
Prevention of occurrence of dead
units in self-organizing maps

Student: Bc. Jakub Novák
Supervisor: doc. RNDr. Martin Takáč, PhD.

Contents

● Goals
● Self-organizing map
● Dead units
● Method
● Results and comparison
● Future work

1/24

Goals

● review existing approaches
● suggest SOM modifications
● implement simulations
● analyze to what extent the proposed modifications

succeed in eliminating dead units

2/24

Self-organizing map

● model of artificial neural network
trained using unsupervised learning

● preserves topology
● two-dimensional representation

of the input space
● neighbourhood function

○ adapts neighbourhood of winning neuron
○ neighbourhood shrinks with time

(1) Neighbourhood

3/24

Self-organizing map

● SOM algorithm has 2 steps
○ competition
○ learning

● competition
○ neurons compete, which one has weights

the closest to the input

● learning
○ neurons adapt weights within the neighbourhood
○ SOM parameters update (learning rate, neighbourhood size, …)

4/24

Motivation

● neurons remember information about available data in
their weights

● small map forces neurons to represent more different data
● bigger map can represent data more precisely

○ unused neurons, called dead units, might occur

5/24

Dead units problem

● common
● as a result, network capacity is not being fully utilized
● usually caused by badly initialized weights in the SOM

○ some neurons have weights far from any data

● rich get richer
● losers adapt too little

6/24

Dead units problem

(2) 20x20 SOM with dead units (3) 20x20 SOM without dead units
7/24

General setup

● SOM of size 20x20
● scikit-learn digit dataset

○ 1797 hand written 8x8 digits

● 30 epochs
● Gaussian neighborhood size

8/24

Method

● neighbourhood size and learning rate annealing
● training random dead unit
● training dead units for novel inputs

9/24

Neighbourhood size and learning rate annealing

● standard approach
● two phases

○ initial organization phase
■ start off with big neighbourhood

size and quickly (within few
epochs) get to small
neighbourhood size

○ fine-tuning phase
■ fine-tuning neuron weights

○ (xA, yA) - starting point
(xB, yB) - breaking point
(xC, yC) - end point

(4) Annealing

10/24

Neighbourhood size and learning rate annealing

● explored all combinations for
○ breaking points in 1st, 3rd, 7th and 12th epoch
○ breaking point learning rates: 0.1, 0.2, 0.5
○ initial neighbourhood sizes: 2, 5, 10, 20, 50, 100

● hypothesis
○ starting with larger neighbourhood sizes can help minimize the number of

dead units

11/24

Neighbourhood size and learning rate annealing

(5) Percentage of dead units for each parameter
combination using first method.

12/24

Training random dead unit

● extra step after each epoch
● randomly choose dead unit
● find closest input datum
● adapt dead units weights and weights of its

neighbourhood with this datum

13/24

Training random dead unit

● two variants
○ remove dead unit from map of dead units
○ keep dead unit in map of dead units

● hypothesis
○ eliminate dead neurons by forcing them to adapt

14/24

Training random dead unit

● keeping the dead unit in map of dead units achieved better
results (8.25-13.75% vs 7-13% of dead units)

(7) Results for variant that kept dead unit in the map of dead units.(6) Results for variant that removed dead unit from the map of dead units.

15/24

Training dead units for novel inputs

● are neurons weights similar enough to the input datum?
● threshold variable

○ some digits are not clearly separable

● choosing threshold
○ calculate mean Euclidean distance for inputs of the same category
○ calculate cross-category Euclidean distances

16/24

Training dead units for novel inputs

● two variants
○ dead units are adapted with learning rate according to annealing scheme
○ dead units are adapted with constant learning rate (1.0)

● hypothesis
○ potential better clusterization
○ novelty inputs mapped to unused neurons

17/24

Training random dead unit

● using decayed learning rate according to annealing
scheme achieved slightly better results

(8) Results for variant that used decayed learning rate. (9) Results for variant that used constant 1.0 learning rate.

18/24

Across method comparison

19/24

Across method comparison

(10) Average percentage of dead units across methods. (11) Average quantization error across methods.
20/24

Across method comparison

(12) Quantization error convergence across methods. 21/24

● what could be improved based on results
● first method

○ values of neighbourhood size seems to depend on the size of SOM

● second method
○ no significant dependencies

● third method
○ not reliable in current state
○ correct threshold is extremely data dependent

Across method comparison

22/24

● third method - bonus experiment
○ for each neuron, remember how much training it got
○ if threshold not satisfied, choose neuron with least training received
○ early results - not good for SOM

■ under-trained neurons disrupt clustering property of SOM

Across method comparison

23/24

● different SOM sizes
○ with more neurons than training examples

● train on more datasets
● finer exploration of threshold variable
● criterion function

Future work

24/24

Thank you for your attention

Questions

● Akým spôsobom získané výsledky závisia od konkrétneho datasetu a
konkrétnej veľkosti mapy?

○ priamo
○ problém separability
○ neuróny nútené reprezentovať viac kategórií dát
○ väčšia mapa by nám mohla pomôcť vidieť väčšie rozdiely medzi navrhnutými metódami

● Ktoré parametre by bolo treba upraviť, keby bola SOM oveľa väčšia?
○ veľkosť okolia v štartovacom bode
○ veľkosť okolia v “breaking” bode
○ ostatné parametre nie sú závislé od veľkosti SOM

Questions

● Aký všeobecný záver resp. odporúčania by ste vyvodili?
○ vyskúšať viac veľkostí SOM
○ vyskúšať viac rôznych datasetov

