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Abstrakt

Práca umožňuje využívať základnú funkcionalitu nástroja nazývaného Tamarin-Prover
pomocou zjednodušeného jazyka. Týmto spôsobom umožňujeme overovanie bezpečnos-
tných vlastností kryptografických protokolov používateľom s obmedzenými znalosťami
v tejto problematike. Uvádzame nový jazyk na špecifikáciu kryptografických pro-
tokolov. Tento jazyk je navrhnutý tak, aby bol zrozumiteľný a jednoducho sa použí-
val. Implementujeme nástroj na preklad tohto jazyka do vstupu pre Tamarin-Prover
a následnú prezentáciu výsledkov. Jazyk a implementácia sú navrhnuté tak, aby
zamedzili najčastejším chybám neskúsených používateľov. Pri preklade berieme ohľad
na efektivitu analýzy protokolov nástrojom Tamarin-Prover. Našu implementáciu de-
monštrujeme na vybraných protokoloch vrátane jedného súčasného protokolu z triedy
protokolov Noise. Táto práca je určená predovšetkým pre začínajúcich záujemcov v
oblasti kryptografických protokolov.

Kľúčové slová: kryptografické protokoly, Tamarin-Prover, prekladač
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Abstract

This thesis allows users to utilize the basic functionality of the Tamarin-Prover tool
using a simplified language. It allows verification of the security properties of crypto-
graphic protocols by users with limited experience in this field. We introduce a new
language for specification of cryptographic protocols. This language is designed to be
easy to understand and use. We implement a tool that translates this language to the
input of Tamarin-Prover and presents the results. The language and implementation
are designed to avoid the most common mistakes of inexperienced users. The transla-
tion takes into account the efficiency of the Tamarin-Prover analysis. We demonstrate
our implementation on chosen protocols including one modern protocol from the Noise
protocol framework. This thesis is intended for beginners interested in the field of
cryptographic protocols.

Keywords: cryptographic protocols, Tamarin-Prover, translator
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Introduction

The goal of this thesis is to make formal verification of cryptographic protocols in
the symbolic model more accessible to students and other users without professional
experience in the field of cryptography. Cryptographic protocols are featured in a wide
range of applications. It is crucial to provide reassurance that they achieve the desired
security goals. In part, this can be done by automatic verification in the symbolic
model. There are numerous tools that perform this kind of verification, one of the
most recent ones being Tamarin-Prover [11, 14]. Tamarin-Prover features a powerful
verification mechanism, but using this tool correctly requires a relatively high level of
expertise. This may discourage some users or cause them to use the tool incorrectly.

We introduce a simplified language for interaction with Tamarin-Prover. The lan-
guage was based on a project with similar goals, called VerifPal [9]. We implemented
a tool that translates protocol specifications in this language to specifications accepted
by Tamarin-Prover. The language is restrictive so that inconsistencies that do not
appear in real-world protocols are forbidden. Inexperienced users are susceptible to
various mistakes that can be avoided thanks to these restrictions. We aim to trans-
late the output of Tamarin-Prover in a comprehensible way. This should help users
to better understand the results of the analysis. The analysis of security properties of
cryptographic protocols is in general an undecidable problem. We apply measures that
increase the likelihood of termination in case of protocols specified in our language.

Chapter 1 provides an overview of the related topics. It primarily focuses on the
features of Tamarin-Prover used in our own implementation. Chapter 2 focuses on our
contributions. It begins with an overview of our input language. It also describes the
process of discovering and avoiding user error, the translation of our input language
to the input of Tamarin-Prover, and the reverse translation of Tamarin-Prover output.
Chapter 3 concludes with several complete demonstrations of our implementation.
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Chapter 1

Background

Many modern systems, applications, and devices require some form of communication.
Few of the communication media and channels can be considered secure. In order
to achieve confidentiality and integrity of the information in transfer, systems employ
cryptographic functions such as encryption, hashing, or electronic signatures. Even if
these functions themselves are sound, when used incorrectly, they do not provide the
desired security properties. Cryptographic functions are often employed as parts of
security protocols. The wide range of different applications requires a wide range of
security protocols.

Weak security assurances, like the absence of known attacks, no longer provide suf-
ficient guarantees for security protocols. For example, Lowe discovered an attack on
the Needham-Schroeder protocol after over 15 years [10]. Proofs of security properties
under formally specified conditions have since become the norm for newly introduced
protocols. Proofs of the security properties offered by a security protocol are gener-
ally long and complex. Manually constructed proofs may contain flaws that remain
unnoticed even after deployment of the protocol. Automatic construction of proofs is
very challenging and manual proofs remain the main guarantees of security of modern
protocols. At the same time, automated proofs of some parts of the protocol logic are
a much welcome addition.

Proofs are constructed by first defining the protocol, the capabilities of an adversary,
and the desired security properties in a strictly formal model. Then it is proven that
the security properties hold in the protocol as long as the adversary does not exceed its
capabilities. There are two main models used for such proofs, the computational and
the symbolic model. Blanchet [2] provides a more comprehensive description of these
models.

Messages in the computational model are represented as bitstrings and the adver-
sary as a probabilistic Turing machine. The protocol is often represented as some form
of a game where the success of the adversary represents an attack on the protocol.

3



4 CHAPTER 1. BACKGROUND

Some limitations often apply to the adversary, for example, polynomial-time complex-
ity. The aim is to prove that any adversary (with respect to the limitations) has a
negligible probability of success. This is usually done by reduction to some underlying
problem that is assumed to be hard (for example, the factorization of large numbers).

The symbolic model, generally attributed to Dolev and Yao [7], represents messages
as terms in some term algebra. This means that base messages are represented by con-
stant symbols or variables and complex messages are built over a signature containing
function symbols. The function symbols represent cryptographic function applications.
Operations on these messages are represented using message deduction rules that cap-
ture the properties of cryptographic functions. For example, the correctness of an
encryption scheme must capture that decryption of an encrypted message using the
correct key yields the original message. Message deduction rules also infer limitations
on the adversary capabilities. The adversary is limited to use these rules in order to
obtain new messages. For example, certain properties of a good hash function, like
preimage resistance (see, for example, [1]), are represented by the absence of message
deduction rules that would allow the adversary to obtain the original message from a
hash. These limitations are often called the perfect cryptography assumption. Cryp-
tographic functions are perfect, flawless, their underlying problems are impossible. A
proof in the symbolic model is created by an exhaustive search through all the possible
executions of a security protocol. As such the symbolic model proofs are much better
suited for automated analysis.

In this thesis, we focus on the automatic construction of proofs in the symbolic
model. More specifically, we attempt to make it accessible to users without professional
experience in this field. We work with a tool for automatic proof construction called the
Tamarin-Prover. We introduce a simplified language to specify security protocols and
their underlying model. We use Tamarin-Prover to verify the security properties. We
especially focus on preventing mistakes that users often make when writing protocol
specifications.

1.1 Related work

Our work has been inspired by a project called VerifPal. Its aims and contributions
are best described by quoting VerifPal’s introductory paper, [9]:

Verifpal is a new automated modeling framework and verifier for cryp-
tographic protocols, optimized with heuristics for common-case protocol
specifications, that aims to work better for real-world practitioners, stu-
dents and engineers without sacrificing comprehensive formal verification
features. Verifpal introduces a new, intuitive language for modeling proto-
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cols that is easier to write and understand than the languages employed by
existing tools. Its formal verification paradigm is also designed explicitly
to provide protocol modeling that avoids user error.

VerifPal was designed with the aim of supporting protocol analysis using methods
developed by the ProVerif tool [3]. The protocol is translated into abstract represen-
tation using Horn clauses. The verification process iteratively expands the knowledge
of the adversary and checks whether some security properties have been violated until
the adversary knowledge can no longer be expanded and a proof is reached.

In contrast to this approach, Tamarin-Prover [11, 14], another automated security
protocol verification tool, represents the protocol by a multiset rewriting system as we
discuss in section 1.3.1. It begins from a state that represents the violation of a security
property and uses backwards search through the possible protocol executions in order
to prove that such a state is unreachable.

We designed a framework with goals similar to those of VerifPal and use the
Tamarin-Prover tool for verification of security protocols. This introduces another
method of formal analysis to the idea of simplified protocol verification. We designed a
language that bears resemblance to the VerifPal language and adopts many of its fea-
tures. We implemented a tool that translates protocol specifications in this language
to the input language of Tamarin-Prover. Our language has diverged from the VerifPal
language in many ways. This allowed us to further simplify protocol specification and
make it better suited for translation into Tamarin-Prover input. We present our input
language as standalone and do not draw parallels to the VerifPal language to avoid
misconceptions.

There was another project which featured translation of a simplified language to
Tamarin-Prover input and should be mentioned. The bachelor thesis, Converting Alice
& Bob Protocol Specifications to Tamarin, by Keller [8], features translation of the so-
called “Alice and Bob notation” to Tamarin-Prover specification. This resulted in a
way to specify security protocols in a simplistic manner using very few elements. We
designed a protocol specification language that is much more verbose but provides a
form of intuitive simplicity for real-world practitioners.

1.2 Term rewriting

Tamarin adopts methods originating from the area of term rewriting. In this section,
we provide a brief summary of the notions from this area [11, 14]. We reduce the
definitions to those that relate to our work.

An order-sorted signature Σ is a triple (S,≤,Σ) where S is a set of sorts, the
relation ≤ is a partial order on S and Σ is a set of function symbols associated with
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sorts such that the following two properties hold. First, for every s ∈ S, the connected
component C of s in (S,≤) has a top sort top(s) such that c ≤ top(s) for all c ∈ C.
Second, for every function symbol f : s1 × . . .× sk → s in Σ where k ≥ 1, there is also
a function symbol f : top(s1) × . . . × top(sk) → top(s) in Σ. If S contains only one
sort, we say that Σ is unsorted and write Σ instead of Σ. We also denote the set of all
k-ary function symbols in Σ by Σk.

We assume there are pairwise disjoint, countably infinite sets of variables Vs and
constants Cs for all sorts s ∈ S. We denote the set of all variables by V = ∪s∈SVs and
the set of all constants by C = ∪s∈SCs. For arbitrary subsets C ⊆ C and V ⊆ V we
denote the set of well-sorted terms constructed over Σ ∪ C ∪ V by TΣ∪C(V ).

Example 1. Cryptographic messages in the symbolic model are often represented by
terms built over a signature. The signature contains function symbols that represent
applications of cryptographic functions. For example, a constant p may represent some
plaintext which in the computational model would be a bitstring. Similarly, a constant
k may represent a symmetric key suitable for use in an encryption function. If the
function symbol enc ∈ Σ2 represents such an encryption function then enc(p, k) may
represent the encrypted message containing p encrypted using function enc with the
key k.

Example 2. Sorts may be used to represent some system of types on the set of
cryptographic messages. Plaintext pmay be of some sort that identifies it as a plaintext,
similarly k may be identified as a symmetric key and enc(p, k) may be identified as a
correctly encrypted message. At the same time, all these objects are of some top sort
of all messages and there may be other inheritances, for example, a correctly encrypted
message may still be a valid plaintext for another encryption. Our use of sorts (or
rather the use of sorts within Tamarin-Prover) is much more limited and its details are
discussed in section 1.3.

A position is a sequence of natural numbers. For a term t and a position p the
notation t|p denotes the subterm of t at position p defined as

t|p =


t if p = []

ti|p′ if p = [i] · p′ and t = f(t1, . . . , tk) where 1 ≤ i ≤ k

undefined otherwise

Position p is a valid position of t if t|p is defined. Term s is a subterm of t if s = t|p
and p is a valid position of t. Additionally, if s 6= t we say s is a proper subterm of
t. A ground term is a term that contains no variables, i.e. none of its subterms are
variables.

A substitution σ is a well-sorted function from V to TΣ∪C(V) that corresponds to
the identity function on all except for a finite set of variables. We identify σ with its
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usual extension to an endomorphism on TΣ∪C(V) and use the notation tσ instead of
σ(t). Given terms t, s and a position p in t we denote by t[s]p the term resulting from
replacing the subterm t|p in t by s.

Example 3. Positions and substitutions are used to describe manipulation with terms
in a formal way. For example, the n-th of the topmost arguments of a term t can be
denoted as t|[n]. Also, using s as the n-th argument of t can be denoted as t[s][n]. We
stick to the informal description if it is less confusing. For example, we write n-th
argument of function f instead of writing t|[n] for every term t that is of form f(...)

A rewriting rule over a signature Σ is an ordered pair of terms (l, r) where l, r ∈
TΣ(V). We denote a rewriting rule (l, r) by l → r. A rewriting system R is a set
of rewriting rules. Given a rewriting system R we define the rewriting relation →R
such that s →R t iff there is a position p in s, a rewriting rule l → r ∈ R and a
substitution σ such that s|p = lσ and s[rσ]p = t. For example, given a rewriting rule
dec(enc(v, k)k)→ v the related pair dec(enc(a(), b()), b())→R a() is correct according
to a substitution σ such that a()σ = v and b()σ = k.

A rewriting system R is terminating if there is no infinite sequence of terms (ti)i∈N

with ti →R ti+1. A rewriting systemR is confluent if, for all terms t, s1, s2 with t→∗R s1

and t →∗R s2, there is a term t′ with s1 →∗R t′ and s2 →∗R t′. A rewriting system R is
convergent if it is terminating and confluent. The unique normal form of a term t with
respect to a convergent rewriting relation R is the term t′ such that t→∗R t′ and there
is no term t′′ such that t′ →R t′′. We denote this unique normal form by t ↓R.

An equation over a signature Σ is an unordered pair of terms {l, r} where l, r ∈
TΣ(V). We denote an equation {l, r} by l ' r. An equational presentation is a pair
(Σ, E) where Σ is a signature and E is a set of equations. Given an equational
presentation E = (Σ, E) we define the equational theory =E as the smallest relation of
equivalence on TΣ∪C(V) containing all instances of equations in E.

Within this thesis, there are two very distinct uses of rewriting systems. First, mul-
tiset rewriting systems are used in section 1.3.1. A rewriting system may be specified
such that it operates on terms that represent multisets of elements. The rules of such
a rewriting system may be specified such that the order of entities within the original
term is irrelevant. The formal definition of such rewriting systems are very detached
from their intended use, so we proceed with the intuitive definition only. A multiset
rewriting rule is a pair of multisets, left side and right side. Application of a multiset
rewriting rule removes all the elements on the left side from the resulting multiset (with
respect to a substitution) and adds all the elements on the right side to the resulting
multiset. Second, we use rewriting in section 2.2.2 to decide equivalence within an
equational theory. If the equations of an equational theory can be oriented to form a
convergent rewriting system (i.e. an equation l ' r is replaced by one of the rewriting
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rules l→ r or r → l) then the question of equality of two terms can be reduced to the
question of equality of their respective normal forms. We recommend consulting [6] for
much more detailed information on both of these notions.

An E-matcher of two terms, s and t, is a substitution σ such that s =E tσ. We use
an E-matching algorithm that verifies the existence of an E-matcher of two terms in
the translation of Tamarin output in section 2.4. For example, we may want to know
if a term h(enc(a(), b())) matches a template h(x). Substituting the variable x for the
term enc(a(), b()) in the template results in the original term, so it does.

1.3 Tamarin-Prover

Tamarin-Prover is a large project that supports a wide range of different features. It
allows modeling unusual protocol constructions as well as very specific security prop-
erties while remaining quite efficient. Due to the restricted scope of our work, only a
select part of the core features of tamarin are relevant to this thesis. In this section,
we provide an overview of these features. For more detail, we direct the readers to the
original Tamarin papers, [11, 14]. Tamarin-Prover has undergone many changes and
improvements since it was first created. The current Tamarin-Prover Manual ([15])
sometimes contains more up-to-date information.

We describe the features of Tamarin-Prover in separate parts. First, we describe
the security protocol model. The model is a semantical construction that represents
the behavior of a security protocol and adversary using terms and multiset rewriting.
Second, we describe how such a security protocol model can be specified in the input
language of Tamarin-Prover. Much of the notation used to describe the theoretical
model was carried over to the input language. Last, we describe how security properties
can be specified using so-called trace formulas.

1.3.1 Security protocol model

Tamarin models cryptographic messages as terms over an order-sorted term algebra
(S,≤,Σ∪FN∪PN) with respect to an equational theory =E . The set of sorts S consists
of a top sortmsg and two incomparable subsorts, fr and pub, for fresh and public names.
Formally, S = {msg, fr, pub} and relation ≤ is the set {(fr,msg), (pub,msg)}.

There are countably infinite sets of fresh names FN and public names PN. Fresh
names are used to model random values such as keys or nonces and public names
are used to model known constants such as principal identities. Formally, fresh and
public names are constant function symbols. We omit the empty parentheses in their
notation, writing n instead of n(). We may prefix the name by a ~ symbol, indicating
that the name is fresh or a $ symbol indicating that the name is public. We also use
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the same notation to distinguish fresh and public variables, i.e. variables of sort fr and
pub respectively. Enclosing a name in single quotes (e.g ’n’ for a name n) indicates
that the name is public and it originates from the protocol specification.

Tamarin allows the user to specify security protocols with messages constructed
over an arbitrary set of unsorted function symbols Σ and an equational theory =E

formalizing the semantics of function symbols in Σ. The function symbols in Σ are
used to represent cryptographic primitives that may be applied to messages such as
encryption and decryption. The equations generating the equational theory =E are used
to represent the properties of cryptographic primitives such as the fact that decryption
of an encrypted message using the correct key yields the original message.

Tamarin puts further restrictions on the set of equations generating the equational
theory =E in order to support verification of security protocols. For our work, it suffices
to consider signatures and equational theories defined by built-in theories that follow
these restrictions. The specific built-in theories used are discussed in more detail in
section 2.3.2.

Cryptographic messages in the Tamarin-Prover model of a security protocol are the
ground terms in TΣ∪FN∪PN(∅). Equality of terms is decided according to an equational
theory =E .

Example 4. Let us consider a protocol that specifies a role Alice and uses symmetric
encryption to encrypt and decrypt messages. In an instance of this protocol, the specific
principal acting in the role of Alice may be modeled by an identity, by a public name
$Alice. The secret key used for encryption and the plaintext payload may be modeled
by fresh names, ~K and ~p. Formally, Alice ∈ PN and K, p ∈ FN. To model the
procedures used for symmetric encryption and decryption we may use binary function
symbols enc, dec ∈ Σ. A message consisting of a plaintext ~p symmetrically encrypted
with the key ~K is modeled by the term enc(~p, ~K). To model the properties of
symmetric encryption we include the equation dec(enc(x, y), y) 'E x, where x, y ∈ V ,
in the set of equations generating the equational theory =E .

Tamarin uses a labeled transition system with transitions defined by multiset rewrit-
ing to model the execution of a security protocol in the presence of an adversary. It
extends the standard notion of multiset rewriting by support for creating fresh names,
labeled rewriting rules, and persistent facts. Formal definitions of the model are quite
complicated and not relevant to our work. We only provide informal definitions of the
relevant notions and recommend examining the original papers for more details.

The state of the transition system is a multiset of so-called facts. Facts are built
from terms over an unsorted fact signature ΣF (different from the signature used to
construct messages). Signature ΣF contains a countably infinite number of function
symbols called fact symbols. ΣF is partitioned into linear and persistent fact symbols.
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The set of all facts is the set {F (t1, . . . , tk)|ti ∈ TΣ∪FN∪PN(V), 1 ≤ i ≤ k, F ∈ Σk
F}.

We extend the notion of persistence from fact symbols to facts. If a fact symbol F is
persistent we also say that every fact F (t1, . . . , tn) is persistent (and similarly for linear
fact symbols). Linear facts model resources that can only be consumed once. Persistent
facts model inexhaustible resources that can be consumed an arbitrary number of times.
For a clear distinction between linear and persistent facts we prefix persistent facts by
an ! symbol.

Example 5. In order to initiate a session of a protocol, a principal may have to choose
a symmetric key. We may decide to model this by a fact, e.g. ChosenKey($Principal,
~Key), where $Principal, ~Key ∈ V . If the fact ChosenKey($Alice,~K) can be estab-
lished once then one session of the protocol may be executed with the principal $Alice
and the key ~K. However, we may want Alice to decide on a long-term key and allow
her to run an unbounded number of sessions with this same key. In that case, we may
model the fact that a principal has chosen a long-term key by a persistent fact, e.g.
!ChosenLongTerm(~Principal, $LTKey).

The transitions of the transition system are defined using labeled multiset rewriting.
A labeled multiset rewriting rule is a triple (p, a, c) where p, a, c are multisets of facts.
The facts in p are called the premises. The facts in a, representing the labels of the
rule, are called the actions. And the facts in c are called the conclusions. A labeled
multiset rewriting system is a set of labeled multiset rewriting rules. In order to be
consistent with the input language of Tamarin-Prover, we will denote a rewriting rule
(p, a, c) by [p]–[a]→[c].

The support for creating fresh names is provided in the form of a special linear fact
symbol Fr ∈ Σ1

F . A fact Fr(n) denotes that the fresh name n is freshly generated. The
only rule producing Fr facts (i.e. containing a Fr fact in its conclusions) is the special
rule FRESH = []–[]→[Fr(x)] where x ∈ V .

The communication between the security protocol and the adversary (or the network
which is considered the same assuming the standard Dolev-Yao adversary) is modeled
by the special linear fact symbols Out, In ∈ Σ1

F . A fact Out(m) denotes that the
message m was sent by the protocol and may be received by the adversary. A fact
In(m) denotes that the message m is sent by the adversary and may be received by the
protocol.

The knowledge of the adversary is modeled by the special persistent fact symbols
!K, !KU, !KD. The distinction between these facts is not relevant to our work and we
recommend consulting the Tamarin-Prover manual ([15]) for details. For our purposes,
it is sufficient to suppose that facts !KU(m) and !KD(m) have a similar meaning to the
!K(m) fact. The !K(m) fact denotes that message m is known to the adversary. Addi-
tionally, we will only consider such multiset rewriting systems where a !K(m) action fact
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is only introduced by the special predefined rewriting rule [!K(m)]–[!K(m)]→[In(m)].

Example 6. Continuing the previous example 5 we would like to model a protocol
where a principal chooses a long-term key and then uses it to send out an arbitrary
number of messages. We may use the rule [Fr(~K)]–[]→[!ChosenLongTerm($Principal,
~K)] to model the initialization and the rule [Fr(~p),!ChosenLongTerm(Principal, K )]–
[]→[Out(enc(~p,K)] to model sending out messages. Note that ~K, $Principal, ~p, K,
and Principal are all variables. Variables of sort fr and pub will only be instantiated
to fresh and public names respectively.

An execution is an alternating sequence of states (multisets of facts) and multiset
rewriting rule instances such that the following four conditions hold.

- The sequence begins with the empty multiset.

- Every step in the execution is valid with respect to the labeled multiset rewriting
system.

- No two separate instances of the rewriting rule FRESH contain the same fresh
name, i.e. the same fresh name is never generated twice.

- No rule in the multiset rewriting system except for the FRESH rule produces a
Fr fact or creates a fresh name.

A trace of an execution is the sequence of sets of actions produced by the multiset
rewriting rule instances within the execution.

1.3.2 Specification of security protocols

Tamarin limits the use of fresh and public names in a protocol specification. Given
a set of function symbols Σ, with properties as discussed in the previous section, the
set of terms that may be used within a protocol specification is TΣ∪SN(V) where SN

is a (countably infinite) subset of PN. We denote a constant c ∈ SN by ’c’. The set
of variables V contains a countably infinite number of variables for all sorts pub, fr,
and msg. Tamarin allows specification of variables, constants, and function symbols
with syntax similar to the notation we have used in the previous text. In the following,
we represent specification terms in a way that directly corresponds to mathematical
notation. For example, we represent the fresh variable ~x by the string ~x and the
term enc(’const’, k) by the string enc(’const’, k) .

The fact symbols in ΣF are specified beginning with an uppercase letter and may
also contain underscores. We prefer the use of underscores to represent multiple-word
fact symbols. For example, we prefer using the fact symbol !Chosen_long_term over
the previously used !ChosenLongTerm and represent a fact !Chosen_long_term(P,K)

by !Chosen_long_term(P, K) . We avoid using fact symbols that may be confused
with the special fact symbols Fr,Out, In, !K, !KU, and !KD.
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The multiset rewriting system of a security protocol model consists of predefined
rules and so-called protocol rules. The predefined rules deal with fresh name generation
and modeling the capabilities of a standard Dolev-Yao adversary. The protocol specifi-
cation and additional adversary capabilities are specified using protocol rules. Tamarin
puts further restrictions on protocol rules to ensure that the special fact symbols are
used correctly. We only use such protocol rules that follow even stronger restrictions
and we use the same restrictions in the definition of a protocol rule. For the original
definitions (two slightly different definitions are used) we recommend consulting the
original papers. A protocol rule is a multiset rewriting rule [p]–[a]→[c] following these
restrictions:

- it only contains terms from TΣ∪SN(V),

- it does not contain !K, !KU, and !KD facts,

- it does not contain the function symbol ∗ (denoting the multiplication of expo-
nents),

- In and Fr facts only occur in premises,

- Out facts only occur in conclusions,

- the argument of a Fr fact is always a fresh variable,

- fresh and unsorted variables that appear in conclusions also appear in premises,

- premises only contain irreducible function symbols.

A protocol is a finite set of protocol rules. Some of the rules of a protocol are used
to define additional capabilities of the adversary. We call these rules the adversary
rules. We now define the syntax of protocol rule specification. In order to keep our
definitions clear, we do not mention the possibility of adding or removing whitespace to
improve readability. Most of the common programming language practices regarding
whitespace also apply to the input language of Tamarin-Prover.

The Tamarin-Prover input language requires all rules to be named and allows spec-
ification of aliases before a rule. Rule names follow the same syntax as variable iden-
tifiers. An alias is an equation v = t where v ∈ V and t ∈ TΣ∪SN(V) specifying that all
occurrences of the variable v should be replaced with the term t, therefore aliases are
a purely syntactical construct. Aliases are non-recursive in the sense that a variable
defined by an alias was not defined by any previous alias and is only used after the
alias defining it. Aliases only apply to the rule before which they are specified.

A protocol rule [p]–[a]→[c] may be specified as

rule RN: let aliases in [ premises ] -- [ actions ] -> [ conclusions ]

where RN is replaced by the desired rule name. Word aliases is replaced by a list of
aliases separated by line breaks. Words premises , actions , and conclusions are
replaced by comma-separated lists of facts from p, a, and c respectively. Some terms
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forming the right sides of aliases may be replaced within p, a, and c by the corresponding
left-side variables. In case that no aliases are specified the following syntax is used.

rule RN: [ premises ] -- [ actions ] -> [ conclusions ]

Example 7. To demonstrate that the syntax of Tamarin-Prover input language is
very similar to the notation we have used to describe the Tamarin model we specify
the two rules from example 6 as follows.

rule Initialize: [Fr(~K)]--[]->[!ChosenLongTerm($Principal,~K)]

rule Send: [Fr(~p),!ChosenLongTerm(Principal,K)]--[]->[Out(enc(~p,K)]

For a more involved example let us consider the following protocol. The protocol
is executed by two principals, Alice and Bob, who share a symmetric key K. Alice
generates a payload p, encrypts it using the key K, and sends it to Bob. Bob declares
that the protocol succeeded if he successfully decrypts a payload p using the shared
key K. We may specify this protocol as follows.

rule init: [

Fr(~K)

]-->[

Alice_init($A, $B, ~K),

Bob_init($B, $A, ~K)

]

rule Alice: [

Alice_init(A, B, K),

Fr(~p)

]-->[

Out(enc(~p, K))

]

rule Bob:

let

p = dec(m, k)

in [

Bob_init(B, A, K),

In(m)

]--[

Success(p)

]->[]

1.3.3 Trace Formulas

Security properties of a protocol model in Tamarin are specified as properties of the
traces of its executions. For this purpose Tamarin introduces the sort temp for time-
points and variables of sort temp are called temporal variables. Note that timepoints
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and temporal variables are never used to construct messages and the temp sort is
completely distinct from the sorts used to define the message signature. To clearly dis-
tinguish temporal variables we prefix them with a # symbol. Timepoints correspond
to the indices of the sets of actions within a trace of an execution of a protocol.

A trace atom is one of the following

- l = r; where l, r ∈ TΣ∪SN(Vmsg)

- #i < #j; where #i,#j ∈ Vtemp

- #i = #j; where #i,#j ∈ Vtemp

- F@#i; where #i ∈ Vtemp and F is a fact built over ΣF and terms from TΣ∪SN(Vmsg)

and a trace formula is a first order formula built over trace atom (quantified over both
messages and timepoints).

A valuation θ is a function assigning messages to message variables and timepoints
to temporal variables, i.e. it respects sorts msg and temp. Variables of sort fr and
pub are not used in property specification. The definition of a valuation is naturally
extended to terms and facts built over variables from Vmsg . We say a trace tr together
with a valuation θ satisfies a trace atom a if one of the following holds:

- a is a term equality atom l = r and θ(l) =E θ(r)

- a is a timepoint ordering atom #i < #j and timepoint θ(#i) precedes the time-
point θ(#j) in trace tr (i.e. corresponds to a smaller index)

- a is a timepoint equality atom #i = #j and θ(#i) = θ(#j) (i.e. θ maps both
temporal variables #i and #j to the same timepoint)

- a is an action atom F@#i and the i-th set of actions in trace tr contains the fact
F (or a fact equivalent to F under the equational theory =E)

The satisfaction of complex formulas is defined inductively by the usual definitions of
satisfaction of logical operators and quantifiers.

Trace atoms are specified using the same syntax as in the previous mathematical
notation. For logical operators and quantifiers, the following are used: not for nega-
tion, & for conjunction, | for disjunction, ==> for implication, Ex for existential
quantification, and All for universal quantification. The quantification is separated
from a formula by a . symbol. Additionally, the specification needs to define whether
Tamarin-Prover should search for a trace that satisfies the formula or if it should prove
that all traces satisfy it (by searching for a trace that does not). This is done by
quantification over traces using keywords exists-trace and all-traces followed
by the formula enclosed in quotation marks. Finally, Tamarin calls formulas specifying
security properties lemmas, it requires that the user provides a name for every lemma
and a lemma is introduced using the lemma keyword. A trace property consisting of
a formula F , quantified over all traces and with the name of LN can be specified as



1.3. TAMARIN-PROVER 15

lemma LN: all-traces "F"

Example 8. Let us consider a protocol that facilitates the communication of two
principals, Alice and Bob. We would like to verify the confidentiality of the message
payload sent from Alice to Bob. We may do this by first adding an action fact to the
rule that represents the payload p being received by Bob. We will choose an action
fact Confidential(p) . This fact will represent that if Alice and Bob got to that
point in the execution of the protocol with the message payload p then we suppose
that the adversary will never be able to learn p . For example, a reasonable point to
place the Confidential(p) action in example 7 is alongside the Success(p) action
(or replacing it). We may specify our confidentiality supposition by the following trace
property.

All p #i #j. Confidential(p) @#i ==> not K(p) @#j

Adding additional parts of a protocol may require changing the formula. For example,
we may want to add a standard adversary capability that allows it to act as a principal
in one of the roles. This is often done in Tamarin by creating a rule that reveals the long-
term values of a principal to the adversary and marks this principal as dishonest. The
formula then needs to specify, that the adversary does not know p as long as neither
of the principals exchanging p is dishonest. We may choose to mark a principal P as
dishonest using a Dishonest(P) fact in the rule revealing long-term values. We may
then choose to bind principal identities A and B together with the specific payload p

using a fact Instance(A, B, p) in some initiation rule, i.e. a rule where it is decided
that Alice A will be sending payload p to Bob B . Finally, we may change the trace
property as follows.

All A B p #ins #con #adv.

Instance(A, B, p) @#ins &

Confidential(p) @#con &

not (Ex #dis. Dishonest(A) @#dis) &

not (Ex #dis. Dishonest(B) @#dis)

==>

not K(p) @#adv

Or in a somewhat simpler form without negation:

All A B p #ins #con #adv.

Instance(A, B, p) @#ins &

Confidential(p) @#con &

K(p) @#adv

==>

(Ex #dis. Dishonest(A) @#dis) |

(Ex #dis. Dishonest(B) @#dis)
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There is another feature utilizing trace formulas that we use in a very limited way.
Tamarin allows users to specify restrictions that limit the set of traces to be considered
in protocol analysis. We use one specific, standard restriction to enforce equality of
two terms. The exact specification of this restriction is as follows.

restriction Equality:

"All x y #i. Eq(x,y) @i ==> x = y"

Specifying this restriction causes all rules that use action facts Eq(l, r) to be instan-
tiated such that terms l and r are equal with respect to =E .



Chapter 2

Our language and compiler

We attempt to provide a simpler way to interact with some of the core features of
Tamarin-Prover. We allow the user to specify security protocols in a simplified specifi-
cation language. This limits the protocols to some of the more standard cryptographic
primitives. The specification of security properties is also limited to predefined tem-
plates. We have designed this language with the goal of making it intuitive for first-time
users, explicit, and resistant to user error. Relevant assumptions about a protocol are
explicitly stated in the specification and many of the common mistakes are captured
by the compiler.

In this chapter, we provide a description of our language. We describe the sanity
checks aimed at avoiding user errors including how we implement them. We describe the
translation of protocol specifications in our language to Tamarin. Finally, we describe
the implementation of the reverse translation of the output produced by Tamarin-
Prover.

2.1 Input language

We begin with an example to demonstrate most of the syntax of our input language. It
also shows which details of a protocol can be covered by the analysis and which details
are abstracted from.

Example 9. We will specify a protocol that shows a single Diffie-Hellman exchange. A
Diffie-Hellman exchange allows principals to establish a shared secret using asymmetric
keypairs based on elements of a cyclic group. The group has to be chosen such that the
discrete logarithm problem is hard. In our model, the discrete logarithm problem is
considered impossible due to the perfect cryptography assumption. In real applications,
operations on cyclic groups cannot be performed directly on messages. There needs to
be a mapping between the space of available messages and the elements of the chosen
cyclic group. In our model, this is also abstracted from. A term represents both a

17
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viable message and the corresponding element in any cyclic group.
The protocol is performed by two principals, Alice and Bob. They perform a Diffie-

Hellman exchange between Alice’s static keypair and Bob’s ephemeral keypair. We
assume that Bob has prior knowledge of Alice’s public key. Bob uses the shared secret
to send an encrypted message to Alice.

The initial assumptions state that Alice generated a private key as and distributed
the public key ap, constructed as gas , to Bob. We define these assumptions as follows:

principals: Alice, Bob

Alice [

knows private as

distributed ap = ’g’^as

]

Bob [

knows public ap

]

In a protocol session, Bob generates his private key bs and constructs his public key bp
as gbs . He constructs the symmetric key s as absp and the ciphertext c of the message
m. He sends both the ciphertext c and his public hey bp to Alice. Alice also constructs
s, but as basp . This should be equal to Bob’s s because basp = gbs∗as = gas∗bs = absp . Alice
uses s to decrypt the ciphertext c and learn m. We specify this protocol as follows:

Bob [

generates bs, m

bp = ’g’^bs

s = ap^bs

c = ENC(s, m)

]

Bob -> Alice: bp, c

Alice [

s = bp^as

m = DEC(s, c)

]

The obvious security property of this protocol that needs to be verified is the confi-
dentiality of the private message m. We need to realize that the protocol specification
actually contains two messages specified as m . One was generated by Bob and the
other was deconstructed from a ciphertext by Alice. These two messages should be
equal if the protocol performs correctly, but they may be different if the adversary
replaces the ciphertext c in transit. This is also the reason why we say Alice’s s

should be the same as Bob’s, but it cannot be guaranteed. We specify the security
properties of both messages m as follows:

queries [

confidentiality? Bob’s m
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confidentiality? Alice’s m

]

When running the protocol we learn that the first property holds while the second one
does not. This was expected. The first property is the desired security property of the
original protocol. The second property does not hold. The adversary may send Alice
his own messages just like Bob would.

2.1.1 Messages

Messages in our language are terms constructed using predefined function symbols.
The list of function symbols and their semantics are described in section 2.1.2. Atomic
messages are constants and variables.

Constants correspond to the names from SN in Tamarin (also called constants in the
Tamarin-Prover manual [15]). In our language, a constant is specified by an identifier
enclosed in single quotes, for example, a constant c is specified as ’c’ . Constants are
public values that are unchanging.

For variables, we introduce the notion of scopes into protocol specification. Vari-
ables are specified by a variable identifier and a scope identifier. Scopes represent the
knowledge of individual principals. Scope identifiers are the variable identifiers used for
principals. For example, Alice’s variable v is specified as Alice’s v . Explicitly stat-
ing the scope is only necessary when defining security properties. Within the protocol
specification, the scope is clear from the context and a variable is specified only by the
variable identifier. For example, Alice’s variable v is specified just as v in the protocol
specification. Scopes allow us to specify protocols in a very natural way. In example
9, we discussed that m may be different for each principal. Specifically, there are two
separate variables m , but they are expected to be equal. Sometimes protocols may use
the same identifier for variables that are expected to be different. For example, two
principals may both generate a nonce and exchange it with the other principal. Each
may use the identifiers N for their own nonce and No for the nonce they received. We
consider this use of scopes confusing and avoid using it, but we do not discourage it
(even though our compiler can distinguish it).

2.1.2 Cryptographic functions

We do not allow users to define their own function symbols unlike many protocol
verifiers including Tamarin. Instead, we provide a predefined set of function symbols
that can be used to represent the most common cryptographic functions. This follows
the idea presented by VerifPal that custom primitives may lead to user error ([9]). The
syntax of most of the cryptographic functions was adopted from VerfiPal. Some of the
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functions are not supported by VerifPal. In those cases, we try to make our syntax
similar.

Function symbols follow the perfect cryptography assumption. This means that
terms can only be constructed and deconstructed using the function symbols and
equalities mentioned here. In example 9, we mentioned that the discrete logarithm
problem is impossible. There is no function symbol or equality that allows recovering
the exponent from an exponentiation term. This makes the discrete logarithm prob-
lem impossible in our model. This notion applies to all cryptographic schemes and the
problems they are based on.

A tuple is the simplest cryptographic function. They represent a simple concatena-
tion of terms. We allow denoting tuples as a list of comma-separated terms enclosed in
curly brackets. This syntax is similar to the one used by the so-called Alice and Bob
notation. For example, a triple of the terms m1 , m2 , and ’const’ is specified using
{m1, m2, ’const’} .

In verifiers as well as programming languages, tuple deconstruction is often done
using special functions that retrieve a single element at a time or a new tuple of a range
of elements. We consider this method of deconstructing tuples confusing and awkward
to use. Instead, we support a special syntax to spread tuples. For example, if t is a
variable representing a tuple {m1, m2, ’const’} , then it can be deconstructed using
the assignment statement {x1, x2, x3} = t , which assigns m1 to x1 , etc.

We use binary function symbols ENC and DEC to represent symmetric encryption
and decryption respectively. The term DEC(key, ENC(key, message)) is equivalent
to message .

From asymmetric cryptography we support basic encryption and signing. We use
the unary function symbol PK to represent public key derivation. Given a secret key
sk , the term PK(sk) is the corresponding public key. We use binary function symbols
AENC and ADEC to represent asymmetric encryption and decryption respectively. The
term ADEC(sk, AENC(PK(sk), message)) is equivalent to message . We use binary
function symbol SIGN to represent signing. A signature is verified using a check
SIGNVERIF (checks are described in 2.1.3). The following check is successful:

SIGNVERIF(PK(sk), message, SIGN(sk, message))?

We use the unary function symbol HASH to represent hashing. We do not support
any other hash functions. To model hash functions with arity greater than one, the user
can use a tuple in the unary hash function, for example, HASH({x1, ..., xn}) . To
model different hash functions the user can manipulate the first value in the tuple. For
example, HASH({’0’, value}) may be used to represent the default hash function
and HASH({’1’, value}) may be used to represent a different hash function. To
model keyed hash functions (HMAC or key derivation functions) the user can also just
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use the key as one of the elements of the tuple. For example, a MAC of a message
message using symmetric key key may be created as HASH({key, message}) .

We use the binary function symbol ^ to represent exponentiation in a cyclic group.
We denote the application of ^ in infix notation (for example, x^y ). Following the
conventions of Tamarin ([15]) and contrary to the usual interpretation we interpret ex-
ponentiation as left-associative. For example, x^y^z is the same as (x^y)^z because
in cryptography (x^y)^z is much more common. Tamarin’s built-in theory for cyclic
groups also supports multiplication and inverses in a limited way. We use this theory to
verify protocols that use exponentiation, but do not yet support the other operations.
The semantics of these operations are formalized by the following equations (where the
asterisk (∗) denotes multiplication):

(x^y)^z ' x^(y ∗ z) x^1 ' x x ∗ y ' y ∗ x

(x ∗ y) ∗ z ' x ∗ (y ∗ z) x ∗ 1 ' x x ∗ x−1 ' 1

2.1.3 Protocol specification

A protocol specification in our language contains initial assumptions and the sequence
of actions in a single protocol session. The idea is to specify the actions in the order
in which they happen in a real execution of the protocol. Often the exact order is
not relevant to the security of a protocol. For example, if decryption fails, then the
adversary only leans that it failed because the next message does not arrive. It does
not matter if the actions between a failed action and the next message get executed
because their results are just discarded anyways. Still, we recommend keeping the
order of actions consistent.

All assumptions and actions in a protocol are specified as statements. All state-
ments, except for message statements, are grouped into principal blocks. The initial
assumptions represent some actions that happened before the protocol session may
begin. It makes sense to specify them at the beginning of the protocol specification.
We recall the specification of initial assumptions from example 9 for demonstration:

1 Alice [

2 knows private as

3 distributed ap = ’g’^as

4 ]

5 Bob [

6 knows public ap

7 ]

There are 2 principal blocks, one for Alice on lines 1-4 and one for Bob on lines 5-7.
There are 3 statements on lines 2, 3, and 6. A block specifies the scope of all variables
within. For example, variable ap in the block of Bob is Bob’s ap . Principals may
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only use or send variables that they know – variables they have previously declared or
received.

The first declaration on line 2 is a knows statement with the modifier private .
This statement declares knowledge of a long-term private variable as . Private vari-
ables are guaranteed to always be instantiated to different values that are also distinct
from public values and constants. The knows private statement also allows declara-
tion of pre-shared secret. If several principals use this statement with the same variable
identifier, they will all know the same long-term private variable.

The knows statement on line 6 uses the modifier public . This statement declares
knowledge of a long-term public variable ap . Public variables are variables that the
adversary always knows, but principals have to declare that they know them. If a
public variable with the same identifier was declared before, then this statement de-
clares knowledge of the same variable. Otherwise, this statement declares a new public
variable. Separate public variables are expected to be distinct under normal circum-
stances, but they do not have to be. Several public variables may be instantiated to
the same value or even to a constant.

The distributed statement, like the one on line 3, declares that the distribution of
a public variable occurred before the session was initiated. A distributed statement
contains the variable that was distributed as well as a term that describes how it
was constructed. The statement on line 3 declares a public variable ap that was
constructed as ’g’^as . The distributed statement can be used to declare any
public variable, that is constructible before the first protocol session, but it is most
suitable for the declaration of public keys.

The principals themselves specify public variables that represent their identities.
Variables Alice and Bob are the identities of Alice and Bob, but they were not used
in this protocol.

The remaining statements specify the protocol session itself. We recall the rest of
the protocol specification from example (9) for demonstration:

1 Bob [

2 generates bs, m

3 bp = ’g’^bs

4 s = ap^bs

5 c = ENC(s, m)

6 ]

7 Bob -> Alice: bp, c

8 Alice [

9 s = bp^as

10 m = DEC(s, c)

11 ]

The first statement on line 2 is a generates statement. It declares ephemeral pri-
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vate variables bs and m . The generates statement represents random generation
of ephemeral private values. Just like private variables from knows private , the vari-
ables from generates are always instantiated to distinct values. Additionally, the
same variable from generates will also be instantiated to different values in separate
protocol sessions. In our example, if Alice and Bob run the same protocol instance
twice, then Bob will use two different values for bs , but Alice will use the same
long-term key as .

The other statements in blocks are assignments. Assignments declare ephemeral
private variables. These variables are always instantiated to the same value as the
corresponding term on the right side of the assignment. Assignments support a special
syntax, that allows using tuples on their left side in order to deconstruct a tuple on
the right side. For example, the following two assignments correctly construct and
deconstruct nested tuples:

t = {{m1, m2}, ’const’}

{{x1, x2}, ’const’} = t

Assignments may use constants or variables that are already known on the left side.
This does not reassign the variables but instead performs an implicit equality assertion.
For example, in the lines above, the principal verifies that the last element of t is
equal to ’const’ . This can be very convenient when principals share some values
that should be included in messages. The value in the message can be checked without
assigning it to a variable with a new identifier.

Line 7 contains a message statement. It is a message sent from Bob to Alice con-
taining messages bp and c . A message in transit could be changed by the adversary.
This means that the message received cannot be represented by the same variable as
the message sent. The variable identifier stays the same, but the scope changes, re-
sulting in two separate variables. Scope identifiers are not used because the scope is
clear from the identifiers of the sender and the recipient. In our example, Bob sends
Bob’s bp and Bob’s c and Alice receives Alice’s bp and Alice’s c . Tuples
may also be used in messages. They do not affect the security of the protocol but may
help organize messages. If principals receive variables that they already know, then
they perform an implicit equality assertion just like in assignments.

The remaining statements are called checks and they did not occur in example 9.
Checks represent assertions that need to succeed in order to continue the protocol. A
check is performed by a single principal and it is also specified in a principal block. If
it fails, then the other principals are unaffected. Checks are specified as methods with
arguments. We add a question mark after them to emphasize that we are making an
assertion. There are three types of checks – unary and binary EQUALS , and SIGNVERIF .

The unary EQUALS check should be used after an implicit equality assertion in
a message statement or an assignment. For example, if an assignment contains an
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already known variable v on the left side, then it should be followed by

EQUALS(v)?

If an implicit equality assertion does not have a matching unary EQUALS check before
the end of a block, then the compiler prints out an info message to warn the user.
These messages are meant to inform the user about accidental unwanted assumptions
in the protocol, but they can be turned off using a declaration

unary-equals: implicit

Declarations are discussed in section 2.1.6.
The binary EQUALS check simply verifies the equality of its arguments. For exam-

ple, the equality of mac and {HASH(k, m)} can be verified as

EQUALS(mac, HASH({k, m}))?

The SIGNVERIF check is used to verify a signature. For example, if message m was
signed with a secret key sk , pk is the public key corresponding to sk and it created
a signature s then the following check succeeds:

SIGNVERIF(pk, m, s)?

If we substitute the full terms for the variables we get

SIGNVERIF(PK(sk), m, SIGN(sk, m))?

2.1.4 The adversary model

The capabilities of the adversary and the security properties are closely related. Before
we describe how to specify the security properties of a protocol, we have to define the
adversary model. The security properties are specified such that they put limitations
on some of the capabilities of the adversary.

By default, Tamarin provides predefined rules modeling the so-called Dolev-Yao
adversary [7]. We extend the capabilities of this adversary by long-term reveals, which
is a very common extension. We describe the capabilities of such adversary using
notions of our input language as follows:

1. The adversary has knowledge of all public variables, i.e. principal identities,
variables declared using knows public , variables declared using distributes ,
and constants.

2. The adversary can deduce new messages from messages in its knowledge using
function symbols relevant to the protocol and with respect to the equivalences
stated in 2.1.2.

3. The adversary has full control over the network. He is able to intercept, stop,
replace, and produce messages that are sent or received by the protocol principals.
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4. The adversary can gain knowledge of all long-term private messages of any proto-
col principal. This action is called long-term reveal and the principal is considered
dishonest afterwards.

Function symbols relevant to the protocol that are mentioned in point 2 are all the
function symbols that appear directly in the protocol specification or they are related
to such function symbols by some equivalences stated in 2.1.2. This just means that
we do not include completely unrelated function symbols in protocol verification for
obvious reasons. For example, if the protocol does not use operations on cyclic groups
then there is no reason why the adversary should be able to use them. At the same
time, if the protocol uses symmetric encryption, but no symmetric decryption, then
the adversary can still decrypt if he knows the correct key. This does not change the
capabilities of the adversary in any meaningful way, however, the definition would be
incomplete without it.

Points 1 through 3 represent the capabilities of the standard Dolev-Yao adversary.
Point 4 represents the extension of adversary capabilities by long-term reveals. Long-
term reveals allow the adversary to act as one or more of the principals. This has two
possible meanings. It often means that the adversary really is a proper principal in
some protocol instances. In real-world applications, some of the actors performing the
protocol may be malicious. Otherwise, it means that the adversary has been able to
compromise another principal. The compromised values are long-term because it is
most plausible to compromise values that are not normally discarded after a protocol
session. It is often reasonable to consider the possibility of compromising some subsets
of ephemeral values, but we do not support it yet.

When specifying security properties, we limit the capability to perform long-term
reveals. We verify that a property holds in a protocol instance where all principals are
honest (or at least up to some point). However, the adversary may run other instances
of the same protocol in the role of a proper principal. To give an example, we briefly
discuss how instantiated variables are denoted in Tamarin (and our) output. When a
variable is instantiated to a (private or public) name, the variable identifier is kept and
it is suffixed by a dot and a number to distinguish between the various instantiations
of variables.

Example 10. In example 9, one instance may be performed by Alice.1 in role of
Alice and Bob.1 in role of Bob . We want to find an attack against this instance. As
part of this attack, the adversary may perform a long-term reveal on Bob.2 , making
Bob.2 dishonest. He may even execute the protocol as Bob.2 in role of Alice

together with Alice.1 in role of Bob and it does not invalidate the attack. However,
he cannot perform a long-term reveal on Alice.1 or Bob.1 .

So far this is the only adversary model supported by our program. We chose this
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model because it is one of the adversary models that are often considered in textbook
attacks. At the same time, it does not attempt to capture any of the possible flaws in
cryptographic primitives. Implementing the support for other adversary models would
certainly be meaningful in the future.

2.1.5 Specification of security properties

Security properties are specified as queries, i.e. suppositions to be verified. We support
the specification of 4 types of queries – confidentiality, forward secrecy, authentication,
and injective authentication. In this section, we describe the syntax and semantics of
each of these queries and how they are parametrized. All queries are specified within
a queries block after a protocol specification. The syntax of this block is similar to
the syntax of principal blocks and it was demonstrated at the end of example 9.

Security properties often work with some important points in the execution of a
protocol. The order in which statements in a protocol are executed is not always rel-
evant to security properties. Only the order with regard to actions that have side
effects matters. The only actions that have side effects are sending out messages and
finishing the protocol. Sent messages can be observed by the adversary and finishing
the protocol means accepting the values learned from the protocol as valid (authentic,
confidential, etc.). An important point in a protocol execution is when a principal
commits to executing a block. This also includes the execution of subsequent blocks
up until the next message from this principal or the end of the protocol. A princi-
pal commits to a block if (1) he has already executed the previous blocks (and sent
messages), (2) he has received all the necessary messages since the last block, and (3)
all message constructions/deconstructions, checks and assertions in the block would
be successful. In a real-world execution, this would simply mean that the principal (1
and 2) is supposed to execute the block right now, and (3) tries to execute the block.
If some assertion fails, then he stops the execution before any action that has side
effects happens. Note that in a real-world execution any action may have side effects,
especially computation time. This leaves room for side-channel attacks which are not
covered by our model.

The confidentiality query verifies the basic supposition that the adversary is unable
to obtain some variable. It is parametrized by a scope-and-variable identifier. For a
variable Principal’s variable the confidentiality query is specified as

confidentiality? Principal’s variable

The confidentiality query of Principal’s variable states that if (1) Principal com-
mits to executing the first block where he knows variable and (2) he and all the other
principals within the same protocol instance are honest, then the adversary cannot learn
Principal’s variable .
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The forward secrecy query provides a stronger alternative to the confidentiality
query. It is once again parametrized by a variable specified in its full form. For a
variable Principal’s variable the forward secrecy query is specified as

forward-secrecy? Principal’s variable

The forward secrecy of Principal’s variable states that if (1) Principal commits
to executing the first block where he knows variable and (2) he and all the other
principals within the same protocol instance are honest until Principal executes said
block, then the adversary cannot learn Principal’s variable .

This property specifies that even if the adversary learns all long-term values of the
principals performing the protocol after the transfer happens, the variable in question
would remain confidential. This query offers, in our opinion, a good baseline for forward
secrecy properties. However, most protocols today provide confidentiality guarantees
even if some combinations of the ephemeral variables of a protocol are revealed by the
adversary. For example, even the old attack on the Needham-Schroeder protocol by
[10] requires compromising an ephemeral variable.

The authentication query verifies that if a principal believes he received a message
from another principal, then this message was indeed sent by that principal. It is
parametrized by the sender, the recipient, and the message variable. For a message
form Sender to Recipient containing variable the authentication query is specified
as

authentication? Sender -> Recipient: variable

This property states that if (1) Recipient commits to executing the block directly
after he receives variable and (2) Sender , Recipient , and all other principals in
the same protocol instance are honest, then Sender must have sent variable (at any
time).

Example 11. Consider a protocol with two principals, Sender and Recipient , an
instance of this protocol with Sender.1 in role of Sender and Recipient.1 in role
of Recipient . We may want to verify the following query

authentication? Sender -> Recipient: variable

This query verifies that when Recipient.1 believes that he received variable.1

from Sender.1 then variable.1 was indeed sent by Sender.1 and not any other
Sender (or anyone else). It does not verify whether Sender.1 sent it in the same
session as Recipient.1 received it. It also does not verify if Sender.1 intended to
send it specifically to Recipient.1 .

The injective authentication query is a stronger version of the authentication query.
Its goal is to capture some replay attacks. If the messages of a protocol do not contain
enough ephemeral information, then they may be replayed again by the adversary at a
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later time. The recipient accepts the same authentication message more than once. The
injective authentication query specifies that a message received in a certain protocol
session must have also been sent during that session. The beginning of a session is at
some point before the first message sent by any of the principals. It is also the same
for every principal in the same session. This means that a session may start for the
responder in a protocol before he can know about it. For a message form Sender

to Recipient containing variable the injective authentication query is specified as
follows.

injective-authentication? Sender -> Recipient: variable

This property states that if (1) Recipient commits to executing the block directly
after he receives variable and (2) Sender , Recipient , and all other principals in
the same protocol instance are honest, then Sender executed the protocol up to and
including sending variable after the Recipient started this protocol session.

Note that injective authentication does not capture all replay attacks. Specifically,
the property does not mention that Recipient has to be the intended recipient of the
message. Verifying those kinds of properties would require implementing support for
additional queries.

We additionally support a special kind of sanity query, the executable query. This
query states that all the principals are able to reach the end of the protocol state even
if they are honest. All protocols that can be specified in our language are executable.
An ‘attack’ to this query is often the correct execution of the protocol.

2.1.6 Additional declarations

We allow the user to specify some additional declarations about the protocol before
the main body of a protocol specification. So far the only declarations supported are
such that change the behavior of the compiler, i.e. the error messages that it prints
out.

By default, mentioning a principal for the first time by specifying its first block will
print an info message saying that the principal has not been declared. The principals of
a protocol may be declared using a principals: declaration. For example, principals
Alice and Bob are declared in example 9 by

principals: Alice, Bob

If a principals: declaration was made and an undeclared principal is mentioned then
the compiler prints an error message and the compilation fails.

If an implicit assertion of equality occurs and there is not a matching unary EQUALS

check then the compiler prints out an info message about it. The unary-equals:

declaration followed by either implicit or explicit can change this behavior. Using
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implicit will hide these info messages and using explicit will instead make the
compiler print an error message and fail after encountering a missing unary equals
check.

Using a declaration hide-info: true will make the compiler hide all info mes-
sages. Using a declaration quit-on-warning: true will make the compilation fail
when a warning is encountered.

2.2 Steps to avoid user error

We perform sanity checks on security protocol specifications to warn users about most
of the common mistakes. In this section, we describe these sanity checks and how they
are performed.

Our main goal is to ensure that every protocol specified in our input language is
executable. This is the case even if there is no interference from the adversary and
if we disregard the possibility of unusual protocol instances. A protocol may not be
executable (with regard to everything that is taken into account during the analysis)
if it contains an assertion that can never succeed.

Example 12. Consider a protocol containing the following code

// warning: this specification is invalid

Principal [

generates x, y

EQUALS(x, y)?

]

This protocol is not executable because variables declared in generates statements
are guaranteed to be distinct. The principal will never commit to executing this block
because the EQUALS check never succeeds.

Because the standard Dolev-Yao adversary is the network, a protocol cannot suc-
ceed unless he decides to forward messages to the intended recipients. A protocol has
to be executable even if the adversary acts just like a normal (but reliable) network.

Example 13. Consider a protocol containing the following code

// warning: this specification is invalid

Alice [

generates x, y

]

Alice -> Bob: x, y

Bob [

EQUALS(x, y)?

]
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A protocol like this is executable according to the definition of the executable? query.
The adversary can, for example, replace messages x , y with x , x . Both principals
remain honest because no long-term reveal happened. Even though the protocol is
executable, it clearly cannot represent any meaningful protocol because the adversary
has to replace messages in transit to make it succeed.

The instantiation of public variables is less restrictive than that of private variables.
Separate public variables can be instantiated to the same value or even to constants. In
real-world protocols, this is very unusual or implausible. Protocols that rely on these
instances are not meaningful. In most cases, they can be rewritten to protocols that
do not violate this rule (by replacing multiple public variables with just one).

Example 14. Consider a protocol containing the following code

// warning: this specification is invalid

principals: Alice, Bob

Alice [

knows public Bob

EQUALS(Alice, Bob)?

]

This protocol is performed by two principals, Alice and Bob . Principal Alice only
commits to executing this block if she is in fact communicating with herself. This is a
valid instance of many real protocols, but it should never be the only instance.

2.2.1 Expected equality

We have described three cases when an equality assertion is performed on terms that are
not expected to be equal. We generalize and formalize this notion of expected equality
using an equational theory. We decide the equality of terms according to this theory
efficiently using a convergent rewriting system. Most of the sanity checks performed
by our compiler rely on expected equality.

The equational theory is specific to a protocol specification. For a protocol spec-
ification P we define an equational theory =P . We define an equation using 'P to
denote that it belongs to the set of equations generating =P .

To answer the first goal, variables declared in distributed statements or assign-
ments must be equal to their corresponding term. Formally, if P defines a variable v

in an assignment or a distributed statement and its corresponding term is t then

v 'P t

In section 2.1.2 we describe two equivalences that allow us to deconstruct encrypted
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terms. These equivalences define two of the equations that generate =P :

DEC(key, ENC(key, message)) 'P message

ADEC(sk, AENC(PK(sk), message)) 'P message

We also describe equivalences that represent the properties of operation on cyclic
groups. We cannot just include these equivalences because they use functions that do
not exist in our specification. This will not cause any problems because our specification
does not allow the user to deconstruct exponentiation. We only need equations that
capture the associativity and commutativity of multiplication in exponents. Formally,
if b (the base), e1 and e2 (the exponents) are any terms then

b^(e1^e2) 'P b^e1^e2

b^e1^e2 'P b^e2^e1

The equations so far define which terms have to be equal. The equations do not de-
fine any equality of variables that were defined in knows and generates statements.
This means that the equations also capture the guarantee that values of private vari-
ables are distinct and the expectation that the values of public variables defined in
knows are distinct.

Note that there are no equations that describe the properties of tuples as a simple
concatenation of terms. For example, {{x1, x2}, x3} is the same as {x1, x2, x3}

during the analysis. In protocol specification, we expect the user to use tuple structure
consistently. This allows us to warn about mistakes like accidentally deconstructing
the wrong tuple. A protocol can always be rewritten such that the structure of tuples
is consistent.

Finally, expected equality needs to capture the behavior of a network that is reliable
and is not controlled by an adversary. The message received has to be equal to the
message sent. Formally, if there is a message statement

Sender -> Recipient : m

in P then

Recipient’s m) 'P Sender’s m

A message statement may send more than one message or even tuples. We kept the
formal definition simple and consider all message statements broken into single-message
statements.

2.2.2 Deciding expected equality

A straightforward way to decide equality of term with respect to =P is by exhaustive
search through all the possible variations of each term. A protocol is finite, so the
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number of variations that a term is ‘reasonably’ equal to is finite as well. Reasonably
because terms can always be enclosed in a decryption of an encryption, but these
infinite variations can be simply avoided.

The time complexity of this approach is acceptable when deciding unification. Vari-
ables can be unified with anything, therefore it is not necessary to search through the
entire protocol for variations of terms. Tamarin uses this approach to unify terms in
its analysis [11, 14].

Deciding equality requires (and allows) a more efficient approach. The equations
generating the equational theory =P can be oriented to define a convergent rewriting
system RP . A convergent rewriting system defines a unique normal form of every term.
Terms are equal with respect to =P if they have the same normal form with respect to
RP .

Searching through all the variations of a term can have exponential time complexity
with respect to the size of P . Finding the normal form requires only a linear number of
rewrites. Additionally, normal forms of previously encountered terms can be remem-
bered. That way the number of rewrites needed to find the normal form of each new
term is constant.

We construct RP by orienting all the equations generating =P , except for the
equation b^e1^e2 'P b^e2^e1 . We orient the equation left-to-right as they were
defined in the last section. For example, v 'P t is oriented to v →P t . This
rewriting relation rewrites terms such that either they are defined earlier in the protocol
or they are simpler (shorter).

Orienting an equation that represents commutativity is more involved. If we just
orient it in either direction, the resulting rewriting relation would not be convergent
(would not be terminating). We need a deterministic way to decide which order of
exponents, b^e1^e2 or b^e2^e1 is simpler. We use a method called ordered rewriting.
We define a total ordering ≤P on terms from P . We define the rewriting system RP
such that exponents rewrite to ascending order. Formally, if e2 ≤P e1 then

b^e1^e2 →P b^e2^e1

This increases the number of rewrites needed to find the normal form of a new
exponentiation term to the complexity of a sorting algorithm. This complexity is still
very reasonable.

Defining a suitable ordering is not straightforward. We have to avoid a situation
where a �P b �P c , but a =P c . Any ordering on the variables defined in knows

and generates is valid because they are never expected to be equal. We can extend
this ordering to all normal forms with respect to RP because they only contain these
variables. The ordering can be extended to the remaining terms in P inductively. For
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terms l , r we define that l <P r if and only if RP ↓ l <P RP ↓ r . Term
RP ↓ t denotes the normal form of t with respect to RP .

Example 15. Consider the following part of a protocol

generates a, x

b = x

e = ’g’^b^a

The ordering<P is defined on the variables from generates arbitrarily. Let us suppose
it is lexicographical, a <P x . The constant ’g’ is in normal form, we arbitrarily
extend the ordering to it. Let us suppose we use ’g’ <P a <P x . Variable x is
the normal form of b , therefore a <P b . This means that ’g’^b^a rewrites to
’g’^a^b and further to the normal form ’g’^a^x .

2.2.3 Utilizing expected equality

In this section, we note all the verifications performed by our compiler that utilize
expected equality. For the remainder of this section, when we state that terms have
to be equal, we mean equality with respect to =P . In other words, they have to be
expected to be equal. Expected equality applies in the following scenarios:

- a binary EQUALS check is used
– the arguments of this check have to be equal

- an implicit equality assertion occurs (it does not matter if a matching unary
EQUALS check follows)
– the compared variables have to be equal

- a SIGNVERIF check is used
– the first argument has to be equal to a public key
– the last argument has to be equal to a signature
– the secret key in the public key has to be equal to the secret key in the

signature
– the middle argument has to be equal to the message in the signature

- a tuple is used on the left side of an assignment
– the right side of the assignment has to be equal to a tuple with the same

structure
- symmetric decryption is used

– the second argument has to be equal to a symmetric encryption
– the first argument has to be equal to the key in the symmetric encryption

- asymmetric encryption is used
– the first argument has to be equal to a public key

- asymmetric decryption is used
– the second argument has to be equal to an asymmetric encryption
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– the first argument has to be equal to the secret key in the asymmetric
encryption

2.2.4 Remaining sanity checks

There are other sanity checks performed by the compiler that do not rely on expected
equality. Most of the remaining properties of a valid protocol are stated in this section.

- principal identifiers cannot cause collisions with variable identifiers
- principals should be declared (no declaration triggers info messages, a declaration
with a missing principal triggers an error)

- every principal has to execute some statements within a protocol session (not
only initial assumptions)

- variable identifiers should not cause collisions (in some cases, variables may be
shadowed but this triggers a warning message)

- every variable used has to be declared and it has to be known to the principal
that is attempting to use it

- the construction within a distributed statement can only contain long-term
public variables

- implicit equality assertions should have matching unary EQUALS checks
- the parameters of confidentiality and forward secrecy queries have to be valid
variables

- the messages in authentication and injective authentication queries have to be
defined in the protocol

- functions must have the correct number of arguments
- messages and left sides of assignments can only contain constants, variables, and
tuples

2.3 Translating our language to Tamarin

In this section, we describe the process used to translate our input language described
in section 2.1 into Tamarin input language described in section 1.3.2.

2.3.1 Protocol structure

When translating a protocol specification to Tamarin, we need to capture some prop-
erties, for which Tamarin does not have an explicit representation. A statement in our
language has an explicitly defined principal (variable) that performs it. The principal
performing a statement is defined by the principal block or message statement. Most
statements in our language represent sequential actions. This means that the state-
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ments preceding them have to be finished before they can be performed. Even the
statements that represent declarations about the initial assumptions have a sequential
meaning. They have to be finished before a protocol session can be initiated.

The protocol specification in Tamarin is expressed using rules. The properties we
mentioned can be captured using custom facts. Specifically, a statement S is translated
to a Tamarin rule rule S: [p]--[a]->[c] where p , a , and c are comma-separated
lists of premises, actions, and conclusions respectively. A principal A performing S

defines a role A that represents one party of a protocol. This role can perform S

if he has reached state p directly before S . By performing S , he will reach state
q (such that p 6= q) directly after S . These properties can be captured by linear
facts A_p() and A_q() . Fact A_p() is established if there is a principal in the
role of A and he has reached the state p. Fact A_q() is established by perform-
ing the statement S . The Tamarin rule representing S can then be extended to
rule S: [p, A_p()]--[a]->[c, A_q()] .

These facts still only capture the existence of a role A and whether any principal
in this role reached certain points in some undefined session of the protocol. There
is no way to distinguish between the various principals acting in the role of A (in-
stantiations of A ). If several protocol sessions are initiated then there is no way to
distinguish which one has reached the state p. If the initial assumptions of the proto-
col are instantiated with different long-term values then there is no way to distinguish
between these instances. To solve these three problems, the facts additionally contain
variables specifying these three properties of a state. The fact A_p(i,j,A) denotes
that principal A in the role of A has reached state p while executing session j with
the initial assumptions given by protocol instance i . Variable A is instantiated to a
public name that is bound to role A when instantiating the initial assumptions. Vari-
able j is instantiated to a fresh name unique to a protocol instance. Variable i is
instantiated to a fresh name unique to a protocol session. These variables are simply
carried over to the A_q fact, so the rule is extended as follows.

rule S: [p, A_p(i, j, A)]--[a]->[c, A_q(i, j, A)]

All statements either add to the knowledge of the principal or require the principal
to know some variables. For example, an assignment requires that the variables on its
right side are known and adds new variables from the left side to the knowledge of the
principal. Principal knowledge also needs to be tracked in Tamarin so that variables
created by rules can be used later. We track knowledge variables in the state facts as
well. Therefore, if the principal knows variables v1 , ..., vk in state p and learns u1 ,
..., ul by executing statement S then we extend the rule representing this statement
in Tamarin as follows.

rule S: [
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p,

A_p(i, j, A, v1, ..., vk)

]--[a]->[

c,

A_q(i, j, A, v1, ..., vk, u1, ..., ul)

]

Some variables need to be prefixed by ~ or $ to indicate that they can only be
instantiated with fresh or public names. This would make a proper definition too
complicated. Instead, we provide an example. The way sorts are assigned to variables
is described in 2.3.2.

Example 16. Consider the following protocol specification.

Alice [

knows public K

generates N

]

Let us define the states before and after the statement generates N as p and q re-
spectively. This statement is translated using a premise Fr(~N) . The Tamarin rule
representing this statement could be the following.

rule Gen: [

Fr(~N),

Alice_p(~i, ~j, $A, $K)

] --[] -> [

Alice_q(~i, ~j, $A, $K, ~N)

]

Using the procedure defined so far, we could translate a protocol such that each
statement corresponds to one rule. All statements would occur in exact sequential
order. Doing this would result in extensive protocol specifications in Tamarin. In
many cases, the order of execution of certain statements does not have any effect on
security in our model.

The only actions that produce observable side effects are sending messages and
finishing the protocol. This means that the sequential order of many of the statements
is irrelevant. We have already described what it means when a principal commits
to executing a block in section 2.1.5. We combine statements such that each rule in
Tamarin represents a principal committing to executing a block.

If there are two blocks performed by the same principal with no messages sent
by this principal between them, these blocks are merged. Each rule also contains all
messages received by the principal between this and the previous (merged) block as
well as all messages sent by the principal between this and the next block. Each rule
contains only one premise state fact and one conclusion state fact.
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The statements declaring initial assumptions of a protocol are not translated in
their corresponding block. Instead, they are all combined to create a single rule that
initiates the protocol instance. The initial states created in an instance are persistent.
This allows principals to run an unbounded number of sessions in the same instance.
A protocol session is initiated by another rule that only adds the session variable ( i in
our examples) to the initial states of principals. The initial states created in a session
are already linear (non-persistent).

Example 17. Recall example 9. All the initial assumptions are in separate blocks.
After they are removed and combined into the instance rule, their blocks will be empty.
Principals do not send any messages between their respective initial assumption block
and their next one. This means that the empty blocks get merged. The resulting
Tamarin code will contain one rule for each principal.

2.3.2 Constants, variables, and cryptographic functions

The translation of messages (terms) is very straightforward. All of the constructs that
we use to build messages also exist in Tamarin, only with different syntax.

Constants, the simplest, are copied directly. For example, a constant ’constant’

in our input language is translated to the public name ’constant’ in Tamarin.
Translating variables is more involved. We gather variables based on their identifiers

and the scope in which they are used. We assign a global sequential number to every
variable. We translate them to Tamarin identifiers as the sequential number with
a predefined prefix. Tamarin keeps variable identifiers when instantiating them to
names. Sometimes Tamarin needs to use new variables and new names. We want to
avoid collisions with these names so that we can identify variables from our input in
the output provided by Tamarin. We have observed Tamarin using prefixes t , x ,
and c when naming new variables. We cannot be sure if there are other prefixes that
Tamarin uses or might use in future versions, but it seems to prefer single-character
prefixes. We chose prefix var for our naming convention. Variables may additionally
be prefixed with a sort symbol, ~ or $ . For example, a generated ephemeral variable
in our input language that is assigned the sequential number 20 will be translated to
~var20 .

Variables in Tamarin may be prefixed with a sort symbol, ~ or $ . This dictates
the sort of the names that can be instantiated for the variables. Sometimes the addition
of sort symbols is mandatory. All variables used in a Fr fact have to be marked as
fresh ( ~ ). All variables that are not mentioned in the premises because they should be
instantiated as public, have to be marked as public $ . Otherwise, the addition of sorts
is optional because it may incur additional limitations on the protocol that change the
security properties. For example, if an In fact contains a fresh variable, it means that
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the principal does not accept a public value in this message. This may be impossible to
verify unless the principal knows the exact value that is supposed to be in that message.
When the addition of sort symbols does not change the security properties, we want
to provide them for Tamarin. Tamarin evaluates all the equal variations of each term
when loading a protocol. This may cause extreme loading times when operations on
cyclic groups are used. By adding sort symbols, we limit the possible variations. This
allows the protocol to load in some cases where it otherwise would not. We dedicate
the case study 3.4 to this topic. We add the optional sort symbol to all the variables
that the principal knows (directly, without regard to equality).

Cryptographic functions are translated using Tamarin’s built-in theories. They
define functions and equations generating the equational theory =E , described in 1.3.1.
We denote that the set of equations generating =E contains an equation by defining
it with 'E . We have adopted syntax from VerifPal [9]. VerifPal and Tamarin syntax
use different, but self-explanatory, function symbols. The order of arguments is often
reversed in Tamarin.

We use theory symmetric-encryption to translate functions ENC and DEC . This
theory defines the function symbols enc and dec , and an equation

dec(enc(message, key) key) 'E message

We use theories asymmetric-encryption and signing to translate functions PK ,
AENC , ADEC , and SIGN . These theories define the function symbols pk , aenc , adec ,
sign , verify , and true ( true is a constant function), and equations

adec(enc(message, pk(sk), sk) 'E message

verify(sign(message, sk), message, pk(sk)) 'E true

We use theory hashing that defines the function symbol h to translate HASH .
There are no equations associated with hashing.

We use theory diffie-hellman to translate exponentiation ( ^ ) in public groups.
This theory defines function symbols ^ (exponentiation), * (multiplication), inv

(inverse), and 1 (a constant function 1). The theory defines the properties of cyclic
groups using these equations:

x ^ y ^ z 'E x ^ y * z x ^ 1 'E x x * y 'E y * x

(x * y) * z 'E (x * y) * z x * 1 'E x x * inv(x) 'E 1

Tamarin expresses operations on tuples using a default theory that contains a sym-
bol for a pair and deconstruction symbols for retrieving the first or second element of
a pair. Using these symbols is inconvenient. We use a special syntax supported by
Tamarin to translate tuples. A tuple {t1,...tk} is translated to <t1, ..., tk> ,
which tamarin breaks up into pairs during compilation. The properties of tuples remain
as we defined them.



2.3. TRANSLATING OUR LANGUAGE TO TAMARIN 39

2.3.3 Assignments

The most complicated statement to translate is an assignment. In cases of assignments
that construct terms, we can simply translate them to an alias before their correspond-
ing rule.

Example 18. The assignment

c = ENC(k, m)

may be translated to an alias

var1 = enc(var2, var3)

if c , k , m are translated to var1 , var3 , var2 respectively.

We have to translate tuple deconstructions differently. We translate other decon-
struction the same way as tuple deconstructions to remain consistent. In Tamarin,
tuples cannot be used on the left sides of aliases. On the other hand, any terms can be
used almost anywhere else. When an assignment contains a deconstruction, then we
do not add any new parts to the corresponding rule, but remember that it happened in
the corresponding block. We then replace the deconstructed variable with a term that
shows how it was constructed. We only replace the variable in the rule corresponding
to the deconstruction.

Example 19. Suppose there is an assignment

{x1, {x2, x3}} = t

Then within the rule that contains it, we replace the translation of t with the trans-
lation of {x1, {x2, x3}} . It will be added to the resulting state of the rule as
{x1, {x2, x3}} , but the next rule can retrieve it as t and use it normally.

This might accidentally create additional assumptions that would change the secu-
rity of the protocol. For example, when we use the deconstructed tuple inside an In

fact, we assume that the message received must be a tuple. The sanity checks per-
formed by our compiler protect us from this problem. A term cannot be deconstructed
unless it is expected to have the correct structure. This means we do not make any
new assumptions about the structure of terms.

Example 20. Suppose that a message is encrypted as

c = ENC(k, m)

and a principal decrypts it as

n = DEC(k, c)

The translation of c will be replaced with the translation of ENC(k, n) within the
rule. If c was received in a message, then the principal will only accept messages with
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the same structure as ENC(k, n) . The principal also has to know k . Both of these
things we verified in sanity checks.

2.3.4 Statements

Translating the other statements is much simpler. Each statement just adds some parts
to the corresponding rule or the initial assumptions rule.

The knows public statement adds the public variables to the principal states
created in the initial assumptions rule. The knows private statement adds Fr facts
for the private variables to the premise of the initial assumptions rule and also adds
the variables to principal states.

The distributed statement adds an alias for the construction of the public vari-
able to the initial assumptions rule. We say the variable is public because that is the
representation. It is not directly instantiated, it is set equal to the term that constructs
it. This means it does not have the public sort and does not get prefixed by $ . We
also add the variable to the state of the principal that declared it.

The generates statement adds Fr facts for the ephemeral variables to the premise
of the corresponding rule and also adds the variables to the resulting state of the rule.

Message statements add Out facts to the conclusions of the sender’s previous rule
and In facts to the premise of the recipient’s next rule. They also add the received
variables to the recipient’s state.

Checks are translated using the equality restriction described in section 1.3.2. The
restriction states that the arguments of an Eq fact must be equal with respect to =E .
The EQUALS check just adds an Eq fact with the translated arguments to the actions
of the corresponding rule. The SIGNVERIF translates the arguments into a verify

term and puts it equal to true using an Eq fact.

2.3.5 Queries

We represent long-term reveals by a custom rule for each principal. The rule has the
principal’s initial state in premises. It marks the principal as dishonest by a dishonest

fact in actions. It sends all long-term private variables of the principal to the adversary
using Out facts in conclusions.

Lemmas can only reason about facts that occur in actions of rules. It is often conve-
nient to reason about the resulting states of rules because they contain all the necessary
variables. For this reason, we add exact copies of the resulting states from conclusions
of rules to their actions. When we defined queries in 2.1.5, we often mentioned that
principals commit to executing a block. This means that the result state action fact of
the corresponding rule is established.
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In order to have a list of all principals bound to a protocol instance, we add a
principals fact to the actions of the initial assumptions rule. This allows us to
translate assumptions about all the principals in the same instance as the principal
from the query. We use the variable that identifies the instance as the first argument
and the identity variables of principals as the remaining arguments.

The fact that the adversary learns a variable is expressed by a K action fact. This
fact can be established by Tamarin’s predefined rules described in 1.3.1.

Specifically for each authentication (injective and non-injective) query, we add a
custom action fact to the rule where the sender sends the variable. The use of the
result state fact in this case would incur more assumptions than we want to. These
custom facts only contain the sender’s identity variable and the variable that was sent.

Any formal templates for the individual queries are too long and complicated to be
stated here due to quantification. At the same time, the translation of queries reflects
the descriptions in section 2.1.5. We only reword the formulas so that they use less
negation. In theory, Tamarin should only accept guarded formulas ([11, 14]). Improve-
ments to Tamarin have loosened this requirement. Reducing the use of negations is
sufficient to make Tamarin accept our lemmas.

Example 21. The first confidentiality query from 9 is translated as

lemma secrecy_0:

all-traces "

All var0 var2 var3 #t0 var1 var5 var6 var7 var8 var9 var10 #t1 #t2.

Principals(var0, var2, var3) @ #t0 &

Pal3_1(var0, var1, var3, var5, var6,

var7, var8, var9, var10) @ #t1 &

K(var7) @ #t2

==>

(Ex #t3.Dishonest(var2) @ #t3) |

(Ex #t4.Dishonest(var3) @ #t4)

"

The state fact is named Pal3_1 . The Pal3 represents that it belongs to the principal
with identity variable var3 , this is Bob . The 1 is the sequential number of this block
within the entire protocol (including Alice’s blocks). The lemma should be interpreted
as follows. If the instance is var0 , principals are var2 and var3 , principal var3

executes block 1 (this is the first one where he knows var7 ), and the adversary knows
var7 , then one of the principals must be dishonest.

2.4 Translating Tamarin-Prover output

Tamarin-Prover provides output from its analysis in multiple forms. It is mainly in-
tended to be used within an interactive graphical interface. This interface is provided



42 CHAPTER 2. OUR LANGUAGE AND COMPILER

Figure 2.1: Example of a source

as a local website. It displays the traces of attacks as rendered images of graphs.
During any computation, Tamarin prints logging messages to the error output of the
terminal. After the analysis of a lemma is finished, it also prints the steps needed to
reconstruct an attack or proof of security.

We decided to attempt to translate the text output provided by Tamarin in the ter-
minal and disregard the interactive interface. We believed that translating the interac-
tive interface would be too time-consuming to be implemented within the scope of this
thesis. This decision proved to be incorrect because the text output of Tamarin-Prover
is often insufficient to manually reconstruct an attack. We attempted to overcome
this by extending the output provided by Tamarin-Prover. This allowed us to present
results that are more complete, but still cannot be considered simple or intuitive.

We understand that translating the interactive interface likely would have been
more successful. It would not require alterations to Tamarin-Prover and the graphical
presentation would be more intuitive.

2.4.1 Extending the output of Tamarin-Prover

Tamarin-Prover creates precomputed sources for facts that appear in a protocol. These
sources are created during loading times. They describe steps that need to be taken in
order to establish a fact.

Example 22. Figure 2.1 shows a graph of a simple source. This is one of the sources
that show how the adversary may learn a term that has the same structure as t.1^t.2 .
This source specifically allows the adversary to learn a term that has the same structure
as ’g’^(~var4.10*x.14) . The oval in the center states that he attempts to construct
it by exponentiation. The square on the left shows a protocol rule. In this case, it is a
rule called INSTANCE . We use this rule to define the initial assumptions of a protocol.
The adversary uses this rule to learn a term ’g’^~var4.10 . The rule sends out this
term because it represents a public key and as such the adversary should know it. On
the right side, the rule shows that the adversary also needs to learn x.14 , but this
source does not describe how.
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The other forms of output reference these sources. They state the fact that is
being solved and the name of the source used to solve it. This means that in order to
translate the text output of Tamarin-Prover, we need access to a text representation of
the sources. The sources are exported for a graph rendering tool while the interactive
interface is running. We wanted to avoid running a web server because our application
only provides output in form of text. We made a minor change to Tamarin-Prover that
prints the complete graphs for sources when running without the interactive interface.
These graphs are provided in JSON format. They are extensively long even for small
sources, so we do not provide an example.

The logging messages printed during computation contain the solved goal (the es-
tablished fact), but not the source used to solve it. We made another change to
Tamarin-Prover that also prints the name of the source. Tamarin-Prover performs
multiple computations in parallel. As a result, the solved goals and sources may some-
times change order. We also added an index number to the goal and the source so that
they can be paired when such a change in their order happens.

2.4.2 Translating the extended output

We translate source graphs into a text file called sources.txt . Some sources do not
provide interesting information. These include sources of custom facts that represent
a principal committing to executing a block or internal facts like long-term reveals.
Their sources only state that they must originate from their respective rules. We omit
these sources to make the output more concise. The sources file only contains sources
that describe how the adversary learns terms with a specific structure.

Sources are grouped if they provide the same fact (allow the adversary to learn
terms with the same structure). Some groups are more specific than others. This is
defined by matching on the terms that they provide to the adversary. Term s matches
term t if there is a substitution σ such that s =E tσ. If s matches t then s is at least
as specific as t. For example, t1^t2 matches t1 because we can substitute the entire
term t1^t2 for the variable t1 . This does not work the other way, therefore t1^t2

is strictly more specific than t1 . We also say that the group providing t1^t2 is more
specific than the group providing t1 . More specific groups are more likely to be used
in a valid attack. We order groups from the more specific to the less specific.

Sources contain too much information to be comprehendible in text format. We try
to extract the most relevant information and omit the rest.

Example 23. Translating all the information in the rule used in 2.1 would create a
very convoluted output. The important piece of information is that ’g’^~var4.10

was received from the initial assumptions. The variable ~var4 is the variable as in
the input and we translate it back. We translate the entire source as follows.
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solve: adversary learns t.1^t.2

Source (7) initial assumptions

Adversary coerces the protocol to use ’g’^as.10*x.14

Adversary deconstructs ’g’^as.10*x.14 using ^ on messages from:

Adversary receives ’g’^as.10 in a protocol message

Adversary learns it as a public value from initial assumptions.

Adversary gets x.14 from another source.

The rest of the output consists of the logging messages and the resulting attack
or proof of security. These have a similar format after our extensions. They consist
of pairs – goal and source name. The goal contains the term that was learned by the
adversary and the source names identify the source that was used for it. Translating
these is slightly ambiguous because the names of sources are not unique. The output
is not ambiguous when interpreted by Tamarin-Prover and displayed in the interactive
interface. Tamarin-Prover uses the same heuristics as the ones used in the analysis to
assign the correct sources to their names. Interpreting the source names precisely would
require reconstructing the analysis of Tamarin-Prover, which is entirely unreasonable.
Instead, we list all the sources that are applicable to the given goal. We find all the
source groups that the goal matches. More precisely, we find groups where the term
learned by the adversary is at most as specific as the term in the goal. For example, the
group that the source in 2.1 belongs to is applicable to a goal with the term ’g’^a*b

because ’g’^a*b matches t1^t2 . From these applicable groups, we list the sources
that have the correct name. In most cases, there is only one applicable source. In
cases when there are more applicable sources, they are provided ordered based on their
groups, so the correct source is often first.

There are other types of logging messages that we did not yet manage to translate.
We skip these and print a message that some messages could not be parsed. This
mostly occurs in complex protocols.

Example 24. The second query from example 9 produces the following output.

property: confidentiality? Alice’s m

DISPROVED

adversary learns ENC(bp^as, m)

applicable: 2

adversary learns bp^as

applicable: 6, 7

success

When we inspect the source file we find out that source 2 states that adversary con-
structs ENC(bp^as, m) from bp^as and m . Source number 6 does not seem to let the
adversary construct bp^as . Source number 7 is the source from 2.1. We can see that
bp^as can be interpreted as ’g’^x*as and the adversary can learn ’g’^as from the
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initial assumptions. To complete the attack, the adversary has to generate x and m .
We cannot learn this last step from the available output.



46 CHAPTER 2. OUR LANGUAGE AND COMPILER



Chapter 3

Case studies

This chapter aims to demonstrate the correctness of our implementation on several
sample protocols. Our program is best suited for the analysis of short and simple
protocols. We show that it is also capable of analyzing some complex, modern protocols
by analyzing a Noise protocol [13] in section 3.3. A separate case study in section 3.4
demonstrates a procedure that improves the loading times of Tamarin-Prover.

The Diffie-Hellman exchange was thoroughly analyzed in example 9. The complete
protocol specification can be found along with other case studies in the files associ-
ated with this thesis. These files also contain our implementation and installation
instructions.

3.1 The Otway Rees protocol

The Otway Rees protocol [12] is susceptible to an attack that makes use of a type flaw
[5]. This attack does not require the adversary to compromise any variables. This
makes it ideal to demonstrate our weak confidentiality query.

We use a declaration to hide the info messages about missing unary EQUALS checks.
This allows us to omit the unary EQUALS checks, but the implicit equality assertions
still occur.

The protocol establishes a symmetric key between two principals. The key is pro-
vided by a trusted server. The initial assumptions state that Server shares a symmet-
ric key Kas with Alice and a symmetric key Kbs with Bob . Principal Alice also
needs to know the identity of Bob to inform the Server about the intended recipient.

principals: Alice, Bob, Server

unary-equals: implicit

Alice [

knows private Kas

knows public Bob

]

47
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Bob [

knows private Kbs

]

Server [

knows private Kas, Kbs

]

Principal Alice initiates the protocol. She generates a nonce N that identifies the
session and her own nonce Na . She sends an initial message to Bob as follows.

Alice [

generates N, Na

m1 = ENC(Kas, {Na, N, Alice, Bob})

]

Alice -> Bob: N, Alice, Bob, m1

Principal Bob generates his own nonce Nb . He creates a message with the same
format. He forwards both messages to the Server . Note that Bob does not know the
identity of Alice . He will use any identity received in the initial message. The attack
does not misuse this behavior. We only point it out to demonstrate these semantics.

Bob [

generates Nb

m2 = ENC(Kbs, {Nb, N, Alice, Bob})

]

Bob -> Server: N, Alice, Bob, m1, m2

The server deconstructs both messages, verifies that all values are correct, and encrypts
a message with a newly generated key Kab for each principal.

Server [

{Na, N, Alice, Bob} = DEC(Kas, m1)

{Nb, N, Alice, Bob} = DEC(Kbs, m2)

generates Kab

m3 = ENC(Kbs, {Nb, Kab})

m4 = ENC(Kas, {Na, Kab})

]

The Server sends both messages to Bob and Bob forwards the second message to
Alice . Both Bob and Alice retrieve Kab from the message encrypted by the key
that they know.

Server -> Bob: N, m3, m4

Bob [

{Nb, Kab} = DEC(Kbs, m3)

]

Bob -> Alice: N, m4
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Alice [

{Na, Kab} = DEC(Kas, m4)

]

The protocol should guarantee that Kab is only known to Alice , Bob , and
Server . The adversary may misuse the fact that the initial messages sent by Alice

and Bob have a similar structure as the messages containing Kab . The adversary
may replay the initial messages to the principals. This makes them accept the triple
{N, Alice, Bob} instead of Kab . The triple {N, Alice, Bob} only contains public
variables. This means that the symmetric key established by the protocol will be known
to the adversary. The actual key Kab produced by Server remains confidential.

Specifically, Alice receives ENC(Kas, {Na, N, Alice, Bob}) as message m4 in-
stead of ENC(Kas, {Na, Kab}) . Both messages are encoded with Kas . Both messages
contain a tuple beginning with Na . The only difference is that the original message
ends with Kab and the fake message ends with {N, Alice, Bob} . Against Bob , the
attack is very similar.

We specify queries to verify the confidentiality of all 3 different values of Kab . We
expect to discover the described attack against Alice’s Kab and Bob’s Kab . The
Server’s Kab should remain confidential.

queries [

confidentiality? Alice’s Kab

confidentiality? Bob’s Kab

confidentiality? Server’s Kab

]

The first two queries find the expected attacks. The analysis of the third query does
not terminate. Nontermination is sometimes unavoidable because Tamarin attempts
to solve an undecidable problem. This is more common in cases where the analyzed
property holds because the analysis has to check all possible executions instead of
finding just one counterexample. The files associated with this thesis contain some
protocols where the analysis does not terminate even though they are susceptible to
an attack.

The attack against the first query contains the following goal-source pair.

adversary learns ENC(Kas, {Na, Kab})

applicable: 5, 17, 18, 19

This is the goal we are most interested in because it shows us, how message m4 was
constructed in the attack. The first applicable source (number 5) is the one we were
looking for.

solve: adversary learns ENC(t.2, t.1)

Source (5) Alice’s block nr. 2

Adversary coerces the protocol to use
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ENC(Kas.10, {Na.10, N.10, Alice.17, Bob.10})

Adversary receives ENC(Kas.10, {Na.10, N.10, Alice.17, Bob.10})

in a protocol message

which he receives after Alice’s block nr. 2

Protocol generates N.10

Protocol generates Na.10

Initial assumptions precede it.

Right from the name of the source we see that the target term, ENC(Kas, {Na, Kab})

was reached using Alice’s block nr. 2 . Looking back at the protocol, this is the
block after which Alice sends m1 . We see that the adversary coerced the protocol
to use some instance of ENC(Kas, {Na, N, Alice, Bob} instead of the target term
ENC(Kas, {Na, Kab}) . He received it from a message after Alice’s block nr. 2 .
The rest of the source describes some parts of the protocol that we already know from
the specification.

The second query produces the following goal-source pair.

adversary learns ENC(Kbs, {Nb, Kab})

applicable: 6, 20

Once again the first applicable source (number 6) is the correct one.

solve: adversary learns ENC(t.2, t.1)

Source (6) Bob’s block nr. 2

Adversary coerces the protocol to use

ENC(Kbs.10, {Nb.10, N.10, Alice.10, Bob.24})

Adversary receives

ENC(Kbs.10, {Nb.10, N.10, Alice.10, Bob.24}) in a protocol message

which he receives after Bob’s block nr. 2

Adversary sends N.10

Adversary gets N.10 from another source.

Adversary sends Alice.10

Adversary gets Alice.10 from another source.

Adversary sends Bob.24

Adversary gets Bob.24 from another source.

Adversary sends m1.10

Adversary gets m1.10 from another source.

Protocol generates Nb.10

Initial assumptions precede it.

In this case, the adversary needs to send m3 to the protocol. It must have the same
structure as ENC(Kbs, {Nb, Kab}) . Instead, the adversary replays some instance of
m2 that he receives from Bob’s block nr. 2 . The adversary has to send all the
necessary messages to Bob in order to initiate his second block.
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3.2 The Yahalom protocol

In this case study, we examine the Yahalom protocol featured in [4]. Our goal is to
find an attack that abuses a type flaw described in [5]. We use naming conventions
similar to the ones used in our case study of the Otway Rees protocol in section 3.1.
The protocol aims to establish a shared key between two principals, Alice and Bob .
The key is provided by a trusted server, Server . Each of the principals, Alice and
Bob , shares a symmetric key with Server .

principals: Alice, Bob, Server

unary-equals: implicit

Alice [

knows private Kas

]

Bob [

knows private Kbs

]

Server [

knows private Kas, Kbs

]

The protocol is initiated by Alice . She generates a nonce Na and sends it to Bob

along with her identity. Then Bob generates his own nonce and requests a key from
Server using the following messages.

Alice [

generates Na

]

Alice -> Bob: Alice, Na

Bob [

generates Nb

m1 = ENC(Kbs, {Alice, Na, Nb})

]

Bob -> Server: Bob, m1

The Server generates a key Kab and encrypts two messages, ma intended for
Alice and mb intended for Bob . It sends both messages to Alice and she will later
forward mb to Bob .

Server [

{Alice, Na, Nb} = DEC(Kbs, m1)

generates Kab

ma = ENC(Kas, {Kab, Na, Nb})

mb = ENC(Kbs, {Alice, Kab})

]

Server -> Alice: ma, mb
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Before Alice forwards mb to Bob , she recovers Kab and uses it to encrypt the
nonce Nb . This message is supposed to authenticate Alice to Bob as someone
who knows Kab and subsequently also Kas . For that reason, we call this encrypted
message auth .

Alice [

{Kab, Na, Nb} = DEC(Kas, ma)

auth = ENC(Kab, Nb)

]

Alice -> Bob: mb, auth

Bob [

{Alice, Kab} = DEC(Kbs, mb)

Nb = DEC(Kab, auth)

]

The protocol should guarantee the confidentiality of Kab for each of the principals
and Alice should be able to authenticate to Bob using message auth . Unfortunately,
the analysis of these properties does not terminate. Non-termination provides a weak
indication that the properties are not susceptible to attacks.

The attack cannot be employed against the protocol as it is. It requires the ad-
versary to learn Nb during the session. He can replace message mb with the initial
message m1 . More precisely, the message ENC(Kbs, {Alice, Kab}) is replaced with
ENC(Kbs, {Alice, Na, Nb}) . This makes Bob accept the pair {Na, Nb} instead of
a key Kab generated by Server . The adversary needs to know Nb because he needs
to construct the authentication message auth as ENC({Na, Nb}, Nb) . We publish
Nb by sending it to Server along with the initial message.

Bob -> Server: Bob, m1, Nb

We can find the attack using either of the following queries.

authentication? Alice -> Bob: auth

confidentiality? Bob’s Kab

The first query aims to find out that the authentication message auth can be
constructed by the adversary. The second query should find out that Bob can be
forced to accept a key known to the adversary. The results of these queries are identical
and contain the following lines.

adversary learns ENC(Kbs, {Alice, Kab})

applicable: 8, 23, 24

adversary learns ENC({Na.1, Nb.1}, Nb)

applicable: 5

The first pair shows how the adversary learned message mb . We know that this message
should have been replaced by m1 . The first applicable source (number 8) shows the
main idea behind this attack.
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solve: adversary learns ENC(t.2, t.1)

Source (8) Bob’s block nr. 2

Adversary coerces the protocol to use

ENC(Kbs.10, {Alice.10, Na.10, Nb.10})

Adversary receives

ENC(Kbs.10, {Alice.10, Na.10, Nb.10}) in a protocol message

which he receives after Bob’s block nr. 2

Adversary sends Alice.10

Adversary gets Alice.10 from another source.

Adversary sends Na.10

Adversary gets Na.10 from another source.

Protocol generates Nb.10

Initial assumptions precede it.

We can see that the adversary coerced the protocol to use some instance of the replayed
message ENC(Kbs, {Alice, Na, Nb}) . It also shows that he received this message
after Bob’s block nr. 2 . This is the block when Bob sent m1 . The rest of the
source states the requirements for initiating this block.

The second pair shows us that the adversary also needed ENC({Na, Nb}, Nb) . We
know this to be the replacement for the message auth . Tamarin found the attack using
two different sessions and had to distinguish Nb and Nb.1 . This was not necessary
but it is equally correct.

3.3 Noise protocol

This case study aims to demonstrate that our program can be used to analyze some
complex, modern protocols and produces the expected results. We chose the “IK”
pattern from The Noise Protocol Framework for this demonstration.

Noise is a framework for cryptographic protocols based on the Diffie-Hellman key
agreement. Its main purpose is to describe handshakes that establish a symmetric key
between two parties. The complete technical description of the Noise framework is
outside of the scope of this case study. We only explain the features that are captured
by our model. The computational details are described in [13].

3.3.1 Cryptographic functions

The framework specification denotes a Diffie-Hellman keypair as a single variable (ob-
ject). It also uses keypairs to specify inputs for Diffie-Hellman calculations. We specify
Diffie-Hellman calculations explicitly as exponentiations, which requires addressing the
secret and public key separately. The framework also addresses the parties of the pro-
tocol as the initiator and the responder or the local and the remote (in addition to
Alice and Bob). We only address the parties as Alice and Bob to avoid any confusion.
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This allows us to use a consistent 3-character notation for keys. The first character is
S for static or E for ephemeral. The second is S for secret or P for public. The third
is A for Alice or B for Bob. For example, the static public key of Alice is denoted
as SPA . The DH computation between the ephemeral keypair of Bob and the static
keypair of Alice is performed as SPA^ESB by Bob and as EPB^SSA by Alice.

Encryption is performed as authenticated encryption with associated data (AEAD).
This produces ciphertext and authentication data that are sent together as a single
message. We can produce the ciphertext using function ENC and the authentication
data using function HASH (representing HMAC in this case). After decryption, the
recipient reproduces the same authentication data and checks that it matches the
received. AEAD encryption also takes a nonce as an argument, besides the key, the
plaintext, and the associated data. This nonce is produced as a simple counter, which
makes it constant for a selected protocol. It does not have any meaningful effect on
the protocol in our model. We omit it to reduce the clutter.

Example 25. Encryption with key k , omitted nonce n , associated data ad , and
plaintext plaintext is performed as

M = ENC(k, plaintext)

macM = HASH({k, ad, plaintext})

This produces the ciphertext M and authentication data macM . The corresponding
decryption is performed as

plaintext = DEC(k, M)

EQUALS(macM, HASH({k, ad, plaintext}))?

3.3.2 Protocol specification

The complete protocol specification is too long to be explicitly stated here. We provide
it in the files associated with this thesis. The protocol specification contains repetitions
of very similar parts. The only thing that changes are the keypairs used in these parts.
We demonstrate how each part can be specified using an example.

Every Noise protocol maintains 3 values besides the DH keypairs. The key k is
used as the actual key for encryption. The chaining key ck is used for deriving the
values of k . The chaining key is initialized using constant values that describe the
specification of the protocol. We initialize it just as a constant ’ck0’ because it does
not affect security once the parties agreed on the protocol that is used. The hash h

is used as associated data for encryption. It comprises all the messages that were sent
during the protocol and the initial assumptions. A protocol is specified as a handshake
pattern. We describe how to interpret the handshake patterns using the pattern that
we are analyzing, the IK pattern.
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<- s

...

-> e, es, s, ss

<- e, ee, se

Each arrow below the dots specifies a single message. The arrow above the dots specifies
initial assumptions – the distribution of a public key. Alice is the party on the left side
of the arrows and Bob is the party on the right. For example, <- specifies a message
from Bob to Alice.

Single-character tokens represent actual transmissions of public keys. They are e

for ephemeral key and s for static. If a key was already established (if a double-
character token precedes them) then they are sent encrypted. Otherwise, they are sent
in plaintext. The transmitted message is hashed together with h to produce a new
value for h .

Example 26. The following code represents the processing the first token e .

Alice [

generates ESA

EPA = ’g’^ESA

h1 = HASH({h0, EPA})

]

Alice -> Bob: EPA

Bob [

h1 = HASH({h0, EPA})

]

The first token s comes after a double-character token, therefore it is encrypted. It
is a static key, so it is known by Alice at the start of the protocol. The following code
represents how it is processed.

Alice [

knows private SSA

SPA = ’g’^SSA

Mspa = ENC(k1, SPA)

macMspa = HASH({k1, h1, SPA})

h2 = HASH({h1, Mspa})

]

Alice -> Bob: {Mspa, macMspa}

Bob [

SPA = DEC(k1, SPA)

EQUALS(macMspa, HASH({k1, h1, SPA}))?

h2 = HASH({h1, Mspa})

]

Double-character tokens represent a DH calculation (without any transmission).
The first character specifies the keypair from Alice and the second specifies the keypair
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from Bob (ephemeral or static). The results of this calculation are used to derive new
values for the key and the chaining key. These new values are derived using a sequence
of hashes. We provide an example instead of a verbal description of the process.

Example 27. The following code represents the processing of the es token by both
parties. Both parties derive the new key and chaining key the same way. The DH
calculation has to be performed using the secret key available to each party.

Alice [

DHes = SPB^ESA

ck1 = HASH({HASH({ck0, DHes}), ’1’})

k1 = HASH({HASH({ck0, DHes}), ck1, ’2’})

]

Bob [

DHes = EPA^SSB

ck1 = HASH({HASH({ck0, DHes}), ’1’})

k1 = HASH({HASH({ck0, DHes}), ck1, ’2’})

]

Every handshake message (every line after the dots) is followed by an encrypted
payload. The payloads are encrypted the same way as public keys. The messages are
also hashed to produce a new value for the associated data.

Example 28. The following code represents processing the first payload message by
Alice.

Alice [

generates payload1

M1 = ENC(k2, payload1)

macM1 = HASH({k2, h2}, payload1)

h3 = HASH({h2, M1})

]

3.3.3 Security properties

We verify the security properties of messages sent by Alice that should hold according
to [13]. We examine the message payload sent alongside the first handshake message
and payloads sent after a successful handshake.

The first payload message is encrypted to a known recipient. This means that it
should be confidential in our model. We specify the following query to verify this
property.

confidentiality? Alice’s payload1

Its forward secrecy is guaranteed only for the sender compromise. Our forward
secrecy query allows the adversary to compromise the long-term values of both parties.
This means that the forward following forward secrecy query should not hold.
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forward-secrecy? Alice’s payload1

The protocol provides authentication of the ownership of the static key transmitted
in the first handshake message. It does not provide authentication of the actual princi-
pal Alice. The adversary may frame the messages for Bob using his own keypairs. For
that reason, the following query should fail.

authentication? Alice -> Bob: M1

The messages after the handshake are guaranteed strong forward secrecy. We verify
this property using the following query.

forward-secrecy? Alice’s payload3

Alice knows that SSB belongs to Bob as part of the initial assumptions. Authenti-
cation of the ownership of this key is equivalent to the authentication of Bob himself.
The property is also injective because the message is encrypted using a key derived from
Alice’s ephemeral keypair. This allows us to verify this property using the following
query.

authentication? Bob -> Alice: M2

All of the queries produce the expected results. The analysis produces logging
messages that our program cannot parse yet. The results are parsed and translated,
but we do not include them because of their size and complexity.

3.4 Assisting the Tamarin-Prover loading procedure

This case study demonstrates the process of adding optional sorts to variables in order
to reduce the loading times of Tamarin-Prover. Tamarin-Prover performs precompu-
tations on protocols that improve efficiency of the analysis of security properties. This
process normally takes several seconds or less. However, if the protocol uses exponen-
tiation in certain ways, it may take excessive amounts of time. The problem seems to
occur when a single term is constructed using multiple Diffie-Hellman operations. In
many cases, the protocol can be altered to make these loading times manageable.

We have created a minimal example protocol that does not load within one hour on
our testing setup. The original and altered version of the protocol can also be found
in the files associated with this thesis. We have not found out how long exactly is the
loading time of the original protocol. Our analysis of a Noise protocol from section 3.3
uses Diffie-Hellman operations to a much greater extent. This analysis would not be
possible unless we can reduce the loading time of the minimal example to a negligible
amount.

The protocol was derived from the Noise protocol and uses similar naming conven-
tions as section 3.3. Most notably, the variable identifiers consist of three characters.
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First for ephemeral or static, second for secret or public, and third for Alice or Bob.
The protocol performs two Diffie-Hellman calculations and uses the result to exchange
a single message. The protocol specification consists of three short rules, one for ini-
tialization and one for each party. The following code shows the entire protocol.

theory spthy

begin

builtins: symmetric-encryption, diffie-hellman

rule init: let

SPA = ’g’^~SSA

SPB = ’g’^~SSB

in [

Fr(~SSA),

Fr(~SSB)

]-->[

!Alice_init($Alice, SPA, SPB, ~SSA),

!Bob_init($Bob, SPA, SPB, ~SSB),

Out(SPA),

Out(SPB)

]

rule Alice_1_0: let

EPA = ’g’^~ESA

DHes = SPB^~ESA

DHss = SPB^SSA

M = senc(~payload, <DHes, DHss>)

in [

!Alice_init(Alice, SPA, SPB, SSA),

Fr(~payload),

Fr(~ESA)

]-->[

Out(EPA),

Out(M)

]

rule Bob_2_1: let

DHes = EPA^SSB

DHss = SPA^SSB

in [

!Bob_init(Bob, SPA, SPB, SSB),

In(EPA),

In(senc(payload, <DHes, DHss>))

]-->[]

end

We can improve the loading time of this protocol by carefully adding sort prefixes to
variables. We can afford to add these prefixes only if it does not change the semantics
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of the protocol.
The initial rule adds variable SSA to Alice’s initial state as fresh (prefixed with ~ ).

Afterwards, Alice’s rule retrieves it unmarked. We know that this variable represents
a key that was generated by Alice. This means that Alice is certain that it cannot be
a public value. We can safely mark it with the ~ prefix in Alice’s rule as well.

This is more complicated for the variable payload . Alice generates it in her rule.
Even if she had generated it in the initialization rule, it could be marked as fresh in her
rule. Bob learns this variable (a variable derived from it) in a message. Bob cannot
verify that payload is not public or constructed from other terms. As such, it must
remain without a prefix in his rule.

In total, we can mark payload in Alice’s rule, SSA , and SSB with the prefix ~ .
The identity variables Alice and Bob can be prefixed with $ . The protocol loads
within several seconds after adding these changes.

All of the changes are applied to variables that also appear in a state fact in the
premises of the corresponding rule. These state facts are only created by a single
rule. Within this rule, the sorts of variables are the same as the sorts we just added.
This means that the addition of sort prefixes, as we describe it, does not change the
semantics of the protocol at all. This inference of sorts can also be performed directly
on the specifications in the Tamarin-Prover input language.
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Conclusion

This thesis introduces a simplified language for specification of cryptographic protocols
and a tool that verifies their security properties using Tamarin-Prover. We argue that
our input language is more intuitive and easy to use compared to the input language
of Tamarin-Prover. Protocol specifications are closer related to the real-world imple-
mentation. We use descriptive English statements instead of abbreviations and special
symbols. The language does not require the user to manage the knowledge of princi-
pals. It features a clever manipulation with messages thanks to a special syntax for
tuple deconstruction and scopes for variables. This approach also has its limitations.
Our language is much less expressive. It only allows specifications of protocols that
consist of supported elements.

Our input language and compiler prevent a wide range of common user errors. Our
notion of expected equality prevents specification of a large class of protocols that
are not meaningful in real-world applications. The expected equality of terms cannot
be verified on protocol specifications in the input language of Tamarin-Prover. Addi-
tionally, our language uses predefined cryptographic functions and security properties
because user-defined components of protocols are often the source of errors.

We introduce a procedure that adds optional sort prefixes to variables. This proce-
dure reduces the loading times of protocols in Tamarin-Prover. Using this procedure
lets us analyze some protocols for which the analysis would otherwise be effectively
nonterminating. This improvement could be performed even on protocol specifications
in the Tamarin-Prover input language, but Tamarin-Prover itself does not implement
it. Our original intention was to create source lemmas, a feature of Tamarin-Prover
that guides the analysis to completion. We did not follow up on this idea due to time
constraints, but it may be an interesting point of further research.

We attempted to translate the text output of Tamarin-Prover to produce results
in a clear and comprehensible form. This required extending the output of Tamarin-
Prover by minor changes to its source code. We recognize that this effort did not yield
satisfactory results. The output of our implementation is incomplete and ambiguous
in cases where the text output of Tamarin-Prover is still insufficient. Furthermore,
understanding the output requires a great deal of effort end experience. We believe
that translating the interactive interface of Tamarin-Prover would have been more
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successful, but also very work-intensive.
We demonstrate the correctness of our implementation by analyzing several proto-

cols. The main purpose of our tool is to analyze old protocols with textbook attack
examples. In cases of old protocols, we show examples where our tool is capable of
discovering the known attacks that exploit their weaknesses. The files associated with
this thesis also contain protocols for which the analysis does not terminate. Nonter-
mination in some cases has to be accepted because the analysis of the properties of
cryptographic protocols is an undecidable problem. We also demonstrate that our tool
is capable of analyzing complex, modern protocols by analyzing a Noise protocol. This
shows that despite its limitations, our language is sufficiently expressive to specify and
analyze a reasonable class of protocols.
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