilized. A bad initialization of weights can cause
some neurons to have their weights far from any input data, rendering them useless,
because they will never win the competition and, most likely, will not be in close
proximity to the winners neighborhood to be sufficiently adapted by the neighborhood
function.

In this thesis, we propose several modifications to the self-organizing maps training
algorithm aimed at preventing the occurrence of dead units, along with exploring their
parameter space and how the parameter values influence the outcome.

Keywords: dead units, dead neurons, self-organization, self-organizing map, SOM,
neural networks

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Self-organizing map . 2

1.2.1 Biological inspiration . 2
1.2.2 Kohonen model . 3

1.3 Dead units . 6
1.3.1 Causes . 6

2 Related work 7

2.1 Parameter-Less Self-Organizing Map (PLSOM) 7
2.1.1 Algorithm . 7

2.2 Improved PLSOM (PLSOM2) . 10
2.2.1 Algorithm . 10

3 Method 12

3.1 General setup . 12
3.1.1 MNIST . 12
3.1.2 RASTER . 13
3.1.3 OMNIGLOT . 13

3.2 Standard self-organizing map . 15
3.3 Training random dead unit . 17
3.4 Training dead units for novel inputs . 18
3.5 Computational restrictions . 20

3.5.1 MNIST . 21
3.5.2 RASTER . 22
3.5.3 OMNIGLOT . 22
3.5.4 Evaluation of expected runtimes for each method 23

3.6 Implementation . 24
3.6.1 Programming language . 24

vi

CONTENTS vii

3.6.2 Libraries . 24
3.6.3 Code . 25

3.7 Quality measures . 29

4 Results 30

4.1 Statistical Concerns . 30
4.2 MNIST . 31

4.2.1 10x10 . 31
4.2.2 20x20 . 35
4.2.3 40x40 . 38

4.3 RASTER . 41
4.3.1 10x10 . 41
4.3.2 20x20 . 45
4.3.3 40x40 . 49

4.4 OMNIGLOT . 53

5 Discussion 55

5.1 Evaluation . 55
5.1.1 Parameter space . 56
5.1.2 Data design . 56
5.1.3 Methods . 57

5.2 Future work . 57
5.2.1 More initialization of the neurons 57
5.2.2 Statistical tests . 57
5.2.3 Parameter space . 57
5.2.4 Technology . 57
5.2.5 Code . 58

Appendix A 61

List of Figures

1.1 Types of neuron arrangements in SOM. 2
1.2 Neighbourhood of a given winner neuron. The center black point rep-

resents the winner neuron and concentric squares around it indicate the
decaying weight of adaptation applied to neighbouring neurons. 4

1.3 Updating the best matching unit and neurons in its neighbourhood to-
wards input sample ~x. The black circles represent the map before update
and the blue circles represent the map after update. 4

1.4 Although ignored for training of SOMs, the MNIST dataset does include
labels for each observation. These are plotted for neurons which have
been activated while the empty spaces in the topology represent the
dead neurons. This SOM of size 40x40 has ∼38% dead units. 6

2.1 Visual comparison of SOM and PLSOM [1]. 9
2.2 Comparison of response to outlier of SOM, PLSOM and PLSOM2 from

[2] after 200,000 epochs. Normal SOM fails to utilize most of the neu-
rons. PLSOM overreacts to the outlier, forcing drastic topology change,
whilst PLSOM2 handles the appearance of an outlier the best. 11
(e) SOM before outlier. 11
(f) SOM after outlier. 11
(g) PLSOM before outlier. 11
(h) PLSOM after outlier. 11
(i) PLSOM2 before outlier. 11
(j) PLSOM2 after outlier. 11

13
3.2 Example of our raster dataset. 13
3.3 Example of the OMNIGLOT dataset. 14
3.4 Results of different image size-reducing methods for (Cyrillic alphabet). 14

(a) Original . 14
(b) Downscale . 14

viii

LIST OF FIGURES ix

(c) Rescale with aliasing . 14
(d) Resize with aliasing . 14
(e) Resize without aliasing . 14
(f) Rescale without aliasing . 14

3.5 Results of different image size-reducing methods for (Japanese alphabet). 15
(a) Original . 15
(b) Downscale . 15
(c) Rescale with aliasing . 15
(d) Resize with aliasing . 15
(e) Resize without aliasing . 15
(f) Rescale without aliasing . 15

3.6 Annealing. 16
(a) Annealing for learning rate . 16
(b) Annealing for neighbourhood size 16

3.7 Updating randomly chosen dead unit (red dot) and its neighbourhood
towards its closest input sample (x). Black circles represent the map
(weight vectors as points in space) before update and the blue circles
represent the map after update. 18

3.8 Comparison between digits three and eight. 19
(a) Sample digit three taken from MNIST dataset 19
(b) Sample digit eight taken from MNIST dataset 19

3.9 Similarity comparison between letters from Armenian and Balinese al-
phabets. 20
(a) Letter ayb from Armenian alphabet taken from Omniglot dataset 20
(b) Letter dha from Balinese alphabet taken from Omniglot dataset 20

4.1 10x10 map - performance of each method in terms of the percentage of
dead units (#du) resulting from each of the 90 parameter combinations
tested in the experiments. More combinations in the blue / red cate-
gories indicate those methods have a larger acceptable solution space for
this problem. 31

4.2 10x10 map - the percentage of dead units resulting from each combina-
tion of initial sigma, breaking point (epoch) and alpha at that breaking
point for the two best performing methods seen in Figure 4.1. 32

LIST OF FIGURES x

4.3 Comparison of quantization errors for two of the best performing param-
eter combinations. The blue line represents the quantization error for
the training random dead unit method with initial σ = 2.0, break-
ing point at the 20th epoch and α at the breaking point = 0.5. The
red line represents the quantization error for the training dead units

for novel inputs with threshold 0.6 method with initial σ = 5.0,
breaking point at the 20th epoch and α at the breaking point = 0.5. . . 33

4.4 Winmap of the training random dead unit method. 34
4.5 Winmap of the training dead units for novel inputs with thresh-

old 0.6 method. 34
4.6 20x20 map - performance of each method in terms of the percentage of

dead units (#du) resulting from each of the 90 parameter combinations
tested in the experiments. The chart similar to Figure 4.1. Here it is
clearer that Standard SOM results in the most solutions with fewer dead
units (#du). 35

4.7 20x20 map - the percentage of dead units resulting from each combina-
tion of initial sigma, breaking point (epoch) and alpha at that breaking
point for standard SOM. It was seen in Figure 4.6 that this method per-
formed best. The minimum percentage of dead units is found at initial
sigma = 10, breaking point = 7 and alpha at breaking point = 0.2. . . 36

4.8 Quantization error of the best performing parameter combination on
standard SOM with initial σ = 10.0, breaking point at the 7th epoch
and α at the breaking point = 0.2. 36

4.9 20x20 MNIST: winmap of the best performing parameter combination. 37
4.10 40x40 map - performance of each method in terms of the percentage of

dead units (#du) resulting from each of the 90 parameter combinations
tested in the experiments. Again there is clear leader in terms of the
number of parameter combinations leading to fewer dead units 38

4.11 40x40 map - the percentage of dead units resulting from each combina-
tion of initial sigma, breaking point (epoch) and alpha at that breaking
point for the best performing method. 39

4.12 Quantization error of the best performing parameter combination on
training dead units for novel inputs with threshold 0.5 with
initial σ = 20.0, breaking point at the 12th epoch and α at the breaking
point = 0.5. 39

4.13 40x40 MNIST - winmap of the best performing parameter combination. 40

LIST OF FIGURES xi

4.14 10x10 map - performance of each method in terms of the percentage of
dead units (#du) resulting from each of the 90 parameter combinations
tested in the experiments. 41

4.15 10x10 map - the percentage of dead units resulting from each combina-
tion of initial sigma, breaking point (epoch) and alpha at that breaking
point for the two best performing methods seen in Figure 4.14. 42

4.16 10x10 map - comparison of quantization errors for two of the best per-
forming parameter combinations. The blue line represents quantization
error for training random dead unit method with initial σ = 100.0,
breaking point at the 20th epoch and α at the breaking point = 0.1.
The red line represents quantization error for training dead units

for novel inputs with threshold 0.05 method with initial σ = 10.0,
breaking point at the 12th epoch and α at the breaking point = 0.5. . . 43

4.17 10x10 map - visual representation of weights during training process.
Blue dots represent the data, orange triangles represent neuron weights. 44
(a) Neuron weights at the 1st epoch of training random dead unit

method. 44
(b) Neuron weights at the 15th epoch of training random dead

unit method. 44
(c) Neuron weights at the 30th epoch of training random dead

unit method. 44
4.18 20x20 map - performance of each method in terms of the percentage of

dead units (#du) resulting from each of the 90 parameter combinations
tested in the experiments. 45

4.19 20x20 map - the percentage of dead units resulting from each combina-
tion of initial sigma, breaking point (epoch) and alpha at that breaking
point for the two best performing methods seen in Figure 4.18. 46

4.20 20x20 map - comparison of quantization errors for two of the best per-
forming parameter combinations. The blue line represents quantization
error for training dead units for novel inputs with threshold 0.05

method with initial σ = 100.0, breaking point at the 12th epoch and α at
the breaking point = 0.5. The red line represents quantization error for
training dead units for novel inputs with threshold 0.1 method
with initial σ = 10.0, breaking point at the 20th epoch and α at the
breaking point = 0.5. 47

4.21 20x20 map - visual representation of weights during training process.
Blue dots represent the data, orange triangles represent neuron weights. 48

LIST OF FIGURES xii

(a) Neuron weights at the 1st epoch of training dead units for

novel inputs with threshold 0.05 method. 48
(b) Neuron weights at the 15th epoch of training dead units for

novel inputs with threshold 0.05 method. 48
4.22 40x40 map - performance of each method in terms of the percentage of

dead units (#du) resulting from each of the 90 parameter combinations
tested in the experiments. 49

4.23 40x40 map - the percentage of dead units resulting from each combina-
tion of initial sigma, breaking point (epoch) and alpha at that breaking
point for the two best performing methods seen in Figure 4.22. 50

4.24 40x40 map - comparison of quantization errors for two of the best per-
forming parameter combinations. The blue line represents quantization
error for training random dead unit method with initial σ = 20.0,
breaking point at the 20th epoch and α at the breaking point = 0.5.
The red line represents quantization error for training dead units for

novel inputs with threshold 0.05 method with initial σ = 5.0, break-
ing point at the 3rd epoch and α at the breaking point = 0.5. 51

4.25 40x40 map - visual representation of weights during training process.
Blue dots represent the data, orange triangles represent neuron weights. 52
(a) Neuron weights at the 1st epoch of training random dead

unit method. 52
(b) Neuron weights at the 1st epoch of training dead units for

novel inputs with threshold 0.05 method. 52
(c) Neuron weights at the 30th epoch for both methods. 52

4.26 10x10 map - performance of each method in terms of the percentage of
dead units (#du) resulting from each of the 90 parameter combinations
tested in the experiments. 53

4.27 10x10 map - the percentage of dead units resulting from each combina-
tion of initial sigma, breaking point (epoch) and alpha at that breaking
point. 54

LIST OF FIGURES xiii

4.28 10x10 map - comparison of quantization errors for three of the best
performing parameter combinations. Each quantization error represents
different parameter combination of training dead units for novel in-

puts with threshold 50 method. The red line represents quantization
error for combination with initial σ = 10.0, breaking point at the 7th

epoch and α at the breaking point = 0.1. The yellow line represents
quantization error for combination with initial σ = 50.0, breaking point
at the 3rd epoch and α at the breaking point = 0.2. The blue line repre-
sents quantization error for combination with initial σ = 5.0, breaking
point at the 12th epoch and α at the breaking point = 0.12. 54

Chapter 1

Introduction

1.1 Motivation

In this thesis, we will deal with self-organizing maps. Self-organizing maps are primarily
used for clustering and dimensionality reduction. Self-organizing maps (SOM) have the
characteristic that neurons retain information about available data in their weights.
The map size is one important parameter in SOMs. With smaller maps, each neuron
must cover more of the individual input data. This has an impact on the cluster quality.
For a larger map, the neurons can represent the input data more precisely. However,
this has a drawback. Training a big self-organizing map should improve the cluster
quality, but it has also been noted to introduce a phenomenon called dead units. This
is where some of the neurons on the map are left unused.

In this thesis, we will experiment with different methods for preventing dead units
in self-organizing maps. The field of dead units is not very well explored, so in this
paper, we will try several methods to minimize the occurrence of dead units across
various parameter combinations.

The thesis is structured as follows: in the 1st chapter, we will formally and in detail
describe self-organizing maps. In the 2nd chapter, we will show related work to the
problem of dead units. In the 3rd chapter, we will describe the methods we will be
using to reduce the number of dead units in SOM. In the 4th chapter, we will detail the
results of these methods and compare them. The final chapter will be the discussion.

1

CHAPTER 1. INTRODUCTION 2

1.2 Self-organizing map

A self-organizing map is a model of neural networks authored by Tuevo Kohonen [3].
It is an unsupervised learning method and thus can be appropriate for dealing with
problems where the data is unlabeled. In other words, the algorithm cannot use the
information of output neurons during training.

A useful property of self-organizing maps is that they are capable of preserving
the topological properties of the input space. This makes it easy to visualize the
characteristic features of the input space later. For the map itself, neurons are typically
arranged in a one-dimensional structure or a two-dimensional structure in a rectangular
or hexagonal grid (Figure 1.1). This neuron arrangement represents the d-dimensional
input space in which the distance between two neurons is usually given by the Euclidean
distance of the underlying coordinate vectors (Equation 1.1). Two patterns similar to
one another induce responses from neurons that are physically close to each other in
output space also.

(a) Rectangular grid. (b) Hexagonal grid.

Figure 1.1: Types of neuron arrangements in SOM.

1.2.1 Biological inspiration

One well known representation of this type of feature mapping is in biological neural
networks - in particular, the human brain. Topological maps are present in many parts
of brain, mostly in the cerebral cortex. These maps are not fully developed at birth
and undergo change in the early stages of growth. These changes occur when the brain
receives outside stimuli, e.g. such as the brain receiving audio and visual inputs. They
turn out to be an effective way to represent important features from any input stimuli.

A parallel can be drawn between this process and self-organization during unsuper-
vised learning and thus, it inspired efforts to create the computational models of this
mapping. This spawned many efforts to simulate the process of self-organization seen
in the brain.

CHAPTER 1. INTRODUCTION 3

One of the earliest examples of these biologically inspired models was the Willshaw-
von der Malsburg model[4]. This model attempted to understand the mechanical pro-
jection from the retina to the cerebral cortex.

1.2.2 Kohonen model

The Kohonen model is another. It is computationally simpler than the Willshaw-von
der Malsburg model. In the Kohonen model, a neighbourhood function (Equation 1.4)
is used and the input is represented as n-dimensional vectors. The learning algorithm
consists of two steps which are repeated on each input datum (randomly selected from
the training set).

• Competition (find winner neuron)

• Learning (update weights of winner neuron and its neighbourhood)

The competition phase refers to the form of unsupervised learning used in this model.
Neurons compete with one another with the winner being chosen to respond to the
input data. The winner of each competition step is known as the winner neuron (or
best matching unit - BMU). Where Euclidian distance is used as the distance metric
for this algorithm, the Euclidean distance is calculated between each neuron and the
input datum.

dE(~x, ~wi) = ||~x− ~wi|| (1.1)

The winner neuron has weights which are closest (the most similar) to the input
datum:

i∗ = arg mini(dE(~x, ~wi)) (1.2)

Following the competition step, the learning phase begins. In this step, the neuron
weights are adapted. Adaptation here means that neurons which are topologically close
to the winner have their weights adapted towards the winner neuron:

∆~wi = α · (~x− ~wi) · h(i, i∗) (1.3)

α is the learning rate, which decreases with time. The neighbourhood function
(Figure 1.2) represents the radius around the winner neuron of which other neurons
are adapted, i.e. defines how many neurons within the winner neuron’s neighbourhood
will be adapted.

h(i, i∗) = e
− dE

2(i,i∗)

σ2(t) (1.4)

CHAPTER 1. INTRODUCTION 4

Where dE(i, i∗) represents the Euclidean distance between the lattice coordinates
of neuron i and winner neuron i∗.

The neighbourhood size is represented by σ. σ decays during training, decreasing
the size of the neighbourhood with each learning step.

Figure 1.2: Neighbourhood of a given winner neuron. The center black point represents
the winner neuron and concentric squares around it indicate the decaying weight of
adaptation applied to neighbouring neurons.

Figure 1.3: Updating the best matching unit and neurons in its neighbourhood towards
input sample ~x. The black circles represent the map before update and the blue circles
represent the map after update.

CHAPTER 1. INTRODUCTION 5

Initialization

Before the competition and learning steps can begin, the map must be initialized.
This is a well known problem for all iterative methods of learning neural networks.
Kohonen used a random initialization of SOM weights [5], and this is the standard way
to initialize SOM. We will do the same in this thesis.

Typically this random initialization is done with reference to the range of the input
data. This means that if all the input data are in the range (0, 1), the neuron weights
will be generated randomly from this range.

CHAPTER 1. INTRODUCTION 6

1.3 Dead units

One of the problems faced in training self-organizing maps is the occurrence of “dead”
units. Dead units are neurons whose randomly initialized weight vectors are so far from
any data point, that they never get chosen as winner neurons (or BMUs), nor are they
in the close neighbourhood of another BMU, hence they are never sufficiently adapted
to move closer to data. These dead units cause the network to not be fully utilized.

1.3.1 Causes

Dead neurons are usually caused by badly initialized weights in the SOM. Some neurons
will have weights far from the input data, therefore they will not be adapted at all or
too little, if they are at the edge of the winner neuron’s neighbourhood.

Figure 1.4: Although ignored for training of SOMs, the MNIST dataset does include
labels for each observation. These are plotted for neurons which have been activated
while the empty spaces in the topology represent the dead neurons. This SOM of size
40x40 has ∼38% dead units.

Chapter 2

Related work

There are not many works focusing specifically on the problem of dead units. Most
works mentioning dead units deal with them specifically for their own agenda and only
briefly mention the method used. The following papers show methods that adjust
parameters according to the input space and we can see that dead units are closely
related to the neighbourhood size and other SOM parameters.

2.1 Parameter-Less Self-Organizing Map (PLSOM)

In 2003 Berglund and Sitte proposed the parameters and update function should de-
pend on the maps conditions instead of external variables, like learning rate. As in-
ternal condition for scaling these variables, they selected the Euclidean distance from
the current input to the closest weight vector, normalized (divided) by the maximum
Euclidean distance from any input seen so far to its closest weight vector. If the nor-
malized Euclidean distance is large, the map needs to change more to fit future inputs.
If it is small, the fit is good already and map does not need to change much. The idea
behind PLSOM is that parameters should not be determined by the number of epoch,
but by how good the topological representation of the input state is [1].

2.1.1 Algorithm

ε is the normalized Euclidean distance - a scaling variable depending on how good the
fit of the weight vector of the winner neuron is to the last input.

ε =
||~x− ~wi∗||2

ρ
(2.1)

ρ(t) = max(||~x(t)− ~wi∗(t)||2, ρ(t− 1)) (2.2)

7

CHAPTER 2. RELATED WORK 8

ρ(0) = ||~x(0)− ~wi∗(0)||2 (2.3)

ε(t) represents the Euclidean distance between the input datum and the winner
neuron at time t. If ε is large, the map needs to readjust more, since it is not fitting
the data well and when ε is small, the input already fits the map well. In the PLSOM
algorithm, traditional annealing of the neighbourhood is replaced with

β(t) = constant ∀t (2.4)

because the neighbourhood size is determined by ε [1]. The equation for the neigh-
bourhood function is defined as

h(i, i∗)(t) = e
− dE

2(i,i∗)

σ2(t) (2.5)

where dE(i, i∗) is the Euclidean distance between neurons i and i∗. The equation
for the weight updates is defined as

~wi(t+ 1) = ~wi(t) + ε(t) · (~x(t)− ~wi(t)) · h(i, i∗)(t) (2.6)

where ~wi(t) is the weight vector of neuron i at the time t, ε is the normalized
Euclidean distance at the time t and h(i, i∗)(t) is the neighbourhood function at the
time t.

The learning rate has been eliminated and replaced by ε(t). In Figure 2.1 is
the performance comparison of the standard SOM algorithm, PLSOM and Matlab-
implemented SOM algorithm from the paper.

CHAPTER 2. RELATED WORK 9

(a) SOM weight vector position in the in-
put space after training for 50,000 epochs
with uniformly distributed pseudo-random 2-
dimensional input, ranging from 0 to 0.5.

(b) Same SOM as in figure (a) after 20,000 fur-
ther training steps with inputs ranging from 0
to 1.0.

(c) PLSOM weight vector position in the in-
put space after training for 50,000 epochs
with uniformly distributed pseudo-random 2-
dimensional input, ranging from 0 to 0.5.

(d) Same PLSOM as in figure (c) after 20,000
further training steps with inputs ranging from
0 to 1.0. Note the difference between this figure
and figure (b).

Figure 2.1: Visual comparison of SOM and PLSOM [1].

In the picture above you can see visual comparison between SOM and PLSOM.
Normal SOM fails to utilize most of the neurons after 50,000 epochs whereas PLSOM
utilizes all of them after just 20,000 epochs. The PLSOMs topological map also looks
similar to input, whereas topological map of standard SOM does not.

CHAPTER 2. RELATED WORK 10

2.2 Improved PLSOM (PLSOM2)

The earlier modification, PLSOM, solved some problems of SOM, but introduced other.
One of them is overreaction to extreme outliers, which happens even when the SOM
trains for a longer time period. This causes problems, since any standard dataset of
acceptable size will most probably have outliers. Another problem PLSOM introduced
is that the initial weights can affect the amount of adaptation if the weights are initial-
ized too far from the input space, causing training examples to cluster on the edges.
PLSOM2, introduced in [2], tries to fix these problems. PLSOM2, instead of using the
size of the error relative to the maximum error to change the scaling of the update,
uses the range of observed inputs.

Even though the PLSOM was an overall improvement over standard SOM, the
success of the SOM is heavily dependent on initial weights and the number of outliers
in the dataset. The scaling of the update in PLSOM is based on err(t) relative to the
largest error seen up to that point. When weights are initialized far from input space,
the initial error (err(0)) is very large and all further adaptations will be very small,
causing the map not to be ordered at all and overreact to extreme outliers. PLSOM2
does not scale error as PLSOM does, instead scales errors relative to the diameter of
the union of observed inputs [2]. This means that no feature map is stored, therefore
the initial weight distribution does not get to influence the map after several epochs.

2.2.1 Algorithm

The algorithm performs two main steps for each input. The first step is determining
the size of the input space (S), the second one is updating the weights. The weight
update depends on the input space, since these operations run sequentially. The input
space size is defined as the diameter of the dataset:

St = max
i,j

(||~xi − ~xj||2), ∀i, j ≤ t (2.7)

where xi ∈ Rn is the input at time i and t is the current time. The weight update
is defined as:

d(t) = min

(
err(t)

S
, 1

)
(2.8)

where d(t) is a scaling variable representing the fit and S is the input space and
err(t) is error represented by the Euclidean distance between input datum and weight
vector of the winner neuron. The neighbourhood size is determined by d(t) and

Θ(d(t)) = β ln(1 + d(t) · (e− 1)) (2.9)

CHAPTER 2. RELATED WORK 11

where (e−1) is the scaling factor, which is chosen to ensure the range of d(t) = [0, 1]

maps into the range of Θ(d(t)) = [0, β] and β = constant ∀t is neighbourhood range.
The value of Θ is then used in the neighbourhood function:

h(i, i∗)(t) = e
− dE

2(i,i∗)

Θ2(d(t)) (2.10)

where dE(i, i∗) is the Euclidean distance in output space between the winner neuron
i∗ and neuron i, which is the neuron currently being updated. This gives a value for
h(i, i∗)(t) that decreases with increased distance from i∗, and the rate of decrease is
determined by d(t). The weight update functions are:

~wi(t+ 1) = ~wi(t) + ∆~wi(t) (2.11)

∆~wi(t) = d(t) · h(i, i∗)(t) · (~x(t)− ~wi(t)) (2.12)

(e) SOM before outlier. (f) SOM after outlier. (g) PLSOM before outlier.

(h) PLSOM after outlier. (i) PLSOM2 before outlier. (j) PLSOM2 after outlier.

Figure 2.2: Comparison of response to outlier of SOM, PLSOM and PLSOM2 from
[2] after 200,000 epochs. Normal SOM fails to utilize most of the neurons. PLSOM
overreacts to the outlier, forcing drastic topology change, whilst PLSOM2 handles the
appearance of an outlier the best.

Chapter 3

Method

A standard SOM presents two types of problems: convergence and dead units. A well
initialized SOM might already fit the data well, therefore saving computational time as
a result. A bad initialization can cause some neurons to never be adapted or be adapted
insignificantly, resulting in the map not being fully utilized, therefore degrading the
quality of data representation. These neurons are called dead units.

To get a better idea how to reduce the occurrence of dead units in self-organizing
maps, we created a set of experiments.

3.1 General setup

Three different datasets representing three different types of input will be tested on
three different sizes of SOM: 10x10, 20x20 and 40x40. The model will be trained for 30
epochs. Each epoch refers to one training iteration in which the weights are updated
according to each of the input vectors. Preliminary experiments showed that the error
does not drop significantly after 30 epochs, therefore this number was chosen as a
limit for other experiments in this thesis. In each epoch, the SOM will be trained
(iteratively) on all data samples. Between each epoch the dataset is shuffled such that
the order in which the dataset is iterated through will not have a significant impact on
the SOM. All input data will be normalized by:

data = data / data.argmax()

3.1.1 MNIST

The digits dataset1 which is made up of 1797 hand written 8x8 images of digits will
represent a multidimensional input with 10 classes (each digit) with a relatively uniform

1http://scikit-learn.org/stable/auto_examples/datasets/plot_digits_last_image.html

12

CHAPTER 3. METHOD 13

distribution of the classes.

Figure 3.1: Example from the digits dataset2.

3.1.2 RASTER

This dataset is created by a simple script using two for cycles and numbers from range
(0, 1) with a step of 0.01. Resulting dataset with 9801 samples is then randomly
shuffled. We use a subset with 2000 samples to train our experiments.

Figure 3.2: Example of our raster dataset.

This dataset will be used as a low-dimensional input space (with no internal struc-
ture) for our experiments.

3.1.3 OMNIGLOT

OMNIGLOT is dataset of 1623 different handwritten characters from 50 different al-
phabets. Each of the 1623 characters was drawn online via Amazon’s Mechanical Turk
by 20 different people [6], that means the whole dataset has 32460 samples. This
dataset therefore represents a multidimensional input in which there are many classes
having few samples per class. Each image is 105x105 pixels.

2https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html

CHAPTER 3. METHOD 14

Figure 3.3: Example of the OMNIGLOT dataset3.

In order to avoid computational restriction, we had to come up with a way to reduce
the dataset that will be trained on our experiments. Three methods were tested to
achieve this - resizing (with and without aliasing), rescaling (with and without aliasing)
and downscaling the images. Preliminary experiments, Figures 3.4 and 3.5, have shown
that downscaling to 7x7 image preserves most of the information from the original
image. Therefore this method was initially chosen.

(a) Original (b) Downscale (c) Rescale with aliasing

(d) Resize with aliasing (e) Resize without aliasing (f) Rescale without aliasing

Figure 3.4: Results of different image size-reducing methods for (Cyrillic alphabet).

3https://github.com/brendenlake/omniglot/blob/master/omniglot_grid.jpg

CHAPTER 3. METHOD 15

(a) Original (b) Downscale (c) Rescale with aliasing

(d) Resize with aliasing (e) Resize without aliasing (f) Rescale without aliasing

Figure 3.5: Results of different image size-reducing methods for (Japanese alphabet).

Using this downscaled dataset, however, did not provide the gains expected. Despite
being able to train with more samples, downscaling led to poorer training performance
than using the original data with a smaller subset of the data. Downscaling to 15x15
images lead to similar results. It may be that the information loss which occurs in
this process is more significant than originally thought and thus we ended up using the
data in its original format instead. We ended up using less characters in full resolution
from each alphabet instead.

For the purposes of this thesis, we will be using a subset of 30 different alphabets
with one character (20 samples each) from each alphabet, i.e. 600 samples in total.

3.2 Standard self-organizing map

This method represents a standard approach to training self-organizing maps[3] and will
be used as a benchmark to other methods. Most methods utilize parameter annealing.
The first phase of annealing, called the initial organization phase, is to start off with
a bigger neighbourhood and quickly, within few epochs, get to a small neighbourhood
size. For a neighbourhood function, we use the Gaussian neighbourhood (Equation 1.4).
σ will be used in further text as a parameter representing neighbourhood size. Bigger
values of σ mean bigger neighbourhood sizes of the winner neuron i∗. The second
phase, called the fine-tuning phase, is used for fine-tuning the neuron weights.

CHAPTER 3. METHOD 16

(a) Annealing for learning rate (b) Annealing for neighbourhood size

Figure 3.6: Annealing.

In Figure 3.6, the red line represents the initial organization phase and the blue
line represents the fine-tuning phase. xA is the first epoch and will always be 0, σyA
(αyA) is the initial neighbourhood size (and initial learning rate). xB is the number
of epochs after which the breaking point occurs and σyB (αyB) is the neighbourhood
size (or learning rate) at this point. The breaking point is a parameter (specified
prior to running the SOM algorithm) and denotes the epoch in which the SOM should
transition from the initial organization phase to the fine-tuning phase. xC is always
equal to maximum number of epochs. σyC (αyC) is the value of the neighbourhood size
(or learning rate) at the end of training.

In our experiment, we fixed the following parameters for the learning rate:

αyA = 1.0 (3.1)

αyC = 0.1 (3.2)

and for neighbourhood size:
σyB = 1.0 (3.3)

σyC = 0.5 (3.4)

Both αyA, σxA are 0 and αxB, σxB are set to the breaking point. Learning rate is
calculated with below function:

αnew = αold +
(t− αxA) · (αyB − αyA)

(αxB − αxA)
(3.5)

Neighbourhood size is calculated with below function:

CHAPTER 3. METHOD 17

σnew = σold +
(t− σxA) · (σyB − σyA)

(σxB − σxA)
(3.6)

where t is the number of sample. The formula represents linear decay from (xA, yA)
to (xB, yB). All combinations of αxB, αyB, σxB, σyA shown below were explored.

Table 3.1: Parameter values used in experiments.

αxB, σxB 1, 3, 7, 12, 20

αyB 0.1, 0.2, 0.5

σyA 2.0, 5.0, 10.0, 20.0, 50.0, 100.0

Our hypothesis is that starting with larger neighbourhood sizes can help minimize
the number of dead units. We also explore the parameter space of the learning rate,
because annealing the learning rate is the usual way of SOM training, but our main
focus is on the influence of the neighbourhood size annealing scheme on the number of
dead units.

3.3 Training random dead unit

In [7], the authors create an algorithm with two steps to prevent the occurrence of dead
units. The algorithm starts off with a direct adaptation: the SOM is trained on an
input sample and the winning neuron and its neighbourhood adapts as per standard
SOM. The proposed new step, inverted adaptation, randomly picks a dead unit, finds
the closest input sample for the chosen neuron and adapts its weights towards the
chosen input sample. The hypothesis is that this creates the possibility that outliers
which would never have been adapted otherwise will now be adapted.

The authors, however, do not explore how much the method affects the occurrence
of dead units; instead they focus on using this method to represent a 3D space in 2D.
This is why we decided to re-implement this method, explore it deeper and compare
to other methods.

Our method is a modified version of the method proposed in [7]. In standard
training steps, we train the SOM on the dataset, whilst keeping a map of all neurons
that have not been trained yet. After each standard step, we randomly choose a dead
unit, find the closest input sample and then adapt its weights and the weights of neurons
within the winner neurons neighbourhood with this input sample.

CHAPTER 3. METHOD 18

Figure 3.7: Updating randomly chosen dead unit (red dot) and its neighbourhood
towards its closest input sample (x). Black circles represent the map (weight vectors
as points in space) before update and the blue circles represent the map after update.

For the purposes of this thesis, the dead unit is left in the list of dead units, so it
can be selected again from this list. This is done because the dead unit is only nudged
in the right direction in the extra step and did not win the actual competition, thus
leaving it marked as a dead unit until it has been updated as part of the standard
step (either being a BMU or being in the close neighbourhood of a BMU). The nudge
does not guarantee that the unit has been moved/adapted enough to be able to win a
regular competition - hence it will only be removed from the set of dead units when it
does.

3.4 Training dead units for novel inputs

The basic idea of this method is that if the winner neuron has its weights similar enough
to the input sample, the input is most probably an instance of the same category and
the winner can be adapted.

If not, rather than updating the winner neuron and it’s neighbourhood, a different
unused neuron is chosen. This neuron and its neighbourhood are updated instead.
When this happens, it is considered a novel input. A threshold value must be set
to evaluate whether the Euclidean distance between the winner neuron and the input
vector can be considered to be in the same category. The problem can be formalized as:

CHAPTER 3. METHOD 19

if d(
−−−→
input,

−−−→
BMU) > threshold:

ignore BMU
for each dead_unit:

calculate d(
−−−→
input,

−−−−−−−→
dead_unit)

update dead_unit with min(dE(
−−−→
input,

−−−−−−−→
dead_unit))

where the distances, dE(−→a ,
−→
b), represent the Euclidean distance between two vec-

tors.

We quickly faced the problem of data separability, which is the property of the data
we are using to train the SOM. Numeric characters like 3 and 8 are similar enough to
confuse the network for example.

Thus we experimentally measured Euclidean distances within and across some cat-
egories. For the MNIST dataset, we chose digits 3 and 8 to analyze (Figure 3.8).

(a) Sample digit three
taken from MNIST
dataset

(b) Sample digit eight
taken from MNIST
dataset

Figure 3.8: Comparison between digits three and eight.

The mean value of the Euclidean distances within the sample of 3 digits was 0.45
and with the sample of 8 digits was 0.49. The same value when comparing 3s with 8s
was 0.58. We therefore conject that a reasonable threshold value to experiment with
will be in the approximate range 0.4-0.6. Thus values of 0.4, 0.5, and 0.6 were chosen.

Data separability was also an issue in the Omniglot dataset. The most similar
letters - ayb from the Armenian alphabet and dha from the Balinese alphabet - were
chosen to analyze the separability (Figure 3.9).

CHAPTER 3. METHOD 20

(a) Letter ayb from Ar-
menian alphabet taken
from Omniglot dataset

(b) Letter dha from
Balinese alphabet
taken from Omniglot
dataset

Figure 3.9: Similarity comparison between letters from Armenian and Balinese alpha-
bets.

Here the mean value of the Euclidean distances between each ayb letter was 37.4
and between dha letters this was 36.9. The minimum, mean and maximum value of the
Euclidean distances between letters ayb and dha was 30.5, 37.67 and 45.6, respectively.
Therefore reasonable threshold values to experiment with were posited to be 30, 40
and 50.

The raster dataset has no obvious categories like the other two datasets, so data
separability is not an issue. Therefore the same method could not be used to decide on
a suitable threshold value range. Instead, the closest distance between two samples was
calculated - the value being 0.01. So to force neurons into clusters, threshold values of
0.02, 0.05 and 0.1 were chosen for experimentation.

The results are discussed in more detail in 4.

3.5 Computational restrictions

This section details the computational restrictions which were faced in the course of
our experiments. All experiments were carried out on a personal laptop (Table 3.2).
Whist we did have access to a shared server with greater resources, this did not help
as the code is single threaded and so could not utilize the full available resources.
Experimentation with this system did not bring any gains in terms of run-time.

A potential improvement would be to rewrite the code or using Apache Spark to
parallelize some of the more expensive operations.

For example updating the neuron weights at each step before finding the BMU
could be handled in parallel, significantly reducing overall compute time.

CHAPTER 3. METHOD 21

Table 3.2: Laptop specifications.

Processor i5-4210U at 1.7 GHz

Memory 12 GB DDR3L-SDRAM at 1600 MHz

Graphics Intel R© HD Graphics 4400

Storage 5400 RPM SSHD

The below table shows how many parameter combinations are considered for each
method. Some gains in compute time were made by running each combination on a
separate thread (up to 3 at a time).

Table 3.3: Counts of experiment parameters. Exact parameters can be seen in Ta-
ble 3.1. αxB and σxB are the breaking points, αyB is learning rate at breaking point
and σyA is initial neighbourhood size.

Experiment αxB, σxB αyB σyA Thresholds Combinations

Standard SOM 3 5 6 - 90

Random dead unit 3 5 6 - 90

Dead units for novel inputs 3 5 6 3 270

The following sections detail the total run times taken for each dataset, technique and
map size using the system specifications given in Table 3.2.

3.5.1 MNIST

Table 3.4: Experiments on MNIST dataset using standard SOM method.

Map size Time per combination Total time

10x10 ∼ 2 minutes ∼ 3 hours

20x20 ∼ 8.5 minutes ∼ 13 hours

40x40 ∼ 35 minutes ∼ 52.5 hours

Table 3.5: Experiments on MNIST dataset using training random dead unit method.

Map size Time per combination Total time

10x10 ∼ 2.5 minutes ∼ 4 hours

20x20 ∼ 9.5 minutes ∼ 14 hours

40x40 ∼ 38.5 minutes ∼ 58 hours

CHAPTER 3. METHOD 22

Table 3.6: Experiments on MNIST dataset using training dead units for novel inputs
method.

Map size Time per combination Total time

10x10 ∼ 2 minutes ∼ 9 hours

20x20 ∼ 9 minutes ∼ 40.5 hours

40x40 ∼ 36 minutes ∼ 162 hours

3.5.2 RASTER

Table 3.7: Experiments on RASTER dataset using standard SOM method.

Map size Time per combination Total time

10x10 ∼ 2 minutes ∼ 3 hours

20x20 ∼ 7.5 minutes ∼ 11 hours

40x40 ∼ 33 minutes ∼ 49.5 hours

Table 3.8: Experiments on RASTER dataset using training random dead unit method.

Map size Time per combination Total time

10x10 ∼ 3 minutes ∼ 4.5 hours

20x20 ∼ 9 minutes ∼ 13.5 hours

40x40 ∼ 41 minutes ∼ 61.5 hours

Table 3.9: Experiments on RASTER dataset using training dead units for novel inputs
method.

Map size Time per combination Total time

10x10 ∼ 2.5 minutes ∼ 11 hours

20x20 ∼ 8 minutes ∼ 36 hours

40x40 ∼ 36 minutes ∼ 162 hours

3.5.3 OMNIGLOT

Table 3.10: Experiments on OMNIGLOT dataset using standard SOM method.

Map size Time per combination Total time

10x10 ∼ 4 minutes ∼ 6 hours

20x20 ∼ 19 minutes ∼ 28.5 hours

40x40 ∼ 89 minutes ∼ 133.5 hours

CHAPTER 3. METHOD 23

Table 3.11: Experiments on OMNIGLOT dataset using training random dead unit
method.

Map size Time per combination Total time

10x10 ∼ 4 minutes ∼ 6 hours

20x20 ∼ 21.5 minutes ∼ 32 hours

40x40 ∼ 114.5 minutes ∼ 172 hours

Table 3.12: Experiments on OMNIGLOT dataset using training dead units for novel
inputs method.

Map size Time per combination Total time

10x10 ∼ 4 minutes ∼ 18 hours

20x20 ∼ 20 minutes ∼ 90 hours

40x40 ∼ 107 minutes ∼ 481.5 hours

3.5.4 Evaluation of expected runtimes for each method

The SOM has three input parameters: SOM size N, input dimension d and training
set size M. To update the weights for each standard step, we need N · d space and
O(d) for the Euclidean distance and O(N) to find the winner, by comparing the input
sample with the weights of each neuron. This gives us time complexity O(MdN) for
each epoch.

In addition to the standard training step, the second method also needs to choose
a random dead unit (O(1)) and compare it to each input sample in the training set
(O(M)), times O(d) for each Euclidean distance calculated.
This method then gives us O(M ·(dN+dM)) = O((MdN)+M2d) instead of O(MdN)

in the first method. ThZere is an extra term in the second equation, which is quadratic
in M . Therefore, before using this method, it should be considered on what data it is
going to be used. If there is going to be a lot of data (M), it might not be the wisest
choice, but it should run well on big vectors (d), e.g. camera images, or self-organizing
maps with big sizes (N).

The third method compares the Euclidean distance between the input and the found
winner to a threshold in each epoch and, in the case of a novelty input, it compares
this input sample to each dead unit from the set of dead units. The size of the dead
units set can be N at most. This gives us (in addition to O(Nd) for the standard case)
another at most O(Nd) operations in cases of novelties. Thus the third method still
runs in O(MdN) time.

CHAPTER 3. METHOD 24

This means the second method is slower than both first and third method and
should be used with caution in the case of large data sets.

3.6 Implementation

3.6.1 Programming language

We used Python as our primary programming language. We chose this language be-
cause of its ease of use and the large variety of libraries supporting machine learning
and neural network training.

3.6.2 Libraries

We used a variety of libraries. The most important are listed below.

NumPy

NumPy4 is a library for Python, supporting large, multi-dimensional arrays and ma-
trices and a large collection of high-level mathematical functions to operate on these
arrays.

We will be using commonly used functions like exp, power, subtract, dot, transpose
to work with vectors and matrices, as well as more complex ones such as nditer and
unravel_index.

scikit-learn

Scikit-learn5 is a machine learning library for Python. We will be using scikit-learn
mainly for its built in MNIST dataset and its shuffle function to shuffle our datasets in
a consistent way. To experiment with resizing, rescaling and downscaling OMNIGLOT
images, we will be using scikit-image for its image processing capabilities.

Matplotlib

Matplotlib6 is a Python 2D plotting library. We will be using it to plot various graphs
and visualizations.

4http://www.numpy.org/
5https://scikit-learn.org/
6https://matplotlib.org/

CHAPTER 3. METHOD 25

3.6.3 Code

In Listing 1 is train function of standard SOM. In each epoch, the algorithm goes
through the whole dataset, finds BMU for each input sample and updates its weights
and weights of neurons within its neighbourhood.

Listing 1: Train function of standard SOM.

1 def train(self, data):

2 # Cycle through epochs and data points to train SOM.

3

4 ep = 0

5 self._t = 0

6

7 for ep in range(self._epochs):

8 data = shuffle(data)

9

10 for sample in data:

11 self.update(sample, self.winner(sample))

12 self._t += 1

CHAPTER 3. METHOD 26

In Listing 2 is find_sample function from second experiment in which we adapt
randomly chosen dead unit. This function randomly picks a dead unit from a map
of dead units, then finds the closest input sample to its weights and returns it to be
updated. If no neurons are left in the dead units map, update is skipped.

Listing 2: Function find_sample that finds the closest input sample to randomly chosen
dead unit.

1 def find_sample(self, data):

2 # Return random dead unit and data input closest to it.

3

4 dead_units = np.transpose(np.nonzero(self._dead_units_map))

5 if len(dead_units) == 0:

6 return None, None

7 # randomly choose dead unit from map of dead units

8 winner = tuple(dead_units[np.random.randint(len(dead_units))])

9 winner_weights = self._weights[winner]

10

11 # find the closest input sample to this dead unit

12 distances = {}

13 for i in range(len(data)):

14 distances[i] = np.subtract(data[i], winner_weights)

15 sample = data[min(distances, key=distances.get)]

16 return sample, winner

CHAPTER 3. METHOD 27

In Listing 3 is train function from second experiment. After standard step of train-
ing the whole dataset, extra step is added (Listing 2). If no dead unit is found, update
does not happen.

Listing 3: Train function of second method that trains random dead unit in an extra
step.

1 def train(self, data):

2 # Cycle through epochs and data points to train SOM.

3

4 ep = 0

5 self._t = 0

6

7 for ep in range(self._epochs):

8 data = shuffle(data)

9

10 for sample in data:

11 self.update(sample, self.winner(sample))

12 self._t += 1

13

14 best_sample, winner = self.find_sample(data)

15 if best_sample is not None and winner is not None:

16 self.update_dead(best_sample, winner)

CHAPTER 3. METHOD 28

In Listing 4 is find_dead function from third experiment in which we train dead
units for novel inputs. This function finds nearest dead unit closest to the given input
sample if the winner neuron found in standard step does not satisfy the set threshold.

Listing 4: Function find_dead that finds closest dead unit to the given input sample.

1 def find_dead(self, x):

2 # Find closest dead unit to the input sample.

3

4 dead_units = np.transpose(np.nonzero(self._dead_units_map))

5 if len(dead_units) == 0:

6 return None

7

8 distances = {}

9 for i in range(len(dead_units)):

10 du = tuple(dead_units[i])

11 du_weights = self._weights[du]

12 distances[i] = self._ed(x, du_weights)

13

14 winner = dead_units[min(distances, key=distances.get)]

15 return winner

CHAPTER 3. METHOD 29

In Listing 5 is train function from third experiment. Additional threshold condition
has been added to train dead units when the current winner neurons weights are not
close enough to the input sample.

Listing 5: Train function of third method that adds threshold for novelty inputs.

1 def train(self, data):

2 # Cycle through epochs and data points to train SOM.

3

4 ep = 0

5 self._t = 0

6

7 for ep in range(self._epochs):

8 data = shuffle(data)

9

10 for sample in data:

11 winner = self.winner(sample)

12 if self._distance_map[winner] < self._threshold:

13 self.update(sample, winner)

14 else:

15 win = self.find_dead(sample)

16 if win is None:

17 self.update(sample, winner)

18 else:

19 self.update(sample, win)

20 self._t += 1

3.7 Quality measures

For visualization of maps trained on MNIST dataset, winmaps will be used. Winmaps
are topographical plots of the SOM, where each point represents a neuron and its
winning digit.

To see how well map performs, quantization error will be calculated after each
epoch. Quantization error is the average distance between each input sample and its
best matching unit (winner neuron).

To see how well each method performs, a combination of quantization error and
the final count/percentage of dead units will be used.

Chapter 4

Results

In this chapter, the results of the experiments - using the previously discussed methods,
datasets and map sizes - will be detailed. The discussion will focus on whether the
choice of method used will differ depending on the structure of the dataset and the
map size.

In Section 4.1, we will talk about statistical concerns. Section 4.2 covers the MNIST
dataset, whilst sections 4.3 and 4.4 cover the Raster and Omniglot datasets respectively.

4.1 Statistical Concerns

As stated above, the aim of this section is to show that the choice of method to use
should differ depending on the dataset and map size. This can be formalized as follows:

H0. The choice of method is irrelevant, in regards to dead units and quantization error
elimination.

HA. There are material differences between the methods chosen (either standard SOM,
training random dead units OR training dead units for novel inputs) in regards to dead
units and quantization error elimination.

It must be stated that as each experiment is only carried out on one random initial-
ization of the SOM (due to computational restrictions), the results stated are dependent
on that initialization. A more comprehensive approach would involve taking n random
starts and comparing means of the groups, or using statistical tests.

30

CHAPTER 4. RESULTS 31

4.2 MNIST

MNIST represents a multidimensional input with 10 classes (one for each digit) with
a relatively uniform distribution of the classes.

In this section, results from each of the map sizes trained - 10x10, 20x20 and
40x40 - will be discussed. Each subsection will take a closer look at the performance of
individual methods on this specific data design and map sizes. It will also cover analysis
of the training parameters for the methods which performed the best. The quantization
error of the best performing methods and their best performing parameters will then
be compared. All other results can be found in Appendix 5.2.5.

4.2.1 10x10

To compare methods on this data design and map size, an aggregation of the percentage
of dead units into the following bins was chosen: 0%, 1%, 2% and >2%. Ranges are
not necessary here as a 10x10 map has exactly 100 neurons, so it is not possible to
have e.g. 1.5% dead units. These results can be seen in figure 4.1.

Figure 4.1: 10x10 map - performance of each method in terms of the percentage of
dead units (#du) resulting from each of the 90 parameter combinations tested in the
experiments. More combinations in the blue / red categories indicate those methods
have a larger acceptable solution space for this problem.

CHAPTER 4. RESULTS 32

Results indicate that the best performing methods for threshold 0% are training
random dead unit and training dead units for novel inputs with threshold

0.6. The performance of parameter combinations for these two methods can be seen
in Figure 4.2.

Figure 4.2: 10x10 map - the percentage of dead units resulting from each combination
of initial sigma, breaking point (epoch) and alpha at that breaking point for the two
best performing methods seen in Figure 4.1.

Figure 4.3 shows the quantization error for these methods using the best combina-
tion of parameters. The quantization error for the method using novel inputs tracks
higher than the method without until close to the breaking point. This may have as
much to do with the choice of σ as it does with the choice of method.

CHAPTER 4. RESULTS 33

Figure 4.3: Comparison of quantization errors for two of the best performing parameter
combinations. The blue line represents the quantization error for the training random
dead unit method with initial σ = 2.0, breaking point at the 20th epoch and α at the
breaking point = 0.5. The red line represents the quantization error for the training
dead units for novel inputs with threshold 0.6 method with initial σ = 5.0,
breaking point at the 20th epoch and α at the breaking point = 0.5.

Figures 4.4 and 4.5 show the final map topology for the 10x10 grid for the two
chosen methods / parameter combinations. The patterns which have been mapped
to each neuron and which parts of the map would be most likely respond to a given
input pattern can be seen here. One problem with smaller maps is that despite less
dead units, each neuron present must represent more patterns. The chart bears this
out with e.g. the 1 digit being spread across various parts of the map.

CHAPTER 4. RESULTS 34

Figure 4.4: Winmap of the training random dead unit method.

Figure 4.5: Winmap of the training dead units for novel inputs with threshold

0.6 method.

CHAPTER 4. RESULTS 35

4.2.2 20x20

To compare methods on this data design and map size, an aggregation of the percentage
of dead units into the following bins was chosen: [0%, 9%), [9%, 10%], (10%, 12%],
(12%, 100%]. These results can be seen in figure 4.6.

Figure 4.6: 20x20 map - performance of each method in terms of the percentage of
dead units (#du) resulting from each of the 90 parameter combinations tested in the
experiments. The chart similar to Figure 4.1. Here it is clearer that Standard SOM
results in the most solutions with fewer dead units (#du).

Results indicate that the best performing method for threshold 10% is standard
SOM. The performance of parameter combinations for this method can be seen in
Figure 4.7.

CHAPTER 4. RESULTS 36

Figure 4.7: 20x20 map - the percentage of dead units resulting from each combination
of initial sigma, breaking point (epoch) and alpha at that breaking point for standard
SOM. It was seen in Figure 4.6 that this method performed best. The minimum
percentage of dead units is found at initial sigma = 10, breaking point = 7 and alpha
at breaking point = 0.2.

Figure 4.8: Quantization error of the best performing parameter combination on stan-
dard SOM with initial σ = 10.0, breaking point at the 7th epoch and α at the breaking
point = 0.2.

CHAPTER 4. RESULTS 37

Figure 4.9 shows the map again, but this time for a 20x20 grid. The map looks
to be organizing the groups a little better, but there are now islands of dead units
which have appeared. These are perhaps due to there being large difference between
the digits on either side of those islands. Note as discussed in Section 3.4, the digits 3
and 8 appear close to one another on the map.

Figure 4.9: 20x20 MNIST: winmap of the best performing parameter combination.

CHAPTER 4. RESULTS 38

4.2.3 40x40

To compare methods on this data design and map size, an aggregation of the percentage
of dead units into the following bins was chosen: [0%, 34%), [34%, 35%), [35%, 37%),
[37%, 100%]. These results can be seen in figure 4.10.

Figure 4.10: 40x40 map - performance of each method in terms of the percentage
of dead units (#du) resulting from each of the 90 parameter combinations tested in
the experiments. Again there is clear leader in terms of the number of parameter
combinations leading to fewer dead units

Results indicate that the best performing method for threshold 34% is training
dead units for novel inputs with threshold 0.5. The performance of parameter
combinations for this method can be seen in Figure 4.11.

CHAPTER 4. RESULTS 39

Figure 4.11: 40x40 map - the percentage of dead units resulting from each combination
of initial sigma, breaking point (epoch) and alpha at that breaking point for the best
performing method.

Figure 4.12: Quantization error of the best performing parameter combination on
training dead units for novel inputs with threshold 0.5 with initial σ = 20.0,
breaking point at the 12th epoch and α at the breaking point = 0.5.

The 40x40 map in 4.13 also includes some dead units as well as pockets of outliers.
Overall however, there is a clear pattern on where each input would activate. The
picture shows that, despite having approx. 32% of dead units, the map has a very
decent organization.

CHAPTER 4. RESULTS 40

Figure 4.13: 40x40 MNIST - winmap of the best performing parameter combination.

CHAPTER 4. RESULTS 41

4.3 RASTER

The raster dataset represents a low-dimensional input space (with no internal struc-
ture).

In this section, results from each of the map sizes trained - 10x10, 20x20 and
40x40 - will be discussed. Each subsection will take a closer look at the performance of
individual methods on this specific data design and map sizes. It will also cover analysis
of the training parameters for the methods which performed the best. The quantization
error of the best performing methods and their best performing parameters will then
be compared. All other results can be found in Appendix 5.2.5.

4.3.1 10x10

To compare methods on this data design and map size, an aggregation of the percentage
of dead units into the following bins was chosen: 0%, 1%, 2% and >2%. Ranges are
not necessary here as a 10x10 map has exactly 100 neurons, so it is not possible to
have e.g. 1.5% dead units. These results can be seen in figure 4.14.

Figure 4.14: 10x10 map - performance of each method in terms of the percentage of
dead units (#du) resulting from each of the 90 parameter combinations tested in the
experiments.

Results indicate that the best performing methods for threshold 0% are training
random dead unit and training dead units for novel inputs with threshold

CHAPTER 4. RESULTS 42

0.05. The performance of parameter combinations for this method can be seen in
Figure 4.15.

Figure 4.15: 10x10 map - the percentage of dead units resulting from each combination
of initial sigma, breaking point (epoch) and alpha at that breaking point for the two
best performing methods seen in Figure 4.14.

CHAPTER 4. RESULTS 43

Figure 4.16: 10x10 map - comparison of quantization errors for two of the best perform-
ing parameter combinations. The blue line represents quantization error for training
random dead unit method with initial σ = 100.0, breaking point at the 20th epoch
and α at the breaking point = 0.1. The red line represents quantization error for
training dead units for novel inputs with threshold 0.05 method with initial σ
= 10.0, breaking point at the 12th epoch and α at the breaking point = 0.5.

In Figure 4.16 both methods error converges to values around 0.04, meaning the
maps are well trained.

CHAPTER 4. RESULTS 44

(a) Neuron weights at the 1st epoch of training random
dead unit method.

(b) Neuron weights at the 15th epoch of training ran-
dom dead unit method.

(c) Neuron weights at the 30th epoch of training random
dead unit method.

Figure 4.17: 10x10 map - visual representation of weights during training process. Blue
dots represent the data, orange triangles represent neuron weights.

CHAPTER 4. RESULTS 45

4.3.2 20x20

To compare methods on this data design and map size, an aggregation of the percentage
of dead units into the following bins was chosen: [0%, 9%), [9%, 10%], (10%, 12%],
(12%, 100%]. These results can be seen in figure 4.18.

Figure 4.18: 20x20 map - performance of each method in terms of the percentage of
dead units (#du) resulting from each of the 90 parameter combinations tested in the
experiments.

Results indicate that the best performing methods for a threshold of 9% are train-
ing dead units for novel inputs with threshold 0.05 and training dead units

for novel inputs with threshold 0.1. The performance of parameter combinations
for this method can be seen in Figure 4.19.

CHAPTER 4. RESULTS 46

Figure 4.19: 20x20 map - the percentage of dead units resulting from each combination
of initial sigma, breaking point (epoch) and alpha at that breaking point for the two
best performing methods seen in Figure 4.18.

CHAPTER 4. RESULTS 47

Figure 4.20: 20x20 map - comparison of quantization errors for two of the best perform-
ing parameter combinations. The blue line represents quantization error for training
dead units for novel inputs with threshold 0.05 method with initial σ = 100.0,
breaking point at the 12th epoch and α at the breaking point = 0.5. The red line repre-
sents quantization error for training dead units for novel inputs with threshold

0.1 method with initial σ = 10.0, breaking point at the 20th epoch and α at the
breaking point = 0.5.

It is clearly visible in Figure 4.20 where breaking point for training dead units

for novel inputs with threshold 0.05 method is. Both maps are trained well, since
they both converge to values around 0.02.

CHAPTER 4. RESULTS 48

(a) Neuron weights at the 1st epoch of training dead units for novel inputs
with threshold 0.05 method.

(b) Neuron weights at the 15th epoch of training dead units for novel inputs
with threshold 0.05 method.

Figure 4.21: 20x20 map - visual representation of weights during training process. Blue
dots represent the data, orange triangles represent neuron weights.

CHAPTER 4. RESULTS 49

4.3.3 40x40

To compare methods on this data design and map size, an aggregation of the percentage
of dead units into the following bins was chosen: [0%, 41%), [41%, 42%], (42%, 43%],
(43%, 100%]. These results can be seen in figure 4.22.

Figure 4.22: 40x40 map - performance of each method in terms of the percentage of
dead units (#du) resulting from each of the 90 parameter combinations tested in the
experiments.

Results indicate that the best performing methods for threshold 42% are training
random dead unit and training dead units for novel inputs with threshold

0.05. The performance of parameter combinations for this method can be seen in
Figure 4.23.

CHAPTER 4. RESULTS 50

Figure 4.23: 40x40 map - the percentage of dead units resulting from each combination
of initial sigma, breaking point (epoch) and alpha at that breaking point for the two
best performing methods seen in Figure 4.22.

In Figure 4.24, quantization error of the best parameter combination from training

dead units for novel inputs with threshold 0.05 method has stabilized right at
the start (see Figure 4.25). This could be caused by initial σ helping neuron weights
organize well at the start and big adjustments in the topology were not needed. After
3rd epoch, σ drops to 1.0 and quantization error does not change much, since this is
fine-tuning phase.

CHAPTER 4. RESULTS 51

Figure 4.24: 40x40 map - comparison of quantization errors for two of the best perform-
ing parameter combinations. The blue line represents quantization error for training
random dead unit method with initial σ = 20.0, breaking point at the 20th epoch and
α at the breaking point = 0.5. The red line represents quantization error for training
dead units for novel inputs with threshold 0.05 method with initial σ = 5.0,
breaking point at the 3rd epoch and α at the breaking point = 0.5.

CHAPTER 4. RESULTS 52

(a) Neuron weights at the 1st epoch of training random
dead unit method.

(b) Neuron weights at the 1st epoch of training dead
units for novel inputs with threshold 0.05 method.

(c) Neuron weights at the 30th epoch for both methods.

Figure 4.25: 40x40 map - visual representation of weights during training process. Blue
dots represent the data, orange triangles represent neuron weights.

CHAPTER 4. RESULTS 53

4.4 OMNIGLOT

As can be seen in Figure 4.26 this data design performed by far the worst for a 10x10
map, with no method / combination of parameters resulting in 0% dead units. It
further performed much worse for both 20x20 and 40x40 maps. The later results can
be seen in the Appendix 5.2.5.

Figure 4.26: 10x10 map - performance of each method in terms of the percentage of
dead units (#du) resulting from each of the 90 parameter combinations tested in the
experiments.

The grid search of parameters (see Figure 4.27) is highly volatile suggesting small
variations in the process of training the SOM are having a large effect.

CHAPTER 4. RESULTS 54

Figure 4.27: 10x10 map - the percentage of dead units resulting from each combination
of initial sigma, breaking point (epoch) and alpha at that breaking point.

Figure 4.28: 10x10 map - comparison of quantization errors for three of the best per-
forming parameter combinations. Each quantization error represents different param-
eter combination of training dead units for novel inputs with threshold 50

method. The red line represents quantization error for combination with initial σ =
10.0, breaking point at the 7th epoch and α at the breaking point = 0.1. The yellow line
represents quantization error for combination with initial σ = 50.0, breaking point at
the 3rd epoch and α at the breaking point = 0.2. The blue line represents quantization
error for combination with initial σ = 5.0, breaking point at the 12th epoch and α at
the breaking point = 0.12.

We conclude that that this type of multiclass data design is not suited for the
methods that were tried. One method that might achieve better results is 1-shot
learning.

Chapter 5

Discussion

The goal of this thesis was to create and experiment with different methods, trained
on three different map sizes, of preventing dead units in self-organizing maps on the
three different types of data designs (see Chapter 3.1).

First was Neighbourhood size and learning rate annealing, which is a stan-
dard approach to training SOM and we used it as a baseline.

Second was Training a random dead unit, where after each standard step,
we randomly chose a dead unit, found the closest input sample and then adapted its
weights and the weights of neurons within the winner neurons neighbourhood with this
sample.

The third method, Training dead units for novel inputs we tested whether
neurons weights were similar enough to the input sample, for which we created a
threshold variable. We had hoped, this approach would let inputs of the same category
to be clustered better together and novelty inputs would be mapped to unused neurons.
Since we introduced a new threshold variable, we had to determine, what would be
the correct value to distinguish inputs within the same category from the ones across
categories. We calculated the mean Euclidean distance for inputs of the same category
as well as the mean of cross-category Euclidean distances.

In this chapter the results will be discussed in order to recommend the best per-
forming methods for each data design and future work will be presented.

5.1 Evaluation

Trivially, the smallest map size performed the best, since if one tries to reduce dead
units, the smaller maps provide less space for dead units to occur. On smaller maps,
the quantization error is often high, since several patterns are forced to map on the
same neurons. One logical step to avoid this is to increase the map size. This does

55

CHAPTER 5. DISCUSSION 56

not always help because some parts of the map can be left underutilized. At the same
time, on smaller maps the neurons are already overcrowded with patterns, not leaving
much room for dead units. There are therefore two competing facets to this problem:

1. A smaller map which has less dead neurons but higher quantization error.
2. A larger map which has lower quantization error but more dead neurons.

One way to deal with this problem is to use a larger map whilst trying other methods
to reduce the number of dead units. The goal, then, is to find out whether the methods
tested in this paper can utilize more of the potential of bigger map whist maintaining
low quantization error.

To achieve the above, we experimented with 3 different methods, 3 different map
sizes and 3 different data designs using many parameter combinations in a grid search.

5.1.1 Parameter space

The general conclusion for all methods was that a breaking point α closer to 0.5 usually
provided the best results in terms of lower dead unit counts. A higher breaking point
α means the learning rate will be higher for more epochs thus the neurons are able to
move around more in the standard learning phase which may allow more dead units
be adapted.

Another general conclusion is that extremely high values of initial σ (e.g. 50-100
and thus large initial neighborhood sizes) did not have the impact we expected in terms
of the number of dead units. The hypothesis was that higher initial σ values would
allow more outlying neurons to be pulled closer to the data. None of our results bore
this out. One reason may be that this leads to high volatility with neurons being pulled
violently (especially when the breaking point α is larger) in different directions at every
step. Therefore the input data which is iterated through last would have drastically
more impact on the map than inputs which were iterated through earlier in the process.

In terms of the breaking point no real pattern was found.

5.1.2 Data design

Training on the MNIST and RASTER datasets showed some promise. The final results
for the OMNIGLOT dataset were comparatively disappointing. As previously men-
tioned, perhaps an alternative technique such as 1-shot learning would perform better
on this type of data design (high number of classes with low number of samples per
class).

CHAPTER 5. DISCUSSION 57

5.1.3 Methods

Whilst there was a lot of overlap between methods (depending on the parameters
chosen), the second method (training random dead units) and the third method
(training dead units for novel inputs with either the mid - high range of the
thresholds chosen) performed slightly better. For MNIST this meant thresholds of 0.5-
0.6 for the third method, for RASTER it meant 0.05-0.1. As discussed earlier, results
for OMNIGLOT were poor.

That said, no definitive conclusion can be drawn on which method is best without
further experimentation. This will be covered in the next section.

5.2 Future work

In order to provide more concrete proof that the new methods discussed here can (or
cannot) consistently prevent the occurrence of dead units, a number of further steps
need to be taken. These can be broken down into 5 different categories.

5.2.1 More initialization of the neurons

Due to technological constraints (see Technology 5.2.4), it was not possible to run the
experiments on more than one initialization per map. Trying out more of these would
help ensure that number of dead units found for a particular parameter combination
is close to the global minimum for that set.

5.2.2 Statistical tests

Since more runs were not possible, statistical tests could not be applied on the results.

5.2.3 Parameter space

The parameter space also had to be limited. A more granular exploration of the
parameter space would be possible with more compute resources available. Combined
with the above increase in initializations, this would be a powerful way to find the best
method and parameter set for a given data design.

5.2.4 Technology

Technological constraints were discussed in Section 3.5. More powerful systems would
enable more random starts and a more granular grid search on the parameter space.

CHAPTER 5. DISCUSSION 58

5.2.5 Code

In addition to technology, some alterations to the code may be possible to parallelize
some of the compute. In Section 3.6.3 this was discussed in detail, but overall this
would enable us to make more out of the limits of our technology.

Bibliography

[1] E. Berglund and J. Sitte, “The parameter-less SOM algorithm,” in Proc. ANZIIS,
pp. 159–164, 2003.

[2] E. Berglund, “Improved PLSOM algorithm,” Applied Intelligence, vol. 32, no. 1,
pp. 122–130, 2010.

[3] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9,
pp. 1464–1480, 1990.

[4] D. J. Willshaw and C. Von Der Malsburg, “How patterned neural connections
can be set up by self-organization,” Proc. R. Soc. Lond. B, vol. 194, no. 1117,
pp. 431–445, 1976.

[5] T. Kohonen, Self-organization and associative memory, vol. 8. Springer Science &
Business Media, 2012.

[6] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level concept
learning through probabilistic program induction,” Science, vol. 350, no. 6266,
pp. 1332–1338, 2015.

[7] A. Baader and G. Hirzinger, “A self-organizing algorithm for multisensory surface
reconstruction,” in Intelligent Robots and Systems’ 94.’Advanced Robotic Systems
and the Real World’, IROS’94. Proceedings of the IEEE/RSJ/GI International
Conference on, vol. 1, pp. 81–88, IEEE, 1994.

[8] T. Kohonen, “Self-organized formation of topologically correct feature maps,” Bi-
ological cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[9] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no. 1-3, pp. 1–6,
1998.

[10] V. Kvasnicka, L. Benuskova, J. Pospichal, I. Farkas, P. Tino, and A. Kral, “Uvod
do teorie neuronovych sieti,” Iris, 1997.

59

BIBLIOGRAPHY 60

[11] M. Strickert and B. Hammer, “Merge som for temporal data,” Neurocomputing,
vol. 64, pp. 39–71, 2005.

[12] B. Hammer, A. Micheli, A. Sperduti, and M. Strickert, “Recursive self-organizing
network models,” Neural Networks, vol. 17, no. 8, pp. 1061–1085, 2004.

[13] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall PTR,
1994.

[14] Kohonen, Teuvo, “Intro to SOM,” 2005. http://www.cis.hut.fi/projects/

somtoolbox/theory/somalgorithm.shtml.

[15] B. Lake, “brendenlake/omniglot,” Feb 2019.

[16] T. Voegtlin, “Recursive self-organizing maps,” Neural Networks, vol. 15, no. 8,
pp. 979–991, 2002.

[17] M. Johnsson, C. Balkenius, and G. Hesslow, “Associative self-organizing map.,” in
IJCCI, pp. 363–370, 2009.

[18] D. DeSieno, “Adding a conscience to competitive learning,” in IEEE international
conference on neural networks, vol. 1, pp. 117–124, IEEE Piscataway, NJ, 1988.

[19] D. E. Rumelhart, J. L. McClelland, P. R. Group, et al., Parallel distributed pro-
cessing, vol. 1. IEEE, 1988.

[20] P. A. Estévez and R. Hernández, “Gamma som for temporal sequence processing,”
in International Workshop on Self-Organizing Maps, pp. 63–71, Springer, 2009.

Appendix A

Attached CD contains source code for all experiments as well as results.

61

