
Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

Príprava štúdia matematiky a informatiky na
FMFI UK v anglickom jazyku

ITMS: 26140230008

dopytovo – orientovaný projekt

Moderné vzdelávanie pre vedomostnú spoločnosť/Projekt je spolufinancovaný zo zdrojov EÚ

2

Users and groups

● user
– is identified by a number – UID

– belongs to one primary group and 0 or more
supplemental groups

– special user root with UID 0 – unlimited access
rights

● group
– is identified by a number – GID

– contains 0 or more users

3

User database

● text file /etc/passwd

– username:password:uid:gid:full name:home:shell
● username – the name used to identify the user to

humans, lower-case letters, limited to 8 characters on
older systems

● password – encrypted password, * = invalid password
● uid, gid
● full name – the user's real name, supplementary

information
● home – the user's home directory
● shell – the shell started when the user logs in (valid shells

are specified in /etc/shells)

4

User database

● the /etc/passwd file has to be readable for all
users in the system in order to allow them to
map UIDs to usernames (e.g. in ls)

● newer systems use x in place of the password
in /etc/passwd and store passwords in
/etc/shadow

● /etc/shadow is readable only for root

5

User database
● text file /etc/shadow

– username:password:last changed:min age:
 max age:warn before:lock after:acc. exp.:reserved

● last changed – the date of the last change of the password
(in days since 1.1.1970)

● min. age – the min. number of days before the user can
change the password

● max. age – the max. number of days before the password
must be changed

● warn before – number of days before password expiry when
the system warns the user

● lock after – number of days after password expiry when the
account is locked

● acc. exp. - the date when the account will be locked

6

Group database
● text file /etc/group

– groupname:password:gid:user list

– groupname – the name of the group

– password – encrypted password of the group (or empty)

– gid – the group ID number

– user list – comma-separated list of users for whom this
group is a supplementary group

● text file /etc/gshadow

– groupname:password::

7

An example of /etc/passwd

root:x:0:0::/root:/bin/bash
bin:x:1:1:bin:/bin:
daemon:x:2:2:daemon:/sbin:
adm:x:3:4:adm:/var/log:
lp:x:4:7:lp:/var/spool/lpd:
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/:
news:x:9:13:news:/usr/lib/news:
uucp:x:10:14:uucp:/var/spool/uucppublic:
operator:x:11:0:operator:/root:/bin/bash
games:x:12:100:games:/usr/games:
ftp:x:14:50::/home/ftp:
mysql:x:27:27:MySQL:/var/lib/mysql:/bin/bash
gdm:x:42:42:GDM:/var/state/gdm:/bin/bash
nobody:x:99:99:nobody:/:
janko:x:1000:100:Janko Hrasko,,,:/home/janko:/bin/bash

8

An example of /etc/shadow

root:nhC.YP4s8lF1Y:11783:0:::::
bin:*:9797:0:::::
daemon:*:9797:0:::::
adm:*:9797:0:::::
lp:*:9797:0:::::
sync:*:9797:0:::::
shutdown:*:9797:0:::::
halt:*:9797:0:::::
mail:*:9797:0:::::
news:*:9797:0:::::
uucp:*:9797:0:::::
operator:*:9797:0:::::
games:*:9797:0:::::
ftp:*:9797:0:::::
mysql:*:9797:0:::::
gdm:*:9797:0:::::
nobody:*:9797:0:::::
janko:in9.jjl2XgsXQ:11783:0:99999:7:::

9

An example of /etc/group

root::0:root
bin::1:root,bin,daemon
daemon::2:root,bin,daemon
sys::3:root,bin,adm
adm::4:root,adm,daemon
tty::5:
disk::6:root,adm
lp::7:lp
mem::8:
kmem::9:
wheel::10:root
floppy::11:root,jerry
mail::12:mail
news::13:news
uucp::14:uucp,jerry
man::15:
games::20:
slocate:x:21:
mysql::27:
gdm::42:
ftp::50:
nobody::98:nobody

10

Creating a user

● by hand – by editing /etc/passwd,
/etc/shadow, and /etc/group

● useradd [-c FullName] [-m] username

– -m also creates home directory

– -g grp - primary group for the user

– -G grp[,...] - supplementary groups for the user

– -s shell, -e YYYY-MM-DD, -f inact

– -D [-g grp] [-b home] [-s shell] [-e expiry]
[-f inact]

● script adduser

11

Modifying and deleting a user

● deleting:
userdel [-r] username

– -r – also deletes the user's home directory

● modifying:
usermod options username

– -c FullName, -d home [-m], -g grp,
-G g1,g2,..., -l newname, -s shell,
-e exipry_date, -f inact_days

– -L, -U – lock, unlock

12

Changing password

● change password: passwd username

● lock password: passwd -l username

● unlock password: passwd -u username

● other switches allow you to set expiration
attributes

● other commands for modifying selected user's
attributes:
– chsh (change shell), chfn (change FullName),

chage (change password expiration attributes)

13

Creating and deleting a group

● by hand – by editing /etc/group

● creating:
groupadd groupname

● deleting:
groupdel groupname

● renaming:
groupmod -n newname oldname

14

Processes

● every process is assigned
– UID

● real – UID of the user who started the process
● effective – UID of the user whose access rights the

process currently uses
● saved

– GID
● real, effective, saved

– list of supplementary group IDs

15

Access rights to the filesystem

● every filesystem object is assigned
– owner – UID of a user

– group – GID of a group

– access rights (permissions)
● read (r) – read from the file/directory
● write (w) – write to the file, change the contents of the

directory (create/rename/delete a directory entry)
● execute/search directory – execute the file, use the

directory in a path to a filesystem object

– for the owner, for the group, and for others

16

Access rights to the filesystem

jerry@jerryntb:/$ ls -l
total 80
drwxr-xr-x 2 root bin 4096 May 4 2002 bin
drwxr-xr-x 2 root root 4096 Dec 29 08:28 boot
drwxr-xr-x 2 root root 4096 May 4 2002 cdrom
drwxr-xr-x 1 root root 0 Jan 1 1970 dev
drwxr-xr-x 29 root root 4096 Feb 16 16:10 etc
drwxr-xr-x 2 root root 4096 May 4 2002 floppy
drwxr-xr-x 5 root root 4096 Oct 19 13:05 home
drwxr-xr-x 2 root root 4096 Dec 22 18:40 jet
drwxr-xr-x 3 root root 4096 May 4 2002 lib
drwxr-xr-x 2 root root 16384 Apr 6 2002
lost+found
drwxr-xr-x 3 root root 4096 May 6 2002 mnt
drwxr-xr-x 5 root root 4096 May 4 2002 old
drwxr-xr-x 3 root root 4096 Mar 30 2002 opt
dr-xr-xr-x 73 root root 0 Feb 16 15:05 proc
drwx--x--- 3 root root 4096 May 6 2002 root
drwxr-xr-x 2 root bin 4096 May 4 2002 sbin
drwxrwxrwt 7 root root 4096 Feb 16 14:09 tmp
drwxr-xr-x 17 root root 4096 Apr 1 2002 usr
drwxr-xr-x 14 root root 4096 Jan 24 2002 var

rights
owner
group
type

17

Access rights to the filesystem

● if the UID of the object's owner is equal to
the effective UID of the process, the owner's
permissions are used

● otherwise, if the GID of the object's group is
equal to the effective GID of the process or
to the GID of any supplementary group of the
process, the group's permissions are used

● otherwise the others' permissions are used
● if the effective UID of the process is 0, no

access restrictions apply

18

Access rights to the filesystem

r w x r w x r w x
execute for the others 001

write for the others 002

read for the others 004

execute for the group 010

write for the group 020

read for the group 040

execute for the owner 100

write for the owner 200

read for the owner 400

the numbers are
octal (base 8
numbering
system)

19

Access rights to the filesystem

● an ordinary file
– 640 – the owner can read and write, the group

can read, the others can do nothing

– 511 – all can execute, the owner can also read

● a directory
– 750 – the group can read and use, the owner

can also modify, and the others can do nothing

– 711 – the group and the others can use but not
read (list files) or modify the directory

20

Access rights to the filesystem

● changing the access rights
– only the owner (and root) can change access

rights

– chmod rights object ...
● rights as an octal number

– chmod WhoOpRight[,...] object ...
● Who: u – owner, g – group, o – others, a = ugo
● Op: + - add, - - remove, = - set
● Right: r, w, x

– chmod -R ... - recursively apply to subtree

21

Access rights to the filesystem

chmod 640 file chmod u=rw,g=r,o= file

chmod 711 file chmod u=rwx,go=x file

chmod 711 file chmod a=rwx,go-rw file

chmod 711 file chmod a=x,u+rw file

22

Access rights to the filesystem

● changing the owner
– only by root

– chown [-R] owner[:group] object ...
● owner – the username or UID of a user
● group – the name or GID of a group

● changing the group
– chgrp [-R] group object ...

● group – the name or GID of a group

– root can change the group to any group, the
owner can change the group to a group he/she
is a member of

23

Access rights to the filesystem

● when a file or a directory is created:
– owner = effective UID of the creating process

– group = effective GID of the creating process
(SysV) or the group of the parent directory (BSD)

– rights are defined by the creating process
(usually 666 for files and 777 for directories) and
modified by the value of umask – the rights set
in umask are removed from the result

● umask can be set by the umask command
● umask 022 – the group and others are denied write

● umask 077 – the group and others are denied all

24

Access rights to the filesystem
● Some programs need different rights than

that of the user who starts them – e.g.
passwd needs to write to /etc/passwd, or
read and write to /etc/shadow.

● set-UID permission bit
– chmod: 4000, u+s, ls -l: rwsr-xr-x

– the process will have its saved UID and its
effective UID equal to the UID of the owner of
the executed file

– the process can switch its effective UID between
its real and saved UID

25

Access rights to the filesystem
● set-GID permission bit

– chmod: 2000, g+s, ls -l: rwxrwsr-x

– the process will have its saved GID and its
effective GID equal to the GID of the executed
file's group

– the process can switch its effective GID between
its real and saved GID

● set-GID permission bit on directories (SysV)
– created files and subdirectories will have their

group equal to this directory's group and
subdirectories will have their set-GID bit set

26

Access rights to the filesystem

● sticky bit on directories
– chmod: 1000, +t, ls -l: rwxrwxrwt

– an object in this directory can be removed only
by the owner of the object, by the owner of the
directory or by root; the standard access rights
are applied as well, i.e. the user must have w
right to the directory as well

– /tmp has rights 1777

27

UNIX directory tree

● /dev
– character and block devices

● /etc
– configuration files

● /bin
– basic system programs for normal users

● /sbin
– basic system programs for administrators

28

UNIX directory tree

● /lib
– basic system shared libraries

● /tmp
– temporary files

● /boot
– kernel and other files for boot loader

● /proc
– system information and access to the running

system's parameters

29

UNIX directory tree

● /var
– varying files (locks (/var/lock), queues

(/var/spool), PID files (/var/run), logs (/var/log),
mailboxes (/var/mail, /var/spool/mail),
applications' files (/var/lib/application), ...)

● /root
– root's home directory

● /home
– home directories for normal users

30

UNIX directory tree

● /mnt
– the mount-point for temporary filesystems

● /opt
– the directory for optional subsystems

● /usr/bin
– most of the application executables

● /usr/sbin
– supplemental programs for administration

31

UNIX directory tree

● /usr/include
– header files (.h) for C/C++ programs

● /usr/lib
– libraries (both shared (.so) and static (.a))

● /usr/share
– files shareable across architectures

● /usr/local
– hierarchy for locally installed software

● /usr/X11 – X Windows (on some systems)

32

UNIX directory tree

● /media
– the directory for mounting removable media (mostly

on desktop systems)

● /sys
– Linux sysfs – special filesystem to access

information and control various system devices and
drivers

33

● i-node – data structure with information
about a filesystem object
– type

– size

– owner, group

– permissions

– the time of the last access, modification, i-node
change

– number of links to the object from directories

– list of blocks of the file

UNIX filesystem

34

UNIX filesystem

● directory
– name

– i-node number

● types of filesystem objects
– normal file

– directory (d)

– character/block device (c/b)

– symbolic link (l)

– pipe/fifo (p)

– socket (s)

35

UNIX filesystem

● There can be unlimited number of (hard) links
to an object.

● A filesystem object is removed when
– the number of links from directories = 0 and

– the number of links from the table of open files = 0.

● Several hard links to the same object differ
only in name, other attributes are shared.

36

UNIX filesystem

● Creating a link to an object:
– when the object is created

– using the command ln:
ln existing dest

● created the link dest

– ln exist1 ... directory
● creates links with the same names in the specified

directory

– all links are equivalent, it is impossible to
determine how they have been created

– it is impossible to create a link to a directory

37

Filesystem objects

● Symbolic link (soft link, symlink)
– special file containing a path (relative or

absolute) to another object

– common operations except remove are
performed on the object that the symbolic link
points to

– the remove operation removes only the symbolic
link, not the primary object

– symbolic link has no permissions

– broken link – symlink a non-existent object

38

Filesystem objects

● Creating a symlink:
– using the command ln:
ln -s path dest

● creates the symlink dest containing the specified path

– ln -s path1 ... directory
● creates symlinks in the specified directory with the

same names as the specified objects

● Relative vs. absolute path
– relative path is relative to the symlink

– absolute path starts with /

39

Filesystem objects

● Symlink vs. hard link
– symlink can point to a directory

– symlink can point to a different filesystem

– symlink does not prevent you from removing the
object – it has no influence on the number of
links in the i-node

– symlink can point to a non-existent object

– symlink can be differentiated from the primary
object

40

Filesystem objects

● Pipe (fifo)
– a one-way interprocess communication channel

● one process opens it for writing, another one for
reading

– unnamed pipe – is not a filesystem object

– creating:
mkfifo [-m mode] name ...

● mode = permissions as an octal number
● default permissions: 666

41

Filesystem objects

● Directory
– creating:
mkdir name ...

– deleting (removing):
rmdir name ...

– only an empty directory can be removed
● empty directory contains only . and .. records

42

Filesystem objects

● Block and character devices
– most devices (except for network interfaces) are

represented by special “files”

– from the kernel's point of view they are identified
by a pair of numbers

● major number – a group of devices of a type
● minor number – identifies a single device of the type

– the special files are usually located in /dev

– creating:
mknod [-m mode] name b|c major minor

43

Block and character devices

● block device
– the basic unit is a block

– e.g. disk, CD, floppy disk, ramdisk

– it can contain a filesystem

● character device
– the basic unit is a character / byte

– e.g. serial port, terminal, console, printer, tape

44

Selected character devices

● /dev/null
– read: an empty file, write: throws away all data

● /dev/zero
– read: an infinite file of zero bytes

● /dev/full
– read: /dev/zero, write: full disk

● /dev/random
– a random generator output; when it runs out of

entropy, it blocks until new entropy is gathered

45

Selected character devices

● /dev/urandom
– a pseudorandom generator output – does not

block

● /dev/tty
– the current controlling terminal of a process

● /dev/tty1, /dev/tty2, ...
– virtual consoles

● /dev/console, /dev/tty0
– the current virtual console

46

Selected character devices

● /dev/ttyS0, /dev/ttyS, /dev/ttyUSB0, ...
– serial ports

● /dev/lp0
– the printer of the first parallel port

● /dev/ptmx, /dev/pts/0, ...
– pseudoterminal devices

● /dev/tty??, /dev/pty??
– pseudoterminal devices

47

Selected block devices

● /dev/sda, /dev/sdb, /dev/sdc, /dev/sdd, ...
– disks (SCSI, SATA, SAS, USB, IDE with newer

drivers)

● /dev/sda1, /dev/sda2, /dev/sda3, /dev/sda4
– primary partitions of /dev/sda

● /dev/sda5, ...
– logical partitions of /dev/sda

● /dev/fd0
– floppy disk

48

Selected block devices

● /dev/hda, /dev/hdb, /dev/hdc, /dev/hdd, ...
– IDE disks and CD-ROMs with older drivers

● /dev/sr0, /dev/sr1, ...
– CD/DVD ROM

● /dev/sg0, /dev/sg1, ...
– SCSI generic device

● /dev/c0t1d0s2
– SCSI device – controller 0, target 1, LUN 0, slice 2

49

Selected block devices

● /dev/ram0, /dev/ram1, ...
– ramdisks

● /dev/loop0, /dev/loop1, ...
– loopback – allows you to access a file as a block

device
losetup /dev/loop0 file – associate the
file with the loopback block device
losetup -d /dev/loop0 – release the
loopback device

50

Mounting filesystems

● single directory tree (or DAG) for file access
● filesystems are mounted on directories

(mount points)
● the original content of a mount point

becomes temporarily inaccessible – it is
replaced with the root directory of the
mounted filesystem

51

Mounting filesystems

etc
bin
sbin
home
usr
var
lib
tmp
...

user1
user2
user3
...

bin
sbin
include
lib
...

/

52

Mounting filesystems

● mounting a filesystem (FS)
mount [parameters] block_dev dir

– mounts the filesystem on the block device to the
directory

● mount -a [-t type] – mounts all
filesystems of the given type specified in
/etc/fstab without the noauto attribute

● umount {block_dev|dir} – unmounts
the filesystem on the given block device,
resp. mounted on the gived directory

53

Mounting filesystems

● mount – shows /etc/mtab – the list of
mounted filesystems
– more exact information can be read from
/proc/mounts

● options for mount:

– -t type – the type of the filesystem

– -r,-w – mount read-only, read-write

– -n – do not update /etc/mtab

– -o opt1[,opt2,...] – various options

54

Mounting filesystems

● The file /etc/fstab

– contains information about filesystems used by
mount

● mount -a, mount directory

– lines starting with # are comments

– fields are separated by spaces and tabs

– block_dev mount-point type options fs_freq pass_no
● fs_freq – used by some back-up systems
● pass_no – the order of checking FS on boot (0 = without)

55

Mounting filesystems

● options for mounting FS (general)
– sync, async – synchronous / asynchronous

writes

– [no]atime – update last access time

– [no]auto – mount by mount -a

– [no]dev – FS can contain block/char. devices

– [no]exec – FS can contain executable files

– [no]suid – FS can contain set-UID a set-GID
programs

56

Mounting filesystems

– [no]user – FS can be mounted by a user
(using mount directory)

● user implies noexec,nosuid,nodev

– ro – FS is read-only

– rw – FS is read-write

– defaults =
rw,suid,dev,exec,auto,nouser,async

● useful in /etc/fstab, because the fields cannot be
empty

– remount – change parameters of a mounted FS

57

Mounting filesystems

● most common FS types in Linux
– proc

● uses no block device (use none)
● an interface to system parameters
● information about running processes
● usually mounted on /proc

– tmpfs
● uses no block device (use none)
● keeps data in memory
● used for small temporary storage (e.g. for /dev)

58

Mounting filesystems

– devpts
● uses no block device (use none)
● contains the slave device of a pseudoterminal pair,

the master is /dev/ptmx
● usually mounted on /dev/pts
● options

– uid=value – the owner of the created devices
– gid=value – the group of the created devices
– mode=value – permissions for the created devices

– ext2, ext3, ext4
● common FS for Linux
● ext3, ext4 are journalling extensions, better resistance

59

Mounting filesystems

– msdos, vfat
● FAT type FS (DOS, Windows)
● msdos – names of 8+3 characters (DOS)
● vfat – “long names” (Windows)
● important options:

– uid=value – the owner of all objects
– gid=value – the group of all objects
– umask=value – permissions to be switched off
– codepage=value – code page for short names – e.g. 437

(US) or 852 (PC Latin2)
– iocharset=value – the encoding for long name conversion

(stored in Unicode) – e.g. iso8859-2 or utf-8

60

Mounting filesystems

– iso9660
● standard FS on CD-ROM
● supports Rock Ridge and MS Joliet extensions
● can only be read-only
● important options

– norock – disables Rock Ridge extensions (they allow objects
with UNIX properties – long names, symlinks, permissions, ...)

– nojoliet – disables Microsoft Joliet extensions
– uid=value – the owner
– gid=value – the group
– mode=value – the permissions (for non Rock Ridge CD)
– iocharset=value

61

Example of /etc/fstab

/dev/hda5 swap swap defaults 0 0
/dev/hda3 / ext2 defaults 1 1
/dev/hda6 /mnt/fat vfat uid=jerry,umask=077 1 0
/dev/cdroms/cdrom0 /cdrom iso9660 noauto,user,ro 0 0
/dev/fd0 /floppy vfat noauto,user,iocharset=iso8859-2 0
0
/dev/sda1 /jet vfat noauto,user,iocharset=iso8859-2 0
0
none /dev/pts devpts gid=5,mode=620 0 0
none /proc proc defaults 0 0
none /proc/bus/usb usbdevfs defaults 0 0

62

Examples for mount

● mount -t vfat /dev/sda1 /mnt

– mounts the vfat FS from /dev/sda1 to /mnt

● mount /cdrom

– mounts the FS according to /etc/fstab on /cdrom

● mount -o ro,remount /

– makes the root FS read-only

● mount -o loop,ro -t iso9660
/tmp/image.iso /mnt

– connects the file to /dev/loop? and then mounts the FS

63

Creating filesystems

● mkfs -t type [fs-options] blok_dev

– creates a filesystem of the given type using the
program
/sbin/mkfs.type

– mkfs.ext2 → mke2fs
● mke2fs /dev/sda1 – creates ext2 FS
● mke2fs -j /dev/sda1 – creates ext3 FS

– mkfs.msdos → mkdosfs
● mkdosfs /dev/sda2 – creates FAT (msdos, vfat) FS
● mkdosfs -F 32 /dev/sda2 – creates FAT32 FS

64

System start-up (booting)

● BIOS/firmware loads and starts a boot-loader
● boot-loader loads the kernel of an OS,

passes parameters to it and starts it
● kernel:

– initializes necessary devices

– mounts a filesystem on /

– executes /sbin/init as the process 1

● init reads /etc/inittab

65

System start-up (booting)

● runlevels (s, 0 – 6)
– each level is defined by processes that are to

run in it

– common meaning of the runlevels:
● 0 – shutdown the system
● 1, s – single user mode
● 6 – reboot
● 2, 3, 4 – multi user mode
● 5 – in Solaris on Suns = turn the power off

66

System start-up (booting)

● /etc/inittab file
– lines starting with # are comments

– fields are separated by colons

– id:runlevels:action:process

– id – 1 – 2 characters, unique line identifier

– runlevels – list of relevant runlevels

– action – what is to be done

– process – the command to execute

67

System start-up (booting)

● actions:
– initdefault – specifies the default runlevel;

process is ignored

– sysinit – the process will be started on start-up
(before boot and bootwait), init will wait for the
termination of the process, runlevels are ignored

– bootwait – the process will be started on start-
up, init will wait for its termination, runlevels are
ignored (not on all systems)

– boot – like bootwait but init will not wait for the
termination of the process

68

System start-up (booting)

– wait – the process will be started on entry to the
runlevel and init will wait for its termination

– once – the process will be started on entry to the
runlevel

– respawn – the process will be started on entry to
the runlevel and started again after it terminated

– off – no action

– ctrlaltdel – the process will be started on
pressing Ctrl+Alt+Del

69

System start-up (booting)

– powerwait – the process will be started on
power failure, init will wait for its termination

– powerfail – like powerwait without waiting

– powerokwait – the process will be started when
power is restored

– powerfailnow – the process will be started on
low battery signal from UPS

– ondemand – the process will be started on
demand to enter a special runlevel A, B, C, the
real runlevel will not change

70

System start-up (booting)

● Runlevel can be changed:
– using telinit new_runlevel

– using shutdown
● -h = 0
● -r = 6
● otherwise 1

● On a runlevel change init will kill processes it
has started which are not to run in the new
runlevel

71

Start-up scripts structure

● Slackware Linux
– directory /etc/rc.d:

● rc.S started as sysinit according to inittab
● rc.K started on entry to single user mode
● rc.M started on entry to multi user mode
● rc.inet1, rc.inet2 initialize networking and some

network services
● rc.local is intended to start locally installed

subsystems
● rc.sshd, rc.httpd, rc.nfsd, ... start relevant subsystems

72

Start-up scripts structure

● Solaris, Debian Linux, and many others:
– directory /etc/init.d contains scripts for individual

subsystems

– directories /etc/rcX.d for each runlevel X contain
symlinks named like SnnName and KnnName,
that are started on entry to the runlevel:

● nn = priority (order)
● Name = name of the subsystem
● S – the script is started with the parameter start
● K – the script is started with the parameter stop

73

Dependency based booting

● ordering of the start-up scripts is determined
automatically according to their
dependencies
– comments in the scripts' headers

● insserv script

– adds the script to the set

● insserv -r script

– removes the script from the set

74

Dependency based booting

BEGIN INIT INFO
Provides: boot_facility_1 [boot_facility_2 ...]
Required-Start: boot_facility_1 [boot_facility_2 ...]
Required-Stop: boot_facility_1 [boot_facility_2 ...]
Should-Start: boot_facility_1 [boot_facility_2 ...]
Should-Stop: boot_facility_1 [boot_facility_2 ...]
X-Start-Before: boot_facility_1 [boot_facility_2 ...]
X-Stop-After: boot_facility_1 [boot_facility_2 ...]
Default-Start: run_level_1 [run_level_2 ...]
Default-Stop: run_level_1 [run_level_2 ...]
X-Interactive: true
Short-Description: single_line_description
Description: multiline_description
END INIT INFO

75

System shutdown

● shutdown command:
shutdown [-t sec] [-arkhc] when [message]
– sec – time (in seconds) between a request for a

process to terminate and its forceful termination

– -a – check whether an authorized user is logged
in on the console (listed in
/etc/shutdown.allow)

– -r – reboot, -h – halt, -k – send message only

– -c – cancel – cancel the shutdown in progess

– message – displayed on all terminals

76

System shutdown

● time specification for shutdown:
– now – immediately

– hh:mm – at the specified time

– +m – after m minutes

● if neither -h nor -r, change to the runlevel 1
● alternative syntax on some systems (e.g.

Solaris):
– shutdown [-g sec] [-i runlevel] [message]

77

Job scheduling

● irregular job schedulling – at
● at time

– reads commands to be executed from standard
input (use Ctrl+D to signal the end of input from
a terminal)

– executes the commands at the specified time
using /bin/sh and send the output be e-mail to
the user

78

Job scheduling

– time specification for at:
● now [+ increment]
● time [+ increment]
● time date
● time = hh:mm | noon | midnight | teatime (16:00)
● date = name_of_month day [, year] |

day_of_week | today | tomorrow |
MM/DD/YYYY | YYYY-MM-DD |
DD.MM[.YYYY] | DD mmm [YYYY]

● increment = number minutes|hours|days|weeks|months
next day|week|month|day_of_week

79

Job scheduling

● examples:
– at now + 2 hours – after 2 hours

– at noon tomorrow – tomorrow at 12:00

– at 16:00 next monday – next Monday at 16:00

– at 23:00 2014-04-15 – 15.4.2014 at 23:00

– at 23:00 04/15/2014 – 15.4.2014 at 23:00

– at 23:00 15.4.2014 – 15.4.2014 at 23:00

80

Job scheduling

● listing schedules jobs
– atq

● cancelling a scheduled job
– atrm job_id

● scheduling a job at a time when the system
load is low
– batch

● reads the commands to executed from standard input
and executes them when system load drops below
0.8

81

Job scheduling

● root can use at in any case
● using at by ordinary users is controlled using

two files:
– if /etc/at.allow, exists, at can be used only

by users listed in it

– otherwise, is /etc/at.deny, exists, at can be
used by all users not listed in it

– otherwise only root can use at

● atrm can be used by the owner of the job or
by root

82

Job scheduling

● regular job scheduling – cron
● regular jobs execution is controlled by a table

with fields separated by spaces
● min hour day month day_of_week command
● a fields can contain a number, a range (2-6),

multiple numbers or ranges separated by
commas (2-6,8), * (any value)

● the command is executed every minute
when the current time matches the specified
values

83

Job scheduling

● examples of specification for cron:
– 10 6 * * * = every day at 6:10

– 10 6 4 * * = each 4th of a month at 6:10

– 10 6 * 4 0 = each Sunday of April at 6:10
● 0=Sunday, 1=Monday, ..., 6=Saturday

– * 6 * * * = every minute between 6:00 – 6:59

– 10,20 4 * * * = 4:10 a 4:20

– * 7-9 * * * = every minute between 7:00 – 9:59

– */2 5 * * * = every other minute between 5:00-
5:59 (i.e. 5:00, 5:02, 5:04, ..., 5:58)

84

Job scheduling

● submitting a table to cron
– crontab file [-u username]

● editing the current table
– crontab -e [username]

● listing the current table
– crontab -l [username]

● deleting the current table
– crontab -d [username]

85

Job scheduling

● execution of jobs of the cron subsystem is
done by the process crond

● the tables are stored in
/var/spool/cron/crontabs

● execution of jobs of the at and batch
subsystems is done
– either by the process – atd

– or by atrun which is executed regularly by cron

86

Networking

● the most widely used means of network
communication in UNIX systems (as well as
in general) is the TCP/IP protocol family

● a system is connected to networks using
network interfaces
– permanent interfaces – e.g. network cards

● Linux: eth0, Solaris: le0, hme0

– dial-up connections – e.g. a logical network
interface for PPP connection over a modem
(ppp0)

87

TCP/IP basics
● network layer – protocol IP

– connection less, unreliable

– provides for the transfer of packets between any two
computers (nodes) in a network

– addresses – 4 B (32 bit) numbers (1.2.3.4)

– an IP address consists of a network address and a
host ID of the computer within the network

– network mask (netmask) specifies the network address
part

● 4B, starts with binary 1s (network), ends with binary 0s
(node)

● 255.255.254.0: the first 23 bits contain the network address

88

TCP/IP basics

● netmask can also be specified just by the number of
bits comprising the network address (the number of
1s)

– special IP addresses:
● 127.0.0.0/8 – loopback (interface lo, usually

127.0.0.1) – communication within the host itself
● host ID = 0 – network address
● host ID = 1...1 – broadcast – for all hosts in the

network
● 255.255.255.255 – broadcast within local network
● 224.x.x.x – 239.x.x.x – multicast
● 240.x.x.x – 255.x.x.x – reserved
● 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8 – private

89

TCP/IP basics

– examples
● 158.195.18.0/255.255.255.0 (24)

– addresses: 158.195.18.1 – 158.195.18.254
– broadcast: 158.195.18.255, network address: 158.195.18.0

● 158.195.22.0/255.255.255.128 (25)
– addresses: 158.195.22.1 – 158.195.22.126
– broadcast: 158.195.22.127, network address: 158.195.22.0

● 158.195.22.128/255.255.255.128 (25)
– addresses: 158.195.22.129 – 158.195.22.254
– broadcast: 158.195.22.255, network addr.: 158.195.22.128

● 158.195.16.0/255.255.254.0 (23)
– addresses: 158.195.16.1 – 158.195.17.254
– broadcast: 158.195.17.255, network address: 158.195.16.0

90

TCP/IP basics

● interface dependent protocols are used on
link and physical layers
– in broadcast-type networks (e.g. Ethernet) ARP

(address resolution protocol) subsystem is often
used to map IP address to link-layer addresses

– direct communication is possible only between
devices connected to the same link-layer
network

– other devices communicate via routers

91

TCP/IP basics

● on transport layer, two protocols are used:
– TCP (connection oriented, reliable)

– UDP (connection less, unreliable)

– both add port numbers to IP addresses of the
source and destination nodes

– the quadruplet (source IP address, source port,
destination IP address, destination port) uniquely
identifies a communication

92

TCP/IP basics

● routing table
– determines where to send a packet in the next

step based on the destination IP address

– network address, mask, router addr., interface

– ordered by network mask (from the most specific
to the most general)

– the first matching line is used
● if no router is specified, the packet is sent directly

using the specified interface to a local network
● if a router is specified, the packet is sent via the router

93

TCP/IP basics

– a routing table example
● 158.195.18.0255.255.255.0 eth0
● 127.0.0.0 255.0.0.0 lo
● 0.0.0.0 0.0.0.0 158.195.18.209 eth0

– a routing table example with 2 interfaces
● 158.195.18.0255.255.255.0 eth0
● 158.195.16.0255.255.254.0 eth1
● 127.0.0.0 255.0.0.0 lo
● 0.0.0.0 0.0.0.0 158.195.16.208 eth1

94

TCP/IP configuration

● network interface configuration
– ifconfig [interface] – shows the

configuration of the specified (or of all active) int.

– ifconfig -a – show the configuration of all int.

– ifconfig iface address | options...
configures the interface

– most common options
● netmask mask – specifies the netmask
● broadcast address – specifies the broadcast

address

95

TCP/IP configuration

● up – activates the interface
● down – deactivates the interface
● pointopoint address – configures the other

side's address of a point-to-point link
● [-]arp – turns on/off the ARP subsystem
● hw ether address – configures link-layer address

– examples
● ifconfig eth0 1.2.3.4 netmask 255.255.255.0 broadcast

1.2.3.255 configures an interface
● ifconfig eth0 1.2.3.4 netmask 255.255.255.255

pointopoint 5.6.7.8 configures an interface for a
point-to-point link

96

TCP/IP configuration

● routing table management
– route [-n] – lists the routing table (-n will

prevent IP address to name conversion)

– route add -net dest netmask mask [gw
router] [dev iface] – adds a record for a
network to the routing table

– route add -host dest [gw router]
[dev iface] adds a record for a single host

– route add default [gw router] [dev
iface] adds a default (0.0.0.0/0) route

97

TCP/IP configuration

– route del [-host|-net] dest [netmask
mask] [gw router] [dev iface] removes
the record from the table

● enabling the routing in Linux
– write 1 to
/proc/sys/net/ipv4/ip_forward

● adding multiple IP addresses to an interface
– ifconfig eth0:1 ... – creates the interface

eth0:1 and configures it

98

Network configuration in Debian

● /etc/network/interfaces
– auto

● space separated list of interfaces to configure on start-up

– allow-hotplug
● space separated list of interfaces to configure on their

creation

– iface interface protocol-family method
 parameters
 ...

● configuration of the specified interface

99

Network configuration in Debian
● methods for the family inet (i.e. IPv4)

– loopback
● for the lo interface

– dhcp
● acquires the configuration using DHCP

– static
● address
● netmask
● broadcast
● gateway

100

Network configuration in Debian

● common parameters
– pre-up command

– up | post-up command

– down | pre-down command

– post-down command

● scripts in /etc/network/if-param.d/
– executed after the explicitly specified commands

101

Network configuration in Debian

● ifup interface

– configures the specified interface

– -a – all „auto“ interfaces

● ifdown interface

– deactivates the specified interface

– -a – all „auto“ interfaces

102

Example /etc/network/interfaces

auto lo
iface lo inet loopback

allow-hotplug eth0 eth1

iface eth0 inet dhcp

iface eth1 inet static
 address 192.168.1.2/24
 gateway 192.168.1.1

103

Network services
● /etc/services contains the mapping

between service names and port numbers
(and protocols)
– name port number/protocol alias

● protocol names are mapped to protocol
numbers using /etc/protocols

● programs providing network services
(daemons, servers) either
– listen on a port, waiting for requests, or

– are started by the “superserver” inetd

104

Network services

● inetd is configured in /etc/inetd.conf

– space separated fields

– name type protocol wait/nowait user prog args
● name – service name according to /etc/services
● type – dgram or stream
● protocol – udp or tcp
● wait = inetd waits for the process's termination before

processing new requests on the port
● nowait = inetd starts a new instance of the program

for every request
● user – username of the user to run the program as

105

Network services

● prog – path to the executable file of the program
● args – arguments (including the zero'th one – the

name of the program)

● to perform access control to network
services, tcpd is often used as a wrapper by
inetd
– it uses two files: /etc/hosts.allow and
/etc/hosts.deny

– hosts.allow is checked first, if no match is found,
hosts.deny is checked, and if still no match
found, the access is allowed

106

Network services

– structure of /etc/hosts.{allow,deny}
● list of services : list of clients
● service:

– name[@host]
– ALL

● client:
– ALL
– [username@]host

● host:
– IP address, hostname
– IP address/mask
– 158.195.
– .fmph.uniba.sk

107

Network services

● netstat command

– lists network connections, open ports, routing
table, statistics, ...

– most common switches
● -n – IP addresses and port numbers show

numerically (otherwise converted to names)
● -a – list established connections and open ports

(listening stream, datagram); otherwise only
established connections

● -r – list routing table
● -p – show process ID of the responsible process

108

IP addresses vs. names

● the file /etc/hosts

– original solution for mapping between IP
addresses and hostnames

– space separated fields, # starts a comment

– IP_address name aliases

– complicated assignment of unique names,
distribution and updates in large networks

– usable in small networks

109

An example of /etc/hosts

127.0.0.1 localhost
158.195.16.200 cyril.fmph.uniba.sk cyril
158.195.87.234 jj-ntb.dcs.fmph.uniba.sk jj-ntb
158.195.18.163 public.dcs.fmph.uniba.sk public mail

110

Domain Name System (DNS)
● DNS – the largest distributed database for

conversion between domain names and IP
addresses

● domain name:
– name.domain_n.domain_n-1.domain_1

– does not reveal the physical location of the host

– top-level (1) domains
● generic: com, org, net, edu, gov, mil, int, biz, info, pro
● by countries: sk, cz, at, pl, hu, de, uk, ...

● information is provided by DNS servers

111

Domain Name System (DNS)

.
com mil net arpa ... sk ...

sk.
stuba uniba sanet gov ...

uniba.sk.
fmph rec fns ...

fmph.uniba.sk.
pascal rafael turing dcs ...

dcs.fmph.uniba.sk.
www ftp mail

112

Domain Name System (DNS)
● domain – each node of the domain tree
● zone – contiguous part of the domain tree for which

a name server contains authoritative information
– entire domain subtree

– part of a domain subtree – without some of its subtrees
that are delegated to another zone (using an NS record)

● DNS server
– primary – contains zone data in a file

– secondary – retrieves zone data from a primary server

113

Domain Name System (DNS)

● zone file format:
– $ORIGIN domain – specifies the suffix for

relative domain names
● absolute domain name in zone file ends with a dot
● relative domain name – does not end with a dot

– $TTL time – specifies the default time-to-live
(in seconds) for records

114

Domain Name System (DNS)

– domain [TTL] class type data
● class = IN (Internet)
● domain – domain name (rel. or abs.), for the record

– @ - the zone's origin
– space – same as in the previous record

● type – the type of the record
● data – the value of the record

– its syntax depends on the type
● TTL – the time to keep the record in chaches

115

Domain Name System (DNS)

● DNS record types
– SOA name_serv user.host (serial
refresh retry expire neg_ttl)

● basic zone information, 1st record
● name_serv – domain name of the primary DNS server
● user.host – zone admin's e-mail address (. instead of

@)
● serial – serial number – must be increased on change
● refresh – the time between regular data reload's from

primary to secondary DNS servers

116

Domain Name System (DNS)

● retry – delay after unsuccessful refresh
● expire – if no refresh is successful for this time, zone

data are considered invalid (and are not served any
more)

● neg_ttl – TTL for negative responses (non-existing
domain)

– A IP_address
● IP address for the domain name

– CNAME dom_name
● the canonical domain name for the domain name of

the record (alias)

117

Domain Name System (DNS)

– NS name.of.name.server
● delegation to another DNS server

– MX priority mail.server.name
● specifies a mail-exchanger for the domain – a

computer that receives e-mails for the domain
● sorted by the priority (lower values = higher priority)

– PTR domain.name
● used in inverse mapping (from IP addresses to

domain names)
● absolute domain name

118

Domain Name System (DNS)

● IP address to domain name mapping
– uses a special domain in-addr.arpa.

– to convert IP address A.B.C.D look up a PTR
record for D.C.B.A.in-addr.arpa.

– the mappings from a name to an IP address and
backwards are independent – there is no
mechanism to keep them consistent

● do not rely on IP address to name conversion for
access control

119

Examples of zone files

$ORIGIN dcs.fmph.uniba.sk.
$TTL 36000
@ IN SOA ns.dcs.fmph.uniba.sk. hostmaster.dcs.fmph.uniba.sk (

2003042901
7200
1800
86400
600)

IN NS ns.dcs.fmph.uniba.sk.
IN MX 50 mail
IN MX 100 cyril.fmph.uniba.sk.

ns IN A 158.195.18.163
mail IN A 158.195.18.163
public IN A 158.195.18.113
www IN CNAME public

$ORIGIN fmph.uniba.sk.
dcs IN NS ns.dcs.fmph.uniba.sk.
ns.dcs IN A 158.195.18.163

$ORIGIN 18.195.158.in-addr.arpa.
@ IN SOA ...
163 IN PTR public.dcs.fmph.uniba.sk.

$ORIGIN 195.158.in-addr.arpa.
18 IN NS
ns.dcs.fmph.uniba.sk.

120

DNS configuration

● file /etc/resolv.conf

– contains the DNS resolver (client) configuration

– domain local_domain

– search dom1 dom2 ...
● domain and search are mutually exclusive
● they specify the suffixes to add to incomplete domain

names during lookup

– nameserver IP_address
● specifies the DNS server for the resolver to send

requests to
● max. 3 records

121

● file /etc/nsswitch.conf

– specifies the sources for various mappings used
by standard library functions

– hosts: files dns
● use /etc/hosts first, then DNS

● name server (BIND) configuration
– file /etc/named.conf, or
/etc/bind/named.conf

DNS configuration

122

Network Filesystem (NFS)

● a standard means of file sharing in UNIX
systems, based on RPC protocol

● also transfers information about owners,
groups and permissions
– needs common user and group mapping on

servers and clients

– can only be used in a “friendly” environment
because of security concerns

● needs the program portmap

– provides port information for services using RPC

123

Network Filesystem (NFS)

● mounting a share
– mount -t nfs server:path dest

● mounts the directory path on the server server into
the directory dest on the client

● NFS specific mount parameters
– fg/bg – if mounting fails (e.g. due to a network

problem), mount will keep trying (fg), or it will
keep trying in the background (bg)

– noac – disables attribute caching

124

Network Filesystem (NFS)

– hard – if the server stops responding, the
client's process attempting to access the
filesystem will be blocked until the server is OK

– soft – if the server stops responding, the
client's process will receive an error indication

● NFS server
– either a normal process, or a part of kernel

– rpc.mountd – provides the mounting service

– rpc.nfsd – provides the file operations

– rpc.statd, rpc.lockd – provide file locking
support

125

Network Filesystem (NFS)

● Exported (shared) directories are specified in
/etc/exports

– each line describes an exported directory and
contains the list of allowed clients with some
options:
/home client1(rw) client2(ro,all_squash)

– a client can be specified as
● a hostname, an IP address, IP address/mask
● a hostname containing wildcards * and ?

126

Network Filesystem (NFS)

● options
– ro/rw – read-only/read-write access to the

directory

– root_squash – all accesses by the user 0 will
be done with the anonymous user's rights

– no_root_squash – root's accesses will be
done as root

– all_squash – all accesses will be done as
anonymous

– async/sync – (a)synchronous writes

127

Network Filesystem (NFS)

● Linux kernel contains a built-in NFS server
– it is controlled using the command exportfs

– exportfs -r
● reads /etc/exports and configures the kernel's

NFS server

● rpc.nfsd n

– n = the number of threads (default 1, common 8)

– for kernel NFS server, rpc.nfsd is only a small
controlling utility

128

Other common services

● syslogd
– central log management

– /etc/syslog.conf

● sendmail, postfix, exim, qmail
– mail servers

● apache
– web server

129

Printing subsystems

● lpr, lpr-ng
– printers described in /etc/printcap, configuration

in /etc/lpd.conf

– daemon lpd

– lpr, lp – used to submit print jobs

– lpq, lpstat – used to show the print queues

– lprm, cancel – used to cancel a print job

– /etc/printcap can specify various filters to convert
different document formats to a printer's
language

130

Printing subsystems

● CUPS (Common UNIX Printing System)
– web based administration interface (port 631)

– supports IPP, lpd, windows driver installation for
samba

– daemon cupsd

– configuration in /etc/cups/

– many filters, printer drivers, connection methods

– printer sharing with automatic clients'
configuration

131

Samba

● an implementation of Windows networking
protocols for file and printer sharing

● server
– smbd – provides file and printer sharing

services, authentication, ...

– nmbd – provides Windows name to IP address
translation – network browsing

– swat – web interface for administration

132

Samba

● client
– smbclient – ftp like command line client to

access Windows shares

– nmblookup – Windows name lookup tool

– filesystem cifs
● mounting Windows directories to the UNIX tree
● cifs also supports UNIX extensions
● previously smbfs

133

Linux Access Control using ACLs

134

Standard UNIX permissions

● permissions: read, write, execute/use
● subjects: owner, group, others
● assigned to every filesystem object
● problems:

– too coarse structure of subjects

– default permissions for new objects cannot be
specified

135

Classic solutions

● crating a suitable set of groups
– requires root's access

– complex requirments lead to a high number of
groups

● suitable use of umask
– OK, if we need the same default permissions in all

directories

– problem, if we need different default permissions in
various directories

136

Access Control List (ACL)

● extends the types of subjects that the
permissions can be specified for:
– the owner

– the assigned group

– the others

– a specific user

– a specific group

● specifies the default permissions (ACL) for new
objects in the directory

137

Access Control List (ACL)

● every filesystem object is assigned a list of
entries:
– the entry's type,

– an identifier of a user/group,

– permissions (read, write, execute/use)

138

Access Control List (ACL)

● entry types:
– ACL_USER_OBJ – the permissions for the owner

– ACL_USER – the permissions for a specified user

– ACL_GROUP_OBJ – the permissions for the object's
group

– ACL_GROUP – the permissions for a specified group

– ACL_OTHER – the permissions for the others

– ACL_MASK – the maximal permissions for
ACL_USER, ACL_GROUP a ACL_GROUP_OBJ

● 1, 0 or mode, 0 – 1 (1 if a green exists)

139

Access Control List (ACL)
● Evaluation of the permissions

– if effective UID of the process = UID of the owner,
ACL_USER_OBJ entry is used

– otherwise, if effective UID of the process = the
identifier in an ACL_USER entry, the entry is used
after being ANDed with ACL_MASK

– otherwise all ACL_GROUP_OBJ and ACL_GROUP
entries matching the effective GID or a
supplementary group of the process are ORed
together, ANDed with ACL_MASK and used

– if no such entry exists, the ACL_OTHER entry is
used

140

Access Control List (ACL)

● Relations to the standard UNIX permissions
– the owner's permissions correspond to the

ACL_USER_OBJ entry

– the others' permissions correcpond to the
ACL_OTHER entry

– the group's permissions correspond to
● ACL_GROUP_OBJ, if ACL_MASK is not present
● ACL_MASK, if ACL_MASK is present

– changing the standard permissions also changes
the corresponding ACL entries, and vice versa

141

Access Control List (ACL)

● Textual representation of the permissions – the
long version
– one entry per line

– type:id:permissions

– type
● user – ACL_USER or ACL_USER_OBJ (if id=““)
● group – ACL_GROUP or ACL_GROUP_OBJ (if id=““)
● mask – ACL_MASK
● other – ACL_OTHER

– permissions: 3 characters from {r, w, x, -}

142

Access Control List (ACL)

● Textual representation – the short version
– the entries are separated with commas

– the type can be abbreviated as u, g, m, o

– dashes (-) in permissions can be left out (but at
least one character has to be present)

143

Displaying the ACL

● getfacl [-R] object

– -R – recursively

– lists the ACL for the specified object(s) in the long
textual form

file: a
owner: root
group: root
user::rw-
user:jerry:---
group::r--
group:users:r--
group:testgroup:-w-
mask::rw-
other::---

144

Setting the ACL

● setfacl [-R] -m acl object

– -R – recursively

– acl – short textual form of the ACL specification

– adds/modifies the specified ACL entries

● setfacl [-R] -x acl object

– removes the specified entries from the ACL

– acl – the specifcation of the entries without the
permissions

● setfacl [-R] -b object

– removes all entries from the ACL

145

Setting the ACL

● other options for setfacl
– -n – do not recalculate the mask

● setfacl by default, if the mask is not explicitly specified,
calculates and sets the mask as OR of all ACL_USER,
ACL_GROUP and ACL_GROUP_OBJ entries

● setfacl --restore=file

– sets the ACL according to the file in the format of
getfacl output

– used to restore ACLs saved using getfacl

146

Default ACL

● A directory can also have a default ACL for new
objects
– a new object's ACL is initialized from the default

ACL of the directory

– the permissions not requested on creation are
removed from the entries corresponding to the
standard UNIX permissions

● If the directory has no default ACL
– a new object's ACL will contain the entries

corresponding to the standard permissions
initialized according to the requested permissions
and umask

147

Setting the default ACL

● setfacl -d -m acl directory

– acl as in the normal ACL

● setfacl -m defacl directory

– the entries of defacl have the prefix default: or d:

● setfacl -d -x acl directory

● setfacl -x defacl directory

● setfacl -k directory

– removes the default ACL

148

Mounting a filesystem with ACL
support

● When using mount, or on the corresponding
line of /etc/fstab the acl option is used:
– mount -t ext3 -o acl /dev/sda2 /home

● ACLs are supported in Linux for ext3 since the
2.6.x kernel

149

Examples
root@lubka:/tmp/x# umask
0027
root@lubka:/tmp/x# mkdir d
root@lubka:/tmp/x# getfacl d
file: d
owner: root
group: root
user::rwx
group::r-x
other::---

root@lubka:/tmp/x# setfacl -m g:testgroup:rwx,default:g:testgroup:rwx d
root@lubka:/tmp/x# getfacl d
file: d
owner: root
group: root
user::rwx
group::r-x
group:testgroup:rwx
mask::rwx
other::---
default:user::rwx
default:group::r-x
default:group:testgroup:rwx
default:mask::rwx
default:other::---

150

Examples
root@lubka:/tmp/x# touch d/f
root@lubka:/tmp/x# mkdir d/d2
root@lubka:/tmp/x# getfacl d/f
file: d/f
owner: root
group: root
user::rw-
group::r-x #effective:r--
group:testgroup:rwx #effective:rw-
mask::rw-
other::---

root@lubka:/tmp/x# getfacl d/d2
file: d/d2
owner: root
group: root
user::rwx
group::r-x
group:testgroup:rwx
mask::rwx
other::---
default:user::rwx
default:group::r-x
default:group:testgroup:rwx
default:mask::rwx
default:other::---

151

Firewalling in Linux

152

The task of a firewall

● on an end host
– access control to network services

– restriction of outgoing communication

● on a router
– restriction of communication between networks

– network address translation (NAT)
● allowing communication from networks that use private IP

addresses

153

Types of firewalls

● stateless firewall
– each packet is handled separately

● based on the network and transport layer headers

– low demands for CPU time and memory

– only simple security policies

● stateful firewall
– keeps information about “connections”

– higher demand for memory and CPU time

– more complex policy can be enforced

154

Firewall in Linux

● a part of the kernel
– netfilter subsystem

● stateful firewall
– implements connection tracking

● TCP, UDP
● helper modules for some problematic application layer

protocols (e.g. FTP)

● also a stateless firewall
– without using connection tracking

155

Firewall in Linux

● driven by tables (IP tables)
– filter

● packet filtering

– nat
● network address translation (NAT)

– mangle
● manipulation with some packet attributes

156

Firewall in Linux

● a table contains chains of rules
– filter

● INPUT – for incoming packets
● OUTPUT – for outgoing packets
● FORWARD – for forwarded packets

– nat
● PREROUTING – before routing (forwarded packets)
● OUTPUT – locally generated packets before routing
● POSTROUTING – after routing (just before transmission)

– user-defined chains can be added

157

Firewall in Linux

● chains contain rules
– test

– target
● ACCEPT – accept the packet for further processing
● DROP – drop (discard) the packet (silently)
● a name of a user-defined chain

– contains using the rules of the specified chain
● RETURN – continue with rules in the previous chain
● other

● predefined chains also have a default target

158

Firewall in Linux

● application of the rules
– if the test matches, the specified target is used

– otherwise, the next rule is applied (evaluated)

– when the end of a user-defined chain is reached,
the next rule in the previous chain (i.e. the chain
that referenced the user-defined one) is applied

– at the end of a predefined chain, the default target
is used

159

Firewall in Linux

● command iptables

– -t table – the table to show/modify

– -A chain rule – adds a rule at the end of the
chain

– -I chain [position] rule – inserts a rule

– -D chain position – removed a rule

– -L [chain] – lists rules (of a chain)

– -F [chain] – removes all rules (from a chain)

– -N chain – defines a new chain

160

Firewall in Linux

– -X [chain] – removes a chain

– -P chain target – sets the default target for a
chain

● rules (! negates the test)
– -p [!] protocol – transport layer protocol

– -s [!] address/mask – source IP address

– -d [!] address/mask – destination IP address

– -i [!] interface – incoming interface

– -o [!] interface – outgoing interface

– -j target – the rule's target

161

Firewall in Linux

● extension of tests for TCP protocol
– --sport [!] port[:port] – source port, range

of ports

– --dport [!] port[:port] – destination port,
range of ports

– --tcp-flags [!] mask value
● SYN, ACK, FIN, RST, URG, PSH, ALL, NONE

– [!] --syn
● --tcp-flags SYN,RST,ACK,FIN SYN

162

Firewall in Linux

● extension of tests for UDP protocol
– --sport [!] port[:port] – source port, range

of ports

– --dport [!] port[:port] – destination port,
range of ports

163

Firewall in Linux

● extensions of tests for stateful firewall
– -m state – loads the extension module state

– --state state – tests the state of a connection
● NEW – a new packet – the first packet of a connection
● ESTABLISHED – a packet that belongs to an existing

connection
● RELATED – the first packet of a connection related to an

existing connection (i.e. expected due to an existing
connection)

● INVALID – a packet that cannot be identified

164

Firewall in Linux

● some other targets
– REJECT [--reject-with type] – drops the

packet and responds with an ICMP error message
● icmp-net-unreachable
● icmp-host-unreachable
● icmp-port-unreachable
● icmp-proto-unreachable
● icmp-net-prohibited
● icmp-host-prohibited
● icmp-admin-prohibited

165

Firewall in Linux

– REDIRECT [--to-ports port[-port]]
● redirects the packet to the local address to the specified

port (or a range of ports)
● used to implement transparent proxy servers

– SNAT –to-source ipaddr[-ipaddr]
● rewrites the source address to the specified one (in

POSTROUTING chain in the nat table)
● following packets are modified in the same/opposite way

– DNAT –to-destination ipaddr
● rewrites the destination address (PREROUTING,

OUTPUT in the nat table)
● following packets are modified in the same/opposite way

166

An example – end station protection

iptables -F
iptables -P INPUT DROP
iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A INPUT -p tcp --dport 22 -s 192.168.0.0/24 -j ACCEPT
iptables -A INPUT -p tcp --dport 80 -j ACCEPT

167

An example – a router

192.168.0.0/24

eth0 router eth1
192.168.0.1 1.2.3.4

server
192.168.0.20

adminpc
192.168.0.10

Internet

168

An example – a router

iptables -F
iptables -X
iptables -N outgoing
iptables -N server
iptables -P FORWARD DROP
iptables -P INPUT DROP
iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A INPUT -s 192.168.0.10 -p tcp --dport 22 -j ACCEPT
iptables -A FORWARD -s 192.168.0.0/24 -i ! eth0 -j DROP
iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A FORWARD -d 192.168.0.20 -j server
iptables -A FORWARD -s 192.168.0.0/24 -j outgoing
iptables -A outgoing -p tcp --dport 25 -j DROP
iptables -A outgoing -j ACCEPT
iptables -A server -p tcp --dport 80 -j ACCEPT
iptables -A server -p tcp --dport 443 -j ACCEPT
iptables -A server -p udp --dport 53 -j ACCEPT
iptables -A server -p tcp --dport 53 -j ACCEPT

169

An example – a router

iptables -t nat -F
iptables -t nat -A POSTROUTING -s 192.168.0.0/24 -o eth1 -j SNAT

--to-source 1.2.3.4
iptables -t nat -A PREROUTING -p tcp --dport 80 -j DNAT

--to-destination 192.168.0.20
iptables -t nat -A PREROUTING -p tcp --dport 443 -j DNAT

--to-destination 192.168.0.20
iptables -t nat -A PREROUTING -p tcp --dport 53 -j DNAT

--to-destination 192.168.0.20
iptables -t nat -A PREROUTING -p udp --dport 53 -j DNAT

--to-destination 192.168.0.20

170

FUSE – Filesystem in Userspace

171

FUSE – Filesystem in Userspace

● Basic idea
– to allow implementation of a filesystem using an

ordinary process

– a kernel module passes requests from a mounted
filesystem to the process

● module fuse

– the process implements the filesystem operations

172

What is FUSE good for?

● easier to implement filesystem “drivers”
– it is easier to write an ordinary program than to write

a kernel module

● it allows normal users to mount filesystem to
the tree
– without specifying fixed parameters in /etc/fstab

173

FUSE examples

● sshfs
– allows users to mount a remote computer's

filesystem accessible via SFTP protocol

– mounting

sshfs usename@host:path mountpoint

– unmounting

fusermount -u mountpoint

174

How does FUSE work?

● kernel module fuse
– provides the kernel-side implementation of a

filesystem

● libfuse
– the library used by the process implementing the

filesystem

● /dev/fuse
– character device used for communication between

the process and the kernel module

● fusermount
– helper program to support (un)mounting

175

How does FUSE work?

● sshfs creates a connection to the remote server
● it passes function pointers of functions

implementing individual operations to libfuse
● it runs fusermount using libfuse
● fusermount (set-uid) mounts the filesystem
● requested operations in the mounted filesystem

are passed using /dev/fuse to sshfs
● sshfs performs the operation using SFTP and

returns the result

176

FUSE and permissions

● a process that wants to mount a filesystem to a
mountpoint must have full access permissions
to the mountpoint

● fuse ignores permission checks in the mounted
filesystem by default – it leaves the access
control up to the process implementing the
filesystem

● using the -o default_permissions option the
standard access control checks can be enabled
in the kernel

177

FUSE and permissions

● the mounted filesystem is inaccessible for other
users by default, not even for root

● using the -o allow_other option root can allow
access by other users
– in /etc/fuse.conf the user_allow_other option can

be specified to allow normal users to use
allow_other and allow_root (allow_root allows
access by root)

178

Some useful FUSE filesystems

● sshfs
– sftp/ssh

● ntfsmount
– nfts

● fusedav
– WebDAV

● encfs
– encrypted FS

● fuseiso
● fusesmb

– SMB/CIFS

● gphotofs
– PTP

● mtpfs
– MTP

● obexfs
– OBEX

179

Linux booting

180

The booting procedure

● BIOS loads and starts a boot loader
● The boot loader loads

– the system kernel

– CPIO archive with the contents of the initial root
filesystem (initramfs)

● The boot loader starts the kernel (and passes
parameters to it)

● The kernel extracts initramfs to / and starts /init
● /init mounts the real root filesystem and

starts /sbin/init

181

Why initramfs?

● it used to work without it earlier
– the kernel had to contain all drivers needed to

access the root filesystem

● today the kernel is usually universal and the
drivers (in the form of kernel modules) are
loaded from initramfs before mounting the real
root filesystem

● this approach enables using more complicated
setup needed to access the root filesystem
– RAID, LVM, encryption, ...

182

Creating/updating initramfs

● update-initramfs -u
– updates the initramfs for the current kernel

● update-initramfs -c -k kernel_version
– created a new initramfs for the given kernel

● configuration
– /etc/initramfs-tools/

● initramfs.conf
● modules
● ...

183

Useful kernel parameters

● init=...
– file to use instead of /sbin/init

● rdinit=...
– file to use instead of /init

● ro, rw
– whether the root filesystem is to be mounted ro/rw

● root=...
– device containing the root filesystem

● run-level number / single / emergency

184

Useful kernel parameters

● root=
– /dev/sda2

– UUID=20282ab2-2692-4734-8806-f08e52171c0e

– LABEL=root

– /dev/nfs
● nfsroot=[<server-ip>:]<root-dir>
● ip=<client ip>:<server ip>:<gw>:<netmask>:<hostname>:‑ ‑

<device>:<autoconf>

185

How does BIOS load a boot loader?

● BIOS reads 1st disk sector (MBR) and runs it
– the base part of a boot loader must fit to 446B

– the rest of the sector contains the partition table
(4x16B)

● „standard“ PC boot loader in MBR loads
1st sector of the active partition and runs it
– it loads and runs either

● the kernel of an OS
● or the rest of a larger boot loader

186

Examples of boot loaders capable of
loading Linux

● syslinux
– FAT (e.g. on a USB stick)

● isolinux
– ISO9660 (CD)

● pxelinux
– network booting (PXE)

● lilo
– ext2/3 (+MBR)

● grub
– various filesystems (+MBR)

187

syslinux

● configuration in syslinux.cfg
● it allows the user to specify parameters for the

kernel on a command line
● it can be used to create a simple boot menu

default inst

label inst
 kernel inst
 append initrd=instrd.gz

188

isolinux, pxelinux

● isolinux
– configuration in isolinux.cfg

● same as syslinux

● pxelinux
– configuration in the directory pxelinux.cfg

● same as syslinux, individual files for client computers

– loaded using TFTP from the server specified using
DHCP

– allows booting of a disk-less computer
● with the root filesystem typically mounted via nfs

189

lilo

● the base part can be in MBR or in an ext2/3 FS
● the rest in ext2/3
● it records the files' positions using sector

numbers
– a problem arises when the files are moved

● configuration in /etc/lilo.conf
– when changes, lilo must be reinstalled

● installation using the command lilo

190

lilo

● can load and run another boot loader (chain
loading)
– it can boot various OS's in this way

● supports creation of boot menus
● allows the user to specify kernel parameters
● can modify the parition type

– can be used to „hide“ partitions

191

lilo
image = /boot/vmlinuz
 root = /dev/sda2
 label = Linux
 initrd = /boot/initrd.gz
 read-only

other=/dev/sda1
 label=windows

192

grub

● the base part can be in MBR or in 1st sector of a
partition

● the 2nd part can be between MBR and the 1st
partition or in a partition
– when in a partition, it is sensitive to changing the

position of the files

● configuration and other parts (modules) are in
files in the filesystem
– grub has modules supporting various filesystems

(ext2/3/4, fat, ntfs, iso9660, ...)

193

grub

● can load and run another boot loader (chain
loading)
– can boot other OS's in this way

● supports boot menu creation
● allows the user to specify kernel parameters
● can modify the partition type

– can be used to „hide“ partitions

194

● configuration file /boot/grub/grub.cfg
– generated using the command update-grub or

grub-mkconfig

– configuration parameters
● /etc/default/grub

– scripts used during the configuration file generation
● /etc/grub.d/

grub

195

grub

menuentry 'Debian GNU/Linux, with Linux 3.2.0-0.bpo.3-686-pae' {
 insmod part_msdos
 insmod ext2
 set root='(hd0,msdos3)'
 search --no-floppy --fs-uuid --set 20282ab2-2692-4734-8806-f08e52171c0e
 echo 'Loading Linux 3.2.0-0.bpo.3-686-pae ...'
 linux /boot/vmlinuz-3.2.0-0.bpo.3-686-pae root=UUID=20282ab2-2692-4734-8806-
f08e52171c0e ro
 echo 'Loading initial ramdisk ...'
 initrd /boot/initrd.img-3.2.0-0.bpo.3-686-pae
}

196

systemd

197

systemd

● global service manager
– replacement for /sbin/init

● per user service manager (systemd --user)
– can run services as the logged in user

● various activation mechanisms
– sockets, timers, ...

198

systemd configuration

● /etc/systemd/system.conf (user.conf)
– various default values (timeouts, limits, ...)

● unit files
– /etc/systemd/system/, /run/systemd/system,

(/usr)/lib/systemd/system/

– ~/.config/systemd/user/, /etc/systemd/user/,
/run/systemd/user/, /usr/lib/systemd/user/

199

systemd unit file

● text file describing
– a service (a replacement of init)

– a socket (a replacement of inetd)

– a device

– a mountpoint (a replacement of /etc/fstab)

– an automount point

– a swap file/partition

– a start-up target

– a watched path
– a timer
– ...

200

systemd unit file

● [Unit]
Key=Value
...
[Install]
Key=Value
...
[Othersection]
Key=Value
...

201

systemd unit file [Unit] section

● Description=
– a textual description of the unit

● Documentation=
– a URI list of documentation (space separated)

● Wants=
– a list of units that will also be started when this unit

is started (but they may fail)

– also the directory unit.wants may contain symlinks
to wanted unit files

202

systemd unit file [Unit] section

● Requires=
– stronger version of Wants – it the required units fail

to start (and the current one is ordered after the
failing one), the current unit will not be started

– if the required unit is stopped, the current unit will
also be stopped

– also the directory unit.requies may contain symlinks
to required unit files

203

systemd unit file [Unit] section

● Requisite=
– similar to Require, but the listed units must be

already started before this one, otherwise this one
will fail

● BindsTo=
– even stronger dependency than Requires

– if the other unit becomes inactive for any reason,
this one will be stopped

● PartOf=
– when the other unit is stopped/started, this one will

be as well

204

systemd unit file [Unit] section

● Conflicts=
– if this unit is stared, the other one will be stopped

and vice versa

● Before=, After=
– specify the ordering of units when being started

(inverse when being stopped)

– without ordering, units are startes/stopped
simultaneously

● ...

205

systemd unit file [Install] section

● specifies what to do when a unit is
enabled/disabled

● WantedBy=, RequiredBy=
– a link to this unit will be created in .wants/.requires

directory of the other unit

– usually used to create a dependency for a unit of
the target type

● Also=
– a list of units to be also enabled/disabled

206

systemd service unit

● uses .service suffix, contains [Service] section
● Type=

– simple

– exec

– forking

– oneshot

– dbus

– notify

– idle

207

systemd service type

● simple, exec
– the service becomes started as soon as a process

is created (even before its new binary is exec-ed) or
as soon as the new program is exec-ed

● forking
– it is expected that the service process will fork and

exit when it is ready

● oneshot
– it is considered started when the main process exits

208

systemd service unit

● RemainAfterExit=yes|no
– if yes, the service is considered still active after its

process terminates (usefull for oneshot)

● PIDFile=
– specifies the file where the service process writes

its PID

● ExecStart=
– the command to start the service

209

systemd service unit

● ExecReload=
– the command to reload the service's configuration

● ExecStop=
– the command to stop the service

● TimeoutStartSec=, TimeoutStopSec=
– specifiy the timeout

● Restart=no|on-success|on-failure|on-abnormal|
on-abort|always
– specifies when the service it to be automatically

restarted

210

systemd service unit

● WorkingDirectory=
– set the working directory of the service

● User=, Group=
– set the user/group the service runs as

● SupplementaryGroups=
– set the list of supplementary groups for the process

● Umask=
– set the umask value

211

systemd service unit

● RuntimeDirectory=, StateDirectory=,
CacheDirectory=, LogsDirectory=,
ConfigurationDirectory=
– systemd will create the directories under standard

locations (/run/, /var/lib/, /var/cache/, /var/log, /etc)

● Environment=
– list of env. variable assignments

● EnvironmentFile=
– the file containing the env. variable assignments

212

systemd service unit

● StandardInput=
– null

– file:path

– socket

● StandardOutput=, StandardError=
– inherit

● duplicate the StandardInput

– null

– file:path

– append:path

– socket

– journal

213

systemd socket unit

● uses .socket suffix, contains [Socket] section
● needs a service unit of the same name
● ListenStream=, ListenDatagram=

– specifies the IP address and port number to listen
on (e.g. 0.0.0.0:80)

● Accept=yes|no
– if yes, the connection is accepted and the

connected socket is passed to the service

214

systemd mount unit

● uses .mount suffix, contains [Mount] section
● can be used as a replacement of /etc/fstab
● usually generated from /etc/fstab
● What=

– specifies the device to mount

● Where=
– specifies the mountpoint path (must match the

name of the unit)

● Type=, Options=

215

systemd automount unit
● uses .automount suffix, contains [Automount]

section
● monitors a path and when it is to be accessed,

automatically starts a corresponding mount unit
● Where=

– the path to monitor/mount

● DirectoryMode=
– access rights for the directory to be created

● TimeoutIdleSec=
– unmount after idle time

216

systemd swap unit

● uses .swap suffix, contains [Swap] section
● similar to mount but for swap devices
● usually generated from /etc/fstab
● What=
● Options=

217

systemd time unit

● uses .timer suffix, contains [Timer] section
● starts the corresponding service when the timer

elapses
● OnActiveSec=, OnBootSec=, OnStartupSec=

– will start the service specified time after timer
activation/boot/systemd start

● OnUnitActiveSec=, OnUnitInactiveSec=
– will start the service specified time after it was last

activated/deactivated

218

systemd time unit

● OnCalendar=
– will start the corresponding unit on calendar events

(similar to cron)

– weekday year-month-day hh:mm:ss

– Mon,Wed *-12-01..20
● every Monday or Wednesday in December between 1st

and 20th every year

● Unit=
– the unit to start (defaults to the same name as the

timer unit)

219

systemd target unit

● groups services, represents various well known
points in the start-up sequence, etc.

● typically uses Wants= or Requires= to start
services

● systemd.unit= kernel command line parameter
can be used to boot to a specific target instead
of default.target

220

systemd target unit

● multi-user.target
● poweroff.target
● reboot.target
● ctrl-alt-del.target
● shutdown.target

– in general, services should use
Conflicts=shutdown.target to get stopped on
shutdown

221

systemctl

● systemctl list-units
– lists all loaded units

● systemctl start|stop|restart|reload service
– starts/stops/restarts/reloads the specified service

● systemctl status unit
– show status of the unit

222

systemctl

● systemctl list-unit-files
– list unit files

● systemctl enable|disable unit
– enables/disables the unit using its [Install] section

● systemctl mask|unmask unit
– masking prevents the unit from being used

(disabled unit can be manually started, masked unit
can not be started)

223

systemctl

● systemctl daemon-reload
– reload systemd's configuration, regenerate auto-

generated units, reload unit files (e.g. after
modification), ...

● systemctl halt|poweroff|reboot
● systemctl suspend|hibernate
● systemctl --user ...

– talk to user's systemd instance instead of the global
systemd instance

224

journalctl

● displays the systemd's journal
– -u unit

● show only records corresponding to the unit

– -r
● show newest records first (reverse order)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224

