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Document classification

Sentiment analysis
This was a terrible movie = negative sentiment

create representation for words
create representation for document
predict
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LSA
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di: document as bag of words
ui: word vector
M : co-occurrence matrix
vi: document vector
diU : lower dimensional embedding
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LSA problems

Most representative features, not most discriminative
Sensitive to preprocessing and stop words
Sensitive to weights
Unsupervised and can forget things
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Current solutions

Preprocessing
Weight - Mutual information [Wu et al., 2017],
[Deng et al., 2014]
Supervised weights: TF-KLD [Ji and Eisenstein, 2013],
[Lan et al., 2009]

Macko, Malinovska eLSA 7 / 23



Introduction
Problem outline

Our work
Results

Current solutions

[0,1,...,1,0]

[1,0,...,0,0]

[0,1,...,0,1]

W

[0,0.3,...,1.1,0]

[0,2,...,0,0]

[0,0.1,...,0.0,0]

S

[0.1,0.3,0.4]

[0.2,0.1,0.5]

[0.8,0.1,0.1]

C 0/1

Y

W : reweighting
S: decomposition
C: classifier

Macko, Malinovska eLSA 8 / 23



Introduction
Problem outline

Our work
Results

eLSA
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eLSA
Apply weighting scheme w, rescale with w′, factorize, predict
Training the predictor, optimize w′

LSA used in similar manner in [Ionescu et al., 2015]
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Gradient descent

Co-occurrence matrix M
Weight vector w′

SVD: UΣV T

Simple classifier: σ(vθ + b)

Reweighted matrix M ◦ w′

SVD decomposition M ◦ w′ = UΣV T

Compute embedding v = d ◦ w′U

Train classifier ŷ = σ(vθ + b) to minimize E = 1
2(ŷ − y)2

Compute derivative ∂E
∂w′ = (ŷ − y)ŷ(1 − ŷ)ΘU

Update weights: w′ = w′ − α ∂E
∂w′

Macko, Malinovska eLSA 10 / 23



Introduction
Problem outline

Our work
Results

Literature

Evaluation

Datasets from SentEval [Conneau et al., 2017]

Customer review dataset (CR)
Movie review (MR)
Subjective vs objective (SUBJ)
Opinion polarity (MPQA)
Questions types (TREC), actually 6 dataset
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eLSA learning curves

Figure 1: Learning curve for eLSA with tfidf weights on MR dataset
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eLSA results

CR MPQA MR SUBJ
scheme lsa

None 200 0.01 0.02 0.06 0.02
300 0.02 0.02 0.05 -0.0
400 0.03 0.01 0.04 0.01

tfchi2 200 0.01 0.0 0.01 0.01
300 0.0 -0.0 0.02 0.01
400 0.01 0.0 0.03 0.02

tfgr 200 0.01 -0.0 0.01 0.02
300 0.01 -0.0 0.01 0.01
400 0.03 0.01 0.01 0.02

Table 1: Accuracy increase over LSA
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eLSA results

CR MPQA MR SUBJ
scheme lsa

tfidf 200 0.04 0.06 0.07 0.01
300 -0.0 0.05 0.05 0.0
400 -0.01 0.03 0.02 0.01

tfig 200 0.0 0.01 0.01 -0.0
300 0.0 0.01 0.01 0.01
400 0.03 0.0 0.02 0.01

tfor 200 0.01 0.0 0.0 0.01
300 0.0 0.0 -0.0 0.0
400 -0.0 0.02 -0.03 0.01

Table 2: Accuracy increase over LSA
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Insight

words w′

is 6.25
how 5.87
what 3.73
in 3.60
mean 3.51
of 3.10
come 3.09
long 2.96
for 2.94
the 2.39

(a) Words with highest w′

words w′

from 0.42
its 0.41
nickname 0.38
address 0.34
abbreviation 0.32
fast 0.32
term 0.25
word 0.24
between 0.04
? 0.00

(b) Words with lowest w′

Table 3: Most reweighted words on DESC dataset for scheme TFIDF
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Insight

words w′

is 7.69
are 4.52
what 3.52
mean 3.44
origin 3.42
difference 3.20
much 2.91
long 2.79
where 2.72
definition 2.71

(a) Words with highest w′

words w′

out 1.00
name 0.98
you 0.97
does 0.93
in 0.90
who 0.83
do 0.71
? 0.59
was 0.46
the 0.00

(b) Words with lowest w′

Table 4: Most reweighted words on DESC dataset for scheme TFIG
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Other experiments

word vectors baselines
learning rates for w′

batch gradient descent
stochastic gradient descent
even more datasets
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Opponent’s review

Notation
“označenia bez akéhokoľvek vysvetlenia”
“matica M”
“SVD ako konštanta”
“documenty alebo vety”: “We consider the sentences to be
basically identical to documents as they both can be
considered to be sequences of words.”
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Opponent’s review

Bibliography
62 citations on 6 pages
researched other thesis (Vajdová, 2017)
stochastic gradient descent: [19] [Goodfellow et al., 2016], [8]
[Bottou and Bousquet, 2008], [55] [Rumelhart, 1986],
TF-IDF: [56], [Salton and Buckley, 1988]
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Weighting schemes

Weighting schemes [61] [29] [18]
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Opponent’s review

Default model parameters
mentioned the relevant ones
others: penalty, dual, tol, C, fit_intercept, intercept_scaling,
class_weight, random_state, solver, max_iter, multi_class,
warm_start, kernel, degree, gamma, coef0, shrinking,
probability, cache_size, decision_function_shape, alpha,
window, min_count, sample, seed, workers, min_alpha, sg,
hs, negative, cbow_mean, hashfxn, iter, null_word, trim_rule,
sorted_vocab, batch_words, compute_loss, callbacks,
num_topics, id2word, chunksize, decay, distributed, onepass,
power_iters, extra_samples
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Others
“Ako sa spoja TF a IDF váhy do jednej”: multiplication
Classifier in 4.2.3: logistic regression
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Opponent’s questions

Constrains on w′

We tried regularization, but results were poor
Other constrains are extremely hard (GANS)
In practice, results were fine

w′ vs 2w′

In theory, no difference
In practice the classifier may be regularized
Experimentally, weights are centered around 1 (4.4.1.2)

Underweighting vs overweighting

Relative change in ordering
Notions of importance
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Supervisor’s review

Datasets
Customer review dataset (CR)
Movie review (MR)
Subjective vs objective (SUBJ)
Opinion polarity (MPQA)
Questions types (TREC)

ABBR
DESC
ENTY
HUM
LOC
NUM
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Supervisor’s review

Time complexity
LSA: 1 − 3, complexity depends on SVD
eLSA: LSA× epochs, (35)
word2vec: 5, C × (D +D × log2(V ))
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Count vs. prediction

Prediction
extremely popular
huge performance gains
less memory demanding

Count
less hyperparameters
easier to “train”
teoreticaly based
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Count vs prediction

Glove vectors as explicit factorization
Neural word embedding as implicit matrix factorization
[Levy and Goldberg, 2014]

Hyperparameters matter
Improving distributional similarity with lessons learned from
word embeddings [Levy et al., 2015]

Does not work well on small datasets
Comparative study of LSA vs Word2vec embeddings in small
corpora [Altszyler et al., 2016]
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