Improving LSA word weights for document classification

Bc. Vladimír Macko¹ supervisor: RNDr. Kristína Malinovská, PhD.¹

¹Comenius University Faculty of Mathematics, Physics and Informatics

June 13, 2018

■▶ ■= ののの

Overview

- Introduction
- Problem outline
- Our work
- Results

< □ > < @ >

▲ 분 ▶ 분 분 ● 9 Q @

Document classification

Sentiment analysis

This was a terrible movie = negative sentiment

- create representation for words
- create representation for document
- predict

LSA

- W: reweighting
- S: decomposition
- C: classifier

< □ > < 同 >

< ∃⇒

SVD

$$\begin{pmatrix} \mathbf{M} & \mathbf{U} & \boldsymbol{\Sigma} & \mathbf{V}^{T} \\ \mathbf{t}_{j}^{T} & & & \\ \downarrow & \downarrow \\ \mathbf{u} \\$$

- d_i : document as bag of words
- u_i : word vector
- M: co-occurrence matrix
- v_i : document vector
- d_iU : lower dimensional embedding

LSA problems

- Most representative features, not most discriminative
- Sensitive to preprocessing and stop words
- Sensitive to weights
- Unsupervised and can forget things

1

Current solutions

- Preprocessing
- Weight Mutual information [Wu et al., 2017], [Deng et al., 2014]
- Supervised weights: TF-KLD [Ji and Eisenstein, 2013], [Lan et al., 2009]

Current solutions

- W: reweighting
- S: decomposition
- C: classifier

.⊒ →

eLSA

el SA

- Apply weighting scheme w, rescale with w', factorize, predict
- Training the predictor, optimize w'

LSA used in similar manner in [lonescu et al., 2015]

ъ

Gradient descent

- Co-occurrence matrix ${\cal M}$
- Weight vector w'

- SVD: $U\Sigma V^T$
- Simple classifier: $\sigma(v\theta + b)$

- Reweighted matrix $M \circ w'$
- SVD decomposition $M \circ w' = U \Sigma V^T$
- Compute embedding $v = d \circ w' U$
- Train classifier $\hat{y} = \sigma(v\theta + b)$ to minimize $E = \frac{1}{2}(\hat{y} y)^2$
- Compute derivative $\frac{\partial E}{\partial w'} = (\hat{y} y)\hat{y}(1 \hat{y})\Theta U$
- Update weights: $w' = w' \alpha \frac{\partial E}{\partial w'}$

Literature

Evaluation

Datasets from SentEval [Conneau et al., 2017]

- Customer review dataset (CR)
- Movie review (MR)
- Subjective vs objective (SUBJ)
- Opinion polarity (MPQA)
- Questions types (TREC), actually 6 dataset

Literature

eLSA learning curves

Figure 1: Learning curve for eLSA with tfidf weights on MR dataset

Literature

eLSA results

		CR	MPQA	MR	SUBJ
scheme	lsa				
None	200	0.01	0.02	0.06	0.02
	300	0.02	0.02	0.05	-0.0
	400	0.03	0.01	0.04	0.01
tfchi2	200	0.01	0.0	0.01	0.01
	300	0.0	-0.0	0.02	0.01
	400	0.01	0.0	0.03	0.02
tfgr	200	0.01	-0.0	0.01	0.02
-	300	0.01	-0.0	0.01	0.01
	400	0.03	0.01	0.01	0.02

Table 1: Accuracy increase over LSA

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

토▶ ▲ 토▶ · 토|ㅌ · 이익⊙

Literature

eLSA results

		CR	MPQA	MR	SUBJ
scheme	lsa				
tfidf	200	0.04	0.06	0.07	0.01
	300	-0.0	0.05	0.05	0.0
	400	-0.01	0.03	0.02	0.01
tfig	200	0.0	0.01	0.01	-0.0
	300	0.0	0.01	0.01	0.01
	400	0.03	0.0	0.02	0.01
tfor	200	0.01	0.0	0.0	0.01
	300	0.0	0.0	-0.0	0.0
	400	-0.0	0.02	-0.03	0.01

Table 2: Accuracy increase over LSA

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Literature

Insight

words	w'	-	words	w'
is	6.25	_	from	0.42
how	5.87		its	0.41
what	3.73		nickname	0.38
in	3.60		address	0.34
mean	3.51		abbreviation	0.32
of	3.10		fast	0.32
come	3.09		term	0.25
long	2.96		word	0.24
for	2.94		between	0.04
the	2.39		?	0.00

(a) Words with highest w' (b) Words with lowest w'

A B > A B > A

Table 3: Most reweighted words on DESC dataset for scheme TFIDF

▶ ★ 분 ▶ 분 1 = · · ○ ○ ○

Literature

Insight

words	w'	words	u
is	7.69	out	1.0
are	4.52	name	0.9
what	3.52	you	0.9
mean	3.44	does	0.9
origin	3.42	in	0.9
difference	3.20	who	0.8
much	2.91	do	0.7
long	2.79	?	0.5
where	2.72	was	0.4
definition	2.71	the	0.0

(a) Words with highest w' (b) Words with lowest w'

A B > A B > A

Table 4: Most reweighted words on DESC dataset for scheme TFIG

E ► ★ E ► E = 9 < 0</p>

Other experiments

- word vectors baselines
- ${\ensuremath{\bullet}}$ learning rates for w'
- batch gradient descent
- stochastic gradient descent
- even more datasets

Literature I

[Altszyler et al., 2016] Altszyler, E., Sigman, M., Ribeiro, S., and Slezak, D. F. (2016).

Comparative study of Isa vs word2vec embeddings in small corpora: a case study in dreams database.

arXiv preprint arXiv:1610.01520.

[Bottou and Bousquet, 2008] Bottou, L. and Bousquet, O. (2008).

The tradeoffs of large scale learning.

In Platt, J., Koller, D., Singer, Y., and Roweis, S., editors, *Advances in Neural Information Processing Systems*, volume 20, pages 161–168. NIPS Foundation (http://books.nips.cc).

[Brand, 2006] Brand, M. (2006).

Fast low-rank modifications of the thin singular value decomposition.

Linear algebra and its applications, 415(1):20–30.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ●

[Conneau et al., 2017] Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and Bordes, A. (2017). Supervised learning of universal sentence representations from natural language inference data.

arXiv preprint arXiv:1705.02364.

[Deng et al., 2014] Deng, Z.-H., Luo, K.-H., and Yu, H.-L. (2014).

A study of supervised term weighting scheme for sentiment analysis. *Expert Systems with Applications*, 41(7):3506–3513.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016).*Deep Learning*.MIT Press.

http://www.deeplearningbook.org.

∃ ↓ ↓ ∃ ↓ ∃ ⊨ √Q ∩

[Ionescu et al., 2015] Ionescu, C., Vantzos, O., and Sminchisescu, C. (2015). Training deep networks with structured layers by matrix backpropagation. arXiv preprint arXiv:1509.07838.

[Ji and Eisenstein, 2013] Ji, Y. and Eisenstein, J. (2013).
 Discriminative improvements to distributional sentence similarity.
 In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 891–896.

[Lan et al., 2009] Lan, M., Tan, C. L., Su, J., and Lu, Y. (2009).

Supervised and traditional term weighting methods for automatic text categorization.

IEEE transactions on pattern analysis and machine intelligence, 31(4):721–735.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ●

Literature

Literature IV

[Levy and Goldberg, 2014] Levy, O. and Goldberg, Y. (2014). Neural word embedding as implicit matrix factorization. In Advances in neural information processing systems, pages 2177–2185.

[Levy et al., 2015] Levy, O., Goldberg, Y., and Dagan, I. (2015). Improving distributional similarity with lessons learned from word embeddings.

Transactions of the Association for Computational Linguistics, 3:211–225.

[Maas et al., 2011] Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C. (2011).

Learning word vectors for sentiment analysis.

In Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies-volume 1, pages 142–150. Association for Computational Linguistics.

★ ∃ ► ★ ∃ ► 5 €

Literature

Literature V

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global vectors for word representation.

In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532–1543.

[Rumelhart, 1986] Rumelhart, D. (1986).

Learning internal representations by error propagation. *Nature*, 323:533–536.

[Salton and Buckley, 1988] Salton, G. and Buckley, C. (1988).

Term-weighting approaches in automatic text retrieval.

Information processing & management, 24(5):513–523.

[Wu et al., 2017] Wu, H., Gu, X., and Gu, Y. (2017).

Balancing between over-weighting and under-weighting in supervised term weighting.

Information Processing & Management, 53(2):547–557.

↓ ∃ ► ↓ ∃ = √ Q ()

Literature

Thank you for your attention

Notation

- "označenia bez akéhokoľvek vysvetlenia"
- "matica M"
- "SVD ako konštanta"
- "documenty alebo vety": "We consider the sentences to be basically identical to documents as they both can be considered to be sequences of words."

Bibliography

- 62 citations on 6 pages
- researched other thesis (Vajdová, 2017)
- stochastic gradient descent: [19] [Goodfellow et al., 2016], [8] [Bottou and Bousquet, 2008], [55] [Rumelhart, 1986],
- TF-IDF: [56], [Salton and Buckley, 1988]

Weighting schemes

• Weighting schemes [61] [29] [18]

$$ig = \frac{a}{N} \log_2 \frac{aN}{(a+b)(a+c)} + \frac{b}{N} \log_2 \frac{bN}{(a+b)(b+d)} + \frac{c}{N} \log_2 \frac{cN}{(a+c)(c+d)} + \frac{d}{N} \log_2 \frac{dN}{(b+d)(c+d)}$$

$$gr = \frac{ig}{-\frac{a+b}{N}\log_2\frac{a+b}{N} - \frac{c+d}{N}\log_2\frac{c+d}{N}}$$

리운 세종

Default model parameters

- mentioned the relevant ones
- others: penalty, dual, tol, C, fit_intercept, intercept_scaling, class_weight, random_state, solver, max_iter, multi_class, warm_start, kernel, degree, gamma, coef0, shrinking, probability, cache_size, decision_function_shape, alpha, window, min_count, sample, seed, workers, min_alpha, sg, hs, negative, cbow_mean, hashfxn, iter, null_word, trim_rule, sorted_vocab, batch_words, compute_loss, callbacks, num_topics, id2word, chunksize, decay, distributed, onepass, power_iters, extra_samples

Others

- "Ako sa spoja TF a IDF váhy do jednej": multiplication
- Classifier in 4.2.3: logistic regression

1.2

Opponent's questions

${\rm Constrains} \ {\rm on} \ w'$

- We tried regularization, but results were poor
- Other constrains are extremely hard (GANS)
- In practice, results were fine

$w' \ \mathrm{vs} \ 2w'$

- In theory, no difference
- In practice the classifier may be regularized
- Experimentally, weights are centered around 1 (4.4.1.2)

Underweighting vs overweighting

- Relative change in ordering
- Notions of importance

Supervisor's review

Datasets

- Customer review dataset (CR)
- Movie review (MR)
- Subjective vs objective (SUBJ)
- Opinion polarity (MPQA)
- Questions types (TREC)
 - ABBR
 - DESC
 - ENTY
 - HUM
 - LOC
 - NUM

Supervisor's review

Time complexity

- LSA: 1-3, complexity depends on SVD
- eLSA: $LSA \times epochs$, (35)
- word2vec: 5, $C \times (D + D \times \log_2(V))$

Count vs. prediction

Prediction

- extremely popular
- huge performance gains
- less memory demanding

Count

- less hyperparameters
- easier to "train"
- teoreticaly based

Count vs prediction

Glove vectors as explicit factorization

• Neural word embedding as implicit matrix factorization [Levy and Goldberg, 2014]

Hyperparameters matter

• Improving distributional similarity with lessons learned from word embeddings [Levy et al., 2015]

Does not work well on small datasets

• Comparative study of LSA vs Word2vec embeddings in small corpora [Altszyler et al., 2016]

10/10